
14 Design of SAYEH Processor

This chapter shows design of a small computer in Verilog and implementation
of it on UP2 using Quartus II. The CPU is SAYEH (Simple Architecture, Yet
Enough Hardware) that has been designed for educational and benchmarking
purposes. The design is simple, and follows the design strategy used for the
multiplier of Chapter 1. We rely on the material of the chapter on computer
architectures for providing the necessary background for understanding details
of the hardware of SAYEH in this chapter.

14.1 CPU Description

The simple CPU example discussed here has a register file that is used for data
processing instructions. The CPU has a 16-bit data bus and a 16-bit address
bus. The processor has 8 and 16-bit instructions. Short instructions contain
shadow instructions, which effectively pack two such instructions into a 16-bit
word. Figure 14.1 shows SAYEH interface signals.

Figure 14.1 SAYEH Interface

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

270 Digital Design and Implementation with Field Programmable Devices

14.1.1 CPU Components

SAYEH uses its register file for most of its data instructions. Addressing modes
of this processor also take advantage of this structure. Because of this, the
addressing hardware of SAYEH is a simple one and the register file output is
used in address calculations.

SAYEH components that are used by its instructions include the standard
registers such as the Program Counter, Instruction Register, the Arithmetic
Logic Unit, and Status Register. In addition, this processor has a register file
forming registers R0, R1, R2 and R3 as well as a Window Pointer that defines
R0, R1, R2 and R3 within the register file. CPU components and a brief
description of each are shown below.

PC: Program Counter, 16 bits
R0, R1, R2, and R3: General purpose registers part of the register file,
16 bits
Reg File: The general purpose registers form a window of 4 in a register
file of 8 registers
WP: Window Pointer points to the register file to define R0, R1, R2 and
R3, 3 bits
IR: Instruction Register that is loaded with a 16-bit, an 8-bit, or two 8-
bit instructions, 16 bits
ALU: The ALU that can AND, OR, NOT,Shift, Compare, Add, Subtract
and Multiply its inputs, 16 bit operands
Z flag: Becomes 1 when the ALU output is 0
C flag: Becomes 1 when the ALU has a carry output

14.1.2 SAYEH Instructions

The general format of 8-bit and 16-bit SAYEH instructions is shown in Figure
14.2. The 16-bit instructions have the Immediate field and the 8-bit
instructions do not. The OPCODE filed is a 4-bit code that specifies the type of
instruction. The Left and Right fields are two bit codes selecting R0 through R3
for source and/or destination of an instruction. Usually, Left is used for
destination and Right for source. The Immediate filed is used for immediate
data, or if two 8-bit instructions are packed, it is used for the second
instruction.

Figure 14.2 SAYEH Instruction Format

Our processor has a total of 29 instructions as shown in Table 14.1.
Instructions with I immediate field are 16-bit instructions and the rest are 8-bit
instructions. Instructions that use the Destination and Source fields
(designated by D and S in the table of instruction set) have an opcode that is
limited to 4 bits. Instructions that do not require specification of source and
destination registers use these fields as opcode extensions. Because of this, our

271

processor has room for extending its instruction set beyond what is shown in
Table 14.1. In addition to nop, hex code 0F is used as filler for the right most 8-
bits of a 16-bit word that only contains an 8-bit instruction in its 8 left-most
bits.

In the instruction set, addressed locations in the memory are indicated by
enclosing the address in a set of parenthesis. When these instructions are
executed, the processor issues ReadMem or WriteMem signals to the memory.
When input and output instructions (inp, oup) are executed, SAYEH issues
ReadIO or WriteIO signals to its IO devices.

14.1.3 SAYEH Datapath

The datapath of SAYEH is shown in Figure 14.3. Main components and their
lower level structures are listed below.

1. Addressing Unit

272 Digital Design and Implementation with Field Programmable Devices

PC (Program Counter)
Address Logic

IR (Instruction Register)
WP (Window Pointer)

a.
b.

2.
3.
4. Register File

Decoder 1 (Left)
Decoder2 (Right)

a.
b.

ALU (Arithmetic Unit)
Flags

5.
6.

As shown in Figure 14.3, components are either hardwired or connected
through three-state busses. Component inputs with multiple sources, such as
the right hand side input of ALU, use three-state buses. Three-state busses in
this structure are Databus and OpndBus. Names shown on component
interconnections are used in the Verilog description of the processor.

In this figure, signals that are in italic are control signals issued by the
controller. These signals control register clocking, logic unit operations and
placement of data in busses.

Figure 14.3 SAYEH Datapath

273

14.1.4 Datapath Components

Figure 14.4 shows the hierarchical structure of SAYEH components. The
processor has a datapath and a controller. Datapath components are
Addressing Unit, Instruction Register, Window Pointer, Register File, Arithmetic
Unit, and the Flags register. The Addressing Unit is further partitioned into the
Program Counter and Address Logic.

Figure 14.4 Sayeh Hierarchical Structure

The Addressing Logic is a combinational circuit that is capable of adding its
inputs to generate a 16-bit output that forms the address for the processor
memory. The Program Counter and Instruction Register are 16-bit registers.
The Register File is a two-port memory and a file of 8 16-bit registers. The
Window Pointer is a 3-bit register that is used as the base of the Register File.
Specific registers for read and write (R0, R1, R2 or R3) in the Register File are
selected by its 4-bit input bus coming from the Instruction Register. Two bits

274 Digital Design and Implementation with Field Programmable Devices

are used to select a source register and other two bits select the destination
register.

When the Window Pointer is enabled, it adds its 3-bit input to its current
input. The Flags register is a 2-bit register that saves the flag outputs of the
Arithmetic Unit. The Arithmetic Unit is a 16-bit arithmetic and logic unit that
has the functions shown in Table 14.2. A 9-bit input selects the function of the
ALU shown in this table. This code is provided by the processor controller.

Controller of SAYEH has eleven states for reset, fetch, decode, execute, and
halt operations. Signals generated by the controller control logic unit
operations and register clocking in the datapath.

SAYEH sequential data components and its controller are triggered on the
falling edge of the main system clock. Control signals remain active after one
falling edge through the next. This duration allows for propagation of signals
through the busses and logic units in the datapath.

14.2 SAYEH Verilog Description

SAYEH is described according to the hierarchical structure of Figure 14.4.
Data components are described separately, and then wired to form the
datapath. Controller is described in a single Verilog module. In the complete
SAYEH description, the datapath and controller are wired together.

14.2.1 Data Components

Combinational and sequential SAYEH data components are described here.
The combinational ones are like the ALU that perform arithmetic and logical
operations. The function of such units is controlled by the controller. The
sequential components are clocked with the negative edge of the main CPU
clock. These components have functionalities like loading and resetting that
are controlled by the controller.

275

module AddressingUnit (
Rside, Iside, Address, clk, ResetPC, PCplusI, PCplus1, RplusI, Rplus0, PCenable);

input [15:0] Rside;
input [7:0] Iside;
input ResetPC, PCplusI, PCplus1, RplusI, Rplus0, PCenable;
input clk;
output [15:0] Address;
wire [15:0] PCout;

ProgramCounter PC (Address, PCenable, clk, PCout);
AddressLogic AL (PCout, Rside, Iside, Address, ResetPC, PCplusI, PCplus1, Rplusl, Rplus0);

Endmodule

Figure 14.5 AddressingUnit Verilog Code

Figure 14.6 ProgramCounter Verilog Code

Figure 14.7 AddressLogic Verilog Code

module AddressLogic (
PCside, Rside, Iside, ALout, ResetPC, PCplusI, PCplus1, RplusI, Rplus0);

input [15:0] PCside, Rside;
input [7:0] Iside;
input ResetPC, PCplusI, PCplus1, RplusI, Rplus0;
output [15:0] ALout;
reg [15:0] ALout;

always @ (PCside or Rside or Iside or ResetPC or PCplusI or PCplus1 or Rplusl or Rplus0)
case ({ResetPC, PCplusI, PCplus1, RplusI, Rplus0})

5'b10000: ALout = 0;
5'b01000: ALout = PCside + Iside;
5'b00100: ALout = PCside + 1;
5'b00010: ALout = Rside + Iside;
5'b00001: ALout = Rside;
default: ALout = PCside;

endcase

endmodule

module ProgramCounter (in, enable, clk, out);
input [15:0] in;
input enable, clk;
output [15:0] out;
reg [15:0] out;

always @ (negedge clk) if (enable) out = in;

endmodule

276 Digital Design and Implementation with Field Programmable Devices

`define B15to0H 10'b1000000000
`define AandBH 10'b0100000000
`define AorBH 10'b0010000000
`define notBH 10'b0001000000
`define shIBH 10'b0000100000
`define shrBH 10'b0000010000
`define AaddBH 10'b0000001000
`define AsubBH 10'b0000000100
`define AmulBH 10'b0000000010
`define AcmpBH 10'b0000000001

module ArithmeticUnit (A, B,
B15to0, AandB, AorB, notB, shIB, shrB, AaddB, AsubB, AmulB, AcmpB, aluout,
cin, zout, cout);

input [15:0] A, B;
input B15to0, AandB, AorB, notB, shIB, shrB, AaddB, AsubB, AmulB, AcmpB;
input cin;
output [15:0] aluout;
output zout, cout;
reg [15:0] aluout;
reg zout, cout;

always @(A or B or B15to0 or AandB or AorB or notB or
shIB or shrB or AaddB or AsubB or AmulB or AcmpB or cin)

begin
zout = 0; cout = 0; aluout = 0;

case ({B15to0, AandB, AorB, notB, shIB, shrB, AaddB, AsubB, AmulB, AcmpB})
`B15to0H:aluout = B;
`AandBH: aluout = A & B;
`AorBH: aluout = A | B;
`notBH: aluout = ~B;
`shlBH: aluout = {B[15:0], B[0]};
`shrBH: aluout = {B[15], B[15:1]};
`AaddBH: {cout, aluout} = A + B + cin;
`AsubBH: {cout, aluout} = A - B - cin;
`AmulBH: aluout = A[7:0] * B[7:0];
`AcmpBH: begin

aluout = A;
if (A> B) cout = 1 ; else cout = 0;
if (A==B) zout = 1 ; else zout = 0;

end
default: aluout = 0;

endcase

if (aluout == 0) zout = 1'b1;
end

endmodule

Figure 14.8 ArithmeticUnit Verilog Code

277

Addressing Unit. The Addressing Unit, shown in Figure 14.5, consists of the
Program Counter and Address Logic. The Program Counter is a simple register
with enabling and resetting mechanisms, while the Address Logic is a small
arithmetic unit that performs adding and incrementing for calculating PC or
memory addresses.

This unit has a 16-bit input coming from the Register File, an 8-bit input
from the Instruction Register, and a 16-bit address output. Control signals of
the Addressing Unit are ResetPC, PCplusI, PCplus1, RplusI, Rplus0, and
PCenable. These control signals select what goes on the output of this unit.
Shown in Figure 14.6 is the Verilog code of the Program Counter. The Address
Logic of Figure 14.7 uses control signal inputs of the Addressing Unit to
generate input data to the Program Counter via the PCout of Figure 14.5.

Arithmetic Unit. The ALU of SAYEH is shown in Figure 14.8. For readability,
control input codes of this unit are defined according to their function. For
example, the select input that causes the ALU to perform the add operation is
0000001000, and it is defined as AaddBH. Control inputs of this unit are
B15to0, AandB, AorB, notB, shlB, shrB, AaddB, AsubB, AmulB and AcmpB that
select its various operations. In order to insure that no unwanted latches are
made, all ALU outputs are set to their inactive values at the beginning of the
always statement of its Verilog code. In a case-statement in this code, aluout
and its flags outputs are set according to the selected control input of the ALU.

Instruction Register. SAYEH Instruction Register is shown in Figure 14.9. This
unit is a 16-bit register with an active high load-enable input. As shown the
only control input of the InstructionRegister module is IRload.

Register File. Figure 14.10 shows the Verilog code of SAYEH Register File. This
is a two-port memory with a moving window pointer. For reading from the
memory, the base of the window pointer (Base) is added to the left and right
addresses (Laddress and Raddress) and memory words are read on appropriate
left and right outputs (Lout and Rout). Writing into the memory is done in the
location pointed by its left address (left is used for instruction destinations).
The RFLwrite and RFHwrite control signals decide whether a write is done to
the low order or the high order bits of the Register File. If both these signals are
active, writing is done in a 16-bit word addressed by Laddress plus Base.

module InstrunctionRegister (in, IRload, clk, out);
input [15:0] in;
input IRload, clk;
output [15:0] out;
reg [15:0] out;

always @(negedge clk) if (IRload == 1) out <= in;
endmodule

Figure 14.9 InstructionRegister Verilog Code

278 Digital Design and Implementation with Field Programmable Devices

module RegisterFile (in, clk, Laddr, Raddr, Base, RFLwrite, RFHwrite, Lout, Rout);

input [15:0] in;
input clk, RFLwrite, RFHwrite;
input [1:0] Laddr, Raddr;
input [2:0] Base;
output [15:0] Lout, Rout;

reg [15:0] MemoryFile [0:7];

wire [2:0] Laddress = Base + Laddr;
wire [2:0] Raddress = Base + Raddr;

assign Lout = MemoryFile [Laddress];
assign Rout = MemoryFile [Raddress];

reg [15:0] TempReg;

always @(negedge clk) begin
TempReg = MemoryFile [Laddress];
if (RFLwrite) TempReg [7:0] = in [7:0];
if (RFHwrite) TempReg [15:8] = in [15:8];
MemoryFile [Laddress] = TempReg;

end

endmodule

Figure 14.10 RegisterFile Verilog Code

14.2.2

Figure 14.11 shows the datapath of SAYEH module. This module specifies
component instantiations and bussing structure of the CPU according to the
diagram of Figure 14.3. Inputs of this module are the processor's data and
address busses, as well as control signals that are provided by the controller of
the CPU. Control signals shown in the Data Path module are routed to the data
components that are instantiated here or the internal buses that are specified
in this module.

Following the declarations, the Data Path module instantiates Addressing
Unit, Arithmetic Unit, Register File, Instruction Register, Status Register, and
the Window Pointer. Control signals that are inputs of DataPath are passed
from this module to the data components via their port connections. For
example, ResetPC that is an input of DataPath and a control signal of
AddressingUnit appears on the port list of AddressingUnit in its instantiation
statement.

The part that follows module instantiations makes bus assignments to the
internal buses of this module. For example, assignment of the output of
ArithmeticUnit to Databus that is controlled by ALU_on_Databus is done by an
assign statement with a right hand side that is a conditional expression. Note
the assignment of 16'bZZZZZZZZZZZZZZZZ to Databus when none of control
signals of this bus are active.

SAYEH Datapath

279

module DataPath (
clk, Databus, Addressbus,
ResetPC, PCplusI, PCplus1, Rplusl, Rplus0,
Rs_on_AddressUnitRSide, Rd_on_AddressUnitRSide, EnablePC,
B15to0, AandB, AorB, notB, shIB, shrB, AaddB, AsubB, AmulB, AcmpB, RFLwrite, RFHwrite,
WPreset, WPadd, IRIoad, SRIoad, Address_on_Databus, ALU_on_Databus,
IR_on_LOpndBus, IR_on_HOpndBus, RFright_on_OpndBus,
Cset, Creset, Zset, Zreset, Shadow, Instruction, Cout, Zout);

input clk;
inout [15:0] Databus;
output [15:0] Addressbus, Instruction;
output Cout, Zout;
input

ResetPC, PCplusI, PCplus1, Rplusl, Rplus0,
Rs_on_AddressUnitRSide, Rd_on_AddressUnitRSide, EnablePC,
B15to0, AandB, AorB, notB, shIB, shrB, AaddB, AsubB, AmulB, AcmpB, RFLwrite, RFHwrite,
WPreset, WPadd, IRIoad, SRIoad, Address_on_Databus, ALU_on_Databus,
IR_on_LOpndBus, IR_on_HOpndBus, RFright_on_OpndBus,
Cset, Creset, Zset, Zreset, Shadow;

wire [15:0] Right, Left, OpndBus, ALUout, IRout, Address, AddressUnitRSideBus;
wire SRCin, SRZin, SRZout, SRCout;
wire [2:0] WPout;
wire [1:0] Laddr, Raddr;

AddressingUnit AU (AddressUnitRSideBus, IRout[7:0], Address, clk,
ResetPC, PCplusI, PCplus1, Rplusl, Rplus0, EnablePC);

ArithmeticUnit AL (Left, OpndBus, B15toO, AandB, AorB, notB, shlB, shrB,
AaddB, AsubB, AmulB, AcmpB, ALUout, SRCout, SRZin, SRCin);

RegisterFile RF (Databus, clk, Laddr, Raddr, WPout, RFLwrite, RFHwrite, Left, Right);
InstrunctionRegister IR (Databus, IRIoad, clk, IRout);
StatusRegister SR (SRCin, SRZin, SRIoad, clk, Cset, Creset,

Zset, Zreset, SRCout, SRZout);
WindowPointer WP (IRout[2:0], clk, WPreset, WPadd, WPout);

assign AddressUnitRSideBus = (Rs_on_AddressUnitRSide) ? right :
(Rd_on_AddressUnitRSide) ? Left : 16'bZZZZZZZZZZZZZZZZ;

assign Addressbus = Address;
assign Databus = (Address_on_Databus) ? Address :

(ALU_on_Databus) ? ALUout : 16'bZZZZZZZZZZZZZZZZ;
assign OpndBus[07:0] = IR_on_LOpndBus == 1 ? IRout[7:0] : 8'bZZZZZZZZ;
assign OpndBus[15:8] = IR_on_HOpndBus == 1 ? IRout[7:0] : 8'bZZZZZZZZ;
assign OpndBus = RFright_on_OpndBus == 1 ? Right : 16'bZZZZZZZZZZZZZZZZ;

assign Zout = SRZout;
assign Cout = SRCout;
assign Instruction = IRout[15:0];

assign Laddr = (~Shadow) ? IRout[11:10] : IRout[3:2];
assign Raddr = (~Shadow) ? IRout[09:08] : IRout[1:0];

endmodule

Figure 14.11 SAYEH DataPath Module

In the last part of the DataPath module, bits of IR that indicate source and
destination registers to the Register File are placed on Laddr and Raddr inputs

280 Digital Design and Implementation with Field Programmable Devices

of this register. The Shadow signal that becomes 1 if a shadow instruction is
being executed is used to select appropriate bits of the IR as source and
destination addresses.

14.2.3 SAYEH Controller

The controller of SAYEH is a state machine with nine states that issues
appropriate control signals to the Data Path. The controller uses the Huffman
style of coding, in which the state machine has a large combinational part that
is responsible for state transitions and issuing controller outputs. State
transitions are done by setting next state values to the Nstate. Figure 14.12
shows a general outline of this controller. Various sections of this outline are
discussed below.

Controller Ports. The instruction register output, ALU flags, and external
control signals constitute the inputs of the controller. The outputs of the
controller are 38 control signals going to the Data Path and a Shadow output
that indicates that the controller is handling a shadow instruction. As shown
in Figure 14.12, controller outputs are declared as reg and are assigned values
in the combinational always block of the controller module.

Control States. A parameter declaration declares the eight states of the
controller. States reset and halt are for the initial state of the machine and its
halt state. In state fetch the machine begins fetching a 16-bit instruction that
can include an 8-bit instruction and a shadow. State memread is entered while
our controller is waiting for memDataReady signal from the memory indicating
that its data is ready. Execution of instructions is performed in the exec1 state.
This state is entered from the memread state. The lda instruction that is not
completed by the exec1 state requires the additional state of exec1lda to
complete its memory read. States exec2 and exec2lda are like exec1 and
exec1lda except that they handle the shadow part of an instruction. The
execute state of most instructions (exec1 or exec2) increment the program
counter while the instruction is being executed. However, certain instructions
that use the address bus for their execution cannot increment PC while they are
being executed. For these instructions, the incpc state increments the program
counter.

Opcodes. Referring to Figure 14.12, instruction opcodes are declared as 4-bit
parameters in the controller of SAYEH. These parameters are according to the
processor's instruction set of Table 14.1.

State Declarations. As mentioned, the coding style the controller is according to
the Huffman style of Figure 3.56 discussed in Section 3.3.4. The next state and
present states, required by this style of coding, are declared in the controller of
SAYEH as 4-bit registers, Nstate and Pstate.

module controller (
ExternalReset, clk, ResetPC, PCplusI, PCplus1, RplusI, Rplus0, . . .);

input

281

ExternalReset, clk, . . .
output
ResetPC, PCplusI, PCplus1, RplusI, Rplus0, . . .

reg
ResetPC, PCplusI, PCplus1, Rplusl, Rplus0, . . .

parameter [3:0]
reset = 0, halt = 1 , fetch = 2, memread = 3,
exec1 = 4, exec2 = 5, exec1lda = 6, exec2lda = 7, incpc =8;

parameter nop = 4'b0000;
parameter hlt = 4'b0001;
parameter szf = 4'b0010;

reg [3:0] Pstate, Nstate;

wire ShadowEn = ~(Instruction[7:0] == 8'b000011111)

always @ (Instruction or Pstate or ExternalReset or Cflag or Zflag or memDataReady) begin
ResetPC = 1'b0;
PCplusI = 1'b0;
PCplus1 = 1'b0;
RplusI = 1'b0;
Rplus0 = 1'b0;

case (Pstate)
reset :

halt:

fetch :

memread :

exec1 :

exec1lda :

exec2 :

exec2lda :

incpc :

default: Nstate = reset;
endcase

end

always @ (negedge clk) Pstate = Nstate;

endmodule

Figure 14.12 SAYEH Controller General Outline

Shadow Instructions: The ShadowEn signal that is internal to the controller is
set when the hex code 0F (this code indicates that the right-most bits are not
used) is not found in the right-most eight bits of a 16-bit instruction. If this

282 Digital Design and Implementation with Field Programmable Devices

wire is 1 and execution of an 8-bit instruction is complete, the controller
branches to exec2 to execute the second half of the instruction before the next
fetching begins.

Combinational Block. The combinational block of SAYEH controller has an
always block that has a main case statement with case choices for every state
of the machine. Transitions from one state to another and issuing control
signals are performed in the case statement. At the beginning of the always
statement, all control signals are set to their inactive values in order to avoid
latches on these outputs.

always @ (Instruction, Pstate, ExternalReset, Cflag, Zflag) begin

case (Pstate)

exec1 :
if (ExternalReset == 1'b1) Nstate = reset;
else begin

case (Instruction[15:12])

mvr : begin
RFright_on_OpndBus = 1'b1;
B15to0 = 1'b1;
ALU_on_Databus = 1'b1;
RFLwrite = 1'b1;
RFHwrite = 1'b1;
SRload = 1'b1;
if(ShadowEn==1'b1)

Nstate = exec2;
else begin

PCplus1 = 1'b1;
EnablePC=1'b1;
Nstate = fetch;

end
end

lda : begin
Rplus0 = 1'b1;
Rs_on_AddressUnitRSide = 1'b1;
ReadMem = 1'b1;
Nstate = exec1lda;

end

endcase
end

endcase
end

Figure 14.13 Instruction Execution

Sequential Block. The last part of the code outline of Figure 14.12 is the
sequential always block f or clocking Pstate into Nstate. The control state
register of SAYEH and all its data registers are falling edge trigger. Control

283

signals issues by the controller remain active through the next falling edge of
the system clock.

Instruction Execution. Figure 14.13 zooms on the combinational always
statement of the controller module and shows the details of execution of mvr in
the exec1 state of the controller. Signals issued for the execution of this
instruction are shown in this figure. This instruction reads a word from the
right address of the Register File and writes it into its left address. The right
and left (source and destination) addresses are provided in the Data Path by
connections made from IR to the Register File.

always @ (Instruction, Pstate, ExternalReset, Cflag, Zflag) begin

case (Pstate)

exec1Ida :
if (ExternalReset == 1'b1)

Nstate = reset;
else begin

if (memDataReady == 1'b0) begin
Rplus0 = 1'b1;
Rs_on_AddressUnitRSide = 1'b1;
Read Mem = 1'b1;
Nstate = exec1lda;

end
else begin

RFLwrite = 1'b1;
RFHwrite = 1'b1;
if(ShadowEn==1'b1)

Nstate = exec2;
else begin

PCplus1 =1'b1;
EnablePC=1'b1;
Nstate = fetch;

end
end

end

endcase
end

Figure 14.14 Memory Handshaking for exec1lda

The RFright_on_OpndBus control signal is issued to read the source register
from RegisterFile onto OpndBus. Since this bus is the input of the ALU, the
data on the ALU's right input (B) must pass through it to reach its output. For
this purpose, the B15to0 control input of ALU is issued. Once the data reaches
the ALU output, it becomes available at the input of the Register File. Issuing
RFLwrite and RFHwrite cause data to be written into the destination into
RegisterFile.

284 Digital Design and Implementation with Field Programmable Devices

The partial code of Figure 14.13 shows assignment of exec2 to Nstate if the
instruction we are executing has a shadow. Otherwise, signals for incrementing
the Program Counter are issued and the next state is set to fetch.

The execution discussed here applies to most SAYEH instructions.
However, instructions that require memory access, e.g., lda, require an extra
clock for reading the memory. The first part of the execution of lda is shown in
Figure 14.13. As shown, for the execution of this instruction, the address is
read from Register File and put on the address bus. At the same time,
ReadMem is issued to initiate the memory read process.

The next state for execution of lda after exec1 is exec1lda shown in the
partial code of Figure 14.14. In this state, ReadMem continues to be issued and
state remains in exec1lda until memDataReady becomes 1. In this case,
memory data that is available on Databus will be clocked into RegisterFile by
issuing RFLwrite and RFHwrite.

Executions of other SAYEH instructions are similar to the examples we
discussed. The complete Verilog code of SAYEH controller is over 800 lines and
is included on the CD that accompanies this book.

14.2.4 Complete SAYEH Processor
The top-level Verilog code of SAYEH that is shown in Figure 14.15 consists of
instantiation of DataPath and controller modules. In Sayeh module, control
signal outputs of controller are wired to the similarly named signals of DataPath.
The ports of the processor are according to the block diagram of Figure 14.1.

module Sayeh (clk, ReadMem, WriteMem, ReadIO, WriteIO,
Databus,Addressbus,ExternalReset,MemDataready);

input clk;
output ReadMem, WriteMem, ReadIO, WritelO;
inout[15:0] Databus;
output [15: 0] Addressbus;
inputExternalReset,MemDataready;

wire [15:0] Instruction;
wire esetPC, PCplusI, PCplus1, RplusI, Rplus0,

DataPath dp (clk, Databus, Addressbus,
ResetPC, PCplusI, PCplus1, RplusI, Rplus0, . . .);

controller Ctrl (ExternalReset, clk,
ResetPC, PCplusI, PCplus1, RplusI, Rplus0, . . .);

endmodule

Figure 14.15 SAYEH Top Level Description

285

14.3 SAYEH Testing

Because of the complexity of this design, it is best to test it with an HDL
simulator and a high level testbench. Tools for generation and application of
test data and monitoring and generation of output data are provided in HDL
simulators. These tools together with ability to describe high level testbenches
provide an efficient test and debugging environment for HDL based designs.

The testbench for SAYEH is shown in Figure 14.16. The use of external
files for reading and writing test data are demonstrated by this example. As
shown in this figure, SayehRAM that is a memory of 1024 16-bits words is
declared in this testbench. The testbench reads test data that is the memory
image of our processor in this file and when the test is completed contents of
this memory are written into another external file. The input file is
SayehRAM.hex and the output file is OutputRAM.hex. Contents of both files are
in hexadecimal. 16-bit hexadecimal codes in these files represent memory data
starting from location 0.

The first initial block is labeled IOfiles. This block opens the
OutputRAM.hex output file for later writing and reads the contents of
SayehRAM.hex into the declared SayehRAM memory. Reading the input file
(memory image) is done by the $readmemh system task. This task expects
data in the file to match the word length of the memory it is writing into.

An always block shown in SayehTest testbench generates a periodic signal
on the circuit clock input.

The next procedural block shown in this testbench is an initial block that
is labeled RunCPU. This block applies the resetting signal, runs the CPU for
370,000 nanoseconds, and when this time expires, it writes all 1024 words of
SayehRAM into OutputRAM.hex external file. Note here that the $fopen
statement in the IOfiles block made memout a file handler for the output file.
The $stop statement in RunCPU block stops the simulation after the memory
image has been written.

The always procedural block that is labeled MemoryRead handles reading
data from SayehRAM when requested by the CPU. When ReadMem is issued by
the CPU, the testbench issues MemDataready and places data from SayehRAM
at the Addressbus location on MemoryData. At all other times, MemoryData
bus is at the high-impedance state. This is done because MemoryData connects
to Databus hat is a bi-directional bus.

The always block that appears next in Figure 14.16 handles writing data
that appears on Databus into SayehRAM. This block has delays to allow
signals from the CPU to stabilize.

This testbench allows for any SAYEH program to be loaded into the CPU
memory and executed. Out testing of this processor consisted of an instruction
based testing as well as several programs. For the instruction testing we
applied independent instructions and monitored internal registers of SAYEH.
For example, F205, that is the hex code for "mil r2 05", loads 05 into R2 of the
Register File. Similarly, 0204 is the packing of two 8-bit instructions that set
the zero and carry flags. An initial testing of a CPU requires verification of
individual CPU instructions.

A more elaborate test program is discussed in the next section.

286 Digital Design and Implementation with Field Programmable Devices

`timescale 1 ns /1 ns

module SayehTest ();

reg clk, ExternalReset, MemDataready;
reg [15:0] MemoryData;
wire [15:0] Databus, Addressbus;
wire ReadMem, WriteMem, ReadIO, WriteIO;

reg [15:0] SayehRAM [0:1023];

integer memout;
initial begin : IOfiles

memout = $fopen ("OutputRAM.hex");
$readmemh ("SayehRAM.hex", SayehRAM);
clk = 0; ExternalReset = 0; MemDataready = 0;
MemoryData = 16'bZ;

end

always #20 clk = ~clk;

integer i;
initial begin : RunCPU

#05 ExternalReset = 1; #81 ExternalReset = 0;
#370000;
for (i=0; i<= 1023; i=i+1)

$fdisplay (memout, "%h: %h", i, SayehRAM[i]);
$stop;

end

always @(negedge clk) begin : MemoryRead
if (ReadMem) begin

#1 MemDataready = 1 ;
MemoryData = SayehRAM [Addressbus];

end else begin
#1 MemDataready = 0;
MemoryData = 16'hZZZZ;

end
end

always @(negedge clk) begin : MemoryWrite
#1 if (WriteMem) #1 SayehRAM [Addressbus] = Databus;

end

assign Databus = MemoryData;

Sayeh U1 (clk, ReadMem, WriteMem, ReadIO, WriteIO,
Databus, Addressbus, ExternalReset, MemDataready);

endmodule

Figure 14.16 A Testbench for SAYEH

14.4 Sorting Test Program

287

Figure 14.17 shows a sorting program for SAYEH. This program reads data
starting from the CPU memory and sorts them in descending order. The
number of data item to sort is in location 768 and data begins in the next
memory location. This sorting program uses two loops for the sorting to be
done. When completed, the CPU is put into the halt state.

0000
0001

0002
0003
0004
0005
0006
0006
0007
0008
0009
0009
000A
000A

000B
000B
000C
000D
000E
000E
000F
0010
0011
0012
0013
0014
0015
0016
0016
0017
0018
0019
0019
001A
001B
001C
001D
001E

001F
0020
0021
0022
0023
0024

0025

mil
mih
lda
awp
mil
mih
cwp
add
mvr
awp
sub
cwp
mvr
nop
cwp
cmp
brz
awp
add
mvr
cwp
awp
cmp
brz
awp
lda
awp
add
lda
cmp
brc
lda
sta
cwp
awp
sta
mil
mih
cwp
awp
jpa
cwp
awp
jpa
hlt

r0
r0
r1
5
r0
r0

r1
r2
2
r0

r3

r3
19
3
r0
r1

1
r3
10
2
r3
1
r0
r3
r2
07
r1
r0

3
r0
r2
r2

5
r0

5
r0

00
03
r0

01
00

r0
r1

r3

r0

r2

r2
r0

r0

r0

r1
r0
r3

r0
r2

r2
01
00

0E

0A

r0 = 768

r1=

r5=1

r1=

r2=

r3=

r3=r3+1
r4=r3

r6=(r3)

r4=r4+r5
r7=(r4)

r5=(r4)
(r4)=r6

(r3)=r5

r5=1

starting address in memory

total number of elements

for adding with index each time

limit for final r4

limit for index r3

outer index

check if outer index is equal to its limit
branch to 0025 if zero

increment outer index
set inner index to outer index as initial

check if inner index is equal to its limit
branch to 0022 if zero

increment inner index

check if r6 is greater than r7
branch to 001F if carry
r5 as an temperary register

for adding with index each time

jump to 000F

jump to 000B

Figure 14.17 Sorting Program for SAYEH

288 Digital Design and Implementation with Field Programmable Devices

The program shown in Figure 14.17 is translated into its hexadecimal
equivalent and is put in SayehRAM.hex file. As discussed in the previous
section, SAYEH testbench reads instructions from this file and applies to the
CPU.

14.5 FPGA Programming

The CPU described in this chapter has been programmed into the FLEX device
of an Altera UP2. We used a RAM from Altera's megafunctions and configured
it as a memory of 1024 16-bit words. The number of logic elements used by
this CPU was 1,125, which is 30% of the available LEs. Memory bits used was
16,384, which is 44% of the available memory bits. This usage indicates that
we can form a complete system with a keyboard and VGA output on a FLEX
10K of UP2.

14.6 Summary

This chapter showed design, testing and implementation of a complete CPU.
This design put all that we have covered in this book into one package. The
design is complete and typical of any large system with a complex controller
and data path. Use of the synthesizable subset of Verilog for development of a
design for FPGA programming was shown. On the other hand, utilization of
behavioral constructs of Verilog was demonstrated in developing a testbench for
our processor.

