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The Boolean equations for the BCD-to-2421 de-
coder are:

Y4 � D4 � D3D2 � D3D1

Y3 � D4 � D3D2 � D3D�1

Y2 � D4 � D�3D2 � D3D�2D1

Y1 � D1

8.5 Repeat Problem 8.4 for a 2421-to-BCD code converter.

8.4 PAL Devices with Registered Outputs

8.6 What is a registered output?

8.7 State the number of registered outputs for each of the 
following PAL devices:

a. PAL16R4
b. PAL16R6
c. PAL16R8

8.5 Universal PAL and Generic Array Logic (GAL)

8.8 Name two features of a PALCE16V8 that make it supe-
rior to a PAL16L8.

8.9 State the difference between a global architecture cell 
and a local architecture cell in a PALCE16V8.

8.10 How many macrocells are there in a GAL22V10? How
many product lines do these macrocells have?

8.11 State the four configurations possible with a macrocell 
in a GAL22V10.

8.12 Is there a global output enable function available for a
PALCE16V8? For a GAL22V10?

8.13 Can the registered outputs of a PALCE16V8 be clocked
by a product term function from the PAL AND matrix?

8.14 Can the registered outputs of a GAL22V10 be clocked 
by a product term function from the GAL AND matrix?

8.15 Are the Asynchronous Reset (AR) and Synchronous 
Preset (SP) functions in a GAL22V10 global or local?
Explain your answer in one sentence.

8.6 MAX7000S CPLD

8.16 State one way in which a Complex PLD, such as an 
Altera MAX7000S, differs from a low-density PAL 
or GAL.

8.17 How many macrocells are available in the following
CPLDs:
a. EPM7032
b. EPM7064
c. EPM7128S
d. EPM7160S

8.18 Which of the CPLDs listed in Problem 8.17 are in-system
programmable? What does it mean when a device is in-
system programmable?

8.19 How many logic array blocks (LABs) are there in an Al-
tera MAX7000S CPLD?

8.20 How many user I/O pins are there in an EPM7128SLC84
CPLD? How many pins per LAB does this represent?

8.21 What can be done with the macrocells in an LAB that do
not connect to I/O pins?

8.22 State the possible clock configurations of a MAX7000S
macrocell.

8.23 State the possible reset configurations of a MAX7000S
macrocell.

8.24 State the possible preset configurations of a MAX7000S
macrocell.

8.25 How many dedicated product terms are available in a
MAX7000S macrocell? How can this number of product
terms be supplemented? What is the maximum number 
of product terms available to a macrocell?

8.26 How many shared logic expanders are available in 
an LAB?

8.7 FLEX10K CPLD

8.27 Briefly state the difference between CPLDs having sum-
of-products architecture and look-up table architecture.

8.28 How many inputs can a look-up table accept in an Altera
FLEX10K logic element? How can this be expanded?

8.29 What is the purpose of the carry chain in a FLEX10K
CPLD?

8.30 How many logic elements are there in a FLEX10K LAB?

8.31 How many bits of storage are there in an Embedded Ar-
ray Block in a FLEX10K CPLD?
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C H A P T E R  O B J E C T I V E S

Upon successful completion of this chapter you will be able to:

• Determine the modulus of a counter.

• Determine the number of outputs required by a counter for a given
modulus.

• Determine the maximum modulus of a counter, given the number of circuit
outputs.

• Draw the count sequence table, state diagram, and timing diagram of a
counter.

• Determine the recycle point of a counter’s sequence.

• Calculate the frequencies of each counter output, given the input clock
frequency.

• Draw a circuit for any full sequence synchronous counter.

• Determine the count sequence, state diagram, timing diagram, and modulus
of any synchronous counter.

• Complete the state diagram of a synchronous counter to account for unused
states.

• Design the circuit of a truncated sequence synchronous counter, using flip-
flops and logic gates.

• Use MAX�PLUS II to create a graphic design file for any synchronous
counter circuit.

• Use behavioral descriptions in VHDL to design synchronous counters of
any modulus.

• Use a parameterized counter from the Library of Parameterized Modules in
a VHDL file.

• Use the MAX�PLUS II simulation tool to verify the operation of synchro-
nous counters.

• Implement various counter control functions, such as parallel load, clear,
count enable, and count direction, both in Graphic Design Files and in
VHDL.

• Design a circuit to decode the output of the counter, both in a MAX�PLUS
II Graphic Design File or in VHDL.

• Draw a logic circuit of a serial shift register and determine its contents over
time given any input data.
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Counters and shift registers are two important classes of sequential circuits. In the sim-
plest terms, a counter is a circuit that counts pulses. As such, it is used in many circuit

applications, such as event counting and sequencing, timing, frequency division, and con-
trol. A basic counter can be enhanced to incorporate functions such as synchronous or
asynchronous parallel loading, synchronous or asynchronous clear, count enable, direc-
tional control, and output decoding. In this chapter, we will design counters using
schematic entry, VHDL, and counters from the Library of Parameterized Modules and ver-
ify their operation using the MAX�PLUS II simulator.

Shift registers are circuits that store and move data. They can be used in serial data
transfer, serial/parallel conversion, arithmetic functions, and delay elements. As with coun-
ters, many shift registers have additional functions such as parallel load, clear, and direc-
tional control. We can implement these circuits using schematic entry, VHDL, and LPM
components. �

9.1 Basic Concepts of Digital Counters

Counter A sequential digital circuit whose output progresses in a predictable re-
peating pattern, advancing by one state for each clock pulse.

Recycle To make a transition from the last state of the count sequence to the first
state.

Count sequence The specific series of output states through which a counter
progresses.

State diagram A diagram showing the progression of states of a sequential
circuit.

Modulus The number of states through which a counter sequences before
repeating.

Modulo-n (or mod-n) counter A counter with a modulus of n.

UP counter A counter with an ascending sequence.

DOWN counter A counter with a descending sequence.

K E Y  T E R M S

• Draw a timing diagram showing the operation of a serial shift register.

• Draw the logic circuit of a general parallel-load shift register.

• Draw a timing diagram showing the operation of a parallel-load shift
register.

• Draw the general logic circuit of a bidirectional shift register and explain
the concepts of right-shift and left-shift.

• Use timing diagrams to explain the operation of a bidirectional shift
register.

• Describe the operation of a universal shift register.

• Design shift registers, ring counters, and Johnson counters with the
MAX�PLUS II Graphic Editor or VHDL.

• Verify the operation of shift registers, ring counters, and Johnson counters
using the MAX�PLUS II simulation tool.

• Design a decoder for a Johnson counter.

• Use a ring counter or a Johnson counter as an event sequencer.

• Compare binary, ring, and Johnson counters in terms of the modulus and
the required decoding for each circuit.
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The simplest definition of a counter is “a circuit that counts pulses.” Knowing only this, let
us look at an example of how we might use a counter circuit.

❘❙❚ EXAMPLE 9.1 Figure 9.1 shows a 10-bit binary counter that can be used to count the number of people
passing by an optical sensor. Every time the sensor detects a person passing by, it produces
a pulse. Briefly describe the counter’s operation. What is the maximum number of people
it can count? What happens if this number is exceeded?

Q9  Q8  Q7  Q6  Q5  Q4  Q3  Q2  Q1  Q0

CLK

CTR DIV 1024

Optical
sensor

FIGURE 9.1
Example 9.1
10-bit Counter

Solution The counter has a 10-bit output, allowing a binary number from 00 0000 0000
to 11 1111 1111 (0 to 1023) to appear at its output. The sensor causes the counter to ad-
vance by one binary number for every pulse applied to the counter’s clock (CLK) input. If
the counter is allowed to register no people (i.e., 00 0000 0000), then the circuit can count
1023 people, since there are 1024 unique binary combinations of a 10-bit number, includ-
ing 0. (This is because 210 � 1024.) When the 1024th pulse is applied to the clock input,
the counter rolls over to 0 (or recycles) and starts counting again. (After this point, the
counter would not accurately reflect the number of people counted.)

The counter is labeled CTR DIV 1024 to indicate that one full cycle of the counter re-
quires 1024 clock pulses (i.e., the frequency of the MSB output signal (Q9) is the clock fre-
quency divided by 1024).

❘❙❚

A counter is a digital circuit that has a number of binary outputs whose states progress
through a fixed sequence. This count sequence can be ascending, descending, or nonlinear.

The output sequence of a counter is usually defined by its modulus, that is, the num-
ber of states through which the counter progresses. An UP counter with a modulus of 12
counts through 12 states from 0000 up to 1011 (0 to 11 in decimal), recycles to 0000, and
continues. A DOWN counter with a modulus of 12 counts from 1011 down to 0000, recy-
cles to 1011, and continues downward. Both types of counter are called modulo-12, or just
mod-12 counters, since they both have sequences of 12 states.

State Diagram

The states of a counter can be represented by a state diagram. Figure 9.2 compares the
state diagram of a mod-12 UP counter to an analog clock face. Each counter state is illus-
trated in the state diagram by a circle containing its binary value. The progression is shown
by a series of directional arrows.

Both the clock face and the state diagram represent a closed system of counting. In
each case, when we reach the end of the count sequence, we start over from the beginning
of the cycle.

For instance, if it is 10:00 a.m. and we want to meet a friend in four hours, we know
we should turn up for the appointment at 2:00 p.m. We arrive at this figure by starting at 10
on the clock face and counting 4 digits forward in a “clockwise” circle. This takes us two
digits past 12, the “recycle point” of the clock face.

Similarly, if we want to know the 8th state after 0111 in a mod-12 UP counter, we start
at state 0111 and count 8 positions in the direction of the arrows. This brings us to state
0000 (the recycle point) in 5 counts and then on to state 0011 in another 3 counts.
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Number of Bits and Maximum Modulus

Maximum modulus (mmax) The largest number of counter states that can be rep-
resented by n bits (mmax � 2n).

Full-sequence counter A counter whose modulus is the same as its maximum
modulus (m � 2n for an n-bit counter).

Binary counter A counter that generates a binary count sequence.

Truncated-sequence counter A counter whose modulus is less than its maxi-
mum modulus (m � 2n for an n-bit counter).

The state diagram of Figure 9.2 represents the states of a mod-12 counter as a series of 4-
bit numbers. Counter states are always written with a fixed number of bits, since each bit
represents the logic level of a physical location in the counter circuit. A mod-12 counter re-
quires four bits because its highest count value is a 4-bit number: 1011.

The maximum modulus of a 4-bit counter is 16 (� 24). The count sequence of a mod-
16 UP counter is from 0000 to 1111 (0 to 15 in decimal), as illustrated in the state diagram
of Figure 9.3.

In general, an n-bit counter has a maximum modulus of 2n and a count sequence from
0 to 2n � 1 (i.e., all 0s to all 1s). Since a mod-16 counter has a modulus of 2n (� mmax), we
say that it is a full-sequence counter. We can also call this a binary counter if it generates
the sequence in binary order. A counter, such as a mod-12 counter, whose modulus is less
than 2n, is called a truncated sequence counter.

Count-Sequence Table and Timing Diagram

Count-sequence table A list of counter states in the order of the count sequence.

Two ways to represent a count sequence other than a state diagram are by a count se-
quence table and by a timing diagram. The count sequence table is simply a list of counter
states in the same order as the count sequence. Tables 9.1 and 9.2 show the count sequence
tables of a mod-16 UP counter and a mod-12 UP counter, respectively.

K E Y  T E R M S

K E Y  T E R M S

FIGURE 9.2
Mod-12 State Diagram and
Analog Clock Face
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We can derive timing diagrams from each of these tables. We know that each
counter advances by one state with each applied clock pulse. The mod-16 count se-
quence shows us that the Q0 waveform changes state with each clock pulse. Q1 changes
with every two clock pulses, Q2 with every four, and Q3 with every eight. Figure 9.4
shows this pattern for the mod-16 UP counter, assuming the counter is a positive edge-
triggered device.

FIGURE 9.3
State Diagram of a Mod-16
Counter

Table 9.1 Mod-16
Count Sequence Table

Q3Q2Q1Q0

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Table 9.2 Mod-12
Count-Sequence Table

Q3Q2Q1Q0

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011

CLK

Q0

Q1

Q2

Q3

FIGURE 9.4
Mod-16 Timing Diagram
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A divide-by-two ratio relates the frequencies of adjacent outputs of a binary counter.
For example, if the clock frequency is fc � 16 MHz, the frequencies of the output wave-
forms are: 8 MHz ( f0 � fc/2); 4 MHz ( f1 � fc/4); 2 MHz ( f2 � fc/8); 1 MHz ( f3 � fc/16).

We can construct a similar timing diagram, illustrated in Figure 9.5, for a mod-12 UP
counter. The changes of state can be monitored by noting where Q0 (the least significant
bit) changes. This occurs on each positive edge of the CLK waveform. The sequence pro-
gresses by 1 with each CLK pulse until the outputs all go to 0 on the first CLK pulse after
state Q3Q2Q1Q0 � 1011.

The output waveform frequencies of a truncated sequence counter do not necessarily
have a simple relationship to one another as do binary counters. For the mod-12 counter
the relationships between clock frequency, fc, and output frequencies are: f0 � fc/2; f1 �
fc/4; f2 � fc/12; f3 � fc/12. Note that both Q2 and Q3 have the same frequencies ( f2 and f3),
but are out of phase with one another.

❘❙❚ EXAMPLE 9.2 Draw the state diagram, count sequence table, and timing diagram for a mod-12 DOWN
counter.

Solution Figure 9.6 shows the state diagram for the mod-12 DOWN counter. The states
are identical to those of a mod-12 UP counter, but progress in the opposite direction. Table
9.3 shows the count sequence table of this circuit.

CLK

Q0

Q1

Q2

Q3

FIGURE 9.5
Mod-12 Timing Diagram

FIGURE 9.6
Example 9.2
State Diagram of a Mod-12 DOWN Counter
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The timing diagram of this counter is illustrated in Figure 9.7. The output starts in
state Q3Q2Q1Q0 � 1011 and counts DOWN until it reaches 0000. On the next pulse, it re-
cycles to 1011 and starts over.

❘❙❚

❘❙❚ SECTION 9.1 REVIEW PROBLEM

9.1 How many outputs does a mod-24 counter require? Is this a full-sequence or a trun-
cated sequence counter? Explain your answer.

9.2 Synchronous Counters

Synchronous counter A counter whose flip-flops are all clocked by the same
source and thus change in synchronization with each other.

Present state The current state of flip-flop outputs in a synchronous sequential
circuit.

Next state The desired future state of flip-flop outputs in a synchronous sequen-
tial circuit after the next clock pulse is applied.

Memory section A set of flip-flops in a synchronous circuit that hold its present
state.

K E Y  T E R M S

Table 9.3 Count-
Sequence Table for a
Mod-12 DOWN Counter

Q3Q2Q1Q0

1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

CLK

Q0

Q1

Q2

Q3

FIGURE 9.7
Example 9.2
Timing Diagram of a Mod-12 DOWN Counter



370 C H A P T E R  9 • Counters and Shift Registers

Control section The combinational logic portion of a synchronous circuit that de-
termines the next state of the circuit.

Status lines Signals that communicate the present state of a synchronous circuit
from its memory section to its control section.

Command lines Signals that connect the control section of a synchronous circuit
to its memory section and direct the circuit from its present to its next state.

In Chapter 7, we briefly examined the circuits of a 3-bit and a 4-bit synchronous counter
(Figures 7.53 and 7.87, respectively). A synchronous counter is a circuit consisting of flip-
flops and control logic, whose outputs progress through a regular predictable sequence,
driven by a clock signal. The counter is synchronous because all flip-flops are clocked at
the same time.

Figure 9.8 shows the block diagram of a synchronous counter, which consists of a
memory section to keep track of the present state of the counter and a control section to
direct the counter to its next state. The memory section is a sequential circuit (flip-flops)
and the control section is combinational (gates). They communicate through a set of status
lines that go from the Q outputs of the flip-flops to the control gate inputs and command
lines that connect the control gate outputs to the synchronous inputs (J, K, D, or T) of the
flip-flops. Outputs can be tied directly to the status lines or can be decoded to give a se-
quence other than that of the flip-flop output states. The circuit might have inputs to imple-
ment one or more control functions, such as changing the count direction, clearing the
counter, or presetting the counter to a specific value.

Memory section
(flip-flops)

Input
lines

Output
lines

Status
lines

Command
lines

Output
decoder
(optional)

CLK

Control section
(gates)

FIGURE 9.8
Synchronous Counter Block Diagram

Analysis of Synchronous Counters

A 3-bit synchronous binary counter based on JK flip-flops is shown in Figure 9.9. Let us
analyze its count sequence in detail so that we can see how the J and K inputs are affected
by the Q outputs and how transitions between states are made. Later we will look at the
function of truncated sequence counter circuits and counters that are made from flip-flops
other than JK.

The synchronous input equations are given by:

J2 � K2 � Q1�Q0

J1 � K1 � Q0

J0 � K0 � 1
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For reference, the JK flip-flop function table is shown in Table 9.4:

CLK

VCC

OUTPUT
Q2

AND2

OUTPUT
Q1

OUTPUT

INPUT

Q0

JKFF

CLRN

PRN
QJ

K

JKFF

CLRN

PRN
QJ

K

JKFF

CLRN

PRN
QJ

K

FIGURE 9.9
3-bit Synchronous Binary Counter

Table 9.4 Function Table of a JK Flip-Flop

J K Qt � 1 Function

0 0 Qt No change
0 1 0 Reset
1 0 1 Set
1 1 �Qt Toggle

Qt indicates the state of Q before a clock pulse is applied. Qt�1 indicates the state of Q
after the clock pulse.

Assume the counter output is initially Q2Q1Q1 � 000. Before any clock pulses are ap-
plied, the J and K inputs are at the following states:

J2 � K2 � Q1�Q0 � 0�0 � 0 (No change)

J1 � K1 � Q0 � 0 (No change)

J0 � K0 � 1 (Constant) (Toggle)

The transitions of the outputs after the clock pulse are:

Q2: 0 → 0 (No change)

Q1: 0 → 0 (No change)

Q0: 0 → 1 (Toggle)

The output goes from Q2Q1Q1 � 000 to Q2Q1Q1 � 001 (see Figure 9.10). The transi-
tion is defined by the values of J and K before the clock pulse, since the propagation delays
of the flip-flops prevent the new output conditions from changing the J and K values until
after the transition.

The new conditions of the J and K inputs are:

J2 � K2 � Q1�Q0 � 0�1 � 0 (No change)

J1 � K1 � Q0 � 1 (Toggle)

J0 � K0 � 1 (Constant) (Toggle)
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The transitions of the outputs generated by the second clock pulse are:

Q2: 0 → 0 (No change)

Q1: 0 → 1 (Toggle)

Q0: 1 → 0 (Toggle)

The new output is Q2Q1Q0 � 010, since both Q0 and Q1 change and Q2 stays the
same. The J and K conditions are now:

J2 � K2 � Q1�Q0 � 1�0 � 0 (No change)

J1 � K1 � Q0 � 0 (No change)

J0 � K0 � 1 (Constant) (Toggle)

The output transitions are:

Q2: 0 → 0 (No change)

Q1: 1 → 1 (No change)

Q0: 0 → 1 (Toggle)

The output is now Q2Q1Q0 � 011, which results in the JK conditions:

J2 � K2 � Q1�Q0 � 1�1 � 1 (Toggle)

J1 � K1 � Q0 � 1 (Toggle)

J0 � K0 � 1 (Constant) (Toggle)

The above conditions result in output transitions:

Q2: 0 → 1 (Toggle)

Q1: 1 → 0 (Toggle)

Q0: 1 → 0 (Toggle)

All the outputs toggle and the new output state is Q2Q1Q0 � 100. The J and K values
repeat the above pattern in the second half of the counter cycle (states 100 to 111). Go
through the exercise of calculating the J, K, and Q values for the rest of the cycle. Compare
the result with the timing diagram in Figure 9.10.

CLK

Q0

Q1

Q2

0

0

0

0

Recycle
point

0

0

1

1

1

FIGURE 9.10
Timing Diagram for a Synchronous 3-bit Binary Counter

In the counter we have just analyzed, the combinational circuit generates either a tog-
gle (JK � 11) or a no change (JK � 00) state at each point through the count sequence. We
could use any combination of JK modes (no change, reset, set, or toggle) to make the tran-
sitions from one state to the next. For instance, instead of using only the no change and
toggle modes, the 000 → 001 transition could also be done by making Q0 set (J0 � 1,
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K0 � 0) and Q1 and Q2 reset (J1 � 0, K1 � 1 and J2 � 0, K2 � 1). To do so we would need
a different set of combinational logic in the circuit.

The simplest synchronous counter design uses only the no change (JK � 00) or toggle
(JK � 11) modes, since the J and K inputs of each flip-flop can be connected together. The
no change and toggle modes allow us to make any transition (i.e., not just in a linear se-
quence), even though for truncated sequence and nonbinary counters this is not usually the
most efficient design.

There is a simple progression of algebraic expressions for the J and K inputs of a syn-
chronous binary (full sequence) counter, which uses only the no change and toggle states:

J0 � K0 � 1

J1 � K1 � Q0

J2 � K2 � Q1�Q0

J3 � K3 � Q2�Q1�Q0

J4 � K4 � Q3�Q2�Q1�Q0

etc.

The J and K inputs of each stage are the ANDed outputs of all previous stages. This
implies that a flip-flop toggles only when the outputs of all previous stages are HIGH. For
example, Q2 doesn’t change unless both Q1 AND Q0 are HIGH (and therefore J2 � K2 � 1)
before the clock pulse. In a 3-bit counter, this occurs only at states 011 and 111, after which
Q2 will toggle, along with Q1 and Q0, giving transitions to states 100 and 000 respectively.
Look at the timing diagram of Figure 9.10 to confirm this.

Determining the Modulus of a Synchronous Counter

We can use a more formal technique to analyze any synchronous counter, as follows.

1. Determine the equations for the synchronous inputs (JK, D, or T) in terms of the Q out-
puts for all flip-flops. (For counters other than straight binary full sequence types, the
equations will not be the same as the algebraic progressions previously listed.)

2. Lay out a table with headings for the Present State of the counter (Q outputs before CLK
pulse), each Synchronous Input before CLK pulse, and Next State of the counter (Q out-
puts after the clock pulse).

3. Choose a starting point for the count sequence, usually 0, and enter the starting point in
the Present State column.

4. Substitute the Q values of the initial present state into the synchronous input equations
and enter the results under the appropriate columns.

5. Determine the action of each flip-flop on the next CLK pulse (e.g., for a JK flip-flop, the
output either will not change (JK � 00), or will reset (JK � 01), set (JK � 10), or tog-
gle (JK � 11) ).

6. Look at the Q values for every flip-flop. Change them according to the function deter-
mined in Step 5 and enter them in the column for the counter’s next state.

7. Enter the result from Step 6 on the next line of the column for the counter’s present state
(i.e., this line’s next state is the next line’s present state).

8. Repeat the above process until the result in the next state column is the same as the ini-
tial state.

❘❙❚ EXAMPLE 9.3 Find the count sequence of the synchronous counter shown in Figure 9.11 and, from the
count sequence table, draw the timing diagram and state diagram. What is the modulus of
the counter?
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Solution The J and K equations are:

J2 � Q1�Q0 J1 � Q0 J0 � Q�2

K2 � 1 K1 � Q0 K0 � 1

The output transitions can be determined from the values of the J and K functions be-
fore each clock pulse, as shown in Table 9.5.

FIGURE 9.11
Synchronous Counter of Unknown Modulus
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FIGURE 9.12
Example 9.3
Timing Diagram and State
Diagram of a Mod-5 Counter

Table 9.5 State Table for Figure 9.11

Present State Synchronous Inputs Next State

Q2Q1Q0 J2K2 J1K1 J0K0 Q2Q1Q0

000 01 (R) 00 (NC) 11 (T) 001
001 01 (R) 11 (T) 11 (T) 010
010 01 (R) 00 (NC) 11 (T) 011
011 11 (T) 11 (T) 11 (T) 100
100 01 (R) 00 (NC) 01 (R) 000

❘❙❚

Since there are five unique output states, the counter’s modulus is 5.
The timing diagram and state diagram are shown in Figure 9.12. Since this circuit pro-

duces one pulse on Q2 for every 5 clock pulses, we can use it as a divide-by-5 circuit.
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The analysis in Example 9.3 did not account for the fact that the counter uses only 5 of
a possible 8 output states. In any truncated sequence counter, it is good practice to deter-
mine the next state for each unused state to ensure that if the counter powers up in one of
these unused states, it will eventually enter the main sequence.

❘❙❚ EXAMPLE 9.4 Extend the analysis of the counter in Example 9.3 to include its unused states. Redraw the
counter’s state diagram to show how these unused states enter the main sequence (if they do).

Solution The synchronous input equations are:

J2 � Q1�Q0 J1 � Q0 J0 � Q�2

K2 � 1 K1 � Q0 K0 � 1

The unused states are Q2Q1Q0 � 101, 110, and 111. Table 9.6 shows the transitions
made by the unused states. Figure 9.13 shows the completed state diagram.

Table 9.6 State Table for Mod-5 Counter Including Unused States

Present State Synchronous Inputs Next State

Q2Q1Q0 J2K2 J1K1 J0K0 Q2Q1Q0

000 01 (R) 00 (NC) 11 (T) 001
001 01 (R) 11 (T) 11 (T) 010
010 01 (R) 00 (NC) 11 (T) 011
011 11 (T) 11 (T) 11 (T) 100
100 01 (R) 00 (NC) 01 (R) 000

101 01 (R) 11 (T) 01 (R) 010
110 01 (R) 00 (NC) 01 (R) 010
111 11 (T) 11 (T) 01 (R) 000

❘❙❚

❘❙❚ SECTION 9.2 REVIEW PROBLEM

9.2 A 4-bit synchronous counter based on JK flip-flops is described by the following set of
equations:

J3 � Q2Q1Q0 J2 � Q1Q0 J1 � Q�3Q0 J0 � 1
K3 � Q0 K2 � Q1Q0 K1 � Q0 K0 � 1

FIGURE 9.13
Example 9.4
Complete State Diagram
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Assume the counter output is at 1000 in the count sequence. What will the output be
after one clock pulse? After two clock pulses?

9.3 Design of Synchronous Counters

Excitation table A table showing the required input conditions for every possible
transition of a flip-flop output.

State machine A synchronous sequential circuit.

A synchronous counter can be designed using established techniques that involve the der-
ivation of Boolean equations for the counter’s next state logic. Alternatively, several VHDL
structures can be used to define counters; we can use a behavioral description of the
counter, or we can use a state machine definition in VHDL that specifies each present and
next state explicitly.

In addition to the classical counter design techniques, we will examine the design of a
counter through a behavioral description in VHDL. We will leave the state machine design
for the following chapter.

Classical Design Technique

There are several steps involved in the classical design of a synchronous counter.

1. Define the problem. Before you can begin design of a circuit, you have to know what its
purpose is and what it should do under all possible conditions.

2. Draw a state diagram showing the progression of states under various input conditions
and what outputs the circuit should produce, if any.

3. Make a state table which lists all possible Present States and the Next State for each
one. List the present states in binary order.

4. Use flip-flop excitation tables to determine at what states the flip-flop synchronous in-
puts must be to make the circuit go from each Present State to its Next State.

5. The logic levels of the synchronous inputs are Boolean functions of the flip-flop outputs
and the control inputs. Simplify the expression for each input and write the simplified
Boolean expression.

6. Use the Boolean expressions found in step 5 to draw the required logic circuit.

Flip-flop Excitation Tables

In the synchronous counter circuits we examined earlier in this chapter, we used JK flip-
flops that were configured to operate only in toggle or no change mode. We can use any
type of flip-flop for a synchronous sequential circuit. If we choose to use JK flip-flops, we
can use any of the modes (no change, reset, set, or toggle) to make transitions from one
state to another.

A flip-flop excitation table shows all possible transitions of a flip-flop output and the
synchronous input levels needed to effect these transitions. Table 9.7 is the excitation table
of a JK flip-flop.

If we want a flip-flop to make a transition from 0 to 1, we can use either the toggle
function (JK � 11) or the set function (JK � 10). It doesn’t matter what K is, as long as
J � 1. This is reflected by the variable pair (JK � 1X) beside the 0→ 1 entry in Table
9.7. The X is a don’t care state, a 0 or 1 depending on which is more convenient for the
simplification of the Boolean function of the J or K input affected.

Table 9.8 shows a condensed version of the JK flip-flop excitation table.

K E Y  T E R M S
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Design of a Synchronous Mod-12 Counter

We will follow the procedure outlined above to design a synchronous mod-12 counter cir-
cuit, using JK flip-flops. The aim is to derive the Boolean equations of all J and K inputs
and to draw the counter circuit.

1. Define the problem. The circuit must count in binary sequence from 0000 to 1011 and
repeat. The output progresses by 1 for each applied clock pulse. Since the outputs are 
4-bit numbers, we require 4 flip-flops.

2. Draw a state diagram. The state diagram for this problem is shown in Figure 9.14.

3. Make a state table showing each present state and the corresponding next state.

4. Use flip-flop excitation tables to fill in the J and K entries in the state table. Table 9.9
shows the combined result of steps 3 and 4. Note that all present states are in binary order.

We assume for now that states 1100 to 1111 never occur. If we assign their corre-
sponding next states to be don’t care states, they can be used to simplify the J and K ex-
pressions we derive from the state table.

Table 9.7 JK Flip-Flop Excitation Table

Transition Function JK

0 → 0 No change 00 0X
or
reset 01

0 → 1 Toggle 11 1X
or
set 10

1 → 0 Toggle 11 X1
or
reset 01

1 → 1 No change 00 X0
or
set 10

Table 9.8 Condensed
Excitation Table for a JK 
Flip-Flop

Transition JK

0 → 0 0X
0 → 1 1X
1 → 0 X1
1 → 1 X0

FIGURE 9.14
State Diagram for a Mod-12
Counter
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Let us examine one transition to show how the table is completed. The transition
from Q3Q2Q1Q0 � 0101 to Q3Q2Q1Q0 � 0110 consists of the following individual flip-
flop transitions.

Q3: 0 → 0 (No change or reset; J3K3 � 0X)
Q2: 1 → 1 (No change or set; J2K2 � X0)
Q1: 0 → 1 (Toggle or set; J1K1 � 1X)
Q0: 1 → 0 (Toggle or reset; J0K0 � X1)

The other lines of the table are similarly completed.

5. Simplify the Boolean expression for each input. Table 9.9 can be treated as eight truth
tables, one for each J or K input. We can simplify each function by Boolean algebra or
by using a Karnaugh map.

Figure 9.15 shows K-map simplification for all 8 synchronous inputs. These maps
yield the following simplified Boolean expressions.

J0 � 1
K0 � 1

J1 � Q0

K1 � Q0

J2 � Q�3Q1Q0

K2 � Q1Q0

J3 � Q2Q1Q0

K3 � Q1Q0

6. Draw the required logic circuit. Figure 9.16 shows the circuit corresponding to the
above Boolean expressions.

We have assumed that states 1100 to 1111 will never occur in the operation of the
mod-12 counter. This is normally the case, but when the circuit is powered up, there is no
guarantee that the flip-flops will be in any particular state.

If a counter powers up in an unused state, the circuit should enter the main sequence
after one or more clock pulses. To test whether or not this happens, let us make a state

Table 9.9 State Table for a Mod-12 Counter

Present State Next State Synchronous Inputs

Q3Q2Q1Q0 Q3Q2Q1Q0 J3K3 J2K2 J1K1 J0K0

0000 0 0 0 1 0 X 0 X 0X 1 X
0001 0 0 1 0 0 X 0 X 1X X 1
0010 0 0 1 1 0 X 0 X X0 1 X
0011 0 1 0 0 0 X 1 X X1 X 1

0100 0 1 0 1 0 X X 0 0X 1 X
0101 0 1 1 0 0 X X 0 1X X 1
0110 0 1 1 1 0 X X 0 X0 1 X
0111 1 0 0 0 1 X X 1 X1 X 1

1000 1 0 0 1 X 0 0 X 0X 1 X
1001 1 0 1 0 X 0 0 X 1X X 1
1010 1 0 1 1 X 0 0 X X0 1 X
1011 0 0 0 0 X 1 0 X X1 X 1

1100 XXXX XX XX XX XX
1101 XXXX XX XX XX XX
1110 XXXX XX XX XX XX
1111 XXXX XX XX XX XX
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FIGURE 9.15
K-Map Simplification of Table 9.9
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table, applying each unused state to the J and K equations as implemented, to see what the
Next State is for each case. This analysis is shown in Table 9.10.

Figure 9.17 shows the complete state diagram for the designed mod-12 counter. If the
counter powers up in an unused state, it will enter the main sequence in no more than four
clock pulses.

If we want an unused state to make a transition directly to 0000 in one clock pulse, we
have a couple of options:

1. We could reset the counter asynchronously and otherwise leave the design as is.

2. We could rewrite the state table to specify these transitions, rather than make the unused
states don’t cares.

Option 1 is the simplest and is considered perfectly acceptable as a design practice.
Option 2 would yield a more complicated set of Boolean equations and hence a more com-
plex circuit, but might be worthwhile if a direct synchronous transition to 0000 were
required.

Table 9.10 Unused States in a Mod-12 Counter

Present State Synchronous Inputs Next State

Q3Q2Q1Q0 J3K3 J2K2 J1K1 J0K0 Q3Q2Q1Q0

0000 00 00 00 11 1101
1101 00 00 11 11 1110
1110 00 00 00 11 1111
1111 11 01 11 11 0000

FIGURE 9.17
Complete State Diagram of
Mod-12 Counter in Figure 9.16
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❘❙❚ EXAMPLE 9.5 Derive the synchronous input equations of a 4-bit synchronous binary counter based on D
flip-flops. Draw the corresponding counter circuit.

Solution The first step in the counter design is to derive the excitation table of a D flip-
flop. Recall that Q follows D when the flip-flop is clocked. Therefore the next state of Q is
the same as the input D for any transition. This is illustrated in Table 9.11.

Table 9.11 Excitation
Table of a D Flip-Flop

Transition D

0 → 0 0
0 → 1 1
1 → 0 0
1 → 1 1

Table 9.12 State Table for a 4-bit Binary Counter

Present State Next State Synchronous Inputs

Q3Q2Q1Q0 Q3Q2Q1Q0 D3D2D1D0

0000 0001 0001
0001 0010 0010
0010 0011 0011
0011 0100 0100

0100 0101 0101
0101 0110 0110
0110 0111 0111
0111 1000 1000

1000 1001 1001
1001 1010 1010
1010 1011 1011
1011 1100 1100

1100 1101 1101
1101 1110 1110
1110 1111 1111
1111 0000 0000

This state table yields four Boolean equations, for D3 through D0, in terms of the pres-
ent state outputs. Figure 9.18 shows four Karnaugh maps used to simplify these functions.

The simplified equations are:

D3 � Q�3Q2Q1Q0 � Q3Q�2 � Q3Q�1 � Q3Q�0

D2 � Q�2Q1Q0 � Q2Q�1 � Q1Q�0

D1 � Q�1Q0 � Q1Q�0

D0 � Q�0

Next, we must construct a state table, shown in Table 9.12, with present and next states
for all possible transitions. Note that the binary value of D3D2D1D0 is the same as the next
state of the counter.
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These equations represent the maximum SOP simplifications of the input functions.
However, we can rewrite them to make them more compact. For example the equation for
D3 can be rewritten, using DeMorgan’s theorem (x� � y� � z� � x�y�z�) and our knowledge of
Exclusive OR (XOR) functions (x�y � xy� � x � y).

D3 � Q�3Q2Q1Q0 � Q3Q�2 � Q3Q�1 � Q3Q�0

� Q�3(Q2Q1Q0) � Q3(Q�2 � Q�1 � Q�0)

� Q�3(Q2Q1Q0) � Q3(Q�2�Q�1�Q�0�)

� Q3 � Q2Q1Q0

We can write similar equations for the other D inputs as follows:

D2 � Q2 � Q1Q0

D1 � Q1 � Q0

D0 � Q0 � 1

These equations follow a predictable pattern of expansion. Each equation for an input
Dn is simply Qn XORed with the logical product (AND) of all previous Qs.

Figure 9.19 shows the circuit for the 4-bit counter, including an asynchronous
reset.

FIGURE 9.18
Example 9.5
K-Maps for a 4-bit Counter Based on D Flip-Flops
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❘❙❚

In Section 7.6 (Edge-Triggered T Flip-Flops) of Chapter 7, we saw how a D flip-flop
could be configured for a switchable toggle function (refer to Figure 7.59). The flip-flops in
Figure 9.19 are similarly configured. Each flip-flop output, except Q0, is fed back to its in-
put through an Exclusive OR gate. The other input to the XOR controls whether this feed-
back is inverted (for toggle mode) or not (for no change mode). Recall that x � 0 � x and
x � 1 � x�.

For example, Q3 is fed back to D3 through an XOR gate. The feedback is inverted only
if the 3-input AND gate has a HIGH output. Thus, the Q3 output toggles only if all previ-
ous bits are HIGH (Q3Q2Q1Q0 � 0111 or 1111). The flip-flop toggle mode is therefore
controlled by the states of the XOR and AND gates in the circuit.

❘❙❚ SECTION 9.3 REVIEW PROBLEM

9.3 A 4-bit synchronous counter must make a transition from state Q3Q2Q1Q0 � 1011 to
Q3Q2Q1Q0 � 1100. Write the required states of the synchronous inputs for a set of
four JK flip-flops used to implement the counter. Write the required states of the syn-
chronous inputs if the counter is made from D flip-flops.
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INPUT

OUTPUT
Q3

XOR
AND3
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DFF

CLRN

PRN
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Q0

DFF
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NOT

FIGURE 9.19
Example 9.5
4-bit Counter Using D 
Flip-Flops
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9.4 Programming Binary Counters in VHDL

If statement A VHDL construct in which statements within the IF statement are
executed only when a specified Boolean condition is satisfied.

Attribute A property associated with a named identifier in VHDL. (For example,
the attribute EVENT, when associated with the identifier clk (written
clk’EVENT), indicates, when true, that a transition has occurred on the input
called clk.)

When using VHDL to create a counter, we can take several approaches. We can encode the
Boolean equations of the counter directly with concurrent signal assignment statements;
we can use VHDL code to describe the behavior of the counter; we can use a CASE  state-
ment to implement the state diagram of the counter; or we can use a predefined counter,
such as those found in the MAX�PLUS II Library of Parameterized Modules (LPM) and
map its ports to the ports of a VHDL design entity.

If we chose to use concurrent signal assignments to encode the Boolean equations of a
counter, we could derive the following equations for a 4-bit counter with D flip-flops.

d(3)<= q(3)xor(q(2)and q(1)and q(0));,

d(2)<= q(2)xor(q(1)and q(0));

d(1)<= q(1)xor q(1);,

d(0)<= not q(0);,

In Chapter 5, we saw that using concurrent signal assignment statements is an ineffi-
cient way to code many digital functions. (For one thing, if we use this procedure, we must
know what the equations are. Getting to that point requires a lot of work that can be done
by the VHDL compiler.) While acknowledging this as a possible option, we will not exam-
ine this method any further for the count logic of binary counters.

In this section, we will design a counter using a behavioral description and using an LPM
counter. The design of a counter as a state machine will be examined in the next chapter.

Behavioral Description of Counters

The following VHDL code shows the behavioral description of a simple 8-bit counter
(ct_simp.vhd) with asynchronous clear.

ENTITY ct_simp IS

PORT(

clk     : IN    BIT;

clear   : IN    BIT;

q      : OUT   INTEGER RANGE 0 TO 255);

END ct_simp;

ARCHITECTURE a OF ct_simp IS

BEGIN

PROCESS (clk, clear)

VARIABLE count : INTEGER RANGE 0 TO 255;

BEGIN

If (clear = ‘0’) THEN

count := 0;

ELSE

IF (clk’EVENT AND clk = ‘1’) THEN

count := count + 1;

END IF;

K E Y  T E R M S

➥ ct_simp.vhd
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END IF;

q <= count;

END PROCESS;

END a;

Recall that the PROCESS statement has the following syntax:

PROCESS (sensitivity list)
[VARIABLE variable name :type [range]; ]

BEGIN

Process statements
END PROCESS;

Square brackets [ ] indicate an optional part of the code.
When there is a change in an item in the sensitivity list, the process statements are ex-

ecuted. For a synchronous counter, the list would often only include clock, since any action
in a synchronous circuit depends on a clock transition. Since the clear function in this
counter is asynchronous, the clear input must also be monitored for any changes.

To hold the accumulating output value of the counter, we define a variable called
count, presumed to have an initial value of 0, but defined for the range of 0 to 255. (This 8-
bit value rolls over to 0 when the count exceeds 255.) The variable (any variable) is local to
the process in which it is defined. We update the value of count by an IF statement, with
the form:

IF (condition) THEN
Statement[s];

[ELSIF (condition) THEN
statement[s];]

[ELSE

statement[s];]
END IF;

The clause  (IF (clear=‘0’) THEN) monitors the asynchronous clear function in-
dependently of the clock and executes the variable assignment that sets the output to 0 if
the Boolean condition  (clear=‘0’) is true. Otherwise, the clock is monitored for a pos-
itive edge by the condition  (clk’EVENT AND clk = ‘1’). The clause  clk’EVENT
(pronounced “clock tick event”) is a predefined attribute of the clock signal and is true if
there has just been a change on clock. The combination of this and the condition  clk =
‘1’ indicates that a positive edge has just occurred. If this is true, the count is incremented.

As a final step, the accumulated count must be assigned to an output port. This is done
in the concurrent signal assignment  q <= count at the end of the process.

Note the difference in types of assignments. A variable is assigned by the :� opera-
tor (e.g., count := count + 1;). A signal is assigned by the <= operator (eg.,
q <= count).

LPM Counters in VHDL

We can use a component (lpm_counter) from the Library of Parameterized Modules
(LPM) to instantiate a counter in VHDL. When using an LPM counter, we don’t need to
describe the behavior of the counter, as this has been done for us in the module itself. All
we need to do is map the ports and parameters of the LPM component to the ports of the
VHDL design entity. We do this by using a generic map to specify the parameters we need
and a port map to map the ports of the LPM device either to an external port or an internal
signal. The VHDL code below shows the VHDL implementation (lpm_simp.vhd) of the
same 8-bit counter as in the previous behavioral example.

—— lpm_simp.vhd

—— Eight-bit binary counter based on a component

➥ lpm_simp.vhd



9.4 • Programming Binary Counters in VHDL 387

—— from the Library of Parameterized Modules (LPM)

—— Counter has an active-LOW asynchronous clear.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY lpm_simp IS

PORT(

clk, clear : IN  STD_LOGIC;

q          : OUT STD_LOGIC_VECTOR (7 downto 0));

END lpm_simp;

ARCHITECTURE count OF lpm_simp IS

SIGNAL clrn : STD_LOGIC;

BEGIN

count8: lpm_counter

GENERIC MAP (LPM_WIDTH   => 8)

PORT MAP ( clock  => clk,

aclr   => clrn,

q      => q(7 downto 0));

clrn <= not clear;

END count;

LPM components require us to use two packages: the std_logic_1164 package in
the ieee library to define STD_LOGIC types used in the LPM components and the
lpm_components package in the lpm library to define the components themselves.
Since LPM components are defined using STD_LOGIC and STD_LOGIC_VECTOR
types, we should use these types for our other identifiers as well.

The entity declaration defines the inputs and outputs of our counter and need not cor-
respond to the port names for the LPM counter. That correspondence is defined in the ar-
chitecture body, where we instantiate the counter module. The counter is defined in a com-
ponent instantiation statement, which takes the following form:

__instance_name: __component_name

GENERIC MAP (__parameter_name => __parameter_value,

__parameter_name => __parameter_value)

PORT MAP (__component_port => __connect_port,

__component_port => __connect_port);

The component name is the name of the LPM component. Parameter names are those
defined in the LPM component, such as LPM_WIDTH. Parameter values are those values
assigned in the instance of the component. Component ports are the LPM port names. Con-
nect ports are the names of identifiers declared in the entity or as signals or variables.

If we want to invert the active level of an LPM input port, we must use a signal
assignment statement. (e.g., clrn <= not clear;) We need to do this because a VHDL
input port cannot be “updated” (modified); only an output can be assigned a new value as
a result of a Boolean expression. Thus, we create a signal called clrn that maps to the 
aclr (asynchronous clear) port of the LPM counter. This is connected to the clear input of
the counter circuit via an inverter. Figure 9.20 shows the graphic equivalent of this
mapping.

❘❙❚ SECTION 9.4 REVIEW PROBLEM

9.4 Write a VHDL code segment that increments a variable called count upon detection of
a negative edge of an input called clock.
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9.5 Control Options for Synchronous Counters

Parallel load A function that allows simultaneous loading of binary values into
all flip-flops of a synchronous circuit. Parallel loading can be synchronous or
asynchronous.

Presettable counter A counter with a parallel load function.

Clear Reset (synchronous or asynchronous).

Count enable A control function that allows a counter to progress through its
count sequence when active and disables the counter when inactive.

Bidirectional counter A counter that can count up or down, depending on the
state of a control input.

Terminal count The last state in a count sequence before the sequence repeats
(e.g., 1111 is the terminal count of a 4-bit binary UP counter; 0000 is the terminal
count of a 4-bit binary DOWN counter).

Ripple carry out or ripple clock out (RCO) An output that produces one pulse
with the same period as the clock upon terminal count.

Synchronous counters can be designed with a number of features other than just straight
counting. Some of the most common features include:

• Synchronous or asynchronous parallel load, which allows the count to be set to any
value whenever a LOAD input is asserted

• Synchronous or asynchronous clear (reset), which sets all of the counter outputs to zero

• Count enable, which allows the count sequence to progress when asserted and inhibits
the count when deasserted

• Bidirectional control, which determines whether the counter counts up or down

• Output decoding, which activates one or more outputs when detecting particular states
on the counter outputs

• Ripple carry out or ripple clock out (RCO), a special case of output decoding that
produces a pulse upon detecting the terminal count, or last state, of a count sequence.

K E Y  T E R M S
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FIGURE 9.20
Graphic Equivalent of an LPM
Counter with Active-Low Clear
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We will examine the implementation of these functions, first as Graphic Design Files
in MAX�PLUS II, and then, in the next section, in VHDL, both as behavioral descriptions
and as functions of LPM counters.

Parallel Loading

Figure 9.21 shows the symbol of a 4-bit presettable counter (i.e., a counter with a paral-
lel load function). The parallel inputs, P3 to P0, have direct access to the flip-flops of the
counter. When the LOAD input is asserted, the values at the P inputs are loaded directly
into the counter and appear at the Q outputs.

Parallel loading requires at least two sets of inputs: the load data (P3 to P0) and the
load command (LOAD). If the load function is synchronous, as described below, it
also requires a clock input.

N O T E

Q3  Q2  Q1  Q0

P3   P2   P1   P0

CLOCK

MSB LSB

LOAD
CTR DIV 16

FIGURE 9.21
4-bit Counter with Parallel Load

FIGURE 9.22
Synchronous vs. Asynchronous Load

Parallel loading can be synchronous or asynchronous. The MAX�PLUS II simulation
in Figure 9.22 shows the difference. Two waveforms, QS[3..0] and QA[3..0], represent the
outputs of two 4-bit counters with synchronous and asynchronous load, respectively. Both
counters have the same clock, load, and P inputs. The count is already in progress at the be-
ginning of the simulation window and shows both counters advancing with each clock
pulse: 4, 5, 6.

When LOAD goes HIGH at 500 ns, the value of P[3..0] (� AH) is loaded into the
asynchronously loading counter (QA[3..0]) immediately after a short propagation delay
(12.5 ns). The counter with synchronous load (QS[3..0]) is not loaded until the next posi-
tive clock edge, shown at 560 ns.

Synchronous Load

The logic diagram of Figure 9.23 shows the concept of synchronous parallel load. De-
pending on the status of the LOAD input, the flip-flop will either count according to its

➥ 4b_al_sl.scf
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count logic (the next-state combinational circuit) or load an external value. The flip-flop
shown is the most significant bit of a 4-bit binary counter, such as shown in Figure
9.19, but with the count logic represented only by an input pin. (For the fourth bit of a
counter, the Boolean equation of the count logic is given by D3 � Q3 � Q2Q1Q0. It is
left out in order to more clearly show the operation of the count/load function select
circuit.)

The LOAD input selects whether the flip-flop synchronous input will be fed by the
count logic or by the parallel input P3. When LOAD � 0, the upper AND gate steers the
count logic to the flip-flop, and the count progresses with each clock pulse. When LOAD �
1, the lower AND gate loads the logic level at P3 directly into the flip-flop on the next clock
pulse.
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FIGURE 9.23
Count/Load Selection
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FIGURE 9.24
Counter Element with Synchronous Load and Asynchronous Clear

Figure 9.24 shows the same circuit, but includes the count logic. If we leave out the
3-input AND gate, as in Figure 9.25, we have a circuit that can be used as a general element
(called sl_count) in a synchronous presettable counter. Figure 9.26 shows the logic dia-
gram of a 4-bit synchronously presettable counter consisting of four instances of the
counter element of Figure 9.25 and appropriate AND gates for a synchronous counter. This
diagram implements a synchronous counter like that of Figure 9.19, but also incorporates
a synchronous load function.

Figure 9.27 shows a simulation of the counter in Figure 9.26. The first 19 clock pulses
drive the counter through its normal 4-bit cycle from 0H to FH, then up to 2H. At this
point, we set the LOAD input HIGH and the value at the P inputs (9H) is loaded into the
counter on the rising edge of the next clock pulse. An asynchronous RESET pulse at 880 ns
drives the counter outputs to 0H, after which the count resumes.

➥ sl_count.gdf
4bit_sl.gdf
4bit_sl.scf
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FIGURE 9.25
Counter Element with Synchronous Load and Asychronous Reset (sl_count)
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4-bit Counter with Synchronous Load and Asynchronous Reset
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Asynchronous Load

The asynchronous load function of a counter makes use of the asynchronous preset and
clear inputs of the counter’s flip-flops. Figure 9.28 shows the circuit implementation of the
asynchronous load function, without any count logic.

When ALOAD (Asynchronous LOAD) is HIGH, both NAND gates in Figure 9.28 are
enabled. If the P input is HIGH, the output of the upper NAND gate goes LOW, activating
the flip-flop’s asynchronous PRESET input, thus setting Q � 1. The lower NAND gate has
a HIGH output, thus deactivating the flip-flop’s CLEAR input.

If P is LOW the situation is reversed. The upper NAND output is HIGH and the lower
NAND has a LOW output, activating the flip-flop’s CLEAR input, resetting Q. Thus, Q will
be the same value as P when the ALOAD input is asserted. When ALOAD is not asserted (�
0), both NAND outputs are HIGH and thus do not activate either the preset or clear func-
tion of the flip-flop.

Figure 9.29 shows the asynchronous load circuit with an asynchronous clear (reset)
function added. The flip-flop can be cleared by a logic LOW either from the P input (via
the lower NAND gate) or the CLEAR input pin. The clear function disables the upper
NAND gate when it is LOW, preventing the flip-flop from being cleared and preset simul-
taneously. This extra connection also ensures that the clear function has priority over the
load function.

FIGURE 9.27
Simulation of 4-bit Counter with Synchronous Load and Asynchronous Reset
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FIGURE 9.28
Asynchronous LOAD Element
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❘❙❚ EXAMPLE 9.6 Use MAX�PLUS II to redraw the circuit in Figure 9.29 to create a general element called
al_count that can be used in a synchronous counter with asynchronous load and clear. (Re-
fer to Figure 9.25 for a similar element with synchronous load.)

Solution Figure 9.30 shows the modified circuit, which includes an XOR gate for part
of the count logic. The remainder of the count logic must be supplied externally to this el-
ement for each bit of the counter.
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CLK
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FIGURE 9.29
Asynchronous LOAD Element with Asynchronous Clear

❘❙❚ EXAMPLE 9.7 Draw a circuit with four instances of al_count (from Example 9.6) to make a 4-bit syn-
chronous counter with asynchronous load and reset. Create a simulation that tests the func-
tion of the counter.

Solution Figure 9.31 shows the circuit. (Compare this circuit to the counter with syn-
chronous load in Figure 9.26. This difference between the two is in the load function, not
the count logic.)

The Boolean function applied to the COUNT input of each instance of al_count con-
sists of the logical product of all previous output bits. (COUNT3 � Q2Q1Q0, COUNT2 �
Q1Q0, COUNT1 � Q0, COUNT0 � 1.) When combined with the XOR at the COUNT input
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FIGURE 9.30
Example 9.6
Counter Element with Asynchronous Load and Clear (al_count)

➥ al_count.gdf

➥ 4bit_al.gdf
4bit_al.scf
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of each element, this yields the Boolean equations for a binary counter based on D flip-
flops, as derived in Example 9.5. The circuitry inside each instance of al_count also gen-
erates the asynchronous load and clear functions.

Figure 9.32 shows a MAX�PLUS II simulation of the counter. The counter cycles
through its full range and continues. A pulse at 700 ns loads the counter with the value 9H
(� 10012), after which the count continues from that point.

FIGURE 9.31
Example 9.7
4-bit Counter with Asynchronous Load and Reset
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The reset pulse at 900 ns clears the counter. The LOAD pulse starting at 1.02 �s
shows how the load function has precedence over the count function. When LOAD is
asserted, 9H is loaded and the count does not increase until LOAD is deasserted. The
RESET pulse at 1.08 �s overrides both load and count functions. When RESET is
deasserted, 9H is asynchronously reloaded.

❘❙❚

Count Enable

The counter elements in Figures 9.25 (sl_count) and 9.30 (al_count) are just D flip-flops
configured for switchable toggle operation with additional circuitry for load and clear
functions. Normally, when these elements are used in synchronous counters, the count pro-
gresses when the input to the element’s XOR gate goes HIGH. In other words, the count
progresses when the counter element is switched from a no change to a toggle mode.

In order to arrest the count sequence, we must disable the count logic of the counter
circuit. Figure 9.33 shows a simple modification to the 4-bit counter circuit of Figure 9.26
that can achieve this function. Each AND gate has an extra input which is used to enable or
inhibit the count logic function to each flip-flop.

Figure 9.34 shows a simulation of the counter. Note that the count progresses normally
when COUNT_ENA is HIGH and stops when COUNT_ENA is LOW, even though the
clock pulses remain constant throughout the simulation.

Also note that the count enable has no effect on the synchronous load and asynchro-
nous reset functions. In the latter part of the simulation, the count stops at AH (Q3Q2Q1Q0

� 10102), when COUNT_ENA goes LOW. At 760 ns, the synchronous load function loads
the value of 9H into the counter. The counter stays at this value, even after LOAD is no
longer active, since the count is still disabled. At 880 ns, an asynchronous reset pulse clears
the counter. The count resumes on the first clock pulse after COUNT_ENA goes HIGH
again.

Bidirectional Counters

Figure 9.35 shows the logic diagram of a 4-bit synchronous DOWN counter. Its count se-
quence starts at 1111 and counts backwards to 0000, then repeats. The Boolean equations
for this circuit will not be derived at this time, but will be left for an exercise in an end-of-
chapter problem.

We can intuitively analyze the operation of the counter if we understand that the upper
three flip-flops will each toggle when their associated XOR gates have a HIGH input from
the rest of the count logic.

Q0 is set to toggle on each clock pulse. Q1 toggles whenever Q0 is LOW (every second
clock pulse, at states 1110, 1100, 1010, 1000, 0110, 0100, 0010, and 0000). Q2 toggles
when Q1 AND Q0 are LOW (1100, 1000, 0100, and 0000). Q3 toggles when Q2 AND Q1

AND Q0 are LOW (1000 and 0000). The result of this analysis can be represented by a tim-
ing diagram, such as the simulation shown in Figure 9.36. As we expect, the counter will
count down from 1111 (FH) to 0000 (0H) and repeat.

We can create a bidirectional counter by including a circuit to select count logic for an
UP or DOWN sequence. Figure 9.37 shows a basic synchronous counter element that can
be used to create a synchronous counter. The element is simply a D flip-flop configured for
switchable toggle mode.

Four of these elements can be combined with selectable count logic to make a 4-bit
bidirectional counter, as shown in Figure 9.38. Each counter element has a pair of
AND-shaped gates and an OR gate to steer the count logic to the XOR in the element.
When DIR � 1, the upper gate in each pair is enabled and the lower gates disabled,

➥ 4bit_sle.gdf
4bit_sle.scf

➥ element.gdf
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FIGURE 9.34
Simulation of 4-bit Counter 
with Synchronous Load,
Asynchronous Reset, and 
Count Enable
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4-bit Counter with Synchronous Load, Asynchronous Reset, and Count Enable
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steering the UP count logic to the counter element. When DIR � 0, the lower gate in each
pair is enabled, steering the DOWN count logic to the counter element. The directional
function can also be combined with the load and count enable functions, as was shown for
unidirectional UP counters.

Figure 9.39 shows a simulation of the bidirectional counter of Figure 9.38. The
waveforms show the UP count when DIR is HIGH and the DOWN count when DIR
is LOW.
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FIGURE 9.37
Synchronous Counter Element (T Flip-Flop)
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Decoding the Output of a Counter

Figure 9.40 shows a graphic design file of a 4-bit bidirectional counter with an output de-
coder. The counter is the one shown in Figure 9.38, represented as a logic circuit symbol.
The decoder component decode16 is a module written in VHDL, as listed below.

FIGURE 9.39
Simulation of 4-bit Bidirectional Counter
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FIGURE 9.40
4-bit Bidirectional Counter with Output Decoder

—— decode16.vhd

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY decode16 IS

PORT(

sel : IN   INTEGER RANGE 0 to 15;

y   : OUT  BIT_VECTOR (0 to 15));

END decode16;

ARCHITECTURE a OF decode16 IS

BEGIN

WITH sel SELECT

y <=   x“7FFF” WHEN 0,

x“BFFF” WHEN 1,

x“DFFF” WHEN 2,

x“EFFF” WHEN 3,

x“F7FF” WHEN 4,

x“FBFF” WHEN 5,

➥ 4bit_dir.gdf
4bit_dir.scf
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x“FDFF” WHEN 6,

x“FEFF” WHEN 7,

x“FF7F” WHEN 8,

x“FFBF” WHEN 9,

x“FFDF” WHEN 10,

x“FFEF” WHEN 11,

x“FFF7” WHEN 12,

x“FFFB” WHEN 13,

x“FFFD” WHEN 14,

x“FFFE” WHEN 15,

X“FFFF” WHEN others;

END a;

The decoder has 16 outputs, one for each state of the counter. For each state, one and
only one output will be low. (Refer to the section on binary decoders in Chapter 5 for a
more detailed description of n-line-to-m-line binary decoders.)

Figure 9.41 shows a portion of the simulation waveforms (i.e., only the count value
and the decoder outputs) for the circuit in Figure 9.40. As the count progresses up or down,
as shown by the waveform for Q[3..0], the decoder outputs respond by going LOW in
sequence.

Output decoders for binary counters can also be configured to have active HIGH out-
puts. In this case, one and only one output would be HIGH for each output state of the
counter.

Terminal Count and RCO

A special case of output decoding is a circuit that will detect the terminal count, or last state,
of a count sequence and activate an output to indicate this state. The terminal count depends
on the count sequence.A 4-bit binary UP counter has a terminal count of 1111; a 4-bit binary
DOWN counter has a terminal count of 0000.A circuit to detect these conditions must detect
the maximum value of an UP count and the minimum value of a DOWN count.

FIGURE 9.41
Simulation of 4-bit Decoder

➥ CD: decode16.vhd
4bit_dcd.gdf
4bit_dcd.scf
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The decoder shown in Figure 9.42 fulfills both of these conditions. The directional in-
put DIR enables the upper gate when HIGH and the lower gate when LOW. Thus, the up-
per gate generates a HIGH output when DIR � 1 AND Q3Q2Q1Q0 � 1111. The lower gate
generates a HIGH when DIR � 0 AND Q3Q2Q1Q0 � 0000.

Figure 9.43 shows the terminal count decoder combined with a 4-bit bidirectional
counter. The decoder is also used to enable a NAND gate output that generates an RCO sig-
nal. RCO stands for ripple carry out or ripple clock out. The purpose of RCO is to produce
exactly one clock pulse upon terminal count and have the positive edge of RCO at the end
of the counter cycle, for a counter that has a positive edge-triggered clock.
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4-bit Bidirectional Counter with Terminal Count Detection

This function is generally found in counters with a fixed number of bits (i.e., fixed-
function counter chips, not PLDs) and is used to asynchronously clock a further counter
stage, as in Figure 9.44. This allows us to extend the width of the counter beyond the num-
ber of bits available in the fixed-function device. This is not necessary when designing syn-
chronous counters in programmable logic, but is included for the sake of completeness.

➥ term_dcd.gdf

➥ 4bit_rco.gdf
4bit_rco.scf
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The NAND gate in Figure 9.43 is enabled upon terminal count and passes the clock
signal through to RCO. The NAND output sits HIGH when inhibited. The clock is inverted
in the RCO circuit so that when the NAND gate inverts it again, the circuit generates a
clock pulse in true form.

Figure 9.45 shows the simulation of the circuit of Figure 9.43. In the first half of
the simulation, the counter is counting DOWN. The terminal count decoder output,
MAX_MIN, goes HIGH when Q3Q2Q1Q0 � 0000. RCO generates a pulse at that time. For
the second half, the counter is counting UP. MAX_MIN is HIGH when Q3Q2Q1Q0 � 1111
and RCO generates a pulse at that time.
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FIGURE 9.44
Counter Expansion Using RCO

FIGURE 9.45
Simulation of a 4-bit Bidirectional Counter with Terminal Count Detection

Note that the RCO pulse appears to be half the width of the MAX_MIN pulse. Al-
though the NAND gate that generates RCO is enabled for the whole MAX_MIN pulse,
the clock input is HIGH for the first half-period, which is the same as the RCO inhibit
level.

The positive edge of RCO is at the end of the pulse. The idea is to synchronize the pos-
itive edge of the clock with the positive edge of RCO. However, since the RCO decoder is
combinational, a propagation delay of about 7 ns is introduced.

❘❙❚ SECTION 9.5 REVIEW PROBLEM

9.5 Figure 9.46 shows two presettable counters, one with asynchronous load and clear, the
other with synchronous load and clear. The counter with asynchronous functions has a
4-bit output labeled QA. The synchronously loaded counter has a 4-bit output labeled
QS. The load and reset inputs to both counters are active LOW.
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Figure 9.47 shows a partial timing diagram for the counters. Complete the diagram.

9.6 Programming Presettable and Bidirectional 
Counters in VHDL
The presettable counters and bidirectional counters described in the previous section can
be easily implemented in VHDL, either as behavioral descriptions or as LPM components.
We will initially examine the behavioral descriptions of two counters, one with asynchro-
nous load and clear and one with synchronous load and clear. We will then examine some
options available in the module lpm_counter.
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Behavioral Description

The following lists the VHDL code for an 8-bit bidirectional counter with count enable,
terminal count decoding, and asynchronous load and clear:

ENTITY pre_ct8a IS

PORT (

clk, count_ena         : IN  BIT;

clear, load, direction : IN  BIT;

p                      : IN  INTEGER RANGE 0 TO 255;

max_min                : OUT BIT;

qd                     : OUT INTEGER RANGE 0 TO 255);

END pre_ct8a;

ARCHITECTURE a OF pre_ct8a IS

BEGIN

PROCESS (clk, clear, load)

VARIABLE cnt : INTEGER RANGE 0 TO 255;

BEGIN

IF (clear = ‘0’) THEN              —— Asynchronous clear

cnt := 0;

ELSIF (load = ‘1’ and clear = ‘1’) THEN —— Asynchronous load

cnt := p;

ELSE

IF (clk’EVENT AND clk = ‘1’) THEN

IF (count_ena = ‘1’ and direction = ‘0’) THEN

cnt := cnt - 1;

ELSIF (count_ena = ‘1’ and direction = ‘1’) THEN

cnt := cnt + 1;

END IF;

END IF;

END IF;

qd <= cnt;

—— Terminal count decoder

IF (cnt = 0 and direction = ‘0’) THEN

max_min <=  ‘1’;

ELSIF (cnt = 255 and direction = ‘1’) THEN

max_min <=  ‘1’;

ELSE

max_min <=  ‘0’;

END IF;

END PROCESS;

END a;

The load and clear functions of this counter are asynchronous, so these identifiers are
part of the sensitivity list of the PROCESS statement; the statements in the process will ex-
ecute if there is a change on the clear, load, or clock inputs. Load and clear are checked by
IF statements, independently of the clock. Since load and clear are checked first, they have
precedence over the clock. Clear has precedence over load since load can only activate if
clear is not active.

If clear and load are not asserted, the clock status is checked by a clause in an IF state-
ment: ( IF (clk’EVENT and CLK = ‘1’) THEN). If this condition is true, then a
count variable is incremented or decremented, depending on the states of a count enable in-
put and a directional control input. If the count enable input is not asserted, the count is
neither incremented nor decremented.

➥ pre_ct8a.vhd
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The count value is assigned to the counter outputs by the signal assignment statement
(qd <= cnt;) after the clear, load, clock, count enable, and direction inputs have been
evaluated. Possible results from the signal assignment are:

• qd � 0 (clear � 0),

• qd � p (load � 1 AND clear � 1),

• increment qd (count_ena � 1 AND direction � 1),

• decrement qd (count_ena � 1 AND direction � 0), or

• no change on qd (count_ena � 0).

The terminal count is decoded by determining the count direction and value of the
count variable. If the count is UP and the count value is maximum (25510 � FFH) or the
count is DOWN and the count value is minimum (0 � 00H), a terminal count decoder out-
put called max_min goes HIGH.

The code for the same 8-bit counter, but with synchronous clear and load, is shown next.

ENTITY pre_ct8s IS

PORT (

clk, count_ena         : IN BIT;

clear, load, direction : IN BIT;

p                      : IN INTEGER RANGE 0 TO 255;

max_min                : OUT BIT;

qd                     : OUT INTEGER RANGE 0 TO 255);

END pre_ct8s;

ARCHITECTURE a OF pre_ct8s IS

BEGIN

PROCESS (clk)

VARIABLE cnt : INTEGER RANGE 0 TO 255;

BEGIN

IF (clk’EVENT AND clk = ‘1’) THEN

IF (clear = ‘0’) THEN —— Synchronous clear

cnt := 0;

ELSIF (load = ‘1’) THEN —— Synchronous load

cnt := p;

ELSIF (count_ena = ‘1’ and direction = ‘0’) THEN

cnt := cnt - 1;

ELSIF (count_ena � ‘1’ and direction = ‘1’) THEN

cnt := cnt + 1;

END IF;

END IF;

qd <= cnt;

—— Terminal count decoder

IF (cnt = 0 and direction = ‘0’) THEN

max_min <= ‘1’;

ELSIF (cnt = 255 and direction = ‘1’) THEN

max_min <= ‘1’;

ELSE

max_min <= ‘0’;

END IF;

END PROCESS;

END a;

The PROCESS statement in the synchronous counter has only one identifier in its sen-
sitivity list—that of the clock input. Load and clear status are not evaluated until after the

➥ pre_ct8s.vhd
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process checks for a positive clock edge. Otherwise the code is the same as for the asyn-
chronously loading counter.

Figure 9.48 shows a detail of a simulation of the asynchronously loading counter. It
shows the point where the count rolls over from FFH to 00H and activates the max_min
output. The directional output changes shortly after this point and shows the terminal count
decoding for a DOWN count, the point where the counter rolls over from 00H to FFH. In
the UP count, max_min is HIGH when the counter output is FFH, but not 00H. In the
DOWN count, max_min goes HIGH when the counter output is 00H, but not FFH.

Figure 9.49 shows the operation of the asynchronous load and clear functions. Figure
9.50 show the synchronous load and clear. The inputs are identical for each simulation;
each has two pairs of load pulses and a pair of clear pulses. The first pulse of each pair is
arranged so that it immediately follows a positive clock edge; the second pulse of each pair
immediately precedes a positive clock edge.

In the counter with asynchronous load and clear, these functions are activated by the
first pulse of each pair and again on the second pulse. For the counter with synchronous
load and clear, only the second pulse of each pair has an effect, since the load and clear
functions must be active during or just prior to an active clock edge, in order to satisfy

FIGURE 9.48
Simulation Detail of 8-bit VHDL Counter (Bidirectional with Terminal Count Detection)

FIGURE 9.49
Simulation Detail of 8-bit VHDL Counter with Asynchronous Load and Clear

➥ pre_ct8a.scf
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setup-time requirements of the counter flip-flops. The end of the load and clear pulse can
correspond to the positive clock edge, as the flip-flop hold time is zero.

Also note that the counter with synchronous load and clear has no intermediate glitch
states on its outputs. (The simulation for the asynchronously loading counter shows glitch
states on output qd at 21.04 �s, 21.10 �s, 21.22 �s, and 21.44 �s. Refer to the section on
Synchronous versus Asynchronous Circuits in Chapter 7 for further discussion of interme-
diate states in asynchronous circuits.)

Figures 9.51 and 9.52 show further simulation details for our two VHDL counters.
Both show the priority of the load, clear, and count enable functions. Both diagrams show
that load and clear are independent of count enable and that clear has precedence over load.
Again note that the counter with synchronous load and clear is free of intermediate glitch
states.

FIGURE 9.50
Simulation Detail of 8-bit VHDL
Counter with Synchronous Load
and Clear

FIGURE 9.51
Simulation Detail of 8-bit VHDL
Counter Showing Priority of
Count Enable, Asynchronous
Load, and Asynchronous Clear

FIGURE 9.52
Simulation Detail of 8-bit VHDL
Counter Showing Priority of
Count Enable, Synchronous
Load, and Synchronous Clear
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LPM Counters

Earlier in this chapter, we saw how a parameterized counter from the Library of Parame-
terized Modules (LPM) could be used as a simple 8-bit counter. The component
lpm_counter has a number of other functions that can be implemented using specific ports
and parameters. These functions are indicated in Table 9.13.

Table 9.13 Available Functions of an LPM counter

Function Ports Parameters Description

Basic count operation clock, q [] LPM_WIDTH Output q[] increases by one with each positive clock edge. 
LPM_WIDTH is the number of output bits.

Synchronous load sload, data [] none When sload � 1, output q[] goes to the value at input data[]
on the next positive clock edge. data[] has the same width 
as q[].

Synchronous clear sclr none When sclr � 1, output q[] goes to zero on positive clock
edge.

Synchronous set sset LPM_SVALUE When sset � 1, output goes to value of LPM_SVALUE on 
positive clock edge. If LPM_SVALUE is not specified, q[]
goes to all 1s.

Asynchronous load aload, data[] none Output goes to value at data[] when aload � 1.

Asynchronous clear aclr none Output goes to zero when aclr � 1.

Asynchronous set aset LPM_AVALUE Output goes to value of LPM_AVALUE when aset � 1. 
If LPM_AVALUE is not specified, outputs all go HIGH 
when aset � 1.

Directional control updown LPM_DIRECTION Optional direction control. Default direction is UP. Only one 
of updown and LPM_DIRECTION can be used.
updown � 1 for UP count, updown � 0 for DOWN count. 
LPM_DIRECTION � “UP”, “DOWN”, or “DEFAULT”

Count enable cnt_en none When cnt_en � 1, count proceeds upon positive clock edges. 
No effect on other synchronous functions (sload, sclr, sset).
Defaults to “enabled” when not specified.

Clock enable clk_en none All synchronous functions are enabled when clk_en � 1. 
Defaults to “enabled” when not specified.

Modulus control none LPM_MODULUS Modulus of counter is set to value of LPM_MODULUS

Output decoding eq[15..0] none Sixteen active-HIGH decoded outputs, one for each internal 
(GDF or AHDL only; counter value from 0 to 15.
not available in VHDL)

The only ports that are required by an LPM counter are clock, and one of q[] (counter
outputs) or eq[] (decoder outputs). The only required parameter is LPM_WIDTH, which
specifies the number of counter output bits. All other ports and parameters are optional, al-
though certain ones must be used together. (For instance, ports sload and data[] are op-
tional, but both must be used for the synchronous load function.) If unused, a port or para-
meter will be held at a default logic level.

To use any of the functions of an LPM component in a VHDL file, we use a compo-
nent instantiation statement and specify the required parameters in a generic map and the
ports in a port map.
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The VHDL component declaration, shown below, indicates that all parameters
except LPM_WIDTH are defined as having type STRING, which requires
the parameter value to be written in double quotes, even if numeric. (e.g,
LPM_MODULUS => “12”). Since LPM_WIDTH is defined as type POSITIVE (i.e.,
any integer � 0) it must be written without quotes (e.g., LPM_WIDTH => 8). 
Default values of all ports and parameters are also included in the component decla-
ration (e.g., clk_en: IN STD_LOGIC := ‘1’; the default value of the clock en-
able input is ‘1’). The LPM component declaration can also be found in the
MAX�PLUS II Help menu (Help; Megafunctions/LPM; lpm_counter).

VHDL Component Declaration for lpm_counter:

COMPONENT lpm_counter

GENERIC (LPM_WIDTH: POSITIVE;

LPM_MODULUS: STRING := “UNUSED”;

LPM_AVALUE: STRING:= “UNUSED”;

LPM_SVALUE: STRING := “UNUSED”;

LPM_DIRECTION: STRING := “UNUSED”;

LPM_TYPE: STRING := “L_COUNTER”;

LPM_PVALUE: STRING := “UNUSED”;

LPM_HINT : STRING := “UNUSED”);

PORT (data: IN STD_LOGIC_VECTOR (LPM_WIDTH-1 DOWNTO 0) := (OTHERS => ‘0’);

clock: IN STD_LOGIC;

cin: IN STD_LOGIC := ‘0’;

clk_en: IN STD_LOGIC := ‘1’;

cnt_en: IN STD_LOGIC := ‘1’;

updown: IN STD_LOGIC := ‘1’

sload: IN STD_LOGIC := ‘0’;

sset: IN STD_LOGIC := ‘0’;

sclr: IN STD_LOGIC := ‘0’;

aload: IN STD_LOGIC := ‘0’;

aset: IN STD_LOGIC := ‘0’;

aclr: IN STD_LOGIC := ‘0’;

cout: OUT STD_LOGIC;

q: OUT STD_LOGIC_VECTOR (LPM_WIDTH-1 DOWNTO 0) );

END COMPONENT;

❘❙❚ EXAMPLE 9.8 Write a VHDL file for an 8-bit LPM counter with ports for the following functions: asyn-
chronous load, asynchronous clear, directional control, and count enable.

Solution The required VHDL file is shown below. Note that no behavioral descriptions
are required for the functions, only a mapping from the defined port names to the entity in-
puts and outputs.

—— pre_lpm8

—— 8-bit presettable counter with asynchronous clear and load,

—— count enable, and a directional control port

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

N O T E
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ENTITY pre_lpm8 IS

PORT (

clk, count_ena   : IN     STD_LOGIC;

clear, load, direction    : IN    STD_LOGIC;

p                : IN     STD_LOGIC_VECTOR(7 downto 0);

qd               : OUT    STD_LOGIC_VECTOR(7 downto 0));

END pre_lpm8;

ARCHITECTURE a OF pre_lpm8 IS

BEGIN

counter1: lpm_counter

GENERIC MAP (LPM_WIDTH => 8)

PORT MAP ( clock  => clk,

updown => direction,

cnt_en => count_ena,

data   => p,

aload  => load,

aclr   => clear,

q      => qd);

END a;

❘❙❚ EXAMPLE 9.9 Write a VHDL file that uses an LPM counter to generate a DOWN counter with a modulus
of 500. Create a MAX�PLUS II simulation file to verify the counter’s operation.

Solution A mod-500 counter requires nine bits since 28 � 500 � 29. Since the counter
always counts DOWN, we can use the parameter LPM_DIRECTION to specify the
DOWN counter rather than using an unnecessary port. The required VHDL code is given
below.

Note that the value of LPM_WIDTH is written without quotes, since it is defined as
type POSITIVE in the component declaration. LPM_MODULUS and LPM_DIRECTION
are written in double quotes, since the component declaration defines them as type
STRING.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

Use lpm.lpm_components.ALL;

ENTITY mod5c_lpm IS

PORT (

clk : IN      STD_LOGIC;

q   : OUT     STD_LOGIC_VECTOR (8 downto 0) );

END mod5c_lpm;

ARCHITECTURE a OF mod5c_lpm IS

BEGIN

counter1: lpm_counter

GENERIC MAP(LPM_WIDTH     => 9,

LPM_DIRECTION => “DOWN”,

LPM_MODULUS  => “500”)

PORT MAP ( clock => clk,

q     => q);

END a;

Figure 9.53 shows a partial simulation of the counter, indicating the point at which the
output rolls over from 0 to 499 (decimal).

➥ mod5c_lpm.vhd
mod5c_lpm.scf

➥ pre_lpm8.vhd
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If we are designing a counter for the Altera UP-1 circuit board, we can simulate the
on-board oscillator by choosing a clock period of 40 ns, which corresponds to a clock fre-
quency of 25 MHz. The default simulation period is from 0 to 1 �s, which only gives 1 �s
� 40 ns/clock period � 25 clock periods. This is not enough time to show the entire count
cycle. The minimum value for the end of the simulation time is:

40 ns/clock period 	 500 clock periods � 20000 ns � 20 �s.

If we wish to see a few clock cycles past the recycle point, we can set the simulation
end time to 20.1 �s. (In the MAX�PLUS II Simulator window, select File menu; End
Time. Enter the value 20.1us (no spaces) into the Time window and click OK.)

To view the count waveform, q, in decimal rather than hexadecimal, select the wave-
form by clicking on it. Either right-click to get a pop-up menu or select Enter Group from
the simulator Node menu, as in Figure 9.54. This will bring up the Enter Group dialog
box shown in Figure 9.55. Select DEC (for decimal) and click OK.

FIGURE 9.53
Example 9.9
Partial Simulation of a Mod-500 LPM DOWN Counter

FIGURE 9.54
Selecting a Group in a MAX�PLUS II Simulation

FIGURE 9.55
Changing the Name or Radix of a Group
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❘❙❚ EXAMPLE 9.10 Write a VHDL file that instantiates a 12-bit LPM counter with asynchronous clear and syn-
chronous set functions. Design the counter to set to 2047 (decimal). Create a simulation to
verify the counter operation.

Solution The required VHDL file is:

—— sset_lpm.vhd

—— 12-bit LPM counter with sset and aclr

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY sset_lpm IS

PORT(

clk        : IN  STD_LOGIC;

clear, set : IN  STD_LOGIC;

q          : OUT STD_LOGIC_VECTOR (11 downto 0) );

END sset_lpm;

ARCHITECTURE a OF sset_lpm IS

BEGIN

counter1: lpm_counter

GENERIC MAP    (LPM_WIDTH => 12,

LPM_SVALUE => “2047”)

PORT MAP ( clock   => clk,

sset    => set,

aclr    => clear,

q       => q);

END a;

Figure 9.56 shows the simulation file of the counter. The full count sequence would
take over 160 �s, so we will assume the count portion of the design works properly. Only
the set and clear functions are fully simulated. The count waveform is shown in decimal.

❘❙❚

❘❙❚ SECTION 9.6 REVIEW PROBLEM

9.6 The first part of a VHDL process statement includes a sensitivity list: PROCESS

(sensitivity list). How should this be written for a counter with asynchronous
clear and for a counter with synchronous clear?

FIGURE 9.56
Example 9.10
Simulation of a 12-bit Counter with Synchronous Set to 2047 and Asynchronous Clear

➥ sset_lpm.vhd
sset_lpm.scf
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9.7 Shift Registers

Shift register A synchronous sequential circuit that will store and move n-bit
data, either serially or in parallel, in n flip-flops.

SRGn Abbreviation for an n-bit shift register (e.g., SRG4 indicates a 4-bit shift
register).

Serial shifting Movement of data from one end of a shift register to the other at a
rate of one bit per clock pulse.

Parallel transfer Movement of data into all flip-flops of a shift register at the
same time.

Rotation Serial shifting of data with the output(s) of the last flip-flop connected
to the synchronous input(s) of the first flip-flop. The result is continuous circulation
of the same data.

Right shift A movement of data from the left to the right in a shift register. (Right
is defined in MAX�PLUS II as toward the LSB.)

Left shift A movement of data from the right to the left in a shift register. (Left is
defined in MAX�PLUS II as toward the MSB.)

Bidirectional shift register A shift register that can serially shift bits left or right
according to the state of a direction control input.

Parallel-load shift register A shift register that can be preset to any value by di-
rectly loading a binary number into its internal flip-flops.

Universal shift register A shift register that can operate with any combination of
serial and parallel inputs and outputs (i.e., serial in/serial out, serial in/parallel out,
parallel in/serial out, parallel in/parallel out). A universal shift register is often bidi-
rectional, as well.

A shift register is a synchronous sequential circuit used to store or move data. It consists
of several flip-flops, connected so that data are transferred into and out of the flip-flops in a
standard pattern.

Figure 9.57 represents three types of data movement in three 4-bit shift registers. The
circuits each contain four flip-flops, configured to move data in one of the ways shown.

Figure 9.57a shows the operation of serial shifting. The stored data are taken in one at
a time from the input and moved one position toward the output with each applied clock
pulse.

Parallel transfer is illustrated in Figure 9.57b. As with the synchronous parallel load
function of a presettable counter, data move simultaneously into all flip-flops when a clock
pulse is applied. The data are available in parallel at the register outputs.

Rotation, depicted in Figure 9.57c, is similar to serial shifting in that data are shifted
one place to the right with each clock pulse. In this operation, however, data are continu-
ously circulated in the shift register by moving the rightmost bit back to the leftmost flip-
flop with each clock pulse.

Serial Shift Registers

Figure 9.58 shows the most basic shift register circuit: the serial shift register, so called be-
cause data are shifted through the circuit in a linear or serial fashion. The circuit shown
consists of four D flip-flops connected in cascade and clocked synchronously.

For a D flip-flop, Q follows D. The value of a bit stored in any flip-flop after a clock
pulse is the same as the bit in the flip-flop to its left before the pulse. The result is that when
a clock pulse is applied to the circuit, the contents of the flip-flops move one position to the

K E Y  T E R M S

➥ srg4_sr.gdf
srg4_sr.scf
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right and the bit at the circuit input is shifted into Q3. The bit stored in Q0 is overwritten by
the former value of Q1 and is lost. Since the data move from left to right, we say that the
shift register implements a right shift function. (Data movement in the other direction, re-
quiring a different circuit connection, is called left shift.)

Let us track the progress of data through the circuit in two cases. All flip-flops are ini-
tially cleared in each case.

Case 1: A 1 is clocked into the shift register, followed by a string of 0s, as shown in Fig-
ure 9.59. The flip-flop containing the 1 is shaded.

Before the first clock pulse, all flip-flops are filled with 0s. Data In goes to a 1 and on the
first clock pulse, the 1 is clocked into the first flip-flop. After that, the input goes to 0. The 1
moves one position right with each clock pulse, the register filling up with 0s behind it, fed by
the 0 at Data In.After four clock pulses, the 1 reaches the Data Out flip-flop. On the fifth pulse,
the 0 coming behind overwrites the 1 at Q0, leaving the register filled with 0s.

Q3 Q2 Q1 Q0

a. Serial shifting

Q3 Q2 Q1 Q0

b. Parallel transfer

Q3 Q2 Q1 Q0

c. Rotation

FIGURE 9.57
Data Movement in a 4-bit Shift Register
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FIGURE 9.58
4-bit Serial Shift Register Configured to Shift Right
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Case 2: Figure 9.60 shows a shift register, initially cleared, being filled with 1s.
As before, the initial 1 is clocked into the shift register and reaches the Data Out line

on the fourth clock pulse. This time, the register fills up with 1s, not 0s, because the Data
input remains HIGH.

Figure 9.61 shows a MAX�PLUS II simulation of the 4-bit serial shift register in Fig-
ure 9.58 through 9.60. The first half of the simulation shows the circuit operation for Case 
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FIGURE 9.59
Shifting a “1” Through a Shift
Register (Shift Right)
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FIGURE 9.60
Filling a Shift Register with 
“1”s (Shift Right)
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FIGURE 9.61
Simulation of a 4-bit Shift
Register (Shift Right)
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1, above. The 1 enters the register at Q3 on the first clock pulse after serial_in (Data In)
goes HIGH. The 1 moves one position for each clock pulse, which is seen in the simulation
as a pulse moving through the Q outputs.

Case 2 is shown in the second half of the simulation. Again, a 1 enters the register at
Q3. The 1 continues to be applied to serial_in, so all Q outputs stay HIGH after receiving
the 1 from the previous flip-flop.

Conventions differ about whether the rightmost or leftmost bit in a shift register
should be considered the most significant bit. The Altera Library of Parameterized
Modules uses the convention of the leftmost bit being the MSB, so this is the con-
vention we will follow. The convention has no physical meaning; the concept of
right or left shift only makes sense on a logic diagram. The actual flip-flops may be
laid out in any configuration at all in the physical circuit and still implement the
right or left shift functions as defined on the logic diagram. (That is to say, wires,
circuit board traces, and internal programmable logic connections can run wherever
you want; left and right are defined on the logic diagram.)

❘❙❚ EXAMPLE 9.11 Use the MAX�PLUS II Graphic Editor to create the logic diagram of a 4-bit serial shift
register that shifts left, rather than right.

Solution Figure 9.62 shows the required logic diagram. The flip-flops are laid out the
same way as in Figure 9.58, with the MSB (Q3) on the left. The D input of each flip-flop is
connected to the Q output of the flip-flop to its right, resulting in a looped-back connection.
A bit at D0 is clocked into the rightmost flip-flop. Data in the other flip-flops are moved one
place to the left. The bit in Q2 overwrites Q3. The previous value of Q3 is lost.

N O T E

Clock

OUTPUT
Q1

OUTPUT

INPUT

INPUT

Q0

OUTPUT
Q2

OUTPUT
Q3

Q0D0Q1D1Q2D2Q3D3

Serial_in

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

FIGURE 9.62
4-bit Serial Shift Register Configured to Shift Left

❘❙❚ EXAMPLE 9.12 Draw a diagram showing the movement of a single 1 through the register in Figure 9.62.
Also draw a diagram showing how the register can be filled up with 1s.

Solution Figures 9.63 and 9.64 show the required data movements.

➥ srg4_sl.gdf
srg4_sl.scf
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❘❙❚ EXAMPLE 9.13 Use the MAX�PLUS II simulator to verify the operation of the shift-left serial shift regis-
ter in Figure 9.62.

Solution Figure 9.65 shows the simulation of the shift operations shown in Example
9.12. Compare this simulation to the one in Figure 9.61 to see how the opposite shift di-
rection appears on a timing diagram.

❘❙❚

Bidirectional Shift Registers

Figure 9.66 shows the logic diagram of a bidirectional shift register. This circuit com-
bines the properties of the right shift and left shift circuits, seen earlier in Figures 9.58 and
9.62. This circuit can serially move data right or left, depending on the state of a control in-
put, called DIRECTION.

The shift direction is controlled by enabling or inhibiting four pairs of AND-OR
circuit paths that direct the bits at the flip-flop outputs to other flip-flop inputs. When
DIRECTION � 0, the right-hand AND gate in each pair is enabled and the flip-flop outputs
are directed to the D inputs of the flip-flops one position left. Thus the enabled pathway is
from Left_Shift_In to Q0, then to Q1, Q2, and Q3.

When DIRECTION � 1, the left-hand AND gate of each pair is enabled, directing the
data from Right_Shift_In to Q3, then to Q2, Q1, and Q0. Thus, DIRECTION � 0 selects left
shift and DIRECTION � 1 selects right-shift.

Figure 9.67 shows a MAX�PLUS II simulation of the bidirectional shift register in
Figure 9.66. The simulation shows the left shift function from 0 to 500 ns and right shift af-
ter 500 ns. Both Right_Shift_In and Left_Shift_In are applied in both parts of the simula-
tion, but the circuit responds only to one for each function.

For the left shift function, a 1 is applied to Q0 at 140 ns and shifted left. The
Right_Shift_In pulse is ignored. Similarly, for the right shift function, a 1 is applied to Q3

at 540 ns and shifted right. Left_Shift_In is ignored.

FIGURE 9.65
Simulation of a 4-bit Shift Register (Shift Left)

➥ srg4_bi.gdf
srg4_bi.scf
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Shift Register with Parallel Load

Earlier in this chapter, we saw how a counter could be set to any value by synchronously
loading a set of external inputs directly into the counter flip-flops. We can implement the
same function in a shift register, as shown in Figure 9.68.

The circuit is similar to that of the bidirectional shift register in Figure 9.66. The syn-
chronous input of each flip-flop is fed by an AND-OR circuit that directs one of two signals
to the flip-flop: the output of the previous flip-flop (shift function) or a parallel input (load
function). The circuit is configured such that the shift function is enabled when LOAD � 0
and the load function is enabled when LOAD � 1.

Figure 9.69 shows a simulation of the parallel-load shift register circuit of Figure 9.68.
In the first part of the simulation, the shift function is selected. This is tested by sending a
1 through the circuit in a right-shift pattern. Next, at 400 ns, LOAD goes HIGH, and the
parallel input value AH (� 10102) is synchronously loaded into the circuit. The LOAD in-
put goes LOW, thus causing the circuit to revert to the shift function. The data in the regis-
ter are right-shifted out, followed by 0s. At 640 ns, the value FH (� 11112) is loaded into
the circuit, then right-shifted out.

Figure 9.70 shows the logic circuit of a universal shift register. This circuit can im-
plement any combination of serial and parallel inputs and outputs. It can also serially shift
data left or right or hold data, depending on the states of S1 and S0, which form a 2-bit func-
tion select input.

Each AND-OR circuit acts as a multiplexer to direct one of several possible data
sources to the synchronous inputs of each flip-flop. For instance, if we trace the paths
through the corresponding AND-OR circuit, we find that the possible sources of data at D2,
the synchronous input of the second flip-flop, are Q3 (S1S0 � 01), P2 (S1S0 � 11), Q1 (S1S0

� 10), and Q2(S1S0 � 00). These are the inputs required for the right-shift, parallel load,
left-shift, and hold functions, respectively. All functions are synchronous, including the
parallel load and hold functions.

The hold function is a synchronous no change function, implemented by feeding back
the Q output of a flip-flop to its synchronous (D) input. It is necessary to have this function,
so that the flip-flops will not synchronously clear when none of the other functions is
selected.

FIGURE 9.67
Simulation of a 4-bit
Bidirectional Shift Register

➥ srg4_par.gdf
srg4_par.scf

➥ srg4_uni.gdf
srg4_uni.scf
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Table 9.14 summarizes the various possible inputs to each flip-flop as a function of S1

and S0.

FIGURE 9.69
Simulation of a 4-bit Serial Shift Register with Parallel Load

Table 9.14 Flip-Flop Inputs as a Function of S1S0 in a Universal Shift Register

S1 S0 Function D3 D2 D1 D0

0 0 Hold Q3 Q2 Q1 Q0

0 1 Shift Right RSI* Q3 Q2 Q1

1 0 Shift Left Q2 Q1 Q0 LSI**
1 1 Load P3 P2 P1 P0

*RSI � Right-shift input
**LSI � Left-shift input

❘❙❚ EXAMPLE 9.14 Create a simulation file to verify the operation of the universal shift register of Figure 9.70.

Solution Figure 9.71 shows a possible solution. The following functions are tested:
hold, right shift (LSI ignored), hold, left shift (RSI ignored), load FH, asynchronous clear,
load FH, shift right for two clocks, shift left for three clocks.
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❘❙❚

❘❙❚ SECTION 9.7 REVIEW PROBLEM

9.7 Can the D flip-flops in Figure 9.58 be replaced by JK flip-flops? If so, what modifica-
tions to the existing circuit are required?

9.8 Programming Shift Registers in VHDL

Structural design A VHDL design technique that connects predesigned compo-
nents using internal signals.

Dataflow design A VHDL design technique that uses Boolean equations to define
relationships between inputs and outputs.

Behavioral design A VHDL design technique that uses descriptions of required
behavior to describe the design.

As with other circuit applications, we can take several approaches to programming shift
registers in VHDL. Three basic design techniques are structural, dataflow, and behav-
ioral descriptions. We will use each of these techniques to design a 4-bit shift register, such
as the one shown in Figure 9.58.

Structural Design

Structural design is like taking components out of a bin and connecting them together to
make a circuit. We can use the DFF component from the MAX�PLUS II primitives
library and instantiate enough components to make a shift register, with connections made

K E Y  T E R M S

FIGURE 9.71
Example 9.14
Simulation of a 4-bit Universal Shift Register
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by internal signals. The code to make a 4-bit shift register using the structural design tech-
nique is shown here in the file srg4strc.vhd.

—— srg4strc.vhd

—— Structural description of a 4-bit serial shift register

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY altera;

USE altera.maxplus2.ALL;

ENTITY srg4strc IS

PORT(

serial_in, clk : IN      STD_LOGIC;

qo             : BUFFER  STD_LOGIC_VECTOR(3 downto 0) );

END srg4strc;

ARCHITECTURE right_shift of srg4strc IS

COMPONENT DFF

PORT (d : IN STD_LOGIC;

clk : IN STD_LOGIC;

q   : OUT STD_LOGIC);

END COMPONENT;

BEGIN

flip_flop_3: dff

PORT MAP (serial_in, clk, qo(3) );

dffs:

FOR i IN 2 downto 0 GENERATE

flip_flops_2_to_0: dff

PORT MAP (qo(i + 1), clk, qo(i) );

END GENERATE;

END right_shift;

The design entity srg4strc.vhd instantiates four D flip-flops from the altera.
maxplus2 package and connects them by assigning common inputs and outputs to related
components. A different way of writing the component instantiations would be as follows.

flip_flop_3: dff

PORT MAP (serial_in, clk, qo(3) );

flip_flop_2: dff

PORT MAP(qo(3), clk, qo(2) );

flip_flop_1: dff

PORT MAP(qo(2), clk, qo(1) );

flip_flop_0: dff

PORT MAP(qo(1), clk, qo(0) );

Since the component ports are in the sequence (D, clk, Q), the component instantia-
tions shown above imply that the D input of a flip-flop is fed by the Q of the previous 
flip-flop.

The port identifier qo is defined as mode BUFFER, not as OUT, because it is some-
times used as an input and sometimes as an output. A port of mode OUT can only be used
as an output. A port of mode BUFFER has a feedback connection so that the output can be
reused in the programmed AND matrix of the CPLD macrocell. Figure 9.72 illustrates the
difference between these modes.

Rather than defining connections in the component instantiations, we would also be
able to use an internal signal to connect the flip-flops. This method allows us to use a
port of mode OUT, rather than BUFFER. The file srg4str2.vhd shows this alternative
way.

➥ srg4strc.vhd
srgstrc.scf
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——srg4str2.vhd

—— Structural description of a 4-bit serial shift register

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY altera;

USE altera.maxplus2.ALL;

ENTITY srg4str2 IS

PORT (

serial_in, clk : IN  STD_LOGIC;

qo        : OUT STD_LOGIC_VECTOR(3 downto 0) );

END srg4str2;

ARCHITECTURE right_shift of srg4str2 IS

COMPONENT DFF

PORT (d   : IN STD_LOGIC;

clk : IN STD_LOGIC;

q   : OUT STD_LOGIC);

END COMPONENT;

SIGNAL connect : STD_LOGIC_VECTOR(3 downto 0);

BEGIN

flip_flop_3: dff

PORT MAP (serial_in, clk, connect(3) );

dffs:

FOR i IN 2 downto 0 GENERATE

flip_flops_2_to_0: dff

PORT MAP (connect(i + 1), clk, connect(i) );

END GENERATE;

qo <= connect;

END right_shift;

In this case, the internal signal connect is used to tie the flip-flops together. The circuit
output derives from a signal assignment statement at the end of the file. Since the internal
signal connect is used to fulfil the flip-flop input/output functions, qo can be defined solely
as an output.

Dataflow Design

Dataflow design describes a design entity in terms of the Boolean relationships between
different parts of the circuit. The Boolean relationships in a 4-bit shift register are defined
by the expressions for the flip-flop synchronous inputs:

QDAND
Matrix

CLK

PIN

Feedback to 
AND matrix

n

b. Driver of mode BUFFER

QDAND
Matrix

CLK

PIN
n

a. Driver of mode OUT

FIGURE 9.72
OUT vs. BUFFER

➥ srg4str2.vhd
srg4str2.scf
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D3 � serial_in

D2 � Q3

D1 � Q2

D0 � Q1

The design entity srg4dflw.vhd illustrates the use of the dataflow design method for a
4-bit serial shift register.

—— srg4dflw.vhd

—— Dataflow description of a 4-bit serial shift register

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY srg4dflw IS

PORT (

serial_in, clk : IN      STD_LOGIC;

q              : BUFFER  STD_LOGIC_VECTOR(3 downto 0) );

END srg4dflw;

ARCHITECTURE right_shift of srg4dflw IS

SIGNAL d : STD_LOGIC_VECTOR(3 downto 0);

BEGIN

PROCESS (clk)

BEGIN

—— Define a 4-bit D flip-flop

IF clk’EVENT and clk = ‘1’ THEN

q <= d;

END IF;

END PROCESS;

d <= serial_in & q(3 downto 1);

END right_shift;

Before the flip-flops can be connected, they must be defined in a PROCESS state-
ment. The statements inside the process are sequential, as they must be to define a flip-
flop, but the process itself is a concurrent statement. Signals are applied concurrently
(simultaneously) to the construct implied by the process (the flip-flops) and all other
concurrent constructs in the design entity (the connections between q and d and the se-
rial input).

A signal assignment statement implements the Boolean equations for the shift register.
It is written as a single statement for efficiency, but could also be written as four separate
assignment statements, as follows:

d(3) <= serial_in;

d(2) <= q(3);

d(1) <= q(2);

d(0) <= q(1);

We must define q as mode BUFFER, since we are using it as both input and output.

Behavioral Design

We can create a VHDL design entity from the description of its desired behavior. In the
case of a shift register, we know that after a clock pulse all data move over one position and
the first flip-flop in the chain accepts a bit from a serial input, as indicated in Table 9.15. We
can use this behavioral description to implement a serial shift register, as shown in the
VHDL file srg4behv.vhd.

Table 9.15 Next States 
of Flip-Flops in a Serial 
Shift Register

Q3 Q2 Q1 Q0

serial_in Q3 Q2 Q1

➥ srg4dflw.vhd
srg4dflw.scf
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—— srg4behv.vhd

—— Behavioral description of a 4-bit serial shift register

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY srg4behv IS

PORT (

serial_in, clk : IN      STD_LOGIC;

q              : BUFFER  STD_LOGIC_VECTOR(3 downto 0) );

END srg4behv;

ARCHITECTURE right_shift of srg4behv IS

BEGIN

PROCESS (clk)

BEGIN

IF (clk’EVENT and clk = ‘1’) THEN

q <= serial_in & q(3 downto 1);

END IF;

END PROCESS;

END right_shift;

In the behavioral design, we are not concerned with the flip-flop inputs or other inter-
nal connections; the behavioral description is sufficient for the VHDL compiler to synthe-
size the required hardware. Compare this to the dataflow description, where we created a
set of flip-flops, then assigned Boolean functions to the D inputs. In this case, the behav-
ioral design method combines these two steps into one.

❘❙❚ EXAMPLE 9.15 Write the code for a VHDL design entity that implements a 4-bit bidirectional shift regis-
ter with asynchronous clear. Create a simulation that verifies the design function.

Solution The VHDL code for the bidirectional shift register, srg4bidi.vhd, follows. A
CASE statement monitors the directional control of the shift register. We require the
others clause of the CASE statement since the identifier direction is of type STD_LOGIC;
the cases ‘0’ and ‘1’ do not cover all possible values of STD_LOGIC. Since we want no ac-
tion to be taken in the default case, we use the keyword NULL.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY srg4bidi IS

PORT (

clk, clear : IN STD_LOGIC;

rsi, lsi   : IN STD_LOGIC;

direction  : IN STD_LOGIC;

q          : BUFFER STD_LOGIC_VECTOR(3 downto 0) );

END srg4bidi;

ARCHITECTURE bidirectional_shift of srg4bidi IS

BEGIN

PROCESS (clk, clear)

BEGIN

IF clear = ‘0’ THEN

q <= “0000”; —— asynchronous clear

ELSIF (clk‘EVENT and clk = ‘1’) THEN

CASE direction IS

WHEN ‘0’ =>

q <= q(2 downto 0) & lsi; —— left shift

www.electronictech.com

➥ srg4behv.vhd
srg4behv.scf

➥ srg4bidi.vhd
srg4bidi.scf
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WHEN ‘1’ =>

q <= rsi & q(3 downto 1); —— right shift

WHEN others =>

NULL;

END CASE;

END IF;

END PROCESS;

END bidirectional_shift;

Figure 9.73 shows the simulation of the shift register, with the left shift function in the
first half of the simulation and the right shift function in the second half.

FIGURE 9.73
Example 9.15
4-bit Bidirectional Shift Register

❘❙❚

Shift Registers of Generic Width

GENERIC A clause in the entity declaration of a VHDL component that lists the
parameters that can be specified when the component is instantiated.

All multibit VHDL components we have examined until now have been of a specified width
(e.g., 2-to-4 decoder, 8-bit MUX, 8-bit adder, 4-bit counter). VHDL allows us to create com-
ponents having a generic, or unspecified, width or other parameter which is specified when
the component is instantiated. In the entity declaration of such a component, we indicate an
unspecified parameter (such as width) in a GENERIC clause. The unspecified parameter
must be given a default value in the GENERIC clause, indicated by :� value.

When we instantiate the component, we specify the parameter value in a generic map,
as we have done with components from the Library of Parameterized Modules. The design
entity srt_bhv.vhd below behaviorally defines an n-bit right-shift register, with a default
width of four bits given by the statement ( GENERIC (width : POSITIVE := 4);).

The entity srt8_bhv.vhd instantiates the n-bit register as an 8-bit circuit by specifying
the bit width in a generic map. If no value is specified, the component is presumed to have
a default width of four, as defined in the component’s entity declaration.

—— srt_bhv.vhd

K E Y  T E R M
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—— Behavioral description of an n-bit shift register
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY srt_bhv IS

GENERIC (width : POSITIVE := 4);

PORT (

serial_in, clk : IN       STD_LOGIC;

q              : BUFFER   STD_LOGIC_VECTOR(width-1 downto 0) );

END srt_bhv;

ARCHITECTURE right_shift of srt_bhv IS

BEGIN

PROCESS (clk)

BEGIN

IF (clk‘EVENT and clk = ‘1’) THEN

q(width-1 downto 0) <= serial_in & q(width-1 downto 1);

END IF;

END PROCESS;

END right_shift;

—— srt8_bhv.vhd

—— 8-bit shift register that instantiates srt_bhv

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY srt8_bhv IS

PORT(

data_in, clock : IN         STD_LOGIC;

qo             : BUFFER     STD_LOGIC_VECTOR(7 downto 0) );

END srt8_bhv;

ARCHITECTURE right_shift of srt8_bhv IS

COMPONENT srt_bhv

GENERIC (width : POSITIVE);

PORT (

serial_in, clk  : IN   STD_LOGIC;

q               : OUT  STD_LOGIC_VECTOR(7 downto 0) );

END COMPONENT;

BEGIN

Shift_right_8: srt_bhv

GENERIC MAP (width=> 8)

PORT MAP (serial_in => data_in,

clk       => clock,

q         => qo);

END right_shift;

❘❙❚ EXAMPLE 9.16 Write the code for a VHDL design entity that defines a universal shift register with a
generic width. (The default width is eight bits.) Instantiate this entity as a component in a
file for a 16-bit universal shift register.

Solution

—— srg_univ.vhd

—— Universal shift register with generic width

—— Default width = 8 bits

➥ srt_bhv.vhd
srt8_bhv.vhd
srt8_bhv.scf
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LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_arith.ALL;

ENTITY srg_univ IS

GENERIC (width : POSITIVE := 8);

PORT (

clk, clear     : IN STD_LOGIC;

rsi, lsi       : IN STD_LOGIC;

function_select   : IN STD_LOGIC_VECTOR(1 downto 0);

p              : IN STD_LOGIC_VECTOR(width-1 downto 0);

q              : BUFFER STD_LOGIC_VECTOR(width-1 downto 0) );

END srg_univ;

ARCHITECTURE universal_shift of srg_univ IS

BEGIN

PROCESS (clk, clear)

BEGIN

IF clear = ‘0’ THEN

-- Conversion function to convert integer 0 to vector

-- of any width. Requires ieee.std_logic_arith package.

q <= CONV_STD_LOGIC_VECTOR(0, width);

ELSIF (clk’EVENT and clk = ‘1’) THEN

CASE function_select IS

WHEN “00” =>

q <= q; —— Hold

WHEN “01” =>

q <= rsi & q(width-1 downto 1); -- Shift right

WHEN “10” =>

q <= q(width-2 downto 0) & lsi; -- Shift left

WHEN “11” =>

q <= p; —— Load

WHEN OTHERS =>

NULL;

END CASE;

END IF;

END PROCESS;

END universal_shift;

—— srg16uni.vhd

—— 16-bit universal shift register (instantiates srg_univ)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY srg16uni IS

PORT (

clock, clr  : IN      STD_LOGIC;

rsi, lsi    : IN      STD_LOGIC;

s           : IN      STD_LOGIC_VECTOR(1 downto 0);

parallel_in : IN      STD_LOGIC_VECTOR(15 downto 0);

qo          : BUFFER  STD_LOGIC_VECTOR(15 downto 0) );

END srg16uni;

ARCHITECTURE universal_shift of srg16uni IS

COMPONENT srg_univ

GENERIC (width : POSITIVE);

PORT (

clk, clear      : IN STD_LOGIC;

➥ srg_univ.vhd
srg16uni.vhd
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rsi, lsi        : IN STD_LOGIC;

function_select    : IN STD_LOGIC_VECTOR(1 downto 0);

p               : IN STD_LOGIC_VECTOR(width-1 downto 0);

q               : BUFFER STD_LOGIC_VECTOR(width-1 downto 0));

END COMPONENT;

BEGIN

Shift_universal_16: srg_univ

GENERIC MAP (width=> 16)

PORT MAP (clk             => clock,

clear           => clr,

rsi             => rsi,

lsi             => lsi,

function_select => s,

p               => parallel_in,

q               => qo);

END universal_shift;

When we are designing the clear function in srg_univ.vhd, we must account for the
fact that we must set all bits of a vector of unknown width to ‘0’. To get around this prob-
lem, we use a conversion function that changes an INTEGER value of 0 to a
STD_LOGIC_VECTOR of width bits and assigns the value to the output. The required
conversion function, CONV_STD_LOGIC_VECTOR(value, number_of_bits), is found
in the std_logic_arith package in the ieee library. We could also use the construct

q <= (others => ‘0’);

which states that the default case is to set all bits of q to 0 when clear is 0. Since there is no
other case specified, all bits of q are cleared.

❘❙❚

LPM Shift Registers

The Library of Parameterized Modules contains a shift register component, lpm_shiftreg,
that we can instantiate in a VHDL design entity. The various functions of lpm_shiftreg are
listed in Table 9.16.

The following VHDL code instantiates lpm_shiftreg as an 8-bit shift register with se-
rial input and serial output. In this case, the LPM component is declared explicitly, with the
component declaration statement listing only the ports and parameters used by the design
entity. The component instantiation statement lists the port names from the design entity in
the same order as the corresponding component port names. By default the register direc-
tion is LEFT (i.e., toward the MSB).

—— srg8_lpm.vhd

—— 8-bit serial shift register (shift left by default)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;
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ENTITY srg8_lpm IS

PORT (

clk        : IN  STD_LOGIC;

serial_in  : IN  STD_LOGIC;

serial_out : OUT STD_LOGIC);

END srg8_lpm;

ARCHITECTURE lpm_shift of srg8_lpm IS

COMPONENT lpm_shiftreg

GENERIC(LPM_WIDTH: POSITIVE);

PORT (

clock, shiftin : IN  STD_LOGIC;

shiftout       : OUT STD_LOGIC);

END COMPONENT;

BEGIN

Shift_8: lpm_shiftreg

GENERIC MAP (LPM_WIDTH=> 8)

PORT MAP (clk, serial_in, serial_out);

END lpm_shift;

Figure 9.74 shows a simulation of the shift register, with the data shifting from right to
left (LSB to MSB). Since there is no parallel output (q[]) instantiated in our design, we
would not normally be able to monitor the progress of bits from flip-flop to flip-flop; we
would only see shiftin, and then, eight clock cycles later, shiftout. However, we are able to
monitor the flip-flop states as buried nodes (Shift_8|dffs[7..0].Q). These buried nodes are
the last eight lines in the simulation.

Table 9.16 Available Functions for lpm_shiftreg

Function Ports Parameters Description

Basic serial operation clock, shiftin, LPM_WIDTH Data moves serially from shiftin to shiftout. Parallel outputs 
shiftout, q[] appear at q[].

Load sload, data[] none When sload � 1, q[] goes to the value at input data[] on the 
next positive clock edge. Data[] has the same width as 
LPM_WIDTH.

Synchronous clear sclr none When sclr � 1, q[] goes to zero on positive clock edge

Synchronous set sset LPM_SVALUE When sset � 1, output goes to value of LPM_SVALUE on 
positive clock edge. If LPM_SVALUE is not specified q[]
goes to all 1s.

Asynchronous clear aclr none Output goes to zero when aclr � 1.

Asynchronous set aset LPM_AVALUE Output goes to value of LPM_AVALUE when aset � 1. 
If LPM_AVALUE is not specified, outputs all go HIGH 
when aset � 1.

Directional control none LPM_DIRECTION Optional direction control. Default direction is LEFT. 
LPM_DIRECTION � “LEFT” or “RIGHT”.
If shiftin and shiftout are used, the serial shift always goes 
through the entire shift register, in the direction given by 
LPM_DIRECTION.

Clock enable enable none All synchronous functions are enabled when enable � 1. 
Defaults to “enabled” when not specified.

➥ srg8_lpm.vhd
srg8_lpm.scf
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❘❙❚ EXAMPLE 9.17 Modify the VHDL code just shown to make the serial shift register shift right, rather than
left. Create a simulation to verify the circuit function. How do the positions of shiftin
and shiftout ports relate to the internal flip-flops for the right-shift and left-shift imple-
mentations?

Solution The modified VHDL code is shown next as design entity srg8lpm2. The only
difference is the addition of the parameter LPM_DIRECTION to both the component dec-
laration and component instantiation statements.

—— srg8_lpm2.vhd

—— 8-bit serial shift register (shift right)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY srg8lpm2 IS

PORT (

clk        : IN  STD_LOGIC;

serial_in  : IN  STD_LOGIC;

serial_out : OUT STD_LOGIC);

END srg8_lpm2;

ARCHITECTURE lpm_shift of srg8_lpm2 IS

COMPONENT lpm_shiftreg

GENERIC(LPM_WIDTH: POSITIVE; LPM_DIRECTION: STRING);

PORT (

clock, shiftin : IN  STD_LOGIC;

shiftout       : OUT STD_LOGIC);

END COMPONENT;

BEGIN

shift_8: lpm)_shiftreg

GENERIC MAP (LPM_WIDTH=> 8, LPM_DIRECTION => “RIGHT”)

PORT MAP (clk, serial_in, serial_out);

END lpm_shift;

FIGURE 9.74
Simulation of an 8-bit LPM Shift
Register (Shift Left)

➥ srg8_lpm2.vhd
srg8_lpm2.scf
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The simulation for the right-shift register is shown in Figure 9.75. The inputs are identi-
cal to those of Figure 9.74, but the internal shift direction is opposite. The LPM component
configures the serial shift input and output such that they allow data to go through the entire
register, regardless of shift direction. For left-shift, serial_in (shiftin) is applied to D0, and
is shifted toward Q7. For right-shift, the same serial_in is applied to D7 and shifted toward
Q0. Thus, there is no right shift input or left shift input in this component, and also no bidi-
rectional shift that can be controlled by an input port. Shift direction can only be set by the
value of a parameter and is therefore fixed when a component is instantiated.

❘❙❚ EXAMPLE 9.18 Write the VHDL code for an 8-bit LPM shift register with both parallel and serial outputs,
parallel load and asynchronous clear. Create a simulation to verify the design operation.

Solution The VHDL code for the parallel load shift register follows as srg8lpm3.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY srg8lpm3 IS

PORT (

clk, ld, clr  : IN   STD_LOGIC;

p             : IN   STD_LOGIC_VECTOR(7 downto 0);

q_out         : OUT  STD_LOGIC_VECTOR(7 downto 0);

serial_out    : OUT  STD_LOGIC);

END srg8lpm3;

ARCHITECTURE lpm_shift of srg8lpm3 IS

COMPONENT lpm_shiftreg

GENERIC(LPM_WIDTH: POSITIVE);

PORT (

clock, load    : IN   STD_LOGIC;

aclr           : IN   STD_LOGIC;

data           : IN   STD_LOGIC_VECTOR (7 downto 0);

q              : OUT  STD_LOGIC_VECTOR (7 downto 0);

shiftout       : OUT  STD_LOGIC);

END COMPONENT;

BEGIN

FIGURE 9.75
Example 9.17
Simulation of an 8-bit LPM Shift
Register (Shift Right)

➥ srg8lpm3.vhd
srg8lpm3.scf
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Shift_8: lpm_shiftreg

GENERIC MAP (LPM_WIDTH=> 8)

PORT MAP (clk, ld, clr, p, q_out, serial_out);

END lpm_shift;

The simulation for srg8lpm3 is shown in Figure 9.76. The load input is initially
HIGH, causing the shift register to load 55H (� 01010101) on the first clock pulse. Since
we have not instantiated the serial input shiftin, the serial input reverts to a default value of
‘1’, causing the register to be filled with 1s. If we did not want this to be the case, we
would have to instantiate the shiftin port and set it to  ‘0’. ❘❙❚

❘❙❚ SECTION 9.8 REVIEW PROBLEM

9.8 When a shift register is encoded in VHDL, why are its outputs defined as BUFFER,
not OUT?

9.9 Shift Register Counters

Ring counter A serial shift register with feedback from the output of the last flip-
flop to the input of the first.

Johnson counter A serial shift register with complemented feedback from the
output of the last flip-flop to the input of the first. Also called a twisted ring counter

By introducing feedback into a serial shift register, we can create a class of synchronous
counters based on continuous circulation, or rotation, of data.

If we feed back the output of a serial shift register to its input without inversion, we
create a circuit called a ring counter. If we introduce inversion into the feedback loop, we
have a circuit called a Johnson counter. These circuits can be decoded more easily than
binary counters of similar size and are particularly useful for event sequencing.

Ring Counters

K E Y  T E R M S

FIGURE 9.76
Example 9.18
Simulation of an 8-bit LPM Shift
Register with Parallel Load
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Figure 9.77 shows a 4-bit ring counter made from D flip-flops. This circuit could also be
constructed from SR or JK flip-flops, as can any serial shift register.

A ring counter circulates the same data in a continuous loop. This assumes that the

Clock

Q3 Q2 Q1 Q0
Q

Q

D Q

Q

D Q

Q

D Q

Q

D

FIGURE 9.77
4-bit Ring Counter

data have somehow been placed into the circuit upon initialization, usually by synchronous
or asynchronous preset and clear inputs, which are not shown.

Figure 9.78 shows the circulation of a logic 1 through a 4-bit ring counter. If we as-
sume that the circuit is initialized to the state Q3Q2Q1Q0 � 1000, it is easy to see that the 1
is shifted one place right with each clock pulse. The feedback connection from Q0 to D3

ensures that the input of flip-flop 3 will be filled by the contents of Q0, thus recirculating
the initial data. The final transition in the sequence shows the 1 recirculated to Q3.

A ring counter is not restricted to circulating a logic 1. We can program the counter to
circulate any data pattern we happen to find convenient.

Figure 9.79 shows a ring counter circulating a 0 by starting with an initial state of
Q3Q2Q1Q0 � 0111. The circuit is the same as before; only the initial state has changed.
Figure 9.80 shows the timing diagrams for the circuit in Figures 9.78 and 9.79.

Ring Counter Modulus and Decoding

The maximum modulus of a ring counter is the maximum number of unique states in its
count sequence. In Figures 9.78 and 9.79, the ring counters each had a maximum modulus
of 4. We say that 4 is the maximum modulus of the ring counters shown, since we can
change the modulus of a ring counter by loading different data at initialization.

For example, if we load a 4-bit ring counter with the data Q3Q2Q1Q0 � 1000, the fol-
lowing unique states are possible: 1000, 0100, 0010, and 0001. If we load the same circuit
with the data Q3Q2Q1Q0 � 1010, there are only two unique states: 1010 and 0101. De-
pending on which data are loaded, the modulus is 4 or 2.

Most input data in this circuit will yield a modulus of 4. Try a few combinations.

The maximum modulus of a ring counter is the same as the number of bits in its
output.

A ring counter requires more flip-flops than a binary counter to produce the same
number of unique states. Specifically, for n flip-flops, a binary counter has 2n unique states
and a ring counter has n.

This is offset by the fact that a ring counter requires no decoding. A binary counter
used to sequence eight events requires three flip-flops andeight 3-input decoding gates. To
perform the same task, a ring counter requires eight flip-flops and no decoding gates.

As the number of output states of an event sequencer increases, the complexity of the de-
coder for the binary counter also increases. A circuit requiring 16 output states can be imple-
mented with a 4-bit binary counter and sixteen 4-input decoding gates. If you need 18 output
states, you must have a 5-bit counter (24 
 18 
 25) and eighteen 5-input decoding gates.

The only required modification to the ring counter is one more flip-flop for each addi-

N O T E
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tional state. A 16-state ring counter needs 16 flip-flops and an 18-state ring counter must
have 18 flip-flops. No decoding is required for either circuit.

Johnson Counters

Figure 9.81 shows a 4-bit Johnson counter constructed from D flip-flops. It is the same as
a ring counter except for the inversion in the feedback loop where Q�0 is connected to D3.
The circuit output is taken from flip-flop outputs Q3 through Q0. Since the feedback intro-
duces a “twist” into the recirculating data, a Johnson counter is also called a “twisted ring
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FIGURE 9.78
Circulating a 1 in a Ring Counter
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FIGURE 9.79
Circulating a 0 in a Ring Counter
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counter.”
Figure 9.82 shows the progress of data through a Johnson counter that starts cleared

(Q3Q2Q1Q0 � 0000). The shaded flip-flops represents 1s and the unshaded flip-flops are 0s.
Every 0 at Q0 is fed back to D3 as a 1 and every 1 is fed back as a 0. The count se-

quence for this circuit is given in Table 9.17. There are 8 unique states in the count se-
quence table.
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FIGURE 9.81
4-bit Johnson Counter

FIGURE 9.80
Timing Diagrams for Figures 9.78 and 9.79

Table 9.17 Count Sequence of
a 4-bit Johnson Counter

Q3 Q2 Q1 Q0

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1
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❘❙❚ EXAMPLE 9.19 Write the VHDL code for a Johnson counter of generic width and instantiate it as an 8-bit
counter. List the sequence of states in a table, assuming the counter is initially cleared, and
create a simulation to verify the circuit’s operation. Include a clear input (synchronous).

Solution The VHDL design entities for the generic-width component and the 8-bit
Johnson counter follow.

—— jnsn_ct.vhd

—— Johnson counter of generic width

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY jnsn_ct IS

GENERIC (width : POSITIVE := 4);

PORT (

clk, clr : IN       STD_LOGIC;

q        : BUFFER   STD_LOGIC_VECTOR(width-1 downto 0) );

END   jnsn_ct;

ARCHITECTURE johnson_counter of jnsn_ct IS

BEGIN

PROCESS (clk)

BEGIN

IF (clk‘EVENT and clk = ‘1’) THEN

IF clr = ‘0’ THEN

q <= (others => ‘0’); —— n-bit clear function (n = width)

ELSE

q(width-1 downto 0) <= (not q(0) ) & q(width-1 downto 1);

END IF;

END IF;

END PROCESS;

END johnson_counter;

—— jnsn_ct8.vhd

—— 8-bit Johnson counter using component jnsn_ct

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY jnsn_ct8 IS

PORT(

clock, clear : IN      STD_LOGIC;

qo           : BUFFER  STD_LOGIC_VECTOR(7 downto 0));

END jnsn_ct8;

ARCHITECTURE johnson_counter of jnsn_ct8 IS

COMPONENT jnsn_ct GENERIC (width : POSITIVE);

PORT(

clk, clr : IN     STD_LOGIC;

q        : BUFFER STD_LOGIC_VECTOR(7 downto 0) );

END  COMPONENT;

BEGIN

johnson: jnsn_ct

GENERIC MAP (width=> 8)

PORT MAP (clk => clock

clr  => clear,

q      => qo);

END johnson_counter;

➥ jnsn_ct.vhd
jnsn_ct8.vhd
jnsn_ct8.scf
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❘❙❚

Johnson Counter Modulus and Decoding

The maximum modulus of a Johnson counter is 2n for a circuit with n flip-flops.

The Johnson counter represents a compromise between binary and ring counters, whose
maximum moduli are, respectively, 2n and n for an n-bit counter.

N O T E

Table 9.18 Count Sequence of an 8-bit Johnson Counter

Q7Q6Q5Q4Q3Q2Q1Q0

00000000
10000000
11000000
11100000
11110000
11111000
11111100
11111110
11111111
01111111
00111111
00011111
00001111
00000111
00000011
00000001

FIGURE 9.83
Example 9.19
Simulation of an 8-bit Johnson
Counter

Note that in the component file (jnsn_ct.vhd), the counter is cleared synchronously by
the statement ( q <= (others => ‘0’);). Recall that the clause  (others => ‘0’)
can be used to set all bits of a signal aggregate to the value  ‘0’. This is a simple way to
clear a vector of unknown width without using a conversion function.

Table 9.18 shows the count sequence for the 8-bit Johnson counter.
The simulation of the Johnson counter, including one full cycle and a clear, is shown

in Figure 9.83.
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If it is used for event sequencing, a Johnson counter must be decoded, unlike a ring
counter. Its output states are such that each state can be decoded uniquely by a 2-input
AND or NAND gate, depending on whether you need active-HIGH or active-LOW indica-
tion. This yields a simpler decoder than is required for a binary counter.

Table 9.19 shows the decoding of a 4-bit Johnson counter.
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FIGURE 9.84
4-bit Johnson Counter with Output Decoding

Table 9.19 Decoding a 4-bit Johnson Counter

Q3 Q2 Q1 Q0 Decoder Outputs Comment

0 0 0 0 �Q3�Q0 MSB � LSB
� 0

1 0 0 0 Q3�Q2 “1/0”

1 1 0 0 Q2�Q1 Pairs

1 1 1 0 Q1�Q0

1 1 1 1 Q3Q0 MSB � LSB
� 1

0 1 1 1 �Q3Q2 “0/1”

0 0 1 1 �Q2Q1 Pairs

0 0 0 1 �Q1Q0
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Decoding a sequential circuit depends on the decoder responding uniquely to every
possible state of the circuit outputs. If we want to use only 2-input gates in our decoder, it
must recognize two variables for every state that are both active only in that state.

A Johnson counter decoder exploits what might be called the “1/0 interface” of the
count sequence table. Careful examination of Tables 9.17 and 9.18 reveals that for every
state, except where the outputs are all 1s or all 0s, there is a side-by-side 10 or 01 pair
which exists only in that state.

Each of these pairs can be decoded to give unique indication of a particular state. For
example, the pair Q3Q�2 uniquely indicates the second state since Q3 � 1 AND Q2 � 0 only
in the second line of the count sequence table. (This is true for any size of Johnson counter;
compare the second lines of Tables 9.17 and 9.18. In the second line of both tables, the
MSB is 1 and the 2nd MSB is 0.)

For the states where the outputs are all 1s or all 0s, the most significant AND least sig-
nificant bits can be decoded uniquely, these being the only states where MSB � LSB.

Figure 9.84 shows the decoder circuit for a 4-bit Johnson counter.
The output decoder of a Johnson counter does not increase in complexity as the mod-

ulus of the counter increases. The decoder will always consist of 2n 2-input AND or
NAND gates for an n-bit counter. (For example, for an 8-bit Johnson counter, the decoder
will consist of sixteen 2-input AND or NAND gates.)

❘❙❚ EXAMPLE 9.20 Draw the timing diagram of the Johnson counter decoder of Figure 9.84, assuming the
counter is initially cleared.

Solution Figure 9.85 shows the timing diagram of the Johnson counter and its decoder
outputs.

FIGURE 9.85
Example 9.20
Johnson Counter Decoder
Outputs

❘❙❚
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S U M M A R Y

1. A counter is a circuit that progresses in a defined sequence at
the rate of one state per clock pulse.

2. The modulus of a counter is the number of states through
which the counter output progresses before repeating.

3. A counter with an ascending sequence of states is called an
UP counter. A counter with a descending sequence of states
is called a DOWN counter.

4. In general, the maximum modulus of a counter is given by 2n

for an n-bit counter.
5. A counter whose modulus is 2n is called a full-sequence

counter. The count progresses from 0 to 2n � 1, which corre-
sponds to a binary output of all 0s to all 1s.

6. A counter whose output is less than 2n is called a truncated
sequence counter.

7. The adjacent outputs of a full-sequence binary counter have
a frequency ratio of 2�1. The less significant of the two bits
has the higher frequency.

8. The outputs of a truncated sequence counter do not necessar-
ily have a simple frequency relationship.

9. A synchronous counter consists of a series of flip-flops, all
clocked from the same source, that stores the present state of
the counter and a combinational circuit that monitors the
counter’s present state and determines its next state.

10. A synchronous counter can be analyzed by a formal proce-
dure that includes the following steps:

a. Write the Boolean equations for the synchronous inputs
of the counter flip-flops in terms of the present state of
the flip-flip outputs.

b. Evaluate each Boolean equation for an initial state to find
the states of the synchronous inputs.

c. Use flip-flop function tables to determine each flip-flop
next state.

d. Set the next state to the new present state.
e. Continue until the sequence repeats.

11. The analysis procedure above should be applied to any un-
used states of the counter to ensure that they will enter the
count sequence properly.

12. A synchronous counter can be designed using a formal
method that relies on the excitation tables of the flip-flops used
in the counter. An excitation table indicates the required logic
levels on the flip-flop inputs to effect a particular transition.

13. The synchronous counter design procedure is based on the
following steps:

a. Draw the state diagram of the counter and use it to list
the relationship between the counter’s present and next
states. The table should list the counter’s present states in
binary order.

b. For the initial design, unused states can be set to a known
destination, such as 0, or treated as don’t care states.

c. Use the flip-flop excitation table to determine the synchro-
nous input levels for each present-to-next state transition.

d. Use Boolean algebra or Karnaugh maps to find the sim-
plest equations for the flip-flop inputs (JK, D, or T) in
terms of Q.

e. Unused states should be analyzed by substituting their
values into the Boolean equations of the counter. This
will verify whether or not an unused state will enter the
count sequence properly.

14. If a counter must reset to 0 from an unused state, the flip-
flops can be reset asynchronously to their initial states or the
counter can be designed with the unused states always hav-
ing 0 as their next state.

15. A counter can be designed in VHDL by using a behavioral
description or a structural design that uses a component from
the Library of Parameterized Modules (LPM).

16. A behavioral counter design requires a PROCESS statement
that lists the clock signal and any asynchronous inputs in its
sensitivity list. An IF statement inside the PROCESS can
monitor the active clock edge by using the predefined
EVENT attribute (e.g., clk�EVENT) and increment a count
variable.

17. A variable is local to a PROCESS and is assigned with the :�
operator. A signal is global to the VHDL design entity and is
assigned with the <= operator. (Recall that a signal is like an
internal connecting wire and a variable is a piece of working
memory.)

18. A structural counter design can use an LPM component
(lpm_counter) and instantiate the component in a component
instantiation statement. The statement’s generic map speci-
fies the component parameters, and its port map indicates the
correspondence between the component port names and the
user port, signal, or variable names.

19. Some of the most common control features available in syn-
chronous counters include:

a. Synchronous or asynchronous parallel load, which al-
lows the count to be set to any value whenever a LOAD
input is asserted

b. Synchronous or asynchronous clear (reset), which sets all
of the counter outputs to zero

c. Count enable, which allows the count sequence to
progress when asserted and inhibits the count when de-
asserted

d. Bidirectional control, which determines whether the
counter counts up or down

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❘❙❚ SECTION 9.9 REVIEW PROBLEM

9.9 How many flip-flops are required to produce 24 unique states in each of the following
types of counters: binary counter, ring counter, Johnson counter? How many and what
type of decoding gates are required to produce an active-LOW decoder for each type
of counter?
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e. Output decoding, which activates one or more outputs
when detecting particular states on the counter outputs

f. Ripple carry out or ripple clock out (RCO), a special case
of output decoding that produces a pulse upon detecting
the terminal count, or last state, of a count sequence

20. The parallel load function of a counter requires load data
(the parallel input values) and a load command input, such as
LOAD, that transfer the parallel data when asserted. If the
load function is synchronous, a clock pulse is also required.

21. Synchronous load transfers data to the counter outputs on an
active clock edge. Asynchronous load operates as soon as the
load input activates, without waiting for the clock.

22. Synchronous load is implemented by a function select circuit
that selects either the count logic or the direct parallel input
to be applied to the synchronous input(s) of a flip-flop.

23. Asynchronous load is implemented by enabling or inhibiting
a pair of NAND gates, one of which asserts a flip-flop clear
input and the other of which asserts a preset input for the
same flip-flop.

24. The count enable function enables or disables the count logic
of a counter without affecting other functions, such as clock
or clear. This can be done by ANDing the count logic with
the count enable input signal.

25. A flip-flop in an UP counter toggles when all previous bits
are HIGH. A flip-flop in a DOWN counter toggles when all
previous bits are LOW. A circuit that selects one of these two
conditions (a pair of AND-shaped gates, combined in an OR
gate; essentially a 2-to-1 multiplexer) can implement a bidi-
rectional count.

26. An output decoder asserts one output for each counter state.
A special case is a terminal count decoder that detects the
last state of a count sequence.

27. RCO (ripple clock out) generates one clock pulse upon termi-
nal count, with its positive edge at the end of the count cycle.

28. Asynchronous inputs to a behaviorally defined counter in
VHDL must be included in the sensitivity list of the process
defining the counter. Asynchronous inputs must be checked
inside the process before the clock is checked for an active
edge.

29. Synchronous inputs to a behaviorally defined counter should
not be included in the sensitivity list of the process defining
the counter. Synchronous inputs must be checked inside the
IF statement that checks the clock edge.

30. A shift register is a circuit for storing and moving data. Three
basic movements in a shift register are: serial (from one flip-
flop to another), parallel (into all flip-flops at once), and rota-
tion (serial shift with a connection from the last flip-flop out-
put to the first flip-flop input).

31. Serial shifting can be left (toward the MSB) or right (away
from the MSB). This is the convention used by
MAX�PLUS II. Some data sheets indicate the opposite rela-
tionship between right/left and LSB/MSB.

32. A function select circuit can implement several shift register
variations: bidirectional serial shift, parallel load with serial
shift, and universal shift (parallel/serial in/out and bidirec-
tional in one device). The circuit directs data to the D inputs
of each flip-flop from one of several sources, such as from
the flip-flop immediately to the left or right or from an exter-
nal parallel input.

33. A shift register can be created in VHDL by the structural,
dataflow, or behavioral method.

34. A structural design instantiates components, such as D flip-
flops, and connects them with internal signals.

35. A dataflow design uses internal Boolean relationships be-
tween inputs and outputs. It is similar to a structural model,
except that it must contain a process to create the flip-flops.

36. A behavioral design method uses a description of the shift
register function to generate the required hardware.

37. A VHDL component can be created with parameters (such as
width) that are specified when the component is instantiated.
The parameters are listed in a GENERIC clause in the com-
ponent’s entity declaration. Each parameter must be given a
default value. The parameters are specified in a generic map
in the design entity that instantiates the component.

38. A ring counter is a serial shift register with the serial output
fed back to the serial input so that the internal data is contin-
uously circulated. The initial value is generally set by asyn-
chronous preset and clear functions.

39. The maximum modulus of a ring counter is n for a circuit with
n flip-flops, as compared to 2n for a binary counter. A ring
counter output is self-decoding, whereas a binary counter re-
quires m 
 2n AND or NAND gates with n inputs each.

40. A Johnson counter is a ring counter where the feedback is
complemented. A Johnson counter has 2n states for an n-bit
counter which can be uniquely decoded by 2n 2-input AND
or NAND gates.

G L O S S A R Y
Attribute A property associated with a named identifier in
VHDL. (e.g., the attribute EVENT, when associated with the
identifier clk (written clk�EVENT), indicates whether a transi-
tion has occurred on the input called clk.)

Behavioral design A VHDL design technique that uses de-
scriptions of required behavior to describe the design.

Bidirectional counter A counter that can count up or down,
depending on the state of a control input.

Bidirectional shift register A shift register that can serially
shift bits left or right according to the state of a direction control
input.

Binary counter A counter that generates a binary count
sequence.

Clear Reset (synchronous or asynchronous)

Command lines Signals that connect the control section of a
synchronous circuit to its memory section and direct the circuit
from its present to its next state.

Conditional signal assignment statement A signal assign-
ment statement that is executed only when a Boolean condition
is satisfied.

Control section The combinational logic portion of a
synchronous circuit that determines the next state of the 
circuit.

Count enable A control function that allows a counter to
progress through its count sequence when active and disables the
counter when inactive.
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Count sequence The specific series of output states through
which a counter progresses.

Counter A sequential digital circuit whose output progresses
in a predictable repeating pattern, advancing by one state for
each clock pulse.

Count-sequence table A list of counter states in the order of
the count sequence.

Dataflow design A VHDL design technique that uses Boolean
equations to define relationships between inputs and outputs.

DOWN counter A counter with a descending sequence.

Excitation table A table showing the required input condi-
tions for every possible transition of a flip-flop output.

Full-sequence counter A counter whose modulus is the same
as its maximum modulus (m � 2n for an n-bit counter).

GENERIC A clause in the entity declaration of a VHDL com-
ponent that lists the parameters that can be specified when the
component is instantiated.

Johnson counter A serial shift register with complemented
feedback from the output of the last flip-flop to the input of the
first. Also called a twisted ring counter

Left shift A movement of data from the right to the left in a shift
register. (Left is defined in MAX�PLUS II as toward the MSB.)

Maximum modulus (mmax) The largest number of counter
states that can be represented by n bits (mmax � 2n)

Memory section A set of flip-flops in a synchronous circuit
that hold its present state.

Modulo-n (or mod-n) counter A counter with a modulus of n.

Modulus The number of states through which a counter se-
quences before repeating.

Next state The desired future state of flip-flop outputs in a syn-
chronous sequential circuit after the next clock pulse is applied.

Parallel load A function that allows simultaneous loading of
binary values into all flip-flops of a synchronous circuit. Parallel
loading can be synchronous or asynchronous.

Parallel-load shift register A shift register that can be preset
to any value by directly loading a binary number into its internal
flip-flops.

Parallel transfer Movement of data into all flip-flops of a
shift register at the same time.

Present state The current state of flip-flop outputs in a syn-
chronous sequential circuit.

Presettable counter A counter with a parallel load function.

Recycle To make a transition from the last state of the count
sequence to the first state.

Right shift A movement of data from the left to the right in a
shift register. (Right is defined in MAX�PLUS II as toward the
LSB.)

Ring counter A serial shift register with feedback from the
output of the last flip-flop to the input of the first.

Ripple carry out or ripple clock out (RCO) An output that
produces one pulse with the same period as the clock upon ter-
minal count.

Rotation Serial shifting of data with the output(s) of the last
flip-flop connected to the synchronous input(s) of the first flip-
flop. The result is continuous circulation of the same data.

Serial shifting Movement of data from one end of a shift reg-
ister to the other at a rate of one bit per clock pulse.

Shift register A synchronous sequential circuit that will store
and move n-bit data, either serially or in parallel, in n flip-flops.

SRGn Symbol for an n-bit shift register (e.g., SRG4 indicates
a 4-bit shift register).

State diagram A diagram showing the progression of states of
a sequential circuit.

State machine A synchronous sequential circuit.

Status lines Signals that communicate the present state of a syn-
chronous circuit from its memory section to its control section.

Structural design A VHDL design technique that connects
predesigned components using internal signals.

Synchronous counter A counter whose flip-flops are all
clocked by the same source and thus change in synchronization
with each other.

Terminal count The last state in a count sequence before the
sequence repeats (e.g., 1111 is the terminal count of a 4-bit bi-
nary UP counter; 0000 is the terminal count of a 4-bit binary
DOWN counter).

Truncated-sequence counter A counter whose modulus is
less than its maximum modulus (m � 2n for an n-bit counter)

Universal shift register A shift register that can operate with
any combination of serial and parallel inputs and outputs (i.e.,
serial in/serial out, serial in/parallel out, parallel in/serial out,
parallel in/parallel out). A universal shift register is often bidi-
rectional, as well.

UP counter A counter with an ascending sequence.

P R O B L E M S
Problem numbers set in color indicate more difficult problems;
those with underlines indicate most difficult problems.

9.1 Basic Concepts of Digital Counters

9.1 A parking lot at a football stadium is monitored before a
game to determine whether or not there is available space
for more cars. When a car enters the lot, the driver takes a
ticket from a dispenser which also produces a pulse for
each ticket taken.

The parking lot has space for 4095 cars. Draw a block

diagram which shows how you can use a digital counter
to light a LOT FULL sign after 4095 cars have entered.
(Assume no cars leave the lot until after the game, so you
don’t need to keep track of cars leaving the lot.) How
many bits should the counter have?

9.2 Figure 9.86 shows a mod-16 which controls the opera-
tion of two digital sequential circuits, labeled Circuit 1
and Circuit 2. Circuit 1 is positive edge-triggered and
clocked by counter output Q1. Circuit 2 is negative edge-
triggered and clocked by Q3. (Q3 is the MSB output of
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the counter.)

a. Draw the timing diagram for one complete cycle of
the circuit operation. Draw arrows on the active edges
of the waveforms that activate Circuit 1 and Circuit 2.

b. State how many times Circuit 1 is clocked for each
time that Circuit 2 is clocked.

9.3 Draw the timing diagram for one complete cycle of a
mod-8 counter, including waveforms for CLK, Q0, Q1,
and Q2, where Q0 is the LSB.

9.4 How many bits are required to make a counter with a
modulus of 64? Why? What is the maximum count of
such a counter?

9.5 a. Draw the state diagram of a mod-10 UP counter.

b. Use the state diagram drawn in part a to answer the
following questions:

i. The counter is at state 0111. What is the count af-
ter 7 clock pulses are applied?

ii. After 5 clock pulses, the counter output is at
0001. What was the counter state prior to the
clock pulses?

iii. The counter output is at 1000 after 15 clock
pulses. What was the original output state?

9.6 What is the maximum modulus of a 6-bit counter? A 7-
bit? 8-bit?

9.7 Draw the count sequence table and timing diagram of a
mod-10 UP counter.

9.8 Draw the state diagram, count sequence table, and timing
diagram of a mod-10 DOWN counter.

9.9 A mod-16 counter is clocked by a waveform having a fre-
quency of 48 kHz. What is the frequency of each of the
waveforms at Q0, Q1, Q2, and Q3?

9.10 A mod-10 counter is clocked by a waveform having a fre-
quency of 48 kHz. What is the frequency of the Q3 output
waveform? The Q0 waveform? Why is it difficult to deter-
mine the frequencies of Q1 and Q2?

9.2 Synchronous Counters

9.11 Draw the circuit for a synchronous mod-16 UP counter
made from negative edge-triggered JK flip-flops.

9.12 Write the Boolean equations required to extend the
counter drawn in Problem 9.11 to a mod-64 counter.

9.13 Write the J and K equations for the MSB of a synchro-
nous mod-256 (8-bit) UP counter.

9.14 Analyze the operation of the synchronous counter in Fig-
ure 9.87 by drawing a state table showing all transitions,
including unused states. Use this state table to draw a
state diagram and a timing diagram. What is the counter’s
modulus?

9.15 a. Write the equations for the J and K inputs of each flip-

Q3  Q2  Q1  Q0

CLK

Circuit 1

CLK

CTR DIV 16

Circuit 2

FIGURE 9.86
Problem 9.2
Mod-16 Counter Driving Two Sequential Circuits

FIGURE 9.87
Problem 9.14
Synchronous Counter
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flop of the synchronous counter represented in Figure
9.88.

b. Assume that Q3Q2Q1Q0 � 1010 at some point in the
count sequence. Use the equations from part a to pre-
dict the circuit outputs after each of three clock pulses.

9.16 Analyze the operation of the counter shown in Figure
9.89. Predict the count sequence by determining the J and
K inputs and resulting transitions for each counter output
state. Draw the state diagram and the timing diagram. As-
sume that all flip-flop outputs are initially 0.

9.3 Design of Synchronous Counters

9.17 Draw the timing diagram and state diagram of a synchro-
nous mod-10 counter with a positive edge-triggered
clock.

9.18 Design a synchronous mod-10 counter, using positive
edge-triggered JK flip-flops. Check that unused states
properly enter the main sequence. Draw a state diagram
showing the unused states.

9.19 Design a synchronous mod-10 counter, using positive
edge-triggered D flip-flops. Check that unused states
properly enter the main sequence. Draw a state diagram
showing the unused states.

9.20 Design a synchronous 3-bit binary counter using T flip-
flops.

9.21 Table 9.20 shows the count sequence for a biquinary se-
quence counter. The sequence has ten states, but does not
progress in binary order. The advantage of the sequence
is that its most significant bit has a divide-by-10 ratio, rel-
ative to a clock input, and a 50% duty cycle. Design the

FIGURE 9.89
Problem 9.16
Counter

FIGURE 9.88
Problem 9.15
Synchronous Counter
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synchronous counter circuit for this sequence, using D
flip-flops. Hint: When making the state table, list all pre-
sent states in binary order. The next states will not be in
binary order.

9.4 Programming Binary Counters in VHDL

9.22 Write the VHDL code for a behavioral description of a 6-
bit binary counter with asynchronous clear.

9.23 Create a simulation file in MAX�PLUS II to verify the op-
eration of the counter in Problem 9.22. (Use a 40 ns clock,
which approximates the clock period of the oscillator on the
Altera UP-1 board.) Note: To make a useful simulation, you
must include the recycle point, which may be beyond the de-
fault end time of the simulation (1 ms). To change the end
time, select End Time from the MAX�PLUS II File menu in
the Simulator menu. To change the clock period, select Grid
Size from the MAX�PLUS II Options menu in the Simula-
tor window. The default clock period is two grid spaces.

9.24 Write a VHDL file that instantiates a counter from the
Library of Parameterized Modules to make a 12-bit bi-
nary counter. Create a MAX�PLUS II simulation to
verify the operation of the counter. (Refer to the note af-
ter Problem 9.23.)

9.5 Control Options for Synchronous Counters

9.25 Briefly explain the difference between asynchronous and
synchronous parallel load in a synchronous counter. Draw
a partial timing diagram that illustrates both functions for
a 4-bit counter.

9.26 Refer to the 4-bit counter of Figure 9.26 (p. 391). The
graphic design files for the counter are found on the CD
accompanying this text as 4bit_sl.gdf and sl_count.gdf in
the folder drive:\Student_Files\Chapter09. Copy these
files to a new folder and use the MAX�PLUS II graphic
editor to expand the counter of Figure 9.26 to a 5-bit
counter with synchronous load and asynchronous reset.
Save and compile the file to make sure that there are no
design errors.

9.27 Create a MAX�PLUS II simulation to verify the func-
tions of the counter in Problem 9.26. The simulation must
include the recycle point of the counter and show that the

load is really synchronous and that the reset is really
asynchronous.

9.28 Refer to the 4-bit counter of Figure 9.33 (p. 396). The
graphic design files for the counter are found on the ac-
companying CD as 4bit_sle.gdf and sl_count.gdf in the
folder drive:\Student Files\Chapter09. Copy these files
to a new folder and modify the synchronous count ele-
ment sl_count.gdf so that it implements an active-HIGH
synchronous load and an active-LOW synchronous clear
function, as well as the binary count function. Create a
default symbol for the new element and substitute it in
4bit_sle.gdf for the existing counter elements sl_count.
The load function should have priority over count enable,
and clear (reset) should have priority over both. Save and
compile the new file. Hints: (1) The clear function makes
Q � 0 after a clock pulse. (2) Q follows D.

9.29 Create a MAX�PLUS II simulation to verify the func-
tions of the counter in Problem 9.28. The simulation must
include the recycle point of the counter and show that the
load and clear really are synchronous and that load has
priority over count enable and clear has priority over
both.

9.30 Derive the Boolean equations for the synchronous
DOWN-counter in Figure 9.35.

9.31 Write the Boolean equations for the count logic of the 4-
bit bidirectional counter in Figure 9.38. Briefly explain
how the logic works.

9.32 Draw a MAX�PLUS II Graphic Design File for a bidi-
rectional counter, using T flip-flops. Create a simulation
of the counter to verify its function

9.33 Use MAX�PLUS II to create a synchronous bidirec-
tional counter with synchronous load, asynchronous reset,
and count enable. The count enable should not affect the
operation of the load and reset functions. The functions
should have the following priority: (1) clear; (2) load; and
(3) count. Create a MAX�PLUS II simulation to verify
the operation of your design.

9.6 Programming Presettable and Bidirectional
Counters in VHDL

9.34 Write the VHDL code for a counter that uses a behavioral
description of the following functions: 12-bit binary UP
count; active-LOW asynchronous clear, active-LOW syn-
chronous load, active-LOW count enable, terminal count
decoder. The clear function should have the highest prior-
ity, followed by load, then count enable. Create a simula-
tion in MAX�PLUS II that verifies the functions of this
counter.

9.35 Write theVHDL code for a behavioral description of a bidi-
rectional counter with a modulus of 24. The counter should
also have an active-LOW synchronous clear function that
has priority over the count. Create a MAX�PLUS II simu-
lation file to verify the counter operation.

9.36 Write the VHDL code for a 4-bit counter with two decod-
ing outputs called eq8 and eq12. Out eq8 goes HIGH
when the count equals 8 and eq12 goes HIGH when the
count equals 12 (decimal). The counter should also have
an active-LOW asynchronous clear function that has pri-

Table 9.20 Biquinary
Sequence

Q3Q2Q1Q0

0000
0001
0010
0011

0100
1000
1001
1010

1011
1100
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ority over the count. Create a MAX�PLUS II simulation
file to verify the counter operation.

9.37 Modify the VHDL code in Example 9.10 (p. 412) so that
the counter synchronously sets to all 1s (� 4095), rather
than to 2047. Do not use SVALUE � 4095. Create a sim-
ulation in MAX�PLUS II that verifies the operation of
the counter. State the main difference between the code
for Example 9.10 and the solution to this problem.

9.38 Use a counter from the Library of Parameterized Modules
to implement the counter described in Problem 9.35. Cre-
ate a MAX�PLUS II simulation file to verify the opera-
tion of the counter.

9.39 Write a VHDL file that instantiates an 8-bit LPM count
with synchronous load and clear, count enable, and direc-
tional control. Also include a terminal count decoder.
(The LPM counter has no port for the terminal count
function, so it must be done separately.) Create a
MAX�PLUS II simulation to verify the operation of the
counter.

9.7 Shift Registers

9.40 Use the MAX�PLUS II Graphic Editor to draw the cir-
cuit of a serial shift register constructed from JK flip-
flops. Create a simulation to verify the operation of the
shift register.

9.41 Use the MAX�PLUS II Graphic Editor to create the
logic diagram of the 4-bit serial shift register based on JK
flip-flops that shifts left, rather than right. Create a simu-
lation to verify the operation of the shift register.

9.42 The following bits are applied in sequence to the input of
a 6-bit serial right-shift register: 0111111 (0 is applied
first). Draw the timing diagram.

9.43 After the data in Problem 9.42 are applied to the 6-bit
shift register, the serial input goes to 0 for the next 8
clock pulses and then returns to 1. Write the internal
states, Q5 through Q0, of the shift register flip-flops after
the first 2 clock pulses. Write the states after 6, 8, and 10
clock pulses.

9.44 Complete the timing diagram of Figure 9.90, which is for
a serial shift register (right-shift). Assume the shift regis-
ter is initially cleared. What happens to the state of the
circuit if D7 stays HIGH beyond the end of the diagram
and the CLK input continues to pulse?

9.45 An 8-bit right-shift serial-in-serial-out shift register is
initially cleared and has the following data clocked into
its serial input: 1011001110. Draw a timing diagram of
the circuit showing the CLK, Serial Input, and Serial
Output. (Assume the individual flip-flop outputs are not
accessible.)

FIGURE 9.90
Problem 9.44
Timing Diagram
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9.46 Complete the logic circuit shown in Figure 9.91 to make
a bidirectional shift register.

9.47 Complete the logic circuit shown in Figure 9.92 to make
a parallel-in-serial-out shift register.

9.8 Programming Shift Registers in VHDL

9.48 Write the VHDL code for an 8-bit serial shift register us-
ing a structural design procedure. Use JK flip-flops.
(MAX�PLUS II primitive: JKFF.) Create a
MAX�PLUS II simulation file to verify the operation of
your design.

9.49 Repeat Problem 9.48 using a dataflow design procedure.

9.50 Modify the VHDL code for the behaviorally designed
shift register srg4behv.vhd so that the shift register
moves the data left, not right. Hint: The statement 
q (3 downto 0) <= serial_in & q(3 downto

1); is equivalent to the following two statements:

q(3) <= serial_in;

q(2 downto 0) <= q(3 downto 1);

Create a simulation file to verify the operation of this
device.

9.51 Modify the VHDL code for the left-shift register Problem
9.50 to make a shift register of generic width. Use this
component in another VHDL file to make a 32-bit shift
register that shifts left. Create a simulation file to verify
the operation of this design.

9.52 Write the code for a VHDL design entity that implements
a 4-bit universal shift register with asynchronous clear.
Create a simulation that verifies the design function.

9.53 Use MAX�PLUS II to create simulations for the
generic-width and the 16-bit universal shift registers in
Example 9.16 (p. 432). What is the difference in width
between the default value of the generic shift register and
the instantiated component in the 16-bit file? Given this
difference, why can the generic-width shift register be
correctly used as a component in the 16-bit design entity?

9.54 Use an LPM shift register in a VHDL file to instantiate a
48-bit shift register with the following functions: serial
input, parallel output, synchronous clear.

9.55 Use an LPM shift register in a VHDL file to instantiate a
10-bit shift register with the following functions: serial
input and output whose internal value can be synchro-

FIGURE 9.91
Problem 9.46
Logic Circuit

FIGURE 9.92
Problem 9.47
Logic Circuit
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nously set to 960. Create a MAX�PLUS II simulation to
verify the operation of the design.

9.9 Shift Register Counters

9.56 Write the VHDL code for a ring counter of generic width
and instantiate it as an 8-bit ring counter. List the se-
quence of states in a table, assuming the counter is ini-
tially cleared, and create a simulation to verify the cir-
cuit’s operation. Include a clear input (synchronous).

9.57 Construct the count sequence table of a 5-bit Johnson
counter, assuming the counter is initially cleared. What
changes must be made to the decoder part of the circuit in
Figure 9.84 (p. 446) if it is to decode the 5-bit Johnson
counter?

9.58 A control sequence has ten steps, each activated by a
logic HIGH. Use MAX�PLUS II to design a counter and
decoder in each of the following configurations to pro-
duce the required sequence: binary counter, ring counter,
and Johnson counter. You may use a Graphic Design File
or VHDL. Create a simulation for each counter and de-
coder.

9.59 Use the MAX�PLUS II Graphic Editor to design a 4-bit
ring counter that can be asynchronously initialized to
Q3Q2Q1Q0 � 1000 by using only the clear inputs of its
flip-flops. No presets allowed. Hint: use a circuit with a

“double twist” in the data path.

A N S W E R S  T O  S E C T I O N  R E V I E W
P R O B L E M S
Section 9.1

9.1 A mod-24 UP counter goes from 00000 to 10111 (0 to 23).
This requires 5 outputs. The counter is a truncated sequence
since its modulus is less than 25 � 32.

Section 9.2

9.2 1001, 0000

Section 9.3

9.3 JK flip-flops: J3K3 � X0, J2K2 � 1X, J1K1 � X1, J0K0 � X1
D flip-flops: D3 � 1, D2 � 1, D1 � 0, D0 � 0

Section 9.4

9.4 If (clock‘EVENT AND clock = ‘0’) THEN

count := count + 1;

END IF;

Section 9.5

9.5 The completed timing diagram is shown in Figure 9.93.

Section 9.6

9.6 Asynchronous clear: PROCESS (clock, clear); Synchronous
clear: PROCESS (clock)

Section 9.7

9.7 JK flip-flops can be used in the shift register of Figure 9.58.
The Q output of any stage connects to the J input of the next
stage and the �Q output of any stage connects to the K input of
the next. The serial_in input connects directly to the J input of
the first flip-flop. Serial_in is applied to K of the first flip-flop
through an inverter (NOT gate).

Section 9.8

9.8 A shift register output is defined as a port of mode BUFFER
because this mode allows a signal to be fed back into the PLD
matrix and reused as an input to another part of the circuit.

Section 9.9

Binary: 5 flip-flops, 24 5-inputs NANDs; Ring: 24 flip-flops, no
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FIGURE 9.93
Answer to Section Review Problem 9.5


