
8Designing Library Components

This chapter shows design of small components that we will use in the chapters
that follow as library components. The purpose is to show various ways a
design can be implemented and at the same time generate a reusable library.
The library components will be individually tested and symbols will be created
for them. In order to test these components, each will be created as a complete
project and they will be individually tested. Sequential and combinational
components will be designed, and for their design, the use of primitives,
megafunctions and Verilog for description of functions will be illustrated.

8.1 Library Organization

8.2 Switch Debouncing – Schematic Entry

Components that we are discussing in this chapter will be placed in a directory
called BookLibrary. Each component will have its own complete project in this
directory. This way, we will be able to test each component by simulation and /
or by device programming. For testing our library components we use the MAX
7000S device. Obviously, these components can be used in a design using any
programmable device as long as they fit in the device.

This section describes hardware for creating clean filtered pulses from
mechanical UP2 pushbuttons. In design of this hardware we will use schematic
entry at the gate and functional levels.

Pushbuttons on the UP2 board are mechanical switches and are not
debounced. This means that when you press a pushbutton, it makes several

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

200 Digital Design and Implementation with Field Programmable Devices

contacts before it stabilizes. The result is that when you press a pushbutton
that is 1 in the normal position, its output changes several times between logic
0 and 1 before it becomes 0, and when you release it, it again switches several
times between these logic values before it becomes 1. Figure 8.1 shows a
pushbutton contact bounce.

The problem described above causes no problems in combinational circuits
if you give enough time for all changes to propagate before reading the switch's
output. However, in sequential circuits with a fast clock, each of the bounces
between 0 and 1 logic values may be regarded as an actual logic value. For
example, for a counter with a fast clock for which a mechanical pushbutton is
used as a count input, pressing the pushbutton may cause several counts.

Figure 8.2 Debouncing a Single-Pole Double-Throw (SPDT) Switch

A Single-Pole Double-Throw (SPDT) mechanical switch such as that shown
in Figure 8.2 can easily be debounced by an SR-latch also shown in this figure.
However, UP2 pushbuttons are Single-Pole Single-Throw (SPST) and their only
available terminals are those that connect to logic 1 or logic 0, as shown in
Figure 6.33.

Debouncing UP2 pushbuttons requires a slow clock to sample the switch
output before and after it is pressed or released. The clock should be slow
enough to bypass all the transitional changes that occur on its output terminal.
This section shows generation of a switch debouncer and its necessary clock.
For the design of the former part we use schematic entry at the gate level, and
for the latter part we use schematic entry using Quartus II megafunctions.

8.2.1 Debouncer – Gate Level Entry

The debouncer project is created in the BookLibrary. We use schematic entry at
the gate level for this design. The design is entered in Quartus II and is tested
on the EPM7128S device of UP2.

The design, shown in Figure 8.3, has two inputs Switch and SlowClock.
One of the flip-flops used here is triggered on the rising edge of SlowClock and
the other is triggered on the falling edge of this clock. Since the output of this
circuit is generated by ANDing the two flip-flop outputs, both flip-flops must see

Figure 8.1 Contact Bounce in a Pushbutton

201

logic 1 on their inputs before the output of the circuit becomes 1. This means
that the pushbutton connected to the Switch input of this circuit must stay
high for the entire duration of the slow clock for the circuit output to become 1.

Figure 8.3 Schematic of the Debouncer

This design is entered in the Quartus II environment using its block editor.
Flip-flops used here are part of the Quartus II library of primitives. These
components are categorized in this library under primitives/storage. The
specific flip-flop used is dff.

Figure 8.4 Default Symbol Created by Quartus II for Debouncer

After entering the schematic of this design, a symbol (shown in Figure 8.4)
is created for it by using the Quartus II utility for generating default symbols.
This part of the hardware for debouncing pushbuttons uses 3 of the 128
macrocells of the MAX 7000S device.

This part of our design can be simulated, but the real test of this circuit is
using it with UP2 pushbuttons. This requires the use of a slow clock that will
be created next.

The frequency of the UP2 clock is 25.175 MHz. Obviously this is too fast for
filtering transitions in pushbuttons. Dividing this clock by produces a 12
Hz clock that will be more adequate for filtering slow mechanical transitions.
We use a 21 bit counter for dividing the UP2 on-board clock. The Quartus II
project for this purpose is called Divider21 and is created in the BookLibrary
directory. We demonstrate the use Altera megafunctions for the generation of
this circuit.

8.2.2 Slow Clock – Using Megafunctions

202 Digital Design and Implementation with Field Programmable Devices

The design shown in Figure 8.5 uses a 21-bit up-counter. The input is the
fast clock and bit 20 of the counter output is the slow clock. The core of this
counter is Divider21c that is made by configuring a Quartus II megafunction.

Figure 8.5 Slow Clock Generator

Megafunctions. Just like gates and flip-flops, megafunctions are part of the
Quartus II library of components. Unlike gates and flip-flop primitives that are
only available with predefined features and inputs, megafunctions are
configurable. For example, an OR megafunction can be configured to become
an array of n-input OR gates. A counter megafunction can be configured as an
up- or down-counter with any number of bits with various forms of load, reset
and preset control inputs.

In general, megafunctions are frequently used general purpose digital parts
that can be customized according to specific applications. In a way,
megafunctions replace the older 7400 series of parts that are available in many
technologies for board level designs. The 7400 series packages cover a wide
range of functions, but because they are actual physical parts, they only have a
limited configurability. Altera megafunctions also cover a wide range of
functions. They are described in a hardware description language and because
of this, they are far more flexible than the 7400 series that are physical parts.

Megafunctions are available in five categories: arithmetic, embedded_logic,
gates, IO and storage. The arithmetic megafunctions cover various forms of
adders, counters, and other general purpose arithmetic functions. The storage
category covers memories, registers, RAMs and ROMs.

Quartus II utility for configuring megafunctions is MegaWizard Plug-In
Manager. When this utility is invoked, in a series of windows it asks users to
specify and configure the megafunction that they have chosen. When done, it
generates a schematic symbol for the configured part and generates an HDL
design file that corresponds to the symbol. The symbol can be placed on the
block editor and used with other configured megafunctions or primitives for
completing a design.

To access a megafunction, go through the same process as for placing a
primitive in your schematic. When the Symbol window appears, in the list of
libraries select the standard Quartus II library (i.e., \quartus\libraries\) and
open the megafunctions folder in this library. In what follows we show how the
Divider21c counter of Figure 8.5 is generated.

Frequency Divider. To enter the megafunction counter in the schematic of
Divider21 project, while the schematic entry window (Block and Symbol Editors)
is open, select the Symbol Tool from the corresponding tool bar. This opens the
Symbol window shown in Figure 8.6. Open this library and in the arithmetic

203

category, select lpm_counter. After clicking OK, a series of windows will appear
that allow you to configure your counter.

Figure 8.6 Megafunctions Library

In the first window, the HDL used for specifying this megafunction and the
name you want to give it is defined. The language used can be any of the three
choices shown. Use any language you are most comfortable with. For the
name of the megafunction we use Divider21c. The next three windows allow
you to specify count direction (up or down) number of bits, count sequence
(binary or Modulus), enabling mechanism, and set or resetting mechanism
(synchronous, asynchronous, etc). Figure 8.7 shows one of these three
windows. The last window tells you the flies that are generated and added to
your project when this mega function is generated. One of the files created is
Divider21c.bsf that represents the symbol that corresponds to your configured
counter. When configuration of a megafunction is complete, this symbol is
placed on your schematic (see Figure 8.5).

204 Digital Design and Implementation with Field Programmable Devices

Figure 8.7 Counter Megafunction Configuration Window

After placing Divider21c on the schematic, the design of Divider21 frequency
divider will be complete by connecting the input Clock to the clock input of
Divider21c and the SlowClock output to q[20]. As shown in Figure 8.5,
connection to q[20] port of Divider21c is done by connecting a bus to the q
output of this component, assigning a name to it and using the indexed name
for driving the SlowClock output.

This completes the design of the frequency divider. In order for this design
to be usable in other designs, a symbol is generated for it. This symbol will be
used in the complete design of the switch debouncing hardware.

8.2.3 A Debounced Switch – Using Completed Parts

Finally by putting together the hardware of Figure 8.3 with that of Figure 8.5
hardware for debouncing a switch is generated. For this hardware we generate
the Debounced project in the BookLibrary directory, and in its schematic we use
symbols for Debouncer (Figure 8.4) and Divider21.

For placing these symbols in the schematic of Debounced project, click on
the Symbol Tool of the Block and Symbol Editors toolbar. When the Symbol
window opens, in the Libraries hierarchy select Project (first item in Figure 8.6).
This points to symbols created in the directory of our present project. Since the
Debouncer and Divider21 projects use the BookLibrary directory, their symbols
are available in the Project directory.

When the Project hierarchy opens, select Debouncer and Divider21 symbols
and place them on the schematic of the Debounced project. The complete
schematic diagram of this design is shown in Figure 8.8. The SlowClock signal
feeds the input of the Debouncer; in addition it is pulled out as an output of the
Debounced hardware. This way, the SlowClock output can be shared among
multiple Debouncer components.

A symbol, shown in Figure 8.9, is created for this design so that it can be
used in designs requiring a debounced pushbutton.

205

For testing our project, it is compiled and it is programmed into the MAX
7000S device of UP2. The FastClock input is put on pin number 83 that is the
global lock of this chip. The Switch input is wired to a pushbutton, and the
CleanSwitch and SlowClock outputs are put on two of the MAX LEDs. The
functionality of this circuit is tested by pressing a pushbutton and observing its
output. Note that if glitches transmit to the output, because of their short
duration, we will not be able to see them on the output LED.

Figure 8.8 Schematic of the Debounced Project

Figure 8.9 Debounced Symbol

The complete hardware of the Debounced component uses 24 of the 128
macrocells of the MAX 7000S device. Because of this high gate count, it is
recommended that for multiple switches, only one Debounced is used and the
rest use the Debouncer of Section 8.2.1 that only uses 3 macrocells.

8.3 Single Pulser – Gate Level

Often, start pulse for a sequential circuit must be only one clock pulse
duration. A problem with using pushbuttons for this purpose is that operation
of such a switch by human is usually very slow, and the best we can do is to
generate pulses of several milliseconds by pushing a push button.

The OnePulser project of this section takes a clock and a long pulse as
inputs and produces a single pulse of the duration of the clock period for every
time the long pulse becomes 1. The output pulse is synchronous with the
clock. The long-pulse input connects to a debounced switch, and the clock
input of this circuit connects to the main clock signal of the sequential circuit
using the start pulse. The design is done using a block diagram using
primitives shown in Figure 8.10.

This design is done by a 2-bit shift register. As shown in Figure 8.10, when
LongPulse is 0 on the rising edge of the ClockPulse at time and 1 on the rising

206 Digital Design and Implementation with Field Programmable Devices

edge of ClockPulse at the OnePulse output becomes 1 after the edge at
and remain 1 until the next edge that a 1 is shifted into the shift-register. The
output waveform of this circuit that is actually a 01 detector is shown in Figure
8.11.

Figure 8.10 The OnePulser Circuit

Figure 8.11 OnePulser Output Waveform

Figure 8.12 OnePulser Symbol

The OnePulser circuit is tested by instantiating a copy of the Debounced circuit
(Figure 8.8) in its schematic and driving its inputs. The CleanSwitch and
SlowClock outputs of Debounced connect to the LongPulse and ClockPulse
inputs of OnePulser, respectively. The Switch and FastClock inputs of
Debounced connect to a pushbutton and the system clock respectively, and the
OnePulse output is displayed on an LED on the UP2 board. By pressing the
input pushbutton, a short blink on the output LED indicates the correct
operation of this circuit.

The OnePulser uses 3 of the 128 macrocells of the MAX device on UP2.

207

We generate a project and a design called Pulser2 to debounce both MAX
pushbuttons of the UP2 board. This circuit uses two copies on the Debouncer
of Figure 8.4 and the Divider21 of Figure 8.5. This design is shown in Figure
8.13.

Figure 8.13 Pulser2 Schematic

Figure 8.14 Pulser2 Symbol

The Pulser2 symbol is shown in Figure 8.14. For generation of this symbol we
first use Quartus II symbol generation utility to generate a default symbol.
Using the symbol editor tools (on the Block and Symbol Editor toolbar), the
default symbol is edited to look as shown in this figure. Tools used from this
toolbar are Text, Rectangle, Oval, and Line tools.

8.4 Debouncing Two Pushbuttons – Using Completed Parts

208 Digital Design and Implementation with Field Programmable Devices

The next library component described in this chapter is a hexadecimal display
driver. As with the other components, we will generate a design file and a
symbol for this circuit. This circuit takes a 4-bit HEX input and generates
Seven Segment Display (SSD) code that corresponds to the input data.

Alternative methods of design entry that exist for creating this design
include gate-level schematic entry, table-driven ROM specification, use of
megafunctions, use of standard 7400 parts (7400 parts are available in
Libraries\others\maxplus2), and using an HDL like Verilog. We have chosen
the latter method, since it is easy to describe, uses fewer device cells than some
other methods, and is adaptable to both MAX and FLEX. The entry method
used here starts from the block diagram editor of Quartus II, and enables the
use of Verilog for describing a block used in the schematic diagram.

The project used for the display adapter is called DisplayHEX and is created
in the BookLibrary directory. Once this project is defined, we use the New Block
Diagram/Schematic File tool of the Applications toolbar to open a new schematic
file. In the schematic, the HexDecoder block will be defined to include the
Verilog code for the core of our project.

Figure 8.15 An Empty Block

The next step in defining a block for inclusion of a design description in Verilog
is to specify its name and ports. This is done by specifying block properties.
Right-click on the block of Figure 8.15, and in the pull-down menu that opens
select Block Properties. In the General tab of the window of Figure 8.16 the
block name (HexDecoder) is entered and in its I/Os tab its input and output
ports are specified.

The 4-bit input of HexDecoder is HEXin[3..0] and its 7-bit output is
SSDout[6..0]. The next step is entering the Verilog code of HexDecoder.

8.5 Hexadecimal Display – Using Verilog

8.5.1 Block Specification

When a new schematic file opens, its corresponding toolbar (Block and Symbol
Editors) becomes available, and the schematic window is initially blank. Select
the Block tool from this toolbar to place a blank block on the schematic window.
The size of this block is not important at this point and can be adjusted once
more details are known about it. Figure 8.15 shows a block that needs to be
configured. This becomes our HexDecoder.

8.5.2 Block Properties

209

Figure 8.16 Block Properties

Figure 8.17 Creating a Verilog HDL Design File

210 Digital Design and Implementation with Field Programmable Devices

With the block properties defined above, Quartus II can generate a Verilog
template file for entering the Verilog code of HexDecoder. In the schematic of
DisplayHEX, right-click on the block symbol of HexDecoder and in the pull-
down menu that opens (Figure 8.17) select Create Design File from Selected
Block This generates a Verilog template that contains declarations and I/O
ports of the HexDecoder module.

The complete Verilog code of HexDecoder is shown in Figure 8.18. The
HexDecoder.v file in the BookLibrary contains this code. What is shown here in
bold is the part of the code that we have entered for the description of our
design. The rest of the code has been generated automatically by Quartus II.
The description of HexDecoder is now complete.

// Generated by Quartus II Version 3.0 (Build Build 199 06/26/2003)
// Created on Thu Mar 11 02:53:38 2004

// Module Declaration
module HexDecoder
(

// {{ALTERA_ARGS_BEGIN}} DO NOT REMOVE THIS LINE!
HEXin, SSDout
// {{ALTERA_ARGS_END}} DO NOT REMOVE THIS LINE!

);
// Port Declaration

as

// {{ALTERA_IO_BEGIN}} DO NOT REMOVE THIS LINE!
input [3:0] HEXin;
output [6:0] SSDout;
// {{ALTERA_IO_END}} DO NOT REMOVE THIS LINE!

sign SSDout =
HEXin == 4'b0000 ? 7'b0000001 :
HEXin == 4'b0001 ? 7'b1001111 :
HEXin == 4'b0010 ? 7'b0010010 :
HEXin == 4'b0011 ? 7'b0000110 :
HEXin == 4'b0100 ? 7'b1001100 :
HEXin == 4'b0101 ? 7'b0100100 :
HEXin == 4'b0110 ? 7'b0100000 :
HEXin == 4'b0111 ? 7'b0001111 :
HEXin == 4'b1000 ? 7'b0000000 :
HEXin == 4'b1001 ? 7'b0000100 :
HEXin == 4'b1010 ? 7'b0001000 :
HEXin == 4'b1011 ? 7'b1100000 :
HEXin == 4'b1100 ? 7'b0110001 :
HEXin == 4'b1101 ? 7'b1000010 :
HEXin == 4'b1110 ? 7'b0110000 :
HEXin == 4'b1111 ? 7'b0111000 :

7'b1111111 ;
endmodule

Figure 8.18 HexDecoder Verilog Code

8.5.3 Block Verilog Code

211

8.5.4 Connections to Block Ports

When a block is defined, it can be used like any symbol in a design file. The
HexDecoder block in the DisplayHEX design file is completely defined and the
next step is to wire its ports to other components of this design. Place an input
pin symbol and an output pin symbol in DisplayHEX schematic. Assign
HEX[3..0] for the input pin name and SSD[6..0] for the output pin. This makes
the input a 4-bit bus and the output of DisplayHEX a 7-bit bus.

Use the Orthogonal Bus tool to make connections from HEX[3..0] and
SSD[6..0]pins to the sides of the HexDecoder block. I/O mapper symbols will
be placed on the block boundaries where bus connections touch the
HexDecoder block (see Figure 8.19).

Figure 8.19 Connections of the DisplayHEX to HexDecoder Block

Figure 8.20 Block Port Mapper

212 Digital Design and Implementation with Field Programmable Devices

The mappers shown in Figure 8.19 must be configured to map outside
busses to the internal ports of HexDecoder. To configure a mapper, right-click
on the mapper on the boundary of HexDecoder to bring up the Mapper
Properties window, shown in Figure 8.20. In the Mappings tab of this window
select an I/O on block and make a mapping between that and a signal in bus.
Figure 8.20 shows a mapping made between SSDout[6..0] of HexDecoder and
SSD[6..0] bus of DisplayHEX.

Figure 8.21 Symbol for DisplayHEX

The schematic shown in Figure 8.19 is the complete design of DisplayHEX and
is compiled in the BookLibrary. For it to be accessible by other designs, a
symbol is generated that is shown in Figure 8.21. This design uses 5 of the 128
macrocells of the MAX device of UP2 board.

This chapter presented various ways designs can be generated in Quartus II. At
the same time we presented several utility hardware structures. The structures
presented are put in a library to be accessible by designs of the following
chapters. On the use of Quartus II, this chapter showed definition and usage of
megafunctions, defining and using HDL blocks, using existing components in a
design, and editing and customizing component symbols. On the
organizational side, this chapter showed how a library of parts could be
generated and tested. Finally, from digital design point of view, this chapter
showed small, but useful, parts that many designs can use.

8.5.5 Completing DisplayHEX

8.6 Summary

