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p ro c e s s o r  bas i c s

In this chapter we start our focus on embedded systems with an introduction
to the kinds of processors that are used. We describe the way processors 
operate and give examples of the instructions that make up embedded 
software programs. We also describe the way instructions and data are 
encoded in binary and stored in memory. Finally, we examine ways of 
connecting the processor with memory components.

7.1 E M B E D D E D  C O M P U T E R 
O R G A N I Z AT I O N

In Section 1.5.1, we introduced the idea of an embedded system, in which 
one or more computers form part of the system. The computers run 
programs that implement the functions required of the system. Unlike 
a general-purpose PC, a computer in an embedded system has just those 
resources required to support its specialized operation. In this section, we 
will describe some of the general properties of embedded systems and the 
processing elements they contain. We won’t deal with how the processing 
elements are designed; that is a significant field of study in its own right. 
Instead, we will treat them as black-box circuit components that we can 
use to build a digital system.

A computer embedded in a digital system generally contains the 
elements shown in Figure 7.1. The central processing unit (CPU), often 
called a processor core when it is embedded as part of an IC, is the ele-
ment that processes data according to a program. The kinds of process-
ing it can perform include the arithmetic operations that we described in 
Chapter 3. It can also evaluate logical conditions and select among alter-
nate operations based on the outcomes of the conditions. We will describe 
the way a program is formed in more detail in Section 7.2. Meanwhile, 
suffice it to say that the program is encoded in binary form and stored 
in the instruction memory shown in the figure. The data upon which the 
program operates are also encoded in binary form and stored in the data
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memory. In both cases, the memory is implemented using the kinds of 
memory components we described in Chapter 5. Whereas general pur-
pose computers, such as PCs, usually store the instructions and data in 
the same memory, embedded computers typically separate the two. (This 
arrangement is often referred to as a Harvard architecture, named after 
the institution where the idea originated. The conventional approach with 
a single memory for instructions and data is called a von Neumann archi-
tecture, after the person who first described it.) The reason for the separa-
tion is that the instructions in an embedded computer are usually fixed 
during the manufacture of the system (or only occasionally upgraded in 
the field), and the amount of instruction memory required is known in 
advance. Hence, we usually store instructions in a ROM or flash memory 
component, and provide a RAM for the data memory. This differs from a 
general-purpose computer, in which one or more different programs need 
to be started at different times and run concurrently, and the amount of 
instruction memory is not known in advance.

The input, output and input/output (I/O) controllers in Figure 7.1 
allow the computer to acquire data to be processed (input) and to deliver 
the results (output). In many embedded systems, the input data comes 
from sensors that sample physical properties, such as temperature, posi-
tion, time, and so on. Similarly, the output data causes actuators to have 
a physical effect, such as moving a lever, turning a motor, heating some 
material, and so on. Input and output controllers can also deal with a 
user interface, consisting of switches, buttons and knobs for input and 
lights and LCD panels for outputs. For a complex user interfaces, devices 
such as a keyboard, mouse or display screen, as used in a general purpose 
computer, might also be employed. In all cases, the job of the input/output 
controller is to transform between a physical property or effect and a cor-
responding binary representation that can be processed by the CPU. We 
will describe how this can be done and how the CPU accesses the binary 
representation in Chapter 8.

The accelerator in Figure 7.1 is a specialized circuit designed to 
 implement specific processing operations with higher performance 
than can be achieved using the CPU. Not all embedded systems include 
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 accelerators. The choice of whether to include an accelerator for any 
operation depends on the functional and performance requirements of 
the application, together with cost and other constraints that apply. We 
will discuss accelerators in more detail in Chapter 9, in which we include 
as an extended example an accelerator for detecting edges of objects in 
video images.

The final element in Figure 7.1 is the interconnection between the 
other elements. We use the term bus to refer to the collection of signals 
that form the interconnection. The figure shows just one bus connecting 
all of the elements. However, in more elaborate systems, there may be sep-
arate buses for connecting the memory and the input/output controllers 
with the CPU. There may even be separate buses for the instruction and 
data memories, since many high-performance processors can read further 
instructions concurrently with access to data by previous instructions. 
Accelerators, if included, might be connected to the CPU using the same 
bus as the memory, or using a separate dedicated bus. Figure 7.2 shows 
one possible organization for a high-performance embedded system with 
multiple buses. In this chapter, we will focus on the bus connecting the 
CPU and memory, and defer consideration of bus connections to input 
and output controllers and to accelerators until later chapters.

7.1.1  M I C R O C O N T R O L L E R S  A N D 
P R O C E S S O R  C O R E S

CPUs for embedded systems come in a range of sizes for different applica-
tions. Some are single-chip microprocessors, consisting of a CPU by itself 
in a package. Most CPUs used in general-purpose PCs are also available 
in versions suitable for embedded applications. Examples include Pentium 
family CPUs from Intel and the PowerPC from Freescale Semiconductor. 
Other microprocessors are designed specifically for embedded  applications. 
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In both cases, we need to provide memory and I/O controllers as separate 
chips on a PCB. In contrast, single-chip microcontrollers include a CPU, 
instruction and data memory, and I/O controllers all in the one package. 
Many microcontroller vendors provide a family of chips, each with the 
same CPU, but varying in the amount of memory and the selection of 
I/O controllers. In some microcontroller families, the CPUs are relatively 
simple, operating just on 8-bit or 16-bit data, with relatively low per-
formance. Other families have more complex CPUs that can operate on 
data up to 32 bits in length. The combination of a CPU with the on-chip 
memory and I/O controllers makes them suitable for a large range of cost-
sensitive, low-performance applications.

An alternative to using a fixed function microprocessor or microcon-
troller is to include a CPU in an FPGA component. This has the advantage 
that the input/output controllers can be customized for an application, 
but still be included in the same package as the CPU. The CPU in the 
FPGA can be implemented as a fixed-function block embedded within 
the programmable fabric. The Virtex-II Pro and Virtex 4 FPGAs from 
Xilinx take this approach, and include one or more PowerPC processor 
cores. Alternatively, the CPU can be implemented as a soft core using the 
programmable resources of the FPGA. FPGA vendors provide soft core 
processor designs that users can include as part of their system. Examples 
include the MicroBlaze core from Xilinx, the Nios-II core from Altera, 
and the ARM core from Actel. These are all relatively high-performance 
CPUs that operate on data up to 32 or 64 bits in length. For simpler 
designs, a smaller soft core that operates on 8-bit data may suffice. It 
would take up less of the FPGA resources, and would fit in a smaller and 
cheaper FPGA component. The Xilinx PicoBlaze soft core is an example, 
as is the Gumnut core that we will introduce in Section 7.2.

If our design is implemented in an ASIC, we can also include a CPU 
and customized memory and input/output controllers. Several vendors 
provide processor core designs that can be included as blocks in ASICs. 
Among the most widely used are the ARM cores from ARM Ltd, the 
PowerPC cores from IBM, and the MIPS cores from MIPS Technologies. 
Given that we can customize the design on an ASIC, there is also oppor-
tunity to customize the CPU itself. Tensilica Inc. is a vendor that provides 
a customizable CPU based on the requirements of the program to be exe-
cuted. Their approach involves analyzing the program and including only 
the CPU features needed to execute that program. They also allow exten-
sion of the CPU with customized hardware for specialized operations.

A final approach to mention is to include one or more digital signal 
processors (DSPs). These are specialized processing elements optimized for 
the kinds of operations involved in dealing with digitized signals, such as 
audio, video or other streams of data from sensors. Many signal process-
ing applications require fixed-point or floating-point arithmetic operations 
to be performed at a high rate on large volumes of data. An ordinary CPU 



would not be able to meet the performance requirements. Nonetheless, such 
applications often need a conventional CPU to perform other operations, 
such as interacting with the user and overall coordination of system opera-
tion. Hence, DSPs are often combined with conventional CPUs in hetero-
geneous multiprocessor systems. Modern cell phones are good examples. 
Another approach to providing DSP functionality is to extend a conventional 
CPU with additional hardware and instructions for digital signal processing. 
Some processor cores from ARM and MIPS include such extensions, and 
Tensilica processor cores can be similarly customized. Since digital signal 
processing is an advanced topic, we will defer consideration of DSP cores 
and embedded multiprocessor systems to advanced reference books.

1. What are the main elements of an embedded computer?

2. Why do embedded computers usually have separate instruction and 
data memories?

3. What is the difference between a microprocessor and a micro- 
controller?

4. What is meant by a soft core processor in an FPGA?

7.2 I N S T R U C T I O N S  A N D  D ATA

The function performed by a CPU is specified by a program, which 
consists of a sequence of instructions. Each instruction specifies one sim-
ple step in the program, such as getting a piece of data from memory, or 
adding two numbers. The repertoire of instructions for a given CPU is 
called the instruction set of the CPU. We also use the term instruction set 
architecture (ISA) to refer to the combination of the instruction set and 
other aspects of the CPU that are visible to the programmer. CPUs from 
different vendors have quite significantly different instruction sets, so a 
sequence of instructions developed for one CPU will not work on a CPU 
from a different vendor. When we develop the program for an application, 
we usually use a high-level language, such as C, C�� or Ada, and use a 
software tool called a compiler to translate the program into a sequence 
of instructions that performs the same operations. Apart from allowing 
us to work at a higher level of abstraction, this has the advantage that the 
program can be ported to work on a CPU with a different instruction set 
simply by using a different translator. However, when we are developing 
an embedded system in which the CPU interacts with circuits that we 
design, we often need to monitor the instruction-by-instruction operation 
of the CPU as we test and debug the design. At this level, it is important to 
understand how a CPU represents and processes individual instructions. 
We will just describe CPU operation at this level, and defer a discussion of 
programming using high-level languages to other books.

K N O W L E D G E 
T E S T  Q U I Z
K N O W L E D G E 
T E S T  Q U I Z
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The instructions of a program are encoded in binary and stored in 
successive locations of the instruction memory. The CPU executes the pro-
gram by repeatedly following these steps:

1. Fetch the next instruction from the instruction memory.

2. Decode the instruction to determine the operation to perform.

3. Execute the operation.

In order to keep track of which instruction to fetch next, the CPU has 
a special register called the program counter (PC), in which the address of 
the next instruction is kept. In the fetch step, the CPU uses the contents of 
the PC to do a read access from the instruction memory, and then incre-
ments the PC value. In the decode step, the CPU determines the resources 
required to perform the operation specified by the instruction. In a simple 
CPU, the decode step is correspondingly simple. In a larger CPU, however, 
decoding may involve such actions as checking for resource conflicts and 
availability of data, and waiting until resources are free. In the execute 
step, the CPU activates the appropriate internal resources to perform the 
operation. This involves setting control signals to make multiplexers sup-
ply the required operands and arithmetic hardware perform the required 
operation, and enabling registers to receive results. In a simple CPU, these 
steps are performed in order, and when the execute step is finished, the 
CPU starts again with the fetch step. More complex, high performance 
CPUs, however, can overlap the steps, provided they produce the same 
outcome as if the steps were performed in order. Techniques used within 
CPUs to execute several instructions in parallel include pipelining and 
superscalar execution, described in the reference book on computer archi-
tecture (see Section 7.5).

The data on which instructions operate is encoded in binary in fixed-
size quantities. The smallest data item is usually 8 bits, called a byte. It 
is often used to represent an unsigned or a signed integer, or a character. 
Simple CPUs can only operate on 8-bit data, so they are referred to as 
8-bit CPUs. Larger CPUs can operate on 16-bit or 32-bit words of data, 
as well as on 8-bit data, so they are referred to as 16-bit or 32-bit CPUs, 
respectively.

Regardless of the sizes of data that can be operated upon, the data 
memory is usually organized with 8-bit locations, each separately 
addressed. 16-bit or 32-bit data is stored in two or four successive loca-
tions. The order of the bytes within a word varies between CPUs, as shown 
in Figure 7.3. Little-endian CPUs store the byte containing the least signif-
icant bits at the lower address and the byte containing the most significant 
bits at the higher address. In contrast, big-endian CPUs store the bytes 
in the opposite order. (The terms “little endian” and “big endian” origi-
nated in Jonathan Swift’s Gulliver’s Travels, in which the people of two 
countries fight over which end of their breakfast eggs should be cut open. 



The terms were adopted by Danny Cohen in an article, cited in Section 7.5, 
in which he argues that either byte ordering is acceptable, provided it is 
used consistently.) Some CPUs require that 16-bit data be stored at even 
addresses and that 32-bit data be stored at addresses that are a multiple of 
four. Others allow 16-bit and 32-bit data to be stored at any address.

7.2.1 T H E  G U M N U T  I N S T R U C T I O N  S E T

Rather than trying to describe the characteristics of the instruction sets 
of all CPUs, we will present one relatively simple example that embod-
ies most of the important concepts. The CPU that we will describe is 
an 8-bit soft core called the Gumnut, developed by the author. (A gum-
nut is a small seedpod of an Australian eucalyptus tree. It is something 
small from which large things grow.) Further information and files are 
provided in the supplementary material for this book for use in FPGA 
designs. The complete Gumnut instruction set is listed in Table 7.1. We 
use a notation for instructions called assembly code. An assembly-code 
program can be translated by a software tool called an assembler into a 
sequence of binary-coded instructions to be loaded into the instruction 
memory.

The Gumnut has an instruction memory of up to 4096 instructions 
(using 12-bit addresses) and a data memory of 256 bytes (using 8-bit 
addresses). When the CPU is reset, it clears the PC to 0, and starts the 
fetch-decode-execute cycle, fetching the first program instruction from 
address 0 in the instruction memory. Within the CPU, there are eight 
 general-purpose registers, named r0 through r7, that can hold data to 
be operated upon by instructions. Register r0 is special, in that it is 
hard-wired to have the value 0, and any updates to it are ignored. The 
CPU also has two single-bit condition-code registers called Z (zero) and 
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i n s t ru c t i o n d e s c r i p t i o n

Arithmetic and logical instructions

add rd, rs, op2 Add rs and op2, result in rd

addc rd, rs, op2 Add rs and op2 with carry, result in rd

sub rd, rs, op2 Subtract op2 from rs, result in rd

subc rd, rs, op2 Subtract op2 from rs with carry, result in rd

and rd, rs, op2 Logical AND of rs and op2, result in rd

or rd, rs, op2 Logical OR of rs and op2, result in rd

xor rd, rs, op2 Logical XOR of rs and op2, result in rd

mask rd, rs, op2 Logical AND of rs and NOT op2, result in rd

Shift instructions

shl rd, rs, count Shift rs value left count places, result in rd

shr rd, rs, count Shift rs value right count places, result in rd

rol rd, rs, count Rotate rs value left count places, result in rd

ror rd, rs, count Rotate rs value right count places, result in rd

Memory and I/O instructions

ldm rd, (rs) ± offset Load to rd from memory

stm rd, (rs) ± offset Store to memory from rd

inp rd, (rs) ± offset Input to rd from input controller register

out rd, (rs) ± offset Output to output controller register from rd

Branch instructions

bz ± disp Branch if Z is set

bnz ± disp Branch is Z is not set

bc ± disp Branch if C is set

bnc ± disp Branch if C is not set

Jump instructions

jmp addr Jump to addr

jsb addr Jump to subroutine at addr

Miscellaneous instructions

ret Return from subroutine

reti Return from interrupt

enai Enable interrupts

disi Disable interrupts

wait Wait for interrupts

stby Enter low-power standby mode

TAB LE 7.1  The Gumnut 
instruction set. rd and rs are regis-
ters, op2 is a register (rs2) or an 
immediate value (immed), count is
count of number of places to shift 
or rotate, disp is a displacement 
from the next-instruction address, 
and addr is a jump target address.



C (carry). They are set to 1 or cleared to 0 depending on the result of 
certain instructions, and can be tested to decide among alternative courses 
of action in the program.

Arithmetic and Logical Instructions

The arithmetic and logical instructions operate on 8-bit data values 
stored in the CPU’s general-purpose registers and store the result in 
the destination register, rd. For each instruction, one value is taken 
from a source register, rs. The other value, op2, either comes from 
a second source register (rs2) or is an immediate value (immed). An 
immediate value is a value that is specified as part of the instruction, 
rather than being stored in a register or in memory. For example, the 
instruction

add r3, r4, r1

adds the values currently in registers r4 and r1 and puts the result in r3. 
Similarly, the instruction

add r5, r1, 2

adds the immediate value 2 and the value currently in r1 and puts the 
result in r5. Note that the destination register can be the same as a source 
register. For example, the instruction

sub r4, r4, 1

updates register r4 by decrementing its value.
The addition and subtraction instructions treat the data values as 

8-bit unsigned integers. The addc instruction includes the value of the 
C condition code as a carry-in bit, and the subc instruction includes 
the C value as a borrow-in bit. All of the instructions in this group modify 
the Z and the C bits. They set Z to 1 if the instruction result is 0, and they 
clear Z to 0 if the result is nonzero. The add and addc instructions set C 
to the carry-out bit of the addition, the sub and subc instruction set C to 
the borrow out of the subtraction, and the remaining logical instructions 
clear C to 0. We will see later in this section how the condition-code bits 
are used by branch instructions.
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example  7 .1  Write a sequence of instructions to evaluate the expression 
2x� 1, assuming the value of x is in register r3 and the result is to be put in r4.

solut ion We can multiply x by 2 by adding it to itself. The required 
instructions are

add r4, r3, r3
add r4, r4, 1

example  7 .2 Write a sequence of instructions that sets the Z bit to 1 if 
the least significant 4 bits of r2 have the value 0101.

solut ion We can test whether a register value is equal to 0101 by 
subtracting 0101 from the value and putting the result in r0. The result value 
is ignored, but Z is set as a side-effect of the subtraction. However, the most 
significant 4 bits of r2 might contain 1s that we are not interested in, so we need 
to clear them to 0s before doing the subtraction. We can use an AND operation 
with the value 00001111 to clear the bit. The required instructions are:

and r1, r2, 0x0F
sub r0, r1, 0x05

The notation “0x” is a prefix for a hexadecimal value in the Gumnut assembly
code notation. Thus, 0x0F is the value 00001111 and 0x05 is the value 
00000101.

Shift Instructions

The shift instructions shift or rotate 8-bit values taken from the general 
purpose register rs and store the result in register rd. The number of places 
to shift or rotate is specified in the instruction as count. For example, the 
instruction

shl r4, r1, 3

reads the value currently in register r1, shifts it left by 3 places and puts the 
result in r4. The shift-left and shift-right instructions discard the bits shifted 
past the end of the 8-bit byte and fill the vacated bit positions with 0s. The 
rotate-left and rotate-right instructions copy the bits shifted past the end of 
the byte around to the other end. All of these instructions set Z to 1 if the 



instruction result is 0, and they clear Z to 0 if the result is nonzero. They set 
the C bit to the value of the last bit shifted past the end of the byte.

example  7 .3  Write instructions that multiply the value in r4 by 8, 
ignoring the possibility of overfl ow.

solut ion Recall from Section 3.1.2 that we can multiply an unsigned 
binary integer by 2k by shifting k places to the left. Thus, since 8 � 23, an 
instruction to multiply r4 by 8 is

shl r4, r4, 3

Memory and Input/Output Instructions

The Gumnut has separate instructions for accessing data memory and I/O 
controllers. We will discuss the operation of I/O controllers in detail in 
Chapter 8. For now, we simply point out that I/O controllers have regis-
ters that govern their operation, and that these registers can be read and 
written by the CPU. Just as locations in memory have addresses, each 
I/O controller register has an identifying address. The Gumnut uses 8-bit 
addresses for I/O controller registers, distinct from the 8-bit addresses it 
uses for locations in the data memory. We say that the Gumnut has  separate
address spaces for data memory and for I/O controller registers. This is in 
contrast to a number of other CPU instructions sets, in which I/O control-
ler registers are part of the same address space as memory addresses. In 
those instruction sets, we say I/O registers are memory mapped.

For all of the Gumnut’s memory and I/O instructions, the address to 
access is computed by adding the current value in rs and an offset value 
specified in the instruction. The load from memory instruction reads from 
the data memory at the computed address and puts the read value in reg-
ister rd. The store to memory writes the value from register rd to the data 
memory at the computed address. The input and output instructions per-
form similar operations, but read or write to the I/O controller registers at 
the computed address. None of these instructions affect the values of the 
Z and C bits. As examples, the instruction

ldm r1, (r2)+5

calculates the memory address by adding the current value of r2 and the 
offset 5. It then reads from memory at that address and puts the read 
value in r1. Similarly, the instruction
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292 C H A P T E R  S E V E N p r o c e s s o r  b a s i c s

stm r1, (r4)–2

stores the value from r1 into memory at the address 2 less than the current 
value of r4.

If we want to specify a particular address to access, we can use r0 as 
the register for rs. Recall that r0 always contains 0, so adding it to the 
offset value specified in the instruction just gives the offset value. In this 
case, we usually interpret the offset value as an unsigned 8-bit address. 
Our assembler tool allows us to imply the specification “(r0)” by omis-
sion and just write the address value, for example,

inp r3, 156

which reads from the I/O controller register at address 156 into r3. Simi-
larly, if a register contains the address we want to access, we can use an 
offset of 0. Again, our assembler allows us to imply a 0 offset by omission, 
as in the instruction.

out r3, (r7)

example  7 .4  Write instructions that increment a 16-bit unsigned integer 
stored in memory. The address of the least signifi cant byte is in r2. The most 
signifi cant byte is in the next memory location.

solut ion Since the Gumnut arithmetic instructions only operate on 8-bit 
data, we need to do two adds, with the carry from the first used in the second. 
The instructions are

ldm r1, (r2)
add r1, r1, 1
stm r1, (r2)
ldm r1, (r2)+1
addc r1, r1, 0
stm r1, (r2)+1

Since the load and store instructions do not affect the C bit, the C result from 
the first addition is preserved and used in the addc instruction.



Branch Instructions

The branch instructions allow us to conditionally change the normal flow of 
execution. We mentioned earlier that the CPU follows a fetch-decode-execute 
loop to execute instructions at successive addresses in the instruction memory. 
It uses a program counter (PC) register to keep track of the next instruc-
tion address, and increments this register after fetching each instruction. The 
branch instructions modify the sequential flow of execution by changing the 
PC value. Each form of branch tests a condition, and if the condition is true, 
adds a signed 8-bit displacement value to the PC. The displacement, specified 
in the instruction, indicates how many locations forward or backward the 
next instruction to execute is from the current instruction. (A displacement 
of 0 refers to the instruction after the branch, since the PC has already been 
incremented after fetching the branch instruction.) If the condition is false, the 
PC is unchanged, and execution continues sequentially. The different branch 
instructions allow us to test each of the Z and C condition code bits for being 
set to 1 or not set to 1. Since these bits are affected by arithmetic, logical and 
shift instructions, we often deliberately precede a branch instruction with one 
of these instructions to compare data values. In other cases, the condition 
code setting occurs as a serendipitous side effect of data operations that we 
need to perform anyway.

example  7 .5  Suppose the value in data memory location 100 represents 
the number of seconds elapsed in a time interval. Write instructions to increment 
the value, wrapping around to 0 when the value increments above 59.

solut ion One possible sequence of instructions is

ldm r1, 100
add r1, r1, 1
sub r0, r1, 60
bnz +1
add r1, r0, 0
stm r1, 100

The first two instructions load the value into r1 and increment it. The sub

instruction subtracts 60 from the new value and discards the result (by 
using r0 as the destination register). However, the Z condition code is 
updated as a side effect. If the new value is 60, the subtraction result is 0, 
so Z is set to 1; otherwise, it is cleared to 0. The branch instruction skips 
forward one instruction if Z is 0. The intervening add instruction, which is 
only executed when the incremented value was 60, overwrites the incremented 
value with 0. The final instruction, executed in all cases, stores the final value 
back to memory.
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Jump and Miscellaneous Instructions

The first of the jump instructions, jmp, unconditionally breaks the sequen-
tial flow of execution by setting the PC to the address specified in the 
instruction.

example  7 .6  Write instructions that test whether r1 is 0, and if so, clear 
the contents of memory location 100. If r1 is other than 0, the instructions 
should clear the contents of memory location 200 instead. Assume that the 
instructions start at address 10 in the instruction memory.

solut ion  In the required sequence of instructions we have two alternative 
actions to perform, depending on whether r1 is 0. Since instructions are laid out 
in linear order in the instruction memory, we need to put the instructions for the 
two alternatives one after the other. We need an unconditional jump at the end 
of the first alternative to bypass the instructions for the second alternative. The 
instructions are

10: sub r0, r1, 0
11: bnz +2
12: stm r0, 100
13: jmp 15
14: stm r0, 200
15: ...

The second of the jump instructions, jsb, is somewhat more involved 
than the simple jump instruction. It allows us to execute a subroutine, 
that is, a collection of instructions that perform some desired  operations 
and that we can invoke from different parts of the program. Start-
ing execution of a subroutine is referred to as calling the subroutine. 
The jsb instruction is used in tandem with the ret instruction, which 
returns from the subroutine to the place of the call. The sequence of 
instruction execution for a subroutine is shown in  Figure 7.4. Execu-
tion proceeds sequentially until the jsb is encountered.  The jsb saves 

subroutine

instructions

…
…

…

ret

mjsb m

…

jsb m

F I G U R E 7.4  Flow of execu-
tion of subroutine calls. The 
subroutine is called from different 
places in the program, and in each 
case, returns to the instruction 
following the jsb.
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the incremented PC value (the return address) in an internal register 
and then updates the PC with the subroutine address specified in the 
instruction. This causes  instructions in the subroutine to be executed. 
Eventually, the subroutine executes a ret instruction, which restores 
the saved return address to the PC. Thus, execution continues with the 
instruction after the jsb. The  program can include several jsb instruc-
tions that all refer to the same subroutine. In each case, the return 
address saved is the address of the instruction after the jsb. This allows 
execution to return to the right place, regardless of where the subrou-
tine was called from.

The instructions in the subroutine can include any in the CPU’s 
instruction set. This raises the possibility that the subroutine might 
include a jsb to call a sub-subroutine. The sub-subroutine might include 
a further jsb to call a sub-sub-subroutine, and so on. When the sub-
sub-subroutine returns, execution should continue just after the jsb in 
the sub-subroutine, and when it returns, execution should continue just 
after the jsb in the subroutine. In order to achieve this effect, the CPU 
needs more than just a single register to save return addresses. In fact, 
it needs a push-down stack of registers, as shown in Figure 7.5. Each 
time a jsb is executed, the return address for that jsb is pushed onto the 
stack. When a ret is executed, the return address used is the top entry 
on the stack, and that entry is popped from the stack. The Gumnut has 
a return-address stack that can hold up to eight entries, which is ample 
for most programs.

example  7 .7  Suppose an application keeps track of a number of time 
intervals concurrently. Revise the sequence of instructions from Example 7.5 to 
form a subroutine that increments the number of seconds stored in the memory 
location whose address is in r2. Show how to call the subroutine to increment 
values in locations 100 and 102.

solution We can rewrite the instructions to form a subroutine as 
follows:

ldm r1, (r2)
add r1, r1, 1
sub r0, r1, 60
bnz +1
add r1, r0, 0
stm r1, (r2)
ret

Assuming the first instruction in the subroutine is at location 20 in the instruction 
memory, the calling instructions are

return addr for first call

return addr for second call

return addr for first call

return addr for second call

return addr for third call

F I G U R E 7.5  The push-down 
return-address stack after two 
nested calls (top) and a third 
nested call (bottom).
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add r2, r0, 100
jsb 20
add r2, r0, 102
jsb 20

The remaining miscellaneous instructions deal with interrupts, which 
are a way of responding to events signaled by I/O controllers. The enable-
interrupt instruction allows the CPU to respond to interrupt events, and 
the disable-interrupt instruction prevents the CPU from responding. 
When the CPU responds to an interrupt event, it saves the address of the 
instruction it is about to execute and, instead, starts executing instruc-
tions in a special subroutine called an interrupt handler. The interrupt 
handler finishes with a return-from-interrupt (reti) instruction rather than 
a ret instruction. The wait instruction suspends execution until an inter-
rupt occurs, and the stby instruction enters a low-power standby mode 
until an interrupt occurs. The difference is that the CPU would normally 
be able to respond to an interrupt immediately when suspended using a 
wait instruction, whereas it could take some time to power up from a stby
instruction. We will describe interrupt processing in more detail as part of 
our discussion of input/output in Chapter 8.

7.2.2 T H E  G U M N U T  A S S E M B L E R

As we mentioned earlier, programs can be written in assembly language and 
translated into a sequence of binary-coded instructions by an assembler. 
The supplementary material for this book includes a simple assembler 
for the Gumnut, called gasm. The gas User Guide, also included in the 
supplementary material, provides a detailed description of the assembly 
language and how to use the assembler. We will describe a few key points 
here, illustrated by the program in Figure 7.6.

; Program to determine greater of value_1 and value_2

 text
 org 0x000 ; start here on reset
 jmp main

; Data memory layout

 data
value_1: byte 10
value_2: byte 20
result: bss 1

(continued)

F I G U R E 7.6  A Gumnut 
assembly language program to 
fi nd the greater of two values.



; Main program

 text
 org 0x010
main: ldm r1, value_1 ; load values
 ldm r2, value_2
 sub r0, r1, r2 ; compare values
 bc value_2_greater
 stm r1, result ; value_1 is greater
 jmp finish
value_2_greater: stm r2, result ; value_2 is greater

finish: jmp finish ; idle loop

We have seen in Verilog models that we can include comments, 
starting with the characters “//”, to describe parts of the model. We can 
also include comments in assembly language programs. In Figure 7.6, 
comments start with the “;” character and extend to the end of the line. 
Comments are especially important in assembly language programs, since 
each instruction performs only a single simple step. We use comments to 
describe the larger intent of a sequence of instructions.

The assembler lets us specify both the instructions to be included in 
the instruction memory and the contents of the data memory. We tell the 
assembler which memory we are specifying using the text (for instruction 
memory) and data (for data memory) directives. A directive does not rep-
resent a CPU instruction. Rather, it tells the assembler what to do when 
translating the program. Rather than requiring us to specify the address 
for each instruction and data item, the assembler adds instructions and 
data items at increasing addresses in each memory, starting at address 0. It 
automatically keeps track of where it is up to by using a location counter
for each of the instruction and data memories. We can direct the assem-
bler to change the location counter for the memory currently being filled 
by using an org (short for “origin”) directive. For example, in Figure 7.6, 
the org 0x010 directive in the second text segment tells the assembler to 
continue placing instructions from location 01016.

Within a data segment, we can include directives that specify the 
initial contents of data memory locations. The byte directive speci-
fies the contents of an 8-bit location. The bss (short for “block starting 
with symbol”) directive reserves a specified number of bytes of memory 
storage without initializing their content. We can precede each of these 
directives with a label that represents the starting address of the loca-
tions. The assembler works out the address for us. We can then refer to 
the label in instructions in the program. For example, the ldm instruc-
tions in Figure 7.6 refer to the labels value_1 and value_2 to load the 
initialized content of the data memory locations, and the stm instruction 
refers to the label result to store the greater value in the reserved location. 
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F I G U R E 7.6  (continued)

A Gumnut assembly language 
program to fi nd the greater of two 
values.
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The advantage of using labels is that, when we revise the program, we 
don’t need to revise the address values, since the assembler will work out 
new values when the program is reassembled.

Within a text segment, we include the instructions that form the 
program. Each instruction can be labeled, and the labels can be refer-
enced in branch and jump instructions. Again, the assembler works out 
the instruction addresses represented by the labels, so that we don’t have 
to work out branch displacements manually, or update references when 
we change the program.

One final point to note about the program in Figure 7.6 is that, once it 
completes its task, it doesn’t stop executing. The Gumnut does not include 
any instructions for stopping. Instead, we include a busy loop at the end 
of the program. This just consists of an instruction that jumps back to 
itself, performing no useful work. Busy loops are common in embedded 
systems, since we usually do not want an embedded computer to stop 
(unless we turn the power off). An alternative is to have a CPU instruc-
tion or other facility that suspends operation until some activity is needed, 
such as responding to an I/O event. (On the Gumnut, we could use a wait
or stby instruction.) This has the advantage that power consumption in 
the suspended state is typically much lower than in the active state. For 
this reason, suspending is preferred in battery-powered and other power-
sensitive applications.

7.2.3 I N S T R U C T I O N  E N C O D I N G

The instructions of a program are a form of information, and so, like 
any other information, can be encoded in binary. If we were to list all 
of the possible instructions, taking into account the operation to be per-
formed and any registers, addresses, immediate values, and so on, we 
could devise an instruction coding taking up the smallest number of bits. 
However, decoding instructions would then be complex, leading to a large 
and slow decoder circuit within the CPU. Instead, instruction sets are usu-
ally encoded by separating a code word into distinct fields, each of which 
encodes one aspect of an instruction. The primary field is the opcode,
short for operation code, that specifies the operation to be performed and, 
by implication, the layout of the remaining fields within the code word. 
By keeping the field layout simple and regular, we make the circuit for the 
instruction decoder simple and, hence, fast.

As an illustration, the instruction encoding for the Gumnut is shown 
in Figure 7.7. (The full details of the instruction encoding are described in 
Appendix D.) Each instruction code word is 18 bits long. The left-most 
bits, together with the function code (fn), form the opcode. Those instruc-
tions that specify register numbers have the numbers encoded in 3-bit 
binary form in separate fields of the instruction word. Similarly, instruc-
tions that specify immediate values, offsets, or displacements have those 



values binary encoded in the right-most 8 bits of the instruction word. In 
several of the instruction formats, some bits remain unused. While this may 
waste some storage space within the instruction memory, the simplicity of 
encoding and the consequent simplicity of decoding is a trade-off worth 
making. As we mentioned earlier, it is the task of the assembler to trans-
late instructions specified in textual assembly language into this binary 
encoding. Conversely, if we are testing a design that includes an embedded 
Gumnut, we may need to disassemble binary-coded instructions, that is, 
to determine the instructions corresponding to binary instruction code 
words processed by the embedded core.

example  7 .8  Given that the function code for the addc operation is 001, 
what is the binary instruction word for the instruction

addc r3, r5, 24

solut ion  This is an arithmetic/logical immediate instruction, so the 
left-most bit is 0, and the function code is 001. The destination register r3 is 
encoded as 011, the source register number as 101, and the immediate value as 
00011000. So the complete instruction word is 0 001 011 101 00011000, or, in 
hexadecimal, 05D18.

example  7 .9  What instruction is represented by the hexadecimal instruc-
tion word 2ECFC?
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1 1 01 1 1 fn disp
6 2 2 8

Branch

Arith/Logical
Register

Arith/Logical
Immediate

Shift

Memory, I/O

1 1 01 fnrd rs rs2
4 3 33 3 2

0 fn rd rs immed
1 83 3 3

1 1 0 fnrd rs count
3 31 23 3 3

1 0 fn rd rs offset
2 2 3 3 8

1 1 1 1 0

0

fn addr
5 1 12

Jump

1 1 1 1 1 1 fn
7 3 8

Miscellaneous

F I G U R E 7.7  Instruction 
encoding for the Gumnut, showing 
the layout and size of fi elds within 
instructions.
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solut ion The binary instruction word is 111110110011111100. The 
left-most bits, 111110, indicate that this is a branch instruction. The function 
code 11 specifies a bnc instruction. The next two bits are 0, but are ignored in 
any case. The right-most 8 bits are the signed 2s-complement displacement �4.
So the instruction is bnc –4.

7.2.4 OT H E R  C P U  I N S T R U C T I O N  S E TS

The Gumnut instruction set is relatively simple, compared to those of 
other CPUs. Nonetheless, it contains all the essential elements, and is 
quite sufficient for writing realistic embedded programs. It is similar to 
the instruction set of the PicoBlaze 8-bit soft core provided by Xilinx. 
One thing that distinguishes both of these CPUs from other commonly 
used 8-bit cores and microcontrollers is that all instructions are encoded 
in the same length. Moreover, the instruction length is not a multiple 
of 8 bits. (In both cases, it is 18 bits, which is one of widths to which a 
memory block in a Xilinx FPGA can be configured.) An example of an 
8-bit microcontroller that takes a different approach is the 8051 from 
Intel and other vendors. It originated as a stand-alone microproces-
sor, and was subsequently released in microcontroller versions with 
various amounts of memory and I/O controllers included on chip. Its 
instruction set inherits from those of previous general purpose CPUs, 
in which a single memory address space was shared between instruc-
tions and data. Since locations in the 8051 memory are 8 bits wide, 
instructions are a multiple of 8-bit bytes. The opcode is included in 
the first byte. For some instructions the next one or two bytes contain 
further information to specify the instruction, such as an address and 
immediate data.

Another distinguishing characteristic of the 8051, compared to the 
Gumnut and PicoBlaze, is that the instruction set contains a much larger 
repertoire of operations. We call CPUs with instruction sets like this com-
plex instruction set computers (CISCs), in contrast to the Gumnut and 
similar CPUs, which are reduced instruction set computers (RISCs). Many 
of the operations that can be expressed as one instruction on an 8051 
would have to be implemented using a sequence of two or three instruc-
tions on a Gumnut. However, the complexity of the instruction set makes 
it much more difficult for the CPU to fetch and decode instructions. It 
also makes it difficult to implement a number of important CPU internal 
design techniques for increasing performance. For this and other reasons, 
RISC CPUs tend to dominate now.

The CPUs that we have mentioned thus far in this section are classified
as 8-bit CPUs, as they operate only on 8-bit data. If the information to 
be represented in an embedded system is predominantly 16-bit, 32-bit or 
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64-bit data, using an 8-bit processor is very cumbersome. We may not be 
able to meet performance constraints, due to the number of instructions
needed to implement 16-bit, 32-bit or 64-bit operations using 8-bit 
instructions. The alternative is to use a larger CPU whose instructions 
can operate on the larger data sizes directly. Most of the widely used pro-
cessor cores for FPGAs and ASICs are 32-bit or 64-bit RISC CPUs. They 
have 32-bit or 64-bit registers and perform arithmetic and logical opera-
tions on data in those registers. They can load and store 8-bit, 16-bit, 
32-bit and 64-bit data between registers and data memory. Instructions 
are encoded in fixed-length instruction words, usually 16 or 32 bits long. 
The larger, higher performance CPUs include instructions to operate on 
floating-point data as well as integers. Examples of this type of CPU 
include the PowerPC, ARM, MIPS and Tensilica cores that we mentioned 
earlier.

1. What is meant by the instruction set of a CPU?

2. What three steps are repeatedly performed by a CPU to execute a 
program?

3. How does the CPU keep track of which instruction to execute next?

4. What is meant by the terms little endian and big endian?

5. What does an assembler do?

6. What does each of the following Gumnut instructions do?

addc r2, r3, 25

shr  r1, r1, 3

ldm  r5, (r1)+4

bnz  –7

jsb  do_op

ret

7. What is the binary instruction word for the following Gumnut 
instruction?

bnc +15

8. What Gumnut instruction is represented by the hexadecimal 
instruction word 05501?

K N O W L E D G E 
T E S T  Q U I Z
K N O W L E D G E 
T E S T  Q U I Z
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7.3 I N T E R FA C I N G  W I T H  M E M O R Y

The way in which a CPU is connected to instruction and data memories 
depends on the implementation fabric used for both the CPU and the 
memories. In most embedded systems, the instruction memory is imple-
mented with ROM, NOR flash memory, SRAM, or a combination of 
these. Including flash memory gives us the opportunity to upgrade the 
embedded software in the field. The data memory is usually implemented 
just with SRAM. Typically, the CPU and the memories each have a set of 
connection signals for the CPU/memory interface, and it is our job to join 
them together. If the two sets of signals are compatible, our job is rela-
tively easy. Often, however, the sets of signals are designed in isolation, or 
according to different conventions. In such cases, we need to include glue 
logic to complete the interface.

One of the simplest cases of interfacing a CPU with memory is that 
of an embedded 8-bit core within an FPGA. The core includes interface 
signals that connect directly to those of the FPGA’s memory blocks.

example  7 .10  The memory interface signals of the Gumnut core are 
described in the following Verilog module defi nition:

module gumnut ( input clk_i,
input rst_i,
output inst_cyc_o,
output inst_stb_o,
input inst_ack_i,
output [11:0] inst_adr_o,
input  [17:0] inst_dat_i,
output data_cyc_o,
output data_stb_o,
output data_we_o,
input data_ack_i,
output [7:0] data_adr_o,
output [7:0] data_dat_o,
input  [7:0] data_dat_i,

 ... );
endmodule

Show how to include an instance of the Gumnut core in a Verilog model of an 
embedded system with a 2K � 18-bit instruction memory and a 256 � 8-bit 
data memory.

solut ion The ports in the module can interface with the control signals of 
a flow-through SSRAM and a ROM implemented using FPGA SSRAM blocks, 
as described in Sections 5.2.2 and 5.2.5. In our module for our embedded 
system, we include the necessary nets and variables to connect to an instance 



of the Gumnut entity, and use the nets and variables in always blocks for the 
instruction and data memories. The module is

module embedded_gumnut;

reg [17:0] inst_ROM [0:2047];
reg [7:0] data_RAM [0:255];

wire clk;
wire rst;
wire inst_cyc_o;
wire inst_stb_o;
reg inst_ack_i;
wire [11:0]  inst_adr_o;
reg  [17:0]  inst_dat_i;
wire data_cyc_o;
wire data_stb_o;
wire data_we_o;
reg data_ack_i;
wire [7:0] data_adr_o;
wire [7:0] data_dat_o;
reg  [7:0] data_dat_i;
...

gumnut CPU ( .clk_i(clk_i), .rst_i(rst_i),
 .inst_cyc_o(inst_cyc_o), .inst_stb_o(inst_stb_o),
  .inst_ack_i(inst_ack_i),
 .inst_adr_o(inst_adr_o), .inst_dat_i(inst_dat_i),
 .data_cyc_o(data_cyc_o), .data_stb_o(data_stb_o),
 .data_we_o(data_we_o),   .data_ack_i(data_ack_i),
 .data_adr_o(data_adr_o), .data_dat_o(data_dat_o),
 .data_dat_i(data_dat_i), ... );

initial $readmemh("inst_ROM.data", inst_ROM);

always @(posedge clk)  // Instruction memory
if (inst_cyc_o && inst_stb_o) begin
inst_dat_i <= inst_ROM[inst_adr_o[10:0]];
inst_ack_i <= 1'b1;

end
else
inst_ack_i <= 1'b0;

always @(posedge clk)  // Data memory
if (data_cyc_o && data_stb_o)
if (data_we_o) begin

 data_RAM[data_adr_o] <= data_dat_o;
 data_dat_i <= data_dat_o;
 data_ack_i <= 1'b1;

end
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(continued)
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else begin
 data_dat_i <= data_RAM[data_adr_o];
 data_ack_i <= 1'b1;

end

...

endmodule

Note that the instruction address port of the Gumnut core is 12 bits wide, 
whereas the 2K � 18-bit instruction memory uses an 11-bit-wide address. In this 
design, we simply leave the most significant address bit of the core unconnected. 
Each location in the instruction memory thus appears twice in the Gumnut’s 
instruction address space: once at an address with the most significant bit 0, and 
once at an address with the most significant bit 1. We would normally just use 
one address for the location and ignore the other alias address.

Single-chip microcontrollers, such as those based on the 8051 
described in Section 7.2.4, include a small amount of instruction and data 
memory on the microcontroller chip. However, many of them are able to 
address additional off-chip memory, using a number of the chip pins for 
the external memory interface signals. Since using the pins for this purpose 
reduces the number of pins available for inputs and outputs, the memory 
interface pins are often multiplexed to perform different functions at dif-
ferent times. This complicates the connection between the microcontroller 
and external memory.

As an illustration, we will describe how to expand the memory of the 
8051 microcontroller. The 8051 can access up to 64K bytes of instruc-
tion memory and 64K bytes of data memory, however, there are only 256 
bytes of data memory and 4K to 16K bytes of instruction memory on the 
chip. The chip has two 8-bit input/output ports, P0 and P2, as well as a 
number of control signals, that can be used to connect to external mem-
ory. Figure 7.8 shows how they would be used to connect to an external 
128K � 8-bit asynchronous SRAM, in which the lower 64K locations are 
used for instructions and the upper 64K locations for data. P2 provides 
the most significant address byte, and P0 is multiplexed with the least 
significant address byte and instruction and data bytes. Since information 
transfer on P0 is bidirectional, tristate drivers are used internally in the 
microcontroller and in the memory data pins.

The 8051 activates the address-latch enable (ALE) signal when it 
drives the least significant address bits on P0. We provide an 8-bit latch 
to hold these bits for the remainder of the memory access cycle. During 
an instruction read access, the 8051 activates the program-store enable 
(
___
PSEN ) signal, driving it to a low logic level. At other times, including data 



accesses, the signal is at a high logic level. Hence, we can use this signal 
directly as the most significant address bit to distinguish between instruc-
tion and data accesses to the external memory. The 8051 activates the  __

 RD  signal during data read accesses and the  
__

 WR  signal during data write 
accesses. We use  

__
 WR  directly to control the memory’s write enable ( 

__
 WE ) 

signal. However, we need a small amount of glue logic to derive the chip 
enable ( 

__
 CE ) and output enable ( 

__
 OE ) signals. We could implement this glue 

logic, together with the address latch, in a small PAL component.
Microcontrollers and processor cores that access 16-bit, 32-bit or 

64-bit data generally need data memories that are wider than 8 bits, even 
though addresses correspond to 8-bit locations. This allows the CPU to 
access a complete data word with one read or write operation. A  common 
approach is to make the data memory one word wide, with the byte 
locations arranged within the words. Figure 7.9 shows the case of byte 
addressing within a 32-bit-wide memory. Depending on whether the CPU 
is big endian or little endian, the most significant byte of a 32-bit word is 
stored in the byte with the lowest or highest address, respectively, of a 32-
bit location. Most 32-bit CPUs ensure that 32-bit data words are stored at 
locations whose addresses are a multiple of four. This allows the word to 
be read or written with just one memory access, rather than requiring two 
partial memory accesses, which would be the case if the word were split 
over two adjacent 32-bit locations. Similarly, CPUs ensure that 16-bit 
halfwords are stored at locations whose addresses are a multiple of two, 
and that 64-bit double-words are stored at locations whose addresses are 
a multiple of eight, for the same reason.

Reading from data memory is quite straightforward. A 32-bit CPU, 
for example, reads the whole 32-bit word containing the required data 
item. If the required item is only a 16-bit halfword or an 8-bit byte, 
the CPU usually extracts the item from the appropriate memory data 
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A(15..8)

A(7..0)

CE

WE

OE

D

A(16)

D

LE

P2

Q
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8051 SRAM

RD

WR

P0

F I G U R E 7.8  Connection 
between an 8051 microcontroller 
and an external combined 
instruction and data memory.

0 1 2 3
4 5 6 7
8 9 10 11

F I G U R E 7.9  Arrangement of 
bytes within words in a 32-bit wide 
memory.
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signals and places it in a destination register. Writing a 32-bit word is 
similarly straightforward. The CPU places the word on the 32 memory 
data signals, and the memory performs a write operation. Writing a 
16-bit halfword or an 8-bit byte is more involved, since we must ensure 
that the other bytes in the corresponding 32-bit memory location are not 
affected. The CPU typically provides separate byte write enable control 
signals instead of (or in addition to) the overall write enable control 
signal. Alternatively, it might provide separate byte enable signals instead 
of an overall memory enable signal. To write an 8-bit byte, the CPU places 
the byte value on the eight memory data signals corresponding to the 
position of the byte within a 32-bit word and activates the associated 
byte enable signal. The memory then performs a write operation, updat-
ing only the enabled byte within the addressed word. Similarly, to write a 
16-bit halfword, the CPU places the halfword value on the appropriate 16 
memory data signals and activates the associated two byte enable signals. 
The memory then writes only those two bytes of the addressed word.

example  7 .11  The Xilinx MicroBlaze 32-bit processor core has connec-
tions to a 32K � 32-bit data memory as shown in Figure 7.10. (AS stands for 
“address strobe.” This signal is active for each memory access.) Describe how 
the following memory operations proceed: a word read from address 00F00; a 
byte read from address 00F13; a word write to address 1E010; a byte write to 
address 1E016; and a halfword write to address 1E020.

solut ion Word read from 00F00: The address is a multiple of four. 
Write_Strobe is 0, so all four memory components perform a read operation, 
providing the 32-bit data on the Data_Read signal.

Byte read from 00F13: The address is 3 more than a multiple of four, so the byte 
is at offset 3 within a word. However, Write_Strobe is 0, so all four memory com-
ponents perform a read operation, providing the 32-bit data on the Data_Read

signal. The CPU extracts the required byte from Data_Read(24:31).

Word write to 1E010: The address is a multiple of four. Write_Strobe is 1 and all 
four Byte_Enable signals are 1, so all four memory components perform a write 
operation, taking the 32-bit data from the Data_Write signal.

Byte write to 1E016: The address is 2 more than a multiple of four, so the byte is 
at offset 2 within a word. The CPU provides the byte data on Data_Write(16:23).
Write_Strobe and Byte_Enable(2) are 1, and the remaining Byte_Enable signals 
are 0. The memory component connected to Data_Write(16:23) performs a write 
operation. The remaining components perform a read operation, but the data 
they supply on Data_Read(0:7), Data_Read(8:15) and Data_Read(24:31) is ignored.

Halfword write to 1E020: The address is a multiple of four, so the halfword is at 
offset 0 within a word. The CPU provides the halfword data on Data_Write(0:15).
Write_Strobe, Byte_Enable(0) and Byte_Enable(1) are 1, and the remaining 



Byte_Enable signals are 0. The memory components connected to Data_Write(0:7) 
and Data_Write(8:15) perform a write operation. The remaining components 
perform a read operation, but the data they supply on Data_Read(16:23) and 
Data_Read(24:31) is ignored.

Some embedded systems require memory storage for large amounts 
of data. In such systems, it may be more appropriate to use dynamic mem-
ory (DRAMs) rather than SRAMs, given the lower cost per bit of DRAM 
components. As we mentioned in Section 5.2.4, controlling DRAMs is 
relatively complex, particularly for modern high-performance synchro-
nous and DDR DRAMs, so we won’t go into details here.

7.3.1 C A C H E  M E M O R Y

High performance embedded processors need to access instructions 
and data at higher rates than simple processors. For such processors, 
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the  memory access time of a large SRAM or DRAM memory system is 
 significantly longer than the clock cycle time of the processor, potentially 
making the memory a performance bottleneck. Many processors avoid 
the bottleneck by including a cache in the path between the processor 
and memory. A cache is a small, fast memory that stores the most fre-
quently used items from the main memory. By making access to these 
items faster, we reduce the average access time experienced by the proces-
sor. Figure 7.11 shows two possible organizations: a single cache for both 
instructions and data, and separate caches.

Operation of a cache is predicated on the principle of locality, which 
involves two important observations about the way programs access 
memory. The first is that a small proportion of instructions and data 
account for the majority of memory accesses over a given interval of time. 
The second is that those items stored in locations adjacent to a recently 
accessed item are likely to be accessed next. To take advantage of these 
observations, we divide the collection of locations in main memory into 
fixed-sized blocks, often called lines, and copy whole lines at a time from 
main memory into the cache memory. When the processor requests access 
to a given memory location, the cache checks whether it already has a 
copy of the line containing the requested item. If so, the cache has a hit, 
and it can quickly satisfy the processor’s request. If not, the cache has a 
miss, and must cause the processor to wait. The cache then copies the line 
containing the requested item from main memory into the cache mem-
ory. When the requested item is a vailable in the cache, the processor can 
proceed with its requested access. The fact that neighboring items are 
also copied into the cache means that subsequent processor requests are 
likely to result in cache hits. As operation of the system proceeds, more 
and more lines are copied into the cache memory, resulting in a reduced 
miss rate. When the cache memory is full, some of the copied lines must 
be replaced by incoming lines. Ideally, the cache should replace the least 
recently used line. Since keeping track of usage history is complex, most 
caches use an approximation to determine which line to replace. In the 



steady state, caches can achieve miss rates of the order of 1% of processor 
requests. Thus, the average access time seen by the processor is very close 
to the access time of the cache memory.

For a system with cache memory, most of accesses to main memory 
are to entire lines, rather than to single locations. Since the processor is 
kept waiting during a main-memory operation, it is desirable to reduce 
the waiting time by making cache-line accesses as fast as possible. There 
are a number of advanced techniques that we can use to enable a higher 
rate of data transfer, or memory bandwidth. These include:

Wide memory: Sufficient memory chips are used so that an entire 
cache line can be accessed at once. The line can then be transferred 
back to the cache on a wide bus in one clock cycle, or over a 
narrower bus in several clock cycles.

Burst transfers: The CPU issues the first address of a line to be 
accessed in memory. The memory then performs a sequence of 
accesses at successive locations, starting from the first address. This 
technique obviates the time required to transfer the address for loca-
tions other than the first.

Pipelining: The memory system is organized as a pipeline so that 
steps of different memory operations can be overlapped. For exam-
ple, the pipeline steps might be address transfer, memory access, and 
returning read data to the CPU. Thus, the memory system could 
have three memory operations in progress concurrently, with one 
operation completed per clock cycle.

Double data rate (DDR) operation: Rather than transferring data 
items only on rising clock edges, data can be transferred on both 
rising and falling clock edges. This doubles the rate at which data is 
transferred, hence the name.

These and a number of other techniques can be used in combination 
to form a memory system with sufficient bandwidth to allow the proces-
sor and cache to operate with minimal waiting time. A detailed discussion 
is beyond the scope of this book. The topic is addressed in books on com-
puter organization and computer architecture (see Section 7.5).

1. When might we need glue logic to connect a memory to a CPU?

2. In the 8051 microcontroller, why are data signals and the least 
signifi cant eight address signals multiplexed onto the same set of 
pins?

3. How many bits wide would the data memory for a 32-bit CPU 
typically be?
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�

�
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4. Why does a 32-bit CPU provide separate byte-enable signals for its 
data memory?

5. What two observations about the way programs access memory 
defi ne the principle of locality?

6. What is meant by the terms cache hit and cache miss?

7. During a cache miss, what happens?

8. What is meant by the term memory bandwidth?
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7.4 C H A P T E R  S U M M A R Y

A computer system generally contains a central processing unit 
(CPU), instruction and data memory, input and output (I/O) con-
trollers, and possibly special-purpose accelerators. The elements are 
interconnected by one or more buses.

A microprocessor is a single-chip CPU that can be used in a general 
purpose computer or an embedded computer. A microcontroller is a 
single-chip computer incorporating a CPU, memory and I/O control-
lers. A digital signal processor (DSP) is a CPU specialized for pro-
cessing streams of data from digitized signals.

Microprocessors and CPUs in microcontrollers range in scale from 
simple 8-bit versions to complex 32-bit and 64-bit versions, referring 
to the size of data that can be processed in a single operation.

CPUs can be implemented as predesigned cores and as soft cores.

The instruction set of a CPU is its repertoire of instructions, usu-
ally including arithmetic and logical instructions, memory and I/O 
instructions, branch and jump instructions, and other miscellaneous 
instructions.

Little-endian CPUs store multi-byte data with the least significant 
byte at the lowest address and the most significant byte at the highest 
address. Big-endian CPUs store the bytes in the opposite order.

Instructions are encoded in binary. However, we usually develop 
programs using assembly language or a high-level language and use a 
translator (an assembler or compiler) to translate into binary-coded 
instructions.

Instruction and data memories are usually connected directly to the 
CPU using memory-interface signals. Memories for 8-bit, 16-bit and 
32-bit CPUs are commonly 8, 16 and 32 bits wide, respectively.

Memories for high-performance CPUs can use a number of tech-
niques for improving the memory bandwidth, including burst trans-
fers, pipelining and double data rate (DDR) operation.

7.5 F U R T H E R  R E A D I N G

On Holy Wars and a Plea for Peace, Danny Cohen, Internet Engineering 
Note 137, 1980, available at http://www.rdrop.com/~cary/html/
endian_faq.html. This is the paper that originally adopted the terms 
“little endian” and “big endian” to refer to byte order.
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Computer Architecture: A Quantitative Approach, 4th Edition, John L. 
Hennessy and David A. Patterson, Morgan Kaufmann Publishers, 
2007. Includes a discussion of advanced memory system organiza-
tion. The book also describes techniques, such as caches, used within 
high-performance CPUs to avoid delays due to memory accesses.

Computers as Components: Principles of Embedded Computing System 
Design, Wayne Wolf, Morgan Kaufmann Publishers, 2005. A more 
advanced reference on embedded systems design, covering CPU and 
DSP instruction sets, embedded systems platforms, and embedded 
software design.

Multiprocessor Systems-on-Chips, Ahmed Jerraya and Wayne Wolf, 
Morgan Kaufmann Publishers, 2004. Describes hardware, software 
and design methodologies for embedded systems containing mul-
tiple processor cores.

Engineering the Complex SOC: Fast, Flexible Design with Configu-
rable Processors, Chris Rowen, Prentice Hall, 2004. Describes an 
approach to system-on-chip design based on extensible processors, 
using the Tensilica processor as an example.

ARM System-on-Chip Architecture, 2nd Edition, Steve Furber, 
Addison-Wesley, 2000. Describes the ARM instruction set, a 
number of ARM processor cores, and some examples of embedded 
applications using ARM cores.

Power Architecture Technology, IBM, http://www.ibm.com/
developerworks/power. Resources describing the PowerPC architec-
ture and processor cores.

See MIPS Run, 2nd Edition, Dominic Sweetman, Morgan Kaufmann 
Publishers, 2006. Describes the MIPS architecture, instructions set, 
and programming.

e x e rc i s e  7 . 1  Suppose an embedded system includes two processor cores 
with a 32-bit wide dual-port memory for sharing data between the processors. 
Processor 1 is little endian, and processor 2 is big endian. Use the hexadecimal 
values 1234 (16 bits) and 12345678 (32 bits) to show how data is not shared 
correctly. How might the problem be remedied?

e x e rc i s e  7 . 2  Write Gumnut instructions to evaluate the expression 
2(x� 1), assuming the value of x is in register r2 and the result is to be put in r7.

e x e rc i s e  7 . 3  Write Gumnut instructions to evaluate the expression 
3(x� 1), assuming the value of x is in register r2 and the result is to be put in r7.

E X E R C I S E SE X E R C I S E S
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e x e rc i s e  7 . 4  Write Gumnut instructions to clear bits 0 and 1 of the value 
in register r1, leaving other bits unchanged, and to put the result in r2.

exerc ise  7 .5  Write Gumnut instructions to multiply the value in r4 by 18, 
ignoring the possibility of overflow. Hint: 18 � 16 � 2 � 24 � 21.

e x e rc i s e  7 . 6  Write Gumnut instructions to increment the value in r3 
modulo 60. If the result is 0, the value in r4 is to be incremented modulo 24.

e x e rc i s e  7 . 7  Write Gumnut instructions to test whether the 8-bit value in 
memory location 10 is equal to 99. If so, location 11 is to be set to 1; otherwise, 
location 11 is to be cleared to 0.

e x e rc i s e  7 . 8  Write Gumnut instructions to test whether r3 is 1 and input 
register 7 is also 1. If so, output register 8 is to be set to the hexadecimal value 3C.

e x e rc i s e  7 . 9  Write a Gumnut subroutine to clear a number of consecu-
tive locations in memory to 0. The first address is provided in register r2 and the 
number of locations is provided in r3. Show a call to the subroutine to clear 10 
locations starting from address 196.

e x e rc i s e  7 . 1 0  Write a complete Gumnut program to find the average of 
a sequence of eight 8-bit numbers stored in memory, and to write the result into a 
location in memory. Initialize the eight numbers to be the integers 2, 4, 6, . . . , 16. 
Use a 16-bit sum to calculate the average, and shift instructions to divide by 8.

e x e rc i s e  7 . 1 1  Write a complete Gumnut program that monitors the 
value of input controller register 10. When the value changes from 0 to a non-
zero value, the program increments a 16-bit counter and writes the counter value 
to output controller registers 12 (least significant byte) and 13 (most significant 
byte). The program should not terminate.

e x e rc i s e  7 . 1 2  Using the information in Appendix D, determine the 
encoding for the following Gumnut instructions:

a) sub r3, r1, r0

b) and r7, r7, 0x20

c) ror r1, r1, 3

d) ldm r4, (r3) + 1

e) out r4, 10

f) bz +3

g) jsb 0x68
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e x e rc i s e  7 . 1 3  What Gumnut instructions are encoded by the following 
18-bit hexadecimal values?

a) 009C0

b) 38227

c) 3353D

d) 24AFD

e) 3EA02

f) 3C580

g) 3F401

e x e rc i s e  7 . 1 4  Modify the design in Figure 7.8 to provide separate 
instruction and data memories for the 8051: a 64K � 8-bit ROM for the instruc-
tion memory and a 64K � 8-bit asynchronous SRAM for the data memory. The 
ROM has the same control signals as the SRAM except for the

__
WE  signal.

e x e rc i s e  7 . 1 5  Suppose a cache can satisfy a processor request in 5ns if 
it has a hit; otherwise the memory access time of 20ns must be added to the hit 
time. What is the average access time seen by the processor core for instructions 
for miss rates of 5%, 2% and 1%?

e x e rc i s e  7 . 1 6  Suppose a CPU with 32-bit instructions has an instruction 
cache with 16-byte lines. Addresses refer to bytes in memory. The cache is ini-
tially empty. Instructions are then fetched from the following addresses in order: 
0, 4, 8, 92, 96, 100, 4, 8, 12, 16. For each fetch, determine whether the cache 
hits or misses. Assume no lines are replaced during execution of the sequence.
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i ⁄ o  i n t e r fac i n g

In the previous chapter, we introduced the notion of input/output (I/O) 
controllers that connect an embedded computer system with devices 
that sense and affect real-world physical properties. In this chapter, we 
will describe a range of devices that are used in embedded systems and 
show how they are accessed by an embedded processor and by embedded 
software.

8.1 I / O  D E V I C E S

Digital systems with embedded computers are pervasive in our lives. We 
interact with many of them directly. Some are tools that we use in activi-
ties such as communication, entertainment, and information processing. 
These digital systems must incorporate human interface devices to allow 
us to control their operation and to receive responses. Other digital sys-
tems operate autonomously or under indirect control from us. Examples 
of such systems include industrial control systems, remote sensing devices 
and telecommunications infrastructure. These systems must incorpo-
rate devices to sense and affect the state of the physical world, as well 
as devices to communicate with one another, with controlling computers 
and with human interface devices.

Digital systems interact with the real world with transducers. An 
input transducer, or sensor, senses some physical property and generates 
an electrical signal that corresponds to the property. If the property is 
continuous in nature, such as temperature or pressure, the transducer may 
provide an analog signal that bears a continuous relationship with the 
physical property. Since digital systems deal with discrete representations 
of information, we need to convert the signal from analog to encoded dig-
ital form using a circuit called an analog-to-digital converter. Other forms 
of input transducer for continuous properties may provide discrete digital 
signals directly. An example is the shaft encoder for rotational position 
that we described in Section 3.1.3.

8
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An output transducer, on the other hand, uses an electrical signal to 
cause a physical effect. Some transducers use an analog electrical signal 
to affect a physical property that is continuous in nature. An example 
is a loudspeaker that causes a continuously varying air pressure that we 
hear as a sound. To use such transducers in digital systems, we need a 
digital-to-analog converter circuit to convert from encoded digital form 
to an analog signal. Other forms of output transducer can use digital 
signals directly. Such transducers typically take a single-bit digital signal 
and cause a physical property to assume one of two values. For example, 
a transducer may cause a mechanical component to move to one posi-
tion or another. Electromechanical transducers like this are often called 
actuators.

In the remainder of this section, we will describe a number of input 
and output devices that may be encountered in embedded systems. Then, 
in the next section, we will show how these devices can be connected to 
an embedded computer using input and output controllers.

8.1.1 I N P U T  D E V I C E S

Many digital systems include mechanically operated switches of various 
forms as input devices. These include push-button and toggle switches oper-
ated by human users, and microswitches operated by physical  movement 
of mechanical or other objects. An example of the latter is a microswitch 
used to detect the presence of paper in a printer. In Section 4.4.1, we 
discussed ways in which switches can be connected as inputs to digital 
systems, and focused particularly on the problem of mechanical contact 
bounce and how to deal with it.

Keypads and Keyboards

Push-button switches are also used in keypads, for example, in phones, 
security system consoles, automatic teller machines, and other appli-
cations. In principle, we could treat each key in a keypad as a distinct 
push-button switch and connect it to the digital system as we have previ-
ously described. However, that would require a large number of signals 
and debouncing circuits, particularly for a large keypad. A more com-
mon technique is to arrange the key switches into a matrix, as shown in 
 Figure 8.1, and to scan the matrix for closed contacts. When all of the key 
switches are open, all column lines (c1 through c3) are pulled high by the 
resistors. When a key switch is closed, one column line is connected to one 
row line (r1 through r4). We scan the matrix by driving one row line low 
at a time, leaving the rest of the row lines pulled high, and seeing if any 
of the column lines become low. For example, if the 8 key is pressed, c2 
is pulled low when r3 is driven low. If more than one key in a given row 
is pressed at the same time, all of the corresponding column lines will be 
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pulled low when the row line is driven low. Thus, we are able to determine 
the same information about which keys are pressed as we would had we 
used individual connections for each key switch.

This raises the question of how the row lines are driven low. We could 
use a counter, together with circuitry that stores the count value and the 
column-line values for access by the embedded software. However, that 
would require synchronizing the processor with changes in count value so 
that the software could read the values at the appropriate times. A simpler 
approach is to provide a register into which the processor can write values 
to be driven on the row lines and another register for the processor to read 
the values of the column lines. This is shown in Figure 8.2. (We consider 
how the registers are attached to the processor in Section 8.2.) Since each 
of the key switches is a mechanical switch, it is subject to contact bounce. 
Thus we need to apply techniques for debouncing similar to those that 
we described for individual switches. The embedded software running 
on the processor needs to scan the matrix repeatedly. When it detects a 
key closure, it must check that the same key is still closed some time (say, 
10ms) later. Similarly, when it detects a key release, it must check that the 
same key remains released some time later. The scan must be repeated suf-
ficiently often to debounce key presses without introducing a perceptible 
delay in response to key presses.

In a small digital system with a small keypad, the processing load to 
detect and debounce key presses would not be a significant part of the 
overall function of the system. The task of managing the keypad may 
safely be included as part of the main (or only) processor’s workload. 
In other systems, it may be more appropriate to delegate the task, and 
possibly other I/O tasks, to subordinate embedded processors. The logi-
cal extension of this idea is illustrated by a keyboard for a general pur-
pose computer. It has between 80 and 100 key switches arranged in a 
scanned matrix. Most keyboards include separate embedded processors 
whose entire workload consists of detecting key presses and dealing with 
roll-over (pressing a new key before the previously pressed key has been 
released), and communicating the information to the computer to which 
it is connected.

Knobs and Position Encoders

Historically, rotating knobs have been used in the user interfaces of elec-
tronic equipment to allow the user to provide information of a continuous 
nature. A common example is the volume control knob on audio equip-
ment, or the brightness control on a light dimmer. In analog electronic cir-
cuits, the knob usually controls a variable resistor or potentiometer. With 
the introduction of digital systems, knobs were replaced by switches in 
many applications. For example, the volume control on audio equipment 
was replaced with two buttons, one to increase the volume and another 

 8.1 I/O Devices C H A P T E R  E I G H T  317

1 2 3

4 5 6

7 8 9

* 0 #

input
register

ou
tp

ut
re

gi
st

er

F I G U R E 8 .2  A keypad matrix 
with an output register for driving 
row lines and an input register for 
sensing column lines.



318 C H A P T E R  E I G H T  i / o  i n t e r f a c i n g

to decrease the volume. However, that form of control is not as intuitive 
or easy to use as a knob, so a digital form of knob is now used in many 
applications.

One form of digital knob input uses a shaft encoder, as we discussed 
in Section 3.1.3. This form has the advantage that the absolute position of 
the knob is provided as an input to the system. However, a simpler form of 
input device uses an incremental encoder to determine direction and speed 
of rotation. If the starting position or absolute position is not important, 
an incremental encoder is a good choice. An incremental encoder can also 
be used for a rotational position input in applications other than user 
interfaces, provided absolute positioning is not required. It can also be 
used for rotational speed input.

An incremental encoder operates by generating two square-wave 
 signals that are 90° out of phase, as shown at the top of Figure 8.3. The 
signals can be generated either using electromechanical contacts, or using 
an optical encoder disk with LEDs and photo-sensitive transistors, as 
shown in the middle and at the bottom of Figure 8.3. As the shaft rotates 
counterclockwise, the A output signal leads the B output signal by 90°. 
For clockwise rotation, A lags B by 90°. The frequency of changes between 
low and high on each signal indicates the speed of rotation of the shaft.

A simple approach to using a knob attached to an incremental 
encoder involves detecting rising edges on one of the signals. Suppose 
we assume the knob is at a given position when the system starts opera-
tion. For example, we might assume a knob used as the volume control 
for a stereo is at the same setting as when the stereo was last used. (This 
would, of course, require the stereo to store the setting in a nonvolatile 
memory.) When we detect a rising edge on the A signal, we examine the 
state of the B signal. If B is low, the knob has been turned counterclock-
wise, so we decrement the stored value representing the knob’s position. 
If, on the other hand, B is high, the knob has been turned clockwise, so 
we  increment the stored value representing the knob’s position. Using an 
incremental encoder instead of an absolute encoder in this application 
makes sense, since the volume might also be changed by a remote control. 
It is a change in the knob’s position that determines the volume, not the 
absolute position of the knob.

Analog Inputs

Sensors for continuous physical quantities vary greatly, but they all rely 
on some physical effect that produces an electrical signal that depends on 
the physical quantity of interest. In most sensors, the signal level is small 
and needs to be amplified before being converted to digital form. Some 
sensors and the effects they rely on include:

Microphones. These are among the most common sensors in our 
everyday lives, and are included in digital systems such as telephones, 
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voice recorders and cameras. A microphone has a diaphragm that is 
displaced by sound pressure waves. In an electret microphone, for 
example, the diaphragm forms one plate of a capacitor. The other 
plate is fixed and has a permanent charge embedded on it during 
manufacture. The movement of the plates together and apart in 
response to sound pressure creates a detectable voltage across the 
plates that varies with the sound pressure. The voltage is amplified 
to form the analog input signal.

Accelerometers for measuring acceleration and deceleration. A com-
mon form of accelerometer used in automobile air bag controllers, 
for example, has a microscopic cantilevered beam manufactured on 
a silicon chip. The beam and the surface over which it is suspended 
form the two plates of a capacitor. As the chip accelerates (or, more 
important, in the air bag application, decelerates), the beam bends 
closer to or farther from the surface. The corresponding change in 
capacitance is used to derive an analog signal.

Fluid flow sensors. There are numerous forms of sensor that rely 
on different effects to sense flow. One form uses temperature-
dependent resistors. Two matched resistors are self heated using an 
electric  current. One of the resistors is placed into the fluid stream 
which cools it by an amount dependent on the flow rate. Since the 
resistance depends on the temperature, the difference in resistance 
between the two resistors depends on the flow rate. The resistance 
difference is detected to derive an analog input signal. Other forms 
of flow-rate sensor use rotating vanes, pressure sensing in venturi 
restrictions, and doppler shift of ultrasonic echoes from impurities. 
Different forms of sensor are appropriate for different applications.

Gas detection sensors. Again, there are numerous forms that use 
different effects and are appropriate for different applications. As an 
example, a photo-ionizing detector uses ultraviolet light to ionize a 
sample of atmosphere. Gas ions are attracted to plates that are held 
at a potential difference. A circuit path is provided for charge to flow 
between the plates. The current in the path depends on the concen-
tration of the gas in the atmospheric sample. The current is sensed 
and amplified to form the analog input signal.

Analog-to-Digital Converters

We mentioned earlier that analog input signals from sensors need to be 
converted into digital form so that they can be processed by digital circuits 
and embedded software. The basic element of an analog-to-digital con-
verter (ADC) is a comparator, shown in Figure 8.4, which simply senses 
whether an input voltage (the � terminal) is above or below a reference 
voltage (the � terminal) and outputs a 1 or 0 accordingly.

�

�

�

+
–

F I G U R E 8 .4  A symbol for a 
comparator.

 8.1 I/O Devices C H A P T E R  E I G H T  319



320 C H A P T E R  E I G H T  i / o  i n t e r f a c i n g

The simplest form of ADC is a flash ADC, illustrated in Figure 8.5. 
A converter with n output bits consists of a bank of 2n – 1 comparators 
that compare the input voltage with reference voltages derived from a 
voltage divider. For a given input voltage Vin � kVf, where Vf is the full-
scale voltage and k is a fraction between 0.0 and 1.0, a proportion k of the 
comparators have their reference voltage above Vin and so output 1, and 
the remaining comparators have their reference voltage lower than Vin 
and so output 0. The comparator outputs drive the encoder circuit that 
generates the fixed-point binary code for k. Flash ADCs have the advan-
tage that they convert an input voltage to digital form very quickly. High-
speed flash ADCs can perform tens or hundreds of millions of samples per 
second, and so are suitable for converting high bandwidth signals such as 
those from high-definition video cameras, radio receivers, radars, and so 
on. Their disadvantage is that they need large numbers of comparators. 
Hence, they are only practical for ADCs that encode the converted data 
using a relatively small number of bits. Common flash ADCs generate 
8 bits of output data. We say they have a resolution of 8 bits, correspond-
ing to the precision of the fixed-point format with which they represent 
the converted signal.

For signals that change more slowly, we can use a successive approxi-
mation ADC, shown in Figure 8.6. It uses a digital-to-analog converter 
(DAC) internally to make successively closer approximations to the input 
signal over several clock periods. To illustrate how the ADC works, con-
sider a converter that produces an 8-bit output. When start input is acti-
vated, the successive approximation register (SAR) is initialized to the 
binary value 01111111. This value is provided to the DAC, which pro-
duces the first approximation, just less than half of the full-scale voltage. 
The comparator compares this approximation with the input voltage. If 
the input voltage is higher, the comparator output is 1, indicating that 
a better approximation would be above the DAC output. If the input 
voltage is lower, the comparator output is 0, indicating that a better 
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 approximation would be below the DAC output. The comparator output 
is stored as the most significant bit in the SAR, and remaining bits are 
shifted down one place. This gives the next approximation, d70111111, 
which is either one-quarter or three-quarters of the full-scale voltage, 
depending on d7. During the next clock period, this next approximation 
is converted by the DAC and compared with the input voltage to yield 
the next most significant bit of the result and a refined approximation, 
d7d6011111. The process repeats over successive clock cycles, refining the 
approximation by one bit each cycle. When all bits of the result are deter-
mined, the SAR activates the done output, indicating that the complete 
result can be read.

The advantage of a successive approximation ADC over a flash 
ADC is that it requires significantly fewer analog components: just one 
 comparator and a DAC. These components can be made to high  precision, 
giving a high-precision ADC. 12-bit successive approximation ADCs, for 
example, are commonly available. The disadvantage, however, is that 
more time is required to convert a value. If the input signal changes by 
more than the precision of the ADC while the ADC is making successive 
approximation, we need to sample and hold the input. This requires a 
circuit that charges a capacitor to match the input voltage during a brief 
sampling interval, and then maintain the voltage on the capacitor while it 
is being converted. Another disadvantage of the successive approximation 
ADC is the amount of digital circuitry required to implement the SAR. 
However, that function could be implemented on an embedded processor, 
requiring just an output register to drive the DAC and an input bit from 
the comparator. The sequencing of successive approximations would then 
form part of the embedded software.

There are other forms of ADC apart from flash and successive 
approximation ADCs, each with advantages and disadvantages. Choice 
among them depends on the resolution, conversion speed and other 
 factors dictated by the application. In practice, there is often a need to 
filter the analog input signal to ensure correct conversion to digital form. 
These considerations are beyond the scope of this book. More details can 
be found in books on digital signal processing mentioned in the Further 
Reading section.

8.1.2 O U T P U T  D E V I C E S

Among the most common output devices are indicator lights that display 
on/off or true/false information. For example, an indicator might show 
whether a mode or operation is active, whether the system is busy, or 
whether an error condition has occurred. The simplest form of indicator 
is a single light-emitting diode (LED). It is low in cost, highly reliable, 
and easy to drive from a digital circuit, as Figure 8.7 shows. When the 
output from the driver is a low voltage, current flows through the LED, 
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 causing it to turn on. The resistor limits the current so as not to overload 
the  output driver or the LED. We choose the resistance value to deter -
mine the current, and hence the brightness of the LED. When the output 
from the driver is a high voltage (near the supply voltage), the voltage 
drop across the LED is less than its threshold voltage, so no current flows; 
hence, the LED is turned off. We could, alternatively, connect the LED 
and resistor to ground, allowing a high output voltage to turn on the LED 
and a low output voltage to turn it off. However, output circuits designed 
to drive TTL logic levels are better able to sink current in the low state 
than to source current in the high state. Thus, it is more common to con-
nect an LED as shown in Figure 8.7.

example  8 .1  Determine the resistance for an LED pull-up resistor 
 connected to a 3.3V power supply. The LED has a forward-biased voltage drop 
of 1.9V, and is suffi ciently bright with a current of 2mA.

solut ion  Assuming the output driver low voltage is close to 0V, the volt-
age drop across the resistor must be 3.3V  �  1.9V � 1.4V. Using Ohm’s Law with 
a current of 2mA means the resistance must be 1.4/0.002 � 700Ω. The closest 
standard value is 680Ω.

Displays

In Section 2.3.1, we introduced 7-segment displays and showed how we 
could decode a BCD value to drive the seven segments of a digit. In many 
applications, we have several digits to display. For example, an alarm 
clock typically has four digits for the hours and minutes of the time. While 
we could decode and drive each digit individually, that would require 
numerous output drivers, package pins and signals for the interconnec-
tions. Usually, it is more cost effective to connect the anodes or the cath-
odes of the LEDs for each digit in common, and to scan the digits. The 
connections for the LEDs in each digit, in this case, with common anodes, 
are shown in Figure 8.8. In addition to the seven LEDs for the segments, 
there is an LED for a decimal point (dp). The output connections for four 
digits are shown in Figure 8.9. Each of the outputs  

__
 A0  through  

__
 A3 , when 

pulled low, turns on the transistor that enables a digit. We usually need 
these external transistors, since IC outputs cannot source enough current 
to drive up to eight LEDs directly.

To display four digits, we pull each of  
__

 A0  through  
__

 A3  low in turn. 
When  

__
 A0  is low, enabling the least significant digit, we drive the segment 

lines,  
_
 a  though  

_
 g  and  

__
 dp , low or high as required for the segment pattern 

for that digit. When  
__

 A1  is low, we drive the segment lines for the next 
digit, and so on. After driving the most significant digit, we cycle back to 
the least significant digit. If we cycle through the digits fast enough, our 
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g
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anode

F I G U R E 8 .8  Connection 
of segment LEDs in a common 
anode 7-segment display.



eyes’ persistence of vision smooths out any flickering due to each digit 
only being active 25% of the time.

The advantage of this scanned scheme is that we only need one signal for 
each digit plus one for each segment of a digit. For example, to drive four dig-
its, we need 12 signals, compared with the 32 signals we would need had we 
driven segments individually. Depending on our application, we might use a 
counter or a shift register to drive the digit enable outputs and an 8-bit-wide 
multiplexer to select the values to drive onto the segment outputs. Often, 
however, the display is controlled by an embedded processor. In that case, we 
can simply provide output registers for the digit and segment outputs and let 
the embedded software manage the sequencing of output values.

example  8 .2  Develop a Verilog model of a display multiplexer and 
decoder for the 4-digit 7-segment display shown in Figure 8.9. The circuit has 
four BCD inputs. The decimal point for the left-most digit should be lit, and the 
remaining decimal points not lit. The system clock has a frequency of 10MHz.

solut ion  The module for the circuit has ports for the clock, reset and 
BCD inputs and for the the segment and anode outputs. Element 7 of the 
 segment output drives the decimal point segment, and elements 6 down to 0 
drive segments g through a, respectively. The outputs all use active-low logic. 
The circuit must include a multiplexer that selects each of the BCD inputs in 
turn. It decodes it to drive the 7-segment cathodes at the same time as acti-
vating the anode for the selected digit. Since we are relying on persistence of 
vision to avoid perceptible flicker, we need to cycle through the digits so that 
each is activated sufficiently frequently. A 50Hz cycle rate is acceptable. We 
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F I G U R E 8 .9  Connection of 
four 7-segment display digits.
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can achieve that rate by dividing the 10MHz clock down to 200Hz to activate 
a 2-bit counter for selecting digits. A module to implement these design 
decisions is

module display_mux ( output reg [3:0] anode_n,
output [7:0] segment_n,
input [3:0] bcd0, bcd1, bcd2, bcd3,
input  clk, reset );

parameter clk_freq = 10000000;
parameter scan_clk_freq = 200;
parameter clk_divisor = clk_freq / scan_clk_freq;

reg scan_clk;
reg [1:0] digit_sel;
reg [3:0] bcd;
reg [7:0] segment;

integer count;

// Divide master clock to get scan clock
always @(posedge clk)
if (reset) begin
count = 0;
scan_clk <= 1'b0;

end
else if (count = = clk_divisor — 1) begin
count = 0;
scan_clk <= 1'b1;

end
else begin
count = count + 1;
scan_clk <= 1'b0;

end

// increment digit counter once per scan clock cycle
always @(posedge clk)
if (reset) digit_sel <= 2'b00;
else if (scan_clk) digit_sel <= digit_sel + 1;

// multiplexer to select a BCD digit
always @*
case (digit_sel)
2'b00: bcd = bcd0;
2'b01: bcd = bcd1;
2'b10: bcd = bcd2;
2'b11: bcd = bcd3;

endcase

(continued)



// activate selected digit's anode
always @*
case (digit_sel)
2'b00: anode_n = 4'b1110;
2'b01: anode_n = 4'b1101;
2'b10: anode_n = 4'b1011;
2'b11: anode_n = 4'b0111;

endcase

// 7-segment decoder for selected digit
always @*
case (bcd)
4'b0000: segment[6:0] = 7'b0111111; // 0
4'b0001: segment[6:0] = 7'b0000110; // 1
4'b0010: segment[6:0] = 7'b1011011; // 2
4'b0011: segment[6:0] = 7'b1001111; // 3
4'b0100: segment[6:0] = 7'b1100110; // 4
4'b0101: segment[6:0] = 7'b1101101; // 5
4'b0110: segment[6:0] = 7'b1111101; // 6
4'b0111: segment[6:0] = 7'b0000111; // 7
4'b1000: segment[6:0] = 7'b1111111; // 8
4'b1001: segment[6:0] = 7'b1101111; // 9
default: segment[6:0] = 7'b1000000; // "-"

endcase

// decimal point is only active for digit 3
always @* segment[7] = digit_sel = = 2'b11;

// segment outputs are negative logic
assign segment_n = ~segment;

endmodule

The first always block is the clock divider that generates the 200Hz clock for 
selecting digits. It sets the variable scan_clk to 1 for one master clock cycle at a 
200Hz rate. The second always block implements the 2-bit counter, incrementing 
the digit_sel variable each time scan_clk is 1. The next two always blocks use the 
digit_sel signal to select the BCD digit and to activate the corresponding anode. 
The remaining always block and assignments decode the selected digit to drive 
the segment cathodes.

As an alternative to using LEDs for displays, some systems use liquid 
crystal displays (LCDs). Each segment of an LCD consists of liquid crystal
material between two optical polarizing filters. The liquid crystal also 
polarizes light, and, depending on the angle of polarization, can allow 
light to pass or be blocked by the filters. The liquid crystal is forced to 
twist or untwist, thus changing its axis of polarization, by application of 
a voltage to electrodes in front of and behind the segment. By varying the 
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voltage, we can make the segment appear transparent or opaque. Thus, 
LCDs require ambient light to be visible. In low light conditions, a back 
light is needed, which is one of their main disadvantages. The other disad-
vantages include their mechanical fragility and the smaller range of tem-
peratures over which they can operate. They have several advantages over 
LEDs, including readability in bright ambient light conditions, very low 
power consumption, and the fact that custom display shapes can readily 
be manufactured.

Seven-segment displays are useful for applications that must display a 
small amount of numeric information. However, more complex applica-
tions often need to display alphanumeric or graphical information, and 
so may use LCD display panels. These can range from small panels that 
can display a few characters of text, to larger panels that can display text 
or images up to 320 � 240 dots, called pixels (short for picture elements). 
Beyond that size, systems would typically use the same kinds of display 
panels that are used in general purpose PCs. Since output for display pan-
els is much more involved than output for simple segment-based displays, 
more complex control circuits are needed. We will return to control of 
display panels in Section 8.2.

Electromechanical Actuators and Valves

One of the simplest forms of actuator used to cause mechanical effects is a 
solenoid, shown in Figure 8.10. With no current flowing through the coil, 
the spring holds the steel armature out from the coil. When current flows, 
the coil acts as an electromagnet and draws the armature in against the 
spring. In a digital system, we can control the current in a small solenoid 
with a transistor driven by a digital output signal, as shown in  Figure 8.11. 
The diode is required to absorb the voltage spikes that arise when the cur-
rent through the inductive load is turned off.

The direct mechanical effect of activating a solenoid is a small linear 
movement of the armature. We can translate this into a variety of other 
effects by attaching rods and levers to the armature, allowing us to control 
the operation of mechanical systems. Hence, digitally controlled solenoids 
are widely used in manufacturing and other industrial applications.

There are two important classes of devices based on solenoids, the 
first being solenoid valves. We can attach the armature of a solenoid to a 
valve mechanism, allowing the solenoid to open and close the valve, thus 
regulating the flow of a fluid or gas. This gives us a means of controlling 
chemical processes and other fluid or gas based processes. Importantly, 
a hydraulic solenoid valve (controlling flow of hydraulic fluid) or a pneu-
matic solenoid valve (controlling flow of compressed air) can be used 
to indirectly control hydraulic or pneumatic machinery. Such machines 
can operate with much greater force and power than electrical machines. 
So solenoid valves are important components in the interface between 
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the disparate low-power digital electronic domain and the high-power 
mechanical domain.

The second class of device based on solenoids is relays. In these 
devices, the armature is attached to a set of electrical contacts. This allows 
us to open or close an external circuit under digital control. The  reasons 
for using a relay are twofold. First, the external circuit can operate with 
voltages and currents that exceed those of the digital domain. For exam-
ple, a home automation system might use a relay to activate mains power 
to a mains powered appliance. Second, a relay provides electrical  isolation 
between the controlling and the controlled circuit. This can be useful if the 
controlled circuit operates with a different ground potential, or is  subject 
to significant induced noise.

Motors

Whereas solenoids allow us to control a mechanical effect with two states, 
many applications require mechanical movement over a range of positions 
and at varying speeds. For these applications, we can use electric motors 
of various kinds, including stepper motors and servo motors. Both can be 
used to drive shafts to controlled positions or speeds. The rotational posi-
tion or motion can be converted to linear position or motion using gears, 
screws, and similar mechanical components.

A stepper motor is the simpler of the two kinds of motors that 
we can  control with a digital system. Its operation is shown in simplified 
form in Figure 8.12. The motor consists of a permanent magnet rotor 
mounted on the shaft. Surrounding the rotor is a stator with a number 
of coils that can be energized to form electromagnetic poles. The figure 
shows that, as coils are energized in sequence, the rotor is attracted to 
successive angular positions, stepping around through one rotation. The 
magnetic  attraction holds the rotor in position, provided there is not too 
much opposing torque from the load connected to the motor shaft. The 
order and rate in which the coils are energized determines the direction 
and speed of rotation.
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F I G U R E 8 .12 Operation of a 
stepper motor.

 8.1 I/O Devices C H A P T E R  E I G H T  327



328 C H A P T E R  E I G H T i / o  i n t e r f a c i n g

Practical stepper motors have more poles around the stator,  allowing
the motor to step with finer angular resolution. They also have varying 
arrangements of coil connections, allowing finer control over stepping. 
In practical applications, current through the coils is switched in either 
direction using transistors controlled by digital circuit outputs. The fact 
that the motor is activated by the on/off switching of current makes 
stepper motors ideal for digital control.

A servo-motor, unlike a stepper motor, provides continuous rotation. 
The motor itself can be a simple DC motor, in which the applied  voltage
determines the motor’s speed, and the polarity of the applied voltage 
determines the direction of rotation. The “servo” function of the motor 
involves the use of feedback to control the position or speed of the motor. 
If we are interested in controlling position, we can attach a position sensor 
to the motor shaft. We then use a servo controller circuit that compares 
the actual and desired positions, yielding a drive voltage for the motor that 
depends on the difference between the positions. If we are interested in 
controlling the speed, we can attach a tachometer (a speed sensor) to the 
shaft, and again use a comparator to compare actual and desired speed to 
yield the motor drive voltage. In both cases, we can implement the servo 
controller as a digital circuit or using an embedded processor. We need a 
digital-to-analog converter to generate the drive voltage for the motor. We 
can use various position or speed sensors, including the position encoders 
we discussed in Sections 3.1.3 and 8.1.1.

Realistic servo control involves fairly complex computations to com-
pensate for the nonideal characteristics of the motor and any gearbox 
and other mechanical components, as well as dealing with the effects of 
the mechanical load on the system. We won’t go into any detail of those 
effects in this book.

Digital-to-Analog Converters

Digital-to-analog converters (DACs) are the complement of analog-to-digital 
converters. A DAC takes a binary-encoded number and generates a voltage 
proportional to the number. We can use the voltage to control analog output 
devices, such as the servo motors we described above, loudspeakers, and 
so on.

One of the simplest forms of DAC is an R-string DAC, shown in 
Figure 8.13. Like the flash ADC, it contains a voltage divider formed with 
precision resistors. The binary-encoded digital input is used to drive a mul-
tiplexer formed from analog switches, selecting the voltage corresponding 
to the encoded number. The selected voltage is buffered using a unity-
gain analog amplifier to drive the final output voltage. This form of DAC 
works well for a small number of input bits, since it is possible to match 
the resistances to achieve good linearity. However, for a larger  number



of input bits, we require an exponentially larger number of  resistors and 
switches. This scheme becomes impractical for DACs with more than 
eight to ten input bits.

An alternative scheme is based on summing of currents in resistor 
 networks. One way of doing this is shown in Figure 8.14, sometimes 
called an R/2R ladder DAC. Each of the switches connected to the input 
bits connects the 2R resistance to the reference voltage Vf if the input is 
1, or to ground if the input is 0. While the analysis is beyond the scope of 
this book, it can be shown that the currents sourced into the input node of 
the op-amp when the switches are in the 1 position are binary weighted. 
Those switches in the 0 position source no current. The superposition of 
the sourced currents means that the total current is proportional to the 
binary coded input. The op-amp voltage is thus also proportional to the 
binary coded input, in order to maintain the virtual ground at the op-amp 
input.

Just as there are numerous forms of analog-to-digital converter with 
various advantages and disadvantages, there are similarly numerous forms 
of digital-to-analog converter. We would choose an appropriate converter 
to meet the cost, performance and other constraints that apply to each 
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application. More detail can be found in books on digital signal process-
ing mentioned in the Further Reading section.

1. What is a sensor? What is an actuator?

2. Why would a digital system require a digital-to-analog converter?

3. How would we tell whether the 6 key in the keypad of Figure 8.1 is 
pressed?

4. Given the incremental encoder of Figure 8.3, if B is 1 when a 0 to 1 
transition occurs on A, in which direction is the shaft rotated?

5. How many comparators are required in a fl ash ADC with a 
resolution of 8 bits?

6. How can we reduce the number of connections required for a 
multidigit 7-segment LED display?

7. What is the difference between a solenoid and a relay?

8. Identify two kinds of motor that we might control with a digital 
system.

9. If an application requires a 12-bit digital-to-analog converter (DAC), 
would we choose an R-string DAC or an R/2R ladder DAC? Why?

8.2 I / O  C O N T R O L L E R S

Given transducers, analog-to-digital converters and digital-to-analog 
 converters, we can construct digital systems that include circuits to 
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process the converted input information in digital form to yield output 
information. However, for an embedded computer to make use of the 
information, we need to include components that allow the embedded 
software to read input information and to write output information. 
For dealing with input, we can provide an input register whose con-
tent can be loaded from the digital input data and that can be read in 
the same way that the processor reads a memory location. For dealing 
with output, we can provide an output register that can be written by 
the processor in the same way that it writes to a memory location. The 
output signals of the register provide the digital information to be used 
by the output transducer. Many embedded processors refer to input and 
output registers as ports. Since it is such a commonly used term, we will 
make use of it, and take care to avoid confusion with ports of Verilog 
modules.

In practice, both input and output registers are parts of input and 
output controllers that govern other aspects of dealing with transducers 
under software control. We will start our discussion of I/O controllers in 
this section with some simple controllers that just include input and out-
put registers for transferring data. We will then move on to consider more 
advanced controllers.

8.2.1 S I M P L E  I / O  C O N T R O L L E R S

The simplest form of controller consists just of an input register that 
captures the data from an input device, or just an output register to provide
data to a device. Usually, there are several I/O registers, so we need to 
select which register to read from or write to. This is similar to selecting 
which memory location to access, and is solved in the same way, namely 
by providing each register with an address. When the embedded proces-
sor needs to access an input or output register, it provides the address of 
the required register. We decode the address to select the register, and only 
enable reading or writing of that register.

As we mentioned in Chapter 7, some processors use memory mapped 
I/O; that is, they just use certain memory addresses to refer to I/O reg-
isters and use the same load and store instructions for accessing both 
memory location and I/O registers. We can use address decoding circuits 
connected to the processor to identify whether memory or I/O registers 
are being accessed, and enable the memory chips or the appropriate reg-
ister as required. Other processors, like the Gumnut that we described 
in Chapter 7, have separate address spaces for memory and I/O regis-
ters, and include special instructions for reading and writing I/O registers. 
They provide control signals that distinguish between memory and I/O 
register access.
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example  8 .3  The signals provided by the Gumnut core for connecting to 
I/O registers are described in the following Verilog module defi nition:

module gumnut (  input  clk_i,
input  rst_i,
...
output  port_cyc_o,
output  port_stb_o,
output  port_we_o,
input  port_ack_i,
output [7:0] port_adr_o,
output [7:0] port_dat_o,
input  [7:0] port_dat_i,
... );

endmodule

The output port_adr_o is the port address, port_dat_o is the data written by an 
out instruction, port_dat_i is the data read by an inp instruction, port_cyc_o 
and port_stb_o indicate that a port read or write operation is to be performed, 
port_we_o indicates that the operation is a write, and port_ack_i indicates that 
the selected port is ready and has acknowledged completion of the read or write 
operation.

Develop a controller for the keypad matrix shown in Figure 8.2, and show how 
to connect the controller to a Gumnut core. Use output port address 4 for the 
matrix row output register and input port address 4 for the matrix column input 
register.

solut ion  The controller connects to the Gumnut I/O signals on one 
side and to the keypad row and column signals on the other side, as shown in 
 Figure 8.15. We decode the port address from the Gumnut core externally to the 
controller to derive the strobe control signal (stb_i) for the controller.
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The Verilog module definition for the controller is

module keypad_controller ( input  clk_i,
input  cyc_i,
input  stb_i,
input  we_i,
output  ack_o,
input [7:0] dat_i,
output reg [7:0] dat_o,
output reg [3:0] keypad_row,
input [2:0] keypad_col );

reg [2:0] col_synch;

always @(posedge clk_i) // Row register
if (cyc_i && stb_i && we_i) keypad_row <= dat_i[3:0];

always @(posedge clk_i) begin // Column synchronizer
dat_o <= {5'b0, col_synch};
col_synch <= keypad_col;

end

assign ack_o = cyc_i && stb_i;

endmodule

The first always block represents the keypad row output register, storing the 
value to drive on the keypad row outputs. The second always block represents 
the keypad column input register. Since the key switches may change at any time, 
we need to synchronize the input with the clock to avoid metastability failures. 
(We discussed this issue in Section 4.4.1.) In this design, we assume the keypad 
controller is the only thing driving the port_dat_o outputs, so we can assign 
directly to them regardless of the state of the control inputs. We will return to 
the topic of connecting multiple controllers in Section 8.3. The final assignment 
in the architecture body activates the port_ack_o output immediately on any port 
read or write operation, since there is no need to make the processor wait.

The controller is connected to a Gumnut core in an embedded system as shown 
in the following module outline:

module embedded_system;

wire ...

parameter [7:0] keypad_port_addr = 8'h04;
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wire keypad_stb_o;

gumnut processor_core
( .clk_i(clk), .rst_i(rst),  ...,

.port_cyc_o(port_cyc_o),  .port_stb_o(port_stb_o),

.port_we_o(port_we_o),    .port_ack_i(port_ack_i),

.port_adr_o(port_adr_o),  .port_dat_o(port_dat_o),

.port_dat_i(port_dat_i),  ... );

assign keypad_stb_o = port_adr_o
== keypad_port_addr & port_stb_o;

keypad_controller keypad
( .clk_i(clk),

.cyc_i(port_cyc_o), .stb_i(keypad_stb_o),

.we_i(port_we_o),   .ack_o(port_ack_i),

.dat_i(port_dat_o), .dat_o(port_dat_i),

.keypad_row(keypad_row), .keypad_col(keypad_col) );

endmodule

The assignment to keypad_stb_o compares the Gumnut I/O port address with 
the value allocated for the keypad controller registers to derive the strobe signal 
for the keypad controller. The data input and output signals and the other con-
trol signals connect directly between the core and the controller.

While a simple I/O controller just has registers for input and output of 
data, more involved I/O controllers also have registers to allow the embed-
ded processor to manage operation of the controller. Such registers might 
include control registers, to which a processor writes parameters govern-
ing the way transducers operate, and status registers, from which the pro-
cessor reads the state of the controller. We often require such registers 
for controllers whose operation is sequential, since we need to synchronize
controller operation with execution of the embedded software. As a 
consequence, we may have a combination of readable and writable regis-
ters used to control an input-only device or an output-only device.

example  8 .4  In Section 8.1.1, we described a successive approximation
analog-to-digital converter. It produces a binary-coded value representing the 
input voltage as a proportion of the full-scale reference voltage, Vf. We also 
mentioned that a sample-and-hold circuit can be used on the analog input if 
the voltage can change during the conversion process. Design a controller for 
a successive approximation ADC to connect to the Gumnut processor core. 
The controller has a control register whose contents govern operation of the 
converter. Bits 0 and 1 select among four alternate full-scale reference  voltages.



When a 1 is written to bit 2, the analog voltage is held and a conversion is 
started; when a 0 is written to the bit, the analog voltage is tracked. The control-
ler also has a status register and an input data register. Bit 0 of the status register 
is 1 when a conversion is complete, and 0 otherwise. Other bits of the register 
are read as 0. The input data register contains the converted data.

solut ion  The controller circuit is shown in Figure 8.16. The control 
 register is enabled when the least signifi cant port address bit is 1 during a port 
write operation. The remaining port address bits are not decoded. Bits 0 and 1 of 
the register are decoded to control four analog switches that select the  reference 
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voltage. Bit 2 of the register controls the sample-and-hold component and the 
start signal of the ADC. The least signifi cant port address bit is also used to 
select between the ADC data value and the ADC done status signal. Thus, when 
the processor performs a port read at address 0, it reads the ADC data, and 
when it performs a port read at address 1, it reads the done status.

8.2.2 A U TO N O M O U S  I / O  C O N T R O L L E R S

The simple I/O controllers in the previous section either involve no 
sequencing of operations, or just simple sequencing in response to accesses 
by a processor. More complex I/O controllers, on the other hand, operate 
autonomously to control the operation of an input or output device. For 
example, a servo-motor controller, given the desired position in an  output 
register, might independently compute the difference between desired 
and actual position, compensate for mechanical lead and lag, and drive 
the motor accordingly. Interaction with the processor might only occur 

F I G U R E 8 .16 Circuit for 
a controller for a successive 
approximation ADC.
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through the processor updating the desired position in the output register 
and monitoring the position difference by reading an input register. In 
some cases, if an autonomous controller detects an event of interest to the 
embedded software, for example, an error condition, the controller must 
notify the processor. We will discuss interrupts as a means of doing this 
in Section 8.5.2.

One reason for providing autonomy in the controller is that it allows 
the processor to perform other tasks concurrently. This increases the 
overall performance of the system, though at the cost of the additional cir-
cuitry required for the controller. Another reason is to ensure that control 
operations are performed fast enough for the device. If the device needs 
to transfer data at high rates, or needs control operations to be performed 
without delay, a small embedded processor may not be able to keep up. 
Making the I/O controller more capable may be a better trade-off than 
increasing the performance or responsiveness of the processor.

As an illustration of an autonomous controller, let us return to the 
LCD display panels that we mentioned in Section 8.1.2 as a form of out-
put device for complex digital systems. LCD panels consist of a rectan-
gular array of liquid crystal pixels. The electrodes are connected in rows 
on one side of the panel and in columns on the other side. A voltage is 
applied to one row at a time, and the column electrodes are variously set 
to the same or a complementary voltage to activate pixels in the selected 
row. In this way, the panel is scanned row by row to refresh the pixel 
states, in much the same way that a dynamic memory must be refreshed.

Since managing and refreshing an LCD panel requires a lot of activity, 
manufacturers of panels typically combine a display controller with a 
panel to form an LCD module. The display controller is an autonomous 
digital subsystem that includes memory for storing the information to be 
displayed on the panel and circuitry for refreshing the panel. An embed-
ded computer treats the display controller as a specialized output control-
ler, and provides it with updates to the stored information. In a graphical 
LCD module, the stored information consists of the image to be displayed, 
represented with one bit per pixel. In a character LCD module, the stored 
information consists of the binary code words for the characters. The dis-
play controller is responsible for decoding the character code words and 
rendering the image corresponding to the characters.

A specific example of an LCD module is the ASI-D-1006A-DB-_S/
W module from All Shore Industries, Inc., a 100 � 60 pixel LCD panel 
that includes an SED1560 controller chip from Seiko Epson Corp. The 
module is designed to connect to 8-bit microcontrollers, such as the 8051 
that we mentioned in Chapter 7. Figure 8.17 shows how this might be 
done. The controller chip has an internal memory for storing the image 
to be displayed on the LCD panel. The chip provides a control register to 
which the microcontroller can write encoded commands, a status register, 



and a data input/output register for access to the display memory. The 
microcontroller issues commands to the chip to configure the display and 
to load pixel data into the memory. Thereafter, the chip autonomously 
manages scanning the display using the pixel data in its memory, leaving 
the microcontroller free to perform other tasks.

As we mentioned above, the use of an autonomous controller may be 
appropriate for a device that must transfer input or output data at high 
rates. Often, such data must be written to memory (in the case of input 
data) or read from memory (in the case of output data). If the data trans-
fer were done by a program copying data between memory and controller 
registers, that activity would consume much of the processor’s time. An 
alternative, commonly adopted in high-speed autonomous controllers, is to 
use direct memory access (DMA), in which the controller reads data from 
memory or writes data to memory without intervention by the  processor. 
The processor provides the starting memory address to the controller (by 
writing the address to a control register), and the controller then performs 
the data transfer autonomously. We can think of a controller  that oper-
ates in this way as an accelerator for input/output operations. Since other 
forms of accelerator also use DMA for data transfer, we will defer a more 
detailed description of DMA until Chapter 9.

1. What is the purpose of an input register in an I/O controller? What 
is the purpose of an output register?

2. What is the purpose of a control register in an I/O controller? What 
is the purpose of a status register?

3. If an embedded processor uses memory mapped I/O, how do we 
distinguish accesses to memory from accesses to I/O registers?
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4. Why might a controller for an input device have registers to which a 
processor can write?

5. What advantages do autonomous I/O controllers have over simple 
controllers?

8.3 PA R A L L E L  B U S E S

As we have seen, digital circuits consist of various interconnected com-
ponents. Each component performs some operation or stores data. The 
interconnections are used to move data between the components. Where 
the data is binary coded, several signals are connected in parallel, one 
per bit of the encoding. Many of the interconnections we have seen thus 
far have been simple point-to-point connections, with one component as 
the source of data and a single separate component as the destination. In 
other cases, connections fan out from a single source to multiple destina-
tions, allowing each of the destination components to receive data from 
the source.

In some systems, especially embedded systems containing proces-
sor cores, parallel connections carry encoded data from multiple sources 
to several alternate destinations. Such connection structures, shown 
conceptually in Figure 8.18, are called buses. In the simplest case, a 
bus is just the collection of signals carrying the data, and control remains 
in a separate control section that sequences operation of the data 
sources and destinations. In more elaborate buses, data sources and 
destinations are autonomous, each with its own control section. In 
such cases, the control sections must communicate to synchronize the 
transfer of data. They do so using control signals that form part of the 
bus structure.

While the bus structure shown in Figure 8.18 shows the general idea 
of bus connection structures, it is not realizable directly as shown. Since 
the bus signals are shared between the data sources, only one of them 
should provide data at once. Most of the circuit components that we have 
considered so far always drive either a low or a high logic level at their 
outputs. If one data source drives a low level while another drives a high 
level, the resulting conflict would cause large currents to flow between the 
two components, possibly damaging them. There are several solutions to 
this problem, and we will look at them in turn.

8.3.1 M U LT I P L E X E D  B U S E S

One solution is to use a multiplexer to select among the data sources, as 
shown in Figure 8.19. The multiplexer selects the value to drive the bus 
signals based on a control signal generated by a control section. If the 
bus has n data sources, an n-input multiplexer is required for each bit of 
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the encoded data transmitted over the bus. Depending on the number of 
sources and the arrangement of the components and signals on the inte-
grated circuit chip, the multiplexer may be implemented as a single n-input 
multiplexer, or it may be subdivided into sections distributed around the 
chip. For example, if a bus has five data sources, two of which are on one 
side of a chip and the remaining three are on the other side, the bus wiring 
may be simplified by using a 2-input multiplexer adjacent to the two data 
sources and a 3-input multiplexer adjacent to the three data sources. The 
outputs of the multiplexers would then be connected to a 2-input multi-
plexer adjacent to the data destinations.

One extreme form of subdivision of bus multiplexers is the fully 
 distributed structure shown in Figure 8.20. The data signals are con-
nected in a chain going past all of the sources and then routed to the desti-
nations. Each multiplexer either connects its associated data source to the 
chain (when the multiplexer’s select input is 1) or forwards data from a 
 preceding source (when the select input is 0). The advantage of this form 
of distributed multiplexer is the reduction in wiring complexity. It is often 
easier to route a set of signals in a chain past circuit blocks rather than 
trying to connect several data sources to a central hub.

One example of a bus designed to use multiplexers is the Wishbone 
bus. The signals in the bus and their timing are specified in a standard 
document, referenced in the Further Reading section. The Gumnut core 

data
source

data
destination

data
source

data
destination

data
destination

0

1

F I G U R E 8 .19 A bus using a 
multiplexer to select among data 
sources.

F I G U R E 8 .20 A distributed-
multiplexer bus structure.

data
source

data
destination

data
source

data
destination

data
destination

1

0

1

0

data
source

1

0

data
source

 8.3 Parallel Buses C H A P T E R  E I G H T  339



340 C H A P T E R  E I G H T  i / o  i n t e r f a c i n g

uses a simple form of Wishbone bus for each of the instruction, data and 
I/O port connections. The signals with a “_o” suffix are outputs from 
a component, and the signals with a “_i” suffix are inputs. Where mul-
tiple “_o” signals are to be connected to a “_i” signal, a multiplexer is 
required.

example  8 .5  Show how, in an embedded system using a Gumnut core, 
the keypad controller of Example 8.3 and two instances of the ADC controller of 
Example 8.4, the components are interconnected using distributed multiplexers.

solut ion  The Gumnut core is the single source for the port address and 
control signals and for the output data signals, so no multiplexer is needed 
for those signals. The controllers each provide input data and ack signals, so 
distributed multiplexers are needed for them. We can decode the port address to 
derive the controller strobe signals and multiplexer select signals. We choose the 
first ADC controller when the port address is 0 or 1, the second ADC when the 
port address is 2 or 3, and the keypad controller when the port address is 4. The 
connections are shown in Figure 8.21.

port_dat_i

port_ack_i

port_adr_o

port_we_o

port_cyc_o

Gumnut

port_dat_o

port_stb_o

adr_i(0)

dat_i

cyc_i

we_i

ADC Controller

dat_o

ack_o

stb_i

adr_i(0)

dat_i

cyc_i

we_i

ADC Controller

dat_o

ack_o

stb_i

stb_i

dat_i

cyc_i

we_i

Keypad Controller

dat_o

ack_o

0

1

0

1

0

1

0

1

= 0...1

= 2...3

= 4

0

0

F I G U R E 8 .21 Connection of 
two ADC controllers and a keypad 
controller to a Gumnut core using 
distributed multiplexers.



example  8 .6  Develop a Verilog model for the embedded system of 
Example 8.5.

solut ion The module definition is

module embedded_system_ADC_keypad;

wire ...

parameter [7:0] ADC0_port_addr   = 8'h00,
ADC1_port_addr   = 8'h02,
keypad_port_addr = 8'h04;

wire ADC0_stb_o, ADC1_stb_o, keypad_stb_o;
wire [7:0] ADC0_dat_o, ADC1_dat_o, keypad_dat_o,

ADC0_dat_fwd, ADC1_dat_fwd;
wire ADC0_ack_o, ADC1_ack_o, keypad_ack_o,
 ADC0_ack_fwd, ADC1_ack_fwd;

gumnut processor_core
( .clk_i(clk),          .rst_i(rst), ...,

.port_cyc_o(port_cyc_o), .port_stb_o(port_stb_o),

.port_we_o(port_we_o), .port_ack_i(ADC1_ack_fwd),

.port_adr_o(port_adr_o), .port_dat_o(port_dat_o),

.port_dat_i(ADC1_dat_fwd), ... );

assign ADC0_stb_o = (port_adr_o & 8'hFE)
== ADC0_port_addr & port_stb_o;

assign ADC1_stb_o = (port_adr_o & 8'hFE)
== ADC1_port_addr & port_stb_o;

assign keypad_stb_o = port_adr_o
== keypad_port_addr & port_stb_o;

keypad_controller keypad ( .clk_i(clk),
.cyc_i(port_cyc_o),
.stb_i(keypad_stb_o),
.we_i(port_we_o),
.ack_o(keypad_ack_o),
.dat_i(port_dat_o),
.dat_o(keypad_dat_o), ... );

ADC_controller ADC0 ( .clk_i(clk), .rst_i(rst),
.cyc_i(port_cyc_o), .stb_i(ADC0_stb_o),
.we_i(port_we_o), .ack_o(ADC0_ack_o),
.adr_i(port_adr_o[0]), .dat_i(port_dat_o),
.dat_o(ADC0_dat_o), ... );

assign ADC0_dat_fwd = ADC0_stb_o ? ADC0_dat_o : keypad_dat_o;
assign ADC0_ack_fwd = ADC0_stb_o ? ADC0_ack_o : keypad_ack_o;

(continued)
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ADC_controller ADC1 ( .clk_i(clk), .rst_i(rst),
.cyc_i(port_cyc_o), .stb_i(ADC1_stb_o),
.we_i(port_we_o), .ack_o(ADC1_ack_o),
.adr_i(port_adr_o[0]), .dat_i(port_dat_o),
.dat_o(ADC1_dat_o), ... );

assign ADC1_dat_fwd = ADC1_stb_o ? ADC1_dat_o : ADC0_dat_fwd;
assign ADC1_ack_fwd = ADC1_stb_o ? ADC1_ack_o : ADC0_ack_fwd;

endmodule

The first group of assignments, after the Gumnut core instance, represent the 
port address decoders. They compare the port address from the processor core 
with the base addresses of the ADC controllers and the keypad controllers. For 
the ADC controllers, the port address is ANDed with the hexadecimal value FE 
to clear the least significant bit.

The instances of the ADC controllers are followed by assignments that represent 
the distributed multiplexers. The outputs of the multiplexers for the second ADC 
connect back to the Gumnut core port_dat_i and port_ack_i inputs.

8.3.2 T R I S TAT E  B U S E S

A second solution to avoiding contention on a bus is to use tristate bus 
 drivers. We introduced tristate drivers in Chapter 5 as part of our discussion 
of connecting multiple memory components. We said that the outputs of a 
tristate driver can be turned off by placing it in a high-impedance, or hi-Z, 
state. The symbol for a tristate driver is shown in Figure 8.22. When the 
enable input is 1, the driver behaves like an ordinary output, driving either a 
low or a high logic level on the output. When the enable input is 0, the driver 
enters the high-impedance state by turning its output-stage transistors off.

We can implement a bus with multiple data sources by using tristate 
drivers on the outputs of each data source. We use one driver for each bit 
of encoded data provided by the source, and connect the enable inputs of 
the drivers for a given source together, as shown in Figure 8.23. That way, 
a source either drives a data value onto the bus, or has all bits in the high-
impedance state. The control section selects a particular source to provide 
data by setting the enable input of that source’s drivers to 1, and all other 
enable inputs to 0.

One of the main advantages of tristate buses is the reduction in wiring 
that they afford. For each bit of the encoded data on the bus, one signal 
wire is connected between all of the data sources and destinations. How-
ever, there are some issues to consider. First, since bus wires connect all of 
the sources and destinations, they are generally long and heavily loaded 
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with the capacitance of the drivers and inputs. As a consequence, the wire 
delay may be large, making high-speed data transfer difficult. Moreover, 
the large capacitance means we need more powerful output-stage circuits, 
increasing the area and power consumption of the chip. 

A second issue is difficulty in designing the control that selects among 
data sources. The control section must ensure that one source’s drivers are 
disabled before any other source’s drivers are enabled. When we design 
the control section, we need to take into account the timing involved in 
disabling and enabling drivers. This is shown in Figure 8.24. When the 
enable input of a driver changes to 0, there is a delay, toff, before the driver 
disconnects from the bus. Similarly, when the enable input changes to 1, 
there is a delay, ton, before the driver delivers a valid low or high logic 
level on the bus. In the intervening time, the bus floats, indicated on the 
timing diagram by a dashed line midway between the low and high logic 
levels. Since there is no output driving a low or high logic level on the bus 
signals, each signal drifts to an unspecified voltage.

Letting the bus float to an unspecified logic level can cause switching 
problems in some designs. The bus signal might float to a voltage around the 
switching threshold of the bus destination inputs. Small amounts of noise 
voltage induced onto the bus wire can cause the inputs to switch state fre-
quently, causing spurious data changes within the data destination and con-
suming power unnecessarily. We can avoid floating logic levels on the bus 
signals by attaching a weak keeper to the signal, as shown in Figure 8.25. 
The keeper consists of two inverters providing positive feedback to the bus 
signal. When the bus is forced to a low or high logic level by a bus driver, the 
positive feedback keeps it at that level, even if the forcing driver is disabled. 
The transistors in the output circuit of the inverter driving the bus are small, 
with relatively high on-state resistance, and so cannot source or sink much 
current. They are easily overridden by the output stages of the bus drivers.

When we need to change from one data source to another, it might 
seem reasonable to disable one driver at the same time as enabling the 
next driver. However, this can cause driver contention. If the toff delay of 
the disabled driver is at the maximum end of its range and the ton delay of 
the enabled driver is at the minimum end, there will be a period of  overlap 
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where some bits of the enabled driver may be driving opposite logic  levels to 
those of the disabled driver. The overlap will be short-lived and is unlikely 
to destroy the circuit. However, it does contribute extra power consump-
tion and heat dissipation and ultimately will reduce the operating life of 
the circuit. The overlap effect can be exacerbated by clock skew in the 
control section. If the flip-flop that generates the enabling signal receives 
its clock earlier than the flip-flop that generates the disabling signal, there 
will be an increased chance of overlap, even if the on and off delays of the 
tristate drivers are near their nominal values. Given these considerations, 
the safest approach when designing control for tristate buses is to include 
a margin of dead time between different data sources driving the bus. A 
conservative approach is to defer enabling the next driver until the clock 
cycle after that in which the previous driver is disabled. A more aggressive 
approach is to delay the rising edges of the enable signals, for example, 
using the circuit of Figure 8.26, to avoid overlap between drivers. As many 
pairs of inverters are included as give the required delay. However, this 
approach requires very careful attention to timing analysis to ensure that it 
works effectively across the expected range of operating conditions.

A third issue relating to design of tristate buses is the support pro-
vided by CAD tools. Not all physical design tools provide the kinds of 
timing and static loading analyses needed to design tristate buses effec-
tively. Similarly, tools that automatically incorporate circuit structures to 
enable testing of circuits after their manufacture don’t always deal with 
tristate buses correctly. If the tools we use don’t support tristate buses, we 
must resort to manual methods to complete and verify our design.

A final issue is that not all implementation fabrics provide tristate 
drivers. For example, many FPGA devices do not provide tristate drivers 
for internal connections, and only provide them for external connections 
with other chips. If we want to design a circuit that can be implemented in 
different fabrics with minimal change, it is best to avoid tristate buses.

In summary, tristate buses allow us to trade off significantly reduced 
wiring complexity against performance and design complexity, provided 
that our chosen implementation fabric allows tristate drivers and our 
CAD tool suite supports design and analysis of tristate buses. For designs 
that don’t have stringent performance requirements, tristate buses can 
be a good choice. In the case of bus connections between chips on a 
printed circuit board, tristate buses are usually preferred. For that reason, 
fabrics such as FPGAs provide tristate drivers that can be used to drive 
output pins.

d_busd

en

F I G U R E 8 .26 A circuit to 
delay the rising edge of a bus 
enable signal.



Modeling Tristate Drivers in Verilog

There are two aspects to modeling tristate drivers: representing the high-
impedance state, and representing the enabling and disabling of drivers. 
In previous chapters, we have used single-bit Verilog net and variable val-
ues to represent single-bit logic levels. Nets and variables can also take on 
the value Z for representing the high-impedance state. In a Verilog model 
for a circuit, we can assign Z to an output to represent disabling the 
output. Subsequently, assigning 0 or 1 to the output represents enabling 
it again.

There are several additional points we should make about modeling 
tristate drivers in Verilog. First, we can write a Z value using either an 
uppercase or lowercase letter. Thus, 1'bZ and 1'bz are the same. Second, 
we can only write literal Z values as part of a binary, octal or hexadecimal 
number, such as 1'bZ, 3'oZ and 4'hZ. In an octal number, a Z represents 
three high-impedance bits, and in a hexadecimal number, a Z represents 
four high-impedance bits. Third, Verilog allows us to use the keyword tri
instead of wire for a net connected to the output of a tristate driver. Thus, 
we might write the following declaration in a module:

tri d_out;

or the following port declaration:

module m ( output tri a, ... );

Apart from the use of the different keyword, a tri net behaves exactly 
the same as a wire net. The tri keyword simply provides documentation 
of our design intent. Note that there is no corresponding keyword for a 
variable that is assigned a Z value; we continue to use the reg keyword 
for that purpose.

example  8 .7  Write a Verilog statement to model a tristate driver for an 
output net d_out. The driver is controlled by a net d_en, and when enabled, 
drives the value of an input d_in onto the output net.

solut ion We can use an assignment statement, as follows:

assign d_out = d_en ? d_in : 1'bZ;
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For multibit buses, we can use vectors whose elements include 
Z  values. While we can assign 0, 1 and Z values individually to elements 
of vectors, we usually assign either a vector containing just 0 and 1 values 
to represent an enabled driver or a vector of all Z values to represent a 
disabled driver. Verilog’s implicit resizing rules for vector values involve 
extending with Z elements if the leftmost bit of the value to be extended is 
Z. So we can write 8'bz to get an 8-element vector of Z values.

example  8 .8  The SN74x16541 component manufactured by Texas 
Instruments is a dual 8-bit bus buffer/driver in a package for use in a printed cir-
cuit board system. The internal circuit of the component is shown in Figure 8.27. 
Develop a Verilog model of the component.

solut ion  We can use vector ports for each of the 8-bit inputs and out-
puts, and single-bit ports for the enable inputs. The module definition is:

module sn74x16541 (  output tri [7:0] y1, y2,
input [7:0] a1, a2,
input   en1_1, en1_2, en2_1, en2_2 );

assign y1 = (~en1_1 & ~en1_2) ? a1 : 8'bz;
assign y2 = (~en2_1 & ~en2_2) ? a2 : 8'bz;

endmodule

Each assignment within the module represents one of the 8-bit sections of the 
component. The condition in the assignment determines whether the 8-bit 
tristate driver is enabled or disabled. The driver is disabled by assigning a vector 
value consisting of all Z elements. Note the use of the tri keyword in the declara-
tion of the output ports to indicate that they can be assigned Z values.

When we have multiple data sources for a tristate bus, our Verilog 
model includes multiple assignment statements that assign values to the 
bus. Verilog must resolve the values contributed by the separate assign-
ments to determine the final value for the bus. If one assignment con-
tributes 0 or 1 to a bus and all of the others contribute Z, the 0 or 1 
value overrides the others and becomes the bus value. This corresponds 
to the normal case of one driver being enabled and the rest disabled. 
If one assignment contributes 0 and another contributes 1, we have a 
conflict. Verilog then uses the special value X, called unknown, as the 
final bus value, since it is unknown whether a real circuit would pro-
duce a low, high or invalid logic level on the bus. Depending on how the 
 Verilog model of a data destination receiving an X value is written, it 
might propagate the unknown value to its outputs, or produce arbitrary 
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a2(7)

en2_1
en2_2
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F I G U R E 8 .27 Internal circuit 
of the 16541 component.



0 or 1 values. Ideally, it would include a verification test statement that 
would detect unknown input values. If all assignments to a bus contribute 
Z, the final signal value is Z. This corresponds to the bus floating. Again, 
since this does not represent a valid logic level, a Verilog model of a data 
destination receiving a Z input should propagate an X output and detect 
the error condition.

An important point to realize about the Z and X values is that they do 
not represent real logic levels in a physical circuit. Rather, assignment of 
Z to an output is a notational device interpreted by synthesis CAD tools 
as implying a tristate driver for the output. Assignment of X to an output 
is a notational device used in simulation to propagate error conditions in 
cases where we cannot determine a valid output value. We can write Ver-
ilog statements that test whether a bus has the value Z or X, but it only 
makes sense to do so in testbench models, for example, in an if statement 
to verify that all drivers of a bus have been disabled or that there is no bus 
conflict. Since, according to our digital abstraction, signals in a physical 
circuit are only ever 0 or 1, a real digital component cannot sense any 
other level.

If we need to test for Z or X values in a testbench model, we should 
use different equality and inequality operators from those we have used 
so far. The == operator in Verilog, known as the logical equality operator, 
represents a hardware equivalence operation. If either operand is Z or X, 
the result is X, since it is unknown whether the values in a real circuit are 
equivalent or not. Similarly, the ! = operator, logical inequality, represents 
a hardware unequivalence operation, and returns X if either operand is Z 
or X. Thus, for example, the expressions 1'b0 = = 1'bX and 1'bZ != 1'b1
both yield X. If we want to test for Z and X values, we must use the 
=== and !== operators, known as the case equality and case inequality
operators, respectively. These perform an exact comparison, including X 
and Z values. Thus, 1'b0 = = = 1'bX yields 0 (false), and 1'bZ != = = 1'b1
yields 1 (true). Note that, like the Z value, we can use an uppercase or 
lowercase letter, and we can only write literal X values in binary, octal, or 
hexadecimal numbers.

example  8 .9  Suppose a Verilog module includes the following 
declarations and assignments

tri [11:0]  data_1, data_2, data_bus;
wire sel_1, sel_2;
...
assign data_bus = sel_1 ? data_1 : 12'hz;
assign data_bus = sel_2 ? data_2 : 12'hz;
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Write a test to verify that the values of all elements of the bus signal are all valid 
logic levels, or that all drivers are disabled.

solut ion  Unfortunately, Verilog does not provide an operation expressly 
for testing for X or Z values within a vector. However, we can make use of a 
property of the reduction XOR operator, ^. This operator can be applied to 
a vector to form the XOR of all of the bits of the vector, yielding a single-bit 
result. If all of the bits are 0 or 1, the result is 0 or 1, but if any bit is X or Z, the 
result is X. Thus, our test can be written as:

if  ((^data_bus) = = = 1'bx && data_bus != = 12'hz)
$display("Invalid value on data_bus");

Note that the first part of the condition includes the case of all elements being 
Z, so we need to check for that case separately.

8.3.3 O P E N - D R A I N  B U S E S

A third solution to avoid bus contention is to use open-drain drivers, 
as shown in Figure 8.28. Each driver connects the drain terminal of a 
transistor to the bus signal. When any of the transistors is turned on, it 
pulls the bus signal to a low logic level. When all of the transistors are 
turned off, the termination resistor pulls the bus signal up to a high logic 
level. If multiple drivers try to drive a low logic level, their transistors 
simply share the current load. If there is a conflict, with one or more 
drivers trying to drive a low level and others letting the bus be pulled up, 
the low-level drivers win. Sometimes, this kind of bus is called a wired-
AND bus, since the bus signal is only 1 if all of the drivers output 1. If 
any driver outputs 0, the bus signal goes to 0. The AND function arises 
from the wiring together of the transistor drains. We can also use this 
form of bus with drivers that use bipolar transistors instead of MOSFET 
transistors. In that case, we connect the collector terminal of a transis-
tor to the bus signal, as shown in Figure 8.29. Such a driver is called an 
open-collector driver.

+V

F I G U R E 8 .28 Open-drain 
bus structure.



Given the need for a pull-up resistor on each bus signal, open-drain 
or open-collector buses are usually found outside integrated circuits. 
For example, they may be used for a bus that connects a number of 
integrated circuits together, or for the signals in a backplane bus that 
 connects a number of printed circuit boards together. Implementing 
pull-up resistors within an integrated circuit takes up significant area 
and consumes power. Hence, we usually use multiplexed or tristate 
buses within an integrated circuit chip. If we need the AND function 
that would be formed by open-drain connection, we can implement it 
with active gates.

Modeling Open-Drain and Open-Collector Connections in Verilog

We can model open-drain and open-collector drivers using a different 
kind of net, declared with the keyword wand (short for wired-AND). For 
example:

wand bus_sig;

We assign 0 to a wand net to represent a driver whose output transistor 
is turned on, pulling the net low. We assign 1 to the net to represent a 
driver whose output transistor is turned off. When a wand net is resolved, 
any 0 values override all other values. However, if all of the drivers are 
turned off, contributing 1 values, the final value of the net is 1. Note that 
the pull-up resistor for the bus is not explicitly represented in the model; 
rather, it’s effect is implicit in the declaration of the net as wand instead 
of wire.

8.3.4 B U S  P R OTO C O LS

In most design projects, subsystems are often designed by different team 
members. Some subsystems may also be procured from external provid-
ers, or be implemented using off-the-shelf components. If the subsystems 
are to be interconnected using buses, it would be preferable for them to 
use the same bus signals with the same timing requirements; otherwise, 
interface glue logic is required. In order to facilitate connection of sepa-
rately designed components, a number of common bus protocols have 
been specified. Some of the specifications are embodied in industry and 
international standards, whereas others are simply specifications agreed 
upon or promoted by component vendors. The specification of a bus pro-
tocol includes a list of the signals that interconnect compliant compo-
nents, and a description of the sequences and timing of values on the 
signals to implement various bus operations.
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Bus specifications and protocols vary, depending on their intended 
use. Some, intended for connecting separate chips on a circuit board or 
separate boards in a system, use tristate drivers for signals that have mul-
tiple data sources. Examples include the PCI bus used to connect add-on 
cards to personal computer systems, and the VXI bus used to connect 
measurement instruments to controlling computers. Others are intended 
for connecting subsystems within an IC. They have separate input and 
output signals, allowing for connection using multiplexers or switching 
circuits. Examples include the AMBA buses specified by ARM, the Core-
Connect buses specified by IBM, and the Wishbone bus specified by the 
OpenCores Organization. Buses also vary in the number of parallel signals 
for transferring addresses and data, and in the speed of operation. Some, 
intended for high-speed data transfer, provide for the kinds of techniques 
we mention in Chapter 7, such as burst transfers and pipelining.

In this section, we will describe the relatively simple I/O bus protocol 
used by the Gumnut core. We have already introduced several aspects of 
the bus specification in preceding examples in this chapter. We will draw 
all of the aspects of the specification together here.

The Wishbone I/O bus signals for the Gumnut are described in the 
Verilog module definition in Example 8.3 and are shown as part of the 
Gumnut schematic symbol in Figure 8.21. To summarize, the signals are:

port_cyc_o: a “cycle” control signal that indicates that a sequence of 
I/O port operations is in progress.

port_stb_o: a “strobe” control signal that indicates an I/O port 
operation is in progress.

port_we_o: a “write enable” control signal that indicates the opera-
tion is an I/O port write.

port_ack_i: a status signal that indicates that the I/O port acknowl-
edges completion of the operation.

port_adr_o: the 8-bit I/O port address.

port_dat_o: The 8-bit data written to the addressed I/O port by an 
out instruction.

port_dat_i: the 8-bit data read from the addressed I/O port by an inp
instruction.

When the Gumnut core executes an out instruction, it performs a port 
write operation. The timing of the operation is shown in Figure 8.30. Tran-
sitions are synchronized by the system clock. The Gumnut starts a write 
operation by driving the port_adr_o signals with the address computed 
by the out instruction and the port_dat_o signals with the data from the 
source register of the out instruction. It sets the port_cyc_o, port_stb_o
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and port_we_o control signals to 1 to indicate commencement of the write 
operation. The system in which the Gumnut is embedded decodes the port 
address to select an I/O controller and to enable the addressed output reg-
ister to store the data. If the addressed controller is able to update the regis-
ter within the first clock cycle, it sets the port_ack_i signal to 1 in that cycle, 
as shown in Figure 8.30(a). On the next rising clock edge, the Gumnut sees 
port_ack_i at 1 and completes the operation by driving port_cyc_o, port_
stb_o and port_we_o back to 0. If, on the other hand, the addressed con-
troller is slow and is not able to update the output register within the cycle, 
it leaves port_ack_i at 0, as shown in Figure 8.30(b). The Gumnut sees 
port_ack_i at 0 on the rising clock edge, and extends the operation for a 
further cycle. The controller can keep port_ack_i at 0 for as long as it needs 
to update the register. Eventually, when it is ready, it drives port_ack_i to 1 
to complete the operation. This form of synchronization, involving strobe 
and acknowledgment signals, is often called handshaking.

The Gumnut performs a port read operation when it executes an inp 
instruction. The timing for the operation, shown in Figure 8.31, is  similar 
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F I G U R E 8 .3 0 Timing for 
Gumnut I/O write operations: 
without wait cycles (a), and with 
one wait cycle (b).
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to that for a port write. The Gumnut starts the port read operation by 
driving the port_adr_o signals with the computed address, driving the 
port_cyc_o and port_stb_o signals to 1, and leaving port_we_o at 0. 
Again, the system decodes the address to select an I/O controller and 
enable the addressed input register onto the port_dat_i signals. The con-
troller drives the port_ack_i signal to 1 as soon as it has supplied the data, 
either during the first cycle, as in Figure 8.31(a), or in a subsequent cycle, 
as in Figure 8.31(b). On seeing port_ack_i at 1, the Gumnut transfers the 
data from the port_dat_i signals to the destination register identified in 
the inp instruction. It then completes the port read operation by driving 
port_cyc_o and port_stb_o back to 0.

At first sight, it might appear that the port_cyc_o and port_stb_o sig-
nals are duplicates of each other. However, the Wishbone bus specification 
defines other more involved operations in which the two control signals 
serve distinct purposes. While the Gumnut does not use those operations, 
it includes the signals in order to maintain compatibility with the Wish-
bone specification. The additional signal is a small cost to pay for compat-
ibility with a large pool of third-party components.

 1. If a system requires connection of multiple data sources and 
destinations, why can we not just connect them directly as shown 
in Figure 8.18?

 2. In a multiplexed bus system, why might it be desirable to subdivide 
the multiplexers and distribute them around the chip?

 3. How does a tristate bus avoid logic-level contention on bus signals?

 4. Why should we avoid fl oating bus signals?

 5. What is a weak keeper?

 6. What problems can arise if we disable one tristate bus driver at 
the same time as enabling the next driver? How can we avoid the 
problems?

 7. Write a Verilog assignment that represents a tri-state bus driver for 
an 8-bit bus.

 8. What value results on a Verilog wire net when two tristate drivers 
are enabled and driving opposite logic levels?

 9. Why is a signal connecting several open-drain drivers called a wired-
AND connection?

10. Write a Verilog declaration that represents an open-drain bus.

11. What is a bus protocol?

K N O W L E D G E 
T E S T  Q U I Z
K N O W L E D G E 
T E S T  Q U I Z



8.4 S E R I A L  T R A N S M I S S I O N

Throughout this book, we have described transfer of binary-encoded data 
using parallel transmission, in which we dedicate one signal wire per bit 
of encoded data. While this might appear to give us the fastest possible 
rate of data transfer, there are some disadvantages. The most obvious is 
that we require one signal wire per bit. For wide encodings, the wiring 
takes up significant circuit area, and makes layout and routing of the cir-
cuit more complex. For connections that extend between chips, parallel 
transmission requires more pad drivers and receivers, more pins, and more 
PCB traces. These all add cost to the system. Moreover, there are second-
ary effects, such as increased delay due to the extra space required for the 
connections, problems with crosstalk between wires routed in parallel, 
and problems with skew between signals. Dealing with these problems 
adds cost and complexity to the system. In this section, we will describe 
an alternative scheme for transferring binary-encoded data. The scheme 
is called serial transmission, since bits are transmitted one bit at a time in 
series over a single signal wire.

8.4.1 S E R I A L  T R A N S M I S S I O N  T E C H N I Q U E S

In order to transform data between parallel and serial form, we can use 
shift registers, introduced in Section 4.1.2. At the transmitting end, we 
load the parallel data into a shift register and use the output bit at one 
end of the register to drive the signal. We shift the content of the register 
one place at a time to drive successive bits of data onto the signal. At 
the receiving end, as each bit value arrives on the signal, we shift it into 
a shift register. When all the bits have arrived, the complete data code 
word is available in parallel form in the shift register. We sometimes use 
the term serializer/deserializer, or serdes, for shift registers used in this 
way. The advantage of serial transmission is that we only need one signal 
wire to transfer the data. Thus, we reduce the circuit area and cost for 
the connection. Moreover, if necessary, we can afford to optimize the 
signal path so that bits can be transferred at a very high rate. Some serial 
transmission standards in use today allow for rates exceeding 10 gigabits 
per second.

example  8 .10  Show how a 64-bit data word can be transmitted serially 
between two parts of a system. Assume that the transmitter and the receiver 
are both within the same clock domain, and that the signal start is set to 1 on a 
clock cycle in which data is ready to be transmitted.

solut ion At the transmitting end, we need a 64-bit shift register with 
parallel load control and an output from the least signifi cant bit. At the receiv-
ing end, we also need a 64-bit shift register, but with a single-bit input and 

8.4 Serial Transmission C H A P T E R  E I G H T 353



354 C H A P T E R  E I G H T  i / o  i n t e r f a c i n g

One important issue that we need to address when transferring data 
serially is the order in which we transmit the bits. In principle, the order 
is arbitrary, so long as the transmitter and receiver agree. Otherwise, the 
receiver will end up with the bits in reverse order. In Example 8.10, we 
transmit the least significant bit first, and so shift bits into the receiver shift 
register at the most significant end, shifting them down to the least signifi-
cant end. Fortunately, serial transmission in a system is often governed by 
a standard that specifies the order. This absolves us of the need to decide.

Another important issue is synchronization of the transmitter and the 
receiver. If we just drive the signal with the data bit values, there is no 
indication of when the time for one bit ends and the time for the next 
bit starts. This form of serial transmission is called non-return to zero 
(NRZ), and is illustrated in Figure 8.34, which shows the logic levels on 
a signal for NRZ serial transmission of the value 11001111, with the 
most significant bit being transmitted first. We assume in this case that 
the value on the signal when no bit is being transmitted is 0. In the figure, 

parallel data output. The connections are shown in Figure 8.32. The fi gure also 
shows the control section that sequences the serial transmission. When a start 
pulse occurs, the control section activates the receiver clock enable, rx_ce, for 
64 cycles to shift the serial data in. The control section then pulses rx_rdy to 
indicate that the received data is ready. A timing diagram for one transmission is 
shown in Figure 8.33. We can implement the control logic with a counter and a 
simple fi nite-state machine.
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we have drawn a timescale showing the interval in which each bit occurs. 
However, that information is implicit, rather than being explicitly trans-
mitted to the receiver along with the data. If the receiver, for some reason, 
assumed intervals twice as long for each bit, it would receive the value 
10110000. To avoid this problem, we need to synchronize the transmitter 
and receiver, so that the receiver samples each bit value on the signal at 
some time during the interval when the transmitter drives the signal with 
the bit value.

There are three basic ways in which we can synchronize the transmit-
ter and receiver. The first is by transmitting a clock on a separate signal 
wire. We saw this scheme in Example 8.10. The second is by signaling 
the start of a serial code word and relying on the receiver to keep track 
of the individual bit intervals. A common way of doing this originated 
with teletypes, which were computer terminals consisting of a keyboard 
and a printer connected to a remote computer using serial transmission. 
A refined version of such serial transmission is still used to connect some 
devices to serial communications ports on modern PCs.

In this second scheme, the signal is held at a high logic level when 
there is no data to transmit. When data is ready to be transmitted, trans-
mission proceeds as shown in Figure 8.35, again with the most significant 
bit transmitted first. The signal is brought to a low logic level for one bit 
time to indicate the start of transmission. We call this the start bit. After 
that, the bits of data are transmitted, each for one bit time. We might also 
transmit a parity bit after the data bits, in case the signal wire is subject 
to induced noise, though this is not shown in the figure. This would allow 
us to detect some errors that might occur during transmission. Finally, 
we drive the signal high for one further bit time to indicate the end of 
transmission of the data. We call this the stop bit. We can then transmit 
the next piece of data, starting with a start bit, or leave the signal high if 
there is no data ready to transmit.

At the receiving end, the receiver monitors the logic level on the 
signal. While it remains at a high logic level, the receiver is idle. When 
the receiver detects a low logic level of the start bit, it prepares to receive 
the data. It waits until the middle of the first bit time and shifts the value 
on the signal into the receiving shift register. It then waits for further suc-
cessive bit times, shifting each bit into the shift register. The complete data 
is available after the last bit is received. The receiver uses the stop-bit time 
to return to the idle state.

Note that the transmitter and the receiver must agree on the duration 
of the bit times on the signal. Usually, this is fixed in advance, either dur-
ing manufacture or by programming. The transmitter and receiver typi-
cally have independent clocks, each several times faster than the serial bit 
rate. The sender uses its clock to transmit the data, and the receiver uses 
its clock to determine when to sense the data, synchronized by occurrence 

F I G U R E 8 .35 Serial
transmission of the value 
11100100 with start and 
stop bits.
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of the start bit. This is illustrated in Figure 8.36, in which the  transmit 
clock and receive clock have slightly different frequencies and are not 
related in phase. Provided the difference is not too extreme, the drift 
from the nominal sampling time does not affect correct reception of the 
 transmitted data.

Historically, computer component manufacturers provided a compo-
nent called a universal asynchronous receiver/transmitter, or UART, for 
serial communications ports. The software on the computer could pro-
gram the bit rate and other parameters. UARTs are still useful in some 
applications for connecting remote devices to digital systems via serial 
communications links. For example, an instrumentation system with 
remote sensors that transmit data at relatively low bit rates can use serial 
transmission managed by UARTs.

The third scheme for synchronizing a serial transmitter and receiver 
involves combining a clock with the data on the same signal wire. This 
avoids the need for tight clock synchronization, since there is an indica-
tion of when each bit arrives. As an example of such a scheme, we will 
describe Manchester encoding. As with NRZ transmission, Manchester 
encoding transmits each bit of data in a given interval. However, rather 
than representing each bit using one or other logic level, it represents a 0 
with a transition from low to high in the middle of the bit interval, and a 
1 with a transition from high to low. (We could equally well choose the 
opposite assignment of transmissions, so long as transmitter and receiver 
agree.) At the beginning of the bit interval, a transition may be necessary 
to set the signal to the right logic level for the transition in the middle of 
the interval. Manchester encoding of the value 11100100 is shown in 
Figure 8.37, with the most significant bit transmitted first and with bit 
intervals defined by the transmitter’s clock.

Since Manchester encoding of data is synchronized with the trans-
mitter’s clock and that clock is combined with the data, the receiver must 
be able to recover the transmitted clock and data from the signal. It does 
so using a circuit called a phase-locked loop (PLL), which is an oscillator 
whose phase can be adjusted to line up with a reference clock signal. A sys-
tem using Manchester encoding usually transmits a continuous sequence 
of encoded 1 bits before transmitting one or more data words. The encod-
ing of such a sequence gives a signal that matches the  transmitter’s clock. 
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The receiver’s PLL locks onto the signal to give a clock that can be used 
to determine the bit intervals for the transmitted data. This is shown in 
Figure 8.38.

The main advantage of Manchester encoding over NRZ transmission 
is that it contains sufficient transitions to allow clock synchronization with-
out the need for separate signal wires. The disadvantage is that the band-
width of the transmission is double that of NRZ transmission. However, 
for many applications, that is not an overriding disadvantage. Manchester 
encoding has been used in numerous serial transmission standards, includ-
ing the original Ethernet standard. Other serial encoding schemes that are 
similar in concept but more involved are now becoming widely used.

8.4.2 S E R I A L  I N T E R FA C E  S TA N D A R D S

Given the advantages of serial transmission over parallel transmission 
for applications where distance and cost are significant considerations, 
numerous standards have been developed. These standards cover two 
broad areas of serial interfaces: connection of I/O devices to computers, 
and connection of computers together to form a network. Since most 
digital systems contain embedded computers, they can include standard 
interfaces for connecting components. The benefits of doing so include 
avoiding the need to design the connection from scratch, and being able 
to use off-the-shelf devices that adhere to standards. As a consequence, we 
can reduce the cost of developing and building systems, as well reducing 
the risk of designs not meeting requirements.

Some examples of serial interface standards for connecting I/O devices 
include:

RS-232: This standard was originally defined in the 1960s for 
 connecting teletype computer terminals with modems, devices 
for serial communication with remote computers via phone lines. 
Sub sequently, the standard was adopted for direct connection of 
terminals to computers. Since most computers included RS232 con-
nection ports, RS232 connections were incorporated in I/O devices 

�
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other than terminals as a convenient way to connect to computers. 
Examples included user-interface devices such as mice, and various 
measurement devices. Serial transmission in RS232 interfaces uses 
NRZ encoding with start and stop bits for synchronization. Data 
is usually transmitted with the least significant bit first and most 
significant bit last. While RS232 interfaces have now largely been 
supplanted by more recent standards, they are still used in some 
equipment, for example, bar code readers in point-of-sale terminals, 
and industrial measurement devices.

I2C: The Inter-Integrated Circuit bus specification is defined by 
Philips Semiconductors, and is widely adopted. It specifies a serial 
bus protocol for low-bandwidth transmission between chips in a sys-
tem (10kbit/sec to 3.4Mbit/sec, depending on the mode of operation). 
It requires two signals, one for NRZ-coded serial data and the other 
for a clock. The signals are driven by open-drain drivers, allowing 
any of the chips connected to the bus to take charge by driving the 
clock and data signals. The specification defines particular sequences 
of logic levels to be driven on the signals to arbitrate to see which 
device takes charge and to perform various bus operations. The 
advantage of the I2C bus is its simplicity and low implementation 
cost in applications that do not have high performance requirements. 
It is used in many off-the-shelf consumer and industrial control chips 
as the means for an embedded microcontroller to control opera-
tion of the chip. Philips Semiconductor has also developed a related 
bus specification, I2S, or Inter-IC Sound, for serial transmission of 
digitally encoded audio signals between chips, for example, within a 
CD player.

USB: The Universal Serial Bus is specified by the USB Implement-
ers Forum, Inc., a nonprofit consortium of companies founded by 
the original developers of the bus specification. USB has become 
commonplace for connecting I/O devices to computers. It uses 
differential signaling (see Section 6.4.1) on a pair of wires, with a 
modified form of NRZ encoding. Different configurations support 
serial transfer at 1.5Mbit/sec, 12Mbit/sec or 480Mbit/sec. The USB 
specification defines a rich set of features for devices to communicate 
with host controllers. Since there is such a diversity of devices with 
USB interfaces, application-specific digital systems can benefit from 
inclusion of a USB host controller to enable connection of off-the-
shelf devices. USB interface designs for inclusion in ASIC and FPGA 
designs are available in component libraries from vendors.

FireWire: This is another high-speed bus defined by IEEE Standard 
1394. Whereas USB was originally developed for lower bandwidth 
devices and subsequently revised to provide higher bandwidth, 
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FireWire started out as a high-speed (400Mbit/sec) bus. There is also 
a revision of the standard defining transfer at rates up to 3.2Gbit/sec. 
FireWire connections use two differential signaling pairs, one for 
data and the other for synchronization. As with USB, there is a rich 
set of bus operations that can be performed to transmit information 
among devices on the bus. FireWire assumes that any device con-
nected to the bus can take charge of operation, whereas USB requires 
a single host controller. Thus, there are some differences in the 
operations provided by FireWire and USB, and some differences in 
the applications for which they are suitable. FireWire has been most 
successful in applications requiring high-speed transfer of bulk data, 
for example, digital video streams from cameras.

example  8 .11  Design an interface to connect an embedded Gumnut core 
to a remote temperature sensor. The temperature sensor is an Analog Devices 
AD7414 with an I2C connection and an alert output that can be connected to a 
warning indicator.

solution  The OpenCores repository (see Section 8.7, Further Reading) 
contains an I2C controller component that is Wishbone compliant. We can 
use it rather than designing a new I2C controller from scratch. We connect  
the  controller to the Gumnut core’s Wishbone I/O bus, and provide pad 
 connections to an external I2C bus for connecting the temperature sensor. We 
 connect the alert output of the sensor to an LED indicator. The sensor allows 
the embedded software to program threshold temperatures, beyond which the 
alert indicator is activated. The system design is shown in Figure 8.39. The use 
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of the serial I2C bus allows connection to the temperature sensor with only 
two wires, resulting in a substantial reduction in system cost compared to 
connection using a parallel bus.
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1. What advantages does serial transmission of data have over parallel 
transmission?

2. How do we convert between parallel and serial form for serial data 
transmission or reception?

3. What determines the order in which we transmit bits of data?

4. What is meant by non-return to zero (NRZ) transmission?

5. What is the purpose of a start bit and a stop bit in serial 
transmission?

6. How does Manchester encoding represent 0 and 1 bits?

7. Why would we adopt a standard serial interface specifi cation rather 
than developing a custom interface?

8. Which of I2C or FireWire would be most appropriate for connecting 
a motor controller and a digital video camera, respectively, to an 
embedded system?

8.5 I / O  S O F T W A R E

Now that we have described the hardware aspects of input and output, 
we turn our attention to the corresponding embedded software. We have 
seen that an out instruction in the Gumnut core invokes a port write 
operation to update an output register in an I/O controller, and an inp
instruction invokes a port read operation to get the value from an input 
register. The embedded software running on the core needs to use out and 
inp instructions as part of the task of managing input and output devices 
to implement the functionality required of the system.

Since I/O devices interact with the real physical world, the embed-
ded software needs to be able to respond to events when they occur, or 
to cause events at the right time. Dealing with real time behavior is one 
of the main differences between embedded software and programs for 
general purpose computers. Embedded software needs to be able to detect 
when events occur so that it can react. It also needs to be able to keep 
track of time so that it can perform actions at specific times or at regular 
intervals. In this section, we will introduce the basic mechanisms for syn-
chronizing embedded software with I/O events.

8.5.1 P O L L I N G

The simplest I/O synchronization mechanism is called polling. It involves 
the software repeatedly checking a status input from a controller to see if 
an event has occurred. If it has, the software performs the necessary task 
to react to the event. If there are multiple controllers, or multiple events to 
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which the software must respond, the software checks each of the status 
inputs in turn, reacting to events as they occur, as part of a busy loop.

example  8 .12  A factory automation system includes a safety monitoring
subsystem based on an embedded Gumnut core. The core has alarm inputs 
from a number of machines that indicate various abnormal operating condi-
tions. These are connected through a controller that has two input registers at 
addresses 16 and 17. Each bit of each register represents one alarm input, with 
the bit being 0 for normal operation and 1 for an alarm condition. The core also 
has a temperature sensor connected to an ADC. The converted value is available
in an input register at address 20, represented as an 8-bit unsigned integer in °C. 
A temperature above 50°C is abnormal. The core has an output register at 
address 40. Writing a 1 to the least signifi cant bit of the output register activates
an alarm bell, and writing 0 deactivates it. Develop a polling loop for the 
embedded software to monitor the inputs and activate the alarm bell when any 
abnormal condition arises.

solut ion The polling loop must repeatedly read the input registers. If any 
alarm input bit is 1, or if the temperature value is greater than 50°C, the alarm 
bell output bit must be set to 1; otherwise, it must be cleared to 0. The code is

alarm_in_1: equ 16  ; address of alarm_in_1 input register
alarm_in_2: equ 17  ; address of alarm_in_2 input register
temp_in:    equ 20  ; address of temp_in input register
alarm_out:  equ 40  ; address of alarm_out output register

max_temp:   equ 50  ; maximum permissible temperature

poll_loop: inp r1, alarm_in_1
 sub r0, r1, 0
 bnz set_alarm ; one or more alarm_in_1 bits set
 inp r1, alarm_in_2
 sub r0, r1, 0
 bnz set_alarm ; one or more alarm_in_2 bits set
 inp r1, temp_in
 sub r0, r1, max_temp
 bnc set_alarm ; temp_in > max_temp
 out r0, alarm_out ; clear alarm_out
 jmp poll_loop
set_alarm: add r1, r0, 1
 out r1, alarm_out ; set alarm_out bit 1 to 1
 jmp poll_loop

Polling has the advantage that it is very simple to implement, and 
requires no additional circuitry beyond the input and output registers 
of the I/O controllers. However, it requires that the processor core be 
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continually active, consuming power even when there is no event to react 
to. It also prevents the processor from reacting immediately to one event if 
it is busy dealing with another event. For these reasons, polling is usually 
only used in very simple control applications where there is no need for 
fast reaction times.

8.5.2 I N T E R R U P TS

Probably the most common way to synchronize embedded software with 
I/O events is through use of interrupts. The processor executes some back-
ground tasks, and when an event occurs, the I/O controller that detects 
the event interrupts the processor. The processor then stops what it was 
doing, saving the program counter so that it can resume later, and starts 
executing an interrupt handler, or interrupt service routine, to respond to 
the event. When it has completed the handler, it restores the saved pro-
gram counter and resumes the interrupted program. In some systems, if 
there is no background task to run, the processor may enter a low-power 
standby state from which it emerges in response to an interrupt. This has 
the benefit of avoiding power consumption due to busy-waiting, though 
it may add delay to the interrupt response time if the processor requires 
some time to resume full-power operation.

Different processors provide different mechanisms for I/O controllers
to request an interrupt. Some provide very simple mechanisms, such as 
that of the Gumnut core that we will describe shortly. Others provide more 
elaborate mechanisms, for example, allowing different controllers to be 
assigned different priorities, so that a higher-priority event can interrupt 
service of a lower-priority event, but not vice versa. Some provide a way for 
the controller to select the interrupt handler to be executed by the proces-
sor. However, there are some aspects that are common to most systems.

First, the processor must have an input signal to which controllers can 
connect to request interrupts. For older microprocessors and microcon-
trollers, the interrupt request signal is often an active-low signal pulled up 
with an external resistor. Each controller connects to the signal with an 
open-drain or open-collector driver, pulling the signal low to request an 
interrupt. Thus, the signal value is a wired-OR function of the individual 
controllers’ requests. For processor cores that are designed to connect to 
on-chip I/O controllers, the interrupt request input is typically driven by 
active gates forming the OR of the controllers’ requests.

Second, the processor must be able to prevent interruption while it is 
executing certain sequences of instructions, often called critical regions.
Examples are instructions that update information shared between an 
interrupt handler and other parts of the embedded software. If the proces-
sor is part way through updating such information and is interrupted, the 
interrupt handler will see the partially updated information, which may not 



correctly represent a valid value. So processors generally have instructions
or other means of disabling interrupts and enabling interrupts.

Third, the processor must be able to save sufficient information about 
the program it was executing when interrupted so that it can resume the 
program on completion of the interrupt handler. At the least, this includes 
saving the program counter value. Since the processor responds to an 
interrupt after completing one instruction and before starting the next, 
the program counter contains the address of the next instruction in the 
program. That is the instruction to be resumed after the interrupt handler. 
The processor must provide a register or some other storage in which to 
save the program counter. If there is other state information in the pro-
cessor that might be modified by the interrupt handler, such as condition 
code bits, they must also be saved and restored.

Fourth, when the processor responds to an interrupt, it must disable 
further interrupts. Since response to an interrupt involves saving the inter-
rupted program’s state in registers, if the interrupt handler is itself inter-
rupted, the saved state would be overwritten. Thus, the handler needs to 
prevent interruption, at least during the initial stages of responding to an 
interrupt.

Some processors allow the storage containing the saved state infor-
mation to be read by a program. That allows a handler to copy the saved 
state into memory. The handler can then re-enable interrupts, allowing 
the interrupt handler itself to be interrupted to deal with another event. 
We call this nested interrupt handing. The handler must disable interrupts 
again when it has completed its operation so that it can restore the saved 
state before resuming the interrupted program.

Fifth, the processor must be able to locate the first instruction of the 
interrupt handler. The simplest way of doing this is for the handler to start 
at a fixed or predetermined address in the instruction memory. Alterna-
tive schemes involve the interrupting controller providing a vector: either 
a value used to form the address of the handler, or an index into a table 
of addresses in memory.

Finally, the processor needs an instruction for the interrupt handler to 
return to the interrupted program. Such a return from interrupt instruc-
tion restores the saved program counter and any other saved state.

The Gumnut processor core has all of these features, with the excep-
tion of nested interrupt handing. It has an input signal, int_req, that con-
trollers can drive to 1 to request an interrupt. It includes two instructions 
in its instruction set: disi, for disabling interrupts; and enai, for enabling 
interrupts. When the core responds to an interrupt, it saves the program 
counter and the values of the Z and C condition codes in special inter-
nal registers, and disables further interrupts. The first instruction of the 
interrupt handler is located at address 1 in the instruction memory, so 
the processor simply loads that address into the program counter to start 
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executing the handler. Finally, the Gumnut instruction set includes the reti
instruction to return from an interrupt handler. It restores the saved values 
to the program counter and the Z and C condition code bits, and re-enables 
interrupts. Program execution then resumes from where it left off.

There are also requirements on I/O controllers that make interrupt 
requests. When an event occurs, the controller must activate the processor’s 
interrupt request signal. However, the processor may not respond imme-
diately. The requesting controller must keep the request signal active, oth-
erwise the request may go unnoticed. Failure to respond to an event may 
be a critical error in some systems. Processors typically have a mechanism 
to acknowledge an interrupt request, that is, to indicate that the event has 
been noticed and that the interrupt handler as been activated. If there are 
multiple I/O controllers that can request interrupts, the processor needs to 
acknowledge each request individually, so that none are overlooked. Once 
a request has been acknowledged, the controller must deactivate the inter-
rupt request signal. Otherwise, multiple responses might occur for the one 
event. In some cases, that can be as bad as missing an event.

The Gumnut core provides a simple interrupt acknowledgment mech-
anism. It has an output signal, int_ack, that it drives to 1 for one cycle 
when it responds to an interrupt request. If there is only one controller 
that can request interrupts in a Gumnut system, the controller can use the 
int_ack signal to clear its interrupt request state.

example  8 .13  Design an input controller that has 8-bit binary-coded 
input from a sensor. The value can be read from an 8-bit input register. The 
controller should interrupt the embedded Gumnut core when the input value 
changes. The controller is the only interrupt source in the system.

solut ion The controller contains a register for the input value. Since 
we need to detect changes in the value, we also need a register for the previous 
value, that is, the value on the previous clock cycle. When the current and previ-
ous values change, we set an interrupt-request state bit. Since there is only one 
interrupt source, we can use the int_ack signal from the processor core to clear 
the state bit. The controller circuit is shown in Figure 8.40.

example  8 .14  Develop a Verilog model of the input controller of 
Example 8.13.

solut ion The module definition includes ports for the I/O bus, plus the 
interrupt request and acknowledge connections:

module sensor_controller ( input  clk_i, rst_i,
input  cyc_i, stb_i,
output  ack_o,

(continued)
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  output reg [7:0] dat_o,
output  reg int_req,
input  int_ack,
input    [7:0] sensor_in );

reg [7:0] prev_data;

always @(posedge clk_i) // Data registers
if (rst_i) begin
prev_data <= 8'b0;
dat_o <= 8'b0;

end
else begin
prev_data <= dat_o;
dat_o <= sensor_in;

end

always @(posedge clk_i) // Interrupt state
if (rst_i) int_req <= 1'b0;
else
case (int_req)
1'b0: if (dat_o ! = prev_data) int_req <= 1'b1;
1'b1: if (int_ack) int_req <= 1'b0;

endcase

assign ack_o = cyc_i & stb_i;

endmodule

The first always block represents the two data registers, one for the current sen-
sor data value and one for the previous value. The second always block repre-
sents the interrupt request and acknowledge logic. It is essentially a small finite 
state machine, with int_req encoding the state. In the state where int_req is 0, 
there is no interrupt request. However, if the current value changes from the pre-
vious value, int_req is set to 1. The value of this output is used as the interrupt 
request signal to the processor. It stays 1, even when the current value and the 
previous value no longer differ. Eventually, when the processor responds to the 
interrupt and sets int_ack to 1, int_req is cleared back to 0.
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example  8 .15  Show the Gumnut assembler code for the interrupt handler 
for the sensor controller interrupt. Assume the data register is read at port 
address 0.

solut ion The interrupt handler is

 data
saved_r1: bss 1

 text
sensor_data: equ 0 ; address of sensor data
   ; input register

 org 1
 stm r1, saved_r1
 inp r1, sensor_data
 ...  ; process the data
 ldm r1, saved_r1
 reti

Since the handler needs to use processor register r1, it must save whatever value 
is in there from the interrupted program. The data memory location saved_r1 is 
reserved for that purpose. The interrupt handler must be located at address 1 in 
the instruction memory. We use an org directive to ensure this. The instructions 
in the handler first save the contents of r1, then read the new value from the con-
troller’s input register. The handler then executes instructions that deal with the 
data. Finally, the handler restores the saved value to r1 and uses a reti instruction 
to resume the interrupted program.

If, in a Gumnut-based system, there are several controllers that can 
request an interrupt, the interrupt handler must be able to determine 
which controller requested an interrupt so that it can execute the appro-
priate response. In such a system, each controller must provide status 
information in a status register that indicates whether it has requested an 
interrupt. Furthermore, the int_ack signal is not sufficient to distinguish 
which request is acknowledged. Instead, the processor must perform some 
other action to acknowledge the interrupt. We could acknowledge and 
clear a controller’s interrupt request as a side-effect of its status register 
being read. Alternatively, we could require a write operation to a control 
register to acknowledge the request.

8.5.3 T I M E R S

As we mentioned earlier, many real-time embedded systems must perform 
actions at specific times or at periodic intervals. For these systems, we 
need to include some form of timer. We showed in Chapter 4 that we can 



use a counter to derive a periodic signal from the system clock. We can 
use such a signal as a time base: each cycle represents one unit of time in 
the embedded system. We also showed how we can use a loadable down 
counter as an interval timer. A common use for interval timers in real-time 
embedded systems is to generate an interrupt for the processor at some 
programmable multiple of a time base. The interval timer acts as an I/O 
controller, often called a real-time clock, with an output register for pro-
gramming the time interval. The interrupt handler for the timer can then 
perform any required periodic actions.

example  8 .16  Develop a Verilog model for a real-time clock  controller
for the Gumnut processor. The controller has a 10µs time base derived from 
a 50MHz system clock, and an 8-bit output register for the value to load into 
the counter. A write operation to the output register causes the counter to be 
loaded. After the counter reaches 0, it reloads the value from the output register 
and requests an interrupt. The controller has an input register for reading the 
current count value. The counter also has a 1-bit control output register. When 
bit 0 of the register is 0, interrupts from the controller are masked, and when it 
is 1, they are enabled. The counter has a status register, in which bit 0 is 1 when 
the counter has reached 0 and been reloaded, or 0 otherwise. Other bits of the 
register are read as 0. Reading the register has the side effect of acknowledging a 
requested interrupt and clearing bit 0. The counter output and input registers are 
located at the base port address, and the control and status registers are at offset 
1 from the base port address.

solut ion The module definition for the controller has ports for the I/O 
bus, and uses the stb_i port for the decoded base port address:

module real_time_clock ( input clk_i, // 50 MHz clock
input rst_i,
input cyc_i, stb_i, we_i,
output ack_o,
input adr_i,
input  [7:0] dat_i,
output [7:0] dat_o,
output int_req );

parameter clk_freq = 50000000;
parameter timebase_freq = 100000;
parameter timebase_divisor = clk_freq / timebase_freq;

reg [7:0] count_value;
reg trigger_interrupt;
reg int_enabled, int_triggered;
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integer timebase_count;
reg [7:0] count_start_value;

always @(posedge clk_i)  // Counter
if (rst_i) begin
timebase_count <= 0;
count_start_value <= 8'b0;
count_value <= 8'b0;
trigger_interrupt <= 1'b0;

end
else if (cyc_i && stb_i && !adr_i && we_i) begin
timebase_count <= 0;
count_start_value <= dat_i;
count_value <= dat_i;
trigger_interrupt <= 1'b0;

end
else if (timebase_count = = timebase_divisor – 1) begin
timebase_count <= 0;
if (count_value == 8'b00000000) begin
count_value <= count_start_value;
trigger_interrupt <= 1'b1;

end else begin
count_value <= count_value — 1;
trigger_interrupt <= 1'b0;

end
end
else begin
timebase_count <= timebase_count + 1;
trigger_interrupt <= 1'b0;

end

always @(posedge clk_i)  // Control register
if (rst_i)
int_enabled <= 1'b0;

else if (cyc_i && stb_i && adr_i && we_i)
int_enabled <= dat_i[0];

always @(posedge clk_i) // Interrupt register
if (rst_i || (cyc_i && stb_i && adr_i && !we_i))
int_triggered <= 1'b0;

else if (trigger_interrupt)
int_triggered <= 1'b1;

assign dat_o = !adr_i ? count_value : {7'b0, int_triggered};

assign int_req = int_triggered & int_enabled;

assign ack_o = cyc_i & stb_i;

endmodule



The first always block represents the time-base divider, interval counter and 
counter output register. The variable timebase_count is used to divide the 
50MHz clock to derive the 100kHz time base, and the variable count_start_

value stores the value for the counter output register. The count value is repre-
sented by the variable count_value. The variable trigger_interrupt is an internal 
control variable used to manage interrupt requests. On reset, the variables are 
cleared to zeros. When a port write operation is performed with the least signifi-
cant address bit being 0, the written data is used to update count_start_value,
and the counters are cleared to zeros again. On other clock cycles, the counters 
are incremented. When the time base counter reaches its terminal count, it wraps 
to zero, and count_value is decremented. When count_value reaches zero, it is 
reloaded from count_start_value, and the trigger_interrupt variable is set to 1.

The second always block represents the control register, containing the interrupt-
enable bit. On reset, the bit is cleared to 0. Otherwise, when a write operation is 
performed with the least significant address bit being 1, the bit is updated with 
the written port data.

The third always block represents the one-bit state register that determines when 
an interrupt event has occurred. The variable int_triggered is set to 1 when the 
trigger_interrupt variable is 1, that is, when count_value is reloaded after having 
reached zero. The variable is cleared to 0 on reset, and also on a port read opera-
tion that reads the status register.

The remaining assignments implement the rest of the required functionality. The 
assignment to dat_o selects the value provided for a port read operation: either 
the count value or the interrupt status bit. The assignment to int_req causes an 
interrupt request when the triggering event has occurred and interrupt requests 
are enabled. The assignment to ack_o implements the controller’s response to bus 
operations, indicating that the controller is ready without delay.

example  8 .17  Suppose a Gumnut system includes the real-time clock 
controller of Example 8.16 with the registers located at base port address 16. 
Develop Gumnut code that calls the subroutine task_2ms every 2ms. In between 
activations, the program stands by in low-power mode. The subroutine should 
not be called as part of the interrupt handler, since other interrupts should be 
permitted during execution of the subroutine.

solut ion The code is

;;; --------------------------------------------------------
;;; Program reset: jump to main program

 text
 org 0
 jmp main
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;;; --------------------------------------------------------
;;; Port addresses
rtc_start_count: equ 16 ; data output register
rtc_count_value: equ 16 ; data input register
rtc_int_enable: equ 17 ; control output register
rtc_int_status: equ 17 ; status input register

;;; ---------------------------------------------------------
;;; Interrupt handler

 data
int_r1: bss 1  ; save location for

; handler registers

 text
 org 1

int_handler: stm r1, int_r1 ; save registers
check_rtc: inp r1, rtc_status ; check for
   ; RTC interrupt
 sub r0, r1, 0
 bz check_next
 add r1, r0, 1
 stm r1, rtc_int_flag ; tell main
 ; program
check_next: ...

int_end: ldm r1, int_r1 ; restore registers
 reti

;;; --------------------------------------------------------
;;; init_interrupts: Initialize 2ms periodic interrupt, etc.

 data
rtc_divisor: equ 199 ; divide 100 kHz down
   ; to 500 Hz
rtc_int_flag: bss 1

 text
init_interrupts: add r1, r0, rtc_divisor
 out r1, rtc_start_count
 add r1, r0, 1
 out r1, rtc_int_enable
 stm r0, rtc_int_flag
 ... ; other initializations
 ret

;;; ---------------------------------------------------------

(continued)



;;; main program

 text
main: jsb init_interrupts
 enai
main_loop: stby
 ldm r1, rtc_int_flag
 sub r0, r1, 1
 bnz main_next
 jsb task_2 ms
 stm r0, rtc_int_flag
main_next: ...
 jmp main_loop

The code is structured into separate sections and subroutines, each dealing with 
one part of the program. The first section deals with starting the main program 
when the system is reset. The instructions are located at address 0, and simply 
jump to the main program. The second section defines symbolic labels for the 
real-time clock controller registers. Reference to these labels makes the code 
easier to understand.

The subroutine init_interrupts initializes the real-time clock controller. It loads 
the value 199 into the controller’s output register. This makes the controller 
count down from 199 to 0 and then restart from 199; thus, it divides the time 
base by 200 to give a 2ms period. The subroutine also sets the controller’s inter-
rupt-enable bit by writing 1 to the control register, and clears the rtc_int_flag

location in memory. This location is used by the interrupt handler to indicate 
to the main program that a 2ms interrupt has occurred. The subroutine then 
proceeds with other initializations before returning to the caller.

The interrupt handler is located at instruction address 1. On responding to 
an interrupt, it checks the controllers in the system to determine the interrupt 
source, starting with the real-time clock controller. If the controller’s status regis-
ter is nonzero, the handler sets rtc_int_flag to 1, indicating to the main program 
that it should perform the 2ms task. The handler then proceeds to check for 
other interrupt sources before returning to the interrupted program.

The main program starts by calling the subroutine to initialize controllers and 
interrupts, then enables receipt of interrupts. It then stands by in low-power 
mode until an interrupt occurs. On return from the interrupt handler, the main 
program checks the rtc_int_flag location. If it is 1, a real-time clock interrupt 
has occurred, so the main program calls the task_2ms subroutine, as required, 
and then clears rtc_int_flag. The main program then performs any processing 
required for other interrupts that might have occurred. When that it done, it 
loops back and stands by for the next interrupt.
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The code in Example 8.17 is a basic form of real-time executive, that 
is, a control program that schedules execution of tasks in response to inter-
rupts and timer events. Vendors of microprocessors, microcontrollers and 
embedded processor cores generally provide more sophisticated real-time
operating systems (RTOSs) for their products. There are also a  number
of third-party vendors who provide RTOSs that run on various proces-
sors. An RTOS generally includes an executive, together with software 
components to manage other resources, such as storage, input/output, 
communication and specialized processing resources. The advantage of 
using a real-time executive or an RTOS is that we can focus our software 
development effort on the aspects of our system that are different from 
other systems, and reuse proven code that deals with common embedded 
software mechanisms. We won’t go into any further detail of real-time 
programming in this book. Instead, we refer to sources on the topic listed 
in the Further Reading section.

 1. In dealing with real-time behavior, what does embedded software 
need to do?

 2. How does polling synchronize embedded software with I/O events?

 3. Identify an advantage and a disadvantage of polling compared to 
other I/O synchronization schemes.

 4. What action does a processor perform upon receiving an interrupt?

 5. How does a processor prevent interruption while it is executing a 
critical region?

 6. How does the processor determine where to resume program 
execution on completion of handling an interrupt?

 7. What is an interrupt vector?

 8. Why must a controller deactivate the interrupt request signal when 
its interrupt is acknowledged?

 9. What purpose does a real-time clock serve in an embedded system?

10. What operations are performed by a real-time executive?

K N O W L E D G E 
T E S T  Q U I Z
K N O W L E D G E 
T E S T  Q U I Z



8.6 C H A P T E R  S U M M A R Y

Transducers allow a digital system to interact with the  physical 
world. Sensors generate an electrical representation of a physical 
property. Output transducers, including actuators, cause a physical 
effect.

Input devices include switches, keypads, knobs, position encoders, 
and analog sensors.

An analog-to-digital converter (ADC) produces a binary coded rep-
resentation of an analog signal. ADCs include flash and successive-
approximation ADCs.

Output devices include indicator lights, 7-segment LED and LCD 
displays, electromechanical actuators and valves, motors, and analog 
output devices.

A digital-to-analog converter (DAC) produces an analog signal pro-
portional to a binary coded input. DACs include R-string and R/2R 
ladder DACs.

An I/O controller includes input and output registers that provide 
an embedded processor with access to I/O data. It may also include 
control and status registers for managing operation of the controller.

An autonomous controller may perform I/O operations while a pro-
cessor performs other tasks concurrently.

Buses connect multiple data sources and destinations. Parallel buses 
use one signal wire per bit of encoded data.

Multiplexed buses use multiplexers to select data from one source at 
a time. Multiplexers can be centralized or distributed, depending on 
the wiring complexity of the system.

Tristate buses allow direct connection of sources to destinations, 
using a high-impedance driver state to avoid contention. Tristate 
buses are not generally used within chips. The high-impedance state 
is modeled in Verilog using the Z value.

Open-drain and open-collector drivers allow wired-AND connec-
tions, modeled in Verilog using wand nets.

Bus protocols specify the signals used and the sequences and timing 
of values to implement bus operations.

Serial buses transmit bits in sequence over one wire. Shift registers 
are used to convert between parallel and serial transmission.
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Serial transmission requires synchronization between transmitter 
and receiver to determine the interval during which each bit is 
transmitted.

Real-time software on an embedded processor must be able to react 
to I/O events and to keep track of time so that it can perform sched-
uled or periodic operations.

Software can poll I/O controllers to determine when events occur.

Interrupts are a mechanism for a controller to notify a processor of 
an event. The processor executes an interrupt handler to respond to 
the event, then resumes its interrupted task. The processor includes 
instructions for managing interrupts.

Timers, or real-time clocks, issue periodic interrupts, allowing an 
embedded system to perform scheduled and periodic tasks.
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Industrial Electronics: Applications for Programmable Controllers, 
Instrumentation and Process Control, and Electrical Machines and 
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transducers and electronic circuits used to interface them to digital 
control systems.

Standard LCD Graphic Modules, Allshore Industries, www.allshore
.com/lcd_displays/lcd_graphic_modules.asp. Provides data sheets 
on the ASI-D-1006A-DB-_S/W LCD module and the Seiko Epson 
SED1560 controller IC described in Section 8.2.2.

Understanding Digital Signal Processing, Richard G. Lyons, Prentice 
Hall, 2001. An introduction to the theory of digital signal process-
ing (DSP).

WISHBONE System-on-Chip (SoC) Interconnection Architecture for 
Portable IP Cores, Revision B.3, OpenCores Organization, 2002, 
www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf. This 
is the specification document for the Wishbone bus used in this book.

OpenCores, www.opencores.org. From the website’s FAQ, “OpenCores 
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Real-Time Concepts for Embedded Systems, Qing Li, Caroline Yao, 
CMP, 2003. A practical introduction to real-time programming for 
embedded systems.

e x e rc i s e  8 . 1  A calculator has keys arranged as shown in Figure 8.41. 
Show how the key switches can be arranged in a scanned matrix.

e x e rc i s e  8 . 2  Design a keypad controller to connect a Gumnut core to 
the keypad described in Exercise 8.1. The controller should include an output 
register for driving row lines and an input register for sensing column lines.

e x e rc i s e  8 . 3  Develop a Gumnut program that uses the keypad controller 
described in Exercise 8.2 to scan the calculator keypad. When a key is pressed, 
the program should call a subroutine labeled do_key to respond to the key press. 
(Just include the subroutine call, not the instructions in the subroutine.) Assume 
the output register is at port address 0 and the input register is at port address 1, 
and omit switch debouncing.

e x e rc i s e  8 . 4  Show how the input controller described in Example 8.13 
on page 364 can be used for a volume control knob with an incremental encoder.

e x e rc i s e  8 . 5  Develop a Gumnut interrupt handler that responds to 
 interrupts from the incremental encoder input of Exercise 8.4. The handler 
should increment or decrement a value stored in memory as the knob is turned 
clockwise or counterclockwise, respectively. The value should be limited to the 
range 0 to 100.

e x e rc i s e  8 . 6  Develop a Verilog model of an 8-bit successive approximation 
register (SAR) for use in an ADC (see Figure 8.6 on page 320).

e x e rc i s e  8 . 7  Develop a Gumnut subroutine to perform an analog-to-
 digital conversion using successive approximation, returning an 8-bit result in 
register r1. The Gumnut is connected to an output data register, an input status 
register, an 8-bit DAC and a comparator as shown in Figure 8.42. The output 
data register is written at port address 8. The input status register is read at port 
address 8, and provides the value of the comparator output in the least signifi-
cant bit, with other bits hardwired to 0.

e x e rc i s e  8 . 8  Some digital audio applications use an LED bar display, 
 consisting of a row of LED indicators to display the volume level of the audio 
signal. Assuming that the loudness is proportional to the logarithm of the signal 
amplitude, we can work out which LEDs to light by finding the left-most 1 bit in 
the unsigned binary number representing the amplitude. Design a circuit to drive an 
8-LED common-anode bar display, given an 8-bit unsigned binary amplitude value.

e x e rc i s e  8 . 9  Write a Gumnut subroutine that performs the function of 
the circuit described in Exercise 8.8. The subroutine takes an 8-bit unsigned 
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binary amplitude value in r2 and outputs a corresponding value to an 8-bit 
 register at port address 28, connected to the cathodes of an 8-LED common-
anode bar  display.

e x e rc i s e  8 . 1 0  Draw a schematic of a circuit corresponding to the  display 
multiplexer of Example 8.2 on page 323.

e x e rc i s e  8 . 1 1  A 16-segment LED display, shown in Figure 8.43, can 
 display alphabetic and numeric characters. Develop a circuit schematic and a 
Verilog model of a display decoder and driver to drive a 16-segment common 
anode LED display, given a 6-bit character-code input. Use a 64 � 16-bit ROM 
to decode the input. You needn’t determine the ROM content for this exercise.

e x e rc i s e  8 . 1 2  Modify the display multiplexer/decoder design of 
 Example 8.2 on page 323 to provide an 8-character alphanumeric scanned 
display, with eight 6-bit character code inputs. Use the ROM described in 
 Exercise 8.11 to decode the character codes.

e x e rc i s e  8 . 1 3  Design an output controller to drive eight solenoids. 
The controller should have an 8-bit output register, and should connect to the 
Wishbone bus used by the Gumnut core.

e x e rc i s e  8 . 1 4  The ST Microelectronics L298 IC is a dual full-bridge 
driver that can be used to drive the kind of stepper motor shown in Figure 8.12 
on page 327. The connections between the L298 and the motor (in simplified 
form) are shown in Figure 8.44. Determine the sequences of values on the inputs 
to the L298 to drive the stepper motor clockwise and counterclockwise.

e x e rc i s e  8 . 1 5  Assume the stepper motor driver described in  Exercise 8.14 
is connected to a Gumnut core through a 6-bit output register at port address 8, 
with bits 0 to 5 of the register controlling signals in1, in2, en_a, in3, in4 and en_b, 
respectively. Write a Gumnut subroutine to step the motor one-quarter turn, either 
clockwise, if r2 is 0, or counterclockwise, if r2 is 1. Hint: The subroutine will 
need to keep track of the current state of the stepper motor control signals. Use a 
 location in memory to save the state.
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e x e rc i s e  8 . 1 6  Draw a diagram showing how the following components 
might be used to construct a handheld voice recorder: microphone, microphone 
amplifier, loudspeaker, loudspeaker amplifier, ADC, DAC, processor core, 
instruction memory, data memory, push-button switches. The recorder has but-
tons to record, play/pause, stop, skip forward, and skip backward.

e x e rc i s e  8 . 1 7  Draw a diagram similar to Figures 8.19 and 8.20 on 
page 339 showing multiplexed bus connection of two data sources, two data 
destinations, and two components that are both sources and destinations.

e x e rc i s e  8 . 1 8  Revise Figure 8.21 on page 340 to omit the second ADC 
controller.

e x e rc i s e  8 . 1 9  Revise the Verilog model in Example 8.6 on page 341 to 
omit the second ADC controller.

e x e rc i s e  8 . 2 0  Revise the Verilog model of Example 8.8 on page 346 to 
output X values if the enable inputs are Z or X.

e x e rc i s e  8 . 2 1  Design a serial output controller for connection to the 
Gumnut core using the Wishbone bus. The controller should transmit each 8-bit 
data byte written to a data register using NRZ encoding with one start bit and 
one stop bit, as shown in Figure 8.35 on page 355. Transmission should occur 
at 9600 bits per second, with a transmit timing derived from a system clock 
with frequency 39.321600MHz (� 9600 � 4096). When the stop bit has been 
transmitted, the controller should set an interrupt request output. The interrupt 
request output should be reset when the Gumnut int_ack signal is 1.

e x e rc i s e  8 . 2 2  Write a Gumnut subroutine to transmit a byte of data 
using the serial output controller of Exercise 8.21. Assume the data register is 
a port address 24 and that there are no other interrupt sources in the system. 
The subroutine should wait in standby mode and not return until the controller 
interrupts to indicate that the transmission is complete.
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exercise  8 .23  Revise the subroutine of Exercise 8.22 so that the subrou-
tine returns after having written the byte to the data register. This allows the pro-
cessor to continue with other work while the controller transmits the byte. You 
will need to keep track of whether the controller is busy so that a subsequent call 
to the subroutine does not overwrite the data register while transmission is still 
in progress.

exerc ise  8 .24  Develop a Verilog model of the serial output controller of 
Exercise 8.21.

exercise  8 .25  The OpenCores repository includes a UART core, uart16550, 
that uses the Wishbone bus. (See http://www.opencores.org/projects.cgi/web/
uart16550/overview.) Develop a Verilog structural model of a system containing a 
Gumnut core, instruction and data memories, and an instance of the UART core.

exerc ise  8 .26  Draw a diagram similar to Figure 8.37 on page 356 
 showing Manchester encoding of the values 01100101 and 11110000.

exerc ise  8 .27  Design a circuit that has, as input, a transmit clock and 
an NRZ serial data signal (as in Figure 8.33 on page 354), and that generates a 
Manchester encoded serial data signal as output.

exerc ise  8 .28  Show how the system described in Example 8.11 on 
page 359 would be extended to connect to four AD7414 sensors.

exerc ise  8 .29  A Gumnut system includes a 4-digit 7-segment display, 
 connected as shown in Figure 8.45. The anode data register is at port address 
128, and the cathode data register is at port address 129. Write Gumnut assem-
bly code for the task_2ms subroutine described in Example 8.17 on page 369 to 
scan the display. The BCD digits to display are stored in four bytes of memory 
labeled display_data. The subroutine should select one digit to drive each time it 
is called. Thus, four successive calls are required for a complete scan.
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ac c e l e r ato rs

In Section 7.1, as part of our introduction to embedded computer organization, 
we mentioned accelerators as optional components in embedded systems. 
If the system must perform some operation faster than is possible with 
embedded software running on a processor core, we can design custom 
hardware to perform the operation at the required speed. In this chapter, 
we will examine accelerators in more details and identify how they inter-
act with an embedded processor.

9.1 G E N E R A L  C O N C E P T S

Many operations performed by digital systems consist of a number of 
steps. If a simple embedded processor core performs an operation, it per-
forms the steps in sequence, with each step using one or more proces-
sor instructions. The rate at which the processor can execute instructions 
places a lower bound on the time it takes to perform the operation. The 
key to accelerating performance is parallelism: performing multiple steps 
at the same time, thus taking less time overall to complete the operation. 
The cost of parallelism is the additional components needed to perform 
the steps in parallel, since each component can only perform one step 
at a time. However, if sequential execution does not meet performance 
requirements, parallel hardware may be a higher-performance and lower-
power alternative to using a faster (and more expensive) processor.

One place in which we can add hardware to achieve parallelism is 
within the processor core itself. As we saw in Chapter 7, a processor 
repeatedly fetches, decodes and executes instructions. Many proces-
sor cores use various techniques to perform these steps in parallel. For 
example, a processor might fetch a new instruction while decoding the 
preceding instruction and executing the instruction before that. A higher 
performance processor might fetch several instructions at once, decode 
them together, and use multiple function units to execute as many of 
them in parallel as it can. These and other techniques for achieving 

9
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instruction-level parallelism are described in textbooks on computer 
architecture (see Section 9.5, Further Reading). While they can achieve 
performance improvements ranging from 2 times to perhaps 20 times 
over a simple processor core, the improvement comes at the cost of sig-
nificantly increased complexity, area and power consumption. If an appli-
cation requires much greater performance, or cannot afford the area and 
power consumption of a high-performance processor, a custom hardware 
accelerator may be a better option.

The extent to which we can improve performance depends on the 
amount of parallelism we can achieve, that is, on the number of steps 
we can perform at once. Many applications involve operations on data 
that has a regular, repetitive structure, and in which computation steps 
can be performed independently. For example, data from an audio source 
is a regular sequence of sample values. An operation that implements a 
volume control simply involves multiplying each sample value by the gain 
value. If several sample values are available at once, they can all be mul-
tiplied by the gain value in parallel. Similarly, video data from a camera 
consists of a sequence of frames, each of which is a rectangular array 
of picture elements (pixels). Many video processing operations can be 
performed within a frame in parallel across multiple pixels. Applications 
that involve less regularly structured data, or data that arrives at irregular 
intervals, are much harder to accelerate.

The amount of parallelism in some operations is limited only by the 
amount of data available at a given time. This applies to operations where 
each element of data can be processed independently of the others. Audio 
volume control is such a case. Other operations, however, involve depen-
dencies that constrain parallelism. For example, some signal processing 
operations on audio streams involve combining successive sample values 
to produce values in a result stream. Filtering, as a case in point, involves 
combining several successive sample values to yield a single value in the 
output stream. Thus, we can’t complete the processing for a given output 
sample until all of the required input values are available. Moreover, there 
are intermediate results that must be computed as part of the process, and 
the final result cannot be computed until all of the intermediate results 
have been computed.

In summary, we can accelerate performance of an operation by repli-
cation of hardware resources to perform steps in parallel, up to the limits 
on parallelism implied by the data dependencies and the availability of 
data. Practical design of accelerators involves applying enough parallel-
ism to meet performance requirements, but not more, since that would 
increase cost and power unnecessarily.

In order to identify opportunities for parallelism, we would typically start 
with an abstract description of the processing operations to be performed by 
the system. This might take the form of an algorithm description expressed 



in a high-level language, such as a computer programming language or some 
other formal notation. The description identifies the data to be processed, 
how it is organized, and the sequence of processing steps to be performed. 
We then need to identify a kernel of the algorithm, that is, a part that involves 
the most intensive repetitive processing steps that take the most time. Such a 
kernel is a good candidate for an accelerator, since improving performance 
of the most time-consuming part of the algorithm gives the most payback. 
The remainder of the algorithm can then be implemented in embedded 
software.

We can quantify the performance gain achieved by accelerating a ker-
nel of an algorithm. Suppose a system takes some amount of time, t, to 
execute the algorithm, and that a fraction, f, of that time is spent in exe-
cuting the kernel. The remaining fraction, 1 � f, is spent executing code 
other than the kernel. Thus,

t� ft� (1� f )t

If our accelerator speeds up execution of the kernel by a factor s, the time 
spent in the kernel is divided by s, but the remaining time is unaffected. 
Thus the total execution time for the algorithm is reduced to

t��   f t� 
s � (1� f )t

The overall speedup is the ratio of the original time to the reduced time:

s��   t� 
t�

�   ft� (1�f )t
�� 
ft
� s � (1� f )t

�   1
�� 
f
� s � (1� f )

This formula expresses Amdahl’s Law, named after Gene Amdahl, one 
of the pioneers of parallel computing. It indicates that the overall effect 
of speeding up a kernel depends strongly on the fraction of the original 
time taken up in executing the kernel. If that fraction is small, even a large 
speedup has little overall effect, since the nonaccelerated part dominates. 
On the other hand, if the fraction is large, accelerating the kernel has sig-
nificant overall effect.

example  9 .1  Suppose execution time is estimated for the various parts 
of an algorithm on an embedded processor. The algorithm has two kernels, one 
that consumes 80% of the execution time and another that consumes 15%. 
Using a hardware accelerator, we could speed up execution of the fi rst kernel by 
a factor of 10 or the second kernel by a factor of 100. Which accelerator gives 
the best overall performance improvement?
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solut ion  The overall speedup from accelerating the first kernel is

  1 �� 

  0.8 � 
10

   � (1 � 0.8)
   �   1 �� 

0.08 � 0.2
    382    � 3.57

Accelerating the second kernel gives an overall speedup of

  1 ���  
  0.15 � 
100

   � (1 � 0.15)
   �   1 �� 

0.0015 � 0.85
   � 1.17

Thus, even though the speedup for the second kernel is ten times that for the first 
kernel, the lower fraction of the original execution time for the second kernel 
means acceleration gives less overall improvement. Accelerating the first kernel is 
more effective.

Within the kernel, we need to identify an order in which to perform 
the computational steps. We need to ensure that data can be made avail-
able to be processed in order, and that intermediate results are computed 
before they are needed for subsequent steps. Other than those constraints, 
steps can potentially be performed in parallel. We finally need to determine 
which steps will actually be performed in parallel to meet the performance 
requirements. That then leads to an architecture for an accelerator, that is, 
a description of the processing blocks and the data flow between them.

There are two main schemes for implementing parallelism in accelera-
tors. The first of these is simply to replicate components that perform a 
given step so that they operate on different elements of data. The speedup 
achieved through replication, compared to using just a single component, 
is ideally equal to the number of times the component is replicated. This 
scheme suits applications in which steps can be performed independently 
on the different data elements.

The second scheme for implementing parallelism is to break a larger 
computational step into a sequence of simpler steps, and to perform the 
sequence in a pipeline, as shown in Figure 9.1. (We introduced the con-
cept of pipelining earlier in Section 4.1.1.) The pipeline stages perform 
their simple steps in parallel, each operating on a different data element 
or an intermediate result produced by the preceding stages. The overall 
computation by the pipeline for a given data element takes approximately 
the same time as a nonpipelined chain of components. However, provided 
we can supply data to the pipeline input and accept data at the pipe-
line output on every clock cycle, the pipeline completes one computation 

step 1 step 2 step 3data
in

data
out

F I G U R E 9 .1  Pipelined 
organization of an accelerator.



every cycle. Thus, the speedup compared to the nonpipelined chain is 
ideally equal to the number of stages. This scheme suits applications that 
involve complex processing steps that can be broken down into simpler 
sequences with each step depending only on the results of earlier steps. In 
some applications involving independent complex computations, we can 
have replicated pipelines, giving the benefit of both schemes.

The analysis of systems, from algorithm description to accelerator 
architecture, is done early in the system design flow. It is often performed 
by expert system designers, drawing on their creativity and experience 
with previous systems. Automating this form of analysis has proven to 
be an extremely challenging problem, and early high-level synthesis tools 
have not been successful, except within very narrow application domains. 
More recently, a new generation of tools is starting to emerge and is show-
ing promise in a wider range of applications, especially in audio, video 
and other signal-processing applications. As this technology matures, we 
should expect to see wider adoption in design methodologies. We will 
return to the topic of architecture analysis and its place in the design flow 
in our methodology discussion in Chapter 10.

The data for many systems involving accelerators is input or output 
data. In such systems, the I/O controller must transfer data between a 
device and the embedded system’s memory at very high rates. Once the 
data is in memory, it can be processed by an accelerator, with the results 
also stored in memory. If these data memory accesses were mediated by 
a processor, copying data between memory and registers under software 
control, the rate of data transfer may be too slow. Instead, we can allow the 
controller and the accelerator to perform direct memory access (DMA), 
that is, to transfer data to and from memory autonomously. Instead of 
the processor initiating a memory access, the I/O controller or accelera-
tor initiates an access, providing the required address and activating the 
memory control signals.

Since the processor and any subsystems that perform DMA must 
share access to the memory, and since the memory can only perform one 
access at a time, we need to ensure that processor and DMA accesses 
are interleaved. We must include an arbiter in the system, illustrated in 
Figure 9.2, that makes sure subsystems take turns to access the memory. 
Each master (the I/O controller, accelerator and processor) activates a 
request signal to the arbiter when it needs to access the memory. The 
arbiter decides among them, based on a predetermined policy, and acti-
vates a grant signal for one of the subsystems. That subsystem then pro-
ceeds with its access, with the memory responding as a slave. Any other 
master with an active request must wait. When the granted master has 
completed its memory access, it releases its request. The arbiter can then 
activate another master’s grant. Different applications may use different 
policies for deciding among competing requests, depending on whether a 
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master can wait and for how long. Some applications use a round-robin 
policy, in which masters are granted access in strict turn. Other systems 
may require some masters to have priority over others in order to meet 
requirements for processing rates.

In many applications, the data to be processed by an accelerator is 
arranged in a regular pattern in memory, occupying blocks of adjacent or 
regularly spaced locations. The job of the accelerator is to process the data 
block by block. While it is processing one or more blocks, other parts of 
the system may be working on other blocks. As an example, several algo-
rithms for processing still and video images divide each image into blocks 
of 8 � 8 or 16 � 16 pixels and process each block independently. Similarly, 
the MP3 format commonly used to encode audio data represents intervals 
of sound in frames that can be processed independently.

The datapath for a block-processing accelerator needs two main 
parts. The first part performs DMA to read and write data in memory. 
It includes circuits for generating addresses, using the starting addresses 
 provided in registers by the processor and counters for keeping track of 
progress. The second part of the data path performs the required com-
putation on the data. The control section for the accelerator sequences 
operation of the data path and synchronizes operation with the  processor. 
Depending on the complexity of the operation and the bus protocol, 
sequencing might be done with one finite-state machine or with separate 
interacting machines for each activity.

Whereas a block-processing accelerator deals with blocks of data 
stored in continguous memory locations, other forms of accelerators 
deal with streams of data arriving in sequence from some source. Thus, 
the two forms of accelerator are complementary: block processing deals 
with sequences in space (data stored in memory), and stream processing 
deals with sequences in time (data arriving at intervals). The source of 
data for a stream-processing accelerator may be a high-speed input device 
or another accelerator in a processing pipeline. Alternatively, data may 
be fetched in a stream from memory for supply to an output device or 
another accelerator.
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request
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One of the most common application domains for stream-processing 
accelerators is digital signal processing (DSP). One or more signals are 
converted from analog to digital form, consisting of a stream of sample 
values at periodic intervals. Processing operations include filtering, mixing, 
applying gain or attenuation, and conversion between time and frequency 
domains. Some application areas include audio and video processing, 
radio and radar signal processing, and analysis of data from sensors. For 
details of the mathematical basis for digital signal processing and the com-
putational techniques used, refer to Section 9.5, Further Reading.

Having provided a means for an accelerator to access data, either in 
memory or through a stream connection, we also need to provide a way 
for embedded software to control operation of the accelerator. This may 
include providing data, such as parameters to be used in computations. It 
also includes synchronizing operation of the accelerator with other activi-
ties in the system, such as arrival of data from I/O controllers or other 
I/O events. Generally, this is done using input and output registers within 
the accelerator. Embedded software can then interact with the accelerator 
in much the same way as it interacts with autonomous I/O controllers. 
For example, an accelerator might include registers for the address and 
length of data in memory, for control of the operation to be performed 
and for status. Embedded software could write to the registers to initi-
ate an operation, and rely on an interrupt from the accelerator when the 
operation is complete.

In some applications, it may be possible for the processor and an 
accelerator to operate with less strict synchronization. For example, the 
processor might generate units of work for the accelerator to perform and 
add information describing each unit to a first-in, first-out (FIFO) queue, 
like that described in Section 5.2.3. The accelerator can then accept each 
work unit when it is ready by reading the description from the head of the 
FIFO queue. FIFO queues can also be used for communication between 
multiple processors in a large-scale embedded system.

1. How does parallelism improve performance?

2. What factors constrain the amount of parallelism that can be 
achieved?

3. What aspects are described by an algorithm?

4. Why is it best to accelerate a kernel of an algorithm?

5. If a pipeline has four stages and accepts new input data on every 
clock cycle, what is the speedup compared to a nonpipelined chain 
of components?

6. What is direct memory access (DMA)?

K N O W L E D G E 
T E S T  Q U I Z
K N O W L E D G E 
T E S T  Q U I Z
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7. What is the task of an arbiter in a multimaster system?

8. What is the distinction between a block-processing accelerator and 
a stream-processing accelerator?

9. How does embedded software interact with an accelerator?

9.2 C A S E  S T U D Y :  V I D E O  E D G E - D E T E C T I O N

In this section, we will illustrate several aspects of accelerator design 
using, as an example, an accelerator for edge-detection in video images. 
This is somewhat of a compromise between what a real-world accelerator 
might do and what can be included here without overwhelming detail. 
Edge-detection is an important part of analyzing a scene in a video image, 
and has application in many areas such as security monitoring and com-
puter vision. It involves identifying places in an image where there is an 
abrupt change in intensity. Those places usually occur at the boundaries 
of objects. Subsequent analysis of the edges can be used for recognizing 
what the objects are.

For this example, we will assume monochrome images of 640 � 480 
pixels, each of 8 bits, stored row-by-row in memory with successive pix-
els, left to right in a row, at successive addresses. Pixel values are inter-
preted as unsigned integers ranging from 0 (black) to 255 (white). We 
will use a relatively simple algorithm, called the Sobel edge detector. It 
works by computing the derivatives of the intensity signal in each of the 
x and y directions and looking for maxima and minima in the deriva-
tives. These are the places where the intensity is changing most rapidly. 
The Sobel method approximates the derivative in each direction for each 
pixel by a process called convolution. This involves adding the pixel and 
its eight nearest neighbors, each multiplied by a coefficient. The coeffi-
cients are often represented in a 3 � 3 convolution mask. The Sobel con-
volution masks, Gx and Gy, for the derivatives in the x and y directions, 
respectively, are shown in Figure 9.3. We can think of the derivative image 
being computed by centering each of the convolution masks over succes-
sive pixels in the original image. We multiply the coefficient in each mask 
by the intensity value of the underlying pixel and sum the nine products 
together to form two partial derivatives for the derivative image, Dx and 
Dy. Ideally, we would then compute the magnitude of the derivative image 
pixel as

 �D� �  �
_________

  D x  2  �  D y  
2     

However, since we are just interested in finding the maxima and minima 
in the magnitude, a sufficient approximation is

 �D� � �Dx� � �Dy� 

–1

–2

–1

0

0

0

+1

+2

+1 –1 –2 –1

0 0 0

+1 +2 +1
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F I G U R E 9 .3  Sobel 
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This approximation works, because the square-root and square functions 
are both monotonic (that is, they increase as the operand increases and 
decrease as the operand decreases). Hence, the maxima and minima in 
the true magnitude and the approximate magnitude occur at the same 
places in the image. Computing the approximation involves much less 
hardware than computing the square and square-root functions. We 
repeat the computation of the approximate magnitude for each pixel 
position in the image. Note that the pixels around the edge of the image 
do not have a complete set of neighboring pixels, so we need to treat 
them separately. The simplest approach is to set the value of �D� for 
the edge pixels of the derivative image to 0. Since that is a relatively 
straightforward process and is not time consuming, we can implement 
it in software.

example  9 .2  Express the Sobel edge-detection algorithm more formally 
in a pseudo-code notation, that is, a notation like a computer programming 
language.

solut ion We will use a pseudo-code notation like Verilog. Let O[row] [col]

denote pixels in the original image, and D[row] [col] denote pixels in the deriva-
tive image, where row ranges from 0 to 479 and col ranges from 0 to 639. Also, 
let Gx[i] [ j] and Gy[i] [ j] denote the convolution masks, where i and j range from 
–1 to �1. The algorithm is

for (row = 1; row <= 478; row = row + 1) begin
for (col = 1; col <= 638; col = col + 1) begin
sumx = 0; sumy = 0;
for (i = –1; i <= +1; i = i + 1) begin
for (j = –1; j <= +1; j = j + 1) begin
sumx = sumx + 0[row+i][col+j] * Gx[i][j];
sumy = sumy + 0[row+i][col+j] * Gy[i][j];

end
end
D[row][col] = abs(sumx) + abs(sumy)

end
end

example  9 .3  Calculate the number of bits required to represent interme-
diate and final values for pixels in the Sobel convolution.

solut ion Each pixel is represented as an 8-bit unsigned number. Given 
the coefficient values in the convolution masks, the partial products range from 
–510 to �510. Thus, the partial products should be represented using 10-bit 
signed numbers. There are nine partial products to add to form each of Dx and 
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Dy. However, the coefficient values are such that the result values range from 
–1020 to �1020, which can be represented using 11 bits. We then need to add 
the two absolute values, giving a range of 0 to �2040 for |D|, which can also 
be represented in 11 bits. Since subsequent steps of the edge-detection operation 
involve determining which derivative pixels are above a certain threshold, we 
don’t need to maintain 11 bits of accuracy for the results. Instead, it is more con-
venient to scale the results back to 8-bit values, since they can be packed back 
into memory in the same format as the original image.

example  9 .4  Assuming a video frame rate of 30 frames per second, calcu-
late the rate at which computations must be performed.

solut ion  Each frame consists of 640 � 480 � 307,200 pixels. Since there 
are 30 frames per second, pixels must be processed at a rate of 307,200 � 30 � 
9,216,000 per second, that is, approximately 10 million per second.

example  9 .5  Identify the parallelism that can be exploited to obtain the 
required performance.

solut ion  The computations required for all of the derivative pixels are 
independent of one another, since they only require values of the original image 
pixels. Thus, we could perform computations for as many derivative pixels in 
parallel as required. For computation of each derivative pixel, the data depen-
dency graph is shown in Figure 9.4. This diagram shows the data required for 
each operation, starting with the pixels from the original image at the top, with 
intermediate results feeding through to dependent operations, yielding the deriv-
ative pixel at the bottom. We’ve elided partial products in which the coefficient 
is 0, since they don’t contribute to the result. Inspection of the diagram shows 
that we can compute all of the partial products in parallel, since each partial 
product depends only on an original pixel value and a constant coefficient. We 

–1 +1 –2 +2 –1 +1

| |

+

+

+1 +2 +1 –1 –2 –1

| |

+

× Gx

Dx

|D|

× Gy

Dy

F I G U R E 9 .4  Data 
dependency graph for computation 
of a derivative pixel.



can then sum the two groups of six partial products in parallel, then compute the 
two absolute values in parallel, before summing them to produce the derivative 
pixel value.

The top-level view of the video system including the edge-detection 
accelerator is shown in Figure 9.5. Video input comes from an I/O control-
ler for a video camera, which stores successive video frames in memory. 
Software on the processor directs the accelerator to operate on a given 
frame to produce the corresponding derivative image.

example 9.6 Suppose the memory in which the original and  derivative images 
are stored is 32 bits wide, and that each 8-bit byte is individually addressed. Video 
frames are stored with one byte per pixel. The pixels of a row in a frame are stored 
from left to right at successive addresses, and rows are stored top to bottom, one after 
another in memory. Each memory read or write access takes 20ns, consisting of two 
cycles of a 100MHz system clock. Can the memory access data fast enough?

solut ion  Our earlier analysis showed that pixels arrive from the camera 
at a rate of approximately 10 million per second, or one every 100ns. If the 
video input controller stored each pixel to memory with a separate write access, 
it would consume 20% of the available memory bandwidth. A better alternative 
would be for the controller to aggregate four pixels and store them with a single 
write access, reducing its share of the memory bandwidth to 5%.

The edge-detection accelerator needs to produce a derivative pixel at the same 
rate at which input pixels arrive, that is, one every 100ns. Thus, writing the com-
puted derivative pixels would consume a further 5% of the memory bandwidth, 
assuming groups of four derivative pixels are aggregated. Each pixel compu-
tation requires access to eight pixel values from the original image. A naive 
approach would involve reading each pixel with a separate read operation, and 
re-reading it when subsequently required to compute another derivative pixel. 
This approach would require eight reads per computed pixel, requiring 160% of 
the memory bandwidth. Clearly this is not possible.

Since each 32-bit word of memory contains four adjacent pixels in a row, we can 
reduce the bandwidth required for reading by using as many pixels as we can 
from each 32-bit read. For half the pixel positions, only three reads are needed 
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(when the three pixels in each of the rows fall in the same word), and for the 
other half of the pixel positions, six reads are needed (when the three pixels in 
each of the rows cross word boundaries). So on average, each pixel computation 
would require 4.5 reads, requiring 90% of the memory bandwidth. This is still 
not feasible.

A further reduction can be afforded by noting that an original image pixel, once 
read, is used to compute three derivative pixels in each of the following, same, 
and preceding columns. So rather than re-reading it for those pixels, we can 
store it within the accelerator for use in computing multiple derivative pixels. 
We can save it just for computing the pixels to the left, in the same column, 
and to the right. We only need to read three words for every fourth pixel being 
computed, requiring 15% of the memory bandwidth. This, together with the 
5% for video input and 5% for writing derivative pixels, is feasible, provided 
the remaining 75% of the bandwidth is sufficient for other operations to be 
performed by the system.

If we need to further reduce the bandwidth consumed by the edge detector, we 
could include small memories in the accelerator to store complete rows read from 
the main memory. This would allow each pixel to be read only once, reducing 
the bandwidth required for reading pixels to just 5%. The total for video input 
and edge-detection would then be 15% of the available bandwidth.

In our development of the edge-detector example, we will adopt the 
approach of reading three rows of four adjacent pixels from the original 
image and storing them in registers, rather than including memories for 
whole rows. We will design the accelerator to process blocks of data, 
where a block consists of the three complete rows of the original image 
used to form a complete row of the derivative image. As we will see, 
processing a block involves a start-up phase, a repetitive sequence of com-
putation, and a completion phase. These phases are repeated for each 
derivative image row.

The architecture for the Sobel accelerator datapath is shown in 
Figure 9.6. It is essentially a pipeline, with pixel data read from the origi-
nal image entering into the registers at the top right, flowing through the 
3� 3 multiplier array on the left, then down through the adders to the Dx 
and Dy registers, then through the absolute value circuits and adder to the 
|D| register, and finally into the register at the bottom left. The resulting 
derivative pixels are then written from that register to memory. (While 
a right-to-left data flow is opposite to usual practice, in this case, it has 
the advantage of preserving the same arrangement of pixels as that in an 
image.) We will describe the operation of the pipeline assuming initially 
that it is full of data. We will then discuss how to deal with starting it up 
at the beginning of an image row and draining it at the end of the row.

The pipeline generates the derivative pixels for a given row in groups 
of four. The accelerator reads four pixels from each of the preceding, 



 current, and next rows in memory into the three 32-bit registers at the top 
right of the figure. Each register consist of four 8-bit pixel registers. Over 
the four subsequent clock cycles, pixels are shifted out to the left, one 
pixel at a time, into the multiplier array. Each cell in the array contains 
a pixel register and one or two circuits that multiply the stored pixel by 
a constant coefficient value. Since the coefficients are all �1, �1, �2, or 
�2, the circuits are not full-blown multipliers. Instead, multiplying by �1 
is simply a negator, multiplying by �1 is a through connection with no 
circuitry, multiplying by �2 is a left shift of the result of a negator, and 
multiplying by �2 is simply a left shift. On each clock cycle, the array 
provides the partial products for a single derivative pixel, and the par-
tial products are added and stored in the Dx and Dy registers. Also, on 
each clock cycle, the Dx and Dy values for the preceding pixel have their 
absolute values computed and added and stored in the |D| register. The 
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 resulting derivative pixel values are shifted into the result row register. 
When four result pixels are ready in the register, they are subsequently 
written to memory.

In the steady state, during processing of a row, the accelerator needs 
to write the pixels to memory from the result register before it can shift 
new pixels into the multiplier array and the Dx, Dy and |D| registers. 
Otherwise, the result values would be overwritten. Having written four 
pixels, the accelerator can push four more pixels through the pipeline, 
thus emptying the read registers and filling the result register. It can then 
write those result pixels and read in three more groups of four pixels, 
and repeat the process. This sequence is shown in Figure 9.7, assuming a 
Wishbone bus connection with 32-bit-wide data signals and a 100MHz 
clock, as suggested earlier. Since the accelerator is one of several masters 
on the memory bus, it must request use of the bus for the writes and 
reads and wait until granted access by the bus arbiter. We assume that the 
arbiter gives the accelerator sufficiently high priority that it can use the 
memory bandwidth it needs.

Now that we have considered the steady state during processing of 
a row, we need to consider what happens at the beginning of a row. In 
that case, the registers in the pipeline contain no valid data. So we start 
processing a row as in the steady state, but omitting the write operation 
for the first two iterations. Thereafter, the result register contains valid 
data, so we include the write operation in each iteration. Note that after 
the first four computation cycles, valid data has progressed into the pipe-
line as far as the Dx and Dy registers. After the second four computation 
cycles, valid data has progressed as far as the right-most three result pixel 
registers. The left-most result pixel register still contains invalid data. 
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However, this group of four pixel values is what we should write to the 
beginning of the derivative image row. As we mentioned earlier, the left-
most position does not have a complete set of neighbors, so we don’t 
compute a value for it. We will rely on the embedded software to clear 
that pixel value to 0 subsequently.

When we reach the end of a row, we need to drain the pipeline. Since 
the number of pixels in a row is a multiple of four (640 � 160 � 4), we can 
always read complete groups of four pixels each. After reading the last 
group, we perform four computation cycles normally. This gives us four 
result pixels to write, plus three remaining pixel values in the pipeline. 
We finish the row by writing the four result pixels, omitting the reads, 
performing four further computation cycles to drain the pipeline and shift 
the last pixel values into the required positions in the result register, and 
performing a final write. Note that this places an invalid value in the 
right-most result pixel register. This corresponds to the right-most pixel 
of a row, which does not have a complete set of neighbors. Again, we will 
rely on the embedded software to clear that pixel value to 0.

example  9 .7  Develop Verilog RTL code to describe the datapath of 
Figure 9.6.

solut ion The code in the module definition for the Sobel accelerator is

// Computation datapath signals

reg [31:0] prev_row, curr_row, next_row;
reg [7:0]  O [-1:+1][-1:+1];
reg signed [10:0] Dx, Dy, D;
reg [7:0]  abs_D;
reg [31:0] result_row;
...

// Computational datapath

always @(posedge clk_i) // Previous row register
if (prev_row_load) prev_row       <= dat_i;
else if (shift_en) prev_row[31:8] <= prev_row[23:0];

always @(posedge clk_i) // Current row register
if (curr_row_load) curr_row       <= dat_i;
else if (shift_en) curr_row[31:8] <= curr_row[23:0];

always @(posedge clk_i) // Next row register
if (next_row_load) next_row       <= dat_i;

(continued)
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else if (shift_en) next_row[31:8] <= next_row[23:0];

function [10:0] abs (input signed [10:0] x);
abs = x >= 0 ? x : –x;

endfunction

always @(posedge clk_i) // Computation pipeline
if (shift_en) begin
D = abs(Dx) + abs(Dy);
abs_D <= D[10:3];
Dx <= –  $signed({3'b000, 0[–1][–1]}) // – 1 * 0[-1][-1]
 +  $signed({3'b000, 0[-1][+1]}) // + 1 * 0[-1][+1]
 – ($signed({3'b000, 0[ 0][-1]}) // – 2 * 0[ 0][-1]

 << 1)
 + ($signed({3'b000, 0[ 0][+1]}) // + 2 * 0[ 0][+1]

 << 1)
 –  $signed({3'b000, 0[+1][-1]}) // – 1 * 0[+1][-1]
 +  $signed({3'b000, 0[+1][+1]}); // + 1 * 0[+1][+1]
Dy <=    $signed({3'b000, 0[-1][-1]}) // + 1 * O[-1][-1]
 + ($signed({3'b000, 0[-1][ 0]}) // + 2 * 0[-1][ 0]

 << 1)
 +  $signed({3'b000, 0[-1][+1]}) // + 1 * 0[-1][+1]
 –  $signed({3'b000, 0[+1][-1]}) // – 1 * 0[+1][-1]
 – ($signed({3'b000, 0[+1][ 0]}) // – 2 * 0[+1][ 0]

 << 1)
 –  $signed({3'b000, 0[+1][+1]}); // – 1 * 0[+1][+1]
0[-1][-1] <= 0[-1][0];
0[-1][ 0] <= 0[-1][+1];
0[-1][+1] <= prev_row[31:24];
O[ 0][-1] <= O[0][0];
O[ 0][ 0] <= O[0][+1];
O[ 0][+1] <= curr_row[31:24];
O[+1][-1] <= O[+1][ 0];
O[+1][ 0] <= O[+1][+1];
O[+1][+1] <= next_row[31:24];

end

always @(posedge clk_i)  // Result row register
if (shift_en) result_row <= {result_row[23:0], abs_D};

The first three always blocks in the module represent the three registers into 
which groups of four pixels are read from memory. Each block has a separate 
control signal governing loading, since the registers are loaded in successive 
memory read operations. They share a control signal for shifting, since they all 
shift a pixel out into the pipeline in parallel.

The next always block, as the comment suggests, represents the computational 
pipeline of the accelerator. The signals to which the block assigns, governed by 



the shift_en control signal, represent the pipeline registers. The signal O is a 
3� 3 array of pixel values, with indices corresponding to the difference in row 
and column numbers from those of the derivative pixel computed from the reg-
ister values. For example, the element with indices [�1][�1] contains the pixel 
in the previous row and next column from the pixel being computed. Values 
are shifted into this array leftward from the left-most 8 bits of each of the input 
registers. The Dx and Dy values are computed from the array element values. In 
each case, the values are resized to 11 bits and converted to signed numbers, as 
we discussed earlier in our analysis of the precision requirements for the com-
putation. Multiplying by 2 is performed with a logical shift left by one position, 
and multiplying by a negative coefficient is implemented by subtraction instead 
of addition. The absolute values of the Dx and Dy values, implemented by the 
abs function defined in the module, are added, and then scaled back from 11 to 
8 bits to yield the final derivative pixel value.

The remaining always block represents the register that accumulates groups of 
four derivative pixels for writing to memory. Pixels are shifted into this register 
under control of the shift_en signal.

We mentioned earlier that a block-processing accelerator needs cir-
cuits for address generation, as well as for processing the data. Our Sobel 
accelerator needs circuits to compute the addresses for reading pixels 
from the original image and for writing pixels to the derivative image. We 
will provide a register into which the embedded software can write the 
base addresses for the original image and the derivative image in memory. 
The address generator needs to determine pixel addresses using the base 
addresses. We will require that all addresses are word aligned, that is, 
that they are all multiples of four. This means the two least significant 
address bits are always 00, and so do not need to be computed or explic-
itly stored.

example  9 .8  Given a base address B for an image in memory, derive 
equations for computing the address of a pixel in row r and column c of the 
image. Rows and columns are numbered from 0.

solut ion The image size is 480 rows of 640 pixels per row. The starting 
address of row r is

B� r� 640

The pixel in column c in that row is then located at address

B� r� 640� c

We can treat the expression r� 640� c as an address offset from the base address.
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example  9 .9  Design the address generator datapath for the Sobel accel-
erator. Assume main memory is 4Mbytes in size, organized as 1M � 32 bits.

solut ion  The address generator needs two base address registers: O_base, 
for the original image, and D_base, for the derivative image. Since pixels are 
processed in groups of four, the least significant two address bits are always 0, 
and so do not need to be explicitly stored in the address registers.

There are several alternatives for deriving the read and write addresses, including 
maintaining counters for the image rows and columns. However, we can avoid the 
need to multiply by 640 by counting pixel offsets from the base addresses, as shown 
in Figure 9.8. In the case of the original image, we start counting from an offset of 
0 and increment by 1 for each group of four pixels read from memory. We add the 
offset to the base address to form the pixel-group address for the previous row. We 
add 640/4 to that to form the read address for the current row, and add 1280/4 to 
form the read address for the next row (assuming 00 for the least significant bits 
in both cases). In the case of the derivative image, we start counting from an offset 
of 640/4 and increment by 1 for each memory write. The multiplexer in the figure 
selects the appropriate computed address to drive the memory address bus.

example  9 .10  Develop Verilog RTL code to describe the address generator 
of Figure 9.8.

solut ion  The code in the module definition for the Sobel accelerator is

O_base
O_prev_addr

adr_o

O_curr_addr

O_next_addr

640/4

1280/4

O_offset

cnt_en
reset

Q

D

CE

Q
+

+

+

D_base
D_addr

dat_i

O_base_ce

O_offset_cnt_en

D_base_ce

D_offset_cnt_en
offset_reset

clk

prev_row_load
curr_row_load
next_row_load

D_offset

cnt_en
reset

Q

D

CE

Q
+

clk

clk

clk

clk

F I G U R E 9 .8  Datapath for the 
address generator.
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// Address generator

always @(posedge clk_i) // 0 base address register
if (0_base_ce) 0_base <= dat_i[21:2];

always @(posedge clk_i) // 0 address offset counter
if (offset_reset) 0_offset <= 0;
else if (0_offset_cnt_en) 0_offset <= 0_offset + 1;

assign 0_prev_addr = 0_base + 0_offset;
assign 0_curr_addr = 0_prev_addr + 640/4;
assign 0_next_addr = 0_prev_addr + 1280/4;

always @(posedge clk_i) // D base address register
if (D_base_ce) D_base <= dat_i[21:2];

always @(posedge clk_i) // D address offset counter
if (offset_reset) D_offset <= 0;

else if (D_offset_cnt_en) D_offset <= D_offset + 1;

assign D_addr = D_base + D_offset;

assign adr_o[21:2] = prev_row_load ? 0_prev_addr :
 curr_row_load ? 0_curr_addr :
 next_row_load ? 0_next_addr :
 D_addr;
assign adr_o[1:0] = 2'b00;

The always blocks commented as being base address registers represent the 
base address registers for the original and derivative images, respectively. The 
always blocks commented as being address offset counters represent the counters 
for pixel groups read and written, respectively. The registers and counters are 
governed by control signals generated by the accelerator’s control section. The 
adders are represented by the combinational assignments to the four address 
signals O_prev_addr, O_curr_addr, O_next_addr and D_addr. The assignment to 
the bus address signal adr_o represents the multiplexer that chooses among the 
generated addresses for memory read and write operations.

The remaining aspect of the Sobel accelerator design is control 
sequencing. We have touched on the sequence needed for computation of 
the derivative image, row-by-row and pixel-group at a time. This includes 
sequencing of write and read operations with the accelerator as a bus 
master. We also need to sequence the accelerator’s response as a bus slave 
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when the embedded software writes to the base address registers. Finally, 
we need to provide for synchronization with the embedded software 
 controlling the accelerator. That requires some additional control and sta-
tus registers, as follows:

A control register that, when written to, causes the accelerator to 
start processing an image. The value written is ignored.

A control register with an interrupt enable bit in bit 0.

A status register in which bit 0 is the done bit, set to 1 when the pro-
cessor has completed processing an image. Other bits are read as 0. 
When the done bit is 1 and the interrupt enable bit is 1, the accelera-
tor requests an interrupt. Reading the done bit has the side effect of 
acknowledging the interrupt and clearing the bit.

To keep the bus interface simple, we will map each of these registers at 
32-bit aligned addresses. The complete register map is shown in Table 9.1.

r e g i s t e r o f f s e t r e a d / w r i t e

Interrupt control 0 write-only

Start 4 write-only

Original image base address 8 write-only

Derivative image base address 12 write-only

Status 0 read-only

example  9 .11  Develop Verilog model code for the accelerator’s bus slave 
interface.

solution The timing for the bus slave operations is shown in Figure 9.9. 
Both write and read operations are initiated in a cycle where cyc_i and stb_i are 1. 

�

�

�

TAB LE 9 .1  Register map for 
the Sobel accelerator.

clk

cyc_i,
stb_i 

we_i

dat_i

ack_o

dat_o

adr_i

slave
write

slave
read

F I G U R E 9 .9  Timing for slave 
bus write and read operations.



In each case, the accelerator can respond by setting ack_o to 1 in the next cycle, 
then back to 0 in the following cycle. We need to decode the bus address input to 
derive a select signal for the accelerator, and use the less significant address bits to 
determine which register to read or write. For write operations, we generate clock-
enable signals using combinational logic. In the case of a write to the start-register 
address, since there is no real register, we derive a control signal, start, that will 
be used by the accelerator control section to initiate a computation sequence. For 
read operations, we form the data value to be returned to the processor. The only 
real register is the status register, for which we return the value of the done bit, 
zero extended to 32 bits wide. For other register offsets, we just return all zeros. 
The read value is multiplexed with the value of the result row register to drive the 
accelerator’s data output bus, dat_o. The model code describing these aspects is

// Wishbone slave interface

assign start     = cyc_i && stb_i && we_i && adr_i = = 2'b01;

assign 0_base_ce = cyc_i && stb_i && we_i && adr_i = = 2'b10;

assign D_base_ce = cyc_i && stb_i && we_i && adr_i = = 2'b11;

always @(posedge clk_i) // Interrupt enable register
if (rst_i)
int_en <= 1'b0;

else if (cyc_i && stb_i && we_i && adr_i = = 2'b00)
int_en <= dat_i[0];

always @(posedge clk_i) // Status register
if (rst_i)
done <= 1'b0;

else if (done_set)
// This occurs when last write is acknowledged,
// and so cannot coincide with a read of the
// status register.
done <= 1'b1;

else if (cyc_i && stb_i && we_i && adr_i = = 2'b00 && ack_o)
done <= 1'b0;

assign int_req = int_en && done;

always @(posedge clk_i) // Generate ack output
ack_o <= cyc_i && stb_i && !ack_o;

(continued)
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example  9 .12  Develop the control section to sequence computation of 
the derivative image.

solut ion We can use a finite-state machine to sequence the computation. 
Since much of the sequence is repetitive, we can use counters to keep track of 
progress. We will use one counter to keep track of how many rows have been 
computed, starting from 0 and incrementing up to 477. We will use a second 
counter to keep track of iterations across the columns, starting from 0 and 
incrementing up to 159. The state transition diagram for the FSM is shown in 
Figure 9.10. We have only shown the states and the transition conditions to 
avoid cluttering the diagram. Also, we have not shown transitions from a state 
back to itself. We assume that if a transition condition from a given state is false, 
the FSM stays in that state for the next cycle.

The FSM is initially in the idle state. When the start signal is activated by a write 
to the start register, the FSM starts the initial sequence of reads and computa-
tions for the first row. This consists of reading the first three groups of original 
image pixels and then performing four computation cycles. After that, the FSM 
enters a loop in which it reads three more groups of original image pixels, 
performs four computation cycles, and then writes a group of result pixels. As 
we will see when we look at the output function of the FSM, the column counter 
is incremented after each write. At the end of the last computation cycle, the 
FSM either continues with the loop (if the column counter is not 158) or goes to 
a state to start draining the pipeline (if the column counter is 158). Draining the 
pipeline involves one state for writing the penultimate result group, four cycles 
of computation, and one last state for writing the final result group. The row 
counter is incremented after this final write. The FSM then goes back either to 
the initial sequence for the next row (if the row counter is not 477) or to the idle 
state (if the row counter is 477, the terminal count).

The output functions for the FSM are shown in Tables  9.2 and 9.3. To make 
the tables a little easier to read, we have left entries blank where the control 
outputs are 0, and only shown the cases where they are 1. Some of the control 
signals are Moore outputs, depending on the current state only. They are shown 

 // Wishbone data output multiplexer

always @*
if (cyc_i && stb_i && !we_i)
if (adr_i = = 2'b00)
dat_o = {31'b0, done}; // status register read

else
dat_o = 32'b0; // other registers read as 0

else
dat_o = result_row; // for master write



idle

write_result read_prev read_curr read_next

comp1 comp2 comp3 comp4

start = 1

ack = 1 ack = 1

ack = 1

ack = 1 ack = 1 ack = 1

ack = 1

ack = 1

read_prev_0 read_curr_0 read_next_0

comp1_0 comp2_0 comp3_0 comp4_0

write_158 comp1_159 comp2_159 comp3_159 comp4_159

write_159

col = 158

col /= 158

ack = 1 and row /= 477

ack = 1 and row = 477

F I G U R E 9 .10 State 
transition diagram for the Sobel 
accelerator control section.
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in Table 9.2. Other control signals are Mealy outputs. For these, in Table 9.3, 
we have shown the input conditions that, along with the current state, determine 
their values. As in the state transition diagram, we have omitted the complemen-
tary conditions. In those cases, the Mealy outputs remain 0.

example  9 .13  Develop Verilog model code for the control section.

solut ion  The control-section code includes declarations of internal signals 
for the control FSM, the row and column counters, and the control signals:

parameter [4:0] idle = 5'b00000,
 read_prev_0 = 5'b00001,
 read_curr_0 = 5'b00010,
 read_next_0 = 5'b00011,
 comp1_0 = 5'b00100,

(continued)
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TAB LE 9 .2  Output functions 
for the Moore control outputs of 
the FSM.
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TAB LE 9 .3  Output functions 
for the Mealy control outputs of 
the FSM.

c u r r e n t 
s tat e

c o n d i t i o n

ro
w

_
c

n
t_

e
n

c
o

l_
c

n
t_

e
n

0
_

o
ff

s
e

t_
c

n
t_

e
n

D
_

o
ff

s
e

t_
c

n
t_

e
n

d
o

n
e

_
s

e
t

idle start = 1

read_prev_0 ack_i = 1

read_curr_0 ack_i = 1

read_next_0 ack_i = 1 1

comp1_0 –

comp2_0 –

comp3_0 –

comp4_0 –

read_prev ack_i = 1

read_curr ack_i = 1

read_next ack_i = 1 1

comp1 –

comp2 –

comp3 –

comp4 col /= 158

comp4 col = 158

write_result ack_i = 1 1 1

write_158 ack_i = 1 1 1

comp1_159 –

comp2_159 –

comp3_159 –

comp4_159 –

write_159 ack_i = 1 and row /= 477 1 1

write_159 ack_i = 1 and row = 477 1 1



404 C H A P T E R  N I N E a c c e l e r a t o r s

 comp2_0 = 5'b00101,
 comp3_0 = 5'b00110,
 comp4_0 = 5'b00111,
 read_prev = 5'b01000,
 read_curr = 5'b01001,
 read_next = 5'b01010,
 comp1 = 5'b01011,
 comp2 = 5'b01100,
 comp3 = 5'b01101,
 comp4 = 5'b01110,
 write_result = 5'b01111,
 write_158 = 5'b10000,
 comp1_159 = 5'b10001,
 comp2_159 = 5'b10010,
 comp3_159 = 5'b10011,
 comp4_159 = 5'b10100,
 write_159 = 5'b10101;
reg [4:0] current_state, next_state;
reg [9:0] row; // range 0 to 477;
reg [7:0] col; // range 0 to 159;

wire 0_base_ce, D_base_ce;

wire start;
reg offset_reset, row_reset, col_reset;

reg prev_row_load, curr_row_load, next_row_load;
reg shift_en;
reg row_cnt_en, col_cnt_en;
reg 0_offset_cnt_en, D_offset_cnt_en;
reg int_en, done_set, done;

The two counters used by the control section to keep track of progress through 
rows and columns, respectively, are represented by the following always blocks:

always @(posedge clk_i) // Row counter
if (row_reset) row <= 0;
else if (row_cnt_en) row <= row + 1;

always @(posedge clk_i) // Column counter
if (col_reset) col <= 0;
else if (col_cnt_en) col <= col + 1;

Next, the model includes blocks representing the finite-state machine using the 
techniques we have described in previous chapters. The state register is repre-
sented by the block:

always @(posedge clk_i) // State register
if (rst_i) current_state <= idle;
else current_state <= next_state;



A final always block combines both the state transition function and the output 
function into the one block. The block also includes expressions comparing the 
row and column counter values with their terminal count values, rather than 
performing the comparisons in separate combinational statements. Combining 
these aspects into a single block makes the Verilog model somewhat more com-
pact and simpler to understand, since the FSM is somewhat larger than those we 
have previously described.

always @* begin // FSM logic
offset_reset = 1'b0; row_reset = 1'b0;
col_reset = 1'b0;
row_cnt_en = 1'b0; col_cnt_en = 1'b0;
0_offset_cnt_en = 1'b0; D_offset_cnt_en = 1'b0;
prev_row_load = 1'b0; curr_row_load = 1'b0;
next_row_load = 1'b0;
shift_en = 1'b0; cyc_o = 1'b0;
we_o = 1'b0; done_set = 1'b0;
case (current_state)

idle: begin
offset_reset = 1'b1; row_reset = 1'b1;
col_reset = 1'b1;
if (start) next_state = read_prev_0;
else next_state = idle;

end
read_prev_0: begin

col_reset = 1'b1; prev_row_load = 1'b1;
cyc_o = 1'b1;
if (ack_i) next_state = read_curr_0;
else next_state = read_prev_0;

end
read_curr_0: begin

curr_row_load = 1'b1; cyc_o = 1'b1;
if (ack_i) next_state = read_next_0;
else next_state = read_curr_0;

end
read_next_0: begin

next_row_load = 1'b1; cyc_o = 1'b1;
if (ack_i) begin

0_offset_cnt_en = 1'b1;
next_state = comp1_0;

end
else next_state = read_next_0;

end
comp1_0: begin

shift_en = 1'b1;
next_state = comp2_0;

end
...
comp4: begin

shift_en = 1'b1;

(continued)
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if (col = = 158) next_state = write_158;
else next_state = write_result;

end
write_result: begin

cyc_o = 1'b1; we_o = 1'b1;
if (ack_i) begin

col_cnt_en = 1'b1; D_offset_cnt_en = 1'b1;
next_state = read_prev;

end
else next_state = write_result;

end
write_158: begin

cyc_o = 1'b1; we_o = 1'b1;
if (ack_i) begin

col_cnt_en = 1'b1; D_offset_cnt_en = 1'b1;
next_state = comp1_159;

end
else next_state = write_158;

end
...
write_159: begin

cyc_o = 1'b1; we_o = 1'b1;
if (ack_i) begin
D_offset_cnt_en = 1'b1; 
if (row = = 477) begin
done_set = 1'b1;
next_state = idle;

end
else begin
row_cnt_en = 1'b1;
next_state = read_prev_0;

end
end
else next_state = write_159;

end
endcase

end

assign stb_o = cyc_o;

Now that we have developed all of the hardware required for the 
Sobel accelerator, the remaining part is the embedded software that con-
trols its operation. As we mentioned when we introduced this example, 
video edge-detection is used in a range of application areas. So rather 
than redesigning the control software for each application, it makes bet-
ter sense to develop a software component that can be reused from one 
application to another. We can do this by developing a driver that  provides
a set of operations that gives application software an abstract view of the 



accelerator. Each application can then use the driver as one part of a col-
lection of software components that implements the required functional-
ity. For example, an application that recognizes objects in video images 
might apply edge-detection to each image in a video stream, followed by 
grouping of edges and matching against a database of edge patterns. Such 
software development is just as important as the hardware development 
in a complete application. A more complete treatment can be found 
in books on embedded system software development (see Section 9.5, 
Further Reading).

1. If image pixels were represented using only 6 bits instead of 8, how 
many bits would be required for the values of Dx, Dy and |D|?

2. Can the value of |D| for a given derivative-image pixel be computed 
in parallel with the values of Dx and Dy? Why, or why not?

3. If the memory read and write time is increased from two cycles to 
four, would there be suffi cient memory bandwidth for video input 
and edge-detection?

4. Why do we not compute values for the left-most and right-most 
pixels in each row of the derivative image?

5. How does the embedded software initiate processing of an image? 
How does it determine when processing is complete?

6. What would happen if the software attempted to initiate processing 
when processing of a previous image was not yet complete?

7. Is the FSM that sequences computation a Mealy, Moore, or hybrid 
FSM?

9.3 V E R I F Y I N G  A N  A C C E L E R AT O R

Throughout this book, we have stressed the importance of verification as 
part of our design methodology. It is particularly important when design-
ing accelerators, given their relative complexity. We need to ensure that 
the design will operate correctly with all legal data values, and that it 
will interact with the embedded processor correctly. Since the space of all 
possible data values and operational sequences is astronomically large, it 
is not feasible to test the design exhaustively. Rather, we need to develop 
a verification plan that covers a variety of operating conditions. We will 
return to this in more detail in our methodology discussion in Chapter 10. 
Meanwhile, we will illustrate a simpler approach to simulation-based 
verification of the Sobel accelerator described in Section 9.2.

One way to approach verification of a complex accelerator is to verify
the different aspects of its operation independently. For example, we might 

K N O W L E D G E 
T E S T  Q U I Z
K N O W L E D G E 
T E S T  Q U I Z
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verify the following aspects of the Sobel accelerator one by one, adopting 
a “divide and conquer” approach:

Slave bus operations

Computation sequencing

Master bus operations

Address generation

Pixel computation

Clearly all of these aspects of the accelerator must work correctly for 
the accelerator as a whole to work. However, verifying each in turn is 
much simpler than trying to verify all aspects at once. Having verified 
that the slave bus operations function correctly, we can then use them to 
initiate computation. Then we can check that computation follows the 
intended sequence of steps, with master bus operations proceeding cor-
rectly, ignoring the actual addresses and pixel values. We can then make 
sure addresses are being generated correctly, and finally check that pixel 
values are computed correctly. Verifying a stream-processing accelerator 
would proceed similarly, but we would additionally need to verify that the 
accelerator interacts correctly with the source of data being processed.

For this verification process, we need to construct a testbench that 
mimics the behavior of the embedded system containing the accelerator. 
If we have a verified model of the embedded processor, we can include 
it in the testbench and write small test programs to run on it. The test 
programs write to accelerator registers to set up and initiate operations. 
On the other hand, if no processor model is available, we can write a 
bus functional model of the processor, that is, a model that performs a 
predetermined sequence of bus operations without actually executing any 
processor instructions. Our testbench also needs to include a memory 
model and bus arbiter. The memory, like the processor, need not be a 
fully functional model. Instead, it might simply engage in write and read 
operations on the bus, generating read data according to a predetermined 
rule and discarding write data. These simplifications allow us to focus 
our verification effort on the accelerator, and to create test cases in a con-
trolled manner.

example  9 .14  Develop a testbench for the Sobel accelerator that includes 
a bus functional processor model. The processor should program the accelera-
tor to operate on an original image at address 00800016 to generate a derivative 
image at 05300016. It should then read the status register once every 10µs until 
the done bit is set. The testbench should also include a bus arbiter that gives the 
accelerator priority, and a bus functional memory that returns 0 for reads and 
discards data from writes.

�
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�



solut ion Our testbench is modeled after the general system organization 
shown in Figure 9.2. The accelerator is the design under verification, and the 
arbiter and bus functional processor and memory form the remainder of the test-
bench. We also include a clock and reset generator. The outline of the testbench 
module definition is

`timescale 1ns/1ns

module testbench;

parameter t_c = 10;
parameter [22:0] mem_base = 23'h000000;
parameter [22:0] saobel_reg_base = 23'h400000;
parameter sobel_int_reg_offset = 0;
parameter sobel_start_reg_offset = 4;
parameter sobel_O_base_reg_offset = 8;
parameter sobel_D_base_reg_offset = 12;
parameter sobel_status_reg_offset = 0;

reg clk, rst;

wire bus_cyc, bus_stb, bus_we;
wire  [3:0] bus_sel;
wire [22:0] bus_adr;
wire bus_ack;
wire [31:0] bus_dat;
wire int_req;

wire sobel_cyc_o, sobel_stb_o, sobel_we_o;
wire [21:0] sobel_adr_o;
wire sobel_ack_i;
wire sobel_stb_i;
wire sobel_ack_o;
wire [31:0] sobel_dat_o;
...

always begin // Clock generator
clk = 1'b1; #(t_c/2);
clk = 1'b0; #(t_c/2);

end

initial begin // Reset generator
rst <= 1'b1;
#(2.5*t_c) rst = 1'b0;

end

sobel duv ( .clk_i(clk), .rst_i(rst),
  .cyc_o(sobel_cyc_o), .stb_o(sobel_stb_o),

(continued)
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  .we_o(sobel_we_o),
  .adr_o(sobel_adr_o), .ack_i(sobel_ack_i),
  .cyc_i(bus_cyc), .stb_i(sobel_stb_i),
  .we_i(bus_we), .adr_i(bus_adr[3:2]),
  .ack_o(sobel_ack_o),
  .dat_o(sobel_dat_o), .dat_i(bus_dat),
  .int_req(int_req) );
...

endmodule

The clock generator always block uses the parameter t_c for the clock cycle time, 
giving a clock frequency of 100MHz. The parameters mem_base and sobel_base

define the base addresses of the memory (00000016) and the Sobel accelerator
registers (40000016). Additional parameters define the offsets from the base 
address for the control and status registers. Next, the testbench includes nets 
for the bus address, data and control signals. As we will see shortly, these are 
multiplexed from the various sources in the system. The testbench also declares 
nets for connection specifically to the Sobel accelerator. Within the module, the 
accelerator is instantiated as the design under verification (duv) and connected to 
the nets.

The testbench code for the processor bus functional model is

reg  cpu_cyc_o, cpu_stb_o, cpu_we_o;
reg  [3:0] cpu_sel_o;
reg [22:0] cpu_adr_o;
wire cpu_ack_i;
reg [31:0] cpu_dat_o;
wire[31:0] cpu_dat_i;
...

task bus_write ( input [22:0] adr, input [31:0] dat );
begin
cpu_adr_o = adr;
cpu_sel_o = 4'b1111;
cpu_dat_o = dat;
cpu_cyc_o = 1'b1; cpu_stb_o = 1'b1; cpu_we_o = 1'b1;
@(posedge clk); while (!cpu_ack_i) @(posedge clk);

end
endtask
...

initial begin // Processor bus-functional model

cpu_adr_o = 23'h000000;

cpu_sel_o = 4'b0000;

(continued)



cpu_dat_o = 32'h00000000;

cpu_cyc_o = 1'b0; cpu_stb_o = 1'b0; cpu_we_o = 1'b0;

@(negedge rst);

@(posedge clk);

// Write 008000 (hex) to 0_base_addr register

bus_write(sobel_reg_base

 + sobel_0_base_reg_offset, 32'h00008000);

// Write 053000 + 280 (hex) to D_base_addr register

bus_write(sobel_reg_base

 + sobel_D_base_reg_offset, 32'h00053280);

// Write 1 to interrupt control register (enable interrupt)

bus_write(sobel_reg_base

 + sobel_int_reg_offset, 32'h00000001);

// Write to start register (data value ignored)

bus_write(sobel_reg_base

 + sobel_start_reg_offset, 32'h00000000);

// End of write operations

cpu_cyc_o = 1'b0; cpu_stb_o = 1'b0; cpu_we_o = 1'b0;

begin: loop

forever begin

#10000;

@(posedge clk);

// Read status register

cpu_adr_o = sobel_reg_base + sobel_status_reg_offset;

cpu_sel_o = 4'b1111;

cpu_cyc_o = 1'b1; cpu_stb_o = 1'b1; cpu_we_o = 1'b0;

@(posedge clk); while (!cpu_ack_i) @(posedge clk);

cpu_cyc_o = 1'b0; cpu_stb_o = 1’b0; cpu_we_o = 1'b0;

if (cpu_dat_i[0]) disable loop;
end

end
end

The processor waits for completion of system reset, then performs the required 
sequence of bus write operations to initialize the accelerator. For each bus 
operation, described by the bus_write task, the processor assigns the appropri-
ate values to the address, data and control signals, then waits for the accelera-
tor to acknowledge completion of the operation. After completion of the write 
to the start register, the processor enters a loop in which it waits for 10µs, 
resynchronizes with the clock, then reads the accelerator status register. When 
the accelerator acknowledges completion of the read operation, the processor 
checks whether the done bit is 1. If so, the processor exits the loop, completing 
the test.
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The testbench code for the memory bus functional model is

wire mem_stb_i;
wire [3:0] mem_sel_i;
reg mem_ack_o;
reg [31:0] mem_dat_o;
...

always begin // Memory bus-functional model
mem_ack_o = 1'b0;
mem_dat_o = 32'h00000000;
@(posedge clk);
while (!(bus_cyc && mem_stb_i)) @(posedge clk);
if (!bus_we)
mem_dat_o = 32'h00000000; // in place of read data

mem_ack_o = 1'b1;
@(posedge clk);

end

The memory repeatedly waits until the bus_cyc and mem_stb_i signals are both 
1, indicating that a memory operation is required. If bus_we is 0, the operation 
is a read, so the memory provides zeros on the data outputs. In the case of a 
write operation, the memory does nothing with the input data. In either case, the 
memory sets the acknowledge signal to 1, and then on the next clock cycle clears 
the signal back to 0, completing the operation.

The arbiter for the testbench is somewhat more involved than the other 
testbench components. It uses the sobel_cyc_o and cpu_cyc_o signals as 
requests from the Sobel accelerator and the processor, respectively, and 
generates sobel_gnt and cpu_gnt grant signals. When either of the request 
signals is activated, the arbiter activates the corresponding grant. If both 
requests are activated in the same cycle, the arbiter gives preference to the 
accelerator,  activating its grant and leaving the processor’s grant inactive until 
the accelerator’s request is deactivated. Since the grant outputs depend not only 
on the values of the request inputs, but also on the preceding history of request 
values, the arbiter must be implemented as a sequential circuit using an FSM. 
The state transition diagram is shown in Figure 9.11. The FSM is a Mealy 
machine, since that allows us to activate a grant signal in the same cycle in 
which the corresponding request is activated.

The testbench code for the arbiter is

parameter sobel = 1'b0, cpu = 1'b1;
reg arbiter_current_state, arbiter_next_state;

(continued)
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F I G U R E 9 .11 State 
transition diagram for the 
testbench arbiter.
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reg sobel_gnt, cpu_gnt;
. . .

always @(posedge clk) // Arbiter FSM register
if (rst)
arbiter_current_state <= sobel;

else
arbiter_current_state <= arbiter_next_state;

always @* // Arbiter logic

case (arbiter_current_state)

sobel: if (sobel_cyc_o) begin

sobel_gnt <= 1'b1; cpu_gnt <= 1'b0;

arbiter_next_state <= sobel;

end

else if (!sobel_cyc_o && cpu_cyc_o) begin

sobel_gnt <= 1'b0; cpu_gnt <= 1'b1;

arbiter_next_state <= cpu;

end

else begin

sobel_gnt <= 1'b0; cpu_gnt <= 1'b0;

arbiter_next_state <= sobel;

end

cpu: if (cpu_cyc_o) begin

sobel_gnt <= 1'b0; cpu_gnt <= 1'b1;

arbiter_next_state <= cpu;

end else if (sobel_cyc_o && !cpu_cyc_o) begin

sobel_gnt <= 1'b1; cpu_gnt <= 1'b0;

arbiter_next_state <= sobel;

end else begin

sobel_gnt <= 1'b0; cpu_gnt <= 1'b0;

arbiter_next_state <= sobel;

end

endcase
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The rest of the testbench code represents the bus multiplexers and slave select 
logic:

wire sobel_sel, mem_sel;

...

// Bus master multiplexers and logic

assign bus_cyc = sobel_gnt ? sobel_cyc_o : cpu_cyc_o;
assign bus_stb = sobel_gnt ? sobel_stb_o : cpu_stb_o;
assign bus_we  = sobel_gnt ? sobel_we_o  : cpu_we_o;

assign bus_sel = sobel_gnt ? 4'b1111 : cpu_sel_o;

assign bus_adr = sobel_gnt ? {1'b0, sobel_adr_o} : cpu_adr_o;

assign sobel_ack_i = bus_ack & sobel_gnt;
assign cpu_ack_i   = bus_ack & cpu_gnt;

// Bus slave logic

assign sobel_sel = (bus_adr & 23'h7FFFF0) = = sobel_reg_base;
assign mem_sel  = (bus_adr & 23'h400000) = = mem_base;

assign sobel_stb_i = bus_stb & sobel_sel;
assign mem_stb_i = bus_stb & mem_sel;

assign bus_ack = sobel_sel ? sobel_ack_o :
 mem_sel ? mem_ack_o :
 1'b0;

// Bus data multiplexer

assign bus_dat = sobel_gnt && bus_we || sobel_sel && !bus_we
 ? sobel_dat_o :
 cpu_gnt && bus_we
 ? cpu_dat_o :
 mem_dat_o;

The grant signals from the arbiter determine which source provides values for 
the bus control and address signals. They also gate the acknowledge signals 
back to the masters, so that a master that is waiting for the bus does not receive 
an acknowledgment from a slave for the active master’s bus operation. The bus 
slave logic decodes addresses and determines which slave is selected. The select 
signals gate the strobe signal from the active master to the selected slave, and 
multiplex the selected slave’s acknowledgment signal onto the bus_ack signal. 
The bus data multiplexer determines the source of data for the bus_dat signal, 



depending on which master is active, which slave is selected, and whether the 
bus operation is a read or a write.

We can simulate the testbench of Example 9.14 to verify that the Sobel 
accelerator correctly responds to slave bus operations and performs master 
bus operations with correct addresses. We need to observe the values of the 
bus control and address signals, as well as the internal signals of the accel-
erator. Figure 9.12 shows a simulation waveform display of the bus sig-
nals during initialization of the accelerator by the processor bus functional 
model. Figures 9.13 through 9.15 show the internal signals of the accelera-
tor during the start of processing a row (Figure 9.13),  during steady state 
processing (Figure 9.14), and upon completion of processing a row and 
commencement of the next row (Figure 9.15). Finally, Figure 9.16 shows 
the internal signals on completion of processing an entire image. 

While the verification shown here might give us confidence that the 
design is correct, it is by no means complete. For example, it doesn’t 
demonstrate that the computation produces correct values according to 
the specification of the algorithm, and it doesn’t show that the control 
sequencing is correct for all possible interactions between the accelerator 
and other bus masters. Creating test cases for simulation-based verification 
to cover all of these aspects is infeasible, given the number of  permutations 
of data values and ways in which components can interact. Instead, we 
need to turn to more sophisticated verification techniques, such as con-
strained random test generation, coverage analysis, and property-based 
formal verification. We will return to the topic of verification again in 
Chapter 10, but we also refer the interested reader to advanced books on 
verification listed in Section 9.5, Further Reading. 
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F I G U R E 9 .12 Waveform 
display of bus operations for 
initializing the Sobel accelerator.
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F I G U R E 9 .13 Waveform 
display of accelerator internal 
signals at the start of row 
processing.
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in the steady state.
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F IG U R E 9.15 Waveform 
display showing completion of one 
row and commencement of the next.
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F I G U R E 9 .16 Waveform 
display showing completion of 
image processing.
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1. Is it possible to verify an accelerator design using exhaustive testing? 
Why, or why not?

2. What is a bus functional model?

3. Given the arbiter in the testbench for the Sobel accelerator, what 
happens if the accelerator and the processor both request use of the 
bus in the same clock cycle?

4. What happens if the accelerator requests use of the bus while the 
processor is currently granted use?

5. Does the testbench verify correct computation of derivative pixel 
values?

K N O W L E D G E 
T E S T  Q U I Z
K N O W L E D G E 
T E S T  Q U I Z



9.4 C H A P T E R  S U M M A R Y

Parallelism, performing multiple processing steps at once, allows 
accelerators to reduce the time required to complete an operation.

An accelerator achieves parallelism by replicating hardware 
resources and by pipelining. This leads to cost/performance and 
power/performance trade-offs.

The degree of achievable parallelism is constrained by data depen-
dencies within a computation.

Designing an accelerator involves analyzing an algorithm and identi-
fying a kernel to be implemented in hardware. The remainder of the 
algorithm is implemented in embedded software.

Amdahl’s Law quantifies the overall speedup from accelerating a 
kernel of an algorithm.

Accelerators and high-speed I/O controllers can use direct memory 
access (DMA) to transfer data to or from memory without processor 
intervention. An address generator in such a unit calculates memory 
addresses for DMA.

An arbiter determines which of several bus masters can use the bus 
at any time to access bus slaves, such as memory and I/O controller 
registers.

A block-processing accelerator processes blocks of data stored in 
memory. Many video and still-image processing applications are 
block oriented.

A stream-processing accelerator processes data arriving from a 
source in a sequence of values. Digital-signal processing (DSP) is 
often stream oriented.

Accelerators include control and status registers for use by embedded 
software.

Verification of an accelerator using exhaustive simulation is gener-
ally not feasible. Aspects of operation can be verified independently, 
but a complete verification plan should include other forms of 
verification.
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2007. An advanced textbook on computer architecture, covering 
instruction-level parallelism in depth.

Parallel Computer Architecture: A Hardware/Software Approach, David 
E. Culler and Jaswinder Pal Singh, Morgan Kaufmann Publishers, 
1999. An in-depth treatment of parallel computing. While the book 
focuses on parallel computers, many of the principles can also be 
applied to architectures of hardware accelerators.

Understanding Digital Signal Processing, Richard G. Lyons, Prentice Hall, 
2001. An introduction to the theory of digital signal processing (DSP).

Computers as Components: Principles of Embedded Computing System 
Design, Wayne Wolf, Morgan Kaufmann Publishers, 2005. Includes 
a discussion of accelerators in the context of embedded hardware 
and software design, with a video-processing accelerator as a case 
study.

Embedded Software Development with eCos, Anthony J. Massa, Pren-
tice Hall, 2003. Describes the Embedded Configurable Operating 
System (eCos), including the hardware abstraction layer.

Comprehensive Functional Verification: The Complete Industry 
Cycle, Bruce Wile, John C. Goss and Wolfgang Roesner, Morgan 
Kaufmann Publishers, 2005. A detailed treatment of functional 
verification strategies and techniques.

exerc ise  9 .1  In computer graphics applications, a three-dimensional vec-
tor representing a point’s position in space can be transformed by multiplying by 
a 3 � 3 matrix:  
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Determine the data dependencies in the computation and thus the maximum 
available parallelism.

exerc ise  9 .2  Devise a pipeline architecture that can perform the computa-
tion described in Exercise 9.1 using all the available parallelism. Assume a new 
input vector arrives and a result can be accepted on every clock cycle.

exerc ise  9 .3  If a kernel of an algorithm is accelerated by a factor of 100, 
and the kernel accounts for 90% of execution time before acceleration, what is 
the overall speedup?
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