
281

p ro c e s s o r bas i c s

In this chapter we start our focus on embedded systems with an introduction
to the kinds of processors that are used. We describe the way processors
operate and give examples of the instructions that make up embedded
software programs. We also describe the way instructions and data are
encoded in binary and stored in memory. Finally, we examine ways of
connecting the processor with memory components.

7.1 E M B E D D E D C O M P U T E R
O R G A N I Z AT I O N

In Section 1.5.1, we introduced the idea of an embedded system, in which
one or more computers form part of the system. The computers run
programs that implement the functions required of the system. Unlike
a general-purpose PC, a computer in an embedded system has just those
resources required to support its specialized operation. In this section, we
will describe some of the general properties of embedded systems and the
processing elements they contain. We won’t deal with how the processing
elements are designed; that is a significant field of study in its own right.
Instead, we will treat them as black-box circuit components that we can
use to build a digital system.

A computer embedded in a digital system generally contains the
elements shown in Figure 7.1. The central processing unit (CPU), often
called a processor core when it is embedded as part of an IC, is the ele-
ment that processes data according to a program. The kinds of process-
ing it can perform include the arithmetic operations that we described in
Chapter 3. It can also evaluate logical conditions and select among alter-
nate operations based on the outcomes of the conditions. We will describe
the way a program is formed in more detail in Section 7.2. Meanwhile,
suffice it to say that the program is encoded in binary form and stored
in the instruction memory shown in the figure. The data upon which the
program operates are also encoded in binary form and stored in the data

7
A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

282 C H A P T E R S E V E N p r o c e s s o r b a s i c s

memory. In both cases, the memory is implemented using the kinds of
memory components we described in Chapter 5. Whereas general pur-
pose computers, such as PCs, usually store the instructions and data in
the same memory, embedded computers typically separate the two. (This
arrangement is often referred to as a Harvard architecture, named after
the institution where the idea originated. The conventional approach with
a single memory for instructions and data is called a von Neumann archi-
tecture, after the person who first described it.) The reason for the separa-
tion is that the instructions in an embedded computer are usually fixed
during the manufacture of the system (or only occasionally upgraded in
the field), and the amount of instruction memory required is known in
advance. Hence, we usually store instructions in a ROM or flash memory
component, and provide a RAM for the data memory. This differs from a
general-purpose computer, in which one or more different programs need
to be started at different times and run concurrently, and the amount of
instruction memory is not known in advance.

The input, output and input/output (I/O) controllers in Figure 7.1
allow the computer to acquire data to be processed (input) and to deliver
the results (output). In many embedded systems, the input data comes
from sensors that sample physical properties, such as temperature, posi-
tion, time, and so on. Similarly, the output data causes actuators to have
a physical effect, such as moving a lever, turning a motor, heating some
material, and so on. Input and output controllers can also deal with a
user interface, consisting of switches, buttons and knobs for input and
lights and LCD panels for outputs. For a complex user interfaces, devices
such as a keyboard, mouse or display screen, as used in a general purpose
computer, might also be employed. In all cases, the job of the input/output
controller is to transform between a physical property or effect and a cor-
responding binary representation that can be processed by the CPU. We
will describe how this can be done and how the CPU accesses the binary
representation in Chapter 8.

The accelerator in Figure 7.1 is a specialized circuit designed to
 implement specific processing operations with higher performance
than can be achieved using the CPU. Not all embedded systems include

CPU

…

Accelerator
Instruction

memory

Input
controller

Output
controller

I/O
controller

Data
memory

F I G U R E 7.1 Elements of an
embedded computer.

 accelerators. The choice of whether to include an accelerator for any
operation depends on the functional and performance requirements of
the application, together with cost and other constraints that apply. We
will discuss accelerators in more detail in Chapter 9, in which we include
as an extended example an accelerator for detecting edges of objects in
video images.

The final element in Figure 7.1 is the interconnection between the
other elements. We use the term bus to refer to the collection of signals
that form the interconnection. The figure shows just one bus connecting
all of the elements. However, in more elaborate systems, there may be sep-
arate buses for connecting the memory and the input/output controllers
with the CPU. There may even be separate buses for the instruction and
data memories, since many high-performance processors can read further
instructions concurrently with access to data by previous instructions.
Accelerators, if included, might be connected to the CPU using the same
bus as the memory, or using a separate dedicated bus. Figure 7.2 shows
one possible organization for a high-performance embedded system with
multiple buses. In this chapter, we will focus on the bus connecting the
CPU and memory, and defer consideration of bus connections to input
and output controllers and to accelerators until later chapters.

7.1.1 M I C R O C O N T R O L L E R S A N D
P R O C E S S O R C O R E S

CPUs for embedded systems come in a range of sizes for different applica-
tions. Some are single-chip microprocessors, consisting of a CPU by itself
in a package. Most CPUs used in general-purpose PCs are also available
in versions suitable for embedded applications. Examples include Pentium
family CPUs from Intel and the PowerPC from Freescale Semiconductor.
Other microprocessors are designed specifically for embedded applications.

 7.1 Embedded Computer Organization C H A P T E R S E V E N 283

CPU

Accelerator

Instruction
memory

Input
controller

Output
controller

I/O
controller

Data
memory

F I G U R E 7.2 Organization of
a high-performance embedded
computer with multiple buses:
one for the instruction memory,
one for the data memory and an
accelerator, and one for input/
output controllers.

284 C H A P T E R S E V E N p r o c e s s o r b a s i c s

In both cases, we need to provide memory and I/O controllers as separate
chips on a PCB. In contrast, single-chip microcontrollers include a CPU,
instruction and data memory, and I/O controllers all in the one package.
Many microcontroller vendors provide a family of chips, each with the
same CPU, but varying in the amount of memory and the selection of
I/O controllers. In some microcontroller families, the CPUs are relatively
simple, operating just on 8-bit or 16-bit data, with relatively low per-
formance. Other families have more complex CPUs that can operate on
data up to 32 bits in length. The combination of a CPU with the on-chip
memory and I/O controllers makes them suitable for a large range of cost-
sensitive, low-performance applications.

An alternative to using a fixed function microprocessor or microcon-
troller is to include a CPU in an FPGA component. This has the advantage
that the input/output controllers can be customized for an application,
but still be included in the same package as the CPU. The CPU in the
FPGA can be implemented as a fixed-function block embedded within
the programmable fabric. The Virtex-II Pro and Virtex 4 FPGAs from
Xilinx take this approach, and include one or more PowerPC processor
cores. Alternatively, the CPU can be implemented as a soft core using the
programmable resources of the FPGA. FPGA vendors provide soft core
processor designs that users can include as part of their system. Examples
include the MicroBlaze core from Xilinx, the Nios-II core from Altera,
and the ARM core from Actel. These are all relatively high-performance
CPUs that operate on data up to 32 or 64 bits in length. For simpler
designs, a smaller soft core that operates on 8-bit data may suffice. It
would take up less of the FPGA resources, and would fit in a smaller and
cheaper FPGA component. The Xilinx PicoBlaze soft core is an example,
as is the Gumnut core that we will introduce in Section 7.2.

If our design is implemented in an ASIC, we can also include a CPU
and customized memory and input/output controllers. Several vendors
provide processor core designs that can be included as blocks in ASICs.
Among the most widely used are the ARM cores from ARM Ltd, the
PowerPC cores from IBM, and the MIPS cores from MIPS Technologies.
Given that we can customize the design on an ASIC, there is also oppor-
tunity to customize the CPU itself. Tensilica Inc. is a vendor that provides
a customizable CPU based on the requirements of the program to be exe-
cuted. Their approach involves analyzing the program and including only
the CPU features needed to execute that program. They also allow exten-
sion of the CPU with customized hardware for specialized operations.

A final approach to mention is to include one or more digital signal
processors (DSPs). These are specialized processing elements optimized for
the kinds of operations involved in dealing with digitized signals, such as
audio, video or other streams of data from sensors. Many signal process-
ing applications require fixed-point or floating-point arithmetic operations
to be performed at a high rate on large volumes of data. An ordinary CPU

would not be able to meet the performance requirements. Nonetheless, such
applications often need a conventional CPU to perform other operations,
such as interacting with the user and overall coordination of system opera-
tion. Hence, DSPs are often combined with conventional CPUs in hetero-
geneous multiprocessor systems. Modern cell phones are good examples.
Another approach to providing DSP functionality is to extend a conventional
CPU with additional hardware and instructions for digital signal processing.
Some processor cores from ARM and MIPS include such extensions, and
Tensilica processor cores can be similarly customized. Since digital signal
processing is an advanced topic, we will defer consideration of DSP cores
and embedded multiprocessor systems to advanced reference books.

1. What are the main elements of an embedded computer?

2. Why do embedded computers usually have separate instruction and
data memories?

3. What is the difference between a microprocessor and a micro-
controller?

4. What is meant by a soft core processor in an FPGA?

7.2 I N S T R U C T I O N S A N D D ATA

The function performed by a CPU is specified by a program, which
consists of a sequence of instructions. Each instruction specifies one sim-
ple step in the program, such as getting a piece of data from memory, or
adding two numbers. The repertoire of instructions for a given CPU is
called the instruction set of the CPU. We also use the term instruction set
architecture (ISA) to refer to the combination of the instruction set and
other aspects of the CPU that are visible to the programmer. CPUs from
different vendors have quite significantly different instruction sets, so a
sequence of instructions developed for one CPU will not work on a CPU
from a different vendor. When we develop the program for an application,
we usually use a high-level language, such as C, C�� or Ada, and use a
software tool called a compiler to translate the program into a sequence
of instructions that performs the same operations. Apart from allowing
us to work at a higher level of abstraction, this has the advantage that the
program can be ported to work on a CPU with a different instruction set
simply by using a different translator. However, when we are developing
an embedded system in which the CPU interacts with circuits that we
design, we often need to monitor the instruction-by-instruction operation
of the CPU as we test and debug the design. At this level, it is important to
understand how a CPU represents and processes individual instructions.
We will just describe CPU operation at this level, and defer a discussion of
programming using high-level languages to other books.

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

7.2 Instructions and Data C H A P T E R S E V E N 285

286 C H A P T E R S E V E N p r o c e s s o r b a s i c s

The instructions of a program are encoded in binary and stored in
successive locations of the instruction memory. The CPU executes the pro-
gram by repeatedly following these steps:

1. Fetch the next instruction from the instruction memory.

2. Decode the instruction to determine the operation to perform.

3. Execute the operation.

In order to keep track of which instruction to fetch next, the CPU has
a special register called the program counter (PC), in which the address of
the next instruction is kept. In the fetch step, the CPU uses the contents of
the PC to do a read access from the instruction memory, and then incre-
ments the PC value. In the decode step, the CPU determines the resources
required to perform the operation specified by the instruction. In a simple
CPU, the decode step is correspondingly simple. In a larger CPU, however,
decoding may involve such actions as checking for resource conflicts and
availability of data, and waiting until resources are free. In the execute
step, the CPU activates the appropriate internal resources to perform the
operation. This involves setting control signals to make multiplexers sup-
ply the required operands and arithmetic hardware perform the required
operation, and enabling registers to receive results. In a simple CPU, these
steps are performed in order, and when the execute step is finished, the
CPU starts again with the fetch step. More complex, high performance
CPUs, however, can overlap the steps, provided they produce the same
outcome as if the steps were performed in order. Techniques used within
CPUs to execute several instructions in parallel include pipelining and
superscalar execution, described in the reference book on computer archi-
tecture (see Section 7.5).

The data on which instructions operate is encoded in binary in fixed-
size quantities. The smallest data item is usually 8 bits, called a byte. It
is often used to represent an unsigned or a signed integer, or a character.
Simple CPUs can only operate on 8-bit data, so they are referred to as
8-bit CPUs. Larger CPUs can operate on 16-bit or 32-bit words of data,
as well as on 8-bit data, so they are referred to as 16-bit or 32-bit CPUs,
respectively.

Regardless of the sizes of data that can be operated upon, the data
memory is usually organized with 8-bit locations, each separately
addressed. 16-bit or 32-bit data is stored in two or four successive loca-
tions. The order of the bytes within a word varies between CPUs, as shown
in Figure 7.3. Little-endian CPUs store the byte containing the least signif-
icant bits at the lower address and the byte containing the most significant
bits at the higher address. In contrast, big-endian CPUs store the bytes
in the opposite order. (The terms “little endian” and “big endian” origi-
nated in Jonathan Swift’s Gulliver’s Travels, in which the people of two
countries fight over which end of their breakfast eggs should be cut open.

The terms were adopted by Danny Cohen in an article, cited in Section 7.5,
in which he argues that either byte ordering is acceptable, provided it is
used consistently.) Some CPUs require that 16-bit data be stored at even
addresses and that 32-bit data be stored at addresses that are a multiple of
four. Others allow 16-bit and 32-bit data to be stored at any address.

7.2.1 T H E G U M N U T I N S T R U C T I O N S E T

Rather than trying to describe the characteristics of the instruction sets
of all CPUs, we will present one relatively simple example that embod-
ies most of the important concepts. The CPU that we will describe is
an 8-bit soft core called the Gumnut, developed by the author. (A gum-
nut is a small seedpod of an Australian eucalyptus tree. It is something
small from which large things grow.) Further information and files are
provided in the supplementary material for this book for use in FPGA
designs. The complete Gumnut instruction set is listed in Table 7.1. We
use a notation for instructions called assembly code. An assembly-code
program can be translated by a software tool called an assembler into a
sequence of binary-coded instructions to be loaded into the instruction
memory.

The Gumnut has an instruction memory of up to 4096 instructions
(using 12-bit addresses) and a data memory of 256 bytes (using 8-bit
addresses). When the CPU is reset, it clears the PC to 0, and starts the
fetch-decode-execute cycle, fetching the first program instruction from
address 0 in the instruction memory. Within the CPU, there are eight
 general-purpose registers, named r0 through r7, that can hold data to
be operated upon by instructions. Register r0 is special, in that it is
hard-wired to have the value 0, and any updates to it are ignored. The
CPU also has two single-bit condition-code registers called Z (zero) and

 7.2 Instructions and Data C H A P T E R S E V E N 287

0

least sig. byte

Little endian Big endian

8-bit data

16-bit data

32-bit data

most sig. byte

least sig. byte

most sig. byte

m

m + 1

n

n + 2

n + 3

n + 1

0

least sig. byte

8-bit data

16-bit data

32-bit data

most sig. byte

least sig. byte

most sig. byte

m

m + 1

n

n + 2

n + 3

n + 1

F I G U R E 7.3 Little-endian
(left) and big-endian (right)
memory layout for data words.

288 C H A P T E R S E V E N p r o c e s s o r b a s i c s

i n s t ru c t i o n d e s c r i p t i o n

Arithmetic and logical instructions

add rd, rs, op2 Add rs and op2, result in rd

addc rd, rs, op2 Add rs and op2 with carry, result in rd

sub rd, rs, op2 Subtract op2 from rs, result in rd

subc rd, rs, op2 Subtract op2 from rs with carry, result in rd

and rd, rs, op2 Logical AND of rs and op2, result in rd

or rd, rs, op2 Logical OR of rs and op2, result in rd

xor rd, rs, op2 Logical XOR of rs and op2, result in rd

mask rd, rs, op2 Logical AND of rs and NOT op2, result in rd

Shift instructions

shl rd, rs, count Shift rs value left count places, result in rd

shr rd, rs, count Shift rs value right count places, result in rd

rol rd, rs, count Rotate rs value left count places, result in rd

ror rd, rs, count Rotate rs value right count places, result in rd

Memory and I/O instructions

ldm rd, (rs) ± offset Load to rd from memory

stm rd, (rs) ± offset Store to memory from rd

inp rd, (rs) ± offset Input to rd from input controller register

out rd, (rs) ± offset Output to output controller register from rd

Branch instructions

bz ± disp Branch if Z is set

bnz ± disp Branch is Z is not set

bc ± disp Branch if C is set

bnc ± disp Branch if C is not set

Jump instructions

jmp addr Jump to addr

jsb addr Jump to subroutine at addr

Miscellaneous instructions

ret Return from subroutine

reti Return from interrupt

enai Enable interrupts

disi Disable interrupts

wait Wait for interrupts

stby Enter low-power standby mode

TAB LE 7.1 The Gumnut
instruction set. rd and rs are regis-
ters, op2 is a register (rs2) or an
immediate value (immed), count is
count of number of places to shift
or rotate, disp is a displacement
from the next-instruction address,
and addr is a jump target address.

C (carry). They are set to 1 or cleared to 0 depending on the result of
certain instructions, and can be tested to decide among alternative courses
of action in the program.

Arithmetic and Logical Instructions

The arithmetic and logical instructions operate on 8-bit data values
stored in the CPU’s general-purpose registers and store the result in
the destination register, rd. For each instruction, one value is taken
from a source register, rs. The other value, op2, either comes from
a second source register (rs2) or is an immediate value (immed). An
immediate value is a value that is specified as part of the instruction,
rather than being stored in a register or in memory. For example, the
instruction

add r3, r4, r1

adds the values currently in registers r4 and r1 and puts the result in r3.
Similarly, the instruction

add r5, r1, 2

adds the immediate value 2 and the value currently in r1 and puts the
result in r5. Note that the destination register can be the same as a source
register. For example, the instruction

sub r4, r4, 1

updates register r4 by decrementing its value.
The addition and subtraction instructions treat the data values as

8-bit unsigned integers. The addc instruction includes the value of the
C condition code as a carry-in bit, and the subc instruction includes
the C value as a borrow-in bit. All of the instructions in this group modify
the Z and the C bits. They set Z to 1 if the instruction result is 0, and they
clear Z to 0 if the result is nonzero. The add and addc instructions set C
to the carry-out bit of the addition, the sub and subc instruction set C to
the borrow out of the subtraction, and the remaining logical instructions
clear C to 0. We will see later in this section how the condition-code bits
are used by branch instructions.

7.2 Instructions and Data C H A P T E R S E V E N 289

290 C H A P T E R S E V E N p r o c e s s o r b a s i c s

example 7 .1 Write a sequence of instructions to evaluate the expression
2x� 1, assuming the value of x is in register r3 and the result is to be put in r4.

solut ion We can multiply x by 2 by adding it to itself. The required
instructions are

add r4, r3, r3
add r4, r4, 1

example 7 .2 Write a sequence of instructions that sets the Z bit to 1 if
the least significant 4 bits of r2 have the value 0101.

solut ion We can test whether a register value is equal to 0101 by
subtracting 0101 from the value and putting the result in r0. The result value
is ignored, but Z is set as a side-effect of the subtraction. However, the most
significant 4 bits of r2 might contain 1s that we are not interested in, so we need
to clear them to 0s before doing the subtraction. We can use an AND operation
with the value 00001111 to clear the bit. The required instructions are:

and r1, r2, 0x0F
sub r0, r1, 0x05

The notation “0x” is a prefix for a hexadecimal value in the Gumnut assembly
code notation. Thus, 0x0F is the value 00001111 and 0x05 is the value
00000101.

Shift Instructions

The shift instructions shift or rotate 8-bit values taken from the general
purpose register rs and store the result in register rd. The number of places
to shift or rotate is specified in the instruction as count. For example, the
instruction

shl r4, r1, 3

reads the value currently in register r1, shifts it left by 3 places and puts the
result in r4. The shift-left and shift-right instructions discard the bits shifted
past the end of the 8-bit byte and fill the vacated bit positions with 0s. The
rotate-left and rotate-right instructions copy the bits shifted past the end of
the byte around to the other end. All of these instructions set Z to 1 if the

instruction result is 0, and they clear Z to 0 if the result is nonzero. They set
the C bit to the value of the last bit shifted past the end of the byte.

example 7 .3 Write instructions that multiply the value in r4 by 8,
ignoring the possibility of overfl ow.

solut ion Recall from Section 3.1.2 that we can multiply an unsigned
binary integer by 2k by shifting k places to the left. Thus, since 8 � 23, an
instruction to multiply r4 by 8 is

shl r4, r4, 3

Memory and Input/Output Instructions

The Gumnut has separate instructions for accessing data memory and I/O
controllers. We will discuss the operation of I/O controllers in detail in
Chapter 8. For now, we simply point out that I/O controllers have regis-
ters that govern their operation, and that these registers can be read and
written by the CPU. Just as locations in memory have addresses, each
I/O controller register has an identifying address. The Gumnut uses 8-bit
addresses for I/O controller registers, distinct from the 8-bit addresses it
uses for locations in the data memory. We say that the Gumnut has separate
address spaces for data memory and for I/O controller registers. This is in
contrast to a number of other CPU instructions sets, in which I/O control-
ler registers are part of the same address space as memory addresses. In
those instruction sets, we say I/O registers are memory mapped.

For all of the Gumnut’s memory and I/O instructions, the address to
access is computed by adding the current value in rs and an offset value
specified in the instruction. The load from memory instruction reads from
the data memory at the computed address and puts the read value in reg-
ister rd. The store to memory writes the value from register rd to the data
memory at the computed address. The input and output instructions per-
form similar operations, but read or write to the I/O controller registers at
the computed address. None of these instructions affect the values of the
Z and C bits. As examples, the instruction

ldm r1, (r2)+5

calculates the memory address by adding the current value of r2 and the
offset 5. It then reads from memory at that address and puts the read
value in r1. Similarly, the instruction

7.2 Instructions and Data C H A P T E R S E V E N 291

292 C H A P T E R S E V E N p r o c e s s o r b a s i c s

stm r1, (r4)–2

stores the value from r1 into memory at the address 2 less than the current
value of r4.

If we want to specify a particular address to access, we can use r0 as
the register for rs. Recall that r0 always contains 0, so adding it to the
offset value specified in the instruction just gives the offset value. In this
case, we usually interpret the offset value as an unsigned 8-bit address.
Our assembler tool allows us to imply the specification “(r0)” by omis-
sion and just write the address value, for example,

inp r3, 156

which reads from the I/O controller register at address 156 into r3. Simi-
larly, if a register contains the address we want to access, we can use an
offset of 0. Again, our assembler allows us to imply a 0 offset by omission,
as in the instruction.

out r3, (r7)

example 7 .4 Write instructions that increment a 16-bit unsigned integer
stored in memory. The address of the least signifi cant byte is in r2. The most
signifi cant byte is in the next memory location.

solut ion Since the Gumnut arithmetic instructions only operate on 8-bit
data, we need to do two adds, with the carry from the first used in the second.
The instructions are

ldm r1, (r2)
add r1, r1, 1
stm r1, (r2)
ldm r1, (r2)+1
addc r1, r1, 0
stm r1, (r2)+1

Since the load and store instructions do not affect the C bit, the C result from
the first addition is preserved and used in the addc instruction.

Branch Instructions

The branch instructions allow us to conditionally change the normal flow of
execution. We mentioned earlier that the CPU follows a fetch-decode-execute
loop to execute instructions at successive addresses in the instruction memory.
It uses a program counter (PC) register to keep track of the next instruc-
tion address, and increments this register after fetching each instruction. The
branch instructions modify the sequential flow of execution by changing the
PC value. Each form of branch tests a condition, and if the condition is true,
adds a signed 8-bit displacement value to the PC. The displacement, specified
in the instruction, indicates how many locations forward or backward the
next instruction to execute is from the current instruction. (A displacement
of 0 refers to the instruction after the branch, since the PC has already been
incremented after fetching the branch instruction.) If the condition is false, the
PC is unchanged, and execution continues sequentially. The different branch
instructions allow us to test each of the Z and C condition code bits for being
set to 1 or not set to 1. Since these bits are affected by arithmetic, logical and
shift instructions, we often deliberately precede a branch instruction with one
of these instructions to compare data values. In other cases, the condition
code setting occurs as a serendipitous side effect of data operations that we
need to perform anyway.

example 7 .5 Suppose the value in data memory location 100 represents
the number of seconds elapsed in a time interval. Write instructions to increment
the value, wrapping around to 0 when the value increments above 59.

solut ion One possible sequence of instructions is

ldm r1, 100
add r1, r1, 1
sub r0, r1, 60
bnz +1
add r1, r0, 0
stm r1, 100

The first two instructions load the value into r1 and increment it. The sub

instruction subtracts 60 from the new value and discards the result (by
using r0 as the destination register). However, the Z condition code is
updated as a side effect. If the new value is 60, the subtraction result is 0,
so Z is set to 1; otherwise, it is cleared to 0. The branch instruction skips
forward one instruction if Z is 0. The intervening add instruction, which is
only executed when the incremented value was 60, overwrites the incremented
value with 0. The final instruction, executed in all cases, stores the final value
back to memory.

7.2 Instructions and Data C H A P T E R S E V E N 293

294 C H A P T E R S E V E N p r o c e s s o r b a s i c s

Jump and Miscellaneous Instructions

The first of the jump instructions, jmp, unconditionally breaks the sequen-
tial flow of execution by setting the PC to the address specified in the
instruction.

example 7 .6 Write instructions that test whether r1 is 0, and if so, clear
the contents of memory location 100. If r1 is other than 0, the instructions
should clear the contents of memory location 200 instead. Assume that the
instructions start at address 10 in the instruction memory.

solut ion In the required sequence of instructions we have two alternative
actions to perform, depending on whether r1 is 0. Since instructions are laid out
in linear order in the instruction memory, we need to put the instructions for the
two alternatives one after the other. We need an unconditional jump at the end
of the first alternative to bypass the instructions for the second alternative. The
instructions are

10: sub r0, r1, 0
11: bnz +2
12: stm r0, 100
13: jmp 15
14: stm r0, 200
15: ...

The second of the jump instructions, jsb, is somewhat more involved
than the simple jump instruction. It allows us to execute a subroutine,
that is, a collection of instructions that perform some desired operations
and that we can invoke from different parts of the program. Start-
ing execution of a subroutine is referred to as calling the subroutine.
The jsb instruction is used in tandem with the ret instruction, which
returns from the subroutine to the place of the call. The sequence of
instruction execution for a subroutine is shown in Figure 7.4. Execu-
tion proceeds sequentially until the jsb is encountered. The jsb saves

subroutine

instructions

…
…

…

ret

mjsb m

…

jsb m

F I G U R E 7.4 Flow of execu-
tion of subroutine calls. The
subroutine is called from different
places in the program, and in each
case, returns to the instruction
following the jsb.

 7.2 Instructions and Data C H A P T E R S E V E N 295

the incremented PC value (the return address) in an internal register
and then updates the PC with the subroutine address specified in the
instruction. This causes instructions in the subroutine to be executed.
Eventually, the subroutine executes a ret instruction, which restores
the saved return address to the PC. Thus, execution continues with the
instruction after the jsb. The program can include several jsb instruc-
tions that all refer to the same subroutine. In each case, the return
address saved is the address of the instruction after the jsb. This allows
execution to return to the right place, regardless of where the subrou-
tine was called from.

The instructions in the subroutine can include any in the CPU’s
instruction set. This raises the possibility that the subroutine might
include a jsb to call a sub-subroutine. The sub-subroutine might include
a further jsb to call a sub-sub-subroutine, and so on. When the sub-
sub-subroutine returns, execution should continue just after the jsb in
the sub-subroutine, and when it returns, execution should continue just
after the jsb in the subroutine. In order to achieve this effect, the CPU
needs more than just a single register to save return addresses. In fact,
it needs a push-down stack of registers, as shown in Figure 7.5. Each
time a jsb is executed, the return address for that jsb is pushed onto the
stack. When a ret is executed, the return address used is the top entry
on the stack, and that entry is popped from the stack. The Gumnut has
a return-address stack that can hold up to eight entries, which is ample
for most programs.

example 7 .7 Suppose an application keeps track of a number of time
intervals concurrently. Revise the sequence of instructions from Example 7.5 to
form a subroutine that increments the number of seconds stored in the memory
location whose address is in r2. Show how to call the subroutine to increment
values in locations 100 and 102.

solution We can rewrite the instructions to form a subroutine as
follows:

ldm r1, (r2)
add r1, r1, 1
sub r0, r1, 60
bnz +1
add r1, r0, 0
stm r1, (r2)
ret

Assuming the first instruction in the subroutine is at location 20 in the instruction
memory, the calling instructions are

return addr for first call

return addr for second call

return addr for first call

return addr for second call

return addr for third call

F I G U R E 7.5 The push-down
return-address stack after two
nested calls (top) and a third
nested call (bottom).

296 C H A P T E R S E V E N p r o c e s s o r b a s i c s

add r2, r0, 100
jsb 20
add r2, r0, 102
jsb 20

The remaining miscellaneous instructions deal with interrupts, which
are a way of responding to events signaled by I/O controllers. The enable-
interrupt instruction allows the CPU to respond to interrupt events, and
the disable-interrupt instruction prevents the CPU from responding.
When the CPU responds to an interrupt event, it saves the address of the
instruction it is about to execute and, instead, starts executing instruc-
tions in a special subroutine called an interrupt handler. The interrupt
handler finishes with a return-from-interrupt (reti) instruction rather than
a ret instruction. The wait instruction suspends execution until an inter-
rupt occurs, and the stby instruction enters a low-power standby mode
until an interrupt occurs. The difference is that the CPU would normally
be able to respond to an interrupt immediately when suspended using a
wait instruction, whereas it could take some time to power up from a stby
instruction. We will describe interrupt processing in more detail as part of
our discussion of input/output in Chapter 8.

7.2.2 T H E G U M N U T A S S E M B L E R

As we mentioned earlier, programs can be written in assembly language and
translated into a sequence of binary-coded instructions by an assembler.
The supplementary material for this book includes a simple assembler
for the Gumnut, called gasm. The gas User Guide, also included in the
supplementary material, provides a detailed description of the assembly
language and how to use the assembler. We will describe a few key points
here, illustrated by the program in Figure 7.6.

; Program to determine greater of value_1 and value_2

 text
 org 0x000 ; start here on reset
 jmp main

; Data memory layout

 data
value_1: byte 10
value_2: byte 20
result: bss 1

(continued)

F I G U R E 7.6 A Gumnut
assembly language program to
fi nd the greater of two values.

; Main program

 text
 org 0x010
main: ldm r1, value_1 ; load values
 ldm r2, value_2
 sub r0, r1, r2 ; compare values
 bc value_2_greater
 stm r1, result ; value_1 is greater
 jmp finish
value_2_greater: stm r2, result ; value_2 is greater

finish: jmp finish ; idle loop

We have seen in Verilog models that we can include comments,
starting with the characters “//”, to describe parts of the model. We can
also include comments in assembly language programs. In Figure 7.6,
comments start with the “;” character and extend to the end of the line.
Comments are especially important in assembly language programs, since
each instruction performs only a single simple step. We use comments to
describe the larger intent of a sequence of instructions.

The assembler lets us specify both the instructions to be included in
the instruction memory and the contents of the data memory. We tell the
assembler which memory we are specifying using the text (for instruction
memory) and data (for data memory) directives. A directive does not rep-
resent a CPU instruction. Rather, it tells the assembler what to do when
translating the program. Rather than requiring us to specify the address
for each instruction and data item, the assembler adds instructions and
data items at increasing addresses in each memory, starting at address 0. It
automatically keeps track of where it is up to by using a location counter
for each of the instruction and data memories. We can direct the assem-
bler to change the location counter for the memory currently being filled
by using an org (short for “origin”) directive. For example, in Figure 7.6,
the org 0x010 directive in the second text segment tells the assembler to
continue placing instructions from location 01016.

Within a data segment, we can include directives that specify the
initial contents of data memory locations. The byte directive speci-
fies the contents of an 8-bit location. The bss (short for “block starting
with symbol”) directive reserves a specified number of bytes of memory
storage without initializing their content. We can precede each of these
directives with a label that represents the starting address of the loca-
tions. The assembler works out the address for us. We can then refer to
the label in instructions in the program. For example, the ldm instruc-
tions in Figure 7.6 refer to the labels value_1 and value_2 to load the
initialized content of the data memory locations, and the stm instruction
refers to the label result to store the greater value in the reserved location.

7.2 Instructions and Data C H A P T E R S E V E N 297

F I G U R E 7.6 (continued)

A Gumnut assembly language
program to fi nd the greater of two
values.

298 C H A P T E R S E V E N p r o c e s s o r b a s i c s

The advantage of using labels is that, when we revise the program, we
don’t need to revise the address values, since the assembler will work out
new values when the program is reassembled.

Within a text segment, we include the instructions that form the
program. Each instruction can be labeled, and the labels can be refer-
enced in branch and jump instructions. Again, the assembler works out
the instruction addresses represented by the labels, so that we don’t have
to work out branch displacements manually, or update references when
we change the program.

One final point to note about the program in Figure 7.6 is that, once it
completes its task, it doesn’t stop executing. The Gumnut does not include
any instructions for stopping. Instead, we include a busy loop at the end
of the program. This just consists of an instruction that jumps back to
itself, performing no useful work. Busy loops are common in embedded
systems, since we usually do not want an embedded computer to stop
(unless we turn the power off). An alternative is to have a CPU instruc-
tion or other facility that suspends operation until some activity is needed,
such as responding to an I/O event. (On the Gumnut, we could use a wait
or stby instruction.) This has the advantage that power consumption in
the suspended state is typically much lower than in the active state. For
this reason, suspending is preferred in battery-powered and other power-
sensitive applications.

7.2.3 I N S T R U C T I O N E N C O D I N G

The instructions of a program are a form of information, and so, like
any other information, can be encoded in binary. If we were to list all
of the possible instructions, taking into account the operation to be per-
formed and any registers, addresses, immediate values, and so on, we
could devise an instruction coding taking up the smallest number of bits.
However, decoding instructions would then be complex, leading to a large
and slow decoder circuit within the CPU. Instead, instruction sets are usu-
ally encoded by separating a code word into distinct fields, each of which
encodes one aspect of an instruction. The primary field is the opcode,
short for operation code, that specifies the operation to be performed and,
by implication, the layout of the remaining fields within the code word.
By keeping the field layout simple and regular, we make the circuit for the
instruction decoder simple and, hence, fast.

As an illustration, the instruction encoding for the Gumnut is shown
in Figure 7.7. (The full details of the instruction encoding are described in
Appendix D.) Each instruction code word is 18 bits long. The left-most
bits, together with the function code (fn), form the opcode. Those instruc-
tions that specify register numbers have the numbers encoded in 3-bit
binary form in separate fields of the instruction word. Similarly, instruc-
tions that specify immediate values, offsets, or displacements have those

values binary encoded in the right-most 8 bits of the instruction word. In
several of the instruction formats, some bits remain unused. While this may
waste some storage space within the instruction memory, the simplicity of
encoding and the consequent simplicity of decoding is a trade-off worth
making. As we mentioned earlier, it is the task of the assembler to trans-
late instructions specified in textual assembly language into this binary
encoding. Conversely, if we are testing a design that includes an embedded
Gumnut, we may need to disassemble binary-coded instructions, that is,
to determine the instructions corresponding to binary instruction code
words processed by the embedded core.

example 7 .8 Given that the function code for the addc operation is 001,
what is the binary instruction word for the instruction

addc r3, r5, 24

solut ion This is an arithmetic/logical immediate instruction, so the
left-most bit is 0, and the function code is 001. The destination register r3 is
encoded as 011, the source register number as 101, and the immediate value as
00011000. So the complete instruction word is 0 001 011 101 00011000, or, in
hexadecimal, 05D18.

example 7 .9 What instruction is represented by the hexadecimal instruc-
tion word 2ECFC?

 7.2 Instructions and Data C H A P T E R S E V E N 299

1 1 01 1 1 fn disp
6 2 2 8

Branch

Arith/Logical
Register

Arith/Logical
Immediate

Shift

Memory, I/O

1 1 01 fnrd rs rs2
4 3 33 3 2

0 fn rd rs immed
1 83 3 3

1 1 0 fnrd rs count
3 31 23 3 3

1 0 fn rd rs offset
2 2 3 3 8

1 1 1 1 0

0

fn addr
5 1 12

Jump

1 1 1 1 1 1 fn
7 3 8

Miscellaneous

F I G U R E 7.7 Instruction
encoding for the Gumnut, showing
the layout and size of fi elds within
instructions.

300 C H A P T E R S E V E N p r o c e s s o r b a s i c s

solut ion The binary instruction word is 111110110011111100. The
left-most bits, 111110, indicate that this is a branch instruction. The function
code 11 specifies a bnc instruction. The next two bits are 0, but are ignored in
any case. The right-most 8 bits are the signed 2s-complement displacement �4.
So the instruction is bnc –4.

7.2.4 OT H E R C P U I N S T R U C T I O N S E TS

The Gumnut instruction set is relatively simple, compared to those of
other CPUs. Nonetheless, it contains all the essential elements, and is
quite sufficient for writing realistic embedded programs. It is similar to
the instruction set of the PicoBlaze 8-bit soft core provided by Xilinx.
One thing that distinguishes both of these CPUs from other commonly
used 8-bit cores and microcontrollers is that all instructions are encoded
in the same length. Moreover, the instruction length is not a multiple
of 8 bits. (In both cases, it is 18 bits, which is one of widths to which a
memory block in a Xilinx FPGA can be configured.) An example of an
8-bit microcontroller that takes a different approach is the 8051 from
Intel and other vendors. It originated as a stand-alone microproces-
sor, and was subsequently released in microcontroller versions with
various amounts of memory and I/O controllers included on chip. Its
instruction set inherits from those of previous general purpose CPUs,
in which a single memory address space was shared between instruc-
tions and data. Since locations in the 8051 memory are 8 bits wide,
instructions are a multiple of 8-bit bytes. The opcode is included in
the first byte. For some instructions the next one or two bytes contain
further information to specify the instruction, such as an address and
immediate data.

Another distinguishing characteristic of the 8051, compared to the
Gumnut and PicoBlaze, is that the instruction set contains a much larger
repertoire of operations. We call CPUs with instruction sets like this com-
plex instruction set computers (CISCs), in contrast to the Gumnut and
similar CPUs, which are reduced instruction set computers (RISCs). Many
of the operations that can be expressed as one instruction on an 8051
would have to be implemented using a sequence of two or three instruc-
tions on a Gumnut. However, the complexity of the instruction set makes
it much more difficult for the CPU to fetch and decode instructions. It
also makes it difficult to implement a number of important CPU internal
design techniques for increasing performance. For this and other reasons,
RISC CPUs tend to dominate now.

The CPUs that we have mentioned thus far in this section are classified
as 8-bit CPUs, as they operate only on 8-bit data. If the information to
be represented in an embedded system is predominantly 16-bit, 32-bit or

7.2 Instructions and Data C H A P T E R S E V E N 301

64-bit data, using an 8-bit processor is very cumbersome. We may not be
able to meet performance constraints, due to the number of instructions
needed to implement 16-bit, 32-bit or 64-bit operations using 8-bit
instructions. The alternative is to use a larger CPU whose instructions
can operate on the larger data sizes directly. Most of the widely used pro-
cessor cores for FPGAs and ASICs are 32-bit or 64-bit RISC CPUs. They
have 32-bit or 64-bit registers and perform arithmetic and logical opera-
tions on data in those registers. They can load and store 8-bit, 16-bit,
32-bit and 64-bit data between registers and data memory. Instructions
are encoded in fixed-length instruction words, usually 16 or 32 bits long.
The larger, higher performance CPUs include instructions to operate on
floating-point data as well as integers. Examples of this type of CPU
include the PowerPC, ARM, MIPS and Tensilica cores that we mentioned
earlier.

1. What is meant by the instruction set of a CPU?

2. What three steps are repeatedly performed by a CPU to execute a
program?

3. How does the CPU keep track of which instruction to execute next?

4. What is meant by the terms little endian and big endian?

5. What does an assembler do?

6. What does each of the following Gumnut instructions do?

addc r2, r3, 25

shr r1, r1, 3

ldm r5, (r1)+4

bnz –7

jsb do_op

ret

7. What is the binary instruction word for the following Gumnut
instruction?

bnc +15

8. What Gumnut instruction is represented by the hexadecimal
instruction word 05501?

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

302 C H A P T E R S E V E N p r o c e s s o r b a s i c s

7.3 I N T E R FA C I N G W I T H M E M O R Y

The way in which a CPU is connected to instruction and data memories
depends on the implementation fabric used for both the CPU and the
memories. In most embedded systems, the instruction memory is imple-
mented with ROM, NOR flash memory, SRAM, or a combination of
these. Including flash memory gives us the opportunity to upgrade the
embedded software in the field. The data memory is usually implemented
just with SRAM. Typically, the CPU and the memories each have a set of
connection signals for the CPU/memory interface, and it is our job to join
them together. If the two sets of signals are compatible, our job is rela-
tively easy. Often, however, the sets of signals are designed in isolation, or
according to different conventions. In such cases, we need to include glue
logic to complete the interface.

One of the simplest cases of interfacing a CPU with memory is that
of an embedded 8-bit core within an FPGA. The core includes interface
signals that connect directly to those of the FPGA’s memory blocks.

example 7 .10 The memory interface signals of the Gumnut core are
described in the following Verilog module defi nition:

module gumnut (input clk_i,
input rst_i,
output inst_cyc_o,
output inst_stb_o,
input inst_ack_i,
output [11:0] inst_adr_o,
input [17:0] inst_dat_i,
output data_cyc_o,
output data_stb_o,
output data_we_o,
input data_ack_i,
output [7:0] data_adr_o,
output [7:0] data_dat_o,
input [7:0] data_dat_i,

 ...);
endmodule

Show how to include an instance of the Gumnut core in a Verilog model of an
embedded system with a 2K � 18-bit instruction memory and a 256 � 8-bit
data memory.

solut ion The ports in the module can interface with the control signals of
a flow-through SSRAM and a ROM implemented using FPGA SSRAM blocks,
as described in Sections 5.2.2 and 5.2.5. In our module for our embedded
system, we include the necessary nets and variables to connect to an instance

of the Gumnut entity, and use the nets and variables in always blocks for the
instruction and data memories. The module is

module embedded_gumnut;

reg [17:0] inst_ROM [0:2047];
reg [7:0] data_RAM [0:255];

wire clk;
wire rst;
wire inst_cyc_o;
wire inst_stb_o;
reg inst_ack_i;
wire [11:0] inst_adr_o;
reg [17:0] inst_dat_i;
wire data_cyc_o;
wire data_stb_o;
wire data_we_o;
reg data_ack_i;
wire [7:0] data_adr_o;
wire [7:0] data_dat_o;
reg [7:0] data_dat_i;
...

gumnut CPU (.clk_i(clk_i), .rst_i(rst_i),
 .inst_cyc_o(inst_cyc_o), .inst_stb_o(inst_stb_o),
 .inst_ack_i(inst_ack_i),
 .inst_adr_o(inst_adr_o), .inst_dat_i(inst_dat_i),
 .data_cyc_o(data_cyc_o), .data_stb_o(data_stb_o),
 .data_we_o(data_we_o), .data_ack_i(data_ack_i),
 .data_adr_o(data_adr_o), .data_dat_o(data_dat_o),
 .data_dat_i(data_dat_i), ...);

initial $readmemh("inst_ROM.data", inst_ROM);

always @(posedge clk) // Instruction memory
if (inst_cyc_o && inst_stb_o) begin
inst_dat_i <= inst_ROM[inst_adr_o[10:0]];
inst_ack_i <= 1'b1;

end
else
inst_ack_i <= 1'b0;

always @(posedge clk) // Data memory
if (data_cyc_o && data_stb_o)
if (data_we_o) begin

 data_RAM[data_adr_o] <= data_dat_o;
 data_dat_i <= data_dat_o;
 data_ack_i <= 1'b1;

end

7.3 Interfacing with Memory C H A P T E R S E V E N 303

(continued)

304 C H A P T E R S E V E N p r o c e s s o r b a s i c s

else begin
 data_dat_i <= data_RAM[data_adr_o];
 data_ack_i <= 1'b1;

end

...

endmodule

Note that the instruction address port of the Gumnut core is 12 bits wide,
whereas the 2K � 18-bit instruction memory uses an 11-bit-wide address. In this
design, we simply leave the most significant address bit of the core unconnected.
Each location in the instruction memory thus appears twice in the Gumnut’s
instruction address space: once at an address with the most significant bit 0, and
once at an address with the most significant bit 1. We would normally just use
one address for the location and ignore the other alias address.

Single-chip microcontrollers, such as those based on the 8051
described in Section 7.2.4, include a small amount of instruction and data
memory on the microcontroller chip. However, many of them are able to
address additional off-chip memory, using a number of the chip pins for
the external memory interface signals. Since using the pins for this purpose
reduces the number of pins available for inputs and outputs, the memory
interface pins are often multiplexed to perform different functions at dif-
ferent times. This complicates the connection between the microcontroller
and external memory.

As an illustration, we will describe how to expand the memory of the
8051 microcontroller. The 8051 can access up to 64K bytes of instruc-
tion memory and 64K bytes of data memory, however, there are only 256
bytes of data memory and 4K to 16K bytes of instruction memory on the
chip. The chip has two 8-bit input/output ports, P0 and P2, as well as a
number of control signals, that can be used to connect to external mem-
ory. Figure 7.8 shows how they would be used to connect to an external
128K � 8-bit asynchronous SRAM, in which the lower 64K locations are
used for instructions and the upper 64K locations for data. P2 provides
the most significant address byte, and P0 is multiplexed with the least
significant address byte and instruction and data bytes. Since information
transfer on P0 is bidirectional, tristate drivers are used internally in the
microcontroller and in the memory data pins.

The 8051 activates the address-latch enable (ALE) signal when it
drives the least significant address bits on P0. We provide an 8-bit latch
to hold these bits for the remainder of the memory access cycle. During
an instruction read access, the 8051 activates the program-store enable
(

PSEN) signal, driving it to a low logic level. At other times, including data

accesses, the signal is at a high logic level. Hence, we can use this signal
directly as the most significant address bit to distinguish between instruc-
tion and data accesses to the external memory. The 8051 activates the __

 RD signal during data read accesses and the
__

 WR signal during data write
accesses. We use

__
 WR directly to control the memory’s write enable (

__
 WE)

signal. However, we need a small amount of glue logic to derive the chip
enable (

__
 CE) and output enable (

__
 OE) signals. We could implement this glue

logic, together with the address latch, in a small PAL component.
Microcontrollers and processor cores that access 16-bit, 32-bit or

64-bit data generally need data memories that are wider than 8 bits, even
though addresses correspond to 8-bit locations. This allows the CPU to
access a complete data word with one read or write operation. A common
approach is to make the data memory one word wide, with the byte
locations arranged within the words. Figure 7.9 shows the case of byte
addressing within a 32-bit-wide memory. Depending on whether the CPU
is big endian or little endian, the most significant byte of a 32-bit word is
stored in the byte with the lowest or highest address, respectively, of a 32-
bit location. Most 32-bit CPUs ensure that 32-bit data words are stored at
locations whose addresses are a multiple of four. This allows the word to
be read or written with just one memory access, rather than requiring two
partial memory accesses, which would be the case if the word were split
over two adjacent 32-bit locations. Similarly, CPUs ensure that 16-bit
halfwords are stored at locations whose addresses are a multiple of two,
and that 64-bit double-words are stored at locations whose addresses are
a multiple of eight, for the same reason.

Reading from data memory is quite straightforward. A 32-bit CPU,
for example, reads the whole 32-bit word containing the required data
item. If the required item is only a 16-bit halfword or an 8-bit byte,
the CPU usually extracts the item from the appropriate memory data

 7.3 Interfacing with Memory C H A P T E R S E V E N 305

A(15..8)

A(7..0)

CE

WE

OE

D

A(16)

D

LE

P2

Q

PSEN

ALE

8051 SRAM

RD

WR

P0

F I G U R E 7.8 Connection
between an 8051 microcontroller
and an external combined
instruction and data memory.

0 1 2 3
4 5 6 7
8 9 10 11

F I G U R E 7.9 Arrangement of
bytes within words in a 32-bit wide
memory.

306 C H A P T E R S E V E N p r o c e s s o r b a s i c s

signals and places it in a destination register. Writing a 32-bit word is
similarly straightforward. The CPU places the word on the 32 memory
data signals, and the memory performs a write operation. Writing a
16-bit halfword or an 8-bit byte is more involved, since we must ensure
that the other bytes in the corresponding 32-bit memory location are not
affected. The CPU typically provides separate byte write enable control
signals instead of (or in addition to) the overall write enable control
signal. Alternatively, it might provide separate byte enable signals instead
of an overall memory enable signal. To write an 8-bit byte, the CPU places
the byte value on the eight memory data signals corresponding to the
position of the byte within a 32-bit word and activates the associated
byte enable signal. The memory then performs a write operation, updat-
ing only the enabled byte within the addressed word. Similarly, to write a
16-bit halfword, the CPU places the halfword value on the appropriate 16
memory data signals and activates the associated two byte enable signals.
The memory then writes only those two bytes of the addressed word.

example 7 .11 The Xilinx MicroBlaze 32-bit processor core has connec-
tions to a 32K � 32-bit data memory as shown in Figure 7.10. (AS stands for
“address strobe.” This signal is active for each memory access.) Describe how
the following memory operations proceed: a word read from address 00F00; a
byte read from address 00F13; a word write to address 1E010; a byte write to
address 1E016; and a halfword write to address 1E020.

solut ion Word read from 00F00: The address is a multiple of four.
Write_Strobe is 0, so all four memory components perform a read operation,
providing the 32-bit data on the Data_Read signal.

Byte read from 00F13: The address is 3 more than a multiple of four, so the byte
is at offset 3 within a word. However, Write_Strobe is 0, so all four memory com-
ponents perform a read operation, providing the 32-bit data on the Data_Read

signal. The CPU extracts the required byte from Data_Read(24:31).

Word write to 1E010: The address is a multiple of four. Write_Strobe is 1 and all
four Byte_Enable signals are 1, so all four memory components perform a write
operation, taking the 32-bit data from the Data_Write signal.

Byte write to 1E016: The address is 2 more than a multiple of four, so the byte is
at offset 2 within a word. The CPU provides the byte data on Data_Write(16:23).
Write_Strobe and Byte_Enable(2) are 1, and the remaining Byte_Enable signals
are 0. The memory component connected to Data_Write(16:23) performs a write
operation. The remaining components perform a read operation, but the data
they supply on Data_Read(0:7), Data_Read(8:15) and Data_Read(24:31) is ignored.

Halfword write to 1E020: The address is a multiple of four, so the halfword is at
offset 0 within a word. The CPU provides the halfword data on Data_Write(0:15).
Write_Strobe, Byte_Enable(0) and Byte_Enable(1) are 1, and the remaining

Byte_Enable signals are 0. The memory components connected to Data_Write(0:7)
and Data_Write(8:15) perform a write operation. The remaining components
perform a read operation, but the data they supply on Data_Read(16:23) and
Data_Read(24:31) is ignored.

Some embedded systems require memory storage for large amounts
of data. In such systems, it may be more appropriate to use dynamic mem-
ory (DRAMs) rather than SRAMs, given the lower cost per bit of DRAM
components. As we mentioned in Section 5.2.4, controlling DRAMs is
relatively complex, particularly for modern high-performance synchro-
nous and DDR DRAMs, so we won’t go into details here.

7.3.1 C A C H E M E M O R Y

High performance embedded processors need to access instructions
and data at higher rates than simple processors. For such processors,

 7.3 Interfacing with Memory C H A P T E R S E V E N 307

D_in

A

SSRAM

en

wr

D_out

clk

D_in

A

SSRAM

en

wr

D_out

clk

D_in

A

SSRAM

en

wr

D_out

clk

D_in

A

SSRAM

en

wr

D_out

clk

0:7

8:15

16:23

24:31

0:7

2:16

8:15

16:23

24:31

Addr

Data_Write

AS

Read_Strobe

Ready

Clk

Data_Read

Write_Strobe

Byte_Enable(0)

Byte_Enable(1)

Byte_Enable(2)

Byte_Enable(3)

+V F I G U R E 7.10 Connections
from a Xilinx MicroBlaze core to a
32-bit data memory.

308 C H A P T E R S E V E N p r o c e s s o r b a s i c s

CPU

Instruction &
data cache

Instruction
memory

Data
memory

CPU

Instruction
cache

Data
cache

Instruction
memory

Data
memory

F I G U R E 7.11 Processors
with cache memories: a unifi ed
instruction/data cache for a single
memory bus system (left), and
separate instruction and data
caches for a dual bus system
(right).

the memory access time of a large SRAM or DRAM memory system is
 significantly longer than the clock cycle time of the processor, potentially
making the memory a performance bottleneck. Many processors avoid
the bottleneck by including a cache in the path between the processor
and memory. A cache is a small, fast memory that stores the most fre-
quently used items from the main memory. By making access to these
items faster, we reduce the average access time experienced by the proces-
sor. Figure 7.11 shows two possible organizations: a single cache for both
instructions and data, and separate caches.

Operation of a cache is predicated on the principle of locality, which
involves two important observations about the way programs access
memory. The first is that a small proportion of instructions and data
account for the majority of memory accesses over a given interval of time.
The second is that those items stored in locations adjacent to a recently
accessed item are likely to be accessed next. To take advantage of these
observations, we divide the collection of locations in main memory into
fixed-sized blocks, often called lines, and copy whole lines at a time from
main memory into the cache memory. When the processor requests access
to a given memory location, the cache checks whether it already has a
copy of the line containing the requested item. If so, the cache has a hit,
and it can quickly satisfy the processor’s request. If not, the cache has a
miss, and must cause the processor to wait. The cache then copies the line
containing the requested item from main memory into the cache mem-
ory. When the requested item is a vailable in the cache, the processor can
proceed with its requested access. The fact that neighboring items are
also copied into the cache means that subsequent processor requests are
likely to result in cache hits. As operation of the system proceeds, more
and more lines are copied into the cache memory, resulting in a reduced
miss rate. When the cache memory is full, some of the copied lines must
be replaced by incoming lines. Ideally, the cache should replace the least
recently used line. Since keeping track of usage history is complex, most
caches use an approximation to determine which line to replace. In the

steady state, caches can achieve miss rates of the order of 1% of processor
requests. Thus, the average access time seen by the processor is very close
to the access time of the cache memory.

For a system with cache memory, most of accesses to main memory
are to entire lines, rather than to single locations. Since the processor is
kept waiting during a main-memory operation, it is desirable to reduce
the waiting time by making cache-line accesses as fast as possible. There
are a number of advanced techniques that we can use to enable a higher
rate of data transfer, or memory bandwidth. These include:

Wide memory: Sufficient memory chips are used so that an entire
cache line can be accessed at once. The line can then be transferred
back to the cache on a wide bus in one clock cycle, or over a
narrower bus in several clock cycles.

Burst transfers: The CPU issues the first address of a line to be
accessed in memory. The memory then performs a sequence of
accesses at successive locations, starting from the first address. This
technique obviates the time required to transfer the address for loca-
tions other than the first.

Pipelining: The memory system is organized as a pipeline so that
steps of different memory operations can be overlapped. For exam-
ple, the pipeline steps might be address transfer, memory access, and
returning read data to the CPU. Thus, the memory system could
have three memory operations in progress concurrently, with one
operation completed per clock cycle.

Double data rate (DDR) operation: Rather than transferring data
items only on rising clock edges, data can be transferred on both
rising and falling clock edges. This doubles the rate at which data is
transferred, hence the name.

These and a number of other techniques can be used in combination
to form a memory system with sufficient bandwidth to allow the proces-
sor and cache to operate with minimal waiting time. A detailed discussion
is beyond the scope of this book. The topic is addressed in books on com-
puter organization and computer architecture (see Section 7.5).

1. When might we need glue logic to connect a memory to a CPU?

2. In the 8051 microcontroller, why are data signals and the least
signifi cant eight address signals multiplexed onto the same set of
pins?

3. How many bits wide would the data memory for a 32-bit CPU
typically be?

�

�

�

�

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

7.3 Interfacing with Memory C H A P T E R S E V E N 309

4. Why does a 32-bit CPU provide separate byte-enable signals for its
data memory?

5. What two observations about the way programs access memory
defi ne the principle of locality?

6. What is meant by the terms cache hit and cache miss?

7. During a cache miss, what happens?

8. What is meant by the term memory bandwidth?

310 C H A P T E R S E V E N p r o c e s s o r b a s i c s

7.5 Further Reading C H A P T E R S E V E N 311

7.4 C H A P T E R S U M M A R Y

A computer system generally contains a central processing unit
(CPU), instruction and data memory, input and output (I/O) con-
trollers, and possibly special-purpose accelerators. The elements are
interconnected by one or more buses.

A microprocessor is a single-chip CPU that can be used in a general
purpose computer or an embedded computer. A microcontroller is a
single-chip computer incorporating a CPU, memory and I/O control-
lers. A digital signal processor (DSP) is a CPU specialized for pro-
cessing streams of data from digitized signals.

Microprocessors and CPUs in microcontrollers range in scale from
simple 8-bit versions to complex 32-bit and 64-bit versions, referring
to the size of data that can be processed in a single operation.

CPUs can be implemented as predesigned cores and as soft cores.

The instruction set of a CPU is its repertoire of instructions, usu-
ally including arithmetic and logical instructions, memory and I/O
instructions, branch and jump instructions, and other miscellaneous
instructions.

Little-endian CPUs store multi-byte data with the least significant
byte at the lowest address and the most significant byte at the highest
address. Big-endian CPUs store the bytes in the opposite order.

Instructions are encoded in binary. However, we usually develop
programs using assembly language or a high-level language and use a
translator (an assembler or compiler) to translate into binary-coded
instructions.

Instruction and data memories are usually connected directly to the
CPU using memory-interface signals. Memories for 8-bit, 16-bit and
32-bit CPUs are commonly 8, 16 and 32 bits wide, respectively.

Memories for high-performance CPUs can use a number of tech-
niques for improving the memory bandwidth, including burst trans-
fers, pipelining and double data rate (DDR) operation.

7.5 F U R T H E R R E A D I N G

On Holy Wars and a Plea for Peace, Danny Cohen, Internet Engineering
Note 137, 1980, available at http://www.rdrop.com/~cary/html/
endian_faq.html. This is the paper that originally adopted the terms
“little endian” and “big endian” to refer to byte order.

�

�

�

�

�

�

�

�

�

Computer Architecture: A Quantitative Approach, 4th Edition, John L.
Hennessy and David A. Patterson, Morgan Kaufmann Publishers,
2007. Includes a discussion of advanced memory system organiza-
tion. The book also describes techniques, such as caches, used within
high-performance CPUs to avoid delays due to memory accesses.

Computers as Components: Principles of Embedded Computing System
Design, Wayne Wolf, Morgan Kaufmann Publishers, 2005. A more
advanced reference on embedded systems design, covering CPU and
DSP instruction sets, embedded systems platforms, and embedded
software design.

Multiprocessor Systems-on-Chips, Ahmed Jerraya and Wayne Wolf,
Morgan Kaufmann Publishers, 2004. Describes hardware, software
and design methodologies for embedded systems containing mul-
tiple processor cores.

Engineering the Complex SOC: Fast, Flexible Design with Configu-
rable Processors, Chris Rowen, Prentice Hall, 2004. Describes an
approach to system-on-chip design based on extensible processors,
using the Tensilica processor as an example.

ARM System-on-Chip Architecture, 2nd Edition, Steve Furber,
Addison-Wesley, 2000. Describes the ARM instruction set, a
number of ARM processor cores, and some examples of embedded
applications using ARM cores.

Power Architecture Technology, IBM, http://www.ibm.com/
developerworks/power. Resources describing the PowerPC architec-
ture and processor cores.

See MIPS Run, 2nd Edition, Dominic Sweetman, Morgan Kaufmann
Publishers, 2006. Describes the MIPS architecture, instructions set,
and programming.

e x e rc i s e 7 . 1 Suppose an embedded system includes two processor cores
with a 32-bit wide dual-port memory for sharing data between the processors.
Processor 1 is little endian, and processor 2 is big endian. Use the hexadecimal
values 1234 (16 bits) and 12345678 (32 bits) to show how data is not shared
correctly. How might the problem be remedied?

e x e rc i s e 7 . 2 Write Gumnut instructions to evaluate the expression
2(x� 1), assuming the value of x is in register r2 and the result is to be put in r7.

e x e rc i s e 7 . 3 Write Gumnut instructions to evaluate the expression
3(x� 1), assuming the value of x is in register r2 and the result is to be put in r7.

E X E R C I S E SE X E R C I S E S

312 C H A P T E R S E V E N p r o c e s s o r b a s i c s

e x e rc i s e 7 . 4 Write Gumnut instructions to clear bits 0 and 1 of the value
in register r1, leaving other bits unchanged, and to put the result in r2.

exerc ise 7 .5 Write Gumnut instructions to multiply the value in r4 by 18,
ignoring the possibility of overflow. Hint: 18 � 16 � 2 � 24 � 21.

e x e rc i s e 7 . 6 Write Gumnut instructions to increment the value in r3
modulo 60. If the result is 0, the value in r4 is to be incremented modulo 24.

e x e rc i s e 7 . 7 Write Gumnut instructions to test whether the 8-bit value in
memory location 10 is equal to 99. If so, location 11 is to be set to 1; otherwise,
location 11 is to be cleared to 0.

e x e rc i s e 7 . 8 Write Gumnut instructions to test whether r3 is 1 and input
register 7 is also 1. If so, output register 8 is to be set to the hexadecimal value 3C.

e x e rc i s e 7 . 9 Write a Gumnut subroutine to clear a number of consecu-
tive locations in memory to 0. The first address is provided in register r2 and the
number of locations is provided in r3. Show a call to the subroutine to clear 10
locations starting from address 196.

e x e rc i s e 7 . 1 0 Write a complete Gumnut program to find the average of
a sequence of eight 8-bit numbers stored in memory, and to write the result into a
location in memory. Initialize the eight numbers to be the integers 2, 4, 6, . . . , 16.
Use a 16-bit sum to calculate the average, and shift instructions to divide by 8.

e x e rc i s e 7 . 1 1 Write a complete Gumnut program that monitors the
value of input controller register 10. When the value changes from 0 to a non-
zero value, the program increments a 16-bit counter and writes the counter value
to output controller registers 12 (least significant byte) and 13 (most significant
byte). The program should not terminate.

e x e rc i s e 7 . 1 2 Using the information in Appendix D, determine the
encoding for the following Gumnut instructions:

a) sub r3, r1, r0

b) and r7, r7, 0x20

c) ror r1, r1, 3

d) ldm r4, (r3) + 1

e) out r4, 10

f) bz +3

g) jsb 0x68

Exercises C H A P T E R S E V E N 313

e x e rc i s e 7 . 1 3 What Gumnut instructions are encoded by the following
18-bit hexadecimal values?

a) 009C0

b) 38227

c) 3353D

d) 24AFD

e) 3EA02

f) 3C580

g) 3F401

e x e rc i s e 7 . 1 4 Modify the design in Figure 7.8 to provide separate
instruction and data memories for the 8051: a 64K � 8-bit ROM for the instruc-
tion memory and a 64K � 8-bit asynchronous SRAM for the data memory. The
ROM has the same control signals as the SRAM except for the

__
WE signal.

e x e rc i s e 7 . 1 5 Suppose a cache can satisfy a processor request in 5ns if
it has a hit; otherwise the memory access time of 20ns must be added to the hit
time. What is the average access time seen by the processor core for instructions
for miss rates of 5%, 2% and 1%?

e x e rc i s e 7 . 1 6 Suppose a CPU with 32-bit instructions has an instruction
cache with 16-byte lines. Addresses refer to bytes in memory. The cache is ini-
tially empty. Instructions are then fetched from the following addresses in order:
0, 4, 8, 92, 96, 100, 4, 8, 12, 16. For each fetch, determine whether the cache
hits or misses. Assume no lines are replaced during execution of the sequence.

314 C H A P T E R S E V E N p r o c e s s o r b a s i c s

315

i ⁄ o i n t e r fac i n g

In the previous chapter, we introduced the notion of input/output (I/O)
controllers that connect an embedded computer system with devices
that sense and affect real-world physical properties. In this chapter, we
will describe a range of devices that are used in embedded systems and
show how they are accessed by an embedded processor and by embedded
software.

8.1 I / O D E V I C E S

Digital systems with embedded computers are pervasive in our lives. We
interact with many of them directly. Some are tools that we use in activi-
ties such as communication, entertainment, and information processing.
These digital systems must incorporate human interface devices to allow
us to control their operation and to receive responses. Other digital sys-
tems operate autonomously or under indirect control from us. Examples
of such systems include industrial control systems, remote sensing devices
and telecommunications infrastructure. These systems must incorpo-
rate devices to sense and affect the state of the physical world, as well
as devices to communicate with one another, with controlling computers
and with human interface devices.

Digital systems interact with the real world with transducers. An
input transducer, or sensor, senses some physical property and generates
an electrical signal that corresponds to the property. If the property is
continuous in nature, such as temperature or pressure, the transducer may
provide an analog signal that bears a continuous relationship with the
physical property. Since digital systems deal with discrete representations
of information, we need to convert the signal from analog to encoded dig-
ital form using a circuit called an analog-to-digital converter. Other forms
of input transducer for continuous properties may provide discrete digital
signals directly. An example is the shaft encoder for rotational position
that we described in Section 3.1.3.

8

316 C H A P T E R E I G H T i / o i n t e r f a c i n g

An output transducer, on the other hand, uses an electrical signal to
cause a physical effect. Some transducers use an analog electrical signal
to affect a physical property that is continuous in nature. An example
is a loudspeaker that causes a continuously varying air pressure that we
hear as a sound. To use such transducers in digital systems, we need a
digital-to-analog converter circuit to convert from encoded digital form
to an analog signal. Other forms of output transducer can use digital
signals directly. Such transducers typically take a single-bit digital signal
and cause a physical property to assume one of two values. For example,
a transducer may cause a mechanical component to move to one posi-
tion or another. Electromechanical transducers like this are often called
actuators.

In the remainder of this section, we will describe a number of input
and output devices that may be encountered in embedded systems. Then,
in the next section, we will show how these devices can be connected to
an embedded computer using input and output controllers.

8.1.1 I N P U T D E V I C E S

Many digital systems include mechanically operated switches of various
forms as input devices. These include push-button and toggle switches oper-
ated by human users, and microswitches operated by physical movement
of mechanical or other objects. An example of the latter is a microswitch
used to detect the presence of paper in a printer. In Section 4.4.1, we
discussed ways in which switches can be connected as inputs to digital
systems, and focused particularly on the problem of mechanical contact
bounce and how to deal with it.

Keypads and Keyboards

Push-button switches are also used in keypads, for example, in phones,
security system consoles, automatic teller machines, and other appli-
cations. In principle, we could treat each key in a keypad as a distinct
push-button switch and connect it to the digital system as we have previ-
ously described. However, that would require a large number of signals
and debouncing circuits, particularly for a large keypad. A more com-
mon technique is to arrange the key switches into a matrix, as shown in
 Figure 8.1, and to scan the matrix for closed contacts. When all of the key
switches are open, all column lines (c1 through c3) are pulled high by the
resistors. When a key switch is closed, one column line is connected to one
row line (r1 through r4). We scan the matrix by driving one row line low
at a time, leaving the rest of the row lines pulled high, and seeing if any
of the column lines become low. For example, if the 8 key is pressed, c2
is pulled low when r3 is driven low. If more than one key in a given row
is pressed at the same time, all of the corresponding column lines will be

321

654

987

#0*

c1 c2 c3

r1

r2

r3

r4

+V

F I G U R E 8 .1 Keypad
switches arranged in a scanned
matrix.

pulled low when the row line is driven low. Thus, we are able to determine
the same information about which keys are pressed as we would had we
used individual connections for each key switch.

This raises the question of how the row lines are driven low. We could
use a counter, together with circuitry that stores the count value and the
column-line values for access by the embedded software. However, that
would require synchronizing the processor with changes in count value so
that the software could read the values at the appropriate times. A simpler
approach is to provide a register into which the processor can write values
to be driven on the row lines and another register for the processor to read
the values of the column lines. This is shown in Figure 8.2. (We consider
how the registers are attached to the processor in Section 8.2.) Since each
of the key switches is a mechanical switch, it is subject to contact bounce.
Thus we need to apply techniques for debouncing similar to those that
we described for individual switches. The embedded software running
on the processor needs to scan the matrix repeatedly. When it detects a
key closure, it must check that the same key is still closed some time (say,
10ms) later. Similarly, when it detects a key release, it must check that the
same key remains released some time later. The scan must be repeated suf-
ficiently often to debounce key presses without introducing a perceptible
delay in response to key presses.

In a small digital system with a small keypad, the processing load to
detect and debounce key presses would not be a significant part of the
overall function of the system. The task of managing the keypad may
safely be included as part of the main (or only) processor’s workload.
In other systems, it may be more appropriate to delegate the task, and
possibly other I/O tasks, to subordinate embedded processors. The logi-
cal extension of this idea is illustrated by a keyboard for a general pur-
pose computer. It has between 80 and 100 key switches arranged in a
scanned matrix. Most keyboards include separate embedded processors
whose entire workload consists of detecting key presses and dealing with
roll-over (pressing a new key before the previously pressed key has been
released), and communicating the information to the computer to which
it is connected.

Knobs and Position Encoders

Historically, rotating knobs have been used in the user interfaces of elec-
tronic equipment to allow the user to provide information of a continuous
nature. A common example is the volume control knob on audio equip-
ment, or the brightness control on a light dimmer. In analog electronic cir-
cuits, the knob usually controls a variable resistor or potentiometer. With
the introduction of digital systems, knobs were replaced by switches in
many applications. For example, the volume control on audio equipment
was replaced with two buttons, one to increase the volume and another

 8.1 I/O Devices C H A P T E R E I G H T 317

1 2 3

4 5 6

7 8 9

* 0 #

input
register

ou
tp

ut
re

gi
st

er

F I G U R E 8 .2 A keypad matrix
with an output register for driving
row lines and an input register for
sensing column lines.

318 C H A P T E R E I G H T i / o i n t e r f a c i n g

to decrease the volume. However, that form of control is not as intuitive
or easy to use as a knob, so a digital form of knob is now used in many
applications.

One form of digital knob input uses a shaft encoder, as we discussed
in Section 3.1.3. This form has the advantage that the absolute position of
the knob is provided as an input to the system. However, a simpler form of
input device uses an incremental encoder to determine direction and speed
of rotation. If the starting position or absolute position is not important,
an incremental encoder is a good choice. An incremental encoder can also
be used for a rotational position input in applications other than user
interfaces, provided absolute positioning is not required. It can also be
used for rotational speed input.

An incremental encoder operates by generating two square-wave
 signals that are 90° out of phase, as shown at the top of Figure 8.3. The
signals can be generated either using electromechanical contacts, or using
an optical encoder disk with LEDs and photo-sensitive transistors, as
shown in the middle and at the bottom of Figure 8.3. As the shaft rotates
counterclockwise, the A output signal leads the B output signal by 90°.
For clockwise rotation, A lags B by 90°. The frequency of changes between
low and high on each signal indicates the speed of rotation of the shaft.

A simple approach to using a knob attached to an incremental
encoder involves detecting rising edges on one of the signals. Suppose
we assume the knob is at a given position when the system starts opera-
tion. For example, we might assume a knob used as the volume control
for a stereo is at the same setting as when the stereo was last used. (This
would, of course, require the stereo to store the setting in a nonvolatile
memory.) When we detect a rising edge on the A signal, we examine the
state of the B signal. If B is low, the knob has been turned counterclock-
wise, so we decrement the stored value representing the knob’s position.
If, on the other hand, B is high, the knob has been turned clockwise, so
we increment the stored value representing the knob’s position. Using an
incremental encoder instead of an absolute encoder in this application
makes sense, since the volume might also be changed by a remote control.
It is a change in the knob’s position that determines the volume, not the
absolute position of the knob.

Analog Inputs

Sensors for continuous physical quantities vary greatly, but they all rely
on some physical effect that produces an electrical signal that depends on
the physical quantity of interest. In most sensors, the signal level is small
and needs to be amplified before being converted to digital form. Some
sensors and the effects they rely on include:

Microphones. These are among the most common sensors in our
everyday lives, and are included in digital systems such as telephones,

�

A

B

A

B

counterclockwise

clockwise

F I G U R E 8 .3 Operation of an
incremental encoder: quadrature
signals output from the encoder
(top); an optical encoder disk
(middle); and the disk and optical
sensors attached to a shaft
(bottom).

A B

voice recorders and cameras. A microphone has a diaphragm that is
displaced by sound pressure waves. In an electret microphone, for
example, the diaphragm forms one plate of a capacitor. The other
plate is fixed and has a permanent charge embedded on it during
manufacture. The movement of the plates together and apart in
response to sound pressure creates a detectable voltage across the
plates that varies with the sound pressure. The voltage is amplified
to form the analog input signal.

Accelerometers for measuring acceleration and deceleration. A com-
mon form of accelerometer used in automobile air bag controllers,
for example, has a microscopic cantilevered beam manufactured on
a silicon chip. The beam and the surface over which it is suspended
form the two plates of a capacitor. As the chip accelerates (or, more
important, in the air bag application, decelerates), the beam bends
closer to or farther from the surface. The corresponding change in
capacitance is used to derive an analog signal.

Fluid flow sensors. There are numerous forms of sensor that rely
on different effects to sense flow. One form uses temperature-
dependent resistors. Two matched resistors are self heated using an
electric current. One of the resistors is placed into the fluid stream
which cools it by an amount dependent on the flow rate. Since the
resistance depends on the temperature, the difference in resistance
between the two resistors depends on the flow rate. The resistance
difference is detected to derive an analog input signal. Other forms
of flow-rate sensor use rotating vanes, pressure sensing in venturi
restrictions, and doppler shift of ultrasonic echoes from impurities.
Different forms of sensor are appropriate for different applications.

Gas detection sensors. Again, there are numerous forms that use
different effects and are appropriate for different applications. As an
example, a photo-ionizing detector uses ultraviolet light to ionize a
sample of atmosphere. Gas ions are attracted to plates that are held
at a potential difference. A circuit path is provided for charge to flow
between the plates. The current in the path depends on the concen-
tration of the gas in the atmospheric sample. The current is sensed
and amplified to form the analog input signal.

Analog-to-Digital Converters

We mentioned earlier that analog input signals from sensors need to be
converted into digital form so that they can be processed by digital circuits
and embedded software. The basic element of an analog-to-digital con-
verter (ADC) is a comparator, shown in Figure 8.4, which simply senses
whether an input voltage (the � terminal) is above or below a reference
voltage (the � terminal) and outputs a 1 or 0 accordingly.

�

�

�

+
–

F I G U R E 8 .4 A symbol for a
comparator.

 8.1 I/O Devices C H A P T E R E I G H T 319

320 C H A P T E R E I G H T i / o i n t e r f a c i n g

The simplest form of ADC is a flash ADC, illustrated in Figure 8.5.
A converter with n output bits consists of a bank of 2n – 1 comparators
that compare the input voltage with reference voltages derived from a
voltage divider. For a given input voltage Vin � kVf, where Vf is the full-
scale voltage and k is a fraction between 0.0 and 1.0, a proportion k of the
comparators have their reference voltage above Vin and so output 1, and
the remaining comparators have their reference voltage lower than Vin
and so output 0. The comparator outputs drive the encoder circuit that
generates the fixed-point binary code for k. Flash ADCs have the advan-
tage that they convert an input voltage to digital form very quickly. High-
speed flash ADCs can perform tens or hundreds of millions of samples per
second, and so are suitable for converting high bandwidth signals such as
those from high-definition video cameras, radio receivers, radars, and so
on. Their disadvantage is that they need large numbers of comparators.
Hence, they are only practical for ADCs that encode the converted data
using a relatively small number of bits. Common flash ADCs generate
8 bits of output data. We say they have a resolution of 8 bits, correspond-
ing to the precision of the fixed-point format with which they represent
the converted signal.

For signals that change more slowly, we can use a successive approxi-
mation ADC, shown in Figure 8.6. It uses a digital-to-analog converter
(DAC) internally to make successively closer approximations to the input
signal over several clock periods. To illustrate how the ADC works, con-
sider a converter that produces an 8-bit output. When start input is acti-
vated, the successive approximation register (SAR) is initialized to the
binary value 01111111. This value is provided to the DAC, which pro-
duces the first approximation, just less than half of the full-scale voltage.
The comparator compares this approximation with the input voltage. If
the input voltage is higher, the comparator output is 1, indicating that
a better approximation would be above the DAC output. If the input
voltage is lower, the comparator output is 0, indicating that a better

+
–

+
–

+
–

+
–

+
–

Vin
Vf

E
nc

od
er

F I G U R E 8 .5 A fl ash ADC.

+
–

DACSAR

Dout
done

Vin
Vf

start

clk

(analog)

(analog)

(analog)

F I G U R E 8 .6 A successive
approximation ADC. Analog
signals are indicated; the
remaining signals are digital.

 approximation would be below the DAC output. The comparator output
is stored as the most significant bit in the SAR, and remaining bits are
shifted down one place. This gives the next approximation, d70111111,
which is either one-quarter or three-quarters of the full-scale voltage,
depending on d7. During the next clock period, this next approximation
is converted by the DAC and compared with the input voltage to yield
the next most significant bit of the result and a refined approximation,
d7d6011111. The process repeats over successive clock cycles, refining the
approximation by one bit each cycle. When all bits of the result are deter-
mined, the SAR activates the done output, indicating that the complete
result can be read.

The advantage of a successive approximation ADC over a flash
ADC is that it requires significantly fewer analog components: just one
 comparator and a DAC. These components can be made to high precision,
giving a high-precision ADC. 12-bit successive approximation ADCs, for
example, are commonly available. The disadvantage, however, is that
more time is required to convert a value. If the input signal changes by
more than the precision of the ADC while the ADC is making successive
approximation, we need to sample and hold the input. This requires a
circuit that charges a capacitor to match the input voltage during a brief
sampling interval, and then maintain the voltage on the capacitor while it
is being converted. Another disadvantage of the successive approximation
ADC is the amount of digital circuitry required to implement the SAR.
However, that function could be implemented on an embedded processor,
requiring just an output register to drive the DAC and an input bit from
the comparator. The sequencing of successive approximations would then
form part of the embedded software.

There are other forms of ADC apart from flash and successive
approximation ADCs, each with advantages and disadvantages. Choice
among them depends on the resolution, conversion speed and other
 factors dictated by the application. In practice, there is often a need to
filter the analog input signal to ensure correct conversion to digital form.
These considerations are beyond the scope of this book. More details can
be found in books on digital signal processing mentioned in the Further
Reading section.

8.1.2 O U T P U T D E V I C E S

Among the most common output devices are indicator lights that display
on/off or true/false information. For example, an indicator might show
whether a mode or operation is active, whether the system is busy, or
whether an error condition has occurred. The simplest form of indicator
is a single light-emitting diode (LED). It is low in cost, highly reliable,
and easy to drive from a digital circuit, as Figure 8.7 shows. When the
output from the driver is a low voltage, current flows through the LED,

 8.1 I/O Devices C H A P T E R E I G H T 321

output
driver

+V

F I G U R E 8 .7 Output circuit
for an LED indicator.

322 C H A P T E R E I G H T i / o i n t e r f a c i n g

 causing it to turn on. The resistor limits the current so as not to overload
the output driver or the LED. We choose the resistance value to deter -
mine the current, and hence the brightness of the LED. When the output
from the driver is a high voltage (near the supply voltage), the voltage
drop across the LED is less than its threshold voltage, so no current flows;
hence, the LED is turned off. We could, alternatively, connect the LED
and resistor to ground, allowing a high output voltage to turn on the LED
and a low output voltage to turn it off. However, output circuits designed
to drive TTL logic levels are better able to sink current in the low state
than to source current in the high state. Thus, it is more common to con-
nect an LED as shown in Figure 8.7.

example 8 .1 Determine the resistance for an LED pull-up resistor
 connected to a 3.3V power supply. The LED has a forward-biased voltage drop
of 1.9V, and is suffi ciently bright with a current of 2mA.

solut ion Assuming the output driver low voltage is close to 0V, the volt-
age drop across the resistor must be 3.3V � 1.9V � 1.4V. Using Ohm’s Law with
a current of 2mA means the resistance must be 1.4/0.002 � 700Ω. The closest
standard value is 680Ω.

Displays

In Section 2.3.1, we introduced 7-segment displays and showed how we
could decode a BCD value to drive the seven segments of a digit. In many
applications, we have several digits to display. For example, an alarm
clock typically has four digits for the hours and minutes of the time. While
we could decode and drive each digit individually, that would require
numerous output drivers, package pins and signals for the interconnec-
tions. Usually, it is more cost effective to connect the anodes or the cath-
odes of the LEDs for each digit in common, and to scan the digits. The
connections for the LEDs in each digit, in this case, with common anodes,
are shown in Figure 8.8. In addition to the seven LEDs for the segments,
there is an LED for a decimal point (dp). The output connections for four
digits are shown in Figure 8.9. Each of the outputs

__
 A0 through

__
 A3 , when

pulled low, turns on the transistor that enables a digit. We usually need
these external transistors, since IC outputs cannot source enough current
to drive up to eight LEDs directly.

To display four digits, we pull each of
__

 A0 through
__

 A3 low in turn.
When

__
 A0 is low, enabling the least significant digit, we drive the segment

lines,
_
 a though

_
 g and

__
 dp , low or high as required for the segment pattern

for that digit. When
__

 A1 is low, we drive the segment lines for the next
digit, and so on. After driving the most significant digit, we cycle back to
the least significant digit. If we cycle through the digits fast enough, our

a
b
c
d
e
f
g

dp

common
anode

F I G U R E 8 .8 Connection
of segment LEDs in a common
anode 7-segment display.

eyes’ persistence of vision smooths out any flickering due to each digit
only being active 25% of the time.

The advantage of this scanned scheme is that we only need one signal for
each digit plus one for each segment of a digit. For example, to drive four dig-
its, we need 12 signals, compared with the 32 signals we would need had we
driven segments individually. Depending on our application, we might use a
counter or a shift register to drive the digit enable outputs and an 8-bit-wide
multiplexer to select the values to drive onto the segment outputs. Often,
however, the display is controlled by an embedded processor. In that case, we
can simply provide output registers for the digit and segment outputs and let
the embedded software manage the sequencing of output values.

example 8 .2 Develop a Verilog model of a display multiplexer and
decoder for the 4-digit 7-segment display shown in Figure 8.9. The circuit has
four BCD inputs. The decimal point for the left-most digit should be lit, and the
remaining decimal points not lit. The system clock has a frequency of 10MHz.

solut ion The module for the circuit has ports for the clock, reset and
BCD inputs and for the the segment and anode outputs. Element 7 of the
 segment output drives the decimal point segment, and elements 6 down to 0
drive segments g through a, respectively. The outputs all use active-low logic.
The circuit must include a multiplexer that selects each of the BCD inputs in
turn. It decodes it to drive the 7-segment cathodes at the same time as acti-
vating the anode for the selected digit. Since we are relying on persistence of
vision to avoid perceptible flicker, we need to cycle through the digits so that
each is activated sufficiently frequently. A 50Hz cycle rate is acceptable. We

A3
A2
A1
A0

a
b
c
d
e
f

g
dp

+V

F I G U R E 8 .9 Connection of
four 7-segment display digits.

 8.1 I/O Devices C H A P T E R E I G H T 323

324 C H A P T E R E I G H T i / o i n t e r f a c i n g

can achieve that rate by dividing the 10MHz clock down to 200Hz to activate
a 2-bit counter for selecting digits. A module to implement these design
decisions is

module display_mux (output reg [3:0] anode_n,
output [7:0] segment_n,
input [3:0] bcd0, bcd1, bcd2, bcd3,
input clk, reset);

parameter clk_freq = 10000000;
parameter scan_clk_freq = 200;
parameter clk_divisor = clk_freq / scan_clk_freq;

reg scan_clk;
reg [1:0] digit_sel;
reg [3:0] bcd;
reg [7:0] segment;

integer count;

// Divide master clock to get scan clock
always @(posedge clk)
if (reset) begin
count = 0;
scan_clk <= 1'b0;

end
else if (count = = clk_divisor — 1) begin
count = 0;
scan_clk <= 1'b1;

end
else begin
count = count + 1;
scan_clk <= 1'b0;

end

// increment digit counter once per scan clock cycle
always @(posedge clk)
if (reset) digit_sel <= 2'b00;
else if (scan_clk) digit_sel <= digit_sel + 1;

// multiplexer to select a BCD digit
always @*
case (digit_sel)
2'b00: bcd = bcd0;
2'b01: bcd = bcd1;
2'b10: bcd = bcd2;
2'b11: bcd = bcd3;

endcase

(continued)

// activate selected digit's anode
always @*
case (digit_sel)
2'b00: anode_n = 4'b1110;
2'b01: anode_n = 4'b1101;
2'b10: anode_n = 4'b1011;
2'b11: anode_n = 4'b0111;

endcase

// 7-segment decoder for selected digit
always @*
case (bcd)
4'b0000: segment[6:0] = 7'b0111111; // 0
4'b0001: segment[6:0] = 7'b0000110; // 1
4'b0010: segment[6:0] = 7'b1011011; // 2
4'b0011: segment[6:0] = 7'b1001111; // 3
4'b0100: segment[6:0] = 7'b1100110; // 4
4'b0101: segment[6:0] = 7'b1101101; // 5
4'b0110: segment[6:0] = 7'b1111101; // 6
4'b0111: segment[6:0] = 7'b0000111; // 7
4'b1000: segment[6:0] = 7'b1111111; // 8
4'b1001: segment[6:0] = 7'b1101111; // 9
default: segment[6:0] = 7'b1000000; // "-"

endcase

// decimal point is only active for digit 3
always @* segment[7] = digit_sel = = 2'b11;

// segment outputs are negative logic
assign segment_n = ~segment;

endmodule

The first always block is the clock divider that generates the 200Hz clock for
selecting digits. It sets the variable scan_clk to 1 for one master clock cycle at a
200Hz rate. The second always block implements the 2-bit counter, incrementing
the digit_sel variable each time scan_clk is 1. The next two always blocks use the
digit_sel signal to select the BCD digit and to activate the corresponding anode.
The remaining always block and assignments decode the selected digit to drive
the segment cathodes.

As an alternative to using LEDs for displays, some systems use liquid
crystal displays (LCDs). Each segment of an LCD consists of liquid crystal
material between two optical polarizing filters. The liquid crystal also
polarizes light, and, depending on the angle of polarization, can allow
light to pass or be blocked by the filters. The liquid crystal is forced to
twist or untwist, thus changing its axis of polarization, by application of
a voltage to electrodes in front of and behind the segment. By varying the

8.1 I/O Devices C H A P T E R E I G H T 325

326 C H A P T E R E I G H T i / o i n t e r f a c i n g

voltage, we can make the segment appear transparent or opaque. Thus,
LCDs require ambient light to be visible. In low light conditions, a back
light is needed, which is one of their main disadvantages. The other disad-
vantages include their mechanical fragility and the smaller range of tem-
peratures over which they can operate. They have several advantages over
LEDs, including readability in bright ambient light conditions, very low
power consumption, and the fact that custom display shapes can readily
be manufactured.

Seven-segment displays are useful for applications that must display a
small amount of numeric information. However, more complex applica-
tions often need to display alphanumeric or graphical information, and
so may use LCD display panels. These can range from small panels that
can display a few characters of text, to larger panels that can display text
or images up to 320 � 240 dots, called pixels (short for picture elements).
Beyond that size, systems would typically use the same kinds of display
panels that are used in general purpose PCs. Since output for display pan-
els is much more involved than output for simple segment-based displays,
more complex control circuits are needed. We will return to control of
display panels in Section 8.2.

Electromechanical Actuators and Valves

One of the simplest forms of actuator used to cause mechanical effects is a
solenoid, shown in Figure 8.10. With no current flowing through the coil,
the spring holds the steel armature out from the coil. When current flows,
the coil acts as an electromagnet and draws the armature in against the
spring. In a digital system, we can control the current in a small solenoid
with a transistor driven by a digital output signal, as shown in Figure 8.11.
The diode is required to absorb the voltage spikes that arise when the cur-
rent through the inductive load is turned off.

The direct mechanical effect of activating a solenoid is a small linear
movement of the armature. We can translate this into a variety of other
effects by attaching rods and levers to the armature, allowing us to control
the operation of mechanical systems. Hence, digitally controlled solenoids
are widely used in manufacturing and other industrial applications.

There are two important classes of devices based on solenoids, the
first being solenoid valves. We can attach the armature of a solenoid to a
valve mechanism, allowing the solenoid to open and close the valve, thus
regulating the flow of a fluid or gas. This gives us a means of controlling
chemical processes and other fluid or gas based processes. Importantly,
a hydraulic solenoid valve (controlling flow of hydraulic fluid) or a pneu-
matic solenoid valve (controlling flow of compressed air) can be used
to indirectly control hydraulic or pneumatic machinery. Such machines
can operate with much greater force and power than electrical machines.
So solenoid valves are important components in the interface between

coil

spring

armature

F I G U R E 8 .10 A solenoid
actuator.

output
driver

+V

F I G U R E 8 .11 Solenoid
controlled by a digital output.

the disparate low-power digital electronic domain and the high-power
mechanical domain.

The second class of device based on solenoids is relays. In these
devices, the armature is attached to a set of electrical contacts. This allows
us to open or close an external circuit under digital control. The reasons
for using a relay are twofold. First, the external circuit can operate with
voltages and currents that exceed those of the digital domain. For exam-
ple, a home automation system might use a relay to activate mains power
to a mains powered appliance. Second, a relay provides electrical isolation
between the controlling and the controlled circuit. This can be useful if the
controlled circuit operates with a different ground potential, or is subject
to significant induced noise.

Motors

Whereas solenoids allow us to control a mechanical effect with two states,
many applications require mechanical movement over a range of positions
and at varying speeds. For these applications, we can use electric motors
of various kinds, including stepper motors and servo motors. Both can be
used to drive shafts to controlled positions or speeds. The rotational posi-
tion or motion can be converted to linear position or motion using gears,
screws, and similar mechanical components.

A stepper motor is the simpler of the two kinds of motors that
we can control with a digital system. Its operation is shown in simplified
form in Figure 8.12. The motor consists of a permanent magnet rotor
mounted on the shaft. Surrounding the rotor is a stator with a number
of coils that can be energized to form electromagnetic poles. The figure
shows that, as coils are energized in sequence, the rotor is attracted to
successive angular positions, stepping around through one rotation. The
magnetic attraction holds the rotor in position, provided there is not too
much opposing torque from the load connected to the motor shaft. The
order and rate in which the coils are energized determines the direction
and speed of rotation.

NN

SS

NNSS N S

N

S

NS

N

S

NN

SS

NN SS

F I G U R E 8 .12 Operation of a
stepper motor.

 8.1 I/O Devices C H A P T E R E I G H T 327

328 C H A P T E R E I G H T i / o i n t e r f a c i n g

Practical stepper motors have more poles around the stator, allowing
the motor to step with finer angular resolution. They also have varying
arrangements of coil connections, allowing finer control over stepping.
In practical applications, current through the coils is switched in either
direction using transistors controlled by digital circuit outputs. The fact
that the motor is activated by the on/off switching of current makes
stepper motors ideal for digital control.

A servo-motor, unlike a stepper motor, provides continuous rotation.
The motor itself can be a simple DC motor, in which the applied voltage
determines the motor’s speed, and the polarity of the applied voltage
determines the direction of rotation. The “servo” function of the motor
involves the use of feedback to control the position or speed of the motor.
If we are interested in controlling position, we can attach a position sensor
to the motor shaft. We then use a servo controller circuit that compares
the actual and desired positions, yielding a drive voltage for the motor that
depends on the difference between the positions. If we are interested in
controlling the speed, we can attach a tachometer (a speed sensor) to the
shaft, and again use a comparator to compare actual and desired speed to
yield the motor drive voltage. In both cases, we can implement the servo
controller as a digital circuit or using an embedded processor. We need a
digital-to-analog converter to generate the drive voltage for the motor. We
can use various position or speed sensors, including the position encoders
we discussed in Sections 3.1.3 and 8.1.1.

Realistic servo control involves fairly complex computations to com-
pensate for the nonideal characteristics of the motor and any gearbox
and other mechanical components, as well as dealing with the effects of
the mechanical load on the system. We won’t go into any detail of those
effects in this book.

Digital-to-Analog Converters

Digital-to-analog converters (DACs) are the complement of analog-to-digital
converters. A DAC takes a binary-encoded number and generates a voltage
proportional to the number. We can use the voltage to control analog output
devices, such as the servo motors we described above, loudspeakers, and
so on.

One of the simplest forms of DAC is an R-string DAC, shown in
Figure 8.13. Like the flash ADC, it contains a voltage divider formed with
precision resistors. The binary-encoded digital input is used to drive a mul-
tiplexer formed from analog switches, selecting the voltage corresponding
to the encoded number. The selected voltage is buffered using a unity-
gain analog amplifier to drive the final output voltage. This form of DAC
works well for a small number of input bits, since it is possible to match
the resistances to achieve good linearity. However, for a larger number

of input bits, we require an exponentially larger number of resistors and
switches. This scheme becomes impractical for DACs with more than
eight to ten input bits.

An alternative scheme is based on summing of currents in resistor
 networks. One way of doing this is shown in Figure 8.14, sometimes
called an R/2R ladder DAC. Each of the switches connected to the input
bits connects the 2R resistance to the reference voltage Vf if the input is
1, or to ground if the input is 0. While the analysis is beyond the scope of
this book, it can be shown that the currents sourced into the input node of
the op-amp when the switches are in the 1 position are binary weighted.
Those switches in the 0 position source no current. The superposition of
the sourced currents means that the total current is proportional to the
binary coded input. The op-amp voltage is thus also proportional to the
binary coded input, in order to maintain the virtual ground at the op-amp
input.

Just as there are numerous forms of analog-to-digital converter with
various advantages and disadvantages, there are similarly numerous forms
of digital-to-analog converter. We would choose an appropriate converter
to meet the cost, performance and other constraints that apply to each

Vf

R

R

R

R

R

R

R

R

Vout

a(0) a(1) a(2)

F I G U R E 8 .13 An R-string
DAC.

 8.1 I/O Devices C H A P T E R E I G H T 329

330 C H A P T E R E I G H T i / o i n t e r f a c i n g

application. More detail can be found in books on digital signal process-
ing mentioned in the Further Reading section.

1. What is a sensor? What is an actuator?

2. Why would a digital system require a digital-to-analog converter?

3. How would we tell whether the 6 key in the keypad of Figure 8.1 is
pressed?

4. Given the incremental encoder of Figure 8.3, if B is 1 when a 0 to 1
transition occurs on A, in which direction is the shaft rotated?

5. How many comparators are required in a fl ash ADC with a
resolution of 8 bits?

6. How can we reduce the number of connections required for a
multidigit 7-segment LED display?

7. What is the difference between a solenoid and a relay?

8. Identify two kinds of motor that we might control with a digital
system.

9. If an application requires a 12-bit digital-to-analog converter (DAC),
would we choose an R-string DAC or an R/2R ladder DAC? Why?

8.2 I / O C O N T R O L L E R S

Given transducers, analog-to-digital converters and digital-to-analog
 converters, we can construct digital systems that include circuits to

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

Vf 2R

R

2R

R

R

2R

2R

2R

2R

Vout

a(3)

a(2)

a(1)

a(0)

+
–

F I G U R E 8 .14 An R/2R
ladder DAC.

process the converted input information in digital form to yield output
information. However, for an embedded computer to make use of the
information, we need to include components that allow the embedded
software to read input information and to write output information.
For dealing with input, we can provide an input register whose con-
tent can be loaded from the digital input data and that can be read in
the same way that the processor reads a memory location. For dealing
with output, we can provide an output register that can be written by
the processor in the same way that it writes to a memory location. The
output signals of the register provide the digital information to be used
by the output transducer. Many embedded processors refer to input and
output registers as ports. Since it is such a commonly used term, we will
make use of it, and take care to avoid confusion with ports of Verilog
modules.

In practice, both input and output registers are parts of input and
output controllers that govern other aspects of dealing with transducers
under software control. We will start our discussion of I/O controllers in
this section with some simple controllers that just include input and out-
put registers for transferring data. We will then move on to consider more
advanced controllers.

8.2.1 S I M P L E I / O C O N T R O L L E R S

The simplest form of controller consists just of an input register that
captures the data from an input device, or just an output register to provide
data to a device. Usually, there are several I/O registers, so we need to
select which register to read from or write to. This is similar to selecting
which memory location to access, and is solved in the same way, namely
by providing each register with an address. When the embedded proces-
sor needs to access an input or output register, it provides the address of
the required register. We decode the address to select the register, and only
enable reading or writing of that register.

As we mentioned in Chapter 7, some processors use memory mapped
I/O; that is, they just use certain memory addresses to refer to I/O reg-
isters and use the same load and store instructions for accessing both
memory location and I/O registers. We can use address decoding circuits
connected to the processor to identify whether memory or I/O registers
are being accessed, and enable the memory chips or the appropriate reg-
ister as required. Other processors, like the Gumnut that we described
in Chapter 7, have separate address spaces for memory and I/O regis-
ters, and include special instructions for reading and writing I/O registers.
They provide control signals that distinguish between memory and I/O
register access.

8.2 I/O Controllers C H A P T E R E I G H T 331

332 C H A P T E R E I G H T i / o i n t e r f a c i n g

example 8 .3 The signals provided by the Gumnut core for connecting to
I/O registers are described in the following Verilog module defi nition:

module gumnut (input clk_i,
input rst_i,
...
output port_cyc_o,
output port_stb_o,
output port_we_o,
input port_ack_i,
output [7:0] port_adr_o,
output [7:0] port_dat_o,
input [7:0] port_dat_i,
...);

endmodule

The output port_adr_o is the port address, port_dat_o is the data written by an
out instruction, port_dat_i is the data read by an inp instruction, port_cyc_o
and port_stb_o indicate that a port read or write operation is to be performed,
port_we_o indicates that the operation is a write, and port_ack_i indicates that
the selected port is ready and has acknowledged completion of the read or write
operation.

Develop a controller for the keypad matrix shown in Figure 8.2, and show how
to connect the controller to a Gumnut core. Use output port address 4 for the
matrix row output register and input port address 4 for the matrix column input
register.

solut ion The controller connects to the Gumnut I/O signals on one
side and to the keypad row and column signals on the other side, as shown in
 Figure 8.15. We decode the port address from the Gumnut core externally to the
controller to derive the strobe control signal (stb_i) for the controller.

port_dat_i

port_ack_i

port_adr_o

port_we_o

port_cyc_o

Gumnut

port_dat_o

port_stb_o stb_i

dat_i

cyc_i

we_i

Keypad Controller

dat_o

keypad_row

keypad_col

ack_o=keypad_port_
addr

1 2 3

4 5 6

7 8 9

* 0 #

F I G U R E 8 .15 Connection
of a Gumnut core to a keypad
controller.

The Verilog module definition for the controller is

module keypad_controller (input clk_i,
input cyc_i,
input stb_i,
input we_i,
output ack_o,
input [7:0] dat_i,
output reg [7:0] dat_o,
output reg [3:0] keypad_row,
input [2:0] keypad_col);

reg [2:0] col_synch;

always @(posedge clk_i) // Row register
if (cyc_i && stb_i && we_i) keypad_row <= dat_i[3:0];

always @(posedge clk_i) begin // Column synchronizer
dat_o <= {5'b0, col_synch};
col_synch <= keypad_col;

end

assign ack_o = cyc_i && stb_i;

endmodule

The first always block represents the keypad row output register, storing the
value to drive on the keypad row outputs. The second always block represents
the keypad column input register. Since the key switches may change at any time,
we need to synchronize the input with the clock to avoid metastability failures.
(We discussed this issue in Section 4.4.1.) In this design, we assume the keypad
controller is the only thing driving the port_dat_o outputs, so we can assign
directly to them regardless of the state of the control inputs. We will return to
the topic of connecting multiple controllers in Section 8.3. The final assignment
in the architecture body activates the port_ack_o output immediately on any port
read or write operation, since there is no need to make the processor wait.

The controller is connected to a Gumnut core in an embedded system as shown
in the following module outline:

module embedded_system;

wire ...

parameter [7:0] keypad_port_addr = 8'h04;

8.2 I/O Controllers C H A P T E R E I G H T 333

(continued)

334 C H A P T E R E I G H T i / o i n t e r f a c i n g

wire keypad_stb_o;

gumnut processor_core
(.clk_i(clk), .rst_i(rst), ...,

.port_cyc_o(port_cyc_o), .port_stb_o(port_stb_o),

.port_we_o(port_we_o), .port_ack_i(port_ack_i),

.port_adr_o(port_adr_o), .port_dat_o(port_dat_o),

.port_dat_i(port_dat_i), ...);

assign keypad_stb_o = port_adr_o
== keypad_port_addr & port_stb_o;

keypad_controller keypad
(.clk_i(clk),

.cyc_i(port_cyc_o), .stb_i(keypad_stb_o),

.we_i(port_we_o), .ack_o(port_ack_i),

.dat_i(port_dat_o), .dat_o(port_dat_i),

.keypad_row(keypad_row), .keypad_col(keypad_col));

endmodule

The assignment to keypad_stb_o compares the Gumnut I/O port address with
the value allocated for the keypad controller registers to derive the strobe signal
for the keypad controller. The data input and output signals and the other con-
trol signals connect directly between the core and the controller.

While a simple I/O controller just has registers for input and output of
data, more involved I/O controllers also have registers to allow the embed-
ded processor to manage operation of the controller. Such registers might
include control registers, to which a processor writes parameters govern-
ing the way transducers operate, and status registers, from which the pro-
cessor reads the state of the controller. We often require such registers
for controllers whose operation is sequential, since we need to synchronize
controller operation with execution of the embedded software. As a
consequence, we may have a combination of readable and writable regis-
ters used to control an input-only device or an output-only device.

example 8 .4 In Section 8.1.1, we described a successive approximation
analog-to-digital converter. It produces a binary-coded value representing the
input voltage as a proportion of the full-scale reference voltage, Vf. We also
mentioned that a sample-and-hold circuit can be used on the analog input if
the voltage can change during the conversion process. Design a controller for
a successive approximation ADC to connect to the Gumnut processor core.
The controller has a control register whose contents govern operation of the
converter. Bits 0 and 1 select among four alternate full-scale reference voltages.

When a 1 is written to bit 2, the analog voltage is held and a conversion is
started; when a 0 is written to the bit, the analog voltage is tracked. The control-
ler also has a status register and an input data register. Bit 0 of the status register
is 1 when a conversion is complete, and 0 otherwise. Other bits of the register
are read as 0. The input data register contains the converted data.

solut ion The controller circuit is shown in Figure 8.16. The control
 register is enabled when the least signifi cant port address bit is 1 during a port
write operation. The remaining port address bits are not decoded. Bits 0 and 1 of
the register are decoded to control four analog switches that select the reference

D2
CE
reset

Q2
D1 Q1
D0 Q0

clk

Y2
Y3

D1
Y1D0
Y0

start
reset

done
Vf

Dout
ADC

Vin

clk

0

1
0

0

Vin

port_dat_o

port_ack_oVf_0

Vf_1

Vf_2

Vf_3

port_dat_i

port_cyc_i

rst_i
clk_i

port_adr_i(0)

1

2

7...1
port_we_i

port_stb_i

port_cyc_i

port_stb_i

voltage. Bit 2 of the register controls the sample-and-hold component and the
start signal of the ADC. The least signifi cant port address bit is also used to
select between the ADC data value and the ADC done status signal. Thus, when
the processor performs a port read at address 0, it reads the ADC data, and
when it performs a port read at address 1, it reads the done status.

8.2.2 A U TO N O M O U S I / O C O N T R O L L E R S

The simple I/O controllers in the previous section either involve no
sequencing of operations, or just simple sequencing in response to accesses
by a processor. More complex I/O controllers, on the other hand, operate
autonomously to control the operation of an input or output device. For
example, a servo-motor controller, given the desired position in an output
register, might independently compute the difference between desired
and actual position, compensate for mechanical lead and lag, and drive
the motor accordingly. Interaction with the processor might only occur

F I G U R E 8 .16 Circuit for
a controller for a successive
approximation ADC.

 8.2 I/O Controllers C H A P T E R E I G H T 335

336 C H A P T E R E I G H T i / o i n t e r f a c i n g

through the processor updating the desired position in the output register
and monitoring the position difference by reading an input register. In
some cases, if an autonomous controller detects an event of interest to the
embedded software, for example, an error condition, the controller must
notify the processor. We will discuss interrupts as a means of doing this
in Section 8.5.2.

One reason for providing autonomy in the controller is that it allows
the processor to perform other tasks concurrently. This increases the
overall performance of the system, though at the cost of the additional cir-
cuitry required for the controller. Another reason is to ensure that control
operations are performed fast enough for the device. If the device needs
to transfer data at high rates, or needs control operations to be performed
without delay, a small embedded processor may not be able to keep up.
Making the I/O controller more capable may be a better trade-off than
increasing the performance or responsiveness of the processor.

As an illustration of an autonomous controller, let us return to the
LCD display panels that we mentioned in Section 8.1.2 as a form of out-
put device for complex digital systems. LCD panels consist of a rectan-
gular array of liquid crystal pixels. The electrodes are connected in rows
on one side of the panel and in columns on the other side. A voltage is
applied to one row at a time, and the column electrodes are variously set
to the same or a complementary voltage to activate pixels in the selected
row. In this way, the panel is scanned row by row to refresh the pixel
states, in much the same way that a dynamic memory must be refreshed.

Since managing and refreshing an LCD panel requires a lot of activity,
manufacturers of panels typically combine a display controller with a
panel to form an LCD module. The display controller is an autonomous
digital subsystem that includes memory for storing the information to be
displayed on the panel and circuitry for refreshing the panel. An embed-
ded computer treats the display controller as a specialized output control-
ler, and provides it with updates to the stored information. In a graphical
LCD module, the stored information consists of the image to be displayed,
represented with one bit per pixel. In a character LCD module, the stored
information consists of the binary code words for the characters. The dis-
play controller is responsible for decoding the character code words and
rendering the image corresponding to the characters.

A specific example of an LCD module is the ASI-D-1006A-DB-_S/
W module from All Shore Industries, Inc., a 100 � 60 pixel LCD panel
that includes an SED1560 controller chip from Seiko Epson Corp. The
module is designed to connect to 8-bit microcontrollers, such as the 8051
that we mentioned in Chapter 7. Figure 8.17 shows how this might be
done. The controller chip has an internal memory for storing the image
to be displayed on the LCD panel. The chip provides a control register to
which the microcontroller can write encoded commands, a status register,

and a data input/output register for access to the display memory. The
microcontroller issues commands to the chip to configure the display and
to load pixel data into the memory. Thereafter, the chip autonomously
manages scanning the display using the pixel data in its memory, leaving
the microcontroller free to perform other tasks.

As we mentioned above, the use of an autonomous controller may be
appropriate for a device that must transfer input or output data at high
rates. Often, such data must be written to memory (in the case of input
data) or read from memory (in the case of output data). If the data trans-
fer were done by a program copying data between memory and controller
registers, that activity would consume much of the processor’s time. An
alternative, commonly adopted in high-speed autonomous controllers, is to
use direct memory access (DMA), in which the controller reads data from
memory or writes data to memory without intervention by the processor.
The processor provides the starting memory address to the controller (by
writing the address to a control register), and the controller then performs
the data transfer autonomously. We can think of a controller that oper-
ates in this way as an accelerator for input/output operations. Since other
forms of accelerator also use DMA for data transfer, we will defer a more
detailed description of DMA until Chapter 9.

1. What is the purpose of an input register in an I/O controller? What
is the purpose of an output register?

2. What is the purpose of a control register in an I/O controller? What
is the purpose of a status register?

3. If an embedded processor uses memory mapped I/O, how do we
distinguish accesses to memory from accesses to I/O registers?

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

A(0)

CS1
C86

P/S

WR

RD

D

CS2

P2(0)

PSEN

ALE

RESET

8051 LCD Module

RD

WR

P0

RST
+V

F I G U R E 8 .17 An LCD
module connected to an 8051
microcontroller.

 8.2 I/O Controllers C H A P T E R E I G H T 337

338 C H A P T E R E I G H T i / o i n t e r f a c i n g

4. Why might a controller for an input device have registers to which a
processor can write?

5. What advantages do autonomous I/O controllers have over simple
controllers?

8.3 PA R A L L E L B U S E S

As we have seen, digital circuits consist of various interconnected com-
ponents. Each component performs some operation or stores data. The
interconnections are used to move data between the components. Where
the data is binary coded, several signals are connected in parallel, one
per bit of the encoding. Many of the interconnections we have seen thus
far have been simple point-to-point connections, with one component as
the source of data and a single separate component as the destination. In
other cases, connections fan out from a single source to multiple destina-
tions, allowing each of the destination components to receive data from
the source.

In some systems, especially embedded systems containing proces-
sor cores, parallel connections carry encoded data from multiple sources
to several alternate destinations. Such connection structures, shown
conceptually in Figure 8.18, are called buses. In the simplest case, a
bus is just the collection of signals carrying the data, and control remains
in a separate control section that sequences operation of the data
sources and destinations. In more elaborate buses, data sources and
destinations are autonomous, each with its own control section. In
such cases, the control sections must communicate to synchronize the
transfer of data. They do so using control signals that form part of the
bus structure.

While the bus structure shown in Figure 8.18 shows the general idea
of bus connection structures, it is not realizable directly as shown. Since
the bus signals are shared between the data sources, only one of them
should provide data at once. Most of the circuit components that we have
considered so far always drive either a low or a high logic level at their
outputs. If one data source drives a low level while another drives a high
level, the resulting conflict would cause large currents to flow between the
two components, possibly damaging them. There are several solutions to
this problem, and we will look at them in turn.

8.3.1 M U LT I P L E X E D B U S E S

One solution is to use a multiplexer to select among the data sources, as
shown in Figure 8.19. The multiplexer selects the value to drive the bus
signals based on a control signal generated by a control section. If the
bus has n data sources, an n-input multiplexer is required for each bit of

data
source

data
destination

data
source

data
destination

data
destination

F I G U R E 8 .18 Conceptual
connection structure for a bus.

the encoded data transmitted over the bus. Depending on the number of
sources and the arrangement of the components and signals on the inte-
grated circuit chip, the multiplexer may be implemented as a single n-input
multiplexer, or it may be subdivided into sections distributed around the
chip. For example, if a bus has five data sources, two of which are on one
side of a chip and the remaining three are on the other side, the bus wiring
may be simplified by using a 2-input multiplexer adjacent to the two data
sources and a 3-input multiplexer adjacent to the three data sources. The
outputs of the multiplexers would then be connected to a 2-input multi-
plexer adjacent to the data destinations.

One extreme form of subdivision of bus multiplexers is the fully
 distributed structure shown in Figure 8.20. The data signals are con-
nected in a chain going past all of the sources and then routed to the desti-
nations. Each multiplexer either connects its associated data source to the
chain (when the multiplexer’s select input is 1) or forwards data from a
 preceding source (when the select input is 0). The advantage of this form
of distributed multiplexer is the reduction in wiring complexity. It is often
easier to route a set of signals in a chain past circuit blocks rather than
trying to connect several data sources to a central hub.

One example of a bus designed to use multiplexers is the Wishbone
bus. The signals in the bus and their timing are specified in a standard
document, referenced in the Further Reading section. The Gumnut core

data
source

data
destination

data
source

data
destination

data
destination

0

1

F I G U R E 8 .19 A bus using a
multiplexer to select among data
sources.

F I G U R E 8 .20 A distributed-
multiplexer bus structure.

data
source

data
destination

data
source

data
destination

data
destination

1

0

1

0

data
source

1

0

data
source

 8.3 Parallel Buses C H A P T E R E I G H T 339

340 C H A P T E R E I G H T i / o i n t e r f a c i n g

uses a simple form of Wishbone bus for each of the instruction, data and
I/O port connections. The signals with a “_o” suffix are outputs from
a component, and the signals with a “_i” suffix are inputs. Where mul-
tiple “_o” signals are to be connected to a “_i” signal, a multiplexer is
required.

example 8 .5 Show how, in an embedded system using a Gumnut core,
the keypad controller of Example 8.3 and two instances of the ADC controller of
Example 8.4, the components are interconnected using distributed multiplexers.

solut ion The Gumnut core is the single source for the port address and
control signals and for the output data signals, so no multiplexer is needed
for those signals. The controllers each provide input data and ack signals, so
distributed multiplexers are needed for them. We can decode the port address to
derive the controller strobe signals and multiplexer select signals. We choose the
first ADC controller when the port address is 0 or 1, the second ADC when the
port address is 2 or 3, and the keypad controller when the port address is 4. The
connections are shown in Figure 8.21.

port_dat_i

port_ack_i

port_adr_o

port_we_o

port_cyc_o

Gumnut

port_dat_o

port_stb_o

adr_i(0)

dat_i

cyc_i

we_i

ADC Controller

dat_o

ack_o

stb_i

adr_i(0)

dat_i

cyc_i

we_i

ADC Controller

dat_o

ack_o

stb_i

stb_i

dat_i

cyc_i

we_i

Keypad Controller

dat_o

ack_o

0

1

0

1

0

1

0

1

= 0...1

= 2...3

= 4

0

0

F I G U R E 8 .21 Connection of
two ADC controllers and a keypad
controller to a Gumnut core using
distributed multiplexers.

example 8 .6 Develop a Verilog model for the embedded system of
Example 8.5.

solut ion The module definition is

module embedded_system_ADC_keypad;

wire ...

parameter [7:0] ADC0_port_addr = 8'h00,
ADC1_port_addr = 8'h02,
keypad_port_addr = 8'h04;

wire ADC0_stb_o, ADC1_stb_o, keypad_stb_o;
wire [7:0] ADC0_dat_o, ADC1_dat_o, keypad_dat_o,

ADC0_dat_fwd, ADC1_dat_fwd;
wire ADC0_ack_o, ADC1_ack_o, keypad_ack_o,
 ADC0_ack_fwd, ADC1_ack_fwd;

gumnut processor_core
(.clk_i(clk), .rst_i(rst), ...,

.port_cyc_o(port_cyc_o), .port_stb_o(port_stb_o),

.port_we_o(port_we_o), .port_ack_i(ADC1_ack_fwd),

.port_adr_o(port_adr_o), .port_dat_o(port_dat_o),

.port_dat_i(ADC1_dat_fwd), ...);

assign ADC0_stb_o = (port_adr_o & 8'hFE)
== ADC0_port_addr & port_stb_o;

assign ADC1_stb_o = (port_adr_o & 8'hFE)
== ADC1_port_addr & port_stb_o;

assign keypad_stb_o = port_adr_o
== keypad_port_addr & port_stb_o;

keypad_controller keypad (.clk_i(clk),
.cyc_i(port_cyc_o),
.stb_i(keypad_stb_o),
.we_i(port_we_o),
.ack_o(keypad_ack_o),
.dat_i(port_dat_o),
.dat_o(keypad_dat_o), ...);

ADC_controller ADC0 (.clk_i(clk), .rst_i(rst),
.cyc_i(port_cyc_o), .stb_i(ADC0_stb_o),
.we_i(port_we_o), .ack_o(ADC0_ack_o),
.adr_i(port_adr_o[0]), .dat_i(port_dat_o),
.dat_o(ADC0_dat_o), ...);

assign ADC0_dat_fwd = ADC0_stb_o ? ADC0_dat_o : keypad_dat_o;
assign ADC0_ack_fwd = ADC0_stb_o ? ADC0_ack_o : keypad_ack_o;

(continued)

8.3 Parallel Buses C H A P T E R E I G H T 341

342 C H A P T E R E I G H T i / o i n t e r f a c i n g

ADC_controller ADC1 (.clk_i(clk), .rst_i(rst),
.cyc_i(port_cyc_o), .stb_i(ADC1_stb_o),
.we_i(port_we_o), .ack_o(ADC1_ack_o),
.adr_i(port_adr_o[0]), .dat_i(port_dat_o),
.dat_o(ADC1_dat_o), ...);

assign ADC1_dat_fwd = ADC1_stb_o ? ADC1_dat_o : ADC0_dat_fwd;
assign ADC1_ack_fwd = ADC1_stb_o ? ADC1_ack_o : ADC0_ack_fwd;

endmodule

The first group of assignments, after the Gumnut core instance, represent the
port address decoders. They compare the port address from the processor core
with the base addresses of the ADC controllers and the keypad controllers. For
the ADC controllers, the port address is ANDed with the hexadecimal value FE
to clear the least significant bit.

The instances of the ADC controllers are followed by assignments that represent
the distributed multiplexers. The outputs of the multiplexers for the second ADC
connect back to the Gumnut core port_dat_i and port_ack_i inputs.

8.3.2 T R I S TAT E B U S E S

A second solution to avoiding contention on a bus is to use tristate bus
 drivers. We introduced tristate drivers in Chapter 5 as part of our discussion
of connecting multiple memory components. We said that the outputs of a
tristate driver can be turned off by placing it in a high-impedance, or hi-Z,
state. The symbol for a tristate driver is shown in Figure 8.22. When the
enable input is 1, the driver behaves like an ordinary output, driving either a
low or a high logic level on the output. When the enable input is 0, the driver
enters the high-impedance state by turning its output-stage transistors off.

We can implement a bus with multiple data sources by using tristate
drivers on the outputs of each data source. We use one driver for each bit
of encoded data provided by the source, and connect the enable inputs of
the drivers for a given source together, as shown in Figure 8.23. That way,
a source either drives a data value onto the bus, or has all bits in the high-
impedance state. The control section selects a particular source to provide
data by setting the enable input of that source’s drivers to 1, and all other
enable inputs to 0.

One of the main advantages of tristate buses is the reduction in wiring
that they afford. For each bit of the encoded data on the bus, one signal
wire is connected between all of the data sources and destinations. How-
ever, there are some issues to consider. First, since bus wires connect all of
the sources and destinations, they are generally long and heavily loaded

bus(0)d(0)

en

… ……
bus(1)d(1)

bus(2)d(2)

bus(n)d(n)

F I G U R E 8 .23 Parallel
connection of tristate drivers.

outputinput

enable

F I G U R E 8 .22 Symbol for a
tristate driver.

with the capacitance of the drivers and inputs. As a consequence, the wire
delay may be large, making high-speed data transfer difficult. Moreover,
the large capacitance means we need more powerful output-stage circuits,
increasing the area and power consumption of the chip.

A second issue is difficulty in designing the control that selects among
data sources. The control section must ensure that one source’s drivers are
disabled before any other source’s drivers are enabled. When we design
the control section, we need to take into account the timing involved in
disabling and enabling drivers. This is shown in Figure 8.24. When the
enable input of a driver changes to 0, there is a delay, toff, before the driver
disconnects from the bus. Similarly, when the enable input changes to 1,
there is a delay, ton, before the driver delivers a valid low or high logic
level on the bus. In the intervening time, the bus floats, indicated on the
timing diagram by a dashed line midway between the low and high logic
levels. Since there is no output driving a low or high logic level on the bus
signals, each signal drifts to an unspecified voltage.

Letting the bus float to an unspecified logic level can cause switching
problems in some designs. The bus signal might float to a voltage around the
switching threshold of the bus destination inputs. Small amounts of noise
voltage induced onto the bus wire can cause the inputs to switch state fre-
quently, causing spurious data changes within the data destination and con-
suming power unnecessarily. We can avoid floating logic levels on the bus
signals by attaching a weak keeper to the signal, as shown in Figure 8.25.
The keeper consists of two inverters providing positive feedback to the bus
signal. When the bus is forced to a low or high logic level by a bus driver, the
positive feedback keeps it at that level, even if the forcing driver is disabled.
The transistors in the output circuit of the inverter driving the bus are small,
with relatively high on-state resistance, and so cannot source or sink much
current. They are easily overridden by the output stages of the bus drivers.

When we need to change from one data source to another, it might
seem reasonable to disable one driver at the same time as enabling the
next driver. However, this can cause driver contention. If the toff delay of
the disabled driver is at the maximum end of its range and the ton delay of
the enabled driver is at the minimum end, there will be a period of overlap

en2

en1

bus

toff

data 1 data 2

ton

F I G U R E 8 .24 Tristate disable
and enable timing.

weak
drive

F I G U R E 8 .25 A bus keeper
for maintaining valid logic levels.

 8.3 Parallel Buses C H A P T E R E I G H T 343

344 C H A P T E R E I G H T i / o i n t e r f a c i n g

where some bits of the enabled driver may be driving opposite logic levels to
those of the disabled driver. The overlap will be short-lived and is unlikely
to destroy the circuit. However, it does contribute extra power consump-
tion and heat dissipation and ultimately will reduce the operating life of
the circuit. The overlap effect can be exacerbated by clock skew in the
control section. If the flip-flop that generates the enabling signal receives
its clock earlier than the flip-flop that generates the disabling signal, there
will be an increased chance of overlap, even if the on and off delays of the
tristate drivers are near their nominal values. Given these considerations,
the safest approach when designing control for tristate buses is to include
a margin of dead time between different data sources driving the bus. A
conservative approach is to defer enabling the next driver until the clock
cycle after that in which the previous driver is disabled. A more aggressive
approach is to delay the rising edges of the enable signals, for example,
using the circuit of Figure 8.26, to avoid overlap between drivers. As many
pairs of inverters are included as give the required delay. However, this
approach requires very careful attention to timing analysis to ensure that it
works effectively across the expected range of operating conditions.

A third issue relating to design of tristate buses is the support pro-
vided by CAD tools. Not all physical design tools provide the kinds of
timing and static loading analyses needed to design tristate buses effec-
tively. Similarly, tools that automatically incorporate circuit structures to
enable testing of circuits after their manufacture don’t always deal with
tristate buses correctly. If the tools we use don’t support tristate buses, we
must resort to manual methods to complete and verify our design.

A final issue is that not all implementation fabrics provide tristate
drivers. For example, many FPGA devices do not provide tristate drivers
for internal connections, and only provide them for external connections
with other chips. If we want to design a circuit that can be implemented in
different fabrics with minimal change, it is best to avoid tristate buses.

In summary, tristate buses allow us to trade off significantly reduced
wiring complexity against performance and design complexity, provided
that our chosen implementation fabric allows tristate drivers and our
CAD tool suite supports design and analysis of tristate buses. For designs
that don’t have stringent performance requirements, tristate buses can
be a good choice. In the case of bus connections between chips on a
printed circuit board, tristate buses are usually preferred. For that reason,
fabrics such as FPGAs provide tristate drivers that can be used to drive
output pins.

d_busd

en

F I G U R E 8 .26 A circuit to
delay the rising edge of a bus
enable signal.

Modeling Tristate Drivers in Verilog

There are two aspects to modeling tristate drivers: representing the high-
impedance state, and representing the enabling and disabling of drivers.
In previous chapters, we have used single-bit Verilog net and variable val-
ues to represent single-bit logic levels. Nets and variables can also take on
the value Z for representing the high-impedance state. In a Verilog model
for a circuit, we can assign Z to an output to represent disabling the
output. Subsequently, assigning 0 or 1 to the output represents enabling
it again.

There are several additional points we should make about modeling
tristate drivers in Verilog. First, we can write a Z value using either an
uppercase or lowercase letter. Thus, 1'bZ and 1'bz are the same. Second,
we can only write literal Z values as part of a binary, octal or hexadecimal
number, such as 1'bZ, 3'oZ and 4'hZ. In an octal number, a Z represents
three high-impedance bits, and in a hexadecimal number, a Z represents
four high-impedance bits. Third, Verilog allows us to use the keyword tri
instead of wire for a net connected to the output of a tristate driver. Thus,
we might write the following declaration in a module:

tri d_out;

or the following port declaration:

module m (output tri a, ...);

Apart from the use of the different keyword, a tri net behaves exactly
the same as a wire net. The tri keyword simply provides documentation
of our design intent. Note that there is no corresponding keyword for a
variable that is assigned a Z value; we continue to use the reg keyword
for that purpose.

example 8 .7 Write a Verilog statement to model a tristate driver for an
output net d_out. The driver is controlled by a net d_en, and when enabled,
drives the value of an input d_in onto the output net.

solut ion We can use an assignment statement, as follows:

assign d_out = d_en ? d_in : 1'bZ;

8.3 Parallel Buses C H A P T E R E I G H T 345

346 C H A P T E R E I G H T i / o i n t e r f a c i n g

For multibit buses, we can use vectors whose elements include
Z values. While we can assign 0, 1 and Z values individually to elements
of vectors, we usually assign either a vector containing just 0 and 1 values
to represent an enabled driver or a vector of all Z values to represent a
disabled driver. Verilog’s implicit resizing rules for vector values involve
extending with Z elements if the leftmost bit of the value to be extended is
Z. So we can write 8'bz to get an 8-element vector of Z values.

example 8 .8 The SN74x16541 component manufactured by Texas
Instruments is a dual 8-bit bus buffer/driver in a package for use in a printed cir-
cuit board system. The internal circuit of the component is shown in Figure 8.27.
Develop a Verilog model of the component.

solut ion We can use vector ports for each of the 8-bit inputs and out-
puts, and single-bit ports for the enable inputs. The module definition is:

module sn74x16541 (output tri [7:0] y1, y2,
input [7:0] a1, a2,
input en1_1, en1_2, en2_1, en2_2);

assign y1 = (~en1_1 & ~en1_2) ? a1 : 8'bz;
assign y2 = (~en2_1 & ~en2_2) ? a2 : 8'bz;

endmodule

Each assignment within the module represents one of the 8-bit sections of the
component. The condition in the assignment determines whether the 8-bit
tristate driver is enabled or disabled. The driver is disabled by assigning a vector
value consisting of all Z elements. Note the use of the tri keyword in the declara-
tion of the output ports to indicate that they can be assigned Z values.

When we have multiple data sources for a tristate bus, our Verilog
model includes multiple assignment statements that assign values to the
bus. Verilog must resolve the values contributed by the separate assign-
ments to determine the final value for the bus. If one assignment con-
tributes 0 or 1 to a bus and all of the others contribute Z, the 0 or 1
value overrides the others and becomes the bus value. This corresponds
to the normal case of one driver being enabled and the rest disabled.
If one assignment contributes 0 and another contributes 1, we have a
conflict. Verilog then uses the special value X, called unknown, as the
final bus value, since it is unknown whether a real circuit would pro-
duce a low, high or invalid logic level on the bus. Depending on how the
 Verilog model of a data destination receiving an X value is written, it
might propagate the unknown value to its outputs, or produce arbitrary

y1(0)a1(0)

a1(1)

… … …

a1(7)

en1_1
en1_2

y1(1)

y1(7)

y2(0)a2(0)

a2(1)

… … …

a2(7)

en2_1
en2_2

y2(1)

y2(7)

F I G U R E 8 .27 Internal circuit
of the 16541 component.

0 or 1 values. Ideally, it would include a verification test statement that
would detect unknown input values. If all assignments to a bus contribute
Z, the final signal value is Z. This corresponds to the bus floating. Again,
since this does not represent a valid logic level, a Verilog model of a data
destination receiving a Z input should propagate an X output and detect
the error condition.

An important point to realize about the Z and X values is that they do
not represent real logic levels in a physical circuit. Rather, assignment of
Z to an output is a notational device interpreted by synthesis CAD tools
as implying a tristate driver for the output. Assignment of X to an output
is a notational device used in simulation to propagate error conditions in
cases where we cannot determine a valid output value. We can write Ver-
ilog statements that test whether a bus has the value Z or X, but it only
makes sense to do so in testbench models, for example, in an if statement
to verify that all drivers of a bus have been disabled or that there is no bus
conflict. Since, according to our digital abstraction, signals in a physical
circuit are only ever 0 or 1, a real digital component cannot sense any
other level.

If we need to test for Z or X values in a testbench model, we should
use different equality and inequality operators from those we have used
so far. The == operator in Verilog, known as the logical equality operator,
represents a hardware equivalence operation. If either operand is Z or X,
the result is X, since it is unknown whether the values in a real circuit are
equivalent or not. Similarly, the ! = operator, logical inequality, represents
a hardware unequivalence operation, and returns X if either operand is Z
or X. Thus, for example, the expressions 1'b0 = = 1'bX and 1'bZ != 1'b1
both yield X. If we want to test for Z and X values, we must use the
=== and !== operators, known as the case equality and case inequality
operators, respectively. These perform an exact comparison, including X
and Z values. Thus, 1'b0 = = = 1'bX yields 0 (false), and 1'bZ != = = 1'b1
yields 1 (true). Note that, like the Z value, we can use an uppercase or
lowercase letter, and we can only write literal X values in binary, octal, or
hexadecimal numbers.

example 8 .9 Suppose a Verilog module includes the following
declarations and assignments

tri [11:0] data_1, data_2, data_bus;
wire sel_1, sel_2;
...
assign data_bus = sel_1 ? data_1 : 12'hz;
assign data_bus = sel_2 ? data_2 : 12'hz;

8.3 Parallel Buses C H A P T E R E I G H T 347

348 C H A P T E R E I G H T i / o i n t e r f a c i n g

Write a test to verify that the values of all elements of the bus signal are all valid
logic levels, or that all drivers are disabled.

solut ion Unfortunately, Verilog does not provide an operation expressly
for testing for X or Z values within a vector. However, we can make use of a
property of the reduction XOR operator, ^. This operator can be applied to
a vector to form the XOR of all of the bits of the vector, yielding a single-bit
result. If all of the bits are 0 or 1, the result is 0 or 1, but if any bit is X or Z, the
result is X. Thus, our test can be written as:

if ((^data_bus) = = = 1'bx && data_bus != = 12'hz)
$display("Invalid value on data_bus");

Note that the first part of the condition includes the case of all elements being
Z, so we need to check for that case separately.

8.3.3 O P E N - D R A I N B U S E S

A third solution to avoid bus contention is to use open-drain drivers,
as shown in Figure 8.28. Each driver connects the drain terminal of a
transistor to the bus signal. When any of the transistors is turned on, it
pulls the bus signal to a low logic level. When all of the transistors are
turned off, the termination resistor pulls the bus signal up to a high logic
level. If multiple drivers try to drive a low logic level, their transistors
simply share the current load. If there is a conflict, with one or more
drivers trying to drive a low level and others letting the bus be pulled up,
the low-level drivers win. Sometimes, this kind of bus is called a wired-
AND bus, since the bus signal is only 1 if all of the drivers output 1. If
any driver outputs 0, the bus signal goes to 0. The AND function arises
from the wiring together of the transistor drains. We can also use this
form of bus with drivers that use bipolar transistors instead of MOSFET
transistors. In that case, we connect the collector terminal of a transis-
tor to the bus signal, as shown in Figure 8.29. Such a driver is called an
open-collector driver.

+V

F I G U R E 8 .28 Open-drain
bus structure.

Given the need for a pull-up resistor on each bus signal, open-drain
or open-collector buses are usually found outside integrated circuits.
For example, they may be used for a bus that connects a number of
integrated circuits together, or for the signals in a backplane bus that
 connects a number of printed circuit boards together. Implementing
pull-up resistors within an integrated circuit takes up significant area
and consumes power. Hence, we usually use multiplexed or tristate
buses within an integrated circuit chip. If we need the AND function
that would be formed by open-drain connection, we can implement it
with active gates.

Modeling Open-Drain and Open-Collector Connections in Verilog

We can model open-drain and open-collector drivers using a different
kind of net, declared with the keyword wand (short for wired-AND). For
example:

wand bus_sig;

We assign 0 to a wand net to represent a driver whose output transistor
is turned on, pulling the net low. We assign 1 to the net to represent a
driver whose output transistor is turned off. When a wand net is resolved,
any 0 values override all other values. However, if all of the drivers are
turned off, contributing 1 values, the final value of the net is 1. Note that
the pull-up resistor for the bus is not explicitly represented in the model;
rather, it’s effect is implicit in the declaration of the net as wand instead
of wire.

8.3.4 B U S P R OTO C O LS

In most design projects, subsystems are often designed by different team
members. Some subsystems may also be procured from external provid-
ers, or be implemented using off-the-shelf components. If the subsystems
are to be interconnected using buses, it would be preferable for them to
use the same bus signals with the same timing requirements; otherwise,
interface glue logic is required. In order to facilitate connection of sepa-
rately designed components, a number of common bus protocols have
been specified. Some of the specifications are embodied in industry and
international standards, whereas others are simply specifications agreed
upon or promoted by component vendors. The specification of a bus pro-
tocol includes a list of the signals that interconnect compliant compo-
nents, and a description of the sequences and timing of values on the
signals to implement various bus operations.

 8.3 Parallel Buses C H A P T E R E I G H T 349

+V

F I G U R E 8 .29 Open-collector
bus driver.

350 C H A P T E R E I G H T i / o i n t e r f a c i n g

Bus specifications and protocols vary, depending on their intended
use. Some, intended for connecting separate chips on a circuit board or
separate boards in a system, use tristate drivers for signals that have mul-
tiple data sources. Examples include the PCI bus used to connect add-on
cards to personal computer systems, and the VXI bus used to connect
measurement instruments to controlling computers. Others are intended
for connecting subsystems within an IC. They have separate input and
output signals, allowing for connection using multiplexers or switching
circuits. Examples include the AMBA buses specified by ARM, the Core-
Connect buses specified by IBM, and the Wishbone bus specified by the
OpenCores Organization. Buses also vary in the number of parallel signals
for transferring addresses and data, and in the speed of operation. Some,
intended for high-speed data transfer, provide for the kinds of techniques
we mention in Chapter 7, such as burst transfers and pipelining.

In this section, we will describe the relatively simple I/O bus protocol
used by the Gumnut core. We have already introduced several aspects of
the bus specification in preceding examples in this chapter. We will draw
all of the aspects of the specification together here.

The Wishbone I/O bus signals for the Gumnut are described in the
Verilog module definition in Example 8.3 and are shown as part of the
Gumnut schematic symbol in Figure 8.21. To summarize, the signals are:

port_cyc_o: a “cycle” control signal that indicates that a sequence of
I/O port operations is in progress.

port_stb_o: a “strobe” control signal that indicates an I/O port
operation is in progress.

port_we_o: a “write enable” control signal that indicates the opera-
tion is an I/O port write.

port_ack_i: a status signal that indicates that the I/O port acknowl-
edges completion of the operation.

port_adr_o: the 8-bit I/O port address.

port_dat_o: The 8-bit data written to the addressed I/O port by an
out instruction.

port_dat_i: the 8-bit data read from the addressed I/O port by an inp
instruction.

When the Gumnut core executes an out instruction, it performs a port
write operation. The timing of the operation is shown in Figure 8.30. Tran-
sitions are synchronized by the system clock. The Gumnut starts a write
operation by driving the port_adr_o signals with the address computed
by the out instruction and the port_dat_o signals with the data from the
source register of the out instruction. It sets the port_cyc_o, port_stb_o

�

�

�

�

�

�

�

and port_we_o control signals to 1 to indicate commencement of the write
operation. The system in which the Gumnut is embedded decodes the port
address to select an I/O controller and to enable the addressed output reg-
ister to store the data. If the addressed controller is able to update the regis-
ter within the first clock cycle, it sets the port_ack_i signal to 1 in that cycle,
as shown in Figure 8.30(a). On the next rising clock edge, the Gumnut sees
port_ack_i at 1 and completes the operation by driving port_cyc_o, port_
stb_o and port_we_o back to 0. If, on the other hand, the addressed con-
troller is slow and is not able to update the output register within the cycle,
it leaves port_ack_i at 0, as shown in Figure 8.30(b). The Gumnut sees
port_ack_i at 0 on the rising clock edge, and extends the operation for a
further cycle. The controller can keep port_ack_i at 0 for as long as it needs
to update the register. Eventually, when it is ready, it drives port_ack_i to 1
to complete the operation. This form of synchronization, involving strobe
and acknowledgment signals, is often called handshaking.

The Gumnut performs a port read operation when it executes an inp
instruction. The timing for the operation, shown in Figure 8.31, is similar

clk

port_adr_o

port_cyc_o

port_dat_o

port_ack_i

port_stb_o

port_we_o

(a) (b)

F I G U R E 8 .3 0 Timing for
Gumnut I/O write operations:
without wait cycles (a), and with
one wait cycle (b).

 8.3 Parallel Buses C H A P T E R E I G H T 351

clk

port_adr_o

port_cyc_o

port_dat_i

port_ack_i

port_stb_o

port_we_o

(a) (b)

F I G U R E 8 .31 Timing for
Gumnut I/O read operations:
without wait cycles (a), and with
one wait cycle (b).

352 C H A P T E R E I G H T i / o i n t e r f a c i n g

to that for a port write. The Gumnut starts the port read operation by
driving the port_adr_o signals with the computed address, driving the
port_cyc_o and port_stb_o signals to 1, and leaving port_we_o at 0.
Again, the system decodes the address to select an I/O controller and
enable the addressed input register onto the port_dat_i signals. The con-
troller drives the port_ack_i signal to 1 as soon as it has supplied the data,
either during the first cycle, as in Figure 8.31(a), or in a subsequent cycle,
as in Figure 8.31(b). On seeing port_ack_i at 1, the Gumnut transfers the
data from the port_dat_i signals to the destination register identified in
the inp instruction. It then completes the port read operation by driving
port_cyc_o and port_stb_o back to 0.

At first sight, it might appear that the port_cyc_o and port_stb_o sig-
nals are duplicates of each other. However, the Wishbone bus specification
defines other more involved operations in which the two control signals
serve distinct purposes. While the Gumnut does not use those operations,
it includes the signals in order to maintain compatibility with the Wish-
bone specification. The additional signal is a small cost to pay for compat-
ibility with a large pool of third-party components.

 1. If a system requires connection of multiple data sources and
destinations, why can we not just connect them directly as shown
in Figure 8.18?

 2. In a multiplexed bus system, why might it be desirable to subdivide
the multiplexers and distribute them around the chip?

 3. How does a tristate bus avoid logic-level contention on bus signals?

 4. Why should we avoid fl oating bus signals?

 5. What is a weak keeper?

 6. What problems can arise if we disable one tristate bus driver at
the same time as enabling the next driver? How can we avoid the
problems?

 7. Write a Verilog assignment that represents a tri-state bus driver for
an 8-bit bus.

 8. What value results on a Verilog wire net when two tristate drivers
are enabled and driving opposite logic levels?

 9. Why is a signal connecting several open-drain drivers called a wired-
AND connection?

10. Write a Verilog declaration that represents an open-drain bus.

11. What is a bus protocol?

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

8.4 S E R I A L T R A N S M I S S I O N

Throughout this book, we have described transfer of binary-encoded data
using parallel transmission, in which we dedicate one signal wire per bit
of encoded data. While this might appear to give us the fastest possible
rate of data transfer, there are some disadvantages. The most obvious is
that we require one signal wire per bit. For wide encodings, the wiring
takes up significant circuit area, and makes layout and routing of the cir-
cuit more complex. For connections that extend between chips, parallel
transmission requires more pad drivers and receivers, more pins, and more
PCB traces. These all add cost to the system. Moreover, there are second-
ary effects, such as increased delay due to the extra space required for the
connections, problems with crosstalk between wires routed in parallel,
and problems with skew between signals. Dealing with these problems
adds cost and complexity to the system. In this section, we will describe
an alternative scheme for transferring binary-encoded data. The scheme
is called serial transmission, since bits are transmitted one bit at a time in
series over a single signal wire.

8.4.1 S E R I A L T R A N S M I S S I O N T E C H N I Q U E S

In order to transform data between parallel and serial form, we can use
shift registers, introduced in Section 4.1.2. At the transmitting end, we
load the parallel data into a shift register and use the output bit at one
end of the register to drive the signal. We shift the content of the register
one place at a time to drive successive bits of data onto the signal. At
the receiving end, as each bit value arrives on the signal, we shift it into
a shift register. When all the bits have arrived, the complete data code
word is available in parallel form in the shift register. We sometimes use
the term serializer/deserializer, or serdes, for shift registers used in this
way. The advantage of serial transmission is that we only need one signal
wire to transfer the data. Thus, we reduce the circuit area and cost for
the connection. Moreover, if necessary, we can afford to optimize the
signal path so that bits can be transferred at a very high rate. Some serial
transmission standards in use today allow for rates exceeding 10 gigabits
per second.

example 8 .10 Show how a 64-bit data word can be transmitted serially
between two parts of a system. Assume that the transmitter and the receiver
are both within the same clock domain, and that the signal start is set to 1 on a
clock cycle in which data is ready to be transmitted.

solut ion At the transmitting end, we need a 64-bit shift register with
parallel load control and an output from the least signifi cant bit. At the receiv-
ing end, we also need a 64-bit shift register, but with a single-bit input and

8.4 Serial Transmission C H A P T E R E I G H T 353

354 C H A P T E R E I G H T i / o i n t e r f a c i n g

One important issue that we need to address when transferring data
serially is the order in which we transmit the bits. In principle, the order
is arbitrary, so long as the transmitter and receiver agree. Otherwise, the
receiver will end up with the bits in reverse order. In Example 8.10, we
transmit the least significant bit first, and so shift bits into the receiver shift
register at the most significant end, shifting them down to the least signifi-
cant end. Fortunately, serial transmission in a system is often governed by
a standard that specifies the order. This absolves us of the need to decide.

Another important issue is synchronization of the transmitter and the
receiver. If we just drive the signal with the data bit values, there is no
indication of when the time for one bit ends and the time for the next
bit starts. This form of serial transmission is called non-return to zero
(NRZ), and is illustrated in Figure 8.34, which shows the logic levels on
a signal for NRZ serial transmission of the value 11001111, with the
most significant bit being transmitted first. We assume in this case that
the value on the signal when no bit is being transmitted is 0. In the figure,

parallel data output. The connections are shown in Figure 8.32. The fi gure also
shows the control section that sequences the serial transmission. When a start
pulse occurs, the control section activates the receiver clock enable, rx_ce, for
64 cycles to shift the serial data in. The control section then pulses rx_rdy to
indicate that the received data is ready. A timing diagram for one transmission is
shown in Figure 8.33. We can implement the control logic with a counter and a
simple fi nite-state machine.

64-bit
shift reg

D_in
D

CE
load_en

Q0

64-bit
shift reg

D_in

CE

Q

start
reset

tx_D
serial_D

rx_D

rx_rdy

clk

start
reset

rx_ce

rx_rdy

receiver
control

+V

clk clk

clk

F I G U R E 8 .32 Serial
transmission of 64-bit data within
a clock domain.

rx_rdy

rx_ce

serial_D

start

clk

D0 D1 D62 D63D2 D3
F I G U R E 8 .33 Timing
diagram for the serial receiver
control.

F I G U R E 8 .3 4 Serial
transmission of the value
11001111.

we have drawn a timescale showing the interval in which each bit occurs.
However, that information is implicit, rather than being explicitly trans-
mitted to the receiver along with the data. If the receiver, for some reason,
assumed intervals twice as long for each bit, it would receive the value
10110000. To avoid this problem, we need to synchronize the transmitter
and receiver, so that the receiver samples each bit value on the signal at
some time during the interval when the transmitter drives the signal with
the bit value.

There are three basic ways in which we can synchronize the transmit-
ter and receiver. The first is by transmitting a clock on a separate signal
wire. We saw this scheme in Example 8.10. The second is by signaling
the start of a serial code word and relying on the receiver to keep track
of the individual bit intervals. A common way of doing this originated
with teletypes, which were computer terminals consisting of a keyboard
and a printer connected to a remote computer using serial transmission.
A refined version of such serial transmission is still used to connect some
devices to serial communications ports on modern PCs.

In this second scheme, the signal is held at a high logic level when
there is no data to transmit. When data is ready to be transmitted, trans-
mission proceeds as shown in Figure 8.35, again with the most significant
bit transmitted first. The signal is brought to a low logic level for one bit
time to indicate the start of transmission. We call this the start bit. After
that, the bits of data are transmitted, each for one bit time. We might also
transmit a parity bit after the data bits, in case the signal wire is subject
to induced noise, though this is not shown in the figure. This would allow
us to detect some errors that might occur during transmission. Finally,
we drive the signal high for one further bit time to indicate the end of
transmission of the data. We call this the stop bit. We can then transmit
the next piece of data, starting with a start bit, or leave the signal high if
there is no data ready to transmit.

At the receiving end, the receiver monitors the logic level on the
signal. While it remains at a high logic level, the receiver is idle. When
the receiver detects a low logic level of the start bit, it prepares to receive
the data. It waits until the middle of the first bit time and shifts the value
on the signal into the receiving shift register. It then waits for further suc-
cessive bit times, shifting each bit into the shift register. The complete data
is available after the last bit is received. The receiver uses the stop-bit time
to return to the idle state.

Note that the transmitter and the receiver must agree on the duration
of the bit times on the signal. Usually, this is fixed in advance, either dur-
ing manufacture or by programming. The transmitter and receiver typi-
cally have independent clocks, each several times faster than the serial bit
rate. The sender uses its clock to transmit the data, and the receiver uses
its clock to determine when to sense the data, synchronized by occurrence

F I G U R E 8 .35 Serial
transmission of the value
11100100 with start and
stop bits.

8.4 Serial Transmission C H A P T E R E I G H T 355

356 C H A P T E R E I G H T i / o i n t e r f a c i n g

of the start bit. This is illustrated in Figure 8.36, in which the transmit
clock and receive clock have slightly different frequencies and are not
related in phase. Provided the difference is not too extreme, the drift
from the nominal sampling time does not affect correct reception of the
 transmitted data.

Historically, computer component manufacturers provided a compo-
nent called a universal asynchronous receiver/transmitter, or UART, for
serial communications ports. The software on the computer could pro-
gram the bit rate and other parameters. UARTs are still useful in some
applications for connecting remote devices to digital systems via serial
communications links. For example, an instrumentation system with
remote sensors that transmit data at relatively low bit rates can use serial
transmission managed by UARTs.

The third scheme for synchronizing a serial transmitter and receiver
involves combining a clock with the data on the same signal wire. This
avoids the need for tight clock synchronization, since there is an indica-
tion of when each bit arrives. As an example of such a scheme, we will
describe Manchester encoding. As with NRZ transmission, Manchester
encoding transmits each bit of data in a given interval. However, rather
than representing each bit using one or other logic level, it represents a 0
with a transition from low to high in the middle of the bit interval, and a
1 with a transition from high to low. (We could equally well choose the
opposite assignment of transmissions, so long as transmitter and receiver
agree.) At the beginning of the bit interval, a transition may be necessary
to set the signal to the right logic level for the transition in the middle of
the interval. Manchester encoding of the value 11100100 is shown in
Figure 8.37, with the most significant bit transmitted first and with bit
intervals defined by the transmitter’s clock.

Since Manchester encoding of data is synchronized with the trans-
mitter’s clock and that clock is combined with the data, the receiver must
be able to recover the transmitted clock and data from the signal. It does
so using a circuit called a phase-locked loop (PLL), which is an oscillator
whose phase can be adjusted to line up with a reference clock signal. A sys-
tem using Manchester encoding usually transmits a continuous sequence
of encoded 1 bits before transmitting one or more data words. The encod-
ing of such a sequence gives a signal that matches the transmitter’s clock.

Tx_clk

Tx_D

Rx_clk

F I G U R E 8 .3 6 Generation
and sampling of serial data using
transmitter and receiver clocks.

F I G U R E 8 .37 Manchester
encoding of the value 11100100.

The receiver’s PLL locks onto the signal to give a clock that can be used
to determine the bit intervals for the transmitted data. This is shown in
Figure 8.38.

The main advantage of Manchester encoding over NRZ transmission
is that it contains sufficient transitions to allow clock synchronization with-
out the need for separate signal wires. The disadvantage is that the band-
width of the transmission is double that of NRZ transmission. However,
for many applications, that is not an overriding disadvantage. Manchester
encoding has been used in numerous serial transmission standards, includ-
ing the original Ethernet standard. Other serial encoding schemes that are
similar in concept but more involved are now becoming widely used.

8.4.2 S E R I A L I N T E R FA C E S TA N D A R D S

Given the advantages of serial transmission over parallel transmission
for applications where distance and cost are significant considerations,
numerous standards have been developed. These standards cover two
broad areas of serial interfaces: connection of I/O devices to computers,
and connection of computers together to form a network. Since most
digital systems contain embedded computers, they can include standard
interfaces for connecting components. The benefits of doing so include
avoiding the need to design the connection from scratch, and being able
to use off-the-shelf devices that adhere to standards. As a consequence, we
can reduce the cost of developing and building systems, as well reducing
the risk of designs not meeting requirements.

Some examples of serial interface standards for connecting I/O devices
include:

RS-232: This standard was originally defined in the 1960s for
 connecting teletype computer terminals with modems, devices
for serial communication with remote computers via phone lines.
Sub sequently, the standard was adopted for direct connection of
terminals to computers. Since most computers included RS232 con-
nection ports, RS232 connections were incorporated in I/O devices

�

idle data word

Tx_clk

Tx_D

Rx_clk

locked

F I G U R E 8 .3 8 Synchronization
of transmit and receive clocks by
a PLL .

 8.4 Serial Transmission C H A P T E R E I G H T 357

358 C H A P T E R E I G H T i / o i n t e r f a c i n g

other than terminals as a convenient way to connect to computers.
Examples included user-interface devices such as mice, and various
measurement devices. Serial transmission in RS232 interfaces uses
NRZ encoding with start and stop bits for synchronization. Data
is usually transmitted with the least significant bit first and most
significant bit last. While RS232 interfaces have now largely been
supplanted by more recent standards, they are still used in some
equipment, for example, bar code readers in point-of-sale terminals,
and industrial measurement devices.

I2C: The Inter-Integrated Circuit bus specification is defined by
Philips Semiconductors, and is widely adopted. It specifies a serial
bus protocol for low-bandwidth transmission between chips in a sys-
tem (10kbit/sec to 3.4Mbit/sec, depending on the mode of operation).
It requires two signals, one for NRZ-coded serial data and the other
for a clock. The signals are driven by open-drain drivers, allowing
any of the chips connected to the bus to take charge by driving the
clock and data signals. The specification defines particular sequences
of logic levels to be driven on the signals to arbitrate to see which
device takes charge and to perform various bus operations. The
advantage of the I2C bus is its simplicity and low implementation
cost in applications that do not have high performance requirements.
It is used in many off-the-shelf consumer and industrial control chips
as the means for an embedded microcontroller to control opera-
tion of the chip. Philips Semiconductor has also developed a related
bus specification, I2S, or Inter-IC Sound, for serial transmission of
digitally encoded audio signals between chips, for example, within a
CD player.

USB: The Universal Serial Bus is specified by the USB Implement-
ers Forum, Inc., a nonprofit consortium of companies founded by
the original developers of the bus specification. USB has become
commonplace for connecting I/O devices to computers. It uses
differential signaling (see Section 6.4.1) on a pair of wires, with a
modified form of NRZ encoding. Different configurations support
serial transfer at 1.5Mbit/sec, 12Mbit/sec or 480Mbit/sec. The USB
specification defines a rich set of features for devices to communicate
with host controllers. Since there is such a diversity of devices with
USB interfaces, application-specific digital systems can benefit from
inclusion of a USB host controller to enable connection of off-the-
shelf devices. USB interface designs for inclusion in ASIC and FPGA
designs are available in component libraries from vendors.

FireWire: This is another high-speed bus defined by IEEE Standard
1394. Whereas USB was originally developed for lower bandwidth
devices and subsequently revised to provide higher bandwidth,

�

�

�

FireWire started out as a high-speed (400Mbit/sec) bus. There is also
a revision of the standard defining transfer at rates up to 3.2Gbit/sec.
FireWire connections use two differential signaling pairs, one for
data and the other for synchronization. As with USB, there is a rich
set of bus operations that can be performed to transmit information
among devices on the bus. FireWire assumes that any device con-
nected to the bus can take charge of operation, whereas USB requires
a single host controller. Thus, there are some differences in the
operations provided by FireWire and USB, and some differences in
the applications for which they are suitable. FireWire has been most
successful in applications requiring high-speed transfer of bulk data,
for example, digital video streams from cameras.

example 8 .11 Design an interface to connect an embedded Gumnut core
to a remote temperature sensor. The temperature sensor is an Analog Devices
AD7414 with an I2C connection and an alert output that can be connected to a
warning indicator.

solution The OpenCores repository (see Section 8.7, Further Reading)
contains an I2C controller component that is Wishbone compliant. We can
use it rather than designing a new I2C controller from scratch. We connect
the controller to the Gumnut core’s Wishbone I/O bus, and provide pad
 connections to an external I2C bus for connecting the temperature sensor. We
 connect the alert output of the sensor to an LED indicator. The sensor allows
the embedded software to program threshold temperatures, beyond which the
alert indicator is activated. The system design is shown in Figure 8.39. The use

 8.4 Serial Transmission C H A P T E R E I G H T 359

wb_adr_i
wb_dat_i
wb_dat_o

wb_rst_i
arst_i

wb_we_i

i2c_master_top

wb_stb_i
wb_cyc_i
wb_ack_o
wb_inta_o

scl_pad_i
scl_pad_o

scl_padoen_o

sda_pad_i
sda_pad_o

sda_padoen_orst_i

Gumnut
port_adr_o
port_dat_o
port_dat_i
port_we_o
port_stb_o
port_cyc_o
port_ack_i

int_req
int_ack

scl
AD7414

sda alert

rst
clk

+V

+V

wb_clk_iclk_i

F I G U R E 8 .3 9 A temperature
sensing system using an I2C serial
bus.

of the serial I2C bus allows connection to the temperature sensor with only
two wires, resulting in a substantial reduction in system cost compared to
connection using a parallel bus.

360 C H A P T E R E I G H T i / o i n t e r f a c i n g

1. What advantages does serial transmission of data have over parallel
transmission?

2. How do we convert between parallel and serial form for serial data
transmission or reception?

3. What determines the order in which we transmit bits of data?

4. What is meant by non-return to zero (NRZ) transmission?

5. What is the purpose of a start bit and a stop bit in serial
transmission?

6. How does Manchester encoding represent 0 and 1 bits?

7. Why would we adopt a standard serial interface specifi cation rather
than developing a custom interface?

8. Which of I2C or FireWire would be most appropriate for connecting
a motor controller and a digital video camera, respectively, to an
embedded system?

8.5 I / O S O F T W A R E

Now that we have described the hardware aspects of input and output,
we turn our attention to the corresponding embedded software. We have
seen that an out instruction in the Gumnut core invokes a port write
operation to update an output register in an I/O controller, and an inp
instruction invokes a port read operation to get the value from an input
register. The embedded software running on the core needs to use out and
inp instructions as part of the task of managing input and output devices
to implement the functionality required of the system.

Since I/O devices interact with the real physical world, the embed-
ded software needs to be able to respond to events when they occur, or
to cause events at the right time. Dealing with real time behavior is one
of the main differences between embedded software and programs for
general purpose computers. Embedded software needs to be able to detect
when events occur so that it can react. It also needs to be able to keep
track of time so that it can perform actions at specific times or at regular
intervals. In this section, we will introduce the basic mechanisms for syn-
chronizing embedded software with I/O events.

8.5.1 P O L L I N G

The simplest I/O synchronization mechanism is called polling. It involves
the software repeatedly checking a status input from a controller to see if
an event has occurred. If it has, the software performs the necessary task
to react to the event. If there are multiple controllers, or multiple events to

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

which the software must respond, the software checks each of the status
inputs in turn, reacting to events as they occur, as part of a busy loop.

example 8 .12 A factory automation system includes a safety monitoring
subsystem based on an embedded Gumnut core. The core has alarm inputs
from a number of machines that indicate various abnormal operating condi-
tions. These are connected through a controller that has two input registers at
addresses 16 and 17. Each bit of each register represents one alarm input, with
the bit being 0 for normal operation and 1 for an alarm condition. The core also
has a temperature sensor connected to an ADC. The converted value is available
in an input register at address 20, represented as an 8-bit unsigned integer in °C.
A temperature above 50°C is abnormal. The core has an output register at
address 40. Writing a 1 to the least signifi cant bit of the output register activates
an alarm bell, and writing 0 deactivates it. Develop a polling loop for the
embedded software to monitor the inputs and activate the alarm bell when any
abnormal condition arises.

solut ion The polling loop must repeatedly read the input registers. If any
alarm input bit is 1, or if the temperature value is greater than 50°C, the alarm
bell output bit must be set to 1; otherwise, it must be cleared to 0. The code is

alarm_in_1: equ 16 ; address of alarm_in_1 input register
alarm_in_2: equ 17 ; address of alarm_in_2 input register
temp_in: equ 20 ; address of temp_in input register
alarm_out: equ 40 ; address of alarm_out output register

max_temp: equ 50 ; maximum permissible temperature

poll_loop: inp r1, alarm_in_1
 sub r0, r1, 0
 bnz set_alarm ; one or more alarm_in_1 bits set
 inp r1, alarm_in_2
 sub r0, r1, 0
 bnz set_alarm ; one or more alarm_in_2 bits set
 inp r1, temp_in
 sub r0, r1, max_temp
 bnc set_alarm ; temp_in > max_temp
 out r0, alarm_out ; clear alarm_out
 jmp poll_loop
set_alarm: add r1, r0, 1
 out r1, alarm_out ; set alarm_out bit 1 to 1
 jmp poll_loop

Polling has the advantage that it is very simple to implement, and
requires no additional circuitry beyond the input and output registers
of the I/O controllers. However, it requires that the processor core be

8.5 I/O Software C H A P T E R E I G H T 361

362 C H A P T E R E I G H T i / o i n t e r f a c i n g

continually active, consuming power even when there is no event to react
to. It also prevents the processor from reacting immediately to one event if
it is busy dealing with another event. For these reasons, polling is usually
only used in very simple control applications where there is no need for
fast reaction times.

8.5.2 I N T E R R U P TS

Probably the most common way to synchronize embedded software with
I/O events is through use of interrupts. The processor executes some back-
ground tasks, and when an event occurs, the I/O controller that detects
the event interrupts the processor. The processor then stops what it was
doing, saving the program counter so that it can resume later, and starts
executing an interrupt handler, or interrupt service routine, to respond to
the event. When it has completed the handler, it restores the saved pro-
gram counter and resumes the interrupted program. In some systems, if
there is no background task to run, the processor may enter a low-power
standby state from which it emerges in response to an interrupt. This has
the benefit of avoiding power consumption due to busy-waiting, though
it may add delay to the interrupt response time if the processor requires
some time to resume full-power operation.

Different processors provide different mechanisms for I/O controllers
to request an interrupt. Some provide very simple mechanisms, such as
that of the Gumnut core that we will describe shortly. Others provide more
elaborate mechanisms, for example, allowing different controllers to be
assigned different priorities, so that a higher-priority event can interrupt
service of a lower-priority event, but not vice versa. Some provide a way for
the controller to select the interrupt handler to be executed by the proces-
sor. However, there are some aspects that are common to most systems.

First, the processor must have an input signal to which controllers can
connect to request interrupts. For older microprocessors and microcon-
trollers, the interrupt request signal is often an active-low signal pulled up
with an external resistor. Each controller connects to the signal with an
open-drain or open-collector driver, pulling the signal low to request an
interrupt. Thus, the signal value is a wired-OR function of the individual
controllers’ requests. For processor cores that are designed to connect to
on-chip I/O controllers, the interrupt request input is typically driven by
active gates forming the OR of the controllers’ requests.

Second, the processor must be able to prevent interruption while it is
executing certain sequences of instructions, often called critical regions.
Examples are instructions that update information shared between an
interrupt handler and other parts of the embedded software. If the proces-
sor is part way through updating such information and is interrupted, the
interrupt handler will see the partially updated information, which may not

correctly represent a valid value. So processors generally have instructions
or other means of disabling interrupts and enabling interrupts.

Third, the processor must be able to save sufficient information about
the program it was executing when interrupted so that it can resume the
program on completion of the interrupt handler. At the least, this includes
saving the program counter value. Since the processor responds to an
interrupt after completing one instruction and before starting the next,
the program counter contains the address of the next instruction in the
program. That is the instruction to be resumed after the interrupt handler.
The processor must provide a register or some other storage in which to
save the program counter. If there is other state information in the pro-
cessor that might be modified by the interrupt handler, such as condition
code bits, they must also be saved and restored.

Fourth, when the processor responds to an interrupt, it must disable
further interrupts. Since response to an interrupt involves saving the inter-
rupted program’s state in registers, if the interrupt handler is itself inter-
rupted, the saved state would be overwritten. Thus, the handler needs to
prevent interruption, at least during the initial stages of responding to an
interrupt.

Some processors allow the storage containing the saved state infor-
mation to be read by a program. That allows a handler to copy the saved
state into memory. The handler can then re-enable interrupts, allowing
the interrupt handler itself to be interrupted to deal with another event.
We call this nested interrupt handing. The handler must disable interrupts
again when it has completed its operation so that it can restore the saved
state before resuming the interrupted program.

Fifth, the processor must be able to locate the first instruction of the
interrupt handler. The simplest way of doing this is for the handler to start
at a fixed or predetermined address in the instruction memory. Alterna-
tive schemes involve the interrupting controller providing a vector: either
a value used to form the address of the handler, or an index into a table
of addresses in memory.

Finally, the processor needs an instruction for the interrupt handler to
return to the interrupted program. Such a return from interrupt instruc-
tion restores the saved program counter and any other saved state.

The Gumnut processor core has all of these features, with the excep-
tion of nested interrupt handing. It has an input signal, int_req, that con-
trollers can drive to 1 to request an interrupt. It includes two instructions
in its instruction set: disi, for disabling interrupts; and enai, for enabling
interrupts. When the core responds to an interrupt, it saves the program
counter and the values of the Z and C condition codes in special inter-
nal registers, and disables further interrupts. The first instruction of the
interrupt handler is located at address 1 in the instruction memory, so
the processor simply loads that address into the program counter to start

8.5 I/O Software C H A P T E R E I G H T 363

364 C H A P T E R E I G H T i / o i n t e r f a c i n g

executing the handler. Finally, the Gumnut instruction set includes the reti
instruction to return from an interrupt handler. It restores the saved values
to the program counter and the Z and C condition code bits, and re-enables
interrupts. Program execution then resumes from where it left off.

There are also requirements on I/O controllers that make interrupt
requests. When an event occurs, the controller must activate the processor’s
interrupt request signal. However, the processor may not respond imme-
diately. The requesting controller must keep the request signal active, oth-
erwise the request may go unnoticed. Failure to respond to an event may
be a critical error in some systems. Processors typically have a mechanism
to acknowledge an interrupt request, that is, to indicate that the event has
been noticed and that the interrupt handler as been activated. If there are
multiple I/O controllers that can request interrupts, the processor needs to
acknowledge each request individually, so that none are overlooked. Once
a request has been acknowledged, the controller must deactivate the inter-
rupt request signal. Otherwise, multiple responses might occur for the one
event. In some cases, that can be as bad as missing an event.

The Gumnut core provides a simple interrupt acknowledgment mech-
anism. It has an output signal, int_ack, that it drives to 1 for one cycle
when it responds to an interrupt request. If there is only one controller
that can request interrupts in a Gumnut system, the controller can use the
int_ack signal to clear its interrupt request state.

example 8 .13 Design an input controller that has 8-bit binary-coded
input from a sensor. The value can be read from an 8-bit input register. The
controller should interrupt the embedded Gumnut core when the input value
changes. The controller is the only interrupt source in the system.

solut ion The controller contains a register for the input value. Since
we need to detect changes in the value, we also need a register for the previous
value, that is, the value on the previous clock cycle. When the current and previ-
ous values change, we set an interrupt-request state bit. Since there is only one
interrupt source, we can use the int_ack signal from the processor core to clear
the state bit. The controller circuit is shown in Figure 8.40.

example 8 .14 Develop a Verilog model of the input controller of
Example 8.13.

solut ion The module definition includes ports for the I/O bus, plus the
interrupt request and acknowledge connections:

module sensor_controller (input clk_i, rst_i,
input cyc_i, stb_i,
output ack_o,

(continued)

D
reset

Q D
reset

Q

D
reset

Q

≠

dat_o

int_req

ack_o

clk_i
rst_i

int_ack

cyc_i
stb_i

sensor_in

clk clk

clk

F I G U R E 8 .4 0 Circuit for
an input controller with interrupt
request logic.

 8.5 I/O Software C H A P T E R E I G H T 365

 output reg [7:0] dat_o,
output reg int_req,
input int_ack,
input [7:0] sensor_in);

reg [7:0] prev_data;

always @(posedge clk_i) // Data registers
if (rst_i) begin
prev_data <= 8'b0;
dat_o <= 8'b0;

end
else begin
prev_data <= dat_o;
dat_o <= sensor_in;

end

always @(posedge clk_i) // Interrupt state
if (rst_i) int_req <= 1'b0;
else
case (int_req)
1'b0: if (dat_o ! = prev_data) int_req <= 1'b1;
1'b1: if (int_ack) int_req <= 1'b0;

endcase

assign ack_o = cyc_i & stb_i;

endmodule

The first always block represents the two data registers, one for the current sen-
sor data value and one for the previous value. The second always block repre-
sents the interrupt request and acknowledge logic. It is essentially a small finite
state machine, with int_req encoding the state. In the state where int_req is 0,
there is no interrupt request. However, if the current value changes from the pre-
vious value, int_req is set to 1. The value of this output is used as the interrupt
request signal to the processor. It stays 1, even when the current value and the
previous value no longer differ. Eventually, when the processor responds to the
interrupt and sets int_ack to 1, int_req is cleared back to 0.

366 C H A P T E R E I G H T i / o i n t e r f a c i n g

example 8 .15 Show the Gumnut assembler code for the interrupt handler
for the sensor controller interrupt. Assume the data register is read at port
address 0.

solut ion The interrupt handler is

 data
saved_r1: bss 1

 text
sensor_data: equ 0 ; address of sensor data
 ; input register

 org 1
 stm r1, saved_r1
 inp r1, sensor_data
 ... ; process the data
 ldm r1, saved_r1
 reti

Since the handler needs to use processor register r1, it must save whatever value
is in there from the interrupted program. The data memory location saved_r1 is
reserved for that purpose. The interrupt handler must be located at address 1 in
the instruction memory. We use an org directive to ensure this. The instructions
in the handler first save the contents of r1, then read the new value from the con-
troller’s input register. The handler then executes instructions that deal with the
data. Finally, the handler restores the saved value to r1 and uses a reti instruction
to resume the interrupted program.

If, in a Gumnut-based system, there are several controllers that can
request an interrupt, the interrupt handler must be able to determine
which controller requested an interrupt so that it can execute the appro-
priate response. In such a system, each controller must provide status
information in a status register that indicates whether it has requested an
interrupt. Furthermore, the int_ack signal is not sufficient to distinguish
which request is acknowledged. Instead, the processor must perform some
other action to acknowledge the interrupt. We could acknowledge and
clear a controller’s interrupt request as a side-effect of its status register
being read. Alternatively, we could require a write operation to a control
register to acknowledge the request.

8.5.3 T I M E R S

As we mentioned earlier, many real-time embedded systems must perform
actions at specific times or at periodic intervals. For these systems, we
need to include some form of timer. We showed in Chapter 4 that we can

use a counter to derive a periodic signal from the system clock. We can
use such a signal as a time base: each cycle represents one unit of time in
the embedded system. We also showed how we can use a loadable down
counter as an interval timer. A common use for interval timers in real-time
embedded systems is to generate an interrupt for the processor at some
programmable multiple of a time base. The interval timer acts as an I/O
controller, often called a real-time clock, with an output register for pro-
gramming the time interval. The interrupt handler for the timer can then
perform any required periodic actions.

example 8 .16 Develop a Verilog model for a real-time clock controller
for the Gumnut processor. The controller has a 10µs time base derived from
a 50MHz system clock, and an 8-bit output register for the value to load into
the counter. A write operation to the output register causes the counter to be
loaded. After the counter reaches 0, it reloads the value from the output register
and requests an interrupt. The controller has an input register for reading the
current count value. The counter also has a 1-bit control output register. When
bit 0 of the register is 0, interrupts from the controller are masked, and when it
is 1, they are enabled. The counter has a status register, in which bit 0 is 1 when
the counter has reached 0 and been reloaded, or 0 otherwise. Other bits of the
register are read as 0. Reading the register has the side effect of acknowledging a
requested interrupt and clearing bit 0. The counter output and input registers are
located at the base port address, and the control and status registers are at offset
1 from the base port address.

solut ion The module definition for the controller has ports for the I/O
bus, and uses the stb_i port for the decoded base port address:

module real_time_clock (input clk_i, // 50 MHz clock
input rst_i,
input cyc_i, stb_i, we_i,
output ack_o,
input adr_i,
input [7:0] dat_i,
output [7:0] dat_o,
output int_req);

parameter clk_freq = 50000000;
parameter timebase_freq = 100000;
parameter timebase_divisor = clk_freq / timebase_freq;

reg [7:0] count_value;
reg trigger_interrupt;
reg int_enabled, int_triggered;

8.5 I/O Software C H A P T E R E I G H T 367

(continued)

368 C H A P T E R E I G H T i / o i n t e r f a c i n g

integer timebase_count;
reg [7:0] count_start_value;

always @(posedge clk_i) // Counter
if (rst_i) begin
timebase_count <= 0;
count_start_value <= 8'b0;
count_value <= 8'b0;
trigger_interrupt <= 1'b0;

end
else if (cyc_i && stb_i && !adr_i && we_i) begin
timebase_count <= 0;
count_start_value <= dat_i;
count_value <= dat_i;
trigger_interrupt <= 1'b0;

end
else if (timebase_count = = timebase_divisor – 1) begin
timebase_count <= 0;
if (count_value == 8'b00000000) begin
count_value <= count_start_value;
trigger_interrupt <= 1'b1;

end else begin
count_value <= count_value — 1;
trigger_interrupt <= 1'b0;

end
end
else begin
timebase_count <= timebase_count + 1;
trigger_interrupt <= 1'b0;

end

always @(posedge clk_i) // Control register
if (rst_i)
int_enabled <= 1'b0;

else if (cyc_i && stb_i && adr_i && we_i)
int_enabled <= dat_i[0];

always @(posedge clk_i) // Interrupt register
if (rst_i || (cyc_i && stb_i && adr_i && !we_i))
int_triggered <= 1'b0;

else if (trigger_interrupt)
int_triggered <= 1'b1;

assign dat_o = !adr_i ? count_value : {7'b0, int_triggered};

assign int_req = int_triggered & int_enabled;

assign ack_o = cyc_i & stb_i;

endmodule

The first always block represents the time-base divider, interval counter and
counter output register. The variable timebase_count is used to divide the
50MHz clock to derive the 100kHz time base, and the variable count_start_

value stores the value for the counter output register. The count value is repre-
sented by the variable count_value. The variable trigger_interrupt is an internal
control variable used to manage interrupt requests. On reset, the variables are
cleared to zeros. When a port write operation is performed with the least signifi-
cant address bit being 0, the written data is used to update count_start_value,
and the counters are cleared to zeros again. On other clock cycles, the counters
are incremented. When the time base counter reaches its terminal count, it wraps
to zero, and count_value is decremented. When count_value reaches zero, it is
reloaded from count_start_value, and the trigger_interrupt variable is set to 1.

The second always block represents the control register, containing the interrupt-
enable bit. On reset, the bit is cleared to 0. Otherwise, when a write operation is
performed with the least significant address bit being 1, the bit is updated with
the written port data.

The third always block represents the one-bit state register that determines when
an interrupt event has occurred. The variable int_triggered is set to 1 when the
trigger_interrupt variable is 1, that is, when count_value is reloaded after having
reached zero. The variable is cleared to 0 on reset, and also on a port read opera-
tion that reads the status register.

The remaining assignments implement the rest of the required functionality. The
assignment to dat_o selects the value provided for a port read operation: either
the count value or the interrupt status bit. The assignment to int_req causes an
interrupt request when the triggering event has occurred and interrupt requests
are enabled. The assignment to ack_o implements the controller’s response to bus
operations, indicating that the controller is ready without delay.

example 8 .17 Suppose a Gumnut system includes the real-time clock
controller of Example 8.16 with the registers located at base port address 16.
Develop Gumnut code that calls the subroutine task_2ms every 2ms. In between
activations, the program stands by in low-power mode. The subroutine should
not be called as part of the interrupt handler, since other interrupts should be
permitted during execution of the subroutine.

solut ion The code is

;;; --
;;; Program reset: jump to main program

 text
 org 0
 jmp main

8.5 I/O Software C H A P T E R E I G H T 369

(continued)

370 C H A P T E R E I G H T i / o i n t e r f a c i n g

;;; --
;;; Port addresses
rtc_start_count: equ 16 ; data output register
rtc_count_value: equ 16 ; data input register
rtc_int_enable: equ 17 ; control output register
rtc_int_status: equ 17 ; status input register

;;; ---
;;; Interrupt handler

 data
int_r1: bss 1 ; save location for

; handler registers

 text
 org 1

int_handler: stm r1, int_r1 ; save registers
check_rtc: inp r1, rtc_status ; check for
 ; RTC interrupt
 sub r0, r1, 0
 bz check_next
 add r1, r0, 1
 stm r1, rtc_int_flag ; tell main
 ; program
check_next: ...

int_end: ldm r1, int_r1 ; restore registers
 reti

;;; --
;;; init_interrupts: Initialize 2ms periodic interrupt, etc.

 data
rtc_divisor: equ 199 ; divide 100 kHz down
 ; to 500 Hz
rtc_int_flag: bss 1

 text
init_interrupts: add r1, r0, rtc_divisor
 out r1, rtc_start_count
 add r1, r0, 1
 out r1, rtc_int_enable
 stm r0, rtc_int_flag
 ... ; other initializations
 ret

;;; ---

(continued)

;;; main program

 text
main: jsb init_interrupts
 enai
main_loop: stby
 ldm r1, rtc_int_flag
 sub r0, r1, 1
 bnz main_next
 jsb task_2 ms
 stm r0, rtc_int_flag
main_next: ...
 jmp main_loop

The code is structured into separate sections and subroutines, each dealing with
one part of the program. The first section deals with starting the main program
when the system is reset. The instructions are located at address 0, and simply
jump to the main program. The second section defines symbolic labels for the
real-time clock controller registers. Reference to these labels makes the code
easier to understand.

The subroutine init_interrupts initializes the real-time clock controller. It loads
the value 199 into the controller’s output register. This makes the controller
count down from 199 to 0 and then restart from 199; thus, it divides the time
base by 200 to give a 2ms period. The subroutine also sets the controller’s inter-
rupt-enable bit by writing 1 to the control register, and clears the rtc_int_flag

location in memory. This location is used by the interrupt handler to indicate
to the main program that a 2ms interrupt has occurred. The subroutine then
proceeds with other initializations before returning to the caller.

The interrupt handler is located at instruction address 1. On responding to
an interrupt, it checks the controllers in the system to determine the interrupt
source, starting with the real-time clock controller. If the controller’s status regis-
ter is nonzero, the handler sets rtc_int_flag to 1, indicating to the main program
that it should perform the 2ms task. The handler then proceeds to check for
other interrupt sources before returning to the interrupted program.

The main program starts by calling the subroutine to initialize controllers and
interrupts, then enables receipt of interrupts. It then stands by in low-power
mode until an interrupt occurs. On return from the interrupt handler, the main
program checks the rtc_int_flag location. If it is 1, a real-time clock interrupt
has occurred, so the main program calls the task_2ms subroutine, as required,
and then clears rtc_int_flag. The main program then performs any processing
required for other interrupts that might have occurred. When that it done, it
loops back and stands by for the next interrupt.

8.5 I/O Software C H A P T E R E I G H T 371

372 C H A P T E R E I G H T i / o i n t e r f a c i n g

The code in Example 8.17 is a basic form of real-time executive, that
is, a control program that schedules execution of tasks in response to inter-
rupts and timer events. Vendors of microprocessors, microcontrollers and
embedded processor cores generally provide more sophisticated real-time
operating systems (RTOSs) for their products. There are also a number
of third-party vendors who provide RTOSs that run on various proces-
sors. An RTOS generally includes an executive, together with software
components to manage other resources, such as storage, input/output,
communication and specialized processing resources. The advantage of
using a real-time executive or an RTOS is that we can focus our software
development effort on the aspects of our system that are different from
other systems, and reuse proven code that deals with common embedded
software mechanisms. We won’t go into any further detail of real-time
programming in this book. Instead, we refer to sources on the topic listed
in the Further Reading section.

 1. In dealing with real-time behavior, what does embedded software
need to do?

 2. How does polling synchronize embedded software with I/O events?

 3. Identify an advantage and a disadvantage of polling compared to
other I/O synchronization schemes.

 4. What action does a processor perform upon receiving an interrupt?

 5. How does a processor prevent interruption while it is executing a
critical region?

 6. How does the processor determine where to resume program
execution on completion of handling an interrupt?

 7. What is an interrupt vector?

 8. Why must a controller deactivate the interrupt request signal when
its interrupt is acknowledged?

 9. What purpose does a real-time clock serve in an embedded system?

10. What operations are performed by a real-time executive?

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

8.6 C H A P T E R S U M M A R Y

Transducers allow a digital system to interact with the physical
world. Sensors generate an electrical representation of a physical
property. Output transducers, including actuators, cause a physical
effect.

Input devices include switches, keypads, knobs, position encoders,
and analog sensors.

An analog-to-digital converter (ADC) produces a binary coded rep-
resentation of an analog signal. ADCs include flash and successive-
approximation ADCs.

Output devices include indicator lights, 7-segment LED and LCD
displays, electromechanical actuators and valves, motors, and analog
output devices.

A digital-to-analog converter (DAC) produces an analog signal pro-
portional to a binary coded input. DACs include R-string and R/2R
ladder DACs.

An I/O controller includes input and output registers that provide
an embedded processor with access to I/O data. It may also include
control and status registers for managing operation of the controller.

An autonomous controller may perform I/O operations while a pro-
cessor performs other tasks concurrently.

Buses connect multiple data sources and destinations. Parallel buses
use one signal wire per bit of encoded data.

Multiplexed buses use multiplexers to select data from one source at
a time. Multiplexers can be centralized or distributed, depending on
the wiring complexity of the system.

Tristate buses allow direct connection of sources to destinations,
using a high-impedance driver state to avoid contention. Tristate
buses are not generally used within chips. The high-impedance state
is modeled in Verilog using the Z value.

Open-drain and open-collector drivers allow wired-AND connec-
tions, modeled in Verilog using wand nets.

Bus protocols specify the signals used and the sequences and timing
of values to implement bus operations.

Serial buses transmit bits in sequence over one wire. Shift registers
are used to convert between parallel and serial transmission.

�

�

�

�

�

�

�

�

�

�

�

�

�

8.6 Chapter Summary C H A P T E R E I G H T 373

374 C H A P T E R E I G H T i / o i n t e r f a c i n g

Serial transmission requires synchronization between transmitter
and receiver to determine the interval during which each bit is
transmitted.

Real-time software on an embedded processor must be able to react
to I/O events and to keep track of time so that it can perform sched-
uled or periodic operations.

Software can poll I/O controllers to determine when events occur.

Interrupts are a mechanism for a controller to notify a processor of
an event. The processor executes an interrupt handler to respond to
the event, then resumes its interrupted task. The processor includes
instructions for managing interrupts.

Timers, or real-time clocks, issue periodic interrupts, allowing an
embedded system to perform scheduled and periodic tasks.

8.7 F U R T H E R R E A D I N G

Industrial Electronics: Applications for Programmable Controllers,
Instrumentation and Process Control, and Electrical Machines and
Motor Controls, 3rd Edition, Thomas E. Kissell, Prentice Hall,
2003. This is a comprehensive reference describing the kinds of
input and output devices encountered in industrial settings, and the
transducers and electronic circuits used to interface them to digital
control systems.

Standard LCD Graphic Modules, Allshore Industries, www.allshore
.com/lcd_displays/lcd_graphic_modules.asp. Provides data sheets
on the ASI-D-1006A-DB-_S/W LCD module and the Seiko Epson
SED1560 controller IC described in Section 8.2.2.

Understanding Digital Signal Processing, Richard G. Lyons, Prentice
Hall, 2001. An introduction to the theory of digital signal process-
ing (DSP).

WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores, Revision B.3, OpenCores Organization, 2002,
www.opencores.org/projects.cgi/web/wishbone/wbspec_b3.pdf. This
is the specification document for the Wishbone bus used in this book.

OpenCores, www.opencores.org. From the website’s FAQ, “OpenCores
is a loose collection of people who are interested in developing
hardware, with a similar ethos to the free software movement.” The
website hosts a repository of freely reusable core designs, many of
which are compatible with the Wishbone bus.

�

�

�

�

�

 Exercises C H A P T E R E I G H T 375

Real-Time Concepts for Embedded Systems, Qing Li, Caroline Yao,
CMP, 2003. A practical introduction to real-time programming for
embedded systems.

e x e rc i s e 8 . 1 A calculator has keys arranged as shown in Figure 8.41.
Show how the key switches can be arranged in a scanned matrix.

e x e rc i s e 8 . 2 Design a keypad controller to connect a Gumnut core to
the keypad described in Exercise 8.1. The controller should include an output
register for driving row lines and an input register for sensing column lines.

e x e rc i s e 8 . 3 Develop a Gumnut program that uses the keypad controller
described in Exercise 8.2 to scan the calculator keypad. When a key is pressed,
the program should call a subroutine labeled do_key to respond to the key press.
(Just include the subroutine call, not the instructions in the subroutine.) Assume
the output register is at port address 0 and the input register is at port address 1,
and omit switch debouncing.

e x e rc i s e 8 . 4 Show how the input controller described in Example 8.13
on page 364 can be used for a volume control knob with an incremental encoder.

e x e rc i s e 8 . 5 Develop a Gumnut interrupt handler that responds to
 interrupts from the incremental encoder input of Exercise 8.4. The handler
should increment or decrement a value stored in memory as the knob is turned
clockwise or counterclockwise, respectively. The value should be limited to the
range 0 to 100.

e x e rc i s e 8 . 6 Develop a Verilog model of an 8-bit successive approximation
register (SAR) for use in an ADC (see Figure 8.6 on page 320).

e x e rc i s e 8 . 7 Develop a Gumnut subroutine to perform an analog-to-
 digital conversion using successive approximation, returning an 8-bit result in
register r1. The Gumnut is connected to an output data register, an input status
register, an 8-bit DAC and a comparator as shown in Figure 8.42. The output
data register is written at port address 8. The input status register is read at port
address 8, and provides the value of the comparator output in the least signifi-
cant bit, with other bits hardwired to 0.

e x e rc i s e 8 . 8 Some digital audio applications use an LED bar display,
 consisting of a row of LED indicators to display the volume level of the audio
signal. Assuming that the loudness is proportional to the logarithm of the signal
amplitude, we can work out which LEDs to light by finding the left-most 1 bit in
the unsigned binary number representing the amplitude. Design a circuit to drive an
8-LED common-anode bar display, given an 8-bit unsigned binary amplitude value.

e x e rc i s e 8 . 9 Write a Gumnut subroutine that performs the function of
the circuit described in Exercise 8.8. The subroutine takes an 8-bit unsigned

E X E R C I S E SE X E R C I S E S

0 . = +

1 2 3 —

4 5 6 ×

7 8 9 ÷

MR M+ % CE

MC M– √ AC

F I G U R E 8 .41

376 C H A P T E R E I G H T i / o i n t e r f a c i n g

binary amplitude value in r2 and outputs a corresponding value to an 8-bit
 register at port address 28, connected to the cathodes of an 8-LED common-
anode bar display.

e x e rc i s e 8 . 1 0 Draw a schematic of a circuit corresponding to the display
multiplexer of Example 8.2 on page 323.

e x e rc i s e 8 . 1 1 A 16-segment LED display, shown in Figure 8.43, can
 display alphabetic and numeric characters. Develop a circuit schematic and a
Verilog model of a display decoder and driver to drive a 16-segment common
anode LED display, given a 6-bit character-code input. Use a 64 � 16-bit ROM
to decode the input. You needn’t determine the ROM content for this exercise.

e x e rc i s e 8 . 1 2 Modify the display multiplexer/decoder design of
 Example 8.2 on page 323 to provide an 8-character alphanumeric scanned
display, with eight 6-bit character code inputs. Use the ROM described in
 Exercise 8.11 to decode the character codes.

e x e rc i s e 8 . 1 3 Design an output controller to drive eight solenoids.
The controller should have an 8-bit output register, and should connect to the
Wishbone bus used by the Gumnut core.

e x e rc i s e 8 . 1 4 The ST Microelectronics L298 IC is a dual full-bridge
driver that can be used to drive the kind of stepper motor shown in Figure 8.12
on page 327. The connections between the L298 and the motor (in simplified
form) are shown in Figure 8.44. Determine the sequences of values on the inputs
to the L298 to drive the stepper motor clockwise and counterclockwise.

e x e rc i s e 8 . 1 5 Assume the stepper motor driver described in Exercise 8.14
is connected to a Gumnut core through a 6-bit output register at port address 8,
with bits 0 to 5 of the register controlling signals in1, in2, en_a, in3, in4 and en_b,
respectively. Write a Gumnut subroutine to step the motor one-quarter turn, either
clockwise, if r2 is 0, or counterclockwise, if r2 is 1. Hint: The subroutine will
need to keep track of the current state of the stepper motor control signals. Use a
 location in memory to save the state.

+
–

DACoutput
data

register

input
status

register

Vin
Vf

Wishbone bus

(analog)

(analog)

F I G U R E 8 .42

A1 A2

B

C

D1D2

E

F

G

H J

K

M

NP

R

F I G U R E 8 .43

e x e rc i s e 8 . 1 6 Draw a diagram showing how the following components
might be used to construct a handheld voice recorder: microphone, microphone
amplifier, loudspeaker, loudspeaker amplifier, ADC, DAC, processor core,
instruction memory, data memory, push-button switches. The recorder has but-
tons to record, play/pause, stop, skip forward, and skip backward.

e x e rc i s e 8 . 1 7 Draw a diagram similar to Figures 8.19 and 8.20 on
page 339 showing multiplexed bus connection of two data sources, two data
destinations, and two components that are both sources and destinations.

e x e rc i s e 8 . 1 8 Revise Figure 8.21 on page 340 to omit the second ADC
controller.

e x e rc i s e 8 . 1 9 Revise the Verilog model in Example 8.6 on page 341 to
omit the second ADC controller.

e x e rc i s e 8 . 2 0 Revise the Verilog model of Example 8.8 on page 346 to
output X values if the enable inputs are Z or X.

e x e rc i s e 8 . 2 1 Design a serial output controller for connection to the
Gumnut core using the Wishbone bus. The controller should transmit each 8-bit
data byte written to a data register using NRZ encoding with one start bit and
one stop bit, as shown in Figure 8.35 on page 355. Transmission should occur
at 9600 bits per second, with a transmit timing derived from a system clock
with frequency 39.321600MHz (� 9600 � 4096). When the stop bit has been
transmitted, the controller should set an interrupt request output. The interrupt
request output should be reset when the Gumnut int_ack signal is 1.

e x e rc i s e 8 . 2 2 Write a Gumnut subroutine to transmit a byte of data
using the serial output controller of Exercise 8.21. Assume the data register is
a port address 24 and that there are no other interrupt sources in the system.
The subroutine should wait in standby mode and not return until the controller
interrupts to indicate that the transmission is complete.

 Exercises C H A P T E R E I G H T 377

NN

SS

N

S

out1
L298

en_a

en_b

in1

in2

in3

in4

out2

out3

out4

+V

+V
F I G U R E 8 .4 4

378 C H A P T E R E I G H T i / o i n t e r f a c i n g

exercise 8 .23 Revise the subroutine of Exercise 8.22 so that the subrou-
tine returns after having written the byte to the data register. This allows the pro-
cessor to continue with other work while the controller transmits the byte. You
will need to keep track of whether the controller is busy so that a subsequent call
to the subroutine does not overwrite the data register while transmission is still
in progress.

exerc ise 8 .24 Develop a Verilog model of the serial output controller of
Exercise 8.21.

exercise 8 .25 The OpenCores repository includes a UART core, uart16550,
that uses the Wishbone bus. (See http://www.opencores.org/projects.cgi/web/
uart16550/overview.) Develop a Verilog structural model of a system containing a
Gumnut core, instruction and data memories, and an instance of the UART core.

exerc ise 8 .26 Draw a diagram similar to Figure 8.37 on page 356
 showing Manchester encoding of the values 01100101 and 11110000.

exerc ise 8 .27 Design a circuit that has, as input, a transmit clock and
an NRZ serial data signal (as in Figure 8.33 on page 354), and that generates a
Manchester encoded serial data signal as output.

exerc ise 8 .28 Show how the system described in Example 8.11 on
page 359 would be extended to connect to four AD7414 sensors.

exerc ise 8 .29 A Gumnut system includes a 4-digit 7-segment display,
 connected as shown in Figure 8.45. The anode data register is at port address
128, and the cathode data register is at port address 129. Write Gumnut assem-
bly code for the task_2ms subroutine described in Example 8.17 on page 369 to
scan the display. The BCD digits to display are stored in four bytes of memory
labeled display_data. The subroutine should select one digit to drive each time it
is called. Thus, four successive calls are required for a complete scan.

+V

anode
data

register

cathode
data

register

Wishbone bus
F I G U R E 8 .45

379

ac c e l e r ato rs

In Section 7.1, as part of our introduction to embedded computer organization,
we mentioned accelerators as optional components in embedded systems.
If the system must perform some operation faster than is possible with
embedded software running on a processor core, we can design custom
hardware to perform the operation at the required speed. In this chapter,
we will examine accelerators in more details and identify how they inter-
act with an embedded processor.

9.1 G E N E R A L C O N C E P T S

Many operations performed by digital systems consist of a number of
steps. If a simple embedded processor core performs an operation, it per-
forms the steps in sequence, with each step using one or more proces-
sor instructions. The rate at which the processor can execute instructions
places a lower bound on the time it takes to perform the operation. The
key to accelerating performance is parallelism: performing multiple steps
at the same time, thus taking less time overall to complete the operation.
The cost of parallelism is the additional components needed to perform
the steps in parallel, since each component can only perform one step
at a time. However, if sequential execution does not meet performance
requirements, parallel hardware may be a higher-performance and lower-
power alternative to using a faster (and more expensive) processor.

One place in which we can add hardware to achieve parallelism is
within the processor core itself. As we saw in Chapter 7, a processor
repeatedly fetches, decodes and executes instructions. Many proces-
sor cores use various techniques to perform these steps in parallel. For
example, a processor might fetch a new instruction while decoding the
preceding instruction and executing the instruction before that. A higher
performance processor might fetch several instructions at once, decode
them together, and use multiple function units to execute as many of
them in parallel as it can. These and other techniques for achieving

9

380 C H A P T E R N I N E a c c e l e r a t o r s

instruction-level parallelism are described in textbooks on computer
architecture (see Section 9.5, Further Reading). While they can achieve
performance improvements ranging from 2 times to perhaps 20 times
over a simple processor core, the improvement comes at the cost of sig-
nificantly increased complexity, area and power consumption. If an appli-
cation requires much greater performance, or cannot afford the area and
power consumption of a high-performance processor, a custom hardware
accelerator may be a better option.

The extent to which we can improve performance depends on the
amount of parallelism we can achieve, that is, on the number of steps
we can perform at once. Many applications involve operations on data
that has a regular, repetitive structure, and in which computation steps
can be performed independently. For example, data from an audio source
is a regular sequence of sample values. An operation that implements a
volume control simply involves multiplying each sample value by the gain
value. If several sample values are available at once, they can all be mul-
tiplied by the gain value in parallel. Similarly, video data from a camera
consists of a sequence of frames, each of which is a rectangular array
of picture elements (pixels). Many video processing operations can be
performed within a frame in parallel across multiple pixels. Applications
that involve less regularly structured data, or data that arrives at irregular
intervals, are much harder to accelerate.

The amount of parallelism in some operations is limited only by the
amount of data available at a given time. This applies to operations where
each element of data can be processed independently of the others. Audio
volume control is such a case. Other operations, however, involve depen-
dencies that constrain parallelism. For example, some signal processing
operations on audio streams involve combining successive sample values
to produce values in a result stream. Filtering, as a case in point, involves
combining several successive sample values to yield a single value in the
output stream. Thus, we can’t complete the processing for a given output
sample until all of the required input values are available. Moreover, there
are intermediate results that must be computed as part of the process, and
the final result cannot be computed until all of the intermediate results
have been computed.

In summary, we can accelerate performance of an operation by repli-
cation of hardware resources to perform steps in parallel, up to the limits
on parallelism implied by the data dependencies and the availability of
data. Practical design of accelerators involves applying enough parallel-
ism to meet performance requirements, but not more, since that would
increase cost and power unnecessarily.

In order to identify opportunities for parallelism, we would typically start
with an abstract description of the processing operations to be performed by
the system. This might take the form of an algorithm description expressed

in a high-level language, such as a computer programming language or some
other formal notation. The description identifies the data to be processed,
how it is organized, and the sequence of processing steps to be performed.
We then need to identify a kernel of the algorithm, that is, a part that involves
the most intensive repetitive processing steps that take the most time. Such a
kernel is a good candidate for an accelerator, since improving performance
of the most time-consuming part of the algorithm gives the most payback.
The remainder of the algorithm can then be implemented in embedded
software.

We can quantify the performance gain achieved by accelerating a ker-
nel of an algorithm. Suppose a system takes some amount of time, t, to
execute the algorithm, and that a fraction, f, of that time is spent in exe-
cuting the kernel. The remaining fraction, 1 � f, is spent executing code
other than the kernel. Thus,

t� ft� (1� f)t

If our accelerator speeds up execution of the kernel by a factor s, the time
spent in the kernel is divided by s, but the remaining time is unaffected.
Thus the total execution time for the algorithm is reduced to

t�� f t�
s � (1� f)t

The overall speedup is the ratio of the original time to the reduced time:

s�� t�
t�

� ft� (1�f)t
��
ft
� s � (1� f)t

� 1
��
f
� s � (1� f)

This formula expresses Amdahl’s Law, named after Gene Amdahl, one
of the pioneers of parallel computing. It indicates that the overall effect
of speeding up a kernel depends strongly on the fraction of the original
time taken up in executing the kernel. If that fraction is small, even a large
speedup has little overall effect, since the nonaccelerated part dominates.
On the other hand, if the fraction is large, accelerating the kernel has sig-
nificant overall effect.

example 9 .1 Suppose execution time is estimated for the various parts
of an algorithm on an embedded processor. The algorithm has two kernels, one
that consumes 80% of the execution time and another that consumes 15%.
Using a hardware accelerator, we could speed up execution of the fi rst kernel by
a factor of 10 or the second kernel by a factor of 100. Which accelerator gives
the best overall performance improvement?

9.1 General Concepts C H A P T E R N I N E 381

382 C H A P T E R N I N E a c c e l e r a t o r s

solut ion The overall speedup from accelerating the first kernel is

 1 ��

 0.8 �
10

 � (1 � 0.8)
 � 1 ��

0.08 � 0.2
 382 � 3.57

Accelerating the second kernel gives an overall speedup of

 1 ���
 0.15 �
100

 � (1 � 0.15)
 � 1 ��

0.0015 � 0.85
 � 1.17

Thus, even though the speedup for the second kernel is ten times that for the first
kernel, the lower fraction of the original execution time for the second kernel
means acceleration gives less overall improvement. Accelerating the first kernel is
more effective.

Within the kernel, we need to identify an order in which to perform
the computational steps. We need to ensure that data can be made avail-
able to be processed in order, and that intermediate results are computed
before they are needed for subsequent steps. Other than those constraints,
steps can potentially be performed in parallel. We finally need to determine
which steps will actually be performed in parallel to meet the performance
requirements. That then leads to an architecture for an accelerator, that is,
a description of the processing blocks and the data flow between them.

There are two main schemes for implementing parallelism in accelera-
tors. The first of these is simply to replicate components that perform a
given step so that they operate on different elements of data. The speedup
achieved through replication, compared to using just a single component,
is ideally equal to the number of times the component is replicated. This
scheme suits applications in which steps can be performed independently
on the different data elements.

The second scheme for implementing parallelism is to break a larger
computational step into a sequence of simpler steps, and to perform the
sequence in a pipeline, as shown in Figure 9.1. (We introduced the con-
cept of pipelining earlier in Section 4.1.1.) The pipeline stages perform
their simple steps in parallel, each operating on a different data element
or an intermediate result produced by the preceding stages. The overall
computation by the pipeline for a given data element takes approximately
the same time as a nonpipelined chain of components. However, provided
we can supply data to the pipeline input and accept data at the pipe-
line output on every clock cycle, the pipeline completes one computation

step 1 step 2 step 3data
in

data
out

F I G U R E 9 .1 Pipelined
organization of an accelerator.

every cycle. Thus, the speedup compared to the nonpipelined chain is
ideally equal to the number of stages. This scheme suits applications that
involve complex processing steps that can be broken down into simpler
sequences with each step depending only on the results of earlier steps. In
some applications involving independent complex computations, we can
have replicated pipelines, giving the benefit of both schemes.

The analysis of systems, from algorithm description to accelerator
architecture, is done early in the system design flow. It is often performed
by expert system designers, drawing on their creativity and experience
with previous systems. Automating this form of analysis has proven to
be an extremely challenging problem, and early high-level synthesis tools
have not been successful, except within very narrow application domains.
More recently, a new generation of tools is starting to emerge and is show-
ing promise in a wider range of applications, especially in audio, video
and other signal-processing applications. As this technology matures, we
should expect to see wider adoption in design methodologies. We will
return to the topic of architecture analysis and its place in the design flow
in our methodology discussion in Chapter 10.

The data for many systems involving accelerators is input or output
data. In such systems, the I/O controller must transfer data between a
device and the embedded system’s memory at very high rates. Once the
data is in memory, it can be processed by an accelerator, with the results
also stored in memory. If these data memory accesses were mediated by
a processor, copying data between memory and registers under software
control, the rate of data transfer may be too slow. Instead, we can allow the
controller and the accelerator to perform direct memory access (DMA),
that is, to transfer data to and from memory autonomously. Instead of
the processor initiating a memory access, the I/O controller or accelera-
tor initiates an access, providing the required address and activating the
memory control signals.

Since the processor and any subsystems that perform DMA must
share access to the memory, and since the memory can only perform one
access at a time, we need to ensure that processor and DMA accesses
are interleaved. We must include an arbiter in the system, illustrated in
Figure 9.2, that makes sure subsystems take turns to access the memory.
Each master (the I/O controller, accelerator and processor) activates a
request signal to the arbiter when it needs to access the memory. The
arbiter decides among them, based on a predetermined policy, and acti-
vates a grant signal for one of the subsystems. That subsystem then pro-
ceeds with its access, with the memory responding as a slave. Any other
master with an active request must wait. When the granted master has
completed its memory access, it releases its request. The arbiter can then
activate another master’s grant. Different applications may use different
policies for deciding among competing requests, depending on whether a

9.1 General Concepts C H A P T E R N I N E 383

384 C H A P T E R N I N E a c c e l e r a t o r s

master can wait and for how long. Some applications use a round-robin
policy, in which masters are granted access in strict turn. Other systems
may require some masters to have priority over others in order to meet
requirements for processing rates.

In many applications, the data to be processed by an accelerator is
arranged in a regular pattern in memory, occupying blocks of adjacent or
regularly spaced locations. The job of the accelerator is to process the data
block by block. While it is processing one or more blocks, other parts of
the system may be working on other blocks. As an example, several algo-
rithms for processing still and video images divide each image into blocks
of 8 � 8 or 16 � 16 pixels and process each block independently. Similarly,
the MP3 format commonly used to encode audio data represents intervals
of sound in frames that can be processed independently.

The datapath for a block-processing accelerator needs two main
parts. The first part performs DMA to read and write data in memory.
It includes circuits for generating addresses, using the starting addresses
 provided in registers by the processor and counters for keeping track of
progress. The second part of the data path performs the required com-
putation on the data. The control section for the accelerator sequences
operation of the data path and synchronizes operation with the processor.
Depending on the complexity of the operation and the bus protocol,
sequencing might be done with one finite-state machine or with separate
interacting machines for each activity.

Whereas a block-processing accelerator deals with blocks of data
stored in continguous memory locations, other forms of accelerators
deal with streams of data arriving in sequence from some source. Thus,
the two forms of accelerator are complementary: block processing deals
with sequences in space (data stored in memory), and stream processing
deals with sequences in time (data arriving at intervals). The source of
data for a stream-processing accelerator may be a high-speed input device
or another accelerator in a processing pipeline. Alternatively, data may
be fetched in a stream from memory for supply to an output device or
another accelerator.

processor

memory

arbiter

accelerator controller

request

grant

request

request

grant

grant

memory
bus

F I G U R E 9 .2 A multimaster
system with an arbiter for the
memory bus.

One of the most common application domains for stream-processing
accelerators is digital signal processing (DSP). One or more signals are
converted from analog to digital form, consisting of a stream of sample
values at periodic intervals. Processing operations include filtering, mixing,
applying gain or attenuation, and conversion between time and frequency
domains. Some application areas include audio and video processing,
radio and radar signal processing, and analysis of data from sensors. For
details of the mathematical basis for digital signal processing and the com-
putational techniques used, refer to Section 9.5, Further Reading.

Having provided a means for an accelerator to access data, either in
memory or through a stream connection, we also need to provide a way
for embedded software to control operation of the accelerator. This may
include providing data, such as parameters to be used in computations. It
also includes synchronizing operation of the accelerator with other activi-
ties in the system, such as arrival of data from I/O controllers or other
I/O events. Generally, this is done using input and output registers within
the accelerator. Embedded software can then interact with the accelerator
in much the same way as it interacts with autonomous I/O controllers.
For example, an accelerator might include registers for the address and
length of data in memory, for control of the operation to be performed
and for status. Embedded software could write to the registers to initi-
ate an operation, and rely on an interrupt from the accelerator when the
operation is complete.

In some applications, it may be possible for the processor and an
accelerator to operate with less strict synchronization. For example, the
processor might generate units of work for the accelerator to perform and
add information describing each unit to a first-in, first-out (FIFO) queue,
like that described in Section 5.2.3. The accelerator can then accept each
work unit when it is ready by reading the description from the head of the
FIFO queue. FIFO queues can also be used for communication between
multiple processors in a large-scale embedded system.

1. How does parallelism improve performance?

2. What factors constrain the amount of parallelism that can be
achieved?

3. What aspects are described by an algorithm?

4. Why is it best to accelerate a kernel of an algorithm?

5. If a pipeline has four stages and accepts new input data on every
clock cycle, what is the speedup compared to a nonpipelined chain
of components?

6. What is direct memory access (DMA)?

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

9.1 General Concepts C H A P T E R N I N E 385

386 C H A P T E R N I N E a c c e l e r a t o r s

7. What is the task of an arbiter in a multimaster system?

8. What is the distinction between a block-processing accelerator and
a stream-processing accelerator?

9. How does embedded software interact with an accelerator?

9.2 C A S E S T U D Y : V I D E O E D G E - D E T E C T I O N

In this section, we will illustrate several aspects of accelerator design
using, as an example, an accelerator for edge-detection in video images.
This is somewhat of a compromise between what a real-world accelerator
might do and what can be included here without overwhelming detail.
Edge-detection is an important part of analyzing a scene in a video image,
and has application in many areas such as security monitoring and com-
puter vision. It involves identifying places in an image where there is an
abrupt change in intensity. Those places usually occur at the boundaries
of objects. Subsequent analysis of the edges can be used for recognizing
what the objects are.

For this example, we will assume monochrome images of 640 � 480
pixels, each of 8 bits, stored row-by-row in memory with successive pix-
els, left to right in a row, at successive addresses. Pixel values are inter-
preted as unsigned integers ranging from 0 (black) to 255 (white). We
will use a relatively simple algorithm, called the Sobel edge detector. It
works by computing the derivatives of the intensity signal in each of the
x and y directions and looking for maxima and minima in the deriva-
tives. These are the places where the intensity is changing most rapidly.
The Sobel method approximates the derivative in each direction for each
pixel by a process called convolution. This involves adding the pixel and
its eight nearest neighbors, each multiplied by a coefficient. The coeffi-
cients are often represented in a 3 � 3 convolution mask. The Sobel con-
volution masks, Gx and Gy, for the derivatives in the x and y directions,
respectively, are shown in Figure 9.3. We can think of the derivative image
being computed by centering each of the convolution masks over succes-
sive pixels in the original image. We multiply the coefficient in each mask
by the intensity value of the underlying pixel and sum the nine products
together to form two partial derivatives for the derivative image, Dx and
Dy. Ideally, we would then compute the magnitude of the derivative image
pixel as

 �D� � �

 D x 2 � D y
2

However, since we are just interested in finding the maxima and minima
in the magnitude, a sufficient approximation is

 �D� � �Dx� � �Dy�

–1

–2

–1

0

0

0

+1

+2

+1 –1 –2 –1

0 0 0

+1 +2 +1

Gx Gy

F I G U R E 9 .3 Sobel
convolution masks.

This approximation works, because the square-root and square functions
are both monotonic (that is, they increase as the operand increases and
decrease as the operand decreases). Hence, the maxima and minima in
the true magnitude and the approximate magnitude occur at the same
places in the image. Computing the approximation involves much less
hardware than computing the square and square-root functions. We
repeat the computation of the approximate magnitude for each pixel
position in the image. Note that the pixels around the edge of the image
do not have a complete set of neighboring pixels, so we need to treat
them separately. The simplest approach is to set the value of �D� for
the edge pixels of the derivative image to 0. Since that is a relatively
straightforward process and is not time consuming, we can implement
it in software.

example 9 .2 Express the Sobel edge-detection algorithm more formally
in a pseudo-code notation, that is, a notation like a computer programming
language.

solut ion We will use a pseudo-code notation like Verilog. Let O[row] [col]

denote pixels in the original image, and D[row] [col] denote pixels in the deriva-
tive image, where row ranges from 0 to 479 and col ranges from 0 to 639. Also,
let Gx[i] [j] and Gy[i] [j] denote the convolution masks, where i and j range from
–1 to �1. The algorithm is

for (row = 1; row <= 478; row = row + 1) begin
for (col = 1; col <= 638; col = col + 1) begin
sumx = 0; sumy = 0;
for (i = –1; i <= +1; i = i + 1) begin
for (j = –1; j <= +1; j = j + 1) begin
sumx = sumx + 0[row+i][col+j] * Gx[i][j];
sumy = sumy + 0[row+i][col+j] * Gy[i][j];

end
end
D[row][col] = abs(sumx) + abs(sumy)

end
end

example 9 .3 Calculate the number of bits required to represent interme-
diate and final values for pixels in the Sobel convolution.

solut ion Each pixel is represented as an 8-bit unsigned number. Given
the coefficient values in the convolution masks, the partial products range from
–510 to �510. Thus, the partial products should be represented using 10-bit
signed numbers. There are nine partial products to add to form each of Dx and

9.2 Case Study: Video Edge-Detection C H A P T E R N I N E 387

388 C H A P T E R N I N E a c c e l e r a t o r s

Dy. However, the coefficient values are such that the result values range from
–1020 to �1020, which can be represented using 11 bits. We then need to add
the two absolute values, giving a range of 0 to �2040 for |D|, which can also
be represented in 11 bits. Since subsequent steps of the edge-detection operation
involve determining which derivative pixels are above a certain threshold, we
don’t need to maintain 11 bits of accuracy for the results. Instead, it is more con-
venient to scale the results back to 8-bit values, since they can be packed back
into memory in the same format as the original image.

example 9 .4 Assuming a video frame rate of 30 frames per second, calcu-
late the rate at which computations must be performed.

solut ion Each frame consists of 640 � 480 � 307,200 pixels. Since there
are 30 frames per second, pixels must be processed at a rate of 307,200 � 30 �
9,216,000 per second, that is, approximately 10 million per second.

example 9 .5 Identify the parallelism that can be exploited to obtain the
required performance.

solut ion The computations required for all of the derivative pixels are
independent of one another, since they only require values of the original image
pixels. Thus, we could perform computations for as many derivative pixels in
parallel as required. For computation of each derivative pixel, the data depen-
dency graph is shown in Figure 9.4. This diagram shows the data required for
each operation, starting with the pixels from the original image at the top, with
intermediate results feeding through to dependent operations, yielding the deriv-
ative pixel at the bottom. We’ve elided partial products in which the coefficient
is 0, since they don’t contribute to the result. Inspection of the diagram shows
that we can compute all of the partial products in parallel, since each partial
product depends only on an original pixel value and a constant coefficient. We

–1 +1 –2 +2 –1 +1

| |

+

+

+1 +2 +1 –1 –2 –1

| |

+

× Gx

Dx

|D|

× Gy

Dy

F I G U R E 9 .4 Data
dependency graph for computation
of a derivative pixel.

can then sum the two groups of six partial products in parallel, then compute the
two absolute values in parallel, before summing them to produce the derivative
pixel value.

The top-level view of the video system including the edge-detection
accelerator is shown in Figure 9.5. Video input comes from an I/O control-
ler for a video camera, which stores successive video frames in memory.
Software on the processor directs the accelerator to operate on a given
frame to produce the corresponding derivative image.

example 9.6 Suppose the memory in which the original and derivative images
are stored is 32 bits wide, and that each 8-bit byte is individually addressed. Video
frames are stored with one byte per pixel. The pixels of a row in a frame are stored
from left to right at successive addresses, and rows are stored top to bottom, one after
another in memory. Each memory read or write access takes 20ns, consisting of two
cycles of a 100MHz system clock. Can the memory access data fast enough?

solut ion Our earlier analysis showed that pixels arrive from the camera
at a rate of approximately 10 million per second, or one every 100ns. If the
video input controller stored each pixel to memory with a separate write access,
it would consume 20% of the available memory bandwidth. A better alternative
would be for the controller to aggregate four pixels and store them with a single
write access, reducing its share of the memory bandwidth to 5%.

The edge-detection accelerator needs to produce a derivative pixel at the same
rate at which input pixels arrive, that is, one every 100ns. Thus, writing the com-
puted derivative pixels would consume a further 5% of the memory bandwidth,
assuming groups of four derivative pixels are aggregated. Each pixel compu-
tation requires access to eight pixel values from the original image. A naive
approach would involve reading each pixel with a separate read operation, and
re-reading it when subsequently required to compute another derivative pixel.
This approach would require eight reads per computed pixel, requiring 160% of
the memory bandwidth. Clearly this is not possible.

Since each 32-bit word of memory contains four adjacent pixels in a row, we can
reduce the bandwidth required for reading by using as many pixels as we can
from each 32-bit read. For half the pixel positions, only three reads are needed

processor

memory

edge
detector

video
input

network
connection

F I G U R E 9 .5 A video system
incorporating an accelerator for
edge detection.

 9.2 Case Study: Video Edge-Detection C H A P T E R N I N E 389

390 C H A P T E R N I N E a c c e l e r a t o r s

(when the three pixels in each of the rows fall in the same word), and for the
other half of the pixel positions, six reads are needed (when the three pixels in
each of the rows cross word boundaries). So on average, each pixel computation
would require 4.5 reads, requiring 90% of the memory bandwidth. This is still
not feasible.

A further reduction can be afforded by noting that an original image pixel, once
read, is used to compute three derivative pixels in each of the following, same,
and preceding columns. So rather than re-reading it for those pixels, we can
store it within the accelerator for use in computing multiple derivative pixels.
We can save it just for computing the pixels to the left, in the same column,
and to the right. We only need to read three words for every fourth pixel being
computed, requiring 15% of the memory bandwidth. This, together with the
5% for video input and 5% for writing derivative pixels, is feasible, provided
the remaining 75% of the bandwidth is sufficient for other operations to be
performed by the system.

If we need to further reduce the bandwidth consumed by the edge detector, we
could include small memories in the accelerator to store complete rows read from
the main memory. This would allow each pixel to be read only once, reducing
the bandwidth required for reading pixels to just 5%. The total for video input
and edge-detection would then be 15% of the available bandwidth.

In our development of the edge-detector example, we will adopt the
approach of reading three rows of four adjacent pixels from the original
image and storing them in registers, rather than including memories for
whole rows. We will design the accelerator to process blocks of data,
where a block consists of the three complete rows of the original image
used to form a complete row of the derivative image. As we will see,
processing a block involves a start-up phase, a repetitive sequence of com-
putation, and a completion phase. These phases are repeated for each
derivative image row.

The architecture for the Sobel accelerator datapath is shown in
Figure 9.6. It is essentially a pipeline, with pixel data read from the origi-
nal image entering into the registers at the top right, flowing through the
3� 3 multiplier array on the left, then down through the adders to the Dx
and Dy registers, then through the absolute value circuits and adder to the
|D| register, and finally into the register at the bottom left. The resulting
derivative pixels are then written from that register to memory. (While
a right-to-left data flow is opposite to usual practice, in this case, it has
the advantage of preserving the same arrangement of pixels as that in an
image.) We will describe the operation of the pipeline assuming initially
that it is full of data. We will then discuss how to deal with starting it up
at the beginning of an image row and draining it at the end of the row.

The pipeline generates the derivative pixels for a given row in groups
of four. The accelerator reads four pixels from each of the preceding,

 current, and next rows in memory into the three 32-bit registers at the top
right of the figure. Each register consist of four 8-bit pixel registers. Over
the four subsequent clock cycles, pixels are shifted out to the left, one
pixel at a time, into the multiplier array. Each cell in the array contains
a pixel register and one or two circuits that multiply the stored pixel by
a constant coefficient value. Since the coefficients are all �1, �1, �2, or
�2, the circuits are not full-blown multipliers. Instead, multiplying by �1
is simply a negator, multiplying by �1 is a through connection with no
circuitry, multiplying by �2 is a left shift of the result of a negator, and
multiplying by �2 is simply a left shift. On each clock cycle, the array
provides the partial products for a single derivative pixel, and the par-
tial products are added and stored in the Dx and Dy registers. Also, on
each clock cycle, the Dx and Dy values for the preceding pixel have their
absolute values computed and added and stored in the |D| register. The

| | + | |

+ +

+2

+2–2

–2–1

+1–1 +1

+1 –1

data from
memory

data to
memory

current row

prev row

next row

result row

Dx

|D|

Dy

F I G U R E 9 .6 Architecture for
the Sobel accelerator datapath.

 9.2 Case Study: Video Edge-Detection C H A P T E R N I N E 391

392 C H A P T E R N I N E a c c e l e r a t o r s

 resulting derivative pixel values are shifted into the result row register.
When four result pixels are ready in the register, they are subsequently
written to memory.

In the steady state, during processing of a row, the accelerator needs
to write the pixels to memory from the result register before it can shift
new pixels into the multiplier array and the Dx, Dy and |D| registers.
Otherwise, the result values would be overwritten. Having written four
pixels, the accelerator can push four more pixels through the pipeline,
thus emptying the read registers and filling the result register. It can then
write those result pixels and read in three more groups of four pixels,
and repeat the process. This sequence is shown in Figure 9.7, assuming a
Wishbone bus connection with 32-bit-wide data signals and a 100MHz
clock, as suggested earlier. Since the accelerator is one of several masters
on the memory bus, it must request use of the bus for the writes and
reads and wait until granted access by the bus arbiter. We assume that the
arbiter gives the accelerator sufficiently high priority that it can use the
memory bandwidth it needs.

Now that we have considered the steady state during processing of
a row, we need to consider what happens at the beginning of a row. In
that case, the registers in the pipeline contain no valid data. So we start
processing a row as in the steady state, but omitting the write operation
for the first two iterations. Thereafter, the result register contains valid
data, so we include the write operation in each iteration. Note that after
the first four computation cycles, valid data has progressed into the pipe-
line as far as the Dx and Dy registers. After the second four computation
cycles, valid data has progressed as far as the right-most three result pixel
registers. The left-most result pixel register still contains invalid data.

clk

cyc_o,
stb_o

we_o

dat_o

ack_i

dat_i

adr_o

write
result

write
result

read
prev

read
prev

read
current

read
next C1

pixel computation
C2 C3 C4

F I G U R E 9 .7 Timing of pixel
write and read operations and
computation in the pipeline.

However, this group of four pixel values is what we should write to the
beginning of the derivative image row. As we mentioned earlier, the left-
most position does not have a complete set of neighbors, so we don’t
compute a value for it. We will rely on the embedded software to clear
that pixel value to 0 subsequently.

When we reach the end of a row, we need to drain the pipeline. Since
the number of pixels in a row is a multiple of four (640 � 160 � 4), we can
always read complete groups of four pixels each. After reading the last
group, we perform four computation cycles normally. This gives us four
result pixels to write, plus three remaining pixel values in the pipeline.
We finish the row by writing the four result pixels, omitting the reads,
performing four further computation cycles to drain the pipeline and shift
the last pixel values into the required positions in the result register, and
performing a final write. Note that this places an invalid value in the
right-most result pixel register. This corresponds to the right-most pixel
of a row, which does not have a complete set of neighbors. Again, we will
rely on the embedded software to clear that pixel value to 0.

example 9 .7 Develop Verilog RTL code to describe the datapath of
Figure 9.6.

solut ion The code in the module definition for the Sobel accelerator is

// Computation datapath signals

reg [31:0] prev_row, curr_row, next_row;
reg [7:0] O [-1:+1][-1:+1];
reg signed [10:0] Dx, Dy, D;
reg [7:0] abs_D;
reg [31:0] result_row;
...

// Computational datapath

always @(posedge clk_i) // Previous row register
if (prev_row_load) prev_row <= dat_i;
else if (shift_en) prev_row[31:8] <= prev_row[23:0];

always @(posedge clk_i) // Current row register
if (curr_row_load) curr_row <= dat_i;
else if (shift_en) curr_row[31:8] <= curr_row[23:0];

always @(posedge clk_i) // Next row register
if (next_row_load) next_row <= dat_i;

(continued)

9.2 Case Study: Video Edge-Detection C H A P T E R N I N E 393

394 C H A P T E R N I N E a c c e l e r a t o r s

else if (shift_en) next_row[31:8] <= next_row[23:0];

function [10:0] abs (input signed [10:0] x);
abs = x >= 0 ? x : –x;

endfunction

always @(posedge clk_i) // Computation pipeline
if (shift_en) begin
D = abs(Dx) + abs(Dy);
abs_D <= D[10:3];
Dx <= – $signed({3'b000, 0[–1][–1]}) // – 1 * 0[-1][-1]
 + $signed({3'b000, 0[-1][+1]}) // + 1 * 0[-1][+1]
 – ($signed({3'b000, 0[0][-1]}) // – 2 * 0[0][-1]

 << 1)
 + ($signed({3'b000, 0[0][+1]}) // + 2 * 0[0][+1]

 << 1)
 – $signed({3'b000, 0[+1][-1]}) // – 1 * 0[+1][-1]
 + $signed({3'b000, 0[+1][+1]}); // + 1 * 0[+1][+1]
Dy <= $signed({3'b000, 0[-1][-1]}) // + 1 * O[-1][-1]
 + ($signed({3'b000, 0[-1][0]}) // + 2 * 0[-1][0]

 << 1)
 + $signed({3'b000, 0[-1][+1]}) // + 1 * 0[-1][+1]
 – $signed({3'b000, 0[+1][-1]}) // – 1 * 0[+1][-1]
 – ($signed({3'b000, 0[+1][0]}) // – 2 * 0[+1][0]

 << 1)
 – $signed({3'b000, 0[+1][+1]}); // – 1 * 0[+1][+1]
0[-1][-1] <= 0[-1][0];
0[-1][0] <= 0[-1][+1];
0[-1][+1] <= prev_row[31:24];
O[0][-1] <= O[0][0];
O[0][0] <= O[0][+1];
O[0][+1] <= curr_row[31:24];
O[+1][-1] <= O[+1][0];
O[+1][0] <= O[+1][+1];
O[+1][+1] <= next_row[31:24];

end

always @(posedge clk_i) // Result row register
if (shift_en) result_row <= {result_row[23:0], abs_D};

The first three always blocks in the module represent the three registers into
which groups of four pixels are read from memory. Each block has a separate
control signal governing loading, since the registers are loaded in successive
memory read operations. They share a control signal for shifting, since they all
shift a pixel out into the pipeline in parallel.

The next always block, as the comment suggests, represents the computational
pipeline of the accelerator. The signals to which the block assigns, governed by

the shift_en control signal, represent the pipeline registers. The signal O is a
3� 3 array of pixel values, with indices corresponding to the difference in row
and column numbers from those of the derivative pixel computed from the reg-
ister values. For example, the element with indices [�1][�1] contains the pixel
in the previous row and next column from the pixel being computed. Values
are shifted into this array leftward from the left-most 8 bits of each of the input
registers. The Dx and Dy values are computed from the array element values. In
each case, the values are resized to 11 bits and converted to signed numbers, as
we discussed earlier in our analysis of the precision requirements for the com-
putation. Multiplying by 2 is performed with a logical shift left by one position,
and multiplying by a negative coefficient is implemented by subtraction instead
of addition. The absolute values of the Dx and Dy values, implemented by the
abs function defined in the module, are added, and then scaled back from 11 to
8 bits to yield the final derivative pixel value.

The remaining always block represents the register that accumulates groups of
four derivative pixels for writing to memory. Pixels are shifted into this register
under control of the shift_en signal.

We mentioned earlier that a block-processing accelerator needs cir-
cuits for address generation, as well as for processing the data. Our Sobel
accelerator needs circuits to compute the addresses for reading pixels
from the original image and for writing pixels to the derivative image. We
will provide a register into which the embedded software can write the
base addresses for the original image and the derivative image in memory.
The address generator needs to determine pixel addresses using the base
addresses. We will require that all addresses are word aligned, that is,
that they are all multiples of four. This means the two least significant
address bits are always 00, and so do not need to be computed or explic-
itly stored.

example 9 .8 Given a base address B for an image in memory, derive
equations for computing the address of a pixel in row r and column c of the
image. Rows and columns are numbered from 0.

solut ion The image size is 480 rows of 640 pixels per row. The starting
address of row r is

B� r� 640

The pixel in column c in that row is then located at address

B� r� 640� c

We can treat the expression r� 640� c as an address offset from the base address.

9.2 Case Study: Video Edge-Detection C H A P T E R N I N E 395

example 9 .9 Design the address generator datapath for the Sobel accel-
erator. Assume main memory is 4Mbytes in size, organized as 1M � 32 bits.

solut ion The address generator needs two base address registers: O_base,
for the original image, and D_base, for the derivative image. Since pixels are
processed in groups of four, the least significant two address bits are always 0,
and so do not need to be explicitly stored in the address registers.

There are several alternatives for deriving the read and write addresses, including
maintaining counters for the image rows and columns. However, we can avoid the
need to multiply by 640 by counting pixel offsets from the base addresses, as shown
in Figure 9.8. In the case of the original image, we start counting from an offset of
0 and increment by 1 for each group of four pixels read from memory. We add the
offset to the base address to form the pixel-group address for the previous row. We
add 640/4 to that to form the read address for the current row, and add 1280/4 to
form the read address for the next row (assuming 00 for the least significant bits
in both cases). In the case of the derivative image, we start counting from an offset
of 640/4 and increment by 1 for each memory write. The multiplexer in the figure
selects the appropriate computed address to drive the memory address bus.

example 9 .10 Develop Verilog RTL code to describe the address generator
of Figure 9.8.

solut ion The code in the module definition for the Sobel accelerator is

O_base
O_prev_addr

adr_o

O_curr_addr

O_next_addr

640/4

1280/4

O_offset

cnt_en
reset

Q

D

CE

Q
+

+

+

D_base
D_addr

dat_i

O_base_ce

O_offset_cnt_en

D_base_ce

D_offset_cnt_en
offset_reset

clk

prev_row_load
curr_row_load
next_row_load

D_offset

cnt_en
reset

Q

D

CE

Q
+

clk

clk

clk

clk

F I G U R E 9 .8 Datapath for the
address generator.

396 C H A P T E R N I N E a c c e l e r a t o r s

// Address generator

always @(posedge clk_i) // 0 base address register
if (0_base_ce) 0_base <= dat_i[21:2];

always @(posedge clk_i) // 0 address offset counter
if (offset_reset) 0_offset <= 0;
else if (0_offset_cnt_en) 0_offset <= 0_offset + 1;

assign 0_prev_addr = 0_base + 0_offset;
assign 0_curr_addr = 0_prev_addr + 640/4;
assign 0_next_addr = 0_prev_addr + 1280/4;

always @(posedge clk_i) // D base address register
if (D_base_ce) D_base <= dat_i[21:2];

always @(posedge clk_i) // D address offset counter
if (offset_reset) D_offset <= 0;

else if (D_offset_cnt_en) D_offset <= D_offset + 1;

assign D_addr = D_base + D_offset;

assign adr_o[21:2] = prev_row_load ? 0_prev_addr :
 curr_row_load ? 0_curr_addr :
 next_row_load ? 0_next_addr :
 D_addr;
assign adr_o[1:0] = 2'b00;

The always blocks commented as being base address registers represent the
base address registers for the original and derivative images, respectively. The
always blocks commented as being address offset counters represent the counters
for pixel groups read and written, respectively. The registers and counters are
governed by control signals generated by the accelerator’s control section. The
adders are represented by the combinational assignments to the four address
signals O_prev_addr, O_curr_addr, O_next_addr and D_addr. The assignment to
the bus address signal adr_o represents the multiplexer that chooses among the
generated addresses for memory read and write operations.

The remaining aspect of the Sobel accelerator design is control
sequencing. We have touched on the sequence needed for computation of
the derivative image, row-by-row and pixel-group at a time. This includes
sequencing of write and read operations with the accelerator as a bus
master. We also need to sequence the accelerator’s response as a bus slave

9.2 Case Study: Video Edge-Detection C H A P T E R N I N E 397

398 C H A P T E R N I N E a c c e l e r a t o r s

when the embedded software writes to the base address registers. Finally,
we need to provide for synchronization with the embedded software
 controlling the accelerator. That requires some additional control and sta-
tus registers, as follows:

A control register that, when written to, causes the accelerator to
start processing an image. The value written is ignored.

A control register with an interrupt enable bit in bit 0.

A status register in which bit 0 is the done bit, set to 1 when the pro-
cessor has completed processing an image. Other bits are read as 0.
When the done bit is 1 and the interrupt enable bit is 1, the accelera-
tor requests an interrupt. Reading the done bit has the side effect of
acknowledging the interrupt and clearing the bit.

To keep the bus interface simple, we will map each of these registers at
32-bit aligned addresses. The complete register map is shown in Table 9.1.

r e g i s t e r o f f s e t r e a d / w r i t e

Interrupt control 0 write-only

Start 4 write-only

Original image base address 8 write-only

Derivative image base address 12 write-only

Status 0 read-only

example 9 .11 Develop Verilog model code for the accelerator’s bus slave
interface.

solution The timing for the bus slave operations is shown in Figure 9.9.
Both write and read operations are initiated in a cycle where cyc_i and stb_i are 1.

�

�

�

TAB LE 9 .1 Register map for
the Sobel accelerator.

clk

cyc_i,
stb_i

we_i

dat_i

ack_o

dat_o

adr_i

slave
write

slave
read

F I G U R E 9 .9 Timing for slave
bus write and read operations.

In each case, the accelerator can respond by setting ack_o to 1 in the next cycle,
then back to 0 in the following cycle. We need to decode the bus address input to
derive a select signal for the accelerator, and use the less significant address bits to
determine which register to read or write. For write operations, we generate clock-
enable signals using combinational logic. In the case of a write to the start-register
address, since there is no real register, we derive a control signal, start, that will
be used by the accelerator control section to initiate a computation sequence. For
read operations, we form the data value to be returned to the processor. The only
real register is the status register, for which we return the value of the done bit,
zero extended to 32 bits wide. For other register offsets, we just return all zeros.
The read value is multiplexed with the value of the result row register to drive the
accelerator’s data output bus, dat_o. The model code describing these aspects is

// Wishbone slave interface

assign start = cyc_i && stb_i && we_i && adr_i = = 2'b01;

assign 0_base_ce = cyc_i && stb_i && we_i && adr_i = = 2'b10;

assign D_base_ce = cyc_i && stb_i && we_i && adr_i = = 2'b11;

always @(posedge clk_i) // Interrupt enable register
if (rst_i)
int_en <= 1'b0;

else if (cyc_i && stb_i && we_i && adr_i = = 2'b00)
int_en <= dat_i[0];

always @(posedge clk_i) // Status register
if (rst_i)
done <= 1'b0;

else if (done_set)
// This occurs when last write is acknowledged,
// and so cannot coincide with a read of the
// status register.
done <= 1'b1;

else if (cyc_i && stb_i && we_i && adr_i = = 2'b00 && ack_o)
done <= 1'b0;

assign int_req = int_en && done;

always @(posedge clk_i) // Generate ack output
ack_o <= cyc_i && stb_i && !ack_o;

(continued)

9.2 Case Study: Video Edge-Detection C H A P T E R N I N E 399

400 C H A P T E R N I N E a c c e l e r a t o r s

example 9 .12 Develop the control section to sequence computation of
the derivative image.

solut ion We can use a finite-state machine to sequence the computation.
Since much of the sequence is repetitive, we can use counters to keep track of
progress. We will use one counter to keep track of how many rows have been
computed, starting from 0 and incrementing up to 477. We will use a second
counter to keep track of iterations across the columns, starting from 0 and
incrementing up to 159. The state transition diagram for the FSM is shown in
Figure 9.10. We have only shown the states and the transition conditions to
avoid cluttering the diagram. Also, we have not shown transitions from a state
back to itself. We assume that if a transition condition from a given state is false,
the FSM stays in that state for the next cycle.

The FSM is initially in the idle state. When the start signal is activated by a write
to the start register, the FSM starts the initial sequence of reads and computa-
tions for the first row. This consists of reading the first three groups of original
image pixels and then performing four computation cycles. After that, the FSM
enters a loop in which it reads three more groups of original image pixels,
performs four computation cycles, and then writes a group of result pixels. As
we will see when we look at the output function of the FSM, the column counter
is incremented after each write. At the end of the last computation cycle, the
FSM either continues with the loop (if the column counter is not 158) or goes to
a state to start draining the pipeline (if the column counter is 158). Draining the
pipeline involves one state for writing the penultimate result group, four cycles
of computation, and one last state for writing the final result group. The row
counter is incremented after this final write. The FSM then goes back either to
the initial sequence for the next row (if the row counter is not 477) or to the idle
state (if the row counter is 477, the terminal count).

The output functions for the FSM are shown in Tables 9.2 and 9.3. To make
the tables a little easier to read, we have left entries blank where the control
outputs are 0, and only shown the cases where they are 1. Some of the control
signals are Moore outputs, depending on the current state only. They are shown

 // Wishbone data output multiplexer

always @*
if (cyc_i && stb_i && !we_i)
if (adr_i = = 2'b00)
dat_o = {31'b0, done}; // status register read

else
dat_o = 32'b0; // other registers read as 0

else
dat_o = result_row; // for master write

idle

write_result read_prev read_curr read_next

comp1 comp2 comp3 comp4

start = 1

ack = 1 ack = 1

ack = 1

ack = 1 ack = 1 ack = 1

ack = 1

ack = 1

read_prev_0 read_curr_0 read_next_0

comp1_0 comp2_0 comp3_0 comp4_0

write_158 comp1_159 comp2_159 comp3_159 comp4_159

write_159

col = 158

col /= 158

ack = 1 and row /= 477

ack = 1 and row = 477

F I G U R E 9 .10 State
transition diagram for the Sobel
accelerator control section.

 9.2 Case Study: Video Edge-Detection C H A P T E R N I N E 401

in Table 9.2. Other control signals are Mealy outputs. For these, in Table 9.3,
we have shown the input conditions that, along with the current state, determine
their values. As in the state transition diagram, we have omitted the complemen-
tary conditions. In those cases, the Mealy outputs remain 0.

example 9 .13 Develop Verilog model code for the control section.

solut ion The control-section code includes declarations of internal signals
for the control FSM, the row and column counters, and the control signals:

parameter [4:0] idle = 5'b00000,
 read_prev_0 = 5'b00001,
 read_curr_0 = 5'b00010,
 read_next_0 = 5'b00011,
 comp1_0 = 5'b00100,

(continued)

402 C H A P T E R N I N E a c c e l e r a t o r s

TAB LE 9 .2 Output functions
for the Moore control outputs of
the FSM.

c u r r e n t
s t a t e

o
ff

s
e

t_
re

s
e

t

ro
w

_
re

s
e

t

c
o

l_
re

s
e

t

p
re

v_
ro

w
_

lo
a

d

c
u

rr
_

ro
w

_
lo

a
d

n
e

xt
_

ro
w

_
lo

a
d

s
h

if
t_

e
n

c
yc

_
o

w
e

_
o

idle 1 1 1

read_prev_0 1 1 1

read_curr_0 1 1

read_next_0 1 1

comp1_0 1

comp2_0 1

comp3_0 1

comp4_0 1

read_prev 1 1

read_curr 1 1

read_next 1 1

comp1 1

comp2 1

comp3 1

comp4 1

write_result 1 1

write_158 1 1

comp1_159 1

comp2_159 1

comp3_159 1

comp4_159 1

write_159 1 1

9.2 Case Study: Video Edge-Detection C H A P T E R N I N E 403

TAB LE 9 .3 Output functions
for the Mealy control outputs of
the FSM.

c u r r e n t
s tat e

c o n d i t i o n

ro
w

_
c

n
t_

e
n

c
o

l_
c

n
t_

e
n

0
_

o
ff

s
e

t_
c

n
t_

e
n

D
_

o
ff

s
e

t_
c

n
t_

e
n

d
o

n
e

_
s

e
t

idle start = 1

read_prev_0 ack_i = 1

read_curr_0 ack_i = 1

read_next_0 ack_i = 1 1

comp1_0 –

comp2_0 –

comp3_0 –

comp4_0 –

read_prev ack_i = 1

read_curr ack_i = 1

read_next ack_i = 1 1

comp1 –

comp2 –

comp3 –

comp4 col /= 158

comp4 col = 158

write_result ack_i = 1 1 1

write_158 ack_i = 1 1 1

comp1_159 –

comp2_159 –

comp3_159 –

comp4_159 –

write_159 ack_i = 1 and row /= 477 1 1

write_159 ack_i = 1 and row = 477 1 1

404 C H A P T E R N I N E a c c e l e r a t o r s

 comp2_0 = 5'b00101,
 comp3_0 = 5'b00110,
 comp4_0 = 5'b00111,
 read_prev = 5'b01000,
 read_curr = 5'b01001,
 read_next = 5'b01010,
 comp1 = 5'b01011,
 comp2 = 5'b01100,
 comp3 = 5'b01101,
 comp4 = 5'b01110,
 write_result = 5'b01111,
 write_158 = 5'b10000,
 comp1_159 = 5'b10001,
 comp2_159 = 5'b10010,
 comp3_159 = 5'b10011,
 comp4_159 = 5'b10100,
 write_159 = 5'b10101;
reg [4:0] current_state, next_state;
reg [9:0] row; // range 0 to 477;
reg [7:0] col; // range 0 to 159;

wire 0_base_ce, D_base_ce;

wire start;
reg offset_reset, row_reset, col_reset;

reg prev_row_load, curr_row_load, next_row_load;
reg shift_en;
reg row_cnt_en, col_cnt_en;
reg 0_offset_cnt_en, D_offset_cnt_en;
reg int_en, done_set, done;

The two counters used by the control section to keep track of progress through
rows and columns, respectively, are represented by the following always blocks:

always @(posedge clk_i) // Row counter
if (row_reset) row <= 0;
else if (row_cnt_en) row <= row + 1;

always @(posedge clk_i) // Column counter
if (col_reset) col <= 0;
else if (col_cnt_en) col <= col + 1;

Next, the model includes blocks representing the finite-state machine using the
techniques we have described in previous chapters. The state register is repre-
sented by the block:

always @(posedge clk_i) // State register
if (rst_i) current_state <= idle;
else current_state <= next_state;

A final always block combines both the state transition function and the output
function into the one block. The block also includes expressions comparing the
row and column counter values with their terminal count values, rather than
performing the comparisons in separate combinational statements. Combining
these aspects into a single block makes the Verilog model somewhat more com-
pact and simpler to understand, since the FSM is somewhat larger than those we
have previously described.

always @* begin // FSM logic
offset_reset = 1'b0; row_reset = 1'b0;
col_reset = 1'b0;
row_cnt_en = 1'b0; col_cnt_en = 1'b0;
0_offset_cnt_en = 1'b0; D_offset_cnt_en = 1'b0;
prev_row_load = 1'b0; curr_row_load = 1'b0;
next_row_load = 1'b0;
shift_en = 1'b0; cyc_o = 1'b0;
we_o = 1'b0; done_set = 1'b0;
case (current_state)

idle: begin
offset_reset = 1'b1; row_reset = 1'b1;
col_reset = 1'b1;
if (start) next_state = read_prev_0;
else next_state = idle;

end
read_prev_0: begin

col_reset = 1'b1; prev_row_load = 1'b1;
cyc_o = 1'b1;
if (ack_i) next_state = read_curr_0;
else next_state = read_prev_0;

end
read_curr_0: begin

curr_row_load = 1'b1; cyc_o = 1'b1;
if (ack_i) next_state = read_next_0;
else next_state = read_curr_0;

end
read_next_0: begin

next_row_load = 1'b1; cyc_o = 1'b1;
if (ack_i) begin

0_offset_cnt_en = 1'b1;
next_state = comp1_0;

end
else next_state = read_next_0;

end
comp1_0: begin

shift_en = 1'b1;
next_state = comp2_0;

end
...
comp4: begin

shift_en = 1'b1;

(continued)

9.2 Case Study: Video Edge-Detection C H A P T E R N I N E 405

406 C H A P T E R N I N E a c c e l e r a t o r s

if (col = = 158) next_state = write_158;
else next_state = write_result;

end
write_result: begin

cyc_o = 1'b1; we_o = 1'b1;
if (ack_i) begin

col_cnt_en = 1'b1; D_offset_cnt_en = 1'b1;
next_state = read_prev;

end
else next_state = write_result;

end
write_158: begin

cyc_o = 1'b1; we_o = 1'b1;
if (ack_i) begin

col_cnt_en = 1'b1; D_offset_cnt_en = 1'b1;
next_state = comp1_159;

end
else next_state = write_158;

end
...
write_159: begin

cyc_o = 1'b1; we_o = 1'b1;
if (ack_i) begin
D_offset_cnt_en = 1'b1;
if (row = = 477) begin
done_set = 1'b1;
next_state = idle;

end
else begin
row_cnt_en = 1'b1;
next_state = read_prev_0;

end
end
else next_state = write_159;

end
endcase

end

assign stb_o = cyc_o;

Now that we have developed all of the hardware required for the
Sobel accelerator, the remaining part is the embedded software that con-
trols its operation. As we mentioned when we introduced this example,
video edge-detection is used in a range of application areas. So rather
than redesigning the control software for each application, it makes bet-
ter sense to develop a software component that can be reused from one
application to another. We can do this by developing a driver that provides
a set of operations that gives application software an abstract view of the

accelerator. Each application can then use the driver as one part of a col-
lection of software components that implements the required functional-
ity. For example, an application that recognizes objects in video images
might apply edge-detection to each image in a video stream, followed by
grouping of edges and matching against a database of edge patterns. Such
software development is just as important as the hardware development
in a complete application. A more complete treatment can be found
in books on embedded system software development (see Section 9.5,
Further Reading).

1. If image pixels were represented using only 6 bits instead of 8, how
many bits would be required for the values of Dx, Dy and |D|?

2. Can the value of |D| for a given derivative-image pixel be computed
in parallel with the values of Dx and Dy? Why, or why not?

3. If the memory read and write time is increased from two cycles to
four, would there be suffi cient memory bandwidth for video input
and edge-detection?

4. Why do we not compute values for the left-most and right-most
pixels in each row of the derivative image?

5. How does the embedded software initiate processing of an image?
How does it determine when processing is complete?

6. What would happen if the software attempted to initiate processing
when processing of a previous image was not yet complete?

7. Is the FSM that sequences computation a Mealy, Moore, or hybrid
FSM?

9.3 V E R I F Y I N G A N A C C E L E R AT O R

Throughout this book, we have stressed the importance of verification as
part of our design methodology. It is particularly important when design-
ing accelerators, given their relative complexity. We need to ensure that
the design will operate correctly with all legal data values, and that it
will interact with the embedded processor correctly. Since the space of all
possible data values and operational sequences is astronomically large, it
is not feasible to test the design exhaustively. Rather, we need to develop
a verification plan that covers a variety of operating conditions. We will
return to this in more detail in our methodology discussion in Chapter 10.
Meanwhile, we will illustrate a simpler approach to simulation-based
verification of the Sobel accelerator described in Section 9.2.

One way to approach verification of a complex accelerator is to verify
the different aspects of its operation independently. For example, we might

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

9.3 Verifying an Accelerator C H A P T E R N I N E 407

408 C H A P T E R N I N E a c c e l e r a t o r s

verify the following aspects of the Sobel accelerator one by one, adopting
a “divide and conquer” approach:

Slave bus operations

Computation sequencing

Master bus operations

Address generation

Pixel computation

Clearly all of these aspects of the accelerator must work correctly for
the accelerator as a whole to work. However, verifying each in turn is
much simpler than trying to verify all aspects at once. Having verified
that the slave bus operations function correctly, we can then use them to
initiate computation. Then we can check that computation follows the
intended sequence of steps, with master bus operations proceeding cor-
rectly, ignoring the actual addresses and pixel values. We can then make
sure addresses are being generated correctly, and finally check that pixel
values are computed correctly. Verifying a stream-processing accelerator
would proceed similarly, but we would additionally need to verify that the
accelerator interacts correctly with the source of data being processed.

For this verification process, we need to construct a testbench that
mimics the behavior of the embedded system containing the accelerator.
If we have a verified model of the embedded processor, we can include
it in the testbench and write small test programs to run on it. The test
programs write to accelerator registers to set up and initiate operations.
On the other hand, if no processor model is available, we can write a
bus functional model of the processor, that is, a model that performs a
predetermined sequence of bus operations without actually executing any
processor instructions. Our testbench also needs to include a memory
model and bus arbiter. The memory, like the processor, need not be a
fully functional model. Instead, it might simply engage in write and read
operations on the bus, generating read data according to a predetermined
rule and discarding write data. These simplifications allow us to focus
our verification effort on the accelerator, and to create test cases in a con-
trolled manner.

example 9 .14 Develop a testbench for the Sobel accelerator that includes
a bus functional processor model. The processor should program the accelera-
tor to operate on an original image at address 00800016 to generate a derivative
image at 05300016. It should then read the status register once every 10µs until
the done bit is set. The testbench should also include a bus arbiter that gives the
accelerator priority, and a bus functional memory that returns 0 for reads and
discards data from writes.

�

�

�

�

�

solut ion Our testbench is modeled after the general system organization
shown in Figure 9.2. The accelerator is the design under verification, and the
arbiter and bus functional processor and memory form the remainder of the test-
bench. We also include a clock and reset generator. The outline of the testbench
module definition is

`timescale 1ns/1ns

module testbench;

parameter t_c = 10;
parameter [22:0] mem_base = 23'h000000;
parameter [22:0] saobel_reg_base = 23'h400000;
parameter sobel_int_reg_offset = 0;
parameter sobel_start_reg_offset = 4;
parameter sobel_O_base_reg_offset = 8;
parameter sobel_D_base_reg_offset = 12;
parameter sobel_status_reg_offset = 0;

reg clk, rst;

wire bus_cyc, bus_stb, bus_we;
wire [3:0] bus_sel;
wire [22:0] bus_adr;
wire bus_ack;
wire [31:0] bus_dat;
wire int_req;

wire sobel_cyc_o, sobel_stb_o, sobel_we_o;
wire [21:0] sobel_adr_o;
wire sobel_ack_i;
wire sobel_stb_i;
wire sobel_ack_o;
wire [31:0] sobel_dat_o;
...

always begin // Clock generator
clk = 1'b1; #(t_c/2);
clk = 1'b0; #(t_c/2);

end

initial begin // Reset generator
rst <= 1'b1;
#(2.5*t_c) rst = 1'b0;

end

sobel duv (.clk_i(clk), .rst_i(rst),
 .cyc_o(sobel_cyc_o), .stb_o(sobel_stb_o),

(continued)

9.3 Verifying an Accelerator C H A P T E R N I N E 409

410 C H A P T E R N I N E a c c e l e r a t o r s

 .we_o(sobel_we_o),
 .adr_o(sobel_adr_o), .ack_i(sobel_ack_i),
 .cyc_i(bus_cyc), .stb_i(sobel_stb_i),
 .we_i(bus_we), .adr_i(bus_adr[3:2]),
 .ack_o(sobel_ack_o),
 .dat_o(sobel_dat_o), .dat_i(bus_dat),
 .int_req(int_req));
...

endmodule

The clock generator always block uses the parameter t_c for the clock cycle time,
giving a clock frequency of 100MHz. The parameters mem_base and sobel_base

define the base addresses of the memory (00000016) and the Sobel accelerator
registers (40000016). Additional parameters define the offsets from the base
address for the control and status registers. Next, the testbench includes nets
for the bus address, data and control signals. As we will see shortly, these are
multiplexed from the various sources in the system. The testbench also declares
nets for connection specifically to the Sobel accelerator. Within the module, the
accelerator is instantiated as the design under verification (duv) and connected to
the nets.

The testbench code for the processor bus functional model is

reg cpu_cyc_o, cpu_stb_o, cpu_we_o;
reg [3:0] cpu_sel_o;
reg [22:0] cpu_adr_o;
wire cpu_ack_i;
reg [31:0] cpu_dat_o;
wire[31:0] cpu_dat_i;
...

task bus_write (input [22:0] adr, input [31:0] dat);
begin
cpu_adr_o = adr;
cpu_sel_o = 4'b1111;
cpu_dat_o = dat;
cpu_cyc_o = 1'b1; cpu_stb_o = 1'b1; cpu_we_o = 1'b1;
@(posedge clk); while (!cpu_ack_i) @(posedge clk);

end
endtask
...

initial begin // Processor bus-functional model

cpu_adr_o = 23'h000000;

cpu_sel_o = 4'b0000;

(continued)

cpu_dat_o = 32'h00000000;

cpu_cyc_o = 1'b0; cpu_stb_o = 1'b0; cpu_we_o = 1'b0;

@(negedge rst);

@(posedge clk);

// Write 008000 (hex) to 0_base_addr register

bus_write(sobel_reg_base

 + sobel_0_base_reg_offset, 32'h00008000);

// Write 053000 + 280 (hex) to D_base_addr register

bus_write(sobel_reg_base

 + sobel_D_base_reg_offset, 32'h00053280);

// Write 1 to interrupt control register (enable interrupt)

bus_write(sobel_reg_base

 + sobel_int_reg_offset, 32'h00000001);

// Write to start register (data value ignored)

bus_write(sobel_reg_base

 + sobel_start_reg_offset, 32'h00000000);

// End of write operations

cpu_cyc_o = 1'b0; cpu_stb_o = 1'b0; cpu_we_o = 1'b0;

begin: loop

forever begin

#10000;

@(posedge clk);

// Read status register

cpu_adr_o = sobel_reg_base + sobel_status_reg_offset;

cpu_sel_o = 4'b1111;

cpu_cyc_o = 1'b1; cpu_stb_o = 1'b1; cpu_we_o = 1'b0;

@(posedge clk); while (!cpu_ack_i) @(posedge clk);

cpu_cyc_o = 1'b0; cpu_stb_o = 1’b0; cpu_we_o = 1'b0;

if (cpu_dat_i[0]) disable loop;
end

end
end

The processor waits for completion of system reset, then performs the required
sequence of bus write operations to initialize the accelerator. For each bus
operation, described by the bus_write task, the processor assigns the appropri-
ate values to the address, data and control signals, then waits for the accelera-
tor to acknowledge completion of the operation. After completion of the write
to the start register, the processor enters a loop in which it waits for 10µs,
resynchronizes with the clock, then reads the accelerator status register. When
the accelerator acknowledges completion of the read operation, the processor
checks whether the done bit is 1. If so, the processor exits the loop, completing
the test.

9.3 Verifying an Accelerator C H A P T E R N I N E 411

412 C H A P T E R N I N E a c c e l e r a t o r s

The testbench code for the memory bus functional model is

wire mem_stb_i;
wire [3:0] mem_sel_i;
reg mem_ack_o;
reg [31:0] mem_dat_o;
...

always begin // Memory bus-functional model
mem_ack_o = 1'b0;
mem_dat_o = 32'h00000000;
@(posedge clk);
while (!(bus_cyc && mem_stb_i)) @(posedge clk);
if (!bus_we)
mem_dat_o = 32'h00000000; // in place of read data

mem_ack_o = 1'b1;
@(posedge clk);

end

The memory repeatedly waits until the bus_cyc and mem_stb_i signals are both
1, indicating that a memory operation is required. If bus_we is 0, the operation
is a read, so the memory provides zeros on the data outputs. In the case of a
write operation, the memory does nothing with the input data. In either case, the
memory sets the acknowledge signal to 1, and then on the next clock cycle clears
the signal back to 0, completing the operation.

The arbiter for the testbench is somewhat more involved than the other
testbench components. It uses the sobel_cyc_o and cpu_cyc_o signals as
requests from the Sobel accelerator and the processor, respectively, and
generates sobel_gnt and cpu_gnt grant signals. When either of the request
signals is activated, the arbiter activates the corresponding grant. If both
requests are activated in the same cycle, the arbiter gives preference to the
accelerator, activating its grant and leaving the processor’s grant inactive until
the accelerator’s request is deactivated. Since the grant outputs depend not only
on the values of the request inputs, but also on the preceding history of request
values, the arbiter must be implemented as a sequential circuit using an FSM.
The state transition diagram is shown in Figure 9.11. The FSM is a Mealy
machine, since that allows us to activate a grant signal in the same cycle in
which the corresponding request is activated.

The testbench code for the arbiter is

parameter sobel = 1'b0, cpu = 1'b1;
reg arbiter_current_state, arbiter_next_state;

(continued)

sobel cpu
1, –
1, 0

1, 0
1, 0

0, 0
0, 0

0, 0
0, 0

sobel_cyc_o, cpu_cyc_o
sobel_gnt, cpu_gnt

0, 1
0, 1

–, 1
0, 1

F I G U R E 9 .11 State
transition diagram for the
testbench arbiter.

 9.3 Verifying an Accelerator C H A P T E R N I N E 413

reg sobel_gnt, cpu_gnt;
. . .

always @(posedge clk) // Arbiter FSM register
if (rst)
arbiter_current_state <= sobel;

else
arbiter_current_state <= arbiter_next_state;

always @* // Arbiter logic

case (arbiter_current_state)

sobel: if (sobel_cyc_o) begin

sobel_gnt <= 1'b1; cpu_gnt <= 1'b0;

arbiter_next_state <= sobel;

end

else if (!sobel_cyc_o && cpu_cyc_o) begin

sobel_gnt <= 1'b0; cpu_gnt <= 1'b1;

arbiter_next_state <= cpu;

end

else begin

sobel_gnt <= 1'b0; cpu_gnt <= 1'b0;

arbiter_next_state <= sobel;

end

cpu: if (cpu_cyc_o) begin

sobel_gnt <= 1'b0; cpu_gnt <= 1'b1;

arbiter_next_state <= cpu;

end else if (sobel_cyc_o && !cpu_cyc_o) begin

sobel_gnt <= 1'b1; cpu_gnt <= 1'b0;

arbiter_next_state <= sobel;

end else begin

sobel_gnt <= 1'b0; cpu_gnt <= 1'b0;

arbiter_next_state <= sobel;

end

endcase

414 C H A P T E R N I N E a c c e l e r a t o r s

The rest of the testbench code represents the bus multiplexers and slave select
logic:

wire sobel_sel, mem_sel;

...

// Bus master multiplexers and logic

assign bus_cyc = sobel_gnt ? sobel_cyc_o : cpu_cyc_o;
assign bus_stb = sobel_gnt ? sobel_stb_o : cpu_stb_o;
assign bus_we = sobel_gnt ? sobel_we_o : cpu_we_o;

assign bus_sel = sobel_gnt ? 4'b1111 : cpu_sel_o;

assign bus_adr = sobel_gnt ? {1'b0, sobel_adr_o} : cpu_adr_o;

assign sobel_ack_i = bus_ack & sobel_gnt;
assign cpu_ack_i = bus_ack & cpu_gnt;

// Bus slave logic

assign sobel_sel = (bus_adr & 23'h7FFFF0) = = sobel_reg_base;
assign mem_sel = (bus_adr & 23'h400000) = = mem_base;

assign sobel_stb_i = bus_stb & sobel_sel;
assign mem_stb_i = bus_stb & mem_sel;

assign bus_ack = sobel_sel ? sobel_ack_o :
 mem_sel ? mem_ack_o :
 1'b0;

// Bus data multiplexer

assign bus_dat = sobel_gnt && bus_we || sobel_sel && !bus_we
 ? sobel_dat_o :
 cpu_gnt && bus_we
 ? cpu_dat_o :
 mem_dat_o;

The grant signals from the arbiter determine which source provides values for
the bus control and address signals. They also gate the acknowledge signals
back to the masters, so that a master that is waiting for the bus does not receive
an acknowledgment from a slave for the active master’s bus operation. The bus
slave logic decodes addresses and determines which slave is selected. The select
signals gate the strobe signal from the active master to the selected slave, and
multiplex the selected slave’s acknowledgment signal onto the bus_ack signal.
The bus data multiplexer determines the source of data for the bus_dat signal,

depending on which master is active, which slave is selected, and whether the
bus operation is a read or a write.

We can simulate the testbench of Example 9.14 to verify that the Sobel
accelerator correctly responds to slave bus operations and performs master
bus operations with correct addresses. We need to observe the values of the
bus control and address signals, as well as the internal signals of the accel-
erator. Figure 9.12 shows a simulation waveform display of the bus sig-
nals during initialization of the accelerator by the processor bus functional
model. Figures 9.13 through 9.15 show the internal signals of the accelera-
tor during the start of processing a row (Figure 9.13), during steady state
processing (Figure 9.14), and upon completion of processing a row and
commencement of the next row (Figure 9.15). Finally, Figure 9.16 shows
the internal signals on completion of processing an entire image.

While the verification shown here might give us confidence that the
design is correct, it is by no means complete. For example, it doesn’t
demonstrate that the computation produces correct values according to
the specification of the algorithm, and it doesn’t show that the control
sequencing is correct for all possible interactions between the accelerator
and other bus masters. Creating test cases for simulation-based verification
to cover all of these aspects is infeasible, given the number of permutations
of data values and ways in which components can interact. Instead, we
need to turn to more sophisticated verification techniques, such as con-
strained random test generation, coverage analysis, and property-based
formal verification. We will return to the topic of verification again in
Chapter 10, but we also refer the interested reader to advanced books on
verification listed in Section 9.5, Further Reading.

 9.3 Verifying an Accelerator C H A P T E R N I N E 415

000000 800004 C00004 000004 400004 000800 082800

00000000 00080000 08235000 10000000 00000000 00000000

lebos upc lebos

02 03 04 05 06 07 08 09 001 011 021 031

klc/hcneb_tset/

tsr/hcneb_tset/

cyc_sub/hcneb_tset/

bts_sub/hcneb_tset/

ew_sub/hcneb_tset/

da_sub/hcneb_tset/ r 000000 800004 C00004 000004 400004 000800

kca_sub/hcneb_tset/

tad_sub/hcneb_tset/ 00000000 00080000 08235000 10000000 00000000 00000000

i_bts_lebos/hcneb_tset/

o_kca_lebos/hcneb_tset/

etats_tnerruc_retibra/hcneb_tset/ lebos upc lebos

tng_lebos/hcneb_tset/

tng_upc/hcneb_tset/

les_lebos/hcneb_tset/

les_mem/hcneb_tset/

F I G U R E 9 .12 Waveform
display of bus operations for
initializing the Sobel accelerator.

416 C H A P T E R N I N E a c c e l e r a t o r s

eldi 0_verp_daer 0_rruc_daer 0_txen_daer 0_1pmoc 0_2pmoc 0_3pmoc 0_4pmoc verp_daer

082350 000800 082800 005800 082350 400800

09 001 011 021 031 041 051 061 071 081 091 002 012 022

i_klc/vud/hcneb_tset/

etats_tnerruc/vud/hcneb_tset/ eldi 0_verp_daer 0_rruc_daer 0_txen_daer 0_1pmoc 0_2pmoc 0_3pmoc 0_4pmoc verp_daer

o_cyc/vud/hcneb_tset/

o_ew/vud/hcneb_tset/

o_rda/vud/hcneb_tset/ 082350 000800 082800 005800 082350 400800

i_kca/vud/hcneb_tset/

trats/vud/hcneb_tset/

teser_tesffo/vud/hcneb_tset/

teser_wor/vud/hcneb_tset/

ne_tnc_wor/vud/hcneb_tset/

teser_loc/vud/hcneb_tset/

ne_tnc_loc/vud/hcneb_tset/

ne_tnc_tesffo_o/vud/hcneb_tset/

ne_tnc_tesffo_d/vud/hcneb_tset/

daol_wor_verp/vud/hcneb_tset/

daol_wor_rruc/vud/hcneb_tset/

daol_wor_txen/vud/hcneb_tset/

ne_tfihs/vud/hcneb_tset/

tes_enod/vud/hcneb_tset/

qer_tni/vud/hcneb_tset/

F I G U R E 9 .13 Waveform
display of accelerator internal
signals at the start of row
processing.

tluser_etirw verp_daer ruc_daer r txen_daer 1pmoc 2pmoc 3pmoc 4pmoc tluser_etirw

082350 800800 882800 805800 482350

013 023 033 043 053 063 073 083 093 004 014 024 034 044

i_klc/vud/hcneb_tset/

etats_tnerruc/vud/hcneb_tset/ tluser_etirw verp_daer ruc_daer r txen_daer 1pmoc 2pmoc 3pmoc 4pmoc tluser_etirw

o_cyc/vud/hcneb_tset/

o_ew/vud/hcneb_tset/

o_rda/vud/hcneb_tset/ 082350 800800 882800 805800 482350

i_kca/vud/hcneb_tset/

trats/vud/hcneb_tset/

teser_tesffo/vud/hcneb_tset/

teser_wor/vud/hcneb_tset/

ne_tnc_wor/vud/hcneb_tset/

teser_loc/vud/hcneb_tset/

ne_tnc_loc/vud/hcneb_tset/

ne_tnc_tesffo_o/vud/hcneb_tset/

ne_tnc_tesffo_d/vud/hcneb_tset/

daol_wor_verp/vud/hcneb_tset/

daol_wor_rruc/vud/hcneb_tset/

daol_wor_txen/vud/hcneb_tset/

ne_tfihs/vud/hcneb_tset/

tes_enod/vud/hcneb_tset/

qer_tni/vud/hcneb_tset/

F I G U R E 9 .14 Waveform
display showing row processing
in the steady state.

 9.3 Verifying an Accelerator C H A P T E R N I N E 417

4pmoc 851_etirw 951_1pmoc 951_2pmoc 951_3pmoc 951_4pmoc 951_etirw 0_verp_daer 0_rruc_daer

8F4350 CF4350 082800 005800

06291 08291 00391 02391 04391 06391 08391

i_klc/vud/hcneb_tset/

etats_tnerruc/vud/hcneb_tset/ 4pmoc 851_etirw 951_1pmoc 951_2pmoc 951_3pmoc 951_4pmoc 951_etirw 0_verp_daer 0_rruc_daer

o_cyc/vud/hcneb_tset/

o_ew/vud/hcneb_tset/

o_rda/vud/hcneb_tset/ 8F4350 CF4350 082800 005800

i_kca/vud/hcneb_tset/

trats/vud/hcneb_tset/

teser_tesffo/vud/hcneb_tset/

teser_wor/vud/hcneb_tset/

ne_tnc_wor/vud/hcneb_tset/

teser_loc/vud/hcneb_tset/

ne_tnc_loc/vud/hcneb_tset/

ne_tnc_tesffo_o/vud/hcneb_tset/

ne_tnc_tesffo_d/vud/hcneb_tset/

daol_wor_verp/vud/hcneb_tset/

daol_wor_rruc/vud/hcneb_tset/

daol_wor_txen/vud/hcneb_tset/

ne_tfihs/vud/hcneb_tset/

tes_enod/vud/hcneb_tset/

qer_tni/vud/hcneb_tset/

F IG U R E 9.15 Waveform
display showing completion of one
row and commencement of the next.

3pmoc 4pmoc 851_etirw 951_1pmoc 951_2pmoc 951_3pmoc 951_4pmoc 951_etirw eldi

87DD90 C7DD90 08DD90 082350

0476919 0676919 0876919 0086919 0286919 0486919 0686919

i_klc/vud/hcneb_tset/

etats_tnerruc/vud/hcneb_tset/ 3pmoc 4pmoc 851_etirw 951_1pmoc 951_2pmoc 951_3pmoc 951_4pmoc 951_etirw eldi

o_cyc/vud/hcneb_tset/

o_ew/vud/hcneb_tset/

o_rda/vud/hcneb_tset/ 87DD90 C7DD90 08DD90 082350

i_kca/vud/hcneb_tset/

trats/vud/hcneb_tset/

teser_tesffo/vud/hcneb_tset/

teser_wor/vud/hcneb_tset/

ne_tnc_wor/vud/hcneb_tset/

teser_loc/vud/hcneb_tset/

ne_tnc_loc/vud/hcneb_tset/

ne_tnc_tesffo_o/vud/hcneb_tset/

ne_tnc_tesffo_d/vud/hcneb_tset/

daol_wor_verp/vud/hcneb_tset/

daol_wor_rruc/vud/hcneb_tset/

daol_wor_txen/vud/hcneb_tset/

ne_tfihs/vud/hcneb_tset/

tes_enod/vud/hcneb_tset/

qer_tni/vud/hcneb_tset/

F I G U R E 9 .16 Waveform
display showing completion of
image processing.

418 C H A P T E R N I N E a c c e l e r a t o r s

1. Is it possible to verify an accelerator design using exhaustive testing?
Why, or why not?

2. What is a bus functional model?

3. Given the arbiter in the testbench for the Sobel accelerator, what
happens if the accelerator and the processor both request use of the
bus in the same clock cycle?

4. What happens if the accelerator requests use of the bus while the
processor is currently granted use?

5. Does the testbench verify correct computation of derivative pixel
values?

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

9.4 C H A P T E R S U M M A R Y

Parallelism, performing multiple processing steps at once, allows
accelerators to reduce the time required to complete an operation.

An accelerator achieves parallelism by replicating hardware
resources and by pipelining. This leads to cost/performance and
power/performance trade-offs.

The degree of achievable parallelism is constrained by data depen-
dencies within a computation.

Designing an accelerator involves analyzing an algorithm and identi-
fying a kernel to be implemented in hardware. The remainder of the
algorithm is implemented in embedded software.

Amdahl’s Law quantifies the overall speedup from accelerating a
kernel of an algorithm.

Accelerators and high-speed I/O controllers can use direct memory
access (DMA) to transfer data to or from memory without processor
intervention. An address generator in such a unit calculates memory
addresses for DMA.

An arbiter determines which of several bus masters can use the bus
at any time to access bus slaves, such as memory and I/O controller
registers.

A block-processing accelerator processes blocks of data stored in
memory. Many video and still-image processing applications are
block oriented.

A stream-processing accelerator processes data arriving from a
source in a sequence of values. Digital-signal processing (DSP) is
often stream oriented.

Accelerators include control and status registers for use by embedded
software.

Verification of an accelerator using exhaustive simulation is gener-
ally not feasible. Aspects of operation can be verified independently,
but a complete verification plan should include other forms of
verification.

9.5 F U R T H E R R E A D I N G

Computer Architecture: A Quantitative Approach, 4th Edition, John L.
Hennessy and David A. Patterson, Morgan Kaufmann Publishers,

�

�

�

�

�

�

�

�

�

�

�

9.5 Further Reading C H A P T E R N I N E 419

420 C H A P T E R N I N E a c c e l e r a t o r s

2007. An advanced textbook on computer architecture, covering
instruction-level parallelism in depth.

Parallel Computer Architecture: A Hardware/Software Approach, David
E. Culler and Jaswinder Pal Singh, Morgan Kaufmann Publishers,
1999. An in-depth treatment of parallel computing. While the book
focuses on parallel computers, many of the principles can also be
applied to architectures of hardware accelerators.

Understanding Digital Signal Processing, Richard G. Lyons, Prentice Hall,
2001. An introduction to the theory of digital signal processing (DSP).

Computers as Components: Principles of Embedded Computing System
Design, Wayne Wolf, Morgan Kaufmann Publishers, 2005. Includes
a discussion of accelerators in the context of embedded hardware
and software design, with a video-processing accelerator as a case
study.

Embedded Software Development with eCos, Anthony J. Massa, Pren-
tice Hall, 2003. Describes the Embedded Configurable Operating
System (eCos), including the hardware abstraction layer.

Comprehensive Functional Verification: The Complete Industry
Cycle, Bruce Wile, John C. Goss and Wolfgang Roesner, Morgan
Kaufmann Publishers, 2005. A detailed treatment of functional
verification strategies and techniques.

exerc ise 9 .1 In computer graphics applications, a three-dimensional vec-
tor representing a point’s position in space can be transformed by multiplying by
a 3 � 3 matrix:

Px�

Py�

Pz�

�

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 Px

Py

Pz

Determine the data dependencies in the computation and thus the maximum
available parallelism.

exerc ise 9 .2 Devise a pipeline architecture that can perform the computa-
tion described in Exercise 9.1 using all the available parallelism. Assume a new
input vector arrives and a result can be accepted on every clock cycle.

exerc ise 9 .3 If a kernel of an algorithm is accelerated by a factor of 100,
and the kernel accounts for 90% of execution time before acceleration, what is
the overall speedup?

E X E R C I S E SE X E R C I S E S

� �� �� �� � � �� �

