A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark
140 FSMD

process (clk)

begin
40 if (clk’event and clk=’1’) then
btn_reg <= btn(1l);
end if;

end process;
btn_tick <= (not btn_reg) and btn(1);
45

clr <= btn(0);
50 process (clk)
begin
if (clk’event and clk=’1’) then
ql_reg <= ql_next;
q0_reg <= gO_mnext;
55 end if;
end process;
—— next—state logic for the counter
qi_next <= (others=>’0’) when clr=’1’ else
gl_reg + 1 when btn_tick=’1’ else
0 ql_reg;
qO_next <= (others=>’0’) when clr=’1’ else
q0_reg + 1 when db_tick='1’ else

qO0_reg;

—— counter output
65 b_count <= std_logic_vector{(ql_reg);
d_count <= std_logic_vector(qO_reg);

end arch;

6.3 DESIGN EXAMPLES

6.3.1 Fibonacci humber circuit
The Fibonacci numbers constitute a sequence defined as

0 ifi =0
Fib(@) =< 1 ifi=1
Fib(i — 1) + fib(i —2) ifi>1

One way to calculate fib(7) is to construct the function iteratively, from O to the desired 1.
This approach requires two temporary registers to store the two most recently calculated
values (i.e., fib(i — 1) and fib(i — 2)) and one index register to keep track of the number
of iterations. The ASMD chart is shown in Figure 6.9, in which t1 and tO are temporary
storage registers and n is the index register. In addition to the regular data input and output
signals, 1 and £, we include a command signal, start, which signals the beginning of
operation, and two status signals: ready, which indicates that the circuit is idle and ready
to take new input, and done.tick, which is asserted for one clock cycle when the operation

http://www.a-pdf.com/?product-split-demo

DESIGN EXAMPLES 141

| idle

ready <="1'

A

—

done_tick<=1

Figure 6.9 ASMD chart of a Fibonacci circuit.

142 FSMD

is completed. Since this circuit, like many other FSMD designs, is probably a part of a
larger system, these signals are needed to interface with other subsystems.

The ASMD chart has three states. The idle state indicates that the circuit is currently
idle. When start is asserted, the FSMD moves to the op state and loads initial values to
three registers. The t0 and t1 registers are loaded with 0 and 1, which represent fib(0)
and fib(1), respectively. The n register is loaded with i, the desired number of iterations.

The main computation is iterated through the op state by three RT operations:

o tl«—tl + t0

o t0«—tl

en«—mn -1
The first two RT operations obtain a new value and store the two most recently calculated
values in t1 and t0. The third RT operation decrements the iteration index. The iteration
ended when n reaches 1 or its initial value is O (i.e., fib(0)). Unlike a regular flowchart, the
operations in an ASMD block can be performed concurrently in the same clock cycle. We
put all comparison and RT operations in the op state to reduce the computation time. Note
that the new values of the t1 and tO registers are loaded at the same time when the FSMD
exits the op state (i.e., at the next rising edge of the clock). Thus, the origina}l value of t1,
not £1+t0, is stored to t0. The purpose of the done state is to generate the one-clock-cycle
done_tick signal to indicate completion of the computation. This state can be omitted if
this status signal is not needed.

The code follows the ASMD chart and is shown in Listing 6.4. Note that the Fibonacci
function grows rapidly and the output signal should be wide enough to accommodate the
desired result.

Listing 6.4 Fibonacci number circuit

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
entity fib is
5 port(
clk, reset: in std_logic;
start: in std_logic;
i: in std_logic_vector (4 downto 0);
ready, done_tick: out std_logic;
10 f: out std_logic_vector (19 downto 0)
)
end fib;

architecture arch of fib is

15 type state_type is (idle,op,done);
signal state_reg, state_next: state_type;
signal tO_reg, tO_next: unsigned (19 downto 0);
signal til_reg, ti_next: unsigned (19 downto 0);
signal n_reg, n_next: unsigned (4 downto 0);

0 begin
— fsmd state and data registers
process (clk ,reset)
begin

if reset=’1’ then
25 state_reg <= idle;
tO_reg <= (others=>’0");

30

35

40

45

50

55

65

70

tl_reg <=
n_reg <=

DESIGN EXAMPLES

(others=>°0’);
(others=

>707);

elsif (clk’event and clk=’1’) then

state_reg <=

state_next;

tO0_reg <= tO0_next;

tl_reg <= tl_next;

n_reg <= n_next;
end if;

end process;
—— fsmd next—state

logic

process(state_reg,n_reg,tO_reg,tl_reg,start,i,n_next)

begin
ready <=’0;
done_tick <=
state_next <=

)07;

t0_next <= t0_reg;
ti_next <= tl_reg;
n_next <= n_reg;

case state_reg is
when idle =>
ready <= ’17;
if start=’1"’
t0_next <=
tl_next <=

state_reg;

then

(others=>’07);
(0=>'1’, others=>’0");

n_next <= unsigned(i);

state_next
end if;
when op =>

<= op;

if n_reg=0 then

ti_next <=

state_next
elsif n_reg=1

state_next
else

tl_next <=

tO0_next <=

n_next <=

end if;

when done =>

done_tick <=
state_next <=
end case;
end process;
— output

(others=>’0’);

<= done;
then
<= done;

ti_reg + tO_reg;
ti_reg;

n_reg - 1;

)1’;

idle;

f <= std_logic_vector(tl_reg);

end arch;

6.3.2 Division circuit

143

Because of complexity, the division operator cannot be synthesized automatically. We use
an FSMD to implement the long-division algorithm in this subsection. The algorithm is
illustrated by the division of two 4-bit unsigned integers in Figure 6.10. The algorithm can

144 FSMD

divisor
/ 00110 — quotient
0010/00001101 — dividend
0000
0001
0000
0011
0010
0010
0010
0001 — remainder

Figure 6.10 Long division of two 4-bit unsigned integers.

v

=

compare and subtract
rh_tmp q_bit |
shift left 1bit 4—I
A4 A4
rh rl

Figure 6.11 Sketch of division circuit’s data path.

be summarized as follows:

1. Double the dividend width by appending 0’s in front and align the divisor to the
leftmost bit of the extended dividend.
2. If the corresponding dividend bits are greater than or equal to the divisor, subtract the
divisor from the dividend bits and make the corresponding quotient bit 1. Otherwise,
keep the original dividend bits and make the quotient bit 0.
3. Append one additional dividend bit to the previous result and shift the divisor to the
right one position.
4. Repeat steps 2 and 3 until all dividend bits are used.
The sketch of the data path is shown in Figure 6.11. Initially, the divisor is stored in the
d register and the extended dividend is stored in the rh and rl registers. In each iteration,
the rh and rl registers are shifted to the left one position. This corresponds to shifting the
divisor to the right of the previous algorithm. We can then compare rh and 4 and perform
subtraction if rh is greater than or equal to d. When rh and rl are shifted to the left, the
rightmost bit of r1 becomes available. It can be used to store the current quotient bit. After

DESIGN EXAMPLES 145

we iterate through all dividend bits, the result of the last subtraction is stored in rh and
becomes the remainder of the division, and all quotients are shifted into rl.

The ASMD chart of the division circuit is somewhat similar to that of the previous
Fibonacci circuit. The FSMD consists of four states, idle, op, last, and done. To make
the code clear, we extract the compare and subtract circuit to separate code segments. The
main computation is performed in the op state, in which the dividend bits and divisor are
compared and subtracted and then shifted left 1 bit. Note that the remainder should not be
shifted in the last iteration. We create a separate state, last, to accommodate this special
requirement. As in the preceding example, the purpose of the done state is to generate a
one-clock-cycle done_tick signal to indicate completion of the computation. The code is
shown in Listing 6.5.

Listing 6.5 Division circuit

library ieece;

use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
entity div is

5 generic (
W: integer:=8;
CBIT: integer:=4 — CBIT=log2 (W)+1
)5
port(
10 clk, reset: in std_logic;

start: in std_logic;
dvsr, dvnd: in std_logic_vector(W-1 downto 0);
ready, done_tick: out std_logic;
quo, rmd: out std_logic_vector(W-1 downto 0)
is)5
end div;

architecture arch of div is
type state_type is (idle,op,last,done);
20 signal state_reg, state_next: state_type;
signal rh_reg, rh_next: unsigned(W-1 downto 0);
signal rl_reg, rl_next: std_logic_vector(W-1 downto 0);
signal rh_tmp: unsigned(W-1 downto 0);
signal d_reg, d_next: unsigned(W-1 downto 0);

2 signal n_reg, n_next: unsigned(CBIT-1 downto 0);
signal q_bit: std_logic;
begin

—— fsmd state and data registers
process (clk ,reset)
30 begin
if reset=’1’ then
state_reg <= idle;
rh_reg <= (others=>’07);
rl_reg <= (others=>°0’);
3 d_reg <= (others=>’07);
n_reg <= (others=>’07);
elsif (clk’event and clk=’1’) then
state_reg <= state_next;
rh_reg <= rh_next;

146 FSMD

40 rl_reg <= rl_mnext;
d_reg <= d_next;
n_reg <= n_next;
end if;
end process;
45
— fsmd next—state logic and data path logic
process (state_reg,n_reg,rh_reg,rl_reg,d_reg,
start,dvsr,dvnd,q_bit,rh_tmp,n_next)
begin
50 ready <=’0";
done_tick <= 07,
state_next <= state_reg;
rh_next <= rh_reg;
rl_next <= rl_reg;
55 d_next <= d_reg;
n_next <= n_reg;
case state_reg is
when idle =>
ready <= ’17;

60 if start=’1’ then
rh_next <= (others=>’0’);
rl_next <= dvnd; — dividend
d_next <= unsigned(dvsr); — divisor
n_next <= to_unsigned(W+1, CBIT); —— index
65 state_next <= 0p;
end if;

when op =>
—— shift rh and rl left
rl_next <= rl_reg(W-2 downto 0) & q_bit;

7 rh_next <= rh_tmp(W-2 downto 0) & rl_reg(W-1);
——decrease index
n_next <= n_reg - 1;

if (n_next=1) then
state_next <= last;
75 end if H
when last => —— last iteration
rl_next <= rl_reg(W-2 downto 0) & g_bit;
rh_next <= rh_tmp;
state_next <= done;
%0 when done =>
state_next <= idle;
done_tick <= ’17;
end case;
end process;
85
—— compare and subtract
process (rh_reg, d_reg)
begin
if rh_reg >= d_reg then
90 rh_tmp <= rh_reg - d_reg;
q_bit <= ’17;
else

DESIGN EXAMPLES 147

rh_tmp <= rh_reg;
q_bit <= ’0°’;
95 end if;
end process;

—— output
quo <= rl_reg;
100 rmd <= std_logic_vector(rh_reg);
end arch;

6.3.3 Binary-to-BCD conversion circuit

We discussed the BCD format in Section 4.5.2. In this format, a decimal number is rep-
resented as a sequence of 4-bit BCD digits. A binary-to-BCD conversion circuit converts
a binary number to the BCD format. For example, the binary number "0010 0000 0000"
becomes "0101 0001 0010" (i.e., 51214) after conversion.

The binary-to-BCD conversion can be processed by a special BCD shift register, which
is divided into 4-bit groups internally, each representing a BCD digit. Shifting a BCD
sequence to the left requires adjustment if a BCD digit is greater than 9, after shifting.
For example, if a BCD sequence is "0001 0111" (i.e., 171p), it should become "0011 0100"
(i.e., 341g) rather than "0010 1110". The adjustment requires subtracting 10;¢ (i.e., "1010")
from the right BCD digit and adding 1 (which can be considered as a carry-out) to the next
BCD digit. Note that subtracting 1014 is equivalent to adding 6, for a 4-bit binary number.
Thus, the foregoing adjustment can also be achieved by adding 6,0 to the right BCD digit.
The carry-out bit is generated automatically in this process.

In the actual implementation, it is more efficient to first perform the necessary adjustment
on a BCD digit and then shift. We can check whether a BCD digit is greater than 4,4 and,
if this is the case, add 319 to the digit. After all the BCD digits are corrected, we can then
shift the entire register to the left one position. A binary-to-BCD conversion circuit can
be constructed by shifting the binary input to a BCD shift register bit by bit, from MSB to
LSB. Its operation can be summarized as follows:

1. For each 4-bit BCD digit in a BCD shift register, check whether the digit is greater

than 4. If this is the case, add 314 to the digit.

2. Shift the entire BCD register left one position and shift in the MSB of the input binary

sequence to the LSB of the BCD register.

3. Repeat steps 1 and 2 until all input bits are used.

The conversion process of a 7-bit binary input, "111 1111" (i.e., 1271¢), is demonstrated in
Table 6.1.

The code of a 13-bit conversion circuit is shown in Listing 6.6. It uses a simple FSMD to
control the overall operation. When the start signal is asserted, the binary input is stored
into the p2s register. The FSM then iterates through the 13 bits, similar to the process
described in previous examples. Four adjustment circuits are used to correct the four BCD
digits. For clarity, they are isolated from the next-state logic and described in a separate
code segment.

Listing 6.6 Binary-to-BCD conversion circuit

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;

148 FSMD

Table 6.1 Binary-to-BCD conversion example

Special BCD shift register
Operation Binary
BCD BCD BCD input
digit2 | digit1 | digit0
Initial
111 1111
Bit 6 | no adjustment
shift left 1 bit 111 1111
(1)
Bit5 | no adjustment
shift left 1 bit 111 1111
(310)
Bit4 | no adjustment
shift left 1 bit 111) 1111
(710)
Bit3 | BCD digit 0 adjustment 1010
shift left 1 bit 1 0101 | 111
(110) (510)
Bit2 | BCD digit 0 adjustment 1 1000
shift left 1 bit 11 0001 | 11
(B0 (110)
Bit1 | no adjustment
shift left 1 bit 110 0011 |1
(610) (310)
Bit0 | BCD digit 1 adjustment 1001 0011
shift left 1 bit 1 0010 0111
(110) (210 (710)

entity bin2bcd is
5 port(
clk: in std_logic;
reset: in std_logic;
start: in std_logic;
bin: in std_logic_vector (12 downto 0);
10 ready, done_tick: out std_logic;
bcd3,bcd2,bcdl ,bcd0: out std_logic_vector (3 downto 0)
)
end bin2bcd ;

s architecture arch of bin2bcd is
type state_type is (idle, op, done);
signal state_reg, state_next: state_type;
signal p2s_reg, p2s_next: std_logic_vector (12 downto 0);
signal n_reg, n_next: unsigned (3 downto 0);
20 signal bcd3_reg, bcd2_reg, bcdl_reg, bcdO_reg:
unsigned (3 downto 0);
signal bcd3_next, bcd2_next, bcdl_next, bcdO_next:
unsigned (3 downto 0);
signal bcd3_tmp, bcd2_tmp, bcdl_tmp, bcdO_tmp:

25

30

45

50

55

65

75

unsigned (3 downto 0);
begin
—— state and data registers
process (clk,reset)
begin
if reset=’1"
state_reg <=

then
idle;

DESIGN EXAMPLES

p2s_reg <= (others=>’07);
n_reg <= (others=>°0’);
bcd3_reg <= (others=>’0’);
bcd2_reg <= (others=>’0’);
bcdl_reg <= (others=>’0’);
bcdO_reg <= (others=>’0");

elsif (clk’event and clk=’1’) then
state_reg <=

state_next;

p2s_reg <= p2s_next;
n_reg <= n_next;

bcd3_reg <= bcd3_next;

bcd2_reg <= bcd2_next;

bcdl_reg <= bcdli_next;

bcdO_reg <= bcdO_next;
end if;

end process;

— fsmd next—state

logic / data path operations

process (state_reg,start,p2s_reg,n_reg,n_next,bin,
bcdO_reg,bcdl_reg,bcd2_reg,bcd3_reg,
bcdO_tmp ,bcdl_tmp,bcd2_tmp,bcd3_tnmp)

begin
state_next <=
ready <= ’0’;
done_tick <= ’0’;
p2s_next <= p2s_reg;

state_reg;

bcdO_next <= bcdO_reg;
bcdl_next <= bcdl_reg;
bcd2_next <= bcd2_reg;
bcd3_next <= bcd3_reg;

n_next <= n_reg;
case state_reg is
when idle =>
ready <= ’1°7;
if start=’1’ then
state_next <=
bcd3_next <=
bcd2_next <=
becdl_next <=
bcdO_next <=
n_next <="1101";
pP2s_next <= bin;

op;

state_next <= op;
end if;
when op =>
—— shift in binary bit

(others=>'07");
(others=>’0");
(others=>’0");
(others=>’0’);

index
input

shift

register

149

150 FSMD

p2s_next <= p2s_reg(ll downto 0) & ’07;
— shift 4 BCD digits

80 bcdO_next <= bcdO_tmp (2 downto 0) & p2s_reg(12);
bcdl_next <= bcdi_tmp(2 downto 0) & bcdO_tmp(3);
bcd2_next <= bcd2_tmp(2 downto 0) & bcdi_tmp(3);
bcd3_next <= becd3_tmp(2 downto 0) & bcd2_tmp(3);
n_next <= n_reg - 1;

85 if (n_next=0) then

state_next <= done;
end if;
when done =>
state_next <= idle;
50 done_tick <= ’17;
end case;
end process;
—— data path function units
95 —— four BCD adjustment circuits
bcdO_tmp <= bcdO_reg + 3 when bcdO_reg > 4 else
bcdO_reg;
bcdl_tmp <= bcdi_reg + 3 when bcdl_reg > 4 else
bcdl_reg;

100 bcd2_tmp <= bcd2_reg + 3 when bcd2_reg > 4 else

bcd2_reg;
bcd3_tmp <= bcd3_reg + 3 when bcd3_reg > 4 else
bcd3_reg;

105 —— OoUlput

bcd0 <= std_logic_vector (bcdO_reg);

bcdl <= std_logic_vector(bcdl_reg);

bcd2 <= std_logic_vector(bcd2_reg);

bcd3 <= std_logic_vector(bcd3_reg);
1o end arch;

6.3.4 Period counter

A period counter measures the period of a periodic input waveform. One way to construct
the circuit is to count the number of clock cycles between two rising edges of the input
signal. Since the frequency of the system clock is known, the period of the input signal
can be derived accordingly. For example, if the frequency of the system clock is f and the
number of clock cycles between two rising edges is N, the period of the input signal is
N % 1 .

The design in this subsection measures the period in milliseconds. Its ASMD chart is
shown in Figure 6.12. The period counter takes a measurement when the start signal is
asserted. We use a rising-edge detection circuit to generate a one-clock-cycle tick, edge, to
indicate the rising edge of the input waveform. After start is asserted, the FSMD moves to
the waite state to wait for the first rising edge of the input. It then moves to the count state
when the next rising edge of the input is detected. In the count state, we use two registers
to keep track of the time. The t register counts for 50,000 clock cycles, from 0 to 49,999,
and then wraps around. Since the period of the system clock is 20 ns, the t register takes
1 ms to circulate through 50,000 cycles. The p register counts in terms of milliseconds. It

DESIGN EXAMPLES 151

ide

ready <='1'

m
w
=
o
=3
"
—_

Figure 6.12 ASMD chart of a period counter.

152 FSMD

is incremented once when the t register reaches 49,999. When the FSMD exits the count
state, the period of the input waveform is stored in the p register and its unit is milliseconds.
The FSMD asserts the done_tick signal in the done state, as in previous examples.

The code follows the ASMD chart and is shown in Listing 6.7. We use a constant,
CLK_MS_COUNT, for the boundary of the millisecond counter. It can be replaced if a different
measurement unit is desired.

Listing 6.7 Period counter

library ieee;
use ieece.std_logic_1164.all;
use ieee.numeric_std. all;
entity period_counter is
5 port(
clk, reset: im std_logic;
start, si: in std_logic;
ready, done_tick: out std_logic;
prd: out std_logic_vector (9 downto 0)
10)

end period_counter;

architecture arch of period_counter is
constant CLK_M3S_COUNT: integer := 50000; — I ms tick
15 type state_type is (idle, waite, count, done);
signal state_reg, state_next: state_type;
signal t_reg, t_next: unsigned (15 downto 0);
signal p_reg, p_next: unsigned(9 downto 0);
signal delay_reg: std_logic;
2 signal edge: std_logic;
begin
—— state and data register
process (clk,reset)
begin
2 if reset=’1’ then
state_reg <= idle;
t_reg <= (others=>’0’);
p_reg <= (others=>°0°);
delay_.reg <= ’0’;
30 elsif (clk’event and clk=’1’) then
state_reg <= state_next;
t_.reg <= t_next;
p_reg <= p_next;
delay_reg <= s8ij;
3 end if;
end process;

— edge detection circuit
edge <= (not delay_reg) and si;
40
—— fsmd next—state logic / data path operations
process (start ,edge ,state_reg,t_reg,t_next,p_reg)
begin
ready <= ’07;
45 done_tick <= ’0°’;

DESIGN EXAMPLES 153

state_next <= state_reg;
p_next <= p_reg;
t_next <= t_reg;
case state_reg is
50 when idle =>
ready <= '17;
if (start=’1’) then
state_next <= waite;
end if;
55 when waite => — wait for the first edge
if (edge=’1’) then
state_next <= count;
t_next <= (others=>’0’);
p_-next <= (others=>’0");

60 end if;
when count =>
if (edge=’1’) then —— 2nd edge arrived
state_next <= done;
else —— otherwise count
6s if t_reg = CLK_MS_COUNT-1 then — Ims tick

t_next <= (others=>’0");
p_next <= p_reg + 1;
else
t_next <= t_reg + 1;
70 end if;
end if;
when done =>
done_tick <= ’17;
state_next <= idle;
7 end case;
end process;
prd <= std_logic_vector(p_reg);
end arch;

6.3.5 Accurate low-frequency counter

A frequency counter measures the frequency of a periodic input waveform. The common
way to construct a frequency counter is to count the number of input pulses in a fixed amount
of time, say, 1 second. Although this approach is fine for high-frequency input, it cannot
measure a low-frequency signal accurately. For example, if the input is around 2 Hz, the
measurement cannot tell whether it is 2.123 Hz or 2.567 Hz. Recall that the frequency
is the reciprocal of the period (i.e., frequency = m). An alternative approach is to
measure the period of the signal and then take the reciprocal to find the frequency. We use
this approach to implement a low-frequency counter in this subsection.

This design example demonstrates how to use the previously designed parts to construct
a large system. For simplicity, we assume that the frequency of the input is between 1 and
10 Hz (i.e., the period is between 100 and 1000 ms). The operation of this circuit includes
three tasks:

1. Measure the period.

2. Find the frequency by performing a division operation.

3. Convert the binary number to BCD format.

154 FSMD

We can use the period counter, division circuit, and binary-to-BCD converter to perform
the three tasks and create another FSM as the master control to sequence and coordinate
the operation of the three circuits. The block diagram is shown in Figure 6.13(a), and the
ASM chart of the master control is shown in Figure 6.13(b). The FSM uses the start and
done_tick signals of these circuits to initialize each task and to detect completion of the
task. The code is shown in Listing 6.8.

Listing 6.8 Low-frequency counter

library iecee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity low_freq_counter is
port(
clk, reset: in std_logic;
start: in std_logic;
si: im std_logic;
bcd3,bcd2,bcdl ,bcd0: out std_logic_vector (3 downto 0O)

w

10)

end low_freq_counter;

architecture arch of low_freq_counter is

type state_type is (idle, count, frq, b2b);

15 signal state_reg, state_next: state_type;
signal prd: std_logic_vector (9 downto 0);
signal dvsr, dvnd, quo: std_logic_vector (19 downto 0);
signal prd_start, div_start, b2b_start: std_logic;
signal prd_done_tick, div_done_tick, b2b_domne_tick:

20 std_logic;

— component instantiation
25 —— instantiate period counter
prd_count_unit: entity work.period_counter
port map(clk=>clk, reset=>reset, start=>prd_start, si=>si,
ready=>open, done_tick=>prd_done_tick, prd=>prd);
—— instantiate division circuit
30 div_unit: entity work.div
generic map(W=>20, CBIT=>5)
port map(clk=>clk, reset=>reset, start=>div_start,
dvsr=>dvsr, dvnd=>dvnd, quo=>quo, rmd=>open,
ready=>open, done_tick=>div_done_tick);

35 —— instantiate binary—to—BCD convertor
bin2bcd_unit: entity work.bin2bcd
port map

(clk=>clk, reset=>reset, start=>b2b_start,
bin=>quo (12 downto 0), ready=>open,
40 done_tick=>b2b_done_tick,
bcd3=>bcd3, bcd2=>bcd2, becdi=>bcdl, bcd0=>bcd0);
—— signal width extension
dvnd <= std_logic_vector (to_unsigned (1000000, 20));
dvsr <= "0000000000" & prd;

45

DESIGN EXAMPLES 155

si l

prd_start Sstart s
stan —————»; prd_done_tick done_fick period_counter
prd
100000010
div_start start dvnd dvsr
main control done_tick :
ESM div_done_tick S - div
quo rmd
b2b_start start bin
done_tick .
b2b_done_tick - bin2bcd
> bed3 bed2 bed1 bed
l———> bcd0

L bedt

ey bed2

» bed3
(a) Top-level block diagram
[ide 3 ‘ P 3
‘ ¥ f ¥
‘ < start=1 F: : @_done_ﬁckﬂ F
N ; .
T : i T
- (pstat<=1) - b2bstart<=1)
+— +—
; count b2b -
| g | |
@_done_tickﬂ F !
I 1
1 T '
div_start <=1 ’

(b) ASM chart of main control

Figure 6.13 Accurate low-frequency counter.

