
CHA P T E R 7

Introduction to Digital Signal Processing

7.1 Introduction

The processing of analogue electrical signals and digital data from one form to

another is fundamental to many electronic circuits and systems. Both analogue

(voltage and current) signals and digital (logic value) data can be processed by many

types of circuits, and the task of finding the right design is a sometimes confusing

but normal part of the design process. It depends on identifying the benefits and

limitations of the possible implementations to select the most appropriate solution for

the particular scenario. Initial concerns are:

• Is the input analogue or digital?

• Is the output analogue or digital?

• Will signal processing use analogue or digital techniques?

This idea is shown in Figure 7.1, where signal processing uses either an analogue

signal processor (ASP) or a digital signal processor (DSP). If an analogue signal is

to be processed or output as digital data, then the analogue signal must be converted

to digital using the analogue-to-digital converter (ADC). The operation of this

circuit is discussed in Chapter 8. If a digital signal is to be processed or output as

an analogue signal, then the digital data will be converted to analogue using the

digital-to-analogue converter (DAC). The operation of this circuit is also

discussed in Chapter 8.

www.newnespress.com

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

ASP and DSP each has its own advantages and disadvantages:

Analogue implementation:

Advantages:

• high bandwidth (from DC up to high signal frequencies)

• high resolution

Analogue
signal input

Analogue
signal output

Analogue
signal input

Analogue
signal input

Analogue
signal input

Analogue
signal output

Analogue
signal output

Analogue
signal output

Analogue signal
processor

Analogue signal
processor ADC

Digital signal
processorADC Digital data

output

Digital data
input

Digital data
input

Digital data
input

Digital data
input

Digital data
output

Digital signal
processor

Digital signal
processor

DAC

Digital data
output

Digital signal
processorADC DAC

DAC

Analogue signal
processor

Analogue signal
processor

ADCDAC Digital data
output

Figure 7.1: Processing of analogue signals and digital data

476 Chapter 7

www.newnespress.com

• ease of design

• good approach for simpler design solutions

Disadvantages:

• component value change occurs with component aging

• component value change occurs with temperature variations

• behavior variance between manufactured circuits due to component

tolerances

• difficult to change circuit operation

Digital implementation:

Advantages:

• programmable and configurable solution (either programmed in software

on a processor or configured in hardware on a CPLD/FPGA)

• operation insensitive to temperature variations

• precise behavior (no behavior variance due to varying component

tolerances)

• can implement algorithms that cannot be implemented in analogue

• ease of upgrading and modifying the design

Disadvantages:

• implementation issues due to issues related to numerical calculations

• requires high-performance digital processing

• design complexity

• higher cost

Increasingly, digital implementations are the preferred choice because of their

advantages over analogue and because of the ability to implement advanced

Introduction to Digital Signal Processing 477

www.newnespress.com

algorithms that are only possible in the digital domain. In many cases where there

are analogue signals and also a requirement for analogue circuitry, the analogue

circuitry is kept to a minimum, and the majority of the work performed by the

circuit uses digital techniques. The two main areas for digital signal processing

considered in this text are digital filters [1–4] and digital control algorithms [5–7].

These can be implemented both in software on the microprocessor (mP),
microcontroller (mC), or the digital signal processor (DSP) and in hardware on the

complex programmable logic device (CPLD) or field programmable gate array

(FPGA). The basis for all possible implementation approaches is a circuit design that

will accept samples of digitized analogue signals or direct digital data, perform an

algorithm that uses the current sampled value and previous sampled values, and

output the digital data directly or in analogue form. The algorithm to be implemented

is typically developed using the Z-transform. This algorithm is an equation (or set of

equations) that defines a current output in terms of the sums and differences of a

current input sample and previous input samples, along with weighting factors.

However, to achieve a working implementation of the algorithm, a number of key

steps are required:

• analysis of the signal to filter or system to control

• creation of the design specification

• design of the algorithm to fulfill the design requirements

• simulation of the operation of the algorithm

• analysis of the stability of the resulting system

• implementation of the algorithm in the final system

• testing of the final system

It is not the purpose of this text to provide a comprehensive introduction to the

Z-transform, but rather to highlight its key points and how the algorithm can be

implemented in hardware within a CPLD or FPGA.

Whether digital filtering or digital control is required, a typical system for

undertaking DSP tasks is shown in Figure 7.2. Here, the digital system accepts an

analogue input and outputs an analogue response. This is undertaken on one or

more inputs and creates one or more outputs. In the view shown in Figure 7.2,

478 Chapter 7

www.newnespress.com

a DSP core contains the algorithm to implement in addition to a control unit

that creates the necessary control signals for ADC control, DAC control,

communications port control, and the correct operation of the algorithm. Also

shown is a programming/configuration port used to upload a software program

(processor-based system) or a hardware configuration (FPGA- or CPLD-based

system).

An alternative to using multiple ADCs to sample the analogue input is to use a single

ADC, then switch the different analogue inputs to the ADC in turn. The system that

utilizes individual ADCs for each analogue input has the capability to sample all

analogue inputs in parallel. A system that uses a single switched ADCmust sample each

input in series (one after another). A parallel ADC arrangement provides for a short

sampling period (compared to the serial arrangement, whose signal sampling period

Digital core
(digital signal
processing)

ADC nADC 1

DAC mDAC 1

Communications
port

Programming /
configuration

port

Digital core
control

(reset, clock,
etc.)

Analogue input 1 Analogue input n

Analogue output 1 Analogue output m

Figure 7.2: Generic digital signal processing arrangement (with analogue I/O)

Introduction to Digital Signal Processing 479

www.newnespress.com

equals the time taken to sample one analogue input multiplied by the number of

inputs). However, the need for a parallel or serial arrangement depends on the system

requirements and the signal sampling period required. Figure 7.3 shows this idea for a

system with four analogue inputs and each digital output is stored in a register.

The choice of ADC architecture determines the number of control pins required by

the ADCs and DACs and the conversion time (A/D and D/A). The choice of

ADC Digital
output 1Register

Analogue
input 1

ADC Digital
output 2Register

Analogue
input 2

ADC Digital
output 3Register

Analogue
input 3

ADC Digital
output 4

Digital
output 1

Digital
output 2

Digital
output 3

Digital
output 4

Register
Analogue

input 4

(a) Parallel sampling of analogue inputs

ADC

RegisterAnalogue
input 1

Register

Register

Register

(b) Serial sampling of analogue inputs

Analogue
switch

Analogue
input 2

Analogue
input 3

Analogue
input 4

Analogue
switch
control

Figure 7.3: Parallel or serial sampling of an analogue input

480 Chapter 7

www.newnespress.com

digital code (e.g., unsigned straight binary or 2s complement signed binary)

influences the amount of digital signal encoding and decoding required within the

digital core.

It should now be noted that integral to the design of these circuits but not shown here

are anti-aliasing filters at the system input (analogue input) to remove any high-

frequency signals that would cause aliasing problems with the sampled data.

Example 1: Single-Input, Single-Output DSP Top-Level Description

The basic design architecture shown in Figure 7.2 can be coded in VHDL for a

particular design requirement. Consider a custom digital signal processor design that

is to sample a single analogue input via an eight-bit ADC, undertake a particular

digital signal processing algorithm, and produce an analogue output via an eight-bit

DAC. The digital design is to be implemented in hardware using a CPLD or FPGA.

The timing of the digital design is to be controlled by a digital input master clock and

an active low asynchronous reset. The basic architecture for this design is shown in

Figure 7.4. Here, the DSP core:

• uses the AD7575 eight-bit LC2MOS successive approximation ADC [8]

• uses the AD7524 eight-bit buffered multiplying DAC [9]

• incorporates a simple UART (universal asynchronous receiver

transmitter) for communications between the DSP core and an

external digital system, using only the Tx (transmit) and Rx (receive)

serial data connections

The digital core contains the algorithm to implement, the necessary control unit that

will create the ADC and DAC control signals, and the UART control and data

signals. The data to pass to the UART transmitter and the data (or commands) to

be received from the UART receiver are specified in the design requirements. The

UART has a DR (data received) output used to inform the control unit that a byte

has been received from the external digital system and a Transmit input that is used to

instruct the UART to transmit a byte of data.

The set-up is shown in Figure 7.5. Here, a CPLD implements the digital actions and

interfaces directly with the ADC and DAC. All devices are considered to operate on

the same power supply voltage (e.g., þ3.3V) and use the same I/O standards. A

suitable clock frequency must be chosen to ensure that all operations can be

Introduction to Digital Signal Processing 481

www.newnespress.com

undertaken within the CPLD (or FPGA) in the required time. The CPLD interfaces

with an external system (here a PC) via the RS-232C interface. To enable this, the

voltage levels created and accepted by the CPLD must be level-shifted to those

required by the RS-232C standard.

The top-level design for the digital circuitry to be configured into the CPLD (or

FPGA) can be coded in VHDL. The VHDL structural code (the name of the top-level

design here is top) is shown in Figure 7.6. Here, the core within the CPLD or FPGA

contains two main functional blocks: the first contains the digital core (Dsp_Core),

and the second contains the UART (Uart).

The I/O pins for the design are detailed in Table 7.1.

AD7575

Analogue input

Digital core
(digital signal processing and control)

Communications
port

Rx_Int

Tx_Int

Tx

Rx

Analogue output

AD7524

Rx_Clock

Tx_Clock

Uart_Reset

ADC_Data (8-bits)

ADC_CS

ADC_BUSY

ADC_TP

ADC_RD

DAC_CS

DAC_WR Master_Clock

Master_Reset

DAC_Data (8-bits)

DR

Transmit

Figure 7.4: Custom DSP core architecture

482 Chapter 7

www.newnespress.com

The internal signals used within the design are detailed in Table 7.2.

The basic operation of the digital system is shown in the flow chart in Figure 7.7.

At the start of the circuit operation, the circuit is in a reset state. It then follows a

repetitive sequence—sample the analogue input, run the digital algorithm, and

update the analogue output—that continues until the circuit is reset back to the

reset state.

An example DSP core structure for this design is shown in Figure 7.8. The algorithm,

control unit, and I/O register functions are placed in separate blocks. The VHDL

code for this structure is shown in Figure 7.9, where the control unit is designed to

create four control signals (algorithm control (3:0)) to control the movement and

storage of data through the algorithm block. There will be as many control signals as

required for the particular algorithm.

An example UART structure for this design is shown in Figure 7.10. The receiver and

transmitter functions are placed in separate blocks. The VHDL code for this structure

is shown in Figure 7.11.

Analogue input Analogue output

CPLD

DACADC

Tx/Rx

Tx/Rx

PC

RS-232C
level shifter IC

Master clock

Master reset

ADC control
and data

DAC control
and data

DAC
reference

ADC
reference

Figure 7.5: System set-up

Introduction to Digital Signal Processing 483

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Top IS
 PORT (ADC_BUSY : IN STD_LOGIC;
 ADC_TP : OUT STD_LOGIC;
 ADC_RD : OUT STD_LOGIC;
 ADC_CS : OUT STD_LOGIC;
 ADC_Data : IN STD_LOGIC_VECTOR (7 downto 0);
 DAC_WR : OUT STD_LOGIC;
 DAC_CS : OUT STD_LOGIC;
 DAC_Data : OUT STD_LOGIC_VECTOR (7 downto 0);
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Rx : IN STD_LOGIC;
 Tx : OUT STD_LOGIC);
END ENTITY Top;

ARCHITECTURE Structural OF Top IS

SIGNAL Tx_Int : STD_LOGIC_VECTOR (7 downto 0);
SIGNAL Tx_Clock : STD_LOGIC;
SIGNAL Rx_Int : STD_LOGIC_VECTOR (7 downto 0);
SIGNAL Rx_Clock : STD_LOGIC;
SIGNAL Uart_Reset : STD_LOGIC;
SIGNAL DR : STD_LOGIC;
SIGNAL Transmit : STD_LOGIC;

COMPONENT Dsp_Core IS
 PORT (ADC_BUSY : IN STD_LOGIC;
 ADC_TP : OUT STD_LOGIC;
 ADC_RD : OUT STD_LOGIC;
 ADC_CS : OUT STD_LOGIC;
 ADC_Data : IN STD_LOGIC_VECTOR (7 downto 0);
 DAC_WR : OUT STD_LOGIC;
 DAC_CS : OUT STD_LOGIC;
 DAC_Data : OUT STD_LOGIC_VECTOR (7 downto 0);
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Rx : IN STD_LOGIC_VECTOR (7 downto 0);
 Rx_Clock : OUT STD_LOGIC;

47
48
49

 Tx : OUT STD_LOGIC_VECTOR (7 downto 0);
 Tx_Clock : OUT STD_LOGIC;
 Uart_Reset : OUT STD_LOGIC;

Figure 7.6: Top-level structural VHDL code

484 Chapter 7

www.newnespress.com

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

 DR : IN STD_LOGIC;
 Transmit : OUT STD_LOGIC);
END COMPONENT Dsp_Core;

COMPONENT Uart IS
 PORT (Uart_Reset : IN STD_LOGIC;
 Rx_Clock : IN STD_LOGIC;
 Tx_Clock : IN STD_LOGIC;
 Rx_Int : OUT STD_LOGIC_VECTOR (7 downto 0);
 Tx_Int : IN STD_LOGIC_VECTOR (7 downto 0);
 Rx : IN STD_LOGIC;
 Tx : OUT STD_LOGIC;
 DR : OUT STD_LOGIC;
 Transmit : IN STD_LOGIC);
END COMPONENT Uart;

BEGIN

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

I1 : Dsp_Core
PORT MAP(ADC_BUSY => ADC_BUSY,

 ADC_TP => ADC_TP,
 ADC_RD => ADC_RD,
 ADC_CS => ADC_CS,
 ADC_Data => ADC_Data,
 DAC_WR => DAC_WR,
 DAC_CS => DAC_CS,
 DAC_Data => DAC_Data,
 Master_Clock => Master_Clock,
 Master_Reset => Master_Reset,
 Rx => Rx_Int,
 Rx_Clock => Rx_Clock,
 Tx => Tx_Int,
 Tx_Clock => Tx_Clock,
 Uart_Reset => Uart_Reset,
 DR => DR,
 Transmit => Transmit);

I2 : Uart
 PORT MAP(Uart_Reset => Uart_Reset,
 Rx_Clock => Rx_Clock,
 Tx_Clock => Tx_Clock,
 Rx_Int => Rx_Int,
 Tx_Int => Tx_Int,
 Rx => Rx,

95
96
97
98
99

 Tx => Tx,
 DR => DR,
 Transmit => Transmit);

END ARCHITECTURE Structural;

Figure 7.6: (Continued)

Introduction to Digital Signal Processing 485

www.newnespress.com

Example 2: Switched Analogue Input

Consider now a circuit that accepts two analogue inputs and produces a single

analogue output. The basic architecture for this design is shown in Figure 7.12 where

the DSP core:

• uses the AD7575 eight-bit LC2MOS successive approximation ADC [8]

• uses the AD7524 eight-bit buffered multiplying DAC [9]

• incorporates a simple UART for communications between the DSP core and

an external digital system, with just the Tx (transmit) and Rx (receive) serial

data connections used

Table 7.1: Example I/O pins

Pin name Direction Purpose

ADC_BUSY Input ADC converts analogue input to digital
ADC_TP Output Connect to logic 1 in application (test use only)
ADC_RD Output ADC read (active low)
ADC_CS Output ADC chip select (active low)
ADC_Data Input 8-bit data from ADC
DAC_WR Output DAC write (active low)
DAC_CS Output DAC chip select (active low)
DAC_Data Output 8-bit data to DAC
Master_Clock Input Clock input
Master_Reset Input Reset control input (active low asynchronous reset)
Rx Input Serial data input to UART
Tx Output Serial data output from UART

Table 7.2: Example internal signals

Signal name Purpose

Tx_Int 8-bit data (byte) to send out via the UART
Tx_Clock UART transmitter clock (x16 baud rate)
Rx_Int 8-bit data (byte) received from the UART
Rx_Clock UART receiver clock (x16 baud rate)
Uart_Reset Reset control input (active low asynchronous reset)
DR Byte of data received on UART Rx input
Transmit Control signal to initiate the transmission of a byte

of data on the UART Tx output

486 Chapter 7

www.newnespress.com

AlgorithmInput
Register

Control Unit
UART
control
signals

ADC_Data

Output
Register

DAC_Data

Algorithm
control

Output
store

Input
store

Master clock Master reset

ADC
control
signals

DAC
control
signals

Rx_Int

Tx_Int

Note: All blocks have a common master reset input.

Figure 7.8: Example DSP core structure

Start

Take sample

Run algorithm

Update output

Figure 7.7: Overview of core operation (flow chart)

Introduction to Digital Signal Processing 487

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Dsp_Core IS
 PORT (ADC_BUSY : IN STD_LOGIC;
 ADC_TP : OUT STD_LOGIC;
 ADC_RD : OUT STD_LOGIC;
 ADC_CS : OUT STD_LOGIC;
 ADC_Data : IN STD_LOGIC_VECTOR (7 downto 0);
 DAC_WR : OUT STD_LOGIC;
 DAC_CS : OUT STD_LOGIC;
 DAC_Data : OUT STD_LOGIC_VECTOR (7 downto 0);
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Rx : IN STD_LOGIC_VECTOR (7 downto 0);
 Rx_Clock : OUT STD_LOGIC;
 Tx : OUT STD_LOGIC_VECTOR (7 downto 0);
 Tx_Clock : OUT STD_LOGIC;
 Uart_Reset : OUT STD_LOGIC;
 DR : IN STD_LOGIC;
 Transmit : OUT STD_LOGIC);
END ENTITY Dsp_Core;

ARCHITECTURE Structural OF Dsp_Core IS

SIGNAL ADC_Data_Int : STD_LOGIC_VECTOR (7 downto 0);
SIGNAL DAC_Data_Int : STD_LOGIC_VECTOR (7 downto 0);
SIGNAL Algorithm_Control : STD_LOGIC_VECTOR (3 downto 0);
SIGNAL Input_Store : STD_LOGIC;
SIGNAL Output_Store : STD_LOGIC;

COMPONENT Algorithm IS
 PORT (ADC_Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Reset : IN STD_LOGIC;

Algorithm_Control : IN STD_LOGIC_VECTOR(3 downto 0);
Tx : OUT STD_LOGIC_VECTOR(7 downto 0);
DAC_Data_Out : OUT STD_LOGIC_VECTOR(7 downto 0));

END COMPONENT Algorithm;

COMPONENT Register_8_Bit IS
 PORT (Store : IN STD_LOGIC;

Reset : IN STD_LOGIC;
Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
Data_Out : OUT STD_LOGIC_VECTOR(7 downto 0));

END COMPONENT Register_8_Bit;

COMPONENT Control_Unit IS
 PORT (Master_Clock : IN STD_LOGIC;

Master_Reset : IN STD_LOGIC;

Figure 7.9: Example DSP core structure VHDL code

488 Chapter 7

www.newnespress.com

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

62
63
64
65
66
67
68
69

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

58
59
60
61

Rx : IN STD_LOGIC_VECTOR(7 downto 0);
Uart_Reset : OUT STD_LOGIC;
Rx_Clock : OUT STD_LOGIC;
Tx_Clock : OUT STD_LOGIC;
Transmit : OUT STD_LOGIC;
DR : IN STD_LOGIC;
ADC_BUSY : IN STD_LOGIC;
ADC_TP : OUT STD_LOGIC;
ADC_RD : OUT STD_LOGIC;
ADC_CS : OUT STD_LOGIC;
DAC_WR : OUT STD_LOGIC;
DAC_CS : OUT STD_LOGIC;
Input_Store : OUT STD_LOGIC;
Output_Store : OUT STD_LOGIC);

END COMPONENT Control_Unit;

BEGIN

I_Algorithm : Algorithm
PORT MAP(ADC_Data_In => ADC_Data_Int,

Reset => Master_Reset,
Algorithm_Control => Algorithm_Control,
Tx => Tx,
DAC_Data_Out => DAC_Data_Int);

I_ControlUnit : Control_Unit
PORT MAP (Master_Clock => Master_Clock,

Master_Reset => Master_Reset,
Rx => Rx,
Uart_Reset => Uart_Reset,
Rx_Clock => Rx_Clock,
Tx_Clock => Tx_Clock,
Transmit => Transmit,
DR => DR,
ADC_BUSY => ADC_BUSY,
ADC_TP => ADC_TP,
ADC_RD => ADC_RD,
ADC_CS => ADC_CS,
DAC_WR => DAC_WR,
DAC_CS => DAC_CS,
Input_Store => Input_Store,
Output_Store => Output_Store);

Input_Register : Register_8_Bit
PORT MAP (Store => Input_Store,

Reset => Master_Reset,
Data_In => DAC_Data_Int,
Data_Out => DAC_Data);

Outut_Register : Register_8_Bit
PORT MAP (Store => Output_Store,

Reset => Master_Reset,
Data_In => DAC_Data_Int,
Data_Out => DAC_Data);

END ARCHITECTURE Structural;

Figure 7.9: (Continued)

www.newnespress.com

UART transmitter

UART receiver

Tx_Int Tx

RxRx_Int

Uart_Reset

DR

Rx_Clock

Tx_Clock
Transmit

Figure 7.10: Example UART structure

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Uart IS
 PORT (Uart_Reset : IN STD_LOGIC;
 Rx_Clock : IN STD_LOGIC;
 Tx_Clock : IN STD_LOGIC;
 Rx_Int : OUT STD_LOGIC_VECTOR (7 downto 0);
 Tx_Int : IN STD_LOGIC_VECTOR (7 downto 0);
 Rx : IN STD_LOGIC;
 Tx : OUT STD_LOGIC;
 DR : OUT STD_LOGIC;
 Transmit : IN STD_LOGIC);
END ENTITY Uart;

ARCHITECTURE Structural OF Uart IS

COMPONENT Transmitter IS
 PORT (Tx_Clock : IN STD_LOGIC;
 Reset : IN STD_LOGIC;

Figure 7.11: Example UART structure VHDL code

490 Chapter 7

www.newnespress.com

The design is basically the same as that described in Example 1, plus an additional

output (Input_Select) from the control unit that selects the analogue input using the

analogue switch such that:

• When Input_Select= 0, then analogue input 1 is selected.

• When Input_Select= 1, then analogue input 2 is selected.

The basic operation of the digital system is shown in the flowchart in Figure 7.13.

At the start of the circuit operation, the circuit is in a reset state. It then

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

 Transmit : IN STD_LOGIC;
 Tx_Int : IN STD_LOGIC_VECTOR(7 downto 0);
 Tx : OUT STD_LOGIC);
END COMPONENT Transmitter;

COMPONENT Receiver IS
 PORT (Rx_Clock : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 Rx : IN STD_LOGIC;
 DR : OUT STD_LOGIC;
 Rx_Int : OUT STD_LOGIC_VECTOR(7 downto 0));
END COMPONENT Receiver;

BEGIN

I1: Transmitter
PORT MAP (Tx_Clock => Tx_Clock,

Reset => Uart_Reset,
46
47
48
49
50
51
52
53
54
55
56
57

 Transmit => Transmit,
 Tx_Int => Tx_Int,
 Tx => Tx);

I2 : Receiver
 PORT MAP (Rx_Clock => Rx_Clock,
 Reset => Uart_Reset,
 Rx => Rx,
 DR => DR,
 Rx_Int => Rx_Int);

END ARCHITECTURE Structural;

Figure 7.11: (Continued)

Introduction to Digital Signal Processing 491

www.newnespress.com

follows a repetitive sequence—sample both analogue inputs, run the digital

algorithm, and update the analogue output—until the circuit is reset back to the

reset state.

The top-level design for the digital circuitry to be configured into the CPLD (or

FPGA) can be coded in VHDL. The VHDL structural code (the name of the top-level

AD7575

Analogue input 1

Digital core
(digital signal processing and control)

Communications
port

Rx_Int

Tx_Int

Tx

Rx

AD7524

Rx_Clock

Tx_Clock

Uart_Reset

ADC_Data (8-bits)

ADC_CS
ADC_BUSY

ADC_TP

ADC_RD

DAC_CS

DAC_WR
Master_Clock

Master_Reset

DAC_Data (8-bits)

DR

Analogue input 2

Analogue output

Input_Select

Input_Select

Analogue switch

Transmit

Figure 7.12: Custom DSP core architecture

492 Chapter 7

www.newnespress.com

design here is Top) is shown in Figure 7.14.Here, the core within the CPLD or FPGA

contains two main functional blocks: the first contains the digital core (Dsp_Core),

and the second contains the UART (Uart).

The I/O pins for the design are detailed in Table 7.3.

Start

Run algorithm

Update output

Select analogue
input 1

Take sample and
store input sample

Select analogue
input 2

Take sample and
store input sample

Figure 7.13: Overview of core operation (flowchart)

www.newnespress.com

Introduction to Digital Signal Processing 493

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Top IS
 PORT (ADC_BUSY : IN STD_LOGIC;
 ADC_TP : OUT STD_LOGIC;
 ADC_RD : OUT STD_LOGIC;
 ADC_CS : OUT STD_LOGIC;
 ADC_Data : IN STD_LOGIC_VECTOR (7 downto 0);
 DAC_WR : OUT STD_LOGIC;
 DAC_CS : OUT STD_LOGIC;
 DAC_Data : OUT STD_LOGIC_VECTOR (7 downto 0);
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Rx : IN STD_LOGIC;
 Tx : OUT STD_LOGIC;
 Input_Select : OUT STD_LOGIC);
END ENTITY Top;

ARCHITECTURE Structural OF Top IS

SIGNAL Tx_Int : STD_LOGIC_VECTOR (7 downto 0);
SIGNAL Tx_Clock : STD_LOGIC;
SIGNAL Rx_Int : STD_LOGIC_VECTOR (7 downto 0);
SIGNAL Rx_Clock : STD_LOGIC;
SIGNAL Uart_Reset : STD_LOGIC;
SIGNAL DR : STD_LOGIC;
SIGNAL Transmit : STD_LOGIC;

COMPONENT Dsp_Core IS
 PORT (ADC_BUSY : IN STD_LOGIC;
 ADC_TP : OUT STD_LOGIC;
 ADC_RD : OUT STD_LOGIC;
 ADC_CS : OUT STD_LOGIC;
 ADC_Data : IN STD_LOGIC_VECTOR (7 downto 0);
 DAC_WR : OUT STD_LOGIC;
 DAC_CS : OUT STD_LOGIC;
 DAC_Data : OUT STD_LOGIC_VECTOR (7 downto 0);
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;

46
47
48
49
50
51
52

 Rx : IN STD_LOGIC_VECTOR (7 downto 0);
 Rx_Clock : OUT STD_LOGIC;
 Tx : OUT STD_LOGIC_VECTOR (7 downto 0);
 Tx_Clock : OUT STD_LOGIC;
 Uart_Reset : OUT STD_LOGIC;
 DR : IN STD_LOGIC;
 Transmit : OUT STD_LOGIC;

53 Input_Select : OUT STD_LOGIC);

Figure 7.14: Top-level structural VHDL code

494 Chapter 7

www.newnespress.com

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

BEGIN

I1 : Dsp_Core
 PORT MAP(ADC_BUSY => ADC_BUSY,
 ADC_TP => ADC_TP,
 ADC_RD => ADC_RD,
 ADC_CS => ADC_CS,
 ADC_Data => ADC_Data,
 DAC_WR => DAC_WR,
 DAC_CS => DAC_CS,
 DAC_Data => DAC_Data,
 Master_Clock => Master_Clock,
 Master_Reset => Master_Reset,
 Rx => Rx_Int,
 Rx_Clock => Rx_Clock,
 Tx => Tx_Int,
 Tx_Clock => Tx_Clock,
 Uart_Reset => Uart_Reset,
 DR => DR,
 Transmit => Transmit,
 Input_Select => Input_Select);

56
57
58
59
60
61
62
63
64
65
66
67
68

COMPONENT Uart IS
 PORT (Uart_Reset : IN STD_LOGIC;
 Rx_Clock : IN STD_LOGIC;
 Tx_Clock : IN STD_LOGIC;
 Rx_Int : OUT STD_LOGIC_VECTOR (7 downto 0);
 Tx_Int : IN STD_LOGIC_VECTOR (7 downto 0);
 Rx : IN STD_LOGIC;
 Tx : OUT STD_LOGIC;
 DR : OUT STD_LOGIC;
 Transmit : IN STD_LOGIC);
END COMPONENT Uart;

54
55

END COMPONENT Dsp_Core;

91
92
93
94
95
96
97
98
99
100
101
102

I2 : Uart
 PORT MAP(Uart_Reset => Uart_Reset,
 Rx_Clock => Rx_Clock,
 Tx_Clock => Tx_Clock,
 Rx_Int => Rx_Int,
 Tx_Int => Tx_Int,
 Rx => Rx,
 Tx => Tx,
 DR => DR,
 Transmit => Transmit);

END ARCHITECTURE Structural;

Figure 7.14: (Continued)

Introduction to Digital Signal Processing 495

www.newnespress.com

7.2 Z-Transform

The Z-transform is used in the design and analysis of sampled data systems to

describe the properties of a sampled data signal and/or a system. It is used in all

aspects of digital signal processing as a way to:

• describe the properties of a sampled data signal and/or a system

• transform a continuous time system described using Laplace transforms into a

discrete time equivalent

• mathematically analyze the signal and/or system

• view a sampled data signal and/or a system graphically as a block diagram

The Laplace transform is used in continuous time systems to describe a transfer

function (the system input-output relationship) with a set of poles and zeros.

A continuous time transfer function of a system is represented by the equation:

YðsÞ
XðsÞ ¼ GðsÞ ¼ NðsÞ

DðsÞ

Table 7.3: Example I/O pins

Pin name Direction Purpose

ADC_BUSY Input ADC converts analogue input to digital
ADC_TP Output Connect to logic 1 in application (test use only)
ADC_RD Output ADC read (active low)
ADC_CS Output ADC chip select (active low)
ADC_Data Input 8-bit data from ADC
DAC_WR Output DAC write (active low)
DAC_CS Output DAC chip select (active low)
DAC_Data Output 8-bit data to DAC
Master_Clock Input Clock input
Master_Reset Input Reset control input (active low asynchronous reset)
Rx Input Serial data input to UART
Tx Output Serial data output from UART
Input_Select Output Analogue switch control (0= analogue input 1 selected,

1= analogue input 2 selected)

496 Chapter 7

www.newnespress.com

where:

Y(s) is the output signal from the system

X(s) is the input signal to the system

G(s) is the system transfer function

N(s) is the numerator of the equation

D(s) is the denominator of the equation

This equation is then expanded to become:

YðsÞ
XðsÞ ¼

b0 þ b1sþ b2s
2 þ :::þ bm:s

m

a0 þ a1sþ a2s2 þ :::þ an:sn

The poles of the characteristic equation can be found by solving the

denominator for:

DðsÞ ¼ 0

The zeros of the characteristic equation can be found by solving the

denominator for:

NðsÞ ¼ 0

Analysis of the poles and zeros determines the performance of the system in both

the time and frequency domains. These poles and zeros are complex numbers

composed of real (Re(s)) and imaginary (Im(s)) parts. For a system to be stable, the

poles of the system must lie to the left of the imaginary axis on the graph of the

real and imaginary parts (the Argand diagram), as shown in Figure 7.15. Any pole to

the right of the axis indicates an unstable system. A pole that appears on the

imaginary axis corresponds to a marginally stable system. The available analysis

techniques are described in many DSP, digital filter design, and digital control texts,

so they will not be covered further in this text.

The Z-transform is used in discrete time systems to create a discrete time transfer

function of the system with a set of poles and zeros. It is a formal transformation for

Introduction to Digital Signal Processing 497

www.newnespress.com

discrete time signals (signals described in terms of their samples) to a new complex

variable called z. For a discrete time signal x(n), then:

xðnÞ ¼ xð0Þ; xð1Þ; xð2Þ; : : : ; etc:

Parentheses indicate the signal sample number. The Z-transform for this is written as

an infinite power series in terms of the complex variable z as:

ZfxðnÞg ¼ xð0Þ þ xð1Þz�1 þ xð2Þz�2 þ : : :

This could be also written as:

ZfxðnÞg ¼ XðzÞ ¼
X

xðnÞz�1

The pulse transfer function of a system is now defined as the Z-transform of the

output divided by the Z-transform of the input and is written as:

GðzÞ ¼ ZfyðnÞg
ZfxðnÞg ¼ YðzÞ

XðzÞ

Re(s)

Im(s)

Stable

0

Unstable

Figure 7.15: Argand diagram to analyze the stability
of a continuous-time system

498 Chapter 7

www.newnespress.com

where:

• Y(z), is the output signal from the system

• X(z), is the input signal to the system

• G(z), is the pulse transfer function

for a general discrete time transfer function written as:

GðzÞ ¼ YðzÞ
XðzÞ ¼

NðzÞ
DðzÞ

where:

• Y(z), is the output signal from the system

• X(z), is the input signal to the system

• G(z), is the system transfer function

• N(z), is the numerator of the general discrete time transfer function

• D(z), is the denominator of the general discrete time transfer function

This is then expanded to become:

YðzÞ
XðzÞ ¼

b0 þ b1zþ b2z
2 þ :::þ bm:z

m

a0 þ a1zþ a2z2 þ :::þ an:zn

The poles of the characteristic equation can be found by solving the

denominator for:

DðzÞ ¼ 0

The zeros of the characteristic equation can be found by solving the

denominator for:

NðzÞ ¼ 0

Analysis of the poles and zeros determines the performance of the system in both

the time and frequency domains. These poles and zeros are complex numbers

Introduction to Digital Signal Processing 499

www.newnespress.com

composed of real (Re(z)) and imaginary (Im(z)) parts. For a system to be

stable, the poles of the system must lie within the unit circle on the graph of

the real and imaginary parts (the Argand diagram), as shown in Figure 7.16.

Any pole outside the unit circle indicates an unstable system. A pole that

appears on the unit circle corresponds to a marginally stable system. The

available analysis techniques are described in many DSP, digital filter

design, and digital control texts, so they will not be covered further in

this text.

Comparing systems defined using the Laplace transform and the Z-transform, a

continuous time system with a pole at s will have the same dynamic characteristics as

a discrete time system with a pole at:

z ¼ esT

Here, T is the sampling period of the signal sampling. This allows a discrete-

time system to be designed initially as a continuous-time system, then to be

translated to a discrete-time implementation. The discrete-time implementation

uses signal samples (the current sample and delayed [previous] samples).

Re(z)

Im(z)

+1.0–1.0

+1.0

Stable

0

Unstable

–1.0

Figure 7.16: Argand diagram showing the unit circle to analyze
the stability of a discrete-time system

500 Chapter 7

www.newnespress.com

However, care must be taken in the implementation of the discrete-time system

to account for implementation limitations and for the effect of frequency

warping, which occurs when an analogue prototype system is translated to a

discrete-time implementation. These aspects are discussed in the next section, on

digital control.

The effect of delaying a signal by n samples is to multiply its Z-transform by z�n. This

effect is used to implement a discrete-time transfer function either in software or in

hardware by sampling and delaying signals. A delay by one sample (Z�1) is shown in

Figure 7.17,

where:

(Data Output(z)) ¼ (Data input(z))z�1

Here, D-type flip-flops with asynchronous active low resets store the input data.

The Store input is the clock input to each of the flip-flops (all flip-flops are

considered to have a common clock input) provides the control for the storage

of the data input.

A delay element design used to store a value and delay by one sample is a register. An

eight-bit data delay element design in VHDL is shown in Figure 7.18.

Figure 7.19 provides an example VHDL test bench for the delay element.

The individual delay elements can be cascaded to provide a delay-by-m output where

m is an integer number that identifies how many clock control signals are required

before the input signal becomes an output.

Z–1Data
Input

Data
Output

Store

Reset

n n

Figure 7.17: Delay element (n-bit register)

Introduction to Digital Signal Processing 501

www.newnespress.com

Example 3: Delay-by-3 Circuit

To illustrate the delay-by-m circuit, consider a delay-by-3 circuit using three delay

elements as shown in Figure 7.20, where:

(No Delay(z)) ¼ (Data input(z))
(Delay By One(z)) ¼ (Data input(z)z�1

(Delay By Two(z)) ¼ (Data input(z))z�2

(Delay By Three(z)) ¼ (Data input(z))z�3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Delay IS
 PORT (Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 Data_Out : OUT STD_LOGIC_VECTOR(7 downto 0));
END ENTITY Delay;

ARCHITECTURE Behavioural OF Delay IS

BEGIN

Store_Process: PROCESS(Store, Data_In, Reset)

BEGIN

 IF (Reset = '0') THEN

 Data_Out(7 downto 0) <= "00000000";

 ELSIF (Store'EVENT AND Store = '1') THEN

 Data_Out(7 downto 0) <= Data_In(7 downto 0);

 END IF;

END PROCESS Store_Process;

END ARCHITECTURE Behavioural;

Figure 7.18: Delay element (eight-bit register)

502 Chapter 7

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Delay_vhd IS
END Test_Delay_vhd;

ARCHITECTURE Behavioural OF Test_Delay_vhd IS

COMPONENT Delay
PORT(
 Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 Data_Out : OUT STD_LOGIC_VECTOR(7 downto 0));
END COMPONENT;

SIGNAL Store : STD_LOGIC := '0';
SIGNAL Reset : STD_LOGIC := '0';
SIGNAL Data_In : STD_LOGIC_VECTOR(7 downto 0) := (others=>'0');

SIGNAL Data_Out : STD_LOGIC_VECTOR(7 downto 0);

BEGIN

uut: Delay PORT MAP(
 Data_In => Data_In,
 Store => Store,
 Reset => Reset,
 Data_Out => Data_Out);

Reset_Process : PROCESS

BEGIN

 Wait for 0 ns; Reset <= '0';
 Wait for 5 ns; Reset <= '1';
 Wait;

END PROCESS Reset_Process;

Store_Process : PROCESS

BEGIN

 Wait for 0 ns; Store <= '0';
 Wait for 10 ns; Store <= '1';
 Wait for 10 ns; Store <= '0';

END PROCESS Store_Process;

DataIn_Process : PROCESS

BEGIN

 Wait for 0 ns; Data_In <= "00000000";
 Wait for 60 ns; Data_In <= "11111111";
 Wait for 20 ns; Data_In <= "00000000";
 Wait for 20 ns; Data_In <= "11111111";
 Wait for 20 ns; Data_In <= "00000000";

 Wait for 20 ns;

END PROCESS DataIn_Process;

END ARCHITECTURE Behavioural;

Figure 7.19: VHDL test bench for delay element

www.newnespress.com

Here, the input data and each of the delay element outputs is also available for

monitoring signal progression through the circuit.

Such a circuit could be coded in VHDL using a dataflow, behavioral, or structural

description. Figure 7.21 shows a behavioral description for this design using two

processes. The first process is created to store the input signal in three eight-bit

registers, the outputs of which are internal signals. The second process takes the

internal signals and provides these as outputs. In the structure illustrated here, the

internal signals can be read by another process within the design if this delay-by-3

circuit is modified within a larger design.

Figure 7.22 provides an example VHDL test bench for the delay-by-3 behavioral

description.

Using the delay element shown in Figure 7.18, then a structural VHDL

description for the delay-by-3 circuit can be created. An example of this is

shown in Figure 7.23.

In this design, the outputs from the delay elements are now buffered using an

eight-bit buffer (Buffer_Cell). The VHDL code for this buffer design is shown in

Figure 7.24.

Z–1Data
Input

Delay_By_Three

Store

Reset

Z–1

Delay_By_Two

Delay_By_One

No_Delay

Z–1

Figure 7.20: Delay-by-3 circuit schematic

www.newnespress.com

504 Chapter 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Delay_By_3_Behavioural IS
 PORT (Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 No_Delay : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_One : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_Two : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_Three : OUT STD_LOGIC_VECTOR(7 downto 0));
END ENTITY Delay_By_3_Behavioural;

ARCHITECTURE Behavioural OF Delay_By_3_Behavioural IS

SIGNAL Internal_1 : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Internal_2 : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Internal_3 : STD_LOGIC_VECTOR(7 downto 0);

BEGIN

Store_Process : PROCESS(Store, Data_In, Internal_1, Internal_2, Internal_3, Reset)

BEGIN

 IF (Reset = '0') THEN

 Internal_1 (7 downto 0) <= "00000000";
 Internal_2 (7 downto 0) <= "00000000";
 Internal_3 (7 downto 0) <= "00000000";

 ELSIF (Store'EVENT AND Store = '1') THEN

 Internal_1(7 downto 0) <= Data_In(7 downto 0);
 Internal_2(7 downto 0) <= Internal_1(7 downto 0);
 Internal_3(7 downto 0) <= Internal_2(7 downto 0);

 END IF;

END PROCESS Store_Process;

Update_Outputs: PROCESS(Data_In, Internal_1, Internal_2, Internal_3)

BEGIN

No_Delay(7 downto 0) <= Data_In(7 downto 0);
Delay_By_One(7 downto 0) <= Internal_1(7 downto 0);
Delay_By_Two(7 downto 0) <= Internal_2(7 downto 0);
Delay_By_Three(7 downto 0) <= Internal_3(7 downto 0);

END PROCESS Update_Outputs;

END ARCHITECTURE Behavioural;

Figure 7.21: Delay-by-3 circuit behavioral VHDL description

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Delay_By_3_Behavioural_vhd IS
END Test_Delay_By_3_Behavioural_vhd;

ARCHITECTURE Behavioural OF Test_Delay_By_3_Behavioural_vhd IS

COMPONENT Delay_By_3_Behavioural
 PORT (Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 No_Delay : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_One : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_Two : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_Three : OUT STD_LOGIC_VECTOR(7 downto 0));

END COMPONENT;

SIGNAL Store : STD_LOGIC:= '0';
SIGNAL Reset : STD_LOGIC := '0';
SIGNAL Data_In : STD_LOGIC_VECTOR(7 downto 0) := (others=>'0');

SIGNAL Data_Out : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL No_Delay : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Delay_By_One : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Delay_By_Two : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Delay_By_Three : STD_LOGIC_VECTOR(7 downto 0);

BEGIN

uut: Delay_By_3_Behavioural PORT MAP(
 Data_In => Data_In,
 Store => Store,
 Reset => Reset,
 No_Delay => No_Delay,
 Delay_By_One => Delay_By_One,
 Delay_By_Two => Delay_By_Two,

43
44
45

 Delay_By_Three => Delay_By_Three);

Figure 7.22: VHDL test bench for delay-by-3 circuit behavioral VHDL description

www.newnespress.com

506 Chapter 7

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Reset_Process : PROCESS

BEGIN

 Wait for 0 ns; Reset <= '0';
 Wait for 5 ns; Reset <= '1';
 Wait;

END PROCESS Reset_Process;

Store_Process : PROCESS

BEGIN

 Wait for 0 ns; Store <= '0';
 Wait for 10 ns; Store <= '1';
 Wait for 10 ns; Store <= '0';

END PROCESS Store_Process;

DataIn_Process : PROCESS

BEGIN

 Wait for 0 ns; Data_In <= "00000000";
 Wait for 60 ns; Data_In <= "11111111";
 Wait for 20 ns; Data_In <= "00000000";
 Wait for 20 ns; Data_In <= "11111111";
 Wait for 20 ns; Data_In <= "00000000";

77
78
79
80
81
82
83

 Wait for 20 ns;

END PROCESS DataIn_Process;

END ARCHITECTURE Behavioural;

Figure 7.22: (Continued)

www.newnespress.com

Introduction to Digital Signal Processing 507

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Delay_By_3_Structural IS
 PORT (Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 No_Delay : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_One : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_Two : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_Three : OUT STD_LOGIC_VECTOR(7 downto 0));
END ENTITY Delay_By_3_Structural;

ARCHITECTURE Structural OF Delay_By_3_Structural IS

SIGNAL Internal_1 : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Internal_2 : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Internal_3 : STD_LOGIC_VECTOR(7 downto 0);

COMPONENT Delay IS
 PORT (Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 Data_Out : OUT STD_LOGIC_VECTOR(7 downto 0));
END COMPONENT Delay;

COMPONENT Buffer_Cell IS
 PORT (Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR(7 downto 0));
END COMPONENT Buffer_Cell;

BEGIN
I_Delay1 : Delay
 PORT MAP(Data_In => Data_In,
 Store => Store,
 Reset => Reset,
 Data_Out => Internal_1);

I_Delay2 : Delay
 PORT MAP(Data_In => Internal_1,
 Store => Store,
 Reset => Reset,
 Data_Out => Internal_2);

I_Delay3 : Delay
 PORT MAP(Data_In => Internal_2,
 Store => Store,
 Reset => Reset,
 Data_Out => Internal_3);

I_Buffer1 : Buffer_Cell
 PORT MAP(Data_In => Data_In,
 Data_Out => No_Delay);

I_Buffer2 : Buffer_Cell
 PORT MAP(Data_In => Internal_1,
 Data_Out => Delay_By_One);

I_Buffer3 : Buffer_Cell
 PORT MAP(Data_In => Internal_2,
 Data_Out => Delay_By_Two);

I_Buffer4 : Buffer_Cell
 PORT MAP(Data_In => Internal_3,
 Data_Out => Delay_By_Three);

END ARCHITECTURE Structural;

Figure 7.23: Delay-by-3 circuit structural VHDL description

www.newnespress.com

7.3 Digital Control

A control system is composed of two subsystems, a plant and a controller. The

plant is the object controlled by the controller. The plant and controller can be

either analogue or digital, although digital control algorithms have become more

popular because they can be quickly and cost-effectively implemented. In many

cases, digital algorithms are implemented using a software program running on a

suitable processor within a PC or processor-based embedded system, so the

implementer need not have the skills and/or tools to design controllers in

hardware on FPGAs and CPLDs. The fundamental algorithm design is however

the same, whether the implementation is in hardware or software, and a hardware

implementation using an FPGA or CPLD might in some situations be the

preferred option. A custom digital controller in hardware has several benefits over

processor-based implementation:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Buffer_Cell IS
 Port (Data_In : IN STD_LOGIC_VECTOR (7 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (7 downto 0));
END ENTITY Buffer_Cell;

ARCHITECTURE Behavioural OF Buffer_Cell IS

BEGIN

Buffer_Process: PROCESS(Data_In)

BEGIN

 Data_Out(7 downto 0) <= Data_In(7 downto 0);

END PROCESS Buffer_Process;

END ARCHITECTURE Behavioural;

Figure 7.24: Eight-bit buffer VHDL description

www.newnespress.com

Introduction to Digital Signal Processing 509

• Custom hardware can be optimized for the application.

• Any processor features not required in the application are not included

in the design.

• A software program to run on the target hardware need not be developed.

As an example, Figure 7.25 shows a basic computer-based control system with two

analogue inputs and an analogue output. The user sets the required plant output

by applying a suitable command input signal. The controller responds to the

command input and creates a plant control signal based on the difference between

the command input and a feedback signal from the plant. The control law chosen

determines how the controller and plant respond to the command input.

In Figure 7.25, then:

• This is an automatic control system in that once a user has set the command input,

the system will automatically perform to the requirements of the command input

(i.e., it will automatically set the plant to the value set by the command input).

• Using a digital controller, this is also referred to as direct digital control

(DDC).

• The first analogue input is a DC voltage (here rather than a current), which

sets the value required for the plant (the output load to be controlled). In a

motor speed control system, for example, the DC voltage represents the

required motor speed. This is the command input. Increasing the command

Plant

Plant
output

SensorADC

ADCCommand
input

Control
law

Digital controller

DAC
+

–

Figure 7.25: Basic computer-based control system

www.newnespress.com

510 Chapter 7

input in a positive direction increases the motor shaft speed in one direction

of motor shaft rotation. Increasing the command input in a negative direction

increases the motor shaft speed in the opposite direction of motor shaft

rotation. A command input of zero indicates a the motor shaft speed of zero.

• The second analogue input is a feedback voltage whose value indicates the

value attained by the plant. In a motor speed control system, for example, the

DC feedback voltage represents the actual motor shaft speed.

• The analogue output is a signal that is applied to the plant. In a motor speed

control system, for example, this is the voltage applied to the motor terminals.

This is an example of a closed-loop control system in that the feedback signal

applied to the controller is subtracted from the command input to form an error

signal. This error signal is applied to the control law (the algorithm to act on the

current sampled input and previous sampled inputs). In general, there can be one or

more inputs and one or more outputs. The plant is a continuous time plant, and the

inputs to and output from the digital controller are analogue signals.

In general, this leads to the following nine possible arrangements:

1. The control system is either an open-loop system (no feedback) or a closed-

loop system (feedback).

2. The command input can be either analogue or digital.

3. The feedback can be either analogue or digital.

4. The controller output can be either analogue or digital.

5. There can be one or more command inputs.

6. There can be one or more feedback signals.

7. There can be one or more plant control signals (outputs from the controller).

8. The controller can implement one or more control algorithms.

9. The digital control algorithm can be designed directly in digital, or it can

be created by first creating an analogue prototype, then converting the

analogue control law to a digital control law.

The digital controller (or filter) is designed to undertake the required operations using

a particular circuit architecture. This architecture is chosen to enable the required

Introduction to Digital Signal Processing 511

www.newnespress.com

operations in the required time using the minimal amount of circuitry (or size

of software program) and effectively using the available resources provided by the

target technology. The architecture might use a predefined standard computer

architecture or a custom architecture. A custom architecture either is based on a

processor architecture, or it implements the algorithm exactly as represented by the

control law or filter equation.

Standard computer architecture is based on either the Von Neumann or Harvard

computer architecture, shown in Figure 7.26. In Von Neumann architecture, the

data and instructions share memory and buses, meaning that both cannot be

read at the same time. In some applications, this sequential access of data and

instructions limits the speed of operation. The Harvard architecture separates the

data and instructions storage and buses, thereby providing higher speed of

operation than a Von Neumann computer architecture but at the price of increased

design complexity.

The processor used within the computer architecture is based on CISC

(complex instruction set computer) or RISC (reduced instruction set computer)

architecture. The CISC is designed to complete a task in as few lines of processor

CPU

(b) Harvard computer architecture

Program memory Data memory

Program
address

Program
instruction

Data
address

Data

(a) Von Neumann computer architecture

CPU
Program and
data shared

memory

Program/data
address

Program instruction
/ data

Figure 7.26: Von Neumann and Harvard computer architectures

512 Chapter 7

www.newnespress.com

assembly code as possible, which it achieves by incorporating hardware into the

processor that can understand and execute a sequence of operations. The RISC

architecture, on the other hand, uses a set of simple instructions that are

executed quickly; to perform a complex operation, those simple instructions are

combined to form the overall complex operation. Although the RISC approach

requires more lines of processor assembly code, it enables smaller and faster

processors to be designed. RISC processors are incorporated into many embedded

systems.

In a digital control or digital filtering application, a number of operations that need to

be performed are common to all applications, and the choice of which operations to

incorporate and in which order depends on the application. Table 7.4 identifies the

types of operation required.

The overflow prevention operation is required to prevent a value from exceeding its

positive and negative limits for correct operation. For example, a four-bit, 2s

complement signed number has a range from �810 (10002) to þ710 (01112). If the

number is at a value of þ710 (01112) and one is added to it, the resulting binary code

Table 7.4: Basic operations for digital control and digital filtering

Type of operation Description

Arithmetic Perform the basic operations of addition, subtraction, multiplication, and
division.

Value store Store a value in a register for use at a later time.

Wordlength
increase/decrease

Increase/Decrease the wordlength of a value to account for the value
increasing /decreasing as an arithmetic operation is performed on it.

Overflow
prevention

Prevent a value from exceeding a predefined limit (both positive and
negative values).

Value truncation Limit the wordlength of a value by truncation.

Value rounding Limit the wordlength of a value by rounding.

Conversion Convert values from one form to another (e.g., unsigned binary to 2s
complement signed binary and vice versa).

Sample input
control

Control the sampling of the analogue signal(s) to use as the input(s) to
the digital controller or filter.

Update output
control

Control the output of the analogue signal(s) result(s) as the output(s)
from the digital controller or filter.

External
communications

Communicate with external systems.

Introduction to Digital Signal Processing 513

www.newnespress.com

would be 10002. This is�810 in the number system, even though the number should be

þ810. This effect is referred to as overflow and must be prevented, either by designing

circuitry to detect the possibility of overflow and preventing it, or by ensuring that the

situation would never occur in the normal operation of the design. Figure 7.27 shows

the effect of saturation on an adder that adds 2s complement numbers where (a) there

is no overflow prevention, and (b) the output of the adder is designed to saturate

rather than overflow. The detection circuitry and saturation can be coded in VHDL.

An example schematic for such a circuit is shown in Figure 7.28. Here, the 2s

Input

Output

Positive value
output limit

Negative value
output limit

Positive value
output limit

Negative value
output limit

(a) Overflow occurs

(b) Output saturation

Input

Output

Figure 7.27: Overflow and saturation

514 Chapter 7

www.newnespress.com

complement adder receives two n-bit words and performs an n þ 1 addition. The

result of this addition is then compared to value limits (positive and negative), and

depending on the result of the comparison, the circuit will produce one of three

outputs:

1. the result of the addition (n-bits of the nþ 1 bit number)

2. the positive limit value (n-bits)

3. the negative limit value (n-bits)

This occurs in a situation where the result of an n-bit arithmetic operation remains

n-bits in size. However, in a custom architecture, the potential exists for the range

of values to increase or decrease in wordlength as it passes through the arithmetic

operations. The designer has this choice.

The choice of wordlength and the truncation or rounding of values as they pass through

a digital filter or digital control algorithm affects the result; specifically, how closely the

digital result in the implementation represents the result of the calculation if truncation

or rounding had not occurred. Additionally, the examples considered in this text apply

to fixed-point arithmetic. Designs can also accommodate floating point arithmetic.

The digital control algorithm can be designed using any of a number of possible

methods. In many cases, the proportional plus integral plus derivative (PID)

controller is used, and the implementation of this algorithm in digital will be

Input A
(n-bits)

Input B
(n-bits)

Addition result (n+1 bits)

Comparator

Addition
output
(n-bits)

Positive limit value

Negative limit value

+

+

Figure 7.28: 2s complement adder with overflow prevention

Introduction to Digital Signal Processing 515

www.newnespress.com

considered in this text. When an analogue controller is to be used as a prototype for

the digital controller, and the analogue controller is to be developed using Laplace

transforms, then the transformation between the analogue and digital will be

undertaken in three phrases:

1. Develop the initial Laplace transform equation (using the variable s).

2. Replace the variable s with one of the available approximations, so that now

the equation is in terms of the variable z; that is, create the pulse transfer

function G(z).

3. Implement the equation either using digital logic (hardware) or in software.

The pulse transfer function G(z) is created using one of the following:

• Forward difference or Euler’s method:

s ¼ z� 1

T

• Backward difference method:

s ¼ z� 1

zT

• Tustin’s approximation (also referred to as the bilinear transform):

s ¼ 2

T
:
z� 1

zþ 1

Here, T is the signal sampling period. These methods are readily applied by hand

to transform from s to z.

Example 4: Proportional (P) Control

Consider a digital controller that is to perform proportional control. The controller

will accept two inputs, the command input and feedback signals, and will output a

single controller output, the controller effort signal. The two inputs are initially

subtracted and multiplied by a gain value (the proportional gain Kp is set here to þ7).

This gain value is held in a ROM. The arrangement for this controller is shown in

516 Chapter 7

www.newnespress.com

Figure 7.29, and here, the internal wordlength increases as the values pass through

the arithmetic operations, but finally will be limited to eight bits at the controller

output (the inputs are also eight bits). The multiplication in this example is

undertaken using a digital multiplier. Figure 7.30 provides the VHDL code for the

structure of this design. In this implementation, each block will be coded as a

unique entity-architecture pair, although this might not necessarily be the best

solution. The design here is purely combinational logic and as such includes no

clock or reset inputs.

Figure 7.31 shows the schematic for the synthesized VHDL code using the Xilinx�

ISETM tools. When a digital multiplier is required and the coefficient is fixed, then an

alternative to using a digital multiplier is to use a shift-and-add operation. For

example, multiplying a value by 2 is a shift-left operation by one bit—simple and easy

to do in digital logic and avoids the need for a large digital multiplier.

Example 5: Discrete-Time Integrator

In many situations, then integral action is added to the proportional action in order to

achieve the required response from the plant. The integral action can be represented

Command input
(8-bits)

+

–

Multiplier

Output limiting

Controller_Effort
(8-bits)

Subtractor_Out
(9-bits)

Multiplier_Out
(18-bits)

Coefficient
memory

Kp
(9-bits)

Feedback
(8-bits)

Figure 7.29: Digital proportional gain

Introduction to Digital Signal Processing 517

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Proportional_Gain IS
 PORT (Command_Input : IN STD_LOGIC_VECTOR (7 downto 0);
 Feedback : IN STD_LOGIC_VECTOR (7 downto 0);
 Controller_Effort : OUT STD_LOGIC_VECTOR (7 downto 0));
END ENTITY Proportional_Gain;

ARCHITECTURE Structural OF Proportional_Gain IS

SIGNAL Subtractor_Out : STD_LOGIC_VECTOR(8 downto 0);
SIGNAL Kp : STD_LOGIC_VECTOR(8 downto 0);
SIGNAL Multiplier_Out : STD_LOGIC_VECTOR(17 downto 0);

COMPONENT Subtractor IS
 PORT (Data_In_1 : IN STD_LOGIC_VECTOR (7 downto 0);
 Data_In_2 : IN STD_LOGIC_VECTOR (7 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (8 downto 0));
END COMPONENT Subtractor;

COMPONENT Coefficient_Memory IS
 PORT (Data_Out : OUT STD_LOGIC_VECTOR (8 downto 0));
END COMPONENT Coefficient_Memory;

COMPONENT Multiplier IS
 PORT (Data_In : IN STD_LOGIC_VECTOR (8 downto 0);
 Coefficient : IN STD_LOGIC_VECTOR (8 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (17 downto 0));
END COMPONENT Multiplier;

COMPONENT Output_Limit IS
 PORT (Data_In : IN STD_LOGIC_VECTOR (17 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (7 downto 0));
END COMPONENT Output_Limit;

BEGIN

I1 : Subtractor
 PORT MAP (Data_In_1 => Command_Input,
 Data_In_2 => Feedback,
 Data_Out => Subtractor_Out);

I2 : Coefficient_Memory
 PORT MAP (Data_Out => Kp);

I3 : Multiplier
 PORT MAP (Data_In => Subtractor_Out,
 Coefficient => Kp,
 Data_Out => Multiplier_Out);

I4 : Output_Limit
 PORT MAP (Data_In => Multiplier_Out,
 Data_Out => Controller_Effort);

END ARCHITECTURE Structural;

Figure 7.30: Digital proportional gain VHDL structure code

www.newnespress.com

using Z-transforms. Taking an integral action represented initially using a Laplace

transform as shown in Figure 7.32, this can be translated to a Z-transform by one of a

number of transforms.

 Controller_Effort(7:0)Command_Input(7:0)

Feedback(7:0)

Data_In(17:0)
Data_Out(7:0)

Coefficient(8:0)Data_Out(17:0)

Data_In_1(7:0)Data_Out(8:0)

Data_Out(8:0)

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

Data_In_2(7:0)

Data_In(8:0)

Figure 7.31: Digital proportional gain schematic for the synthesized VHDL code

Ki
s

Integrator input
X(s)

Integrator output
Y(s)

Figure 7.32: Integral action (Laplace transform)

Introduction to Digital Signal Processing 519

www.newnespress.com

Here, Ki is the integral action gain. The (Ki/s) equation can be transformed using

Tustin’s approximation, giving:

YðzÞ ¼ Ki

2
T

� �
z � 1
z þ 1

� �
0
BB@

1
CCAXðzÞ

This can be manipulated to create:

YðzÞðz� 1Þ ¼ XðzÞ KiT

2

� �
ðzþ 1Þ

Finally, manipulating this further gives the equation in terms of the current sample

and previous (delayed) samples with the equation in terms of z�n:

YðzÞ ¼ KiT

2

� �
xðzÞ þ xðzÞz�1
� �� �

þYðzÞz�1

This can be represented by the block diagram shown in Figure 7.33. Here, each of the

operations is identified and can be implemented in hardware using any of three methods:

1. multiplication by (KiT/2)

2. two addition of two values

3. two value delays by one sample (z�1)

+

+

Y(z)

Z–1

+

+

X(z)

Z–1

X

Multiply X(z) by (KiT/2)

Store_1 Store_2

Figure 7.33: Discrete-time integral action

520 Chapter 7

www.newnespress.com

This uses the same basic building blocks as previous examples and can be

implemented in VHDL as a structural description (using discrete designs for each

of the functional blocks) or as a behavioral or dataflow description.

The multiplication is positioned before the first addition operation. However, the

multiplication can be placed after the addition, and if necessary, values can be scaled

within the design to address the potential problem of ever-increasing wordlengths due

to the range of values that could be encountered in the design.

A modification to the integrator design shown in Figure 7.33 would include an

antiwindup circuit. Integrator windup can occur when an input is of a size and

polarity that, over time, causes the integrator output to become larger and larger.

It can take a substantial amount of time for the integrator output to reduce when the

input signal reverses polarity. Additionally, as the values within the integrator become

larger, the potential for overflow occurs, which must be taken into account in the

design of the circuit.

Example 6: Discrete-Time Differentiator

In addition to the proportional and integral actions, derivative action (a

differentiator) can be added to achieve the required response from the plant. The

derivative action can be represented using Z-transforms. A derivative action

represented initially using a Laplace transform, as shown in Figure 7.34, can be

translated to a Z-transform by any of a number of transforms.

Here, Kd is the derivative action gain. The (Kd s) equation can be transformed using

Tustin’s approximation. This then gives:

YðzÞ ¼ Kdð Þ 2

T

� �
z� 1

zþ 1

� �� �
XðzÞ

Kd sDifferentiator input
X(s)

Differentiator output
Y(s)

Figure 7.34: Differential action (Laplace transform)

Introduction to Digital Signal Processing 521

www.newnespress.com

This can be manipulated to create:

YðzÞðzþ 1Þ ¼ XðzÞ 2Kd

T

� �
ðz� 1Þ

Finally, manipulating further gives the equation in terms of the current sample and

previous (delayed) samples with the equation in terms of z�n:

YðzÞ ¼ 2Kd

T

� �
xðzÞ � xðzÞz�1
� �� �

�YðzÞz�1

This can be represented by the block diagram shown in Figure 7.35. Here, each of the

operations is identified and this can be implemented in hardware using any of three

methods:

1. multiplication by (2Kd/T)

2. two subtraction of two values

3. two value delays by one sample (z�1)

This uses the same basic building blocks as previous examples and can be

implemented in VHDL as a structural description (using discrete designs for each

of the functional blocks) or as a behavioral or dataflow description.

+

–

Y(z)

Z–1

+

–

X(z)

Z–1

X

Multiply X(z) by (2Kd/T)

Store_1 Store_2

Figure 7.35: Discrete-time derivative action

522 Chapter 7

www.newnespress.com

The multiplication is positioned before the first subtraction operation. However,

the multiplication could be placed after the subtraction, and if necessary, values

can be scaled within the design to address the potential problem of ever-

increasing wordlengths due to the range of values that could be encountered

in the design.

Although this structure is similar to the discrete-time integrator, it would not suffer

from windup because the feedback signal to the second subtractor is subtracted from

the internal signal rather than added.

Example 7: PID Controller

The proportional, integral, and derivative control actions can be brought together to

create a PID controller. Figure 7.36 shows an example of how this can be created. As

the design increases in complexity, the need for more additions/subtractions and

multiplications/divisions increases. This highlights the need to develop an architecture

that uses hardware efficiently and can operate within the time constraints of the

design. The arithmetic operations to be undertaken either can be designed to be either

separate actions (each action requiring its own dedicated hardware) or can be shared

(each addition, subtraction, multiplication, or division has a single common block, as

is typical in the architecture of an arithmetic and logic unit, ALU). Hence, design

speed of operation can be considered against the size of the hardware circuit required

for a given architecture.

Command input

Feedback

+

–

P

Output limiting Controller_Effort

Subtractor_Out

Prop_Out

Coefficient
memory

I

D
Deriv_Out

Int_Out

+

+

+

Adder_Out

Figure 7.36: Digital PID controller

Introduction to Digital Signal Processing 523

www.newnespress.com

With the design shown in Figure 7.36, the actions can be implemented such that one

of the following two scenarios exists:

1. Each action identified in the block diagram can be created using its own

dedicated hardware.

2. Resources can be shared. Table 7.5 provides an example flow of actions for an

implementation using shared resources.

7.4 Digital Filtering

7.4.1 Introduction

A filter is a circuit that performs some type of signal processing on a frequency-

dependent basis. These filters can be realized in both analogue and digital circuits.

Digital filters receive one or more discrete time signals (signal samples) and modify

these signals to produce one or more outputs, and filters will pass or reject frequencies

based on their required operation:

1. Low-pass filters will pass low-frequency signals but reject high-frequency signals.

2. High-pass filters will pass high-frequency signals but reject low-frequency

signals.

Table 7.5: Shared resources for the digital PID controller

Action number Action description

1 Subtract the feedback input from the command input
2 Store result (Subtractor_Out)
3 Read Subtractor_Out and apply to proportional action
4 Store result (Prop_Out)
5 Read Subtractor_Out and apply to integral action
6 Store result (Int_Out)
7 Read Subtractor_Out and apply to derivative action
8 Store result (Deriv_Out)
9 Read Prop_Out, Int_Out, and Deriv_Out

10 Add Prop_Out, Int_Out, and Deriv_Out
11 Store result (Adder_Out)
12 Read Adder_Out
13 Apply output limiting
14 Store result (Controller_Effort)

524 Chapter 7

www.newnespress.com

3. Band-pass filters will pass a band of signal frequencies but will reject

frequencies lower than or higher than the pass range.

4. Band-reject or notch filters will reject a band of signal frequencies but will pass

frequencies lower than or higher than the pass range.

The idealized response for each of the filters is shown in Figure 7.37. On each plot,

the X-axis is the frequency (f), and the Y-axis is the magnitude (jHj) of the filter
output signal at a particular frequency. The response of an actual filter will deviate

from this idealized response. Additionally, although only the filter signal output

magnitude is shown, both the signal magnitude and phase response would need to

be considered.

f

|H|

Ideal low-pass filter

f0

f

|H|

Ideal high-pass filter

f0

f

|H|

Ideal band-pass filter

fL fH

fL fH

f

|H|

Ideal band-reject filter

Figure 7.37: Idealized filter response

Introduction to Digital Signal Processing 525

www.newnespress.com

There are four types of filter design [10]:

1. Bessel filter

2. Butterworth filter

3. Chebyshev filter

4. elliptic filter

The ideal filter response is also referred to as a brick-wall response due to its shape.

In low-pass and high-pass filters, the cut-off frequency is f0. For the band-pass filter,

two cut-off frequencies exist, lower (fL) and upper (fH), and signals are passed between

them. The center frequency is in the center of the pass-band. The frequency range

between the lower and upper cut-off frequencies is the bandwidth of the filter. The band-

reject filter is the complement of the band-pass filter. To the four responses identified in

Figure 7.37 is added a fifth, the all-pass filter. With this, all signal frequencies are passed.

Analogue filters are either passive filters (containing resistors, capacitors, and inductors)

or active filters (using active devices such as a transistor or operational amplifier).

Digital filters use DSP techniques on either software- or hardware-based systems. The

general structure for a digital filter, shown in Figure 7.38, is similar to the digital

controller previously discussed, but the architecture here is presented in a slightly

different arrangement. Only one analogue input signal is to be sampled, and the

output is a single analogue signal.

The following components are identified in Figure 7.38:

• The digital filter core contains three main blocks:

* The digital filter algorithm is responsible for implementing the algorithm

operations (add, subtract, multiply, divide, store).

* The filter coefficient memory stores the coefficients used by the digital filter

algorithm for multiplications and divisions.

* The control unit provides the necessary timing for actions to occur (ADC

input sampling, DAC output updating, filter coefficient memory access,

and digital filter algorithm operation).

• The communications port allows the filter to communicate with an external

digital system.

526 Chapter 7

www.newnespress.com

• The programming/configuration port uploads a software program (in a

processor-based system) or a hardware configuration (in an FPGA- or CPLD-

based system).

The complete system is controlled by external control signals such as a clock and reset.

This architecture can be modified to provide for different scenarios and specific

implementation requirements. In general, the choice of architecture must consider a

range of design and implementation issues that include:

1. whether to use standard processor type architecture or to develop a custom

architecture

2. available hardware resources

ADC1

DAC1

Communications
port

Programming/
configuration

port

Digital core
control

(reset, clock,
etc.)

Analogue input

Analogue output 1

Digital filter
algorithm

Filter
coefficient
memory

Control unit

ADC
control

DAC
control

Digital filter core

Figure 7.38: General digital filter architecture (with analogue I/O)

Introduction to Digital Signal Processing 527

www.newnespress.com

3. functionality possible with the target technology

4. design performance requirements

5. ability to modify and/or upgrade the design

6. power consumption of the circuit implementation

7. circuit power supply requirements

8. peripheral integration—the ability to connect peripheral devices as and

when necessary

9. cost

10. availability of suitable design tools

11. availability of a suitable design flow

12. support of DfX:

• DfA, design for assembly

• DfD, design for debug

• DfM, design for manufacturability

• DfR, design for reliability

• DfT, design for testability

• DfY, design for yield

Example 8: Digital Filter Structure

Consider the filter architecture shown in Figure 7.38. This can be coded for in VHDL as a

structural description. Consider the case where the digital filter algorithm requires four

control signals and eight fixed 16-bit coefficients. The filter coefficients are stored in a

ROMwithin the design and are set when theCPLD is configured. A structural description

for each of the main blocks within the digital filter core is shown in Figure 7.39.

The filter coefficient memory has three address lines and sixteen data lines. There are

no memory control signals, so when an address is applied to the memory, the data

stored in that address is applied to the digital filter algorithm.

The ADC used is the AD7575, and the DAC used is the AD7524.

528 Chapter 7

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Filter_Core IS
 PORT (Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 ADC_Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 ADC_BUSY : IN STD_LOGIC;
 ADC_TP : OUT STD_LOGIC;
 ADC_RD : OUT STD_LOGIC;
 ADC_CS : OUT STD_LOGIC;
 DAC_Data_Out : OUT STD_LOGIC_VECTOR(7 downto 0);
 DAC_WR : OUT STD_LOGIC;
 DAC_CS : OUT STD_LOGIC);
END ENTITY Filter_Core;

ARCHITECTURE Structural OF Filter_Core IS

SIGNAL Coefficient_Internal : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Control_Internal : STD_LOGIC_VECTOR(3 downto 0);
SIGNAL Memory_Address_Internal : STD_LOGIC_VECTOR(2 downto 0);

COMPONENT Algorithm IS
 PORT (Filter_In : IN STD_LOGIC_VECTOR (7 downto 0);
 Reset : IN STD_LOGIC;
 Coefficient : IN STD_LOGIC_VECTOR (15 downto 0);
 Filter_Control : IN STD_LOGIC_VECTOR (3 downto 0);
 Filter_Out : OUT STD_LOGIC_VECTOR (7 downto 0));
END COMPONENT Algorithm;

COMPONENT Coefficient_Memory IS
 PORT (Address : IN STD_LOGIC_VECTOR (2 downto 0);
 Data : OUT STD_LOGIC_VECTOR (15 downto 0));
END COMPONENT Coefficient_Memory;

COMPONENT Control_Unit IS
 PORT (Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Filter_Control : OUT STD_LOGIC_VECTOR (3 downto 0);
 Memory_Address : OUT STD_LOGIC_VECTOR (2 downto 0);
 ADC_BUSY : IN STD_LOGIC;
 ADC_TP : OUT STD_LOGIC;
 ADC_RD : OUT STD_LOGIC;
 ADC_CS : OUT STD_LOGIC;
 DAC_WR : OUT STD_LOGIC;
 DAC_CS : OUT STD_LOGIC);
END COMPONENT Control_Unit;

Figure 7.39: Digital filter core example

www.newnespress.com

The control unit identifies the control signals for the memory, algorithm, ADC, and

DAC, and does not include any control signals for the communications interface.

Figure 7.40 shows the schematic for the synthesized VHDL code using the Xilinx�

ISETM tools.

VHDL entity-architecture pairs can then be created to complete the design by adding

the required detail to the algorithm, memory, and control unit blocks.

Example 9: Multiply by Two

Although a digital implementation could be created to solve a given problem, it is not

always suitable. Consider the need to amplify an analogue voltage by two. This could

be implemented in analogue or digital, and Figure 7.41 shows a possible

implementation of both. The analogue circuit uses a noninverting operational

amplifier (op-amp). The digital circuit is rather more complex.

77
78
79
80
81
82
83

 ADC_TP => ADC_TP,
 ADC_RD => ADC_RD,
 ADC_CS => ADC_CS,
 DAC_WR => DAC_WR,
 DAC_CS => DAC_CS);

END ARCHITECTURE Structural;

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

BEGIN

I1 : Algorithm
 PORT MAP(Filter_In => ADC_Data_In,
 Reset => Master_Reset,
 Coefficient => Coefficient_Internal,
 Filter_Control => Control_Internal,
 Filter_Out => DAC_Data_Out);

I2 : Coefficient_Memory
 PORT MAP(Address => Memory_Address_Internal,
 Data => Coefficient_Internal);

I3 : Control_Unit
 PORT MAP(Master_Clock => Master_Clock,
 Master_Reset => Master_Reset,
 Filter_Control => Control_Internal,
 Memory_Address => Memory_Address_Internal,
 ADC_BUSY => ADC_BUSY,

Figure 7.39: (Continued)

530 Chapter 7

www.newnespress.com

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

Coefficient(15:0)Address(2:0)Data(15:0)

Filter_Control(3:0)

Filter_In(7:0)

Reset

Filter_Out(7:0)ADC_BUSY

Master_Clock

Master_Reset

ADC_CS

ADC_RD

ADC_TP

DAC_CS

DAC_WR

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

ADC_BUSY Filter_control(3:0)

Memory_Address(2:0)

Master_Reset

Master_Clock

ADC_Data_In(7:0)

ADC_CS

ADC_RD

ADC_TP

DAC_CS

DAC_WR

DAC_Data_Out(7:0)

Figure 7.40: Digital filter example schematic for the synthesized VHDL code

Which implementation would be better?

Filters are of two types: infinite impulse response (IIR) and finite impulse response

(FIR). The type of filter chosen determines the architecture of the filter and what values

are to be used in the calculations. The basic filter structures are identified below.

7.4.2 Infinite Impulse Response Filters

The infinite impulse response (IIR) filter is a recursive filter in that the output from

the filter is computed by using the current and previous inputs and previous outputs.

Analogue
signal input

Digital signal
processor

Anti-alias
filter

Digital
multiplication
by 2

Analogue
signal outputDACADC

(a) Digital implementation

(b) Analogue implementation

Analogue
signal input

Analogue
signal output

R1

R2

+

–

Figure 7.41: Amplifier implementation

532 Chapter 7

www.newnespress.com

Because the filter uses previous values of the output, there is feedback of the output in

the filter structure. The design of the IIR filter is based on identifying the pulse

transfer function G(z) that satisfies the requirements of the filter specification.

This can be undertaken either by developing an analogue prototype and then

transforming it to the pulse transfer function, or by designing directly in digital.

Figure 7.42 shows typical IIR filter architecture.

Z–1

b0

Filter output, Y(z)

Filter input, X(z)

Z–1 Z–1 Z–1

b1 b2 bn

Z–1

Z–1

Z–1

a1

+

++
+

am

–

–

Figure 7.42: Typical architecture of an IIR filter

Introduction to Digital Signal Processing 533

www.newnespress.com

7.4.3 Finite Impulse Response Filters

The finite impulse response (FIR) filter is a nonrecursive filter in that the output from

the filter is computed by using the current and previous inputs. It does not use

previous values of the output, so there is no feedback in the filter structure. The design

of the FIR filter is based on identifying the pulse transfer function G(z) that satisfies

the requirements of the filter specification. This can be undertaken either by

developing an analogue prototype and then transforming this to the pulse transfer

function, or by designing directly in digital. A nonrecursive filter is always stable, and

the amplitude and phase characteristics can be arbitrarily specified. However, a

nonrecursive filter generally requires more memory and arithmetic operations than a

recursive filter equivalent. Figure 7.43 shows typical FIR filter architecture.

Here, the filter input is applied to a sequence of sample delays (z�1), and the outputs

from each delay (and the input itself) are applied to the inputs of multipliers. Each

multiplier has a coefficient set by the filter requirements. The outputs from each

multiplier are then applied to the inputs of an adder, and the filter output is then

taken from the output of the adder.

Z–1

b0

Filter output, Y(z)

Filter input, X(z)

Z–1 Z–1 Z–1

b1 b2 bn

+

+
+

+

Figure 7.43: Typical architecture of an FIR filter

534 Chapter 7

www.newnespress.com

References

[1] Terrell, T. J., Introduction to Digital Filters, The MacMillan Press Ltd., 1980,

ISBN 0-333-24671-3.

[2] Kamen, E. W., and Heck, B. S., Fundamentals of Signals and Systems Using the

Web and MATLAB�, Pearson Education Ltd., 2007, ISBN 0-13-168737-9.

[3] Ifeachor, E. C., and Jervis, B. W., Digital Signal Processing: A Practical

Approach, Pearson Education Ltd., 2002, ISBN 0-201-59619-9.

[4] Meade, M. L., and Dillon, C. R., Signals and Systems Models and Behaviour,

Chapman & Hall, 1991, ISBN 0-412-40110-x.

[5] Hanselman, D., and Littlefield, B., Mastering MATLAB� 6—A Comprehensive

Tutorial and Reference, Prentice Hall Inc., 2001, ISBN 0-13-019468-9.

[6] Golten, J., and Verwer, A., Control System Design and Simulation, McGraw-

Hill, 1991, ISBN 0-07-707412-2.

[7] Astrom, K. J., and Wittenmark, B., Computer-Controlled Systems Theory and

Design, Second Edition, Prentice Hall International, 1990, ISBN 0-13-172784-2.

[8] Analog Devices Inc., AD7575 LC2MOS Successive Approximation ADC

datasheet.

[9] Analog Devices Inc., AD7524 CMOS 8-Bit Buffered Multiplying DAC

datasheet.

[10] Schaumann, R., and Van Valkenburg, M., Design and Analog Filters, Oxford

University Press, 2001, ISBN 0-19-511877-4.

Introduction to Digital Signal Processing 535

www.newnespress.com

Student Exercises

7.1 Develop theVHDLcode for adesign thatwill perform the following three functions:

• Sample an analogue signal from a 12-bit ADC. (Choose an ADC and

obtain the required control signals from the device data sheet.)

• Multiply the signal by 0.76 with an error of no more than 5 percent.

• Output the result to a 12-bit DAC. (Choose an DAC and obtain the

required control signals from the device data sheet.)

7.2 Modify the design in Exercise 7.1 so that the sample is multiplied by a value

set from a PC via a simple UART receiver (using the integer value of the

byte received from the UART).

7.3 From analysis of the data sheets from available ADCs, create the VHDL

code that will control the sampling from the following ADCs:

• 8-bit

• 10-bit

• 12-bit

• 14-bit

• 16-bit

• 18-bit

7.4 From analysis of the data sheets from available DACs, create the VHDL

code that will control the output of data to the following DACs:

• 8-bit

• 10-bit

• 12-bit

• 14-bit

• 16-bit

• 18-bit

7.5 Develop the VHDL code for a PID controller where each of the actions in the

controller is defined in its own entity-architecture pair. The coefficients for

each of the control actions are to be stored in a ROM. What assumptions are

made in the implementation?

7.6 Develop theVHDL code for a PID controller where the additions/subtractions

and multiplications/divisions are shared by all of the control actions. What

assumptions are made in the implementation?

536 Chapter 7

www.newnespress.com

