
13 Keyboard Interface

This chapter deals with the design of a keyboard interface that is implemented
on UP2 using its FLEX 10K device. The chapter discusses how keyboards work
and how they transmit data to and receive data from a computer. We will then
take a simplified approach and show the interface for receiving data from a
keyboard. The interface receives serial data from the keyboard and generates
ASCII codes for keys that ASCII codes are applicable.

13.1 Data Transmission

Data communication between the keyboard and the host system is
synchronous serial over bi-directional clock and data lines. Keyboard sends
commands and key codes, and the system sends commands to the keyboard.

Either the system or the keyboard drive the data and clock lines, while
clocking data in either direction is provided by the keyboard clock. When no
communication is occurring, both lines are high. Figure 13.1 shows the timing
of keyboard serial data transmission.

13.1.1 Serial Data Format
Data transmission on the data line is synchronized with the clock; data will be
valid before the falling edge and after the rising edge of the clock pulse. Serial
data transmission begins with the data line dropping to 0. This bit value is
taken on the rising edge of the clock and considered as the start-bit. On the
next eight clock edges, data is transmitted in low to high order bit. The next
data bit is the odd-parity bit, such that data bits and the parity bit always have
odd number of ones. The last bit on the data line is the stop-bit that is always

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

260 Digital Design and Implementation with Field Programmable Devices

1. After the stop-bit, the data line remains high until another transmission
begins.

When the keyboard sends data to or receives data from the system it
generates the clock signal to time the data. The system can prevent the
keyboard from sending data by forcing the clock line to 0, during this time the
data line may be high or low. When the system sends data to the keyboard, it
forces the data line to 0 until the keyboard starts to clock the data stream.

13.1.2 Keyboard Transmission

When the keyboard is ready to send data, it first checks the status of the clock
to see if it is allowed to transmit data. If the clock line is forced to low by the
system, data transmission to the system is inhibited and keyboard data is
stored in the keyboard buffer. If the clock line is high and the data line is low,
the keyboard is to receive data from the system. In this case, keyboard data is
stored in the keyboard buffer, and the keyboard receives system data. If the
clock and data lines are both high the keyboard sends the start-bit, 8 data bits,
the parity bit and the stop-bit.

During transmission, the keyboard checks the clock line for low level at
least every If the system forces the clock line to 0 after the
keyboard starts ending data, a condition known as line contention occurs, and
the keyboard stops sending data. If line contention occurs before the rising
edge of the 10th clock pulse, the keyboard buffer returns the clock and data
lines to high level.

13.1.3 System Transmission

The system sends 8-bit commands to the keyboard. When the system is ready
to send a command to the keyboard, it first checks to see if the keyboard is
sending data. If the keyboard is sending, but has not reached the 10th clock
signal, the system can override the keyboard output by forcing the keyboard
clock line to 0. If the keyboard transmission is beyond the 10th clock signal,
the system receives the transmission.

If the keyboard is not sending or if the system decides to override the
output of the keyboard, the system forces the keyboard clock line to 0 for more
than while preparing to send data. When the system is ready to
send the start bit, it allows the keyboard to drive the clock line to 1 and drives
the data line to low. This signals the keyboard that data is being transmitted
from the system. The keyboard generates the clock signals and receives the
data bits, parity and the stop-bit. After the stop-bit, the system releases the
data line. If the keyboard receives the stop-bit it forces the data line low to
signal the system that the keyboard has received its data.

Upon receipt of this signal, the system returns to a ready state, in which it
can accept keyboard output or goes to the inhibited state until it is ready. If the
keyboard does not receive the stop-bit, a framing error has occurred, and the
keyboard continues to generate clock signals until the data line becomes high.
The keyboard then makes the data line low and requests a resending of the
data. A parity error will also generate a re-send request by the keyboard.

261

Figure 13.1 Keyboard Serial Data Transmission

13.1.4 Power-On Routine

The keyboard logic generates a power-on-reset signal when power is first
applied to the keyboard. The timing of this signaling is between 150
milliseconds and 2.0 seconds from the time power is first applied to the
keyboard.

Following this signaling, basic assurance test is performed by the keyboard.
This test consists of a keyboard processor test, a checksum of its ROM, and a
RAM test. During this test, activities on the clock and data lines are ignored.
The keyboard LEDs are turned on at the beginning and off at the end of the
test. This test takes a minimum of 300 milliseconds and a maximum of 500
milliseconds. Upon satisfactory completion of the basic assurance test, a
completion code (hex AA) is sent to the system, and keyboard scanning begins.

262 Digital Design and Implementation with Field Programmable Devices

13.2 Codes and Commands

A host system may send 8-bit commands to the keyboard, while a keyboard
may send commands and key codes to the system.

13.2.1 System Commands

System commands may be sent to the keyboard at any time. The keyboard will
respond within 20 milliseconds, except when performing the basic assurance
test (BAT), or executing a Reset command. System commands and their
hexadecimal values are shown in Table 13.1.

13.2.2 Keyboard Commands

Table 13.2 shows the commands that the keyboard may send to the system and
their hexadecimal values.

13.2.3 Keyboard Codes

Keyboards are available for several languages and settings. The keyboard that
is most common for the English language is one with 104 keys shown in Figure
13.2. Keys of this keyboard are identified by numbers, and for every key there
is a scan code. Several scan codes are available, and the default scan code is
Scan Code 2 that we will discuss here.

Keyboard scan codes consist of a Make and a Break code. The Make code
identifies the key pressed and the Break code indicates the release of a key. For
most keys the Break code is F0 followed by the Make code. For example when
the Space bar (key 61) is pressed and released, hexadecimal codes 29, F0 and
29 are transmitted from the keyboard to the system via the data serial line. If
this key remains pressed, the Make code (29) is continuously transmitted until
it is released. Make codes for Scan Code 2 are shown in Table 13.3

The Make and Break arrangement, makes it possible for the system to
identify multiple keys pressed and the order in which they have been pressed.
For example, if one presses and holds down the Left-Shift key (key number 44),
12 Hex is continuously sent to the system. While this is happening, if key
number 9 (the 8/* key) is pressed and released, 3E, F0 and 3E codes are
transmitted. The receiving system identifies this sequence of events as the
intention to enter an asterisk (*).

263

Figure 13.2 Standard 104-key Keyboard and Key Numbers

264 Digital Design and Implementation with Field Programmable Devices

13.3 Keyboard Interface Design

This section discusses a keyboard interface for reading scan data from the
keyboard and producing ASCII codes of the keys pressed. Code Set 2 is
assumed, and the interface only handles data transmission from the keyboard.
The interface reads serial data from the keyboard, detects the Make code when
a key is pressed and looks up the Make code in an ASCII conversion table. For
simplicity, the look-up table only handles upper-case characters.

13.3.1 Collecting the Make Code

The first part of our interface connects to the keyboard data and clock lines and
when a key is pressed, it outputs an 8-bit scan code. The KBdata, KBclock
inputs are for the keyboard data and clock inputs, and the 8-bit ScanCode is
the main output of this part.

This part also uses a fast synchronizing clock, SYNclk, and a keyboard reset
input, KBreset. In addition to the ScanCode output, this part outputs a signal
to indicate that a scan code is ready (ScanRdy) and another output to indicate
that a key has been released (KeyReleased). These outputs make distinction
between Make and Break states.

module Keyboardlnterface
(KBclk, KBdata, ResetKB, SYNclk, ScanRdy, ScanCode, KeyReleased);
input KBclk;
input KBdata;
input ResetKB;
input ReadKB;
input SYNclk;
output ScanRdy;
output [7:0] ScanCode;
output KeyReleased;

// Details in Figure 13.4
// Generate an internal synchronized clock
always @(posedge Clock) begin

// Count the number of serial bits and collect data into ScanCode

end

// Details in Figure 13.5
always @(posedgeSYNclk)begin

// Keep track of the state of Scan Codes outputted

end
// Issue KeyReleased when done

endmodule

Figure 13.3 Verilog Pseudo Code

265

The pseudo-code of this unit is shown in Figure 13.3. After the
declarations, in this part an internal clock (Clock) that is based on the keyboard
clock and is synchronized with the board clock is generated. This clock is used
in an always block to collect serial data bits and shift them into ScanCode.
Another always block in this code, monitors completion of serial data collection
and generates the state of the keys pressed and released. The details of these
sections of the interface module are depicted in Figure 13.4 and Figure 13.5
respectively.

The first always statement of Figure 13.4 shows the generation of Clock
that is equal to the keyboard clock and synchronized with the external system
clock, SYNclk. In the always block that follows this block, after detection of the
start-bit, on the rising edge of Clock, bit values are read from the keyboard data
line (KBdata) and shifted into ScanCode. The shifting continues for 8 bit
counts. On the next clock after collecting 8 data bits is complete, ScanRdy is
issued, and the collection process returns to its initial state of looking for the
next start-bit.

reg Clock;

always @ (posedge SYNclk) Clock = KBclk;

reg [3:0] BitCount;
reg StartBitDetected, ScanRdy;
reg [7:0] ScanCode;

always @(posedge Clock) begin
if (ResetKB) begin

BitCount = 0; StartBitDetected = 0;
end else begin

if (KBdata == 0 && StartBitDetected == 0) begin
StartBitDetected = 1;
ScanRdy = 0;

end else if (StartBitDetected) begin
if (BitCount < 8) begin

BitCount = BitCount + 1;
ScanCode = {KBdata, ScanCode[7:1]};

end else begin
StartBitDetected = 0;
BitCount = 0;
ScanRdy =1;

end
end

end
end

Figure 13.4 Serial Data Collection

The partial code of Figure 13.5 uses the two-bit CompletionState to keep
track of the scan codes that have been generated. Starting in the initial state,

266 Digital Design and Implementation with Field Programmable Devices

when ScanRdy becomes 1 and F0 is on ScanCode, CompletionState becomes 1.
This state is entered when a key is released and the F0 part of the Break code is
transmitted. The next time ScanRdy is detected, the second part of the Break
code (that is the same as Make) becomes available on ScanCode. In the
following clock, the KeyReleased output becomes 1 and remains at this level for
a complete clock period.

reg [1:0] CompletionState;
wire KeyReleased;

always @ (posedge SYNclk) begin
if (ResetKB) CompletionState = 0;

else case (CompletionState)
0: if (ScanCode == 8'hF0 && ScanRdy == 1) CompletionState = 1;

else CompletionState = 0;
1: if (ScanRdy == 1) CompletionState = 1;

else CompletionState = 2;
2: if (ScanRdy == 0) CompletionState = 2;

else CompletionState = 3;
3: CompletionState = 0;

endcase

end

assign KeyReleased = CompletionState == 3 ? 1 : 0;

endmodule

Figure 13.5 Break State Recognition

13.3.2 ASCII Look-Up

The ASCII lookup part of our keyboard interface is a ROM of Quartus II
megafunctions with 7 address lines and word length of 8 bits. Hexadecimal
locations 0D through 66 of this ROM are defined to contain ASCII codes for
scan codes that correspond to ROM addresses. This megafunction is defined to
use the KbASCII.mif memory initialization file, a portion of which is shown in
Figure 13.6. The ScanCode output of Figure 13.3 connects to the address input
of this ROM, and ASCII codes corresponding to input addresses appear on its
output.

267

DEPTH = 128;
WIDTH = 8;
ADDRESS_RADIX = HEX;
DATA_RADIX = DEC;
% Keyboard Scan Code to ASCII %
CONTENT
BEGIN
% Set 2: ASCII Key Char %
%------+---------------+-------------------%

OD :
0E :
11 :
12 :
14 :
15 :
16 :
1A :
1B :
1C :

66 :
END;

09
96
0
0
0
81
49
90
83
65

08

%
%
%
%
%
%
%
%
%
%

%

16
1
60
44
58
17
2
46
32
31

15

Tab
`

Alt
Shift
Ctrl
Q
1
Z
s
A

BS

%
%
%
%
%
%
%
%
%
%

%

Figure 13.6 ASCII Conversion Memory Initialization File

Figure 13.7 Prototyping Keyboard Character Generator

13.4 Keyboard Interface Prototyping

The Verilog module of Figure 13.3 and the ROM of Figure 13.6 are put together
into the KeyboardChar schematic file. Testing this design is achieved by
programming the FLEX 10K of UP2, assigning keyboard clock and data inputs
to pins 30 and 31 (see Figure 6.37), and connecting the UP2 clock to its SYNclk
input. A portion of the schematic of this prototype design is shown in Figure
13.7. With this settings, the ASCII code of the key pressed on the keyboard
that is connected to the PS2 connecter of UP2 appears on the 8-bit char output
of the diagram of Figure 13.7.

;
;
;
;
;
;
;
;
;
;

;

;

268 Digital Design and Implementationwith Field Programmable Devices

13.5 Summary

This chapter showed another interface design utilizing Verilog design entry as
well as storage megafunctions of Quartus II. The design here illustrated how an
interface could be designed to read keyboard characters. The knowledge of this
basic peripheral is important for logic designers and students in this field.

