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m e m o r i e s

Many digital systems use memories for storing information. Memory in 
general-purpose computers takes several forms, including semiconductor 
memory chips, magnetic disks (hard disks), and optical disks (CDs and 
DVDs). In this chapter, we describe the various types of semiconductor 
memories, since other forms of memory are much less frequently used 
in application-specific digital systems. We start by introducing the gen-
eral concepts that are common to all kinds of semiconductor memory, 
and then focus on the particular features of each type. We complete the 
chapter with a discussion of techniques for dealing with errors in the 
stored data.

5.1 G E N E R A L  C O N C E P T S

In Chapter 4 we introduced registers as components for storing binary-
coded information. We generally use separate registers when the number 
of items of information to store is small, or when we need to use many 
of the items concurrently. When there are numerous items that we can 
use one after another, we use memory components instead to store the 
information. In this section, we will discuss some of the general concepts 
that apply to all kinds of memory components. Then, in the next section, 
we will identify some of the specific kinds of memory that are used in 
different design scenarios.

A memory is conceptually an array of storage registers, or loca-
tions, each of which has a distinct address, which is a number identifying 
the location. Addresses for a memory typically start at 0 and increase 
by one for each location, up to one less than the number of locations. 
For most memory components, the number of locations is a power of 2. 
Thus, a memory with 2n locations would have addresses ranging from 
0 to 2n � 1, requiring an n-bit address. If each location stores m bits of 
encoded information, the total number of bits in the memory component 
is 2n �m.
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example  5 .1  If a memory has 32,768 locations, each of 32 bits, what is 
the total capacity of the memory, and how many address bits does it require?

solut ion  The capacity is 1,048,576 bits, that is 220 bits. Since 
32,768 � 215, the memory requires 15 address bits.

When referring to memory sizes, we usually use the following multi-
plier prefixes denoting powers of 2:

Kilo (K): 210 � 1,024

Mega (M): 220 � 1,024 � 210 � 1,048,576

Giga (G): 230 � 1,024 � 220 � 1,073,741,824

Thus, the memory referred to in Example 5.1 has a capacity of 1M bit. 
Note that the multiplier values are close to, but slightly greater than, the 
decimal multiplier values with the same names. Note also that we use an 
uppercase “K” for the binary multiplier 210, compared with the lowercase 
“k” for the decimal multiplier 103. The context of referring to a memory 
size is usually assumed to indicate use of the binary multipliers rather than 
the decimal multipliers.

Given a memory of a certain capacity, we can organize it in  different 
ways, varying the number of locations and the number of bits per  location. 
For example, a 1M bit memory might be organized as a 32K � 32-bit 
 memory, as shown in Example 5.1, or as a 16K � 64-bit memory, 
64K � 16-bit memory, and so on. In practice, the number of locations and 
the size of each location are determined by the application requirements, 
dictating the memory capacity required.

The two basic operations performed by a memory are writing binary 
data to a location and reading the content of a location. For both opera-
tions, we need to provide the address of the location to be written or 
read on a set of input signals to the memory component. For a write 
operation, we provide the data to write as a further set of input signals, 
and for a read operation, the memory component provides the data as 
a set of output signals. We control the write operation using control 
signals generated by a control section of the digital system that contains 
the memory component. We will describe the particular control signals 
used by different kinds of memories in a later section. For now, we will 
just assume a simple form of memory component with simple control 
signals. The input and output signals are shown on a symbol for a mem-
ory component in Figure 5.1. The signal a is the address, encoded as an 
unsigned binary number. The signals d_in and d_out carry the data to be 
written and the data read, respectively. The encoding for these signals 
depends on the application. The control signals are en (enable) and wr 
(write). When en is 0, the memory simply maintains all of the stored 
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basic memory component.



data. When en is 1 and wr is 1, the memory writes data present on the 
d_in inputs at the location whose address is present on the a inputs. 
When en is 1 and wr is 0, the memory reads the content of the location 
whose address is present on the a inputs and drives the data value on 
the d_out outputs.

example  5 .2  Design an audio echo effects unit that operates by delay-
ing samples of an audio signal represented as a stream of 16-bit 2s-complement 
binary-coded values. The sample rate is 50kHz. Arrival of a new input sample 
is indicated by a control input, audio_in_en, being 1 for the clock cycle in which 
the sample arrives. The unit should indicate availability of an output sample 
using an output control signal, audio_out_en, in the same way. The delay time is 
determined by an 8-bit unsigned input representing the number of milliseconds 
of delay. The system clock frequency is 1MHz.

solut ion  We can delay the arriving audio sample values by storing 
them in a memory until they are required at the output. The maximum delay 
expressed by the 8-bit unsigned input is 255ms. Since samples arrive at a rate of 
50kHz (that is, 50 per millisecond), we need to store up to 255 � 50 � 12,750 
samples. A 16K � 16-bit memory, with 14-bit addresses (since 16K � 214), will 
suffice. A diagram of the datapath including the memory and other components 
to compute addresses is shown in Figure 5.2. The figure shows the widths of 
each of the multibit signals.
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F I G U R E 5 .2  Datapath for an 
audio echo effects unit.

We need to use a 14-bit counter to keep track of where samples are stored in the 
memory. As each input sample arrives, we store it at the next available memory 
location, whose address is given by the counter. We next read from the memory 
the value written d milliseconds in the past (where d is the value of the delay 
input) and provide it at the output, then increment the counter to refer to the 
next location in memory. This behavior is illustrated in the timing diagram of 
Figure 5.3. The value written d milliseconds previously is stored 50 � d locations 
prior to the current location given by the address counter. Thus, we can compute 
its address by multiplying d by 50 and subtracting the result from the value of 
the address counter. The counter will increment to the maximum address value 
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then wrap around to 0, effectively incrementing modulo 16K. Thus, once the 
memory is filled, old locations will be overwritten with newly arriving samples. 
However, they will have been written more than the maximum delay in the 
past, so they will no longer be needed. When we perform the subtraction, we 
can ignore the borrow output of the subtracter. The subtracter will yield the 
difference modulo 16K, and so give the correct address of the required delayed 
sample.

The control sequence for the unit involves two steps:

1. When a sample arrives (indicated by audio_in_en being 1), set the 
multiplexer to use the counter value as the memory address and enable 
the memory to perform a write.

2. Set the multiplexer to use the subtracter output as the memory address, 
enable the memory to perform a read, set audio_out_en to 1, and enable 
the counter to increment on the next clock edge.

We can use step 1 as the idle state for a state machine that controls this 
sequence, provided we use the audio_in_en signal to gate the write control signal 
to the memory. The transition and output functions are specified in Table 5.1. 
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F I G U R E 5 .3  Timing diagram 
for the audio echo effects unit.
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step 1 0 step 1 0 0 0 0 0

step 1 1 step 2 0 1 1 0 0

step 2 – step 1 1 1 0 1 1

TAB LE 5 .1  Transition and 
output functions for the echo unit 
control section.

The mem_en and mem_wr signals are Mealy-style outputs, since they depend on 
both the state and the audio_in_en input, whereas the remaining control signals 
are all Moore-style outputs.
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Manufacturers provide semiconductor memory components in a range 
of capacities, varying from a few Kbits through several Mbits and, at time 
of writing, up to 2G bits for separately package memory components. Typ-
ically, for a given capacity, a manufacturer provides components organized 
with differing widths (1, 4, 8 or 16 bits per location). If an application for 
which we are designing a system needs a memory of some other width, we 
need to use a number of memory components in parallel. For example, if 
we need a 16K � 48-bit memory for an application, we could construct 
it using three 16K � 16-bit memory components. We would connect the 
address and control signals together, as shown in Figure 5.4, and use the 
data input and output signals of each component for a slice of the overall 
data input and output signals.

Connecting multiple memory components together to construct a 
memory with more locations is somewhat more involved. We need to 
partition the total number of locations among the memory components. 
For each read and write operation we need to arrange for the component 
containing the required location to perform the operation, and for other 
components to remain passive. In many applications, the total number 
of locations is a power of 2, say 2n, and each memory component has 
a smaller number of locations, 2k. The number of memory components 
is 2n/2k. The simplest approach to partitioning is to place the first 2k 
 locations in the first component, the second 2k in the second component, 
and so on. If we number the individual memory components 0, 1, 2, and 
so on up to (2n/2k) � 1, the component containing a location with address 
A is ⎣A/2k⎦. This is represented by the most significant n � k bits of the 
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address. We can decode these bits to derive select signals to activate 
the required memory component. The address of the location A within 
the selected memory component is A mod 2k. This is represented by the 
least significant k bits of the address. We simply connect these bits of 
the address to each of the memory components. The data input signals 
are also connected to each of the memory components. The data output 
signals need to be driven by the memory component that is selected, so we 
use a multiplexer to choose the appropriate data value based on the most 
significant address bits.

example  5 .3  Design a 64K � 8-bit composite memory using four 
16K � 8-bit components.

solut ion  The complete composite memory is shown in Figure 5.5. 
Address bits 15 and 14 are decoded to select which of the four memory com-
ponents is enabled for read and write operations. Those bits also control the 
multiplexer to select the output data from the enabled component during a read 
operation.
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Many manufacturers simplify the connection of memory components 
to form larger memories by using a special kind of output driver, called a 
tristate driver, for each of the data outputs. Tristate drivers are also used 
for buses that allow multiple data sources to provide data in a system. We 
will discuss tristate and other bus structures in more detail in Chapter 8 as 
part of our discussion of embedded computer systems. For now, we will 
focus on their use in memory components.

Unlike ordinary component outputs, which always drive either a low 
or high logic level, the output of a tristate driver can be turned off by 
 placing it in a high-impedance, or hi-Z, state. (“Z” is commonly used as 
the symbol for impedance in a circuit.) Thus, a tristate driver has three 
output states: logic low, logic high and high impedance; hence the name. 
The output circuit of a CMOS digital component involves two transistor 
switches as shown in Figure 5.6. To drive the output with a low logic 
level, the component turns the bottom transistor on and the top transistor 
off, and to drive a high logic level, the component turns the top transistor 
on and the bottom transistor off. A tristate driver has the same output 
stage, but can turn both transistors off, effectively isolating the compo-
nent from the output.

If we use memory components with tristate data outputs to construct 
a larger memory, we can omit the output multiplexer shown in Figure 5.5. 
Instead, we simply connect the data outputs of the memory components 
together. When a read operation is performed, only the selected memory 
component enables its data outputs; all of the disabled components leave 
their outputs in the high-impedance state.

Many memory components that have tristate data outputs also combine 
the data inputs and outputs into a single set of bidirectional  connections, 
illustrated in Figure 5.7. This allows a composite memory to be constructed 
as shown in Figure 5.8. For memory components implemented as separate 
integrated circuits for use on printed circuit boards, the use of bidirectional 
connections results in significant cost savings, since there are fewer  package 
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pins and interconnecting wires. As we shall see when we study embedded 
processors in more detail, this type of memory works well as part of an 
embedded computer system, since memory write and read operations are 
performed independently. When we perform a write operation, we drive the 
data signals with the data to be written. The selected memory  component 
treats the data connections as inputs and accepts the data to be written. It 
keeps its tristate drivers disabled so as not to interfere with the logic levels 
in the data signals. When we perform a read operation, we ensure that all 
other drivers connected to the data signals are in the high-impedance state 
and allow the selected memory component to enable its tristate drivers. It 
drives the data signals with the data read from memory.

Of course, whether we can use tristate data connections in a memory 
depends on whether the implementation fabric provides them. Memory 
components implemented as packaged integrated circuits, for use in a 
larger system implemented on a printed circuit board, typically do have 
tristate data outputs or tristate bidirectional data input/outputs. On the 
other hand, memory blocks provided within ASICs and FPGAs typically 
do not have tristate data connections, since tristate buses present some 
design and verification challenges in those fabrics. (We will return to 
this in Chapter 8.) Instead, data from individual memory blocks must be 
 combined using multiplexers.

In this section, we have looked at ways of connecting multiple mem-
ory components together to form a memory with wider or more  storage 
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locations than provided by a single chip. In each of these schemes, the 
memory performs just one operation at a time. In high performance sys-
tems, we can connect multiple memory components together in ways that 
permit multiple operations to proceed concurrently, thus increasing the 
total number of operations completed per second. These schemes usually 
involve organizing the memory into a number of banks, each of which can 
perform an operation in parallel with other banks. Successive addresses 
are assigned to different banks, since, in many systems, locations are 
often accessed in order. As an example, a system with four banks would 
assign locations 0, 4, 8, . . . to bank 0; locations 1, 5, 9, . . . to bank 1; 2, 
6, 10, . . . to bank 2; and 3, 7, 11, . . . to bank 3. When a read operation is 
required for location 4, bank 0 would read that location. Moreover, the 
other banks would start a read, prefetching locations 5, 6 and 7. By the 
time a read operation is required for these locations (assuming access in 
order), the data would already be available from the memory. We will 
not describe these advanced memory organizations in any further detail 
in this book. Books on computer organization, particularly those con-
centrating on high-performance computers, are a good source of further 
information. (See Section 5.5, Further Reading.)

1. What is the capacity in bits of a memory with 4096 locations, each 
of 24 bits? How many address bits are required?

2. What is the effect of a write operation? What is the effect of a read 
operation?

3. How would we connect four 256M � 4-bit memory components to 
make a 256M � 16-bit memory?

4. How would we connect four 256M � 8-bit memory components to 
make a 1G � 8-bit memory?

5. Which memory component in Question 4 would contain the 
location with address 5FC000016?

6. What are the three states of a tristate driver?

7. How do memory components with tristate data outputs simplify 
construction of large memories?

5.2 M E M O R Y  T Y P E S

In this section, we will introduce the various types of memory provided 
by manufacturers, either as individual integrated circuits or as resources 
within ASIC or FPGA fabrics. We will discuss the distinguishing properties 
of each kind of memory, including their timing characteristics and costs, 
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and describe how to model some of them in Verilog. We will distinguish 
between memory that can be both read and written, called random access 
memory (RAM), and memory that can only be read, called read-only 
memory (ROM). We use the term RAM instead of read/write memory 
largely for historical reasons. Memories in very early computers enforced 
sequential access, that is, access to locations in increasing order of address, 
due to the physical medium on which the data was stored. The invention 
of memories in which locations could be read and written with equal facil-
ity in any order (that is, randomly) was a significant milestone, and so the 
term RAM has stuck.

5.2.1 A SY N C H R O N O U S  S TAT I C  R A M

One of the simplest forms of memory is asynchronous static RAM. It is 
asynchronous because it does not rely on a clock for its timing. The term 
static means that the stored data persists indefinitely so long as power is 
applied to the memory component. Compare this with dynamic RAM, 
which we will describe later and which loses stored data if it is not peri-
odically rewritten. Static RAM is volatile, meaning that it requires power 
to maintain the stored data, and loses data if power is removed. Since 
engineers are fond of abbreviations, the term static RAM is usually  further 
shortened to SRAM.

Asynchronous SRAM internally uses 1-bit storage cells that are similar 
to the D-latch circuit that we described in Chapter 4. Within the memory 
component, the address is decoded to select a particular group of cells 
that comprise one location. For a write operation, the selected latch cells 
are enabled and the input data is stored. For a read operation, the address 
activates a multiplexer that routes the outputs of the selected latch cells to 
the data outputs of the memory component.

The external interface of an asynchronous SRAM is very close to our 
general description of a memory component in Section 5.1. For largely 
historical reasons, most manufacturers use active-low logic for the control 
signals. Further, since asynchronous SRAMs are usually only available 
as packaged integrated circuits, and not as blocks in ASIC libraries or 
FPGAs, they usually have bidirectional tristate data input/output pins. 
Figure 5.9 shows a symbol for a typical asynchronous SRAM. The address 
input and the data input/output are as we described in Section 5.1. The 
chip-enable input ( 

__
 CE ) is used to enable or disable the memory chip. We 

usually drive this input from a select control signal, for example, from an 
address decoder in a composite memory. The write-enable input ( 

__
 WE ) con-

trols whether the memory, if enabled, performs a write or read operation. 
The output-enable input ( 

__
 OE ) controls the tristate data drivers during a 

read operation. When  
__

 OE  is low during a read, the drivers are enabled and 
can drive the read data onto the data pins. When  

__
 OE  is high, the drivers 

are in the high-impedance state.
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F I G U R E 5 .9  Symbol for an 
asynchronous SRAM.



Given that the storage cells in an asynchronous SRAM are basically 
latches, it is not surprising that the timing is similar to that of a D-latch. 
The sequencing of signals to perform a write operation is shown at the left 
of Figure 5.10. The control section that sequences the datapath contain-
ing the memory must ensure that the address is stable before commencing 
the write operation and is held stable during the entire operation. Oth-
erwise, locations other than the one to be updated may be affected. The 
control section selects the particular memory chip by driving  

__
 CE  low, acti-

vates the write operation by driving  
__

 WE  low, and ensures that the chip’s 
tristate drivers are disabled by driving  

__
 OE  high. It also sets control signals 

to the datapath to provide data on the data signals. The data is stored 
transparently in the latch cells for the addressed location. The final data 
to be stored must be stable on the data signals a setup time before the 
rising edge of the  

__
 WE  signal or the  

__
 CE  signal, whichever occurs first. The 

data and the address must also remain stable for a hold time after the  
__

 WE  
or  

__
 CE  signal goes high.

The typical sequencing of signals for a read operation is similar, and 
is shown at the right of Figure 5.10. The difference is that the  

__
 WE  signal 

is held high, and the  
__

 OE  signal is driven low to enable the memory chip’s 
tristate drivers. While this sequence is typical for a read operation done 
in isolation, we can also perform back-to-back read operations simply 
by changing the address value. The read operation is essentially a combi-
national operation, involving decoding the address and multiplexing the 
selected latch-cell’s value onto the data outputs. Changing the address 
simply causes a different cell’s value to appear on the outputs after a prop-
agation delay.

Manufacturers of asynchronous SRAM chips publish the timing 
parameters for write and read operations in data sheets. The parameters 
typically include setup and hold times for address and data values, and 
delays for turning tristate drivers on and off. One of the figures of merit of 
a memory chip is its access time, which is the delay from the start of a read 
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write and read operations in an 
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 5.2 Memory Types C H A P T E R  F I V E  221



222 C H A P T E R  F I V E m e m o r i e s

operation to having valid data at the outputs. Other performance-related 
parameters are the write cycle time and the read cycle time, which are the 
times taken to complete write and read operations, respectively. Manufac-
turers offer chips in different speed grades, with faster chips usually costing 
more. This allows us, as designers, to make cost/performance trade-offs in 
our designs.

While asynchronous SRAMs are conceptually simple and have simple 
timing behavior, the fact that they are asynchronous can make them dif-
ficult to use in clocked synchronous systems. The need to set up and hold 
address and data values before and after activation of the control signals 
and to keep the values stable during the entire cycle means that we must 
either perform operations over multiple clock cycles, or use delay ele-
ments to ensure correct timing within a clock cycle. The former approach 
reduces performance, and the latter approach violates assumptions inher-
ent in the clocked synchronous methodology, and so complicates timing 
design and analysis. For these reasons, asynchronous SRAMs are usually 
used only in systems with low performance requirements, where their low 
cost is a benefit.

5.2.2 SY N C H R O N O U S  S TAT I C  R A M

Given the difficulties associated with asynchronous SRAMs, many mem-
ory component vendors and implementation fabrics provide synchronous
SRAMs, otherwise known as SSRAMs. The internal storage cells of 
SSRAMs are the same as those of asynchronous SRAMs. However, the 
interface includes clocked registers for storing the address, input data 
and control signal values, and in some cases, output data. In this section, 
we will describe two forms of SSRAMs in general terms. The details of 
control signals and timing will vary between SSRAMs provided by dif-
ferent component vendors and implementation fabrics. As always, we 
need to read and understand the data sheets before using a component 
in a design.

The simplest kind of SSRAM is often called a flow-through SSRAM. 
It includes registers on the inputs, but not on the data outputs. The term 
flow-through refers to the fact that data read from the memory cells flows 
through directly to the data outputs. Having registers on the inputs allows 
us to generate the address, data and control signal values according to our 
clocked synchronous design methodology, ensuring that they are stable in 
time for a clock edge. Figure 5.11 illustrates the timing for a flow-through 
SSRAM. During the first clock cycle, we set up the address (a1), control 
signals and input data (xx) in preparation for a write operation. These 
values are stored in the input registers on the next clock edge, causing the 
SSRAM to start the write operation. The data is stored and flows through 
to the output during the second clock cycle. While that happens, we set up 
the address (a2) and control signals in preparation for a read operation.



Again, these values are stored on the next clock edge, and during the 
third cycle the SSRAM performs the read operation. The data, denoted 
by M(a2), flows through from the memory to the output. Now, in the 
third cycle, we set the enable signal to 0. This prevents the input registers 
from being updated on the next clock edge, so the previously read data is 
maintained at the output.

example  5 .4  Design a circuit that computes the function y � ci � x2, 
where x is a binary-coded input value and ci is a coeffi cient stored in a 
fl ow-through SSRAM. x, ci and y are all signed fi xed-point values with 8 pre-
binary-point and 12 post-binary-point bits. The index i is also an input to the 
circuit, encoded as a 12-bit unsigned integer. Values for x and i arrive at the 
input during the cycle when a control input, start, is 1. The circuit should mini-
mize area by using a single multiplier to multiply ci by x and then by x again.

solut ion  A datapath for the circuit is shown in Figure 5.12. The 4K � 
20-bit flow-through SSRAM stores the coefficients. A computation starts with 
the index value, i, being stored in the SSRAM address register, and the data 
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input, x, being stored in the register shown below the SSRAM. On the second 
clock cycle, the SSRAM performs a read operation. The coefficient read from 
the SSRAM and the stored x value are multiplied, and the result is stored in the 
output register. On the third cycle, the multiplexer select inputs are changed so 
that the value in the output register is further multiplied by the stored x value, 
with the result again being stored in the output register.

For the control section, we need to develop a finite state machine that sequences 
the control signals. It is helpful to draw a timing diagram showing progress of 
the computation in the datapath and when each of the control signals needs to 
be activated. The timing diagram is shown in Figure 5.13, and includes state 
names for each clock cycle. An FSM transition diagram for the control section is 

shown in Figure 5.14. The FSM is a Moore machine, with the outputs shown in 
each state in the order c_ram_en, x_ce, mult_sel and y_ce. In the step1 state, we 
maintain c_ram_en and x_ce at 1 in order to capture input values. When start 
changes to 1, we change c_ram_en and x_ce to 0 and transition to the step2 state 
to start computation. The y_ce control signal is set to 1 to allow the product of 
the coefficient read from the SSRAM and the x value to be stored in the y output 
register. In the next cycle, the FSM transitions to the step3 state, changing the 
mult_sel control signal to multiply the intermediate result by the x value again 
and storing the final result in the y output register. The FSM then transitions 
back to the step1 state on the next cycle.
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start

clk

step1 step1 step2 step3 step1
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F I G U R E 5 .13 Timing 
diagram for the computation 
circuit.
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section.
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Another form of SSRAM is called a pipelined SSRAM. It includes a 
register on the data output, as well as registers on the inputs. A  pipelined 
SSRAM is useful in higher-speed systems where the access time of the 
memory is a significant proportion of the clock cycle time. If there is 
no time in which to perform combinational operations on the read data 
before the next clock edge, it needs to be stored in an output register 
and used in the subsequent clock cycle. A pipelined SSRAM provides 
that output register. The timing for a pipelined SSRAM is illustrated in 
 Figure 5.15. Timing for the inputs is the same as that for a flow-through 
SSRAM. The difference is that the data output does not reflect the result 
of a read or write operation until one clock cycle later, albeit immediately 
after the clock edge marking the beginning of that cycle.

example  5 .5  Suppose we discover that, in the datapath of Example 5.4, 
the combination of the SSRAM access time plus the delays through the 
 multiplexer and multiplier is too long. This causes the clock frequency to be too 
slow to meet our performance constraint. We change the memory from a fl ow-
through to a pipelined SSRAM. How is the circuit design affected?

solut ion  As a consequence of the SSRAM change, the coefficient value is 
available at the SSRAM output one cycle later. To accommodate this, we could 
insert a cycle into the control sequence to wait for the value to be available. 
Rather than wasting this time, we can use it to multiply the value of x by itself, 
and perform the multiplication by the coefficient in the third cycle. This change 
requires us to swap the input to the top multiplexer in Figure 5.12, so that it 
selects the stored x value when mult_sel is 0 in state step2 and the SSRAM 
output when mult_sel is 1 in step3. The FSM control sequence is otherwise 
unchanged.

Verilog Models of Synchronous Static Memories

In this section, we will describe how to model SSRAMs in such a way that 
synthesis CAD tools can infer a RAM and use the appropriate  memory 
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resources provided in the target implementation fabric. We saw in  Chapter 4 
that to model a register, we declare a variable to represent the stored regis-
ter value and assign a new value to it on a rising clock edge. We can extend 
this approach to model an SSRAM in Verilog. We need to declare a vari-
able that represents all of the locations in the memory. The way to do this 
is to declare an array variable, which represents a collection  of values, each 
with an index that corresponds to its location in the array. For example, to 
model a 4K � 16-bit memory, we would write the following declaration:

reg [15:0] data_RAM [0:4095];

The declaration specifies a variable named data_RAM that is an array with 
elements index from 0 to 4095. Each element is a 16-bit vector.

Once we have declared the variable representing the storage, we write 
an always block that performs the write and read operations. The block 
is similar in form to that for a register. For example, an always block to 
model a flow-through SSRAM based on the variable declaration above is

always @(posedge clk)
if (en)
if (wr) begin
data_RAM[a] <= d_in; d_out <= d_in;

end
else
d_out <= data_RAM[a];

On a rising clock edge, the block checks the enable input, and only per-
forms an operation if it is 1. If the write control input is 1, the block 
updates the element of the data_RAM signal indexed by the address using 
the data input. The block also assigns the data input to the data output, 
representing the flow-through that occurs during a write operation. If the 
write control input is 0, the block performs a read operation by assigning 
the value of the indexed data_RAM element to the data output.

example  5 .6  Develop a Verilog model of the circuit using fl ow-through 
SSRAMs, as described in Example 5.4.

solut ion The module definition includes the address, data and control 
ports, as follows:

module scaled_square ( output reg signed [7:-12] y,
input      signed [7:-12] c_in, x,

(continued)



 input [11:0] i,
 input start,
 input clk, reset );

wire c_ram_wr;
reg c_ram_en, x_ce, mult_sel, y_ce;
reg signed [7:–12] c_out, x_out;

reg signed [7:–12] c_RAM [0:4095];

reg signed [7:–12] operand1, operand2;

parameter [1:0] step1 = 2'b00, step2 = 2'b01, step3 = 2'b10;
reg [1:0] current_state, next_state;

assign c_ram_wr = 1'b0;

always @(posedge clk) // c RAM – flow through
if (c_ram_en)

if (c_ram_wr) begin
c_RAM[i] <= c_in;
c_out    <= c_in;

end
else
c_out <= c_RAM[i];

always @(posedge clk) // y register
if (y_ce) begin

if (!mult_sel) begin
operand1 = c_out;
operand2 = x_out;

end
else begin
operand1 = x_out;
operand2 = y;

end
y <= operand1 * operand2;

end

always @(posedge clk) // State register
...

always @* // Next-state logic
...

always @* begin // Output logic
...

endmodule
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The module declares nets and variables for the internal datapath connections 
and control signals. It declares an array variable to represent the coefficient 
memory (c_RAM). It also declares parameters for the state of the control section 
finite-state machine, and variables for the current and next state.

After the declarations, we include always blocks and assignments for the data-
path and control section. We omit the details of the finite-state machine. They 
are based on the template we described in Chapter 4, and are available on the 
companion website. The first block represents the coefficient SSRAM. It uses 
the i input as its address. The second block represents both the combinational 
circuits of the datapath and the output register. If the y_ce variable is 1, the 
register is updated with the value computed by the combinational circuits. We 
use intermediate variables to divide the computation into two parts, correspond-
ing to the multiplexers and the multiplier, respectively. Note that we use blocking 
assignments to these intermediate variables, rather than nonblocking assign-
ments, since they do not represent outputs of storage registers.

Modeling a pipelined SSRAM in Verilog is somewhat more involved, 
as we must represent the internal connection from the memory storage to 
the output register and ensure that the pipeline timing is correctly repre-
sented. One approach, extending our previous always block for a 16-bit-
wide memory, is

reg pipelined_en;
reg [15:0] pipelined_d_out;
...

always @(posedge clk) begin
if (pipelined_en) d_out <= pipelined_d_out;
pipelined_en <= en;
if (en)
if (wr) begin

data_RAM[a] <= d_in;  pipelined_d_out <= d_in;
end
else

pipelined_d_out <= data_RAM[a];
end

In this block, the variable pipelined_en saves the value of the enable input 
on a clock edge so that it can be used on the next clock edge to control 
the output register. Similarly, the variable pipelined_d_out saves the value 
read or written through the memory on one clock edge for assignment to 
the output on the next clock edge if the output register is enabled. Since 
there are many minor variations on the general concept of a pipelined 
SSRAM, it is difficult to present a general template, especially one that 
can be recognized by synthesis tools. A common alternative approach is 
to use a CAD tool that generates a memory circuit and a Verilog model of 



that circuit. We can then instantiate the generated model as a component 
in a larger system.

5.2.3 M U LT I P O R T  M E M O R I E S

Each of the memories that we have looked at, both in Section 5.1 and 
 previously in this section, is a single-port memory, with just one port for 
writing and reading data. It has only one address input, even though the data 
connections may be separated into input and output connections. Thus, a 
single-port memory can perform only one access (a write or a read opera-
tion) at a time. In contrast, a multiport memory has multiple address inputs, 
with corresponding data inputs and outputs. It can perform as many opera-
tions concurrently as there are address inputs. The most common form of 
multiport memory is a dual-port memory, illustrated in  Figure 5.16, which 
can perform two operations concurrently. (Note that in this context, we are 
using the term “port” to refer to a combination of address, data and control 
connections used to access a memory, as distinct from a Verilog port.)

A multiport memory typically consumes more circuit area than a 
 single-port memory with the same number of bits of storage, since it has 
separate address decoders and data multiplexers for each access port. 
Only the internal storage cells of the memory are shared between the 
multiple ports, though additional wiring is needed to connect the cells to 
the access ports. However, the cost of the extra circuit area is warranted 
in some applications, such as high performance graphics processing and 
high-speed network connections. Suppose we have one subsystem produc-
ing data to store in the memory, and another subsystem accessing the data 
to process it in some way. If we use a single-port memory, we would need 
to multiplex the addresses and input data from the subsystems into the 
memory, and we would have to arrange the control sections of the subsys-
tems so that they take turns to access the memory. There are two potential 
problems here. First, if the combined rate at which the subsystems need 
to move data in and out of the memory exceeds the rate at which a single 
access port can operate, the memory becomes a bottleneck. Second, even 
if the average rates don’t exceed the capacity of a single access port, if the 
two subsystems need to access the memory at the same time, one must 
wait, possibly causing it to lose data. Having separate access ports for the 
subsystems obviates both of these problems.

The only remaining difficulty is the case of both subsystems accessing 
the same memory location at the same time. If both accesses are reads, they 
can proceed. If one or both is a write, the effect depends on the characteristics 
of the particular dual-port memory. In an asynchronous dual-port memory, 
a write operation performed concurrently with a read of the same location 
will result in the written data being reflected on the read port after some 
delay. Two write operations performed concurrently to the same  location 
result in an unpredictable value being stored. In the case of a synchronous 

D_in1

A1 A2

dual-port
SSRAM

en1

D_in2

D_out1 D_out2

ren2

wr1 wr2

clk1 clk2

F I G U R E 5 .16 A dual-port 
memory.
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dual-port memory, the effect of concurrent write operations depends on 
when the operations are performed internally by the memory. We should 
consult the data sheet for the memory component to understand the effect.

Some multiport memories, particularly those manufactured as pack-
aged components, provide additional circuits that compare the addresses on 
the access ports and indicate when contention arises. They may also provide 
circuits to arbitrate between conflicting accesses, ensuring that one proceeds 
only after the other has completed. If we are using multiport memory compo-
nents or circuit blocks that do not provide such features and our application 
may result in conflicting accesses, we need to include some form of arbitra-
tion as a separate part of the control section in our design. An alternative is 
to ensure that the subsystems accessing the memory through separate ports 
always access separate locations, for example, by ensuring that they always 
operate on different blocks of data stored in different parts of the memory. 
We will discuss block processing of data in more detail in Chapter 9.

example  5 .7  Develop a Verilog model of a dual-port, 4K � 16-bit fl ow-
through SSRAM. One port allows data to be written and read, while the other 
port only allows data to be read.

solut ion In the following module definition, the clk input is common to 
both memory ports. The inputs and outputs with names ending in “1” are the 
connections for the read/write memory port, and the inputs and outputs with 
names ending in “2” are the connection for the read-only memory port.

module dual_port_SSRAM ( output reg [15:0] d_out1,
input [15:0] d_in1,
input [11:0] a1,
input  en1, wr1,
output reg [15:0] d_out2,
input [11:0] a2,
input [11:0] en2,
input  clk );

reg [15:0] data_RAM [0:4095];

always @(posedge clk) // read/write port
if (en1)
if (wr1) begin
data_RAM[a1] <= d_in1; d_out1 <= d_in1;

end
else
d_out1 <= data_RAM[a1];

always @(posedge clk) // read-only port
if (en2) d_out2 <= data_RAM[a2];

endmodule



This is much like our earlier model of a flow-through SSRAM, except that 
there are two always blocks, one for each memory port. The declaration of the 
 variable for the memory storage is the same, with the variable being shared 
between the two blocks. The block for the read/write port is identical in form to 
the block we introduced earlier. The block for the read-only port is a simplified 
version, since it does not need to deal with updating the storage variable.

In this model, we make no special provision for the possibility of concurrent write 
and read accesses to the same address. During simulation of the model, one or other 
block would be activated first. If the block for the read/write port is activated first, 
it updates the memory location, and the read operation yields the updated value. 
On the other hand, if the block for the read-only port is activated first, it reads the 
old value before the location is updated. When the model is synthesized, the syn-
thesis tool chooses a dual-port memory component from its library. The effect of a 
concurrent write and read would depend on the behavior of the chosen component.

One specialized form of dual-port memory is a first-in first-out 
 memory, or FIFO. It is used to queue data arriving from a source to be 
processed in order of arrival by another subsystem. The data that is first 
in to the FIFO is the first that comes out; hence, the name. The most com-
mon way of building a FIFO is to use a dual-port memory as a circular 
buffer for the data storage, with one port accepting data from the source 
and the other port reading data to provide to the processing subsystem. 
Each port has an address counter to keep track of where data is writ-
ten or read. Data written to the FIFO is stored in successive free loca-
tions. When the write-address counter reaches the last location, it wraps 
to location 0. As data is read, the read-address counter is advanced to 
the next available location, also wrapping to 0 when the last location is 
reached. If the write address wraps around and catches up with the read 
address, the FIFO is full and can accept no more data. If the read address 
catches up with the write address, the FIFO is empty and can provide no 
more data. This scheme is similar to that used for the audio echo effects 
unit in Example 5.2, except that the distance between the write and read 
addresses is not fixed. Thus, a FIFO can store a variable amount of data, 
depending on the rates of writing and reading data. The size of memory 
needed in a FIFO depends on the maximum amount by which reading of 
data lags writing. Determining the maximum size may be difficult to do. 
We may need to evaluate worst-case scenarios for our application using 
mathematical or statistical models of data rates or using simulation.

example  5 .8  Design a FIFO to store up to 256 data items of 16 bits each, 
using a 256 � 16-bit dual-port SSRAM for the data storage. The FIFO should 
provide status outputs, as shown in the symbol in Figure 5.17, to indicate when 
the FIFO is empty and full. Assume that the FIFO will not be read when it is 
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empty, nor be written to when it is full, and that the write and read ports share a 
common clock.

solut ion  The datapath for the FIFO, shown in Figure 5.18, uses 8-bit 
counters for the write and read addresses. The write address refers to the next 
free location in the memory, provided the FIFO is not full. The read address 
refers to the next location to be read, provided the FIFO is not empty. Both 
counters are cleared to 0 when the reset signal is active.
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F I G U R E 5 .18 Datapath for a 
FIFO using a dual-port memory.

The FIFO being empty is indicated by the two address counters having the 
same value. The FIFO is full when the write counter wraps around and catches 
up with the read counter, in which case the counters have same value again. 
So equality of the counters is not sufficient to distinguish between the cases of 
the FIFO being empty or full. We could keep track of the number of items in the 
FIFO, for example, by using a separate up/down counter to count the number 
of items rather than trying to compare the addresses. However, a simpler way 
is to keep track of whether the FIFO is filling or emptying. A write operation 
without a concurrent read means the FIFO is filling. If the write address becomes 
equal to the read address as a consequence of the FIFO filling, the FIFO is full. 
A read operation without a concurrent write means the FIFO is emptying. If the 
write address becomes equal to the read address as a consequence of the FIFO 
emptying, the FIFO is empty. If a write and a read operation occur concurrently, 
the amount of data in the FIFO remains unchanged, so the filling or emptying 
state remains unchanged. We can describe this behavior using an FSM, as shown 
in Figure 5.19, in which the transitions are labeled with the values of the wr_en 
and rd_en control signals, respectively. The FSM starts in the emptying state. The 
empty status output is 1 if the current state is emptying and the equal signal is 1, 
and the full status output is 1 if the current state is filling and the equal signal is 
1. Note that this control sequence relies on the assumption of a common clock 
between the two FIFO ports, since the FSM must have a single clock to operate.

emptying

filling

1, 0 0, 1

F I G U R E 5 .19 Transition 
diagram for the FIFO FSM.



One important use for FIFOs is to pass data between subsystems 
operating with different clock frequencies, that is, between different clock 
domains. As we discussed in Section 4.4.1, when data arrives asynchro-
nously, we need to resynchronize it with the clock. If the clocks of two 
clock domains are not in phase, data arriving at one clock domain from 
the other could change at any time with respect to the receiving domain’s 
clock, and so must be treated as an asynchronous input. Resynchronizing 
the data means passing it through two or more registers. If the sending 
domain’s clock is faster than that of the receiving domain, the data being 
resynchronized may be overrun by further arriving data. A FIFO allows 
us to smooth out the flow of data between the domains. Data arriving is 
written into the FIFO synchronously with the sending domain’s clock, and 
the receiving domain reads data synchronously with its clock. Control of 
such a FIFO is more involved than that for the FIFO with a single clock 
illustrated in Example 5.8. The Xilinx Application Note, XAPP 051 (see 
Section 5.5, Further Reading) describes a technique that can be used.

FIFOs are also used in applications such as computer networking, 
where data arrives from multiple network connections at unpredictable 
times and must be processed and forwarded at high speed. Several mem-
ory component vendors provide packaged FIFO circuits that include the 
dual-port memory and the address counting and control circuits. Some of 
the larger FPGA fabrics also provide FIFO address counting control cir-
cuits that can be used with built-in memory blocks. If we need a FIFO in a 
system implemented in other fabrics, we can either design one, as we did 
in Example 5.8, or use a FIFO block from a library or a generator tool.

5.2.4 DY N A M I C  R A M

Dynamic RAM (DRAM) is another form of volatile memory that 
uses a different form of storage cell for storing data. We mentioned 
in  Section 5.2.1 that static RAM uses storage cells that are similar to 
D-latches. In contrast, a storage cell for a dynamic RAM uses a single 
capacitor and a single transistor, illustrated in Figure 5.20. The DRAM 
cells are thus much smaller than SRAM cells, so we can fit many more 
of them on a chip, making the cost per bit of storage lower. However, 
the access times of DRAMs are longer than those of SRAMs, and the 
complexity of access and control is greater. Thus, there is a trade-off of 
cost, performance and complexity against memory capacity. DRAMs are 
most commonly used as the main memory in computer systems, since 
they satisfy the need for high capacity with relatively low cost. How-
ever, they can also be used in other digital systems. The choice between 
SRAM and DRAM depends on the requirements and constraints of each 
application.

A DRAM represents a stored 1 or 0 bit in a cell by the presence 
or absence of charge on the capacitor. When the transistor is turned 
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off, the capacitor is isolated from the bit line, thus storing the charge 
on the capacitor. To write to the cell, the DRAM control circuit pulls 
the bit line high or low and turns on the transistor, thus charging or 
discharging the capacitor. To read from the cell, the DRAM control 
circuit precharges the bit line to an intermediate level, then turns on 
the transistor. As the charges on the capacitor and the bit line equalize, 
the voltage on the bit line either increases slightly or decreases slightly, 
depending on whether the storage capacitor was charged or discharged. 
A sensor detects and amplifies the change, thus determining whether 
the cell stored a 1 or a 0. Unfortunately, this process destroys the stored 
value in the cell, so the control circuit must then restore the value by 
pulling the bit line high or low, as appropriate, before turning off the 
transistor. The time taken to complete the restoration is added to the 
access time, making the overall read cycle significantly longer than than 
that for an SRAM.

Another property of a DRAM cell is that, while the transistor is 
turned off, charge leaks from the capacitor. This is the meaning of the term 
“dynamic” applied to DRAMs. To compensate, the control circuit must 
read and restore the value in each cell in the DRAM before the charge 
decays too much. This process is called refreshing the DRAM. DRAM 
manufacturers typically specify a period of 64ms between refreshes for 
each cell. The cells in a DRAM are typically organized into several rectan-
gular arrays, called banks, and the DRAM control circuit is organized to 
refresh one row of each bank at a time. Since the DRAM cannot perform 
a normal write or read operation while it is refreshing a row, the refresh 
operations must be interleaved between writes and reads. Depending on 
the application, it may be possible to refresh all rows in a burst once every 
64ms. Alternatively, we may have to refresh one row at a time between 
writes and reads, making sure that all rows are refreshed within 64ms. 
The important thing is to avoid scheduling a refresh when a write or read 
is required and cannot be deferred.

Historically, timing of DRAM control signals used to be  asynchronous,
and management of refreshing was performed by control circuits external 
to the DRAM chips. More recently, manufacturers changed to synchro-
nous DRAMs (SDRAMs) that use registers on inputs to sample address, 
data and control signals on clock edges. This is analogous to the differ-
ence between asynchronous and synchronous SRAMs, and makes it easier 
to incorporate DRAMs into systems that use a clocked synchronous tim-
ing methodology. Manufacturers have also incorporated refresh control 
circuits into the DRAM chips, also making use of DRAMs easier. Since 
applications with very high data transfer rate requirements may be limited 
by the relatively slow access times of DRAMs, manufacturers have more 
recently incorporated further features to improve performance. These 
include the ability to access a burst of data from successive locations



without having to provide the address for each, other than the first, and 
the ability to transfer on both rising and falling clock edges (double-data 
rate, or DDR, and its successors, DDR2 and DDR3). These features are 
mainly motivated by the need to provide high-speed bursts of data in 
computer systems, but they can also be of benefit in noncomputer digital 
systems.

Because of the relative complexity of controlling DRAMs, we will 
not go into detail of the control signals required and their sequencing. For 
most implementation fabrics, we can incorporate a DRAM control block 
from a library, allowing us to connect external DRAMs to the sequential 
circuits in our chip. An example is the SDRAM controller, described in 
Xilinx Application Note XAPP134, that allows an FPGA-based system 
to connect to and control an external SDRAM memory (see Section 5.5, 
Further Reading).

5.2.5 R E A D - O N LY  M E M O R I E S

The memories that we have looked at so far can both read the stored data 
and update it arbitrarily. In contrast, a read-only memory, or ROM, can 
only read the stored data. This is useful in cases where the data is constant, 
so there is no need to update it. It does, of course, beg the question of how 
the constant data is placed in the ROM in the first place. The answer is 
that the data is either incorporated into the circuit during its manufacture, 
or is programmed into the ROM subsequently. We will describe a number 
of kinds of ROM that take one or other of these approaches.

Combinational ROMs

A simple ROM is a combinational circuit that maps from an input address 
to a constant data value. We could specify the ROM contents in tabular 
form, with a row for each address and an entry showing the data value 
for that address. Such a table is essentially a truth table, so we could, in 
principle, implement the mapping using the combinational circuit design 
techniques we described in Chapter 2. However, ROM circuit structures 
are generally much denser than arbitrary gate-based circuits, since each 
ROM cell needs at most one transistor. Indeed, for a complex combina-
tional function with multiple outputs, it may be better to use a ROM to 
implement the function than a gate-based circuit. For example, a ROM 
might be a good candidate for the next-state logic or the output logic of a 
complex finite-state machine.

example  5 .9  Design a 7-segment decoder with blanking input, as 
described in Example 2.16 on page 67, using a ROM.
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solut ion  The decoder has five input bits: four for the BCD code and one 
for the blanking control. It has seven output bits: one for each segment. Thus, 
we need a 32 � 7-bit ROM, as shown in Figure 5.21. The contents of the ROM 
are given in Table 5.2.

example  5 .10  Develop a Verilog model of the 7-segment decoder of 
Example 5.9.

solut ion  The module definition is

module seven_seg_decoder (  output reg [7:1] seg,
input [3:0] bcd,
input  blank );

always @*
case ({blank, bcd})
5'b00000: seg = 7'b0111111;   // 0
5'b00001: seg = 7'b0000110;   // 1
5'b00010: seg = 7'b1011011;   // 2
5'b00011: seg = 7'b1001111;   // 3
5'b00100: seg = 7'b1100110;   // 4
5'b00101: seg = 7'b1101101;   // 5
5'b00110: seg = 7'b1111101;   // 6
5'b00111: seg = 7'b0000111;   // 7
5'b01000: seg = 7'b1111111;   // 8
5'b01001: seg = 7'b1101111;   // 9
5'b01010, 5'b01011,
5'b01100, 5'b01101,
5'b01110, 5'b01111:
 seg = 7'b1000000;   // "–" for invalid code
default: seg = 7'b0000000;   //  blank

endcase

endmodule

a d d r e s s c o n t e n t a d d r e s s c o n t e n t

0 0111111 6 1111101

1 0000110 7 0000111

2 1011011 8 1111111

3 1001111 9 1101111

4 1100110 10–15 1000000

5 1101101 16–31 0000000

TAB LE 5 .2  ROM contents for 
the 7-segment decoder.

a
b
c
d
e
f
g

BCD0
BCD1
BCD2
BCD3
blank

A0
A1
A2
A3
A4

D0
D1
D2
D3
D4
D5
D6

F I G U R E 5 .21 A 32 × 7-bit
ROM used as a 7-segment decoder.



As in Example 2.16, we use a case statement in a combinational always block 
to implement a truth-table form of the mapping. In this example, however, we 
form the address from the concatenation of the blank and bcd inputs. The case 
statement then specifies the outputs for all possible combinations of value for the 
address. A synthesis tool could then infer a ROM to implement the mapping.

In FPGA fabrics that provide SSRAM blocks, we can use an SSRAM 
block as a ROM. We simply modify the always-block template for the 
memory to omit the part that updates the memory content. We could 
include a case statement to determine the data output, as in Example 5.10. 
For example,

always @(posedge clk)
if (en)
case (a)
9'h0: d_out <= 20'h00000;
9'h1: d_out <= 20'h0126F;
...

endcase

The content of the memory is loaded into the FPGA as part of its 
programming when the system is turned on. Thereafter, since the data 
is not updated, it is constant. Note, in passing, that we have used the 
Verilog notation for hexadecimal values in this model. The notation 9'h1
means a 9-bit vector zero-extended from the value 116, and the notation 
20'h0126F means a 20-bit vector with the value 0126F16.

For large ROMs, writing the data directly in the Verilog code like this 
is very cumbersome. Fortunately, Verilog provides a way of writing the 
data in a separate file that can be loaded into the ROM during simula-
tion or synthesis. We use the $readmemh or $readmemb system task, as 
follows:

reg [19:0] data_ROM [0:511];
...
initial $readmemh("rom.data", data_ROM);

always @posedge clk)
if (en)
d_out <= data_ROM[a];

The $readmemh system task expects the content of the named file to be 
a sequence of hexadecimal numbers, separated by spaces or line breaks. 
Similarly, $readmemb expects the file to contain a sequence of binary 

5.2 Memory Types C H A P T E R  F I V E 237



238 C H A P T E R  F I V E m e m o r i e s

numbers. Thus, the file rom.data specified in the above example could 
contain the data

00000 0126F 017C0 A0018
10009 2667A 30115 00000

Values are read from the file into successive elements of the specified vari-
able until either the end of the file is reached or all elements of the variable 
are loaded.

Programmable ROMs

ROMs in which the contents are manufactured into the memory are 
suitable for applications where the number of manufactured parts is high 
and where we are sure that the contents will not need to change over the 
lifetime of the product. In other applications, we would prefer to be able 
to revise the ROM contents from time to time, or to use a form of ROM 
with lower costs for low-volume production. A programmable ROM
(PROM) meets these requirements. It is manufactured as a separately 
packaged chip with no content stored in its memory cells. The memory 
contents are programmed into the cells after manufacture, either using a 
special programming device before the chip is assembled into a system, or 
using special programming circuits when the chip is in the final system.

There are a number of forms of PROMs. Early PROMs used fusible 
links to program the memory cells. Once a link was fused, it could not 
be replaced, so programming could only be done once. These devices 
are now largely obsolete. They were replaced by PROMs that could be 
erased, either with ultraviolet light (so called EPROMs), or electrically 
using a higher-than-normal power-supply voltage (so-called electrically 
erasable PROMs, or EEPROMs).

Flash Memories

Most new designs use flash memory, which is a form of electrically  erasable 
programmable ROM. It is organized so that blocks of storage can be erased 
at once, followed by programming of individual memory locations. A flash 
memory typically allows only a limited number of erasure and program-
ming operations, typically hundreds of thousands, before the device “wears 
out.” Thus, flash memories are not a suitable replacement for RAMs.

There are two kinds of flash memories, NOR and NAND flash, 
referring to the organization of the transistors that make up the memory 
cells. Both kinds are organized as blocks (commonly of 16, 64, 128, or 
256 Kbytes) that must be erased in whole before being written. In a NOR 
flash memory, locations can then be written (once per erasure) and read (an 
arbitrary number of times) in random order. The IC has similar address, 



data and control signals to an SRAM and can read data with a comparable 
access time, making it suitable for use as a program memory for an embed-
ded processor, for storing configuration parameters to be used to control 
system operation, and for storing configuration information for FPGAs.

In a NAND flash memory, on the other hand, locations are written 
and read one page at a time, a page being typically 2 Kbytes. Read access 
to a given location would require reading the page containing the loca-
tion, followed by selection of the required data, taking several microsec-
onds. If all of the locations in a page are required, however, sequential 
reading is much faster, comparable in time to SRAM. Erasing a block and 
writing a page of data are significantly slower than SRAM access times. 
For example, the data sheet for the Micron Technology MT29F16G08FAA 
16G bit IC specifies a random read time of 25µs, a sequential read time 
of 25ns, a block erase time of 1.5ms, and a page write time of 220µs. 
Given their different access behavior, NAND flash memories have a dif-
ferent interface than SRAMs, making control circuits more involved. The 
advantage of NAND flash memory is that the density of storage cells is 
greater than that of NOR flash. Thus, NAND flash chips are better suited 
to applications in which large amounts of data must be stored cheaply. 
One of the largest applications of NAND flash memories is in memory 
cards for consumer devices such as digital cameras. They are also used in 
USB memory sticks for general purpose computers.

 1. What is the difference between RAM and ROM?

 2. What is meant by the terms volatile and nonvolatile?

 3. What is the difference between static and dynamic RAM?

 4. What is meant by the access time of a RAM?

 5. Why are asynchronous SRAMs diffi cult to use in high-speed clocked 
synchronous designs?

 6. What is the difference between fl ow-through and pipelined 
SSRAMs?

 7. What Verilog type is required for a variable to represent memory 
storage?

 8. What benefi t does a multiport memory have over a single-port 
memory with multiplexed address and data connections?

 9. How can we work out what will happen if we perform concurrent 
writes to a given location in a synchronous dual-port memory?

10. What does FIFO stand for?

11. How does a FIFO facilitate communication of data between clock 
domains?

K N O W L E D G E 
T E S T  Q U I Z
K N O W L E D G E 
T E S T  Q U I Z
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5.3 E R R O R  D E T E C T I O N  A N D  C O R R E C T I O N

In most of our discussions, we have assumed that digital circuits store 
and process information correctly, though in Section 2.2.2 we did intro-
duce the idea of bit errors and some approaches to dealing with them. Bit 
errors can occur in memories from a number of causes. Some errors are 
transient, also called soft errors, and involve a bit flip in a memory cell 
without a permanent effect on the cell’s capacity to store data. In DRAMs, 
soft errors are typically caused by high-energy neutrons generated by 
collision of cosmic rays with atoms in the earth’s atmosphere. The neu-
trons collide with silicon atoms in the DRAM chip, leaving a stream of 
charge that can disrupt the storage or reading of charge in a DRAM cell. 
The frequency of soft-error occurrence, the soft-error rate, depends on the 
way in which DRAMs are manufactured and the location in which they 
operate. Hence, soft-error rates are highly variable between systems. Soft 
errors can also occur in DRAMs and other memories from electrical inter-
ference, the effects of poor physical circuit design and other causes.

Errors that persist in a memory circuit are called hard errors. They 
can result from manufacturing defects or from electrical “wear” after pro-
longed use. A memory cell or chip affected by a hard error is no longer 
able to store data. A read operation would always yield a 0 or a 1 value, 
regardless of the bit value that was previously written.

Given that memories are more susceptible to bit errors than logic 
circuits using flip-flops and registers for storage, due to the storage density 
and the longevity of data in memories, it is more common to include some 
form of error detection in memory circuits than in logic circuits. A com-
mon approach is to use parity, described in Section 2.2.2. Recall that parity 
involves counting the number of 1 bits in a code word and setting a parity 
bit to 1 or 0 to ensure that the total number of 1 bits is even (if we choose 
even parity) or odd (if we choose odd parity). In the case of memories, use of 
parity involves adding an extra bit cell to each memory location. When we 
write to a location, we compute the parity bit and store it in the extra cell. 
When we read a location, we check that the data, together with the parity 
bit, have the correct parity. If so, we assume the data is uncorrupted. Other-
wise, we take appropriate action to deal with the error in the stored data.

The problem with using parity to check for errors, as we discussed in 
Section 2.2.2, is that it only allows us to detect a single bit flip in a stored 
code word. It does not allow us to identify which bit flipped, nor does it 
allow us to detect an even number of bit flips. If we could identify the par-
ticular bit that flipped, we could correct the error by flipping the bit back 
to its original value, and then continue operating as normal. We could also 
write the corrected data back to the memory on the assumption that the 
bit flip was a soft error. In order to be able to identify which bit flipped, we 
need to consider the invalid code words that result from flipping each bit of 
each valid code word. Provided all of those invalid code words are distinct, 
we can use the value of the invalid code word to identify the flipped bit.



One scheme for doing this is to use a form of error correcting code 
(ECC) known as a Hamming code. We will start with a single-error cor-
recting Hamming code, that is, a code that allows us to correct a single bit 
flip within a code word. If our code word has N bits, we need log2N � 1 
additional check bits for the ECC. For example, if we have 8 data bits, we 
need 4 check bits, giving a total of 12 bits. The check bits are computed 
from the values of the data bits during a write operation, and the entire 
ECC word is written to the memory location.

To illustrate how the check bits are computed, we will number the data 
bits of an 8-bit code word d1 through d8 and the ECC bits e1 through e12. 
(Normally, we’ve numbered bits starting from 0, but for this explanation, 
it’s more convenient to number all index positions from 1.) The ECC bits 
whose indices are powers of 2 are used as check bits, and the remaining 
ECC bits are the data bits, in order, as shown in Figure 5.22. If we write 
the indices of the ECC bits in binary, the check bit with a 1 in position i of 
its index is the exclusive-OR (that is, the parity) of the data ECC bits that 
have a 1 in position i of their indices. For example, check bit e2 (at index 

d1d2d3d4d5d6d7d8

e1e2e3e4e5e6e7e8e9e10e11e12

F I G U R E 5 .22 Distribution 
of data and check bits within an 
ECC word.
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00102) is the exclusive-OR of data bits e3, e6, e7, e10 and e11 (at indices 
00112, 01102, 01112, 10102 and 10112). Since each data ECC bit has at 
least two 1 bits in its binary index (otherwise it would be a check bit), each 
data bit is included in the computation of at least two check bits.

When the memory location is read, again, the entire ECC word is 
read. We recompute the values of the check bits from the data ECC bits 
and compare them, using a bit-wise exclusive OR, with the check bits read 
from memory. If the comparison result is 0000, the recomputed check bits 
match the read check bits, so all is well. However, if one of the stored ECC 
bits (either a data bit or a check bit) is flipped from the original, the com-
parison result, called the syndrome, will be other than 0000. It turns out 
to be the binary index of the ECC bit that has flipped. Thus, we can use 
the syndrome value to correct the error by flipping the indexed bit back.

example  5 .11  Compute the 12-bit ECC word corresponding to the 
8-bit data word 01100001.

solut ion  The check bits are

e1 � e3 ⊕ e5 ⊕ e7 ⊕ e9 ⊕ e11 � d1 ⊕ d2 ⊕ d4 ⊕ d5 ⊕ d7 � 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 � 0

e2 � e3 ⊕ e6 ⊕ e7 ⊕ e10 ⊕ e11 � d1 ⊕ d3 ⊕ d4 ⊕ d6 ⊕ d7 � 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 � 1

e4 � e5 ⊕ e6 ⊕ e7 ⊕ e12 � d2 ⊕ d3 ⊕ d4 ⊕ d8 � 0 ⊕ 0 ⊕ 0 ⊕ 0� 0
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e8 �e9 ⊕e10 ⊕e11 ⊕e12 �d5 ⊕d6 ⊕d7 ⊕d8 � 0 ⊕ 1 ⊕ 1 ⊕ 0� 0

Thus the ECC word is 011000000110.

example  5 .12  Determine whether there is an error in the ECC word 
110111000110, and if so, correct it.

solut ion The check bits computed from the data bits of the ECC word are

e1 �e3 ⊕e5 ⊕e7 ⊕e9 ⊕e11 � 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 � 0

e2 �e3 ⊕e6 ⊕e7 ⊕e10 ⊕e11 � 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 � 1

e4 �e5 ⊕e6 ⊕e7 ⊕e12 � 0 ⊕ 0 ⊕ 1 ⊕ 1 � 0

e8 �e9 ⊕e10 ⊕e11 ⊕e12 � 1 ⊕ 1 ⊕ 0 ⊕ 1 � 1

The syndrome is 1010 ⊕ 1010 � 0000. Thus, there is no error in the read ECC.

example  5 .13  Determine whether there is an error in the ECC word 
000111000100, and if so, correct it.

solut ion The check bits computed from the data bits of the ECC word are

e1 �e3 ⊕e5 ⊕e7 ⊕e9 ⊕e11 � 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 � 1

e2 �e3 ⊕e6 ⊕e7 ⊕e10 ⊕e11 � 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 � 0

e4 �e5 ⊕e6 ⊕e7 ⊕e12 � 0 ⊕ 0 ⊕ 1 ⊕ 0 � 1

e8 �e9 ⊕e10 ⊕e11 ⊕e12 � 0 ⊕ 0 ⊕ 0 ⊕ 1 � 1

The syndrome is 1101 ⊕ 1000 � 0101. Thus, there is an error in bit e5 of the 
read ECC. That bit should be flipped back from 0 to 1, giving the corrected 
ECC word 000111010100.

Note that we have assumed that only one bit of the stored ECC 
word could be in error. If two or more bits flip, the checking process may 
incorrectly identify a single bit as having flipped, or it may yield an invalid 
syndrome. The problem arises from the fact that we have insufficient invalid 
code words to distinguish between single-bit errors and double-bit errors. 
A simple remedy is to add further check bits. If we add a check bit that is 
the exclusive-OR of all of the data bits, the resulting error-checking code 
allows us to correct any single-bit error and to detect (but not correct) any 
double-bit error. If we assume that errors are independent, the probability 
of a double-bit error is very low, so this scheme suffices in many applica-
tions. If extreme reliability and resilience to errors is required, we can 
further extend the error-checking code to enable  correcting of multiple-bit
errors. The details of how we might do this are beyond the scope of this 
book, but are described in Section 5.5, Further Reading.
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s i n g l e - b i t
c o r r e c t i o n

d o u b l e - b i t
d e t e c t i o n

N
c h e c k 

b i t s ov e r h e a d
c h e c k 

b i t s ov e r h e a d

8 4 50% 5 63%

16 5 31% 6 38%

32 6 19% 7 22%

64 7 11% 8 13%

128 8 6.3% 9 7.0%

256 9 3.5% 10 3.9%

TAB LE 5 .3  Number of check 
bits and relative storage overhead 
for single-bit correction and 
additional double-bit detection of 
errors.

A final consideration in our discussion of error checking and correcting 
for memories is the storage overhead required. In our illustration of ECCs 
for 8-bit code words, we saw that correcting single-bit errors requires 
4 check bits (a 50% overhead) and detecting double-bit errors requires 
5 check bits (a 63% overhead). This is clearly a significant storage over-
head, especially when compared to the single parity bit required just to 
detect single-bit errors (a 13% overhead). However, we noted that single-
bit correction using Hamming codes needs log2N� 1 check bits for N bits 
of data. Double-bit error detection needs log2N� 2 check bits. If we pro-
vide checking and correction over longer data words, the relative storage 
overhead is less, as shown in Table 5.3. For larger data words, provision of 
this form of error detection and correction is increasingly attractive.

There are other, more elaborate, error correction and detection codes that 
we can use as alternatives to Hamming codes. However, they also add check 
bits to the data, and so require extra storage capacity and extra circuitry to 
detect and correct errors. They differ in the storage overhead and the complex-
ity of the additional circuitry, as well as in the number of simultaneous errors 
they can deal with. This range of techniques allows us to make design trade-
offs, depending on the reliability requirements and other constraints of our 
application. Since Hamming codes are one of the simplest ECCs, they are most 
often used in applications requiring moderately high reliability, such as network 
server computers. More complex ECCs are used in specialized high-reliability 
applications, such as aerospace computers and communications systems.

1. What is the distinction between a soft error and a hard error?

2. What is a common cause of soft errors in DRAMs?

3. What corrective action can we take when a parity error is detected?

4. Using a Hamming code, how many check bits are required for single-
error correction and double-error detection for 4-bit data words?

K N O W L E D G E 
T E S T  Q U I Z
K N O W L E D G E 
T E S T  Q U I Z



244 C H A P T E R  F I V E m e m o r i e s

5.4 C H A P T E R  S U M M A R Y

A memory contains an array of storage locations, each with a unique 
address. A 2n �m-bit memory has n-bit addresses that run from 0 to 
2n � 1.

A write operation stores a data value at a given location. A read 
operation yields the data value stored at a given location. Control 
signals govern write and read operations.

We can connect multiple memory components in parallel to store 
wider data values. We can connect multiple memory components in 
banks, with a decoder to select among the banks, to provide more 
locations.

Memories with tristate drivers on the data outputs simplify bank 
connection. At most one component drives data outputs at a time; 
the rest place their outputs in the high-impedance (hi-Z) state.

Volatile memory only retains data for as long as power is applied. 
Nonvolatile memory retains data without power. The term RAM 
refers to volatile memory that can be written and read with equal 
facility in any order. ROM refers to memory that can only be read 
once it is manufactured or programmed.

Data in static RAM (SRAM) persists for as long as power is sup-
plied, whereas data in dynamic RAM (DRAM) must be periodically 
refreshed. Asynchronous SRAM does not rely on a clock for its tim-
ing. Synchronous SRAM (SSRAM) uses a clock to sample control, 
address and data signals, thus simplifying their incorporation into 
clocked synchronous systems. SSRAMs include flow-through and 
pipelined variants.

The access time is the delay from starting a read operation to having 
valid data. The cycle time is the total time taken for a read or write 
operation.

Multiport memories allow concurrent operations by different parts 
of a digital system. A first-in first-out (FIFO) is a dual-port memory 
used as a queue for data. An important use of FIFOs is to pass data 
between different clock domains.

A ROM is a combinational circuit that maps from an address to a 
data value. It can be used to implement an arbitrary Boolean function.

Programmable ROMs (PROMs) are programmed with data after 
manufacture. Flash memories can be erased and reprogrammed 
during system operation, and are useful for storing configuration 
information.
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Atmospheric neutrons and other effects can cause bit errors in data 
stored in a memory. The error may be transient (a soft error) or per-
manent (a hard error).

Check bits can be stored along with data to detect and correct errors. 
A single parity bit can detect a single-bit error but not a double-bit 
error. Error correcting codes, such as Hamming codes, can correct 
single-bit errors and detect double-bit errors.
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.html. Describes the circuit structures and operation of nonvolatile 
memory devices.

�

�

5.5 Further Reading C H A P T E R  F I V E 245


