
211

m e m o r i e s

Many digital systems use memories for storing information. Memory in
general-purpose computers takes several forms, including semiconductor
memory chips, magnetic disks (hard disks), and optical disks (CDs and
DVDs). In this chapter, we describe the various types of semiconductor
memories, since other forms of memory are much less frequently used
in application-specific digital systems. We start by introducing the gen-
eral concepts that are common to all kinds of semiconductor memory,
and then focus on the particular features of each type. We complete the
chapter with a discussion of techniques for dealing with errors in the
stored data.

5.1 G E N E R A L C O N C E P T S

In Chapter 4 we introduced registers as components for storing binary-
coded information. We generally use separate registers when the number
of items of information to store is small, or when we need to use many
of the items concurrently. When there are numerous items that we can
use one after another, we use memory components instead to store the
information. In this section, we will discuss some of the general concepts
that apply to all kinds of memory components. Then, in the next section,
we will identify some of the specific kinds of memory that are used in
different design scenarios.

A memory is conceptually an array of storage registers, or loca-
tions, each of which has a distinct address, which is a number identifying
the location. Addresses for a memory typically start at 0 and increase
by one for each location, up to one less than the number of locations.
For most memory components, the number of locations is a power of 2.
Thus, a memory with 2n locations would have addresses ranging from
0 to 2n � 1, requiring an n-bit address. If each location stores m bits of
encoded information, the total number of bits in the memory component
is 2n �m.

5
A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

212 C H A P T E R F I V E m e m o r i e s

example 5 .1 If a memory has 32,768 locations, each of 32 bits, what is
the total capacity of the memory, and how many address bits does it require?

solut ion The capacity is 1,048,576 bits, that is 220 bits. Since
32,768 � 215, the memory requires 15 address bits.

When referring to memory sizes, we usually use the following multi-
plier prefixes denoting powers of 2:

Kilo (K): 210 � 1,024

Mega (M): 220 � 1,024 � 210 � 1,048,576

Giga (G): 230 � 1,024 � 220 � 1,073,741,824

Thus, the memory referred to in Example 5.1 has a capacity of 1M bit.
Note that the multiplier values are close to, but slightly greater than, the
decimal multiplier values with the same names. Note also that we use an
uppercase “K” for the binary multiplier 210, compared with the lowercase
“k” for the decimal multiplier 103. The context of referring to a memory
size is usually assumed to indicate use of the binary multipliers rather than
the decimal multipliers.

Given a memory of a certain capacity, we can organize it in different
ways, varying the number of locations and the number of bits per location.
For example, a 1M bit memory might be organized as a 32K � 32-bit
 memory, as shown in Example 5.1, or as a 16K � 64-bit memory,
64K � 16-bit memory, and so on. In practice, the number of locations and
the size of each location are determined by the application requirements,
dictating the memory capacity required.

The two basic operations performed by a memory are writing binary
data to a location and reading the content of a location. For both opera-
tions, we need to provide the address of the location to be written or
read on a set of input signals to the memory component. For a write
operation, we provide the data to write as a further set of input signals,
and for a read operation, the memory component provides the data as
a set of output signals. We control the write operation using control
signals generated by a control section of the digital system that contains
the memory component. We will describe the particular control signals
used by different kinds of memories in a later section. For now, we will
just assume a simple form of memory component with simple control
signals. The input and output signals are shown on a symbol for a mem-
ory component in Figure 5.1. The signal a is the address, encoded as an
unsigned binary number. The signals d_in and d_out carry the data to be
written and the data read, respectively. The encoding for these signals
depends on the application. The control signals are en (enable) and wr
(write). When en is 0, the memory simply maintains all of the stored

�

�

�

a(0)

… …a(1)

en
wr

a(n–1)

d_in(0)

… …d_in(1)

d_in(m–1)

d_out(0)

…

…d_out(1)

d_out(m–1)

F I G U R E 5 .1 Symbol for a
basic memory component.

data. When en is 1 and wr is 1, the memory writes data present on the
d_in inputs at the location whose address is present on the a inputs.
When en is 1 and wr is 0, the memory reads the content of the location
whose address is present on the a inputs and drives the data value on
the d_out outputs.

example 5 .2 Design an audio echo effects unit that operates by delay-
ing samples of an audio signal represented as a stream of 16-bit 2s-complement
binary-coded values. The sample rate is 50kHz. Arrival of a new input sample
is indicated by a control input, audio_in_en, being 1 for the clock cycle in which
the sample arrives. The unit should indicate availability of an output sample
using an output control signal, audio_out_en, in the same way. The delay time is
determined by an 8-bit unsigned input representing the number of milliseconds
of delay. The system clock frequency is 1MHz.

solut ion We can delay the arriving audio sample values by storing
them in a memory until they are required at the output. The maximum delay
expressed by the 8-bit unsigned input is 255ms. Since samples arrive at a rate of
50kHz (that is, 50 per millisecond), we need to store up to 255 � 50 � 12,750
samples. A 16K � 16-bit memory, with 14-bit addresses (since 16K � 214), will
suffice. A diagram of the datapath including the memory and other components
to compute addresses is shown in Figure 5.2. The figure shows the widths of
each of the multibit signals.

 5.1 General Concepts C H A P T E R F I V E 213

0

1
a

d_in d_out

en
wr

en Q

×50
–

audio_out

audio_in

delay

clk
count_en

addr_sel

mem_en
mem_wr

8

14

14

14

16

16

clk

F I G U R E 5 .2 Datapath for an
audio echo effects unit.

We need to use a 14-bit counter to keep track of where samples are stored in the
memory. As each input sample arrives, we store it at the next available memory
location, whose address is given by the counter. We next read from the memory
the value written d milliseconds in the past (where d is the value of the delay
input) and provide it at the output, then increment the counter to refer to the
next location in memory. This behavior is illustrated in the timing diagram of
Figure 5.3. The value written d milliseconds previously is stored 50 � d locations
prior to the current location given by the address counter. Thus, we can compute
its address by multiplying d by 50 and subtracting the result from the value of
the address counter. The counter will increment to the maximum address value

214 C H A P T E R F I V E m e m o r i e s

then wrap around to 0, effectively incrementing modulo 16K. Thus, once the
memory is filled, old locations will be overwritten with newly arriving samples.
However, they will have been written more than the maximum delay in the
past, so they will no longer be needed. When we perform the subtraction, we
can ignore the borrow output of the subtracter. The subtracter will yield the
difference modulo 16K, and so give the correct address of the required delayed
sample.

The control sequence for the unit involves two steps:

1. When a sample arrives (indicated by audio_in_en being 1), set the
multiplexer to use the counter value as the memory address and enable
the memory to perform a write.

2. Set the multiplexer to use the subtracter output as the memory address,
enable the memory to perform a read, set audio_out_en to 1, and enable
the counter to increment on the next clock edge.

We can use step 1 as the idle state for a state machine that controls this
sequence, provided we use the audio_in_en signal to gate the write control signal
to the memory. The transition and output functions are specified in Table 5.1.

20µs

st

st−d

st+1

st−d+1

clk

audio_in

audio_in_en

audio_out

audio_out_en

F I G U R E 5 .3 Timing diagram
for the audio echo effects unit.

s tat e audio_in_en n e x t
s tat e

addr_sel mem_en mem_wr count_en audio_out_
en

step 1 0 step 1 0 0 0 0 0

step 1 1 step 2 0 1 1 0 0

step 2 – step 1 1 1 0 1 1

TAB LE 5 .1 Transition and
output functions for the echo unit
control section.

The mem_en and mem_wr signals are Mealy-style outputs, since they depend on
both the state and the audio_in_en input, whereas the remaining control signals
are all Moore-style outputs.

a(13…0)

en
wr

d_in(15…0)

d_out(15…0)

a(13…0)

en
wr

d_in(15…0)

d_out(15…0)

a(13…0)

en
wr

d_in(15…0)

d_out(15…0)

d_out(31…16)

d_out(47…32)

d_out(15…0)

d_in(31…16)

d_in(47…32)

d_in(15…0)
a(13…0)

en
wr

F I G U R E 5 .4 Connection of
memory components in parallel to
form a wider memory.

 5.1 General Concepts C H A P T E R F I V E 215

Manufacturers provide semiconductor memory components in a range
of capacities, varying from a few Kbits through several Mbits and, at time
of writing, up to 2G bits for separately package memory components. Typ-
ically, for a given capacity, a manufacturer provides components organized
with differing widths (1, 4, 8 or 16 bits per location). If an application for
which we are designing a system needs a memory of some other width, we
need to use a number of memory components in parallel. For example, if
we need a 16K � 48-bit memory for an application, we could construct
it using three 16K � 16-bit memory components. We would connect the
address and control signals together, as shown in Figure 5.4, and use the
data input and output signals of each component for a slice of the overall
data input and output signals.

Connecting multiple memory components together to construct a
memory with more locations is somewhat more involved. We need to
partition the total number of locations among the memory components.
For each read and write operation we need to arrange for the component
containing the required location to perform the operation, and for other
components to remain passive. In many applications, the total number
of locations is a power of 2, say 2n, and each memory component has
a smaller number of locations, 2k. The number of memory components
is 2n/2k. The simplest approach to partitioning is to place the first 2k
 locations in the first component, the second 2k in the second component,
and so on. If we number the individual memory components 0, 1, 2, and
so on up to (2n/2k) � 1, the component containing a location with address
A is ⎣A/2k⎦. This is represented by the most significant n � k bits of the

216 C H A P T E R F I V E m e m o r i e s

address. We can decode these bits to derive select signals to activate
the required memory component. The address of the location A within
the selected memory component is A mod 2k. This is represented by the
least significant k bits of the address. We simply connect these bits of
the address to each of the memory components. The data input signals
are also connected to each of the memory components. The data output
signals need to be driven by the memory component that is selected, so we
use a multiplexer to choose the appropriate data value based on the most
significant address bits.

example 5 .3 Design a 64K � 8-bit composite memory using four
16K � 8-bit components.

solut ion The complete composite memory is shown in Figure 5.5.
Address bits 15 and 14 are decoded to select which of the four memory com-
ponents is enabled for read and write operations. Those bits also control the
multiplexer to select the output data from the enabled component during a read
operation.

a(13…0)

en
wr

d_in(7…0)

d_out(7…0)

a(13…0)

en
wr

d_in(7…0)

d_out(7…0)

a(13…0)

en
wr

d_in(7…0)

d_out(7…0)

a(13…0)

en
wr

d_in(7…0)

d_out(7…0)

d_out(7…0)

d_in(7…0)
a(13…0)

a(15…14)
en

wr

0
1
2
3

0en 1
2
3

F I G U R E 5 .5 Connection of
four 16K � 8-bit memory compo-
nents to construct a 64K � 8-bit
memory.

Many manufacturers simplify the connection of memory components
to form larger memories by using a special kind of output driver, called a
tristate driver, for each of the data outputs. Tristate drivers are also used
for buses that allow multiple data sources to provide data in a system. We
will discuss tristate and other bus structures in more detail in Chapter 8 as
part of our discussion of embedded computer systems. For now, we will
focus on their use in memory components.

Unlike ordinary component outputs, which always drive either a low
or high logic level, the output of a tristate driver can be turned off by
 placing it in a high-impedance, or hi-Z, state. (“Z” is commonly used as
the symbol for impedance in a circuit.) Thus, a tristate driver has three
output states: logic low, logic high and high impedance; hence the name.
The output circuit of a CMOS digital component involves two transistor
switches as shown in Figure 5.6. To drive the output with a low logic
level, the component turns the bottom transistor on and the top transistor
off, and to drive a high logic level, the component turns the top transistor
on and the bottom transistor off. A tristate driver has the same output
stage, but can turn both transistors off, effectively isolating the compo-
nent from the output.

If we use memory components with tristate data outputs to construct
a larger memory, we can omit the output multiplexer shown in Figure 5.5.
Instead, we simply connect the data outputs of the memory components
together. When a read operation is performed, only the selected memory
component enables its data outputs; all of the disabled components leave
their outputs in the high-impedance state.

Many memory components that have tristate data outputs also combine
the data inputs and outputs into a single set of bidirectional connections,
illustrated in Figure 5.7. This allows a composite memory to be constructed
as shown in Figure 5.8. For memory components implemented as separate
integrated circuits for use on printed circuit boards, the use of bidirectional
connections results in significant cost savings, since there are fewer package

output

+V

F I G U R E 5 .6 Output stage
circuit.

+V +V +V
F I G U R E 5 .7 Bidirectional
tristate data connections.

 5.1 General Concepts C H A P T E R F I V E 217

218 C H A P T E R F I V E m e m o r i e s

pins and interconnecting wires. As we shall see when we study embedded
processors in more detail, this type of memory works well as part of an
embedded computer system, since memory write and read operations are
performed independently. When we perform a write operation, we drive the
data signals with the data to be written. The selected memory component
treats the data connections as inputs and accepts the data to be written. It
keeps its tristate drivers disabled so as not to interfere with the logic levels
in the data signals. When we perform a read operation, we ensure that all
other drivers connected to the data signals are in the high-impedance state
and allow the selected memory component to enable its tristate drivers. It
drives the data signals with the data read from memory.

Of course, whether we can use tristate data connections in a memory
depends on whether the implementation fabric provides them. Memory
components implemented as packaged integrated circuits, for use in a
larger system implemented on a printed circuit board, typically do have
tristate data outputs or tristate bidirectional data input/outputs. On the
other hand, memory blocks provided within ASICs and FPGAs typically
do not have tristate data connections, since tristate buses present some
design and verification challenges in those fabrics. (We will return to
this in Chapter 8.) Instead, data from individual memory blocks must be
 combined using multiplexers.

In this section, we have looked at ways of connecting multiple mem-
ory components together to form a memory with wider or more storage

a(13…0)

en
wr

d(7…0)

a(13…0)

en
wr

d(7…0)

a(13…0)

en
wr

d(7…0)

a(13…0)

en
wr

d(7…0)d(7…0)

a(13…0)

a(15…14)
en

wr

0en 1
2
3

F I G U R E 5 .8 A composite
memory constructed using
components with common data
inputs and outputs.

locations than provided by a single chip. In each of these schemes, the
memory performs just one operation at a time. In high performance sys-
tems, we can connect multiple memory components together in ways that
permit multiple operations to proceed concurrently, thus increasing the
total number of operations completed per second. These schemes usually
involve organizing the memory into a number of banks, each of which can
perform an operation in parallel with other banks. Successive addresses
are assigned to different banks, since, in many systems, locations are
often accessed in order. As an example, a system with four banks would
assign locations 0, 4, 8, . . . to bank 0; locations 1, 5, 9, . . . to bank 1; 2,
6, 10, . . . to bank 2; and 3, 7, 11, . . . to bank 3. When a read operation is
required for location 4, bank 0 would read that location. Moreover, the
other banks would start a read, prefetching locations 5, 6 and 7. By the
time a read operation is required for these locations (assuming access in
order), the data would already be available from the memory. We will
not describe these advanced memory organizations in any further detail
in this book. Books on computer organization, particularly those con-
centrating on high-performance computers, are a good source of further
information. (See Section 5.5, Further Reading.)

1. What is the capacity in bits of a memory with 4096 locations, each
of 24 bits? How many address bits are required?

2. What is the effect of a write operation? What is the effect of a read
operation?

3. How would we connect four 256M � 4-bit memory components to
make a 256M � 16-bit memory?

4. How would we connect four 256M � 8-bit memory components to
make a 1G � 8-bit memory?

5. Which memory component in Question 4 would contain the
location with address 5FC000016?

6. What are the three states of a tristate driver?

7. How do memory components with tristate data outputs simplify
construction of large memories?

5.2 M E M O R Y T Y P E S

In this section, we will introduce the various types of memory provided
by manufacturers, either as individual integrated circuits or as resources
within ASIC or FPGA fabrics. We will discuss the distinguishing properties
of each kind of memory, including their timing characteristics and costs,

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

5.2 Memory Types C H A P T E R F I V E 219

220 C H A P T E R F I V E m e m o r i e s

and describe how to model some of them in Verilog. We will distinguish
between memory that can be both read and written, called random access
memory (RAM), and memory that can only be read, called read-only
memory (ROM). We use the term RAM instead of read/write memory
largely for historical reasons. Memories in very early computers enforced
sequential access, that is, access to locations in increasing order of address,
due to the physical medium on which the data was stored. The invention
of memories in which locations could be read and written with equal facil-
ity in any order (that is, randomly) was a significant milestone, and so the
term RAM has stuck.

5.2.1 A SY N C H R O N O U S S TAT I C R A M

One of the simplest forms of memory is asynchronous static RAM. It is
asynchronous because it does not rely on a clock for its timing. The term
static means that the stored data persists indefinitely so long as power is
applied to the memory component. Compare this with dynamic RAM,
which we will describe later and which loses stored data if it is not peri-
odically rewritten. Static RAM is volatile, meaning that it requires power
to maintain the stored data, and loses data if power is removed. Since
engineers are fond of abbreviations, the term static RAM is usually further
shortened to SRAM.

Asynchronous SRAM internally uses 1-bit storage cells that are similar
to the D-latch circuit that we described in Chapter 4. Within the memory
component, the address is decoded to select a particular group of cells
that comprise one location. For a write operation, the selected latch cells
are enabled and the input data is stored. For a read operation, the address
activates a multiplexer that routes the outputs of the selected latch cells to
the data outputs of the memory component.

The external interface of an asynchronous SRAM is very close to our
general description of a memory component in Section 5.1. For largely
historical reasons, most manufacturers use active-low logic for the control
signals. Further, since asynchronous SRAMs are usually only available
as packaged integrated circuits, and not as blocks in ASIC libraries or
FPGAs, they usually have bidirectional tristate data input/output pins.
Figure 5.9 shows a symbol for a typical asynchronous SRAM. The address
input and the data input/output are as we described in Section 5.1. The
chip-enable input (

__
 CE) is used to enable or disable the memory chip. We

usually drive this input from a select control signal, for example, from an
address decoder in a composite memory. The write-enable input (

__
 WE) con-

trols whether the memory, if enabled, performs a write or read operation.
The output-enable input (

__
 OE) controls the tristate data drivers during a

read operation. When
__

 OE is low during a read, the drivers are enabled and
can drive the read data onto the data pins. When

__
 OE is high, the drivers

are in the high-impedance state.

A

CE
WE
OE

D

F I G U R E 5 .9 Symbol for an
asynchronous SRAM.

Given that the storage cells in an asynchronous SRAM are basically
latches, it is not surprising that the timing is similar to that of a D-latch.
The sequencing of signals to perform a write operation is shown at the left
of Figure 5.10. The control section that sequences the datapath contain-
ing the memory must ensure that the address is stable before commencing
the write operation and is held stable during the entire operation. Oth-
erwise, locations other than the one to be updated may be affected. The
control section selects the particular memory chip by driving

__
 CE low, acti-

vates the write operation by driving
__

 WE low, and ensures that the chip’s
tristate drivers are disabled by driving

__
 OE high. It also sets control signals

to the datapath to provide data on the data signals. The data is stored
transparently in the latch cells for the addressed location. The final data
to be stored must be stable on the data signals a setup time before the
rising edge of the

__
 WE signal or the

__
 CE signal, whichever occurs first. The

data and the address must also remain stable for a hold time after the
__

 WE
or

__
 CE signal goes high.

The typical sequencing of signals for a read operation is similar, and
is shown at the right of Figure 5.10. The difference is that the

__
 WE signal

is held high, and the
__

 OE signal is driven low to enable the memory chip’s
tristate drivers. While this sequence is typical for a read operation done
in isolation, we can also perform back-to-back read operations simply
by changing the address value. The read operation is essentially a combi-
national operation, involving decoding the address and multiplexing the
selected latch-cell’s value onto the data outputs. Changing the address
simply causes a different cell’s value to appear on the outputs after a prop-
agation delay.

Manufacturers of asynchronous SRAM chips publish the timing
parameters for write and read operations in data sheets. The parameters
typically include setup and hold times for address and data values, and
delays for turning tristate drivers on and off. One of the figures of merit of
a memory chip is its access time, which is the delay from the start of a read

WE

OE

CE

A

D stored data

tsu th

read data

F I G U R E 5 .10 Timing for
write and read operations in an
asynchronous SRAM.

 5.2 Memory Types C H A P T E R F I V E 221

222 C H A P T E R F I V E m e m o r i e s

operation to having valid data at the outputs. Other performance-related
parameters are the write cycle time and the read cycle time, which are the
times taken to complete write and read operations, respectively. Manufac-
turers offer chips in different speed grades, with faster chips usually costing
more. This allows us, as designers, to make cost/performance trade-offs in
our designs.

While asynchronous SRAMs are conceptually simple and have simple
timing behavior, the fact that they are asynchronous can make them dif-
ficult to use in clocked synchronous systems. The need to set up and hold
address and data values before and after activation of the control signals
and to keep the values stable during the entire cycle means that we must
either perform operations over multiple clock cycles, or use delay ele-
ments to ensure correct timing within a clock cycle. The former approach
reduces performance, and the latter approach violates assumptions inher-
ent in the clocked synchronous methodology, and so complicates timing
design and analysis. For these reasons, asynchronous SRAMs are usually
used only in systems with low performance requirements, where their low
cost is a benefit.

5.2.2 SY N C H R O N O U S S TAT I C R A M

Given the difficulties associated with asynchronous SRAMs, many mem-
ory component vendors and implementation fabrics provide synchronous
SRAMs, otherwise known as SSRAMs. The internal storage cells of
SSRAMs are the same as those of asynchronous SRAMs. However, the
interface includes clocked registers for storing the address, input data
and control signal values, and in some cases, output data. In this section,
we will describe two forms of SSRAMs in general terms. The details of
control signals and timing will vary between SSRAMs provided by dif-
ferent component vendors and implementation fabrics. As always, we
need to read and understand the data sheets before using a component
in a design.

The simplest kind of SSRAM is often called a flow-through SSRAM.
It includes registers on the inputs, but not on the data outputs. The term
flow-through refers to the fact that data read from the memory cells flows
through directly to the data outputs. Having registers on the inputs allows
us to generate the address, data and control signal values according to our
clocked synchronous design methodology, ensuring that they are stable in
time for a clock edge. Figure 5.11 illustrates the timing for a flow-through
SSRAM. During the first clock cycle, we set up the address (a1), control
signals and input data (xx) in preparation for a write operation. These
values are stored in the input registers on the next clock edge, causing the
SSRAM to start the write operation. The data is stored and flows through
to the output during the second clock cycle. While that happens, we set up
the address (a2) and control signals in preparation for a read operation.

Again, these values are stored on the next clock edge, and during the
third cycle the SSRAM performs the read operation. The data, denoted
by M(a2), flows through from the memory to the output. Now, in the
third cycle, we set the enable signal to 0. This prevents the input registers
from being updated on the next clock edge, so the previously read data is
maintained at the output.

example 5 .4 Design a circuit that computes the function y � ci � x2,
where x is a binary-coded input value and ci is a coeffi cient stored in a
fl ow-through SSRAM. x, ci and y are all signed fi xed-point values with 8 pre-
binary-point and 12 post-binary-point bits. The index i is also an input to the
circuit, encoded as a 12-bit unsigned integer. Values for x and i arrive at the
input during the cycle when a control input, start, is 1. The circuit should mini-
mize area by using a single multiplier to multiply ci by x and then by x again.

solut ion A datapath for the circuit is shown in Figure 5.12. The 4K �
20-bit flow-through SSRAM stores the coefficients. A computation starts with
the index value, i, being stored in the SSRAM address register, and the data

clk

A

en

wr

D_in

D_out

a1

xx

xx M(a2)

a2

F I G U R E 5 .11 Timing for a
fl ow-through SSRAM.

D_in

A

SSRAM

en

wr

D_out

D

ce

Q

D

ce

Q

× y

i
c_in

c_ram_wr

x_ce

c_ram_en

x

y_ce
mult_sel

clk

0

1

0

1

clk

clk

clk

F I G U R E 5 .12 Datapath for a
circuit to multiply the square of an
input by an indexed coeffi cient.

 5.2 Memory Types C H A P T E R F I V E 223

224 C H A P T E R F I V E m e m o r i e s

input, x, being stored in the register shown below the SSRAM. On the second
clock cycle, the SSRAM performs a read operation. The coefficient read from
the SSRAM and the stored x value are multiplied, and the result is stored in the
output register. On the third cycle, the multiplexer select inputs are changed so
that the value in the output register is further multiplied by the stored x value,
with the result again being stored in the output register.

For the control section, we need to develop a finite state machine that sequences
the control signals. It is helpful to draw a timing diagram showing progress of
the computation in the datapath and when each of the control signals needs to
be activated. The timing diagram is shown in Figure 5.13, and includes state
names for each clock cycle. An FSM transition diagram for the control section is

shown in Figure 5.14. The FSM is a Moore machine, with the outputs shown in
each state in the order c_ram_en, x_ce, mult_sel and y_ce. In the step1 state, we
maintain c_ram_en and x_ce at 1 in order to capture input values. When start
changes to 1, we change c_ram_en and x_ce to 0 and transition to the step2 state
to start computation. The y_ce control signal is set to 1 to allow the product of
the coefficient read from the SSRAM and the x value to be stored in the y output
register. In the next cycle, the FSM transitions to the step3 state, changing the
mult_sel control signal to multiply the intermediate result by the x value again
and storing the final result in the y output register. The FSM then transitions
back to the step1 state on the next cycle.

y_ce

c_ram_en

start

clk

step1 step1 step2 step3 step1

x_ce

mult_sel

F I G U R E 5 .13 Timing
diagram for the computation
circuit.

step1
1, 1, 0, 0

0
1 step2

0, 0, 0, 1

step3
0, 0, 1, 1

F I G U R E 5 .14 Transition
diagram for the circuit control
section.

clk

A

en

wr

D_in

D_out

a1

xx

xx M(a2)

a2

F I G U R E 5 .15 Timing for a
pipelined SSRAM.

Another form of SSRAM is called a pipelined SSRAM. It includes a
register on the data output, as well as registers on the inputs. A pipelined
SSRAM is useful in higher-speed systems where the access time of the
memory is a significant proportion of the clock cycle time. If there is
no time in which to perform combinational operations on the read data
before the next clock edge, it needs to be stored in an output register
and used in the subsequent clock cycle. A pipelined SSRAM provides
that output register. The timing for a pipelined SSRAM is illustrated in
 Figure 5.15. Timing for the inputs is the same as that for a flow-through
SSRAM. The difference is that the data output does not reflect the result
of a read or write operation until one clock cycle later, albeit immediately
after the clock edge marking the beginning of that cycle.

example 5 .5 Suppose we discover that, in the datapath of Example 5.4,
the combination of the SSRAM access time plus the delays through the
 multiplexer and multiplier is too long. This causes the clock frequency to be too
slow to meet our performance constraint. We change the memory from a fl ow-
through to a pipelined SSRAM. How is the circuit design affected?

solut ion As a consequence of the SSRAM change, the coefficient value is
available at the SSRAM output one cycle later. To accommodate this, we could
insert a cycle into the control sequence to wait for the value to be available.
Rather than wasting this time, we can use it to multiply the value of x by itself,
and perform the multiplication by the coefficient in the third cycle. This change
requires us to swap the input to the top multiplexer in Figure 5.12, so that it
selects the stored x value when mult_sel is 0 in state step2 and the SSRAM
output when mult_sel is 1 in step3. The FSM control sequence is otherwise
unchanged.

Verilog Models of Synchronous Static Memories

In this section, we will describe how to model SSRAMs in such a way that
synthesis CAD tools can infer a RAM and use the appropriate memory

 5.2 Memory Types C H A P T E R F I V E 225

226 C H A P T E R F I V E m e m o r i e s

resources provided in the target implementation fabric. We saw in Chapter 4
that to model a register, we declare a variable to represent the stored regis-
ter value and assign a new value to it on a rising clock edge. We can extend
this approach to model an SSRAM in Verilog. We need to declare a vari-
able that represents all of the locations in the memory. The way to do this
is to declare an array variable, which represents a collection of values, each
with an index that corresponds to its location in the array. For example, to
model a 4K � 16-bit memory, we would write the following declaration:

reg [15:0] data_RAM [0:4095];

The declaration specifies a variable named data_RAM that is an array with
elements index from 0 to 4095. Each element is a 16-bit vector.

Once we have declared the variable representing the storage, we write
an always block that performs the write and read operations. The block
is similar in form to that for a register. For example, an always block to
model a flow-through SSRAM based on the variable declaration above is

always @(posedge clk)
if (en)
if (wr) begin
data_RAM[a] <= d_in; d_out <= d_in;

end
else
d_out <= data_RAM[a];

On a rising clock edge, the block checks the enable input, and only per-
forms an operation if it is 1. If the write control input is 1, the block
updates the element of the data_RAM signal indexed by the address using
the data input. The block also assigns the data input to the data output,
representing the flow-through that occurs during a write operation. If the
write control input is 0, the block performs a read operation by assigning
the value of the indexed data_RAM element to the data output.

example 5 .6 Develop a Verilog model of the circuit using fl ow-through
SSRAMs, as described in Example 5.4.

solut ion The module definition includes the address, data and control
ports, as follows:

module scaled_square (output reg signed [7:-12] y,
input signed [7:-12] c_in, x,

(continued)

 input [11:0] i,
 input start,
 input clk, reset);

wire c_ram_wr;
reg c_ram_en, x_ce, mult_sel, y_ce;
reg signed [7:–12] c_out, x_out;

reg signed [7:–12] c_RAM [0:4095];

reg signed [7:–12] operand1, operand2;

parameter [1:0] step1 = 2'b00, step2 = 2'b01, step3 = 2'b10;
reg [1:0] current_state, next_state;

assign c_ram_wr = 1'b0;

always @(posedge clk) // c RAM – flow through
if (c_ram_en)

if (c_ram_wr) begin
c_RAM[i] <= c_in;
c_out <= c_in;

end
else
c_out <= c_RAM[i];

always @(posedge clk) // y register
if (y_ce) begin

if (!mult_sel) begin
operand1 = c_out;
operand2 = x_out;

end
else begin
operand1 = x_out;
operand2 = y;

end
y <= operand1 * operand2;

end

always @(posedge clk) // State register
...

always @* // Next-state logic
...

always @* begin // Output logic
...

endmodule

5.2 Memory Types C H A P T E R F I V E 227

228 C H A P T E R F I V E m e m o r i e s

The module declares nets and variables for the internal datapath connections
and control signals. It declares an array variable to represent the coefficient
memory (c_RAM). It also declares parameters for the state of the control section
finite-state machine, and variables for the current and next state.

After the declarations, we include always blocks and assignments for the data-
path and control section. We omit the details of the finite-state machine. They
are based on the template we described in Chapter 4, and are available on the
companion website. The first block represents the coefficient SSRAM. It uses
the i input as its address. The second block represents both the combinational
circuits of the datapath and the output register. If the y_ce variable is 1, the
register is updated with the value computed by the combinational circuits. We
use intermediate variables to divide the computation into two parts, correspond-
ing to the multiplexers and the multiplier, respectively. Note that we use blocking
assignments to these intermediate variables, rather than nonblocking assign-
ments, since they do not represent outputs of storage registers.

Modeling a pipelined SSRAM in Verilog is somewhat more involved,
as we must represent the internal connection from the memory storage to
the output register and ensure that the pipeline timing is correctly repre-
sented. One approach, extending our previous always block for a 16-bit-
wide memory, is

reg pipelined_en;
reg [15:0] pipelined_d_out;
...

always @(posedge clk) begin
if (pipelined_en) d_out <= pipelined_d_out;
pipelined_en <= en;
if (en)
if (wr) begin

data_RAM[a] <= d_in; pipelined_d_out <= d_in;
end
else

pipelined_d_out <= data_RAM[a];
end

In this block, the variable pipelined_en saves the value of the enable input
on a clock edge so that it can be used on the next clock edge to control
the output register. Similarly, the variable pipelined_d_out saves the value
read or written through the memory on one clock edge for assignment to
the output on the next clock edge if the output register is enabled. Since
there are many minor variations on the general concept of a pipelined
SSRAM, it is difficult to present a general template, especially one that
can be recognized by synthesis tools. A common alternative approach is
to use a CAD tool that generates a memory circuit and a Verilog model of

that circuit. We can then instantiate the generated model as a component
in a larger system.

5.2.3 M U LT I P O R T M E M O R I E S

Each of the memories that we have looked at, both in Section 5.1 and
 previously in this section, is a single-port memory, with just one port for
writing and reading data. It has only one address input, even though the data
connections may be separated into input and output connections. Thus, a
single-port memory can perform only one access (a write or a read opera-
tion) at a time. In contrast, a multiport memory has multiple address inputs,
with corresponding data inputs and outputs. It can perform as many opera-
tions concurrently as there are address inputs. The most common form of
multiport memory is a dual-port memory, illustrated in Figure 5.16, which
can perform two operations concurrently. (Note that in this context, we are
using the term “port” to refer to a combination of address, data and control
connections used to access a memory, as distinct from a Verilog port.)

A multiport memory typically consumes more circuit area than a
 single-port memory with the same number of bits of storage, since it has
separate address decoders and data multiplexers for each access port.
Only the internal storage cells of the memory are shared between the
multiple ports, though additional wiring is needed to connect the cells to
the access ports. However, the cost of the extra circuit area is warranted
in some applications, such as high performance graphics processing and
high-speed network connections. Suppose we have one subsystem produc-
ing data to store in the memory, and another subsystem accessing the data
to process it in some way. If we use a single-port memory, we would need
to multiplex the addresses and input data from the subsystems into the
memory, and we would have to arrange the control sections of the subsys-
tems so that they take turns to access the memory. There are two potential
problems here. First, if the combined rate at which the subsystems need
to move data in and out of the memory exceeds the rate at which a single
access port can operate, the memory becomes a bottleneck. Second, even
if the average rates don’t exceed the capacity of a single access port, if the
two subsystems need to access the memory at the same time, one must
wait, possibly causing it to lose data. Having separate access ports for the
subsystems obviates both of these problems.

The only remaining difficulty is the case of both subsystems accessing
the same memory location at the same time. If both accesses are reads, they
can proceed. If one or both is a write, the effect depends on the characteristics
of the particular dual-port memory. In an asynchronous dual-port memory,
a write operation performed concurrently with a read of the same location
will result in the written data being reflected on the read port after some
delay. Two write operations performed concurrently to the same location
result in an unpredictable value being stored. In the case of a synchronous

D_in1

A1 A2

dual-port
SSRAM

en1

D_in2

D_out1 D_out2

ren2

wr1 wr2

clk1 clk2

F I G U R E 5 .16 A dual-port
memory.

 5.2 Memory Types C H A P T E R F I V E 229

230 C H A P T E R F I V E m e m o r i e s

dual-port memory, the effect of concurrent write operations depends on
when the operations are performed internally by the memory. We should
consult the data sheet for the memory component to understand the effect.

Some multiport memories, particularly those manufactured as pack-
aged components, provide additional circuits that compare the addresses on
the access ports and indicate when contention arises. They may also provide
circuits to arbitrate between conflicting accesses, ensuring that one proceeds
only after the other has completed. If we are using multiport memory compo-
nents or circuit blocks that do not provide such features and our application
may result in conflicting accesses, we need to include some form of arbitra-
tion as a separate part of the control section in our design. An alternative is
to ensure that the subsystems accessing the memory through separate ports
always access separate locations, for example, by ensuring that they always
operate on different blocks of data stored in different parts of the memory.
We will discuss block processing of data in more detail in Chapter 9.

example 5 .7 Develop a Verilog model of a dual-port, 4K � 16-bit fl ow-
through SSRAM. One port allows data to be written and read, while the other
port only allows data to be read.

solut ion In the following module definition, the clk input is common to
both memory ports. The inputs and outputs with names ending in “1” are the
connections for the read/write memory port, and the inputs and outputs with
names ending in “2” are the connection for the read-only memory port.

module dual_port_SSRAM (output reg [15:0] d_out1,
input [15:0] d_in1,
input [11:0] a1,
input en1, wr1,
output reg [15:0] d_out2,
input [11:0] a2,
input [11:0] en2,
input clk);

reg [15:0] data_RAM [0:4095];

always @(posedge clk) // read/write port
if (en1)
if (wr1) begin
data_RAM[a1] <= d_in1; d_out1 <= d_in1;

end
else
d_out1 <= data_RAM[a1];

always @(posedge clk) // read-only port
if (en2) d_out2 <= data_RAM[a2];

endmodule

This is much like our earlier model of a flow-through SSRAM, except that
there are two always blocks, one for each memory port. The declaration of the
 variable for the memory storage is the same, with the variable being shared
between the two blocks. The block for the read/write port is identical in form to
the block we introduced earlier. The block for the read-only port is a simplified
version, since it does not need to deal with updating the storage variable.

In this model, we make no special provision for the possibility of concurrent write
and read accesses to the same address. During simulation of the model, one or other
block would be activated first. If the block for the read/write port is activated first,
it updates the memory location, and the read operation yields the updated value.
On the other hand, if the block for the read-only port is activated first, it reads the
old value before the location is updated. When the model is synthesized, the syn-
thesis tool chooses a dual-port memory component from its library. The effect of a
concurrent write and read would depend on the behavior of the chosen component.

One specialized form of dual-port memory is a first-in first-out
 memory, or FIFO. It is used to queue data arriving from a source to be
processed in order of arrival by another subsystem. The data that is first
in to the FIFO is the first that comes out; hence, the name. The most com-
mon way of building a FIFO is to use a dual-port memory as a circular
buffer for the data storage, with one port accepting data from the source
and the other port reading data to provide to the processing subsystem.
Each port has an address counter to keep track of where data is writ-
ten or read. Data written to the FIFO is stored in successive free loca-
tions. When the write-address counter reaches the last location, it wraps
to location 0. As data is read, the read-address counter is advanced to
the next available location, also wrapping to 0 when the last location is
reached. If the write address wraps around and catches up with the read
address, the FIFO is full and can accept no more data. If the read address
catches up with the write address, the FIFO is empty and can provide no
more data. This scheme is similar to that used for the audio echo effects
unit in Example 5.2, except that the distance between the write and read
addresses is not fixed. Thus, a FIFO can store a variable amount of data,
depending on the rates of writing and reading data. The size of memory
needed in a FIFO depends on the maximum amount by which reading of
data lags writing. Determining the maximum size may be difficult to do.
We may need to evaluate worst-case scenarios for our application using
mathematical or statistical models of data rates or using simulation.

example 5 .8 Design a FIFO to store up to 256 data items of 16 bits each,
using a 256 � 16-bit dual-port SSRAM for the data storage. The FIFO should
provide status outputs, as shown in the symbol in Figure 5.17, to indicate when
the FIFO is empty and full. Assume that the FIFO will not be read when it is

 5.2 Memory Types C H A P T E R F I V E 231

D_wr

FIFO

wr_en

rd_en

D_rd

empty

reset full

clk

F I G U R E 5 .17 Symbol for a
FIFO with empty and full status
outputs.

232 C H A P T E R F I V E m e m o r i e s

empty, nor be written to when it is full, and that the write and read ports share a
common clock.

solut ion The datapath for the FIFO, shown in Figure 5.18, uses 8-bit
counters for the write and read addresses. The write address refers to the next
free location in the memory, provided the FIFO is not full. The read address
refers to the next location to be read, provided the FIFO is not empty. Both
counters are cleared to 0 when the reset signal is active.

D_wr

A_wr A_rd

dual-port
SSRAM

wr_en

D_rd

rd_en

counter
8-bit

ce

reset

Q

counter
8-bit

ce

reset

Q

= equal

A_rd

A_wr

D_rd

clk
wr_en
D_wr

reset

rd_en

clk

clk

clk clk

F I G U R E 5 .18 Datapath for a
FIFO using a dual-port memory.

The FIFO being empty is indicated by the two address counters having the
same value. The FIFO is full when the write counter wraps around and catches
up with the read counter, in which case the counters have same value again.
So equality of the counters is not sufficient to distinguish between the cases of
the FIFO being empty or full. We could keep track of the number of items in the
FIFO, for example, by using a separate up/down counter to count the number
of items rather than trying to compare the addresses. However, a simpler way
is to keep track of whether the FIFO is filling or emptying. A write operation
without a concurrent read means the FIFO is filling. If the write address becomes
equal to the read address as a consequence of the FIFO filling, the FIFO is full.
A read operation without a concurrent write means the FIFO is emptying. If the
write address becomes equal to the read address as a consequence of the FIFO
emptying, the FIFO is empty. If a write and a read operation occur concurrently,
the amount of data in the FIFO remains unchanged, so the filling or emptying
state remains unchanged. We can describe this behavior using an FSM, as shown
in Figure 5.19, in which the transitions are labeled with the values of the wr_en
and rd_en control signals, respectively. The FSM starts in the emptying state. The
empty status output is 1 if the current state is emptying and the equal signal is 1,
and the full status output is 1 if the current state is filling and the equal signal is
1. Note that this control sequence relies on the assumption of a common clock
between the two FIFO ports, since the FSM must have a single clock to operate.

emptying

filling

1, 0 0, 1

F I G U R E 5 .19 Transition
diagram for the FIFO FSM.

One important use for FIFOs is to pass data between subsystems
operating with different clock frequencies, that is, between different clock
domains. As we discussed in Section 4.4.1, when data arrives asynchro-
nously, we need to resynchronize it with the clock. If the clocks of two
clock domains are not in phase, data arriving at one clock domain from
the other could change at any time with respect to the receiving domain’s
clock, and so must be treated as an asynchronous input. Resynchronizing
the data means passing it through two or more registers. If the sending
domain’s clock is faster than that of the receiving domain, the data being
resynchronized may be overrun by further arriving data. A FIFO allows
us to smooth out the flow of data between the domains. Data arriving is
written into the FIFO synchronously with the sending domain’s clock, and
the receiving domain reads data synchronously with its clock. Control of
such a FIFO is more involved than that for the FIFO with a single clock
illustrated in Example 5.8. The Xilinx Application Note, XAPP 051 (see
Section 5.5, Further Reading) describes a technique that can be used.

FIFOs are also used in applications such as computer networking,
where data arrives from multiple network connections at unpredictable
times and must be processed and forwarded at high speed. Several mem-
ory component vendors provide packaged FIFO circuits that include the
dual-port memory and the address counting and control circuits. Some of
the larger FPGA fabrics also provide FIFO address counting control cir-
cuits that can be used with built-in memory blocks. If we need a FIFO in a
system implemented in other fabrics, we can either design one, as we did
in Example 5.8, or use a FIFO block from a library or a generator tool.

5.2.4 DY N A M I C R A M

Dynamic RAM (DRAM) is another form of volatile memory that
uses a different form of storage cell for storing data. We mentioned
in Section 5.2.1 that static RAM uses storage cells that are similar to
D-latches. In contrast, a storage cell for a dynamic RAM uses a single
capacitor and a single transistor, illustrated in Figure 5.20. The DRAM
cells are thus much smaller than SRAM cells, so we can fit many more
of them on a chip, making the cost per bit of storage lower. However,
the access times of DRAMs are longer than those of SRAMs, and the
complexity of access and control is greater. Thus, there is a trade-off of
cost, performance and complexity against memory capacity. DRAMs are
most commonly used as the main memory in computer systems, since
they satisfy the need for high capacity with relatively low cost. How-
ever, they can also be used in other digital systems. The choice between
SRAM and DRAM depends on the requirements and constraints of each
application.

A DRAM represents a stored 1 or 0 bit in a cell by the presence
or absence of charge on the capacitor. When the transistor is turned

 5.2 Memory Types C H A P T E R F I V E 233

bit line

word line

F I G U R E 5 .20 A DRAM
storage cell.

234 C H A P T E R F I V E m e m o r i e s

off, the capacitor is isolated from the bit line, thus storing the charge
on the capacitor. To write to the cell, the DRAM control circuit pulls
the bit line high or low and turns on the transistor, thus charging or
discharging the capacitor. To read from the cell, the DRAM control
circuit precharges the bit line to an intermediate level, then turns on
the transistor. As the charges on the capacitor and the bit line equalize,
the voltage on the bit line either increases slightly or decreases slightly,
depending on whether the storage capacitor was charged or discharged.
A sensor detects and amplifies the change, thus determining whether
the cell stored a 1 or a 0. Unfortunately, this process destroys the stored
value in the cell, so the control circuit must then restore the value by
pulling the bit line high or low, as appropriate, before turning off the
transistor. The time taken to complete the restoration is added to the
access time, making the overall read cycle significantly longer than than
that for an SRAM.

Another property of a DRAM cell is that, while the transistor is
turned off, charge leaks from the capacitor. This is the meaning of the term
“dynamic” applied to DRAMs. To compensate, the control circuit must
read and restore the value in each cell in the DRAM before the charge
decays too much. This process is called refreshing the DRAM. DRAM
manufacturers typically specify a period of 64ms between refreshes for
each cell. The cells in a DRAM are typically organized into several rectan-
gular arrays, called banks, and the DRAM control circuit is organized to
refresh one row of each bank at a time. Since the DRAM cannot perform
a normal write or read operation while it is refreshing a row, the refresh
operations must be interleaved between writes and reads. Depending on
the application, it may be possible to refresh all rows in a burst once every
64ms. Alternatively, we may have to refresh one row at a time between
writes and reads, making sure that all rows are refreshed within 64ms.
The important thing is to avoid scheduling a refresh when a write or read
is required and cannot be deferred.

Historically, timing of DRAM control signals used to be asynchronous,
and management of refreshing was performed by control circuits external
to the DRAM chips. More recently, manufacturers changed to synchro-
nous DRAMs (SDRAMs) that use registers on inputs to sample address,
data and control signals on clock edges. This is analogous to the differ-
ence between asynchronous and synchronous SRAMs, and makes it easier
to incorporate DRAMs into systems that use a clocked synchronous tim-
ing methodology. Manufacturers have also incorporated refresh control
circuits into the DRAM chips, also making use of DRAMs easier. Since
applications with very high data transfer rate requirements may be limited
by the relatively slow access times of DRAMs, manufacturers have more
recently incorporated further features to improve performance. These
include the ability to access a burst of data from successive locations

without having to provide the address for each, other than the first, and
the ability to transfer on both rising and falling clock edges (double-data
rate, or DDR, and its successors, DDR2 and DDR3). These features are
mainly motivated by the need to provide high-speed bursts of data in
computer systems, but they can also be of benefit in noncomputer digital
systems.

Because of the relative complexity of controlling DRAMs, we will
not go into detail of the control signals required and their sequencing. For
most implementation fabrics, we can incorporate a DRAM control block
from a library, allowing us to connect external DRAMs to the sequential
circuits in our chip. An example is the SDRAM controller, described in
Xilinx Application Note XAPP134, that allows an FPGA-based system
to connect to and control an external SDRAM memory (see Section 5.5,
Further Reading).

5.2.5 R E A D - O N LY M E M O R I E S

The memories that we have looked at so far can both read the stored data
and update it arbitrarily. In contrast, a read-only memory, or ROM, can
only read the stored data. This is useful in cases where the data is constant,
so there is no need to update it. It does, of course, beg the question of how
the constant data is placed in the ROM in the first place. The answer is
that the data is either incorporated into the circuit during its manufacture,
or is programmed into the ROM subsequently. We will describe a number
of kinds of ROM that take one or other of these approaches.

Combinational ROMs

A simple ROM is a combinational circuit that maps from an input address
to a constant data value. We could specify the ROM contents in tabular
form, with a row for each address and an entry showing the data value
for that address. Such a table is essentially a truth table, so we could, in
principle, implement the mapping using the combinational circuit design
techniques we described in Chapter 2. However, ROM circuit structures
are generally much denser than arbitrary gate-based circuits, since each
ROM cell needs at most one transistor. Indeed, for a complex combina-
tional function with multiple outputs, it may be better to use a ROM to
implement the function than a gate-based circuit. For example, a ROM
might be a good candidate for the next-state logic or the output logic of a
complex finite-state machine.

example 5 .9 Design a 7-segment decoder with blanking input, as
described in Example 2.16 on page 67, using a ROM.

5.2 Memory Types C H A P T E R F I V E 235

236 C H A P T E R F I V E m e m o r i e s

solut ion The decoder has five input bits: four for the BCD code and one
for the blanking control. It has seven output bits: one for each segment. Thus,
we need a 32 � 7-bit ROM, as shown in Figure 5.21. The contents of the ROM
are given in Table 5.2.

example 5 .10 Develop a Verilog model of the 7-segment decoder of
Example 5.9.

solut ion The module definition is

module seven_seg_decoder (output reg [7:1] seg,
input [3:0] bcd,
input blank);

always @*
case ({blank, bcd})
5'b00000: seg = 7'b0111111; // 0
5'b00001: seg = 7'b0000110; // 1
5'b00010: seg = 7'b1011011; // 2
5'b00011: seg = 7'b1001111; // 3
5'b00100: seg = 7'b1100110; // 4
5'b00101: seg = 7'b1101101; // 5
5'b00110: seg = 7'b1111101; // 6
5'b00111: seg = 7'b0000111; // 7
5'b01000: seg = 7'b1111111; // 8
5'b01001: seg = 7'b1101111; // 9
5'b01010, 5'b01011,
5'b01100, 5'b01101,
5'b01110, 5'b01111:
 seg = 7'b1000000; // "–" for invalid code
default: seg = 7'b0000000; // blank

endcase

endmodule

a d d r e s s c o n t e n t a d d r e s s c o n t e n t

0 0111111 6 1111101

1 0000110 7 0000111

2 1011011 8 1111111

3 1001111 9 1101111

4 1100110 10–15 1000000

5 1101101 16–31 0000000

TAB LE 5 .2 ROM contents for
the 7-segment decoder.

a
b
c
d
e
f
g

BCD0
BCD1
BCD2
BCD3
blank

A0
A1
A2
A3
A4

D0
D1
D2
D3
D4
D5
D6

F I G U R E 5 .21 A 32 × 7-bit
ROM used as a 7-segment decoder.

As in Example 2.16, we use a case statement in a combinational always block
to implement a truth-table form of the mapping. In this example, however, we
form the address from the concatenation of the blank and bcd inputs. The case
statement then specifies the outputs for all possible combinations of value for the
address. A synthesis tool could then infer a ROM to implement the mapping.

In FPGA fabrics that provide SSRAM blocks, we can use an SSRAM
block as a ROM. We simply modify the always-block template for the
memory to omit the part that updates the memory content. We could
include a case statement to determine the data output, as in Example 5.10.
For example,

always @(posedge clk)
if (en)
case (a)
9'h0: d_out <= 20'h00000;
9'h1: d_out <= 20'h0126F;
...

endcase

The content of the memory is loaded into the FPGA as part of its
programming when the system is turned on. Thereafter, since the data
is not updated, it is constant. Note, in passing, that we have used the
Verilog notation for hexadecimal values in this model. The notation 9'h1
means a 9-bit vector zero-extended from the value 116, and the notation
20'h0126F means a 20-bit vector with the value 0126F16.

For large ROMs, writing the data directly in the Verilog code like this
is very cumbersome. Fortunately, Verilog provides a way of writing the
data in a separate file that can be loaded into the ROM during simula-
tion or synthesis. We use the $readmemh or $readmemb system task, as
follows:

reg [19:0] data_ROM [0:511];
...
initial $readmemh("rom.data", data_ROM);

always @posedge clk)
if (en)
d_out <= data_ROM[a];

The $readmemh system task expects the content of the named file to be
a sequence of hexadecimal numbers, separated by spaces or line breaks.
Similarly, $readmemb expects the file to contain a sequence of binary

5.2 Memory Types C H A P T E R F I V E 237

238 C H A P T E R F I V E m e m o r i e s

numbers. Thus, the file rom.data specified in the above example could
contain the data

00000 0126F 017C0 A0018
10009 2667A 30115 00000

Values are read from the file into successive elements of the specified vari-
able until either the end of the file is reached or all elements of the variable
are loaded.

Programmable ROMs

ROMs in which the contents are manufactured into the memory are
suitable for applications where the number of manufactured parts is high
and where we are sure that the contents will not need to change over the
lifetime of the product. In other applications, we would prefer to be able
to revise the ROM contents from time to time, or to use a form of ROM
with lower costs for low-volume production. A programmable ROM
(PROM) meets these requirements. It is manufactured as a separately
packaged chip with no content stored in its memory cells. The memory
contents are programmed into the cells after manufacture, either using a
special programming device before the chip is assembled into a system, or
using special programming circuits when the chip is in the final system.

There are a number of forms of PROMs. Early PROMs used fusible
links to program the memory cells. Once a link was fused, it could not
be replaced, so programming could only be done once. These devices
are now largely obsolete. They were replaced by PROMs that could be
erased, either with ultraviolet light (so called EPROMs), or electrically
using a higher-than-normal power-supply voltage (so-called electrically
erasable PROMs, or EEPROMs).

Flash Memories

Most new designs use flash memory, which is a form of electrically erasable
programmable ROM. It is organized so that blocks of storage can be erased
at once, followed by programming of individual memory locations. A flash
memory typically allows only a limited number of erasure and program-
ming operations, typically hundreds of thousands, before the device “wears
out.” Thus, flash memories are not a suitable replacement for RAMs.

There are two kinds of flash memories, NOR and NAND flash,
referring to the organization of the transistors that make up the memory
cells. Both kinds are organized as blocks (commonly of 16, 64, 128, or
256 Kbytes) that must be erased in whole before being written. In a NOR
flash memory, locations can then be written (once per erasure) and read (an
arbitrary number of times) in random order. The IC has similar address,

data and control signals to an SRAM and can read data with a comparable
access time, making it suitable for use as a program memory for an embed-
ded processor, for storing configuration parameters to be used to control
system operation, and for storing configuration information for FPGAs.

In a NAND flash memory, on the other hand, locations are written
and read one page at a time, a page being typically 2 Kbytes. Read access
to a given location would require reading the page containing the loca-
tion, followed by selection of the required data, taking several microsec-
onds. If all of the locations in a page are required, however, sequential
reading is much faster, comparable in time to SRAM. Erasing a block and
writing a page of data are significantly slower than SRAM access times.
For example, the data sheet for the Micron Technology MT29F16G08FAA
16G bit IC specifies a random read time of 25µs, a sequential read time
of 25ns, a block erase time of 1.5ms, and a page write time of 220µs.
Given their different access behavior, NAND flash memories have a dif-
ferent interface than SRAMs, making control circuits more involved. The
advantage of NAND flash memory is that the density of storage cells is
greater than that of NOR flash. Thus, NAND flash chips are better suited
to applications in which large amounts of data must be stored cheaply.
One of the largest applications of NAND flash memories is in memory
cards for consumer devices such as digital cameras. They are also used in
USB memory sticks for general purpose computers.

 1. What is the difference between RAM and ROM?

 2. What is meant by the terms volatile and nonvolatile?

 3. What is the difference between static and dynamic RAM?

 4. What is meant by the access time of a RAM?

 5. Why are asynchronous SRAMs diffi cult to use in high-speed clocked
synchronous designs?

 6. What is the difference between fl ow-through and pipelined
SSRAMs?

 7. What Verilog type is required for a variable to represent memory
storage?

 8. What benefi t does a multiport memory have over a single-port
memory with multiplexed address and data connections?

 9. How can we work out what will happen if we perform concurrent
writes to a given location in a synchronous dual-port memory?

10. What does FIFO stand for?

11. How does a FIFO facilitate communication of data between clock
domains?

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

5.2 Memory Types C H A P T E R F I V E 239

240 C H A P T E R F I V E m e m o r i e s

5.3 E R R O R D E T E C T I O N A N D C O R R E C T I O N

In most of our discussions, we have assumed that digital circuits store
and process information correctly, though in Section 2.2.2 we did intro-
duce the idea of bit errors and some approaches to dealing with them. Bit
errors can occur in memories from a number of causes. Some errors are
transient, also called soft errors, and involve a bit flip in a memory cell
without a permanent effect on the cell’s capacity to store data. In DRAMs,
soft errors are typically caused by high-energy neutrons generated by
collision of cosmic rays with atoms in the earth’s atmosphere. The neu-
trons collide with silicon atoms in the DRAM chip, leaving a stream of
charge that can disrupt the storage or reading of charge in a DRAM cell.
The frequency of soft-error occurrence, the soft-error rate, depends on the
way in which DRAMs are manufactured and the location in which they
operate. Hence, soft-error rates are highly variable between systems. Soft
errors can also occur in DRAMs and other memories from electrical inter-
ference, the effects of poor physical circuit design and other causes.

Errors that persist in a memory circuit are called hard errors. They
can result from manufacturing defects or from electrical “wear” after pro-
longed use. A memory cell or chip affected by a hard error is no longer
able to store data. A read operation would always yield a 0 or a 1 value,
regardless of the bit value that was previously written.

Given that memories are more susceptible to bit errors than logic
circuits using flip-flops and registers for storage, due to the storage density
and the longevity of data in memories, it is more common to include some
form of error detection in memory circuits than in logic circuits. A com-
mon approach is to use parity, described in Section 2.2.2. Recall that parity
involves counting the number of 1 bits in a code word and setting a parity
bit to 1 or 0 to ensure that the total number of 1 bits is even (if we choose
even parity) or odd (if we choose odd parity). In the case of memories, use of
parity involves adding an extra bit cell to each memory location. When we
write to a location, we compute the parity bit and store it in the extra cell.
When we read a location, we check that the data, together with the parity
bit, have the correct parity. If so, we assume the data is uncorrupted. Other-
wise, we take appropriate action to deal with the error in the stored data.

The problem with using parity to check for errors, as we discussed in
Section 2.2.2, is that it only allows us to detect a single bit flip in a stored
code word. It does not allow us to identify which bit flipped, nor does it
allow us to detect an even number of bit flips. If we could identify the par-
ticular bit that flipped, we could correct the error by flipping the bit back
to its original value, and then continue operating as normal. We could also
write the corrected data back to the memory on the assumption that the
bit flip was a soft error. In order to be able to identify which bit flipped, we
need to consider the invalid code words that result from flipping each bit of
each valid code word. Provided all of those invalid code words are distinct,
we can use the value of the invalid code word to identify the flipped bit.

One scheme for doing this is to use a form of error correcting code
(ECC) known as a Hamming code. We will start with a single-error cor-
recting Hamming code, that is, a code that allows us to correct a single bit
flip within a code word. If our code word has N bits, we need log2N � 1
additional check bits for the ECC. For example, if we have 8 data bits, we
need 4 check bits, giving a total of 12 bits. The check bits are computed
from the values of the data bits during a write operation, and the entire
ECC word is written to the memory location.

To illustrate how the check bits are computed, we will number the data
bits of an 8-bit code word d1 through d8 and the ECC bits e1 through e12.
(Normally, we’ve numbered bits starting from 0, but for this explanation,
it’s more convenient to number all index positions from 1.) The ECC bits
whose indices are powers of 2 are used as check bits, and the remaining
ECC bits are the data bits, in order, as shown in Figure 5.22. If we write
the indices of the ECC bits in binary, the check bit with a 1 in position i of
its index is the exclusive-OR (that is, the parity) of the data ECC bits that
have a 1 in position i of their indices. For example, check bit e2 (at index

d1d2d3d4d5d6d7d8

e1e2e3e4e5e6e7e8e9e10e11e12

F I G U R E 5 .22 Distribution
of data and check bits within an
ECC word.

 5.3 Error Detection and Correction C H A P T E R F I V E 241

00102) is the exclusive-OR of data bits e3, e6, e7, e10 and e11 (at indices
00112, 01102, 01112, 10102 and 10112). Since each data ECC bit has at
least two 1 bits in its binary index (otherwise it would be a check bit), each
data bit is included in the computation of at least two check bits.

When the memory location is read, again, the entire ECC word is
read. We recompute the values of the check bits from the data ECC bits
and compare them, using a bit-wise exclusive OR, with the check bits read
from memory. If the comparison result is 0000, the recomputed check bits
match the read check bits, so all is well. However, if one of the stored ECC
bits (either a data bit or a check bit) is flipped from the original, the com-
parison result, called the syndrome, will be other than 0000. It turns out
to be the binary index of the ECC bit that has flipped. Thus, we can use
the syndrome value to correct the error by flipping the indexed bit back.

example 5 .11 Compute the 12-bit ECC word corresponding to the
8-bit data word 01100001.

solut ion The check bits are

e1 � e3 ⊕ e5 ⊕ e7 ⊕ e9 ⊕ e11 � d1 ⊕ d2 ⊕ d4 ⊕ d5 ⊕ d7 � 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 � 0

e2 � e3 ⊕ e6 ⊕ e7 ⊕ e10 ⊕ e11 � d1 ⊕ d3 ⊕ d4 ⊕ d6 ⊕ d7 � 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 � 1

e4 � e5 ⊕ e6 ⊕ e7 ⊕ e12 � d2 ⊕ d3 ⊕ d4 ⊕ d8 � 0 ⊕ 0 ⊕ 0 ⊕ 0� 0

242 C H A P T E R F I V E m e m o r i e s

e8 �e9 ⊕e10 ⊕e11 ⊕e12 �d5 ⊕d6 ⊕d7 ⊕d8 � 0 ⊕ 1 ⊕ 1 ⊕ 0� 0

Thus the ECC word is 011000000110.

example 5 .12 Determine whether there is an error in the ECC word
110111000110, and if so, correct it.

solut ion The check bits computed from the data bits of the ECC word are

e1 �e3 ⊕e5 ⊕e7 ⊕e9 ⊕e11 � 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 � 0

e2 �e3 ⊕e6 ⊕e7 ⊕e10 ⊕e11 � 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 � 1

e4 �e5 ⊕e6 ⊕e7 ⊕e12 � 0 ⊕ 0 ⊕ 1 ⊕ 1 � 0

e8 �e9 ⊕e10 ⊕e11 ⊕e12 � 1 ⊕ 1 ⊕ 0 ⊕ 1 � 1

The syndrome is 1010 ⊕ 1010 � 0000. Thus, there is no error in the read ECC.

example 5 .13 Determine whether there is an error in the ECC word
000111000100, and if so, correct it.

solut ion The check bits computed from the data bits of the ECC word are

e1 �e3 ⊕e5 ⊕e7 ⊕e9 ⊕e11 � 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 � 1

e2 �e3 ⊕e6 ⊕e7 ⊕e10 ⊕e11 � 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 � 0

e4 �e5 ⊕e6 ⊕e7 ⊕e12 � 0 ⊕ 0 ⊕ 1 ⊕ 0 � 1

e8 �e9 ⊕e10 ⊕e11 ⊕e12 � 0 ⊕ 0 ⊕ 0 ⊕ 1 � 1

The syndrome is 1101 ⊕ 1000 � 0101. Thus, there is an error in bit e5 of the
read ECC. That bit should be flipped back from 0 to 1, giving the corrected
ECC word 000111010100.

Note that we have assumed that only one bit of the stored ECC
word could be in error. If two or more bits flip, the checking process may
incorrectly identify a single bit as having flipped, or it may yield an invalid
syndrome. The problem arises from the fact that we have insufficient invalid
code words to distinguish between single-bit errors and double-bit errors.
A simple remedy is to add further check bits. If we add a check bit that is
the exclusive-OR of all of the data bits, the resulting error-checking code
allows us to correct any single-bit error and to detect (but not correct) any
double-bit error. If we assume that errors are independent, the probability
of a double-bit error is very low, so this scheme suffices in many applica-
tions. If extreme reliability and resilience to errors is required, we can
further extend the error-checking code to enable correcting of multiple-bit
errors. The details of how we might do this are beyond the scope of this
book, but are described in Section 5.5, Further Reading.

5.3 Error Detection and Correction C H A P T E R F I V E 243

s i n g l e - b i t
c o r r e c t i o n

d o u b l e - b i t
d e t e c t i o n

N
c h e c k

b i t s ov e r h e a d
c h e c k

b i t s ov e r h e a d

8 4 50% 5 63%

16 5 31% 6 38%

32 6 19% 7 22%

64 7 11% 8 13%

128 8 6.3% 9 7.0%

256 9 3.5% 10 3.9%

TAB LE 5 .3 Number of check
bits and relative storage overhead
for single-bit correction and
additional double-bit detection of
errors.

A final consideration in our discussion of error checking and correcting
for memories is the storage overhead required. In our illustration of ECCs
for 8-bit code words, we saw that correcting single-bit errors requires
4 check bits (a 50% overhead) and detecting double-bit errors requires
5 check bits (a 63% overhead). This is clearly a significant storage over-
head, especially when compared to the single parity bit required just to
detect single-bit errors (a 13% overhead). However, we noted that single-
bit correction using Hamming codes needs log2N� 1 check bits for N bits
of data. Double-bit error detection needs log2N� 2 check bits. If we pro-
vide checking and correction over longer data words, the relative storage
overhead is less, as shown in Table 5.3. For larger data words, provision of
this form of error detection and correction is increasingly attractive.

There are other, more elaborate, error correction and detection codes that
we can use as alternatives to Hamming codes. However, they also add check
bits to the data, and so require extra storage capacity and extra circuitry to
detect and correct errors. They differ in the storage overhead and the complex-
ity of the additional circuitry, as well as in the number of simultaneous errors
they can deal with. This range of techniques allows us to make design trade-
offs, depending on the reliability requirements and other constraints of our
application. Since Hamming codes are one of the simplest ECCs, they are most
often used in applications requiring moderately high reliability, such as network
server computers. More complex ECCs are used in specialized high-reliability
applications, such as aerospace computers and communications systems.

1. What is the distinction between a soft error and a hard error?

2. What is a common cause of soft errors in DRAMs?

3. What corrective action can we take when a parity error is detected?

4. Using a Hamming code, how many check bits are required for single-
error correction and double-error detection for 4-bit data words?

K N O W L E D G E
T E S T Q U I Z
K N O W L E D G E
T E S T Q U I Z

244 C H A P T E R F I V E m e m o r i e s

5.4 C H A P T E R S U M M A R Y

A memory contains an array of storage locations, each with a unique
address. A 2n �m-bit memory has n-bit addresses that run from 0 to
2n � 1.

A write operation stores a data value at a given location. A read
operation yields the data value stored at a given location. Control
signals govern write and read operations.

We can connect multiple memory components in parallel to store
wider data values. We can connect multiple memory components in
banks, with a decoder to select among the banks, to provide more
locations.

Memories with tristate drivers on the data outputs simplify bank
connection. At most one component drives data outputs at a time;
the rest place their outputs in the high-impedance (hi-Z) state.

Volatile memory only retains data for as long as power is applied.
Nonvolatile memory retains data without power. The term RAM
refers to volatile memory that can be written and read with equal
facility in any order. ROM refers to memory that can only be read
once it is manufactured or programmed.

Data in static RAM (SRAM) persists for as long as power is sup-
plied, whereas data in dynamic RAM (DRAM) must be periodically
refreshed. Asynchronous SRAM does not rely on a clock for its tim-
ing. Synchronous SRAM (SSRAM) uses a clock to sample control,
address and data signals, thus simplifying their incorporation into
clocked synchronous systems. SSRAMs include flow-through and
pipelined variants.

The access time is the delay from starting a read operation to having
valid data. The cycle time is the total time taken for a read or write
operation.

Multiport memories allow concurrent operations by different parts
of a digital system. A first-in first-out (FIFO) is a dual-port memory
used as a queue for data. An important use of FIFOs is to pass data
between different clock domains.

A ROM is a combinational circuit that maps from an address to a
data value. It can be used to implement an arbitrary Boolean function.

Programmable ROMs (PROMs) are programmed with data after
manufacture. Flash memories can be erased and reprogrammed
during system operation, and are useful for storing configuration
information.

�

�

�

�

�

�

�

�

�

�

Atmospheric neutrons and other effects can cause bit errors in data
stored in a memory. The error may be transient (a soft error) or per-
manent (a hard error).

Check bits can be stored along with data to detect and correct errors.
A single parity bit can detect a single-bit error but not a double-bit
error. Error correcting codes, such as Hamming codes, can correct
single-bit errors and detect double-bit errors.

5.5 F U R T H E R R E A D I N G

Advanced Semiconductor Memories: Architectures, Designs, and Appli-
cations, Ashok K. Sharma, Wiley-IEEE Press, 2002. Describes a
range of memory devices, including SRAMS, DRAMS and nonvola-
tile memories.

Computer Organization and Design: The Hardware/Software Interface,
David A. Patterson and John L. Hennessy, Morgan Kaufmann
Publishers, 2005. This book contains a chapter on memory system
design for computers, describing how alternative organizations can
improve memory system performance.

Memory Systems: Cache, DRAM, Disk—A Holistic Approach to
Design, Bruce Jacob, Spencer Ng, and David Wang, Morgan
Kaufmann Publishers, 2007. Includes an extensive description of
DRAM technology and its place in computer memory systems. Also
describes error-correcting codes, including Hamming codes and
more elaborate schemes, and the causes and frequency of occur-
rence of memory errors.

Synchronous and Asynchronous FIFO Designs, Peter Alfke, Xilinx
Application Note XAPP051, 1996, http://direct.xilinx.com/bvdocs/
appnotes/xapp051.pdf. Describes a FIFO control scheme for an
FPGA in which the write and read clocks are different.

Synthesizable High-Performance SDRAM Controllers, Xilinx Applica-
tion Note XAPP134, 2005, http://www.xilinx.com/bvdocs/appnotes/
xapp134.pdf. This application note gives an overview of SDRAM
operation and describes a controller subsystem that can be imple-
mented as part of an FPGA-based design.

A Nonvolatile Memory Overview, Jitu J. Makwana and Dieter K.
Schroder, 2004, http://aplawrence.com/Makwana/nonvolmem
.html. Describes the circuit structures and operation of nonvolatile
memory devices.

�

�

5.5 Further Reading C H A P T E R F I V E 245

