A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

114 FSM
Xilinx Xilinx ISE includes a utility program called StateCAD, which allows a user to draw a
specific state diagram in graphical format. The program then converts the state diagram to HDL

code. Itis a good idea to try it first with a few simple examples to see whether the generated
code and its style are satisfactory, particularly for the output signals.

5.3 DESIGN EXAMPLES

5.3.1 Rising-edge detector

The rising-edge detector is a circuit that generates a short, one-clock-cycle pulse (we call it
a tick) when the input signal changes from *0’ to *1°. It is usually used to indicate the onset
of a slow time-varying input signal. We design the circuit using both Moore and Mealy
machines, and compare their differences.

Moore-based design The state diagram and ASM chart of a Moore machine—based
edge detector are shown in Figure 5.4. The zero and one states indicate that the input
signal has been '0’ and *1” for awhile. The rising edge occurs when the input changes to 1’
in the zero state. The FSM moves to the edge state and the output, tick, is asserted in
this state. A representative timing diagram is shown at the middle of Figure 5.5. The code
is shown in Listing 5.3.

Listing 5.3 Moore machine-based edge detector

library ieece;
use ieee.std_logic_1164.all;
entity edge_detect is
port(
5 clk, reset: im std_logic;
level: in std_logic;
tick: out std_logic
)5
end edge_detect;
10
architecture moore_arch of edge_detect is
type state_type is (zero, edge, one);
signal state_reg, state_next: state_type;

begin
s —— state register
process (clk,reset)
begin
if (reset=’1’) then
state_reg <= zero;
20 elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;

end process;
— next—state/output logic
25 process (state_reg,level)
begin
state_next <= state_reg;
tick <= ’0’;
case state_reg is


http://www.a-pdf.com/?product-split-demo

edge
tick<=1

(a) State diagram

clk

level

—

state
Moore
machine T
tick
—
‘(— state
Mealy j
machine
i tick
-

t

DESIGN EXAMPLES

tick<=1

1

L]

Figure 5.4 Edge detector based on a Moore machine.

(b) ASM chart

L

—

zero

X

edge X

one

x zero

R

810

\

one

X zero

—

Figure 5.5 Timing diagram of two edge detectors.

115



116 FSM

(a) State diagram (b) ASM chart

Figure 5.6 Edge detector based on a Mealy machine.

30 when zero=>
if level= ’1’ then
state_next <= edge;
end if;
when edge =>
35 tick <= ’1°;
if level= ’1° then
state_next <= one;
else
state_next <= zero;
40 end if;
when one =>
if level= 0’ then
state_next <= zero;
end if;
45 end case;
end process;
end moore_arch;

Mealy-based design The state diagram and ASM chart of a Mealy machine-based
edge detector are shown in Figure 5.6. The zero and one states have similar meaning.
When the FSM is in the zero state and the input changes to *1°, the output is asserted



DESIGN EXAMPLES 117

level d q

clk > delay_reg

Figure 5.7 Gate-level implementation of an edge detector.

immediately. The FSM moves to the one state at the rising edge of the next clock and the
output is deasserted. A representative timing diagram is shown at the bottom of Figure 5.5.
Note that due to the propagation delay, the output signal is still asserted at the rising edge
of the next clock (i.e., at £1). The code is shown in Listing 5.4.

Listing 5.4 Mealy machine-based edge detector

architecture mealy_arch of edge_detect is
type state_type is (zero, one);
signal state_reg, state_next: state_type;

begin
5 —— statre register
process (clk,reset)
begin
if (reset=’1’) then
state_reg <= zero;
10 elsif (clk’event and clk=’1’) then
state_reg <= state_next;
end if;

end process;
—— next—state/output logic
15 process (state_reg,level)
begin
state_next <= state_reg;
tick <= '0’;
case state_reg is
20 when zero=>
if level= 1’ then
state_next <= one;
tick <= ’17;
end if;
2 when one =>
if level= ’0°’ then
state_next <= zero;
end if;
end case;
0 end process;
end mealy_arch;

Direct implementation Since the transitions of the edge detector circuit are very sim-
ple, it can be implemented without using an FSM. We include this implementation for
comparison purposes. The circuit diagram is shown in Figure 5.7. It can be interpreted that
the output is asserted only when the current input is 1’ and the previous input, which is
stored in the register, is '0’. The corresponding code is shown in Listing 5.5.



118 FSM

Listing 5.5 Gate-level implementation of an edge detector

architecture gate_level_arch of edge_detect is
signal delay_reg: std_logic;
begin
— delay register
5 process (clk,reset)
begin
if (reset=’1’) then
delay_reg <= ’0’;
elsif (clk’event and clk=’1’) then
10 delay_reg <= level;
end if;
end process;
— decoding logic
tick <= (not delay_reg) and level;
send gate_level_arch;

Although the descriptions in Listings 5.4 and 5.5 appear to be very different, they describe
the same circuit. The circuit diagram can be derived from the FSM if we assign '0’ and "1’
to the zero and one states.

Comparison Whereas both Moore machine— and Mealy machine-based designs can
generate a short tick at the rising edge of the input signal, there are several subtle differences.
The Mealy machine~based design requires fewer states and responds faster, but the width
of its output may vary and input glitches may be passed to the output.

The choice between the two designs depends on the subsystem that uses the output
signal. Most of the time the subsystem is a synchronous system that shares the same clock
signal. Since the FSM’s output is sampled only at the rising edge of the clock, the width
and glitches do not matter as long as the output signal is stable around the edge. Note that
the Mealy output signal is available for sampling at ¢1, which is one clock cycle faster than
the Moore output, which is available at t5. Therefore, the Mealy machine—based circuit is
preferred for this type of application.

5.3.2 Debouncing circuit

The slide and pushbutton switches on the prototyping board are mechanical devices. When
pressed, the switch may bounce back and forth a few times before settling down. The
bounces lead to glitches in the signal, as shown at the top of Figure 5.8. The bounces
usually settle within 20 ms. The purpose of a debouncing circuit is to filter out the glitches
associated with switch transitions. The debounced output signals from two FSM-based
design schemes are shown in the two bottom parts of Figure 5.8. The first design scheme is
discussed in this subsection and the second scheme is left as an exercise in Experiment 5.5.2.
A better alternative FSMD-based scheme is discussed in Section 6.2.1.

An FSM-based design uses a free-running 10-ms timer and an FSM. The timer generates
a one-clock-cycle enable tick (the m_tick signal) every 10 ms and the FSM uses this
information to keep track of whether the input value is stabilized. In the first design scheme,
the FSM ignores the short bounces and changes the value of the debounced output only
after the input is stabilized for 20 ms. The output timing diagram is shown at the middle
of Figure 5.8. The state diagram of this FSM is shown in Figure 5.9. The zero and one
states indicate that the switch input signal, sw, has been stabilized with ’0’ and ’1° values.



DESIGN EXAMPLES

bounces
(last less than 20 ms)

I

20 ms——

bounces
{last less than 20 ms)
—
original
switch output
debounced output 20 M.
(scheme 1)
debounced output e R
(scheme 2) i
P |
20 ms
Figure 5.8

sw' s m_tick

SwW e+ m_tick

sw + m_tick

sw * m_tick'

sw * m_tick'

sw ¢ m_tick'

Original and debounced waveforms.

sw' ¢ m_tick'

sw' e m_tick

sw' e m_tick’

sw'+ m_tick

sw' s m_tick'

sw + m_tick

Figure 5.9 State diagram of a debouncing circuit.

119



120 FSM

Assume that the FSM is initially in the zero state. It moves to the wait1_1 state when sw
changes to ’1°. At the wait1_1 state, the FSM waits for the assertion of m_tick. If sw
becomes 0’ in this state, it implies that the width of the *1” value does not last long enough
and the FSM returns to the zero state. This action repeats two more times for the wait1_2
and wait1_3 states. The operation from the one state is similar except that the sw signal
must be "0’

Since the 10-ms timer is free-running and the m_tick tick can be asserted at any time,
the FSM checks the assertion three times to ensure that the sw signal is stabilized for at least
20 ms (it is actually between 20 and 30 ms). The code is shown in Listing 5.6. It includes
a 10-ms timer and the FSM.

Listing 5.6 FSM implementation of a debouncing circuit

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
entity db_fsm is
s port(
clk, reset: in std_logic;
sw: in std_logic;
db: out std_logic
)
oend db_fsm;

architecture arch of db_fsm is

constant N: integer:=19; — 2°N %= 20ns = 10ms
signal q_reg, q_next: unsigned(N-1 downte 0);
15 signal m_tick: std_logic;

type eg_state_type is (zero,waitl_1,waitl_2,waitl1_3,
one,wait0_1,wait0_2,wait0_3);
signal state_reg, state_next: eg_state_type;
begin

— counter to generate 10ms tick
— (2719 % 20ns)

process (clk,reset)
2 begin
if (clk’event and clk=’1’) then
q_reg <= q_next;
end if;
end process;
30 — next—state logic
g_next <= q_reg + 1;
—output tick
m_tick <= ’1’ when q_reg=0 else

—— Sstate register
process (clk,reset)
40 begin



45

55

70

75

80

if

elsif (clk’event and clk=’1’) then
state_next;

end

(reset="1’) then
state_reg <= zero;

state_reg <=
if;

end process;

—— next—state/output

logic

process (state_reg,sw,m_tick)

begin

state_next <= state_reg; ——default:

db
cas

<= ’0’; — default
e state_reg is
when zero =>
if sw=’1’ then
state_next <=
end if;
when waitli_1 =>
if sw=’0’ then
state_next <=
else
if m_tick=’1’
state_next
end if;
end if;
when waitl_2 =>
if sw=’0’ then
state_next <=
else
if m_tick=’1’
state_next
end if;
end if;
when waitl1_3 =>
if sw=’0’ then
state_next <=
else
if m_tick=’1’
state_next
end if;
end if;
when one =>
db <=’17;
if sw=’0’ then
state_next <=
end if;
when waitO_1 =>
db <=717;
if sw=’1’ then
state_next <=
else
if m_tick=’1’
state_next

end if;

0

waitl_1;

zZero;

then

<=

waitl_2;

Zero;

then

<=

waitl1_3;

zZero;

then

<=

one;

waitO_1;

one;

then

<=

waitl0_2;

DESIGN EXAMPLES

back

121

to same state



122

bin(1)

95

105

110

clk

hex0 sseg
hex1 an
hex2
hex3

disp_mux_hex

reset

FSM
level tick en q
edge counter
detector > l
swW db level tick en q
debouncing edge couriter
[> detector >
Figure 5.10 Debouncing testing circuit.
end if;
when wait0_2 =>
db <=’1";
if sw=’1’ then
state_next <= one;
else
if m_tick=’1’ then
state_next <= waitO0_3;
end if;
end if;
when wait0_3 =>
db <=’1°;
if sw=’1’ then
state_next <= one;
else
if m_tick=’1’ then
state_next <= zZero;
end if;
end if;
end case;

end process;

ns end arch;

5.3.3 Testing circuit

sseg
an

We use a bounce counting circuit to verify operation of the rising-edge detector and the
debouncing circuit. The block diagram is shown in Figure 5.10. The input of the verification
circuit is from a pushbutton switch. In the lower part, the signal is first fed to the debouncing
circuit and then to the rising-edge detector. Therefore, a one-clock-cycle tick is generated

each time the button is pressed and released. The tick in turn controls the enable input of

an 8-bit counter, whose content is passed to the LED time-multiplexing circuit and shown
on the left two digits of the prototyping board’s seven-segment LED display. In the upper
part, the input signal is fed directly to the edge detector without the debouncing circuit,

and the number is shown on the right two digits of the prototyping board’s seven-segment

LED display. The bottom counter thus counts one desired 0-to-1 transition as well as the
bounces.



DESIGN EXAMPLES 123

The code is shown in Listing 5.7. It basically uses component instantiation to realize
the block diagram.

Listing 5.7 Verification circuit for a debouncing circuit and rising-edge detector

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity debounce_test is
5 port
clk: in std_logic;
btn: in std_logic_vector (3 downto 0);
an: out std_logic_vector (3 downto 0);
sseg: out std_logic_vector (7 downto 0)
10 )

end debounce_test;

architecture arch of debounce_test is
signal ql_reg, gql_next: unsigned{(7 downto 0);
s signal qO0_reg, qO_next: unsigned(7 downto 0);
signal b_count, d_count: std_logic_vector (7 downto 0);
signal btn_reg, db_reg: std_logic;
signal db_level, db_tick, btn_tick, clr: std_logic;

20 . - T T T e e T g S e e

— instanrtiate hex display time—multiplexing circuit
disp_unit: entity work.disp_hex_mux
25 port map(
clk=>clk, reset=>’0",
hex3=>b_count (7 downto 4), hex2=>b_count (3 downto 0),
hexi=>d_count (7 downto 4), hex0O=>d_count (3 downto 0),
dp_in=>"1011", an=>an, sseg=>sseg);
30 —— instantiate debouncing circuit
db_unit: entity work.db_fsm(arch)
port map(
clk=>clk, reset=>’0",
sw=>btn (1), db=>db_level);

— edge detection circuits

process (clk)
W begin
if (clk’event and clk=’1’) then
btn_reg <= btn(1l);
db_reg <= db_level;
end if;
45 end process;
btn_tick <= (not btn_reg) and btn(1);
db_tick <= (not db_reg) and db_level;



