
CHAPTER 8 

SEQUENTIAL CIRCUIT DESIGN: 
PRINCIPLE 

A sequential circuit is a circuit that has an internal state, or memory. A synchronous 
sequential circuit, in which all memory elements are controlled by a global synchronizing 
signal, greatly simplifies the design process and is the most important design methodology. 
Our focus is on this type of circuit. In this chapter and the next chapter, we examine the 
VHDL description of basic memory elements and study the design of sequential circuits 
with a “regular structure.” Chapters 10, 11 and 12 discuss the design of sequential circuits 
with a “random structure” (finite state machine) and circuits based on register transfer 
methodology. 

8.1 OVERVIEW OF SEQUENTIAL CIRCUITS 

8.1.1 Sequential versus combinational circuits 

A combinational circuit, by definition, is a circuit whose output, after the initial transient 
period, is a function of current input. It has no internal state and therefore is “memoryless” 
about the past events (or past inputs). A sequential circuit, on the other hand, has an internal 
state, or memory. Its output is a function of current input as well as the internal state. The 
internal state essentially “memorizes” the effect of the past input values. The output thus is 
affected by current input value as well as past input values (or the entire sequence of input 
values). That is why we call a circuit with internal state a sequential circuit. 
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Figure 8.1 D latch and D FE. 

8.1.2 Basic memory elements 

We can add memory to a circuit in two ways. One way is to add closed feedback loops 
in a combinational circuit, in which the.memory is implicitly manifested as system states. 
Because of potential timing hazards and racing, this approach is very involved and not 
suitable for synthesis. 

The other way is to use predesigned memory components. All device libraries have cer- 
tain memory cells, which are carefully designed and thoroughly analyzed. These elements 
can be divided into two broad categories: latch andfiip-flop (FF). We review the basic 
characteristics of a D-type latch (or just D latch) and D-type FF (or just D FF). 

D latch The symbol and function table of a D latch are shown in Figure 8.l(a). Note that 
we use * to represent the next value, and thus q* means the next value of q. The c and d 
inputs can be considered as a control signal and data input respectively. When c is asserted, 
input data, d, is passed directly to output, q. When c is deasserted, the output remains the 
same as the previous value. Since the operation of the D latch depends on the level of the 
control signal, we say that it is level sensitive. A representative timing diagram is shown 
in the q-latch output of Figure 8.2. Note that input data is actually stored into the latch at 
the falling edge of the control signal. 

Since the latch is “transparent” when c is asserted, it may cause racing if a loop exists 
in the circuit. For example, the circuit in Figure 8.3 attempts to swap the contents of 
two latches. Unfortunately, racing occurs when c is asserted. Because of the potential 
complication of timing, we normally do not use latches in synthesis. 

D FF The symbol and function table of a positive-edge-triggered D FF are shown in 
Figure 8.l(b). D FF has a special control signal known as a clock signal, which is labeled 
clk in the diagram. The D FF is activated only when the clock signal changes from ’0’ to ’ l’, 
which is known as the rising edge of the clock. At other times, its output remains the same 
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Figure 8.2 Simplified timing diagram of D latch and D FFs. 
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Figure 8.3 Data swapping using D latches. 
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as its previous value. In other words, at the rising edge of the clock, a D FF takes a sample 
of input data, stores the value into memory, and passes the value to output. The output, 
which reflects the stored value, does not change until the next rising edge. Since operation 
of the D FF depends on the edge of the clock signal, we say that it is edge sensitive. A 
representative timing diagram is shown in the q-pf f output of Figure 8.2. Note that the 
clock signal, clk, is functioning as a sampling signal, which takes a sample of the input 
data, d, at the rising edge. The clock signal plays a key role in a sequential circuit and we add 
a small triangle, as in the c l k  port in Figure 8.l(b), to emphasize use of an edge-triggered 
FF. 

The operation of a negative-edge-triggered D FF is similar except that sampling is 
performed at the falling edge of the clock. Its symbol and function table are shown in 
Figure 8.l(c). A representative timing diagram is shown in the qnf  f output of Figure 8.2. 

The sampling property of FFs has several advantages. First, variations and glitches 
between two rising edges have no effect on the content of the memory. Second, there will 
be no race condition in a closed feedback loop. If we reconstruct the swapping circuit of 
Figure 8.3 by replacing the D latches with the D FFs, the D FFs swap their contents at each 
rising edge of the clock and the circuit functions as expected. The disadvantage of the D FF 
is its circuit size, which is about twice as large as that of a D latch. Since its benefits far 
outweigh the size disadvantage, today’s sequential circuits normally utilize D FFs as the 
storage elements. 

The timing of a D FF is more involved than that of a combinational component. The 
timing diagram is shown in Figure 8.4. There are three main timing parameters: 
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Figure 8.4 Detailed timing diagram of a D FE. 
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0 Tcq: clock-to-q delay, the propagation delay required for the d input to show up at 

0 Tsetup: setup time, the time interval in which the d signal must be stable before the 

0 Thold: hold time, the time interval in which the d signal must be stable afer the clock 

Tcq corresponds roughly to the propagation delay of a combinational component. Tsetup 
and Thold, on the other hand, are timing constraints. They specify that the d signal must 
be stable in a small window around the sampling edge of the clock. If the d signal changes 
within the setup or hold time window, which is known as setup time violation or hold time 
violation, the D FF may enter a metasfable state, in which the q becomes neither ’0’ nor 
’ 1’. The issue of metastability is discussed in Chapter 16. 

the q output after the sampling edge of the clock signal. 

clock edge. 

edge. 

8.1.3 Synchronous versus asynchronous circuits 

The clock signal of FFs plays a key role in sequential circuit design. According to the 
arrangement of the clock, we can divide the sequential circuits into the following classes: 

0 Globally synchronous circuit (or simply synchronous circuit). A globally syn- 
chronous circuit uses FFs as memory elements, and all FFs are controlled (i.e., syn- 
chronized) by a single global clock signal. Synchronous design is the most important 
methodology used to design and develop large, complex digital systems. It not only 
facilitates the synthesis but also simplifies the verification, testing, and prototyping 
process. Our discussion is focused mainly on this type of circuit. 

0 Globally asynchronous locally synchronous circuit. Sometimes physical constraints, 
such as the distance between components, prevent the distribution of a single clock 
signal. In this case, a system may be divided into several smaller subsystems. Since 
a subsystem is smaller, it can follow the synchronous design principle. Thus, sub- 
systems are synchronous internally. Since each subsystem utilizes its own clock, 
operation between the subsystems is asynchronous. We need special interface cir- 
cuits between the subsystems to ensure correct operation. Chapter 16 discusses the 
design of the interface circuits. 

0 Globally asynchronous circuit. A globally asynchronous circuit does not use a clock 
signal to coordinate the memory operation. The state of a memory element changes 
independently. Globally asynchronous circuits can be divided into two categories, 
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Figure 8.5 Conceptual diagram of a synchronous sequential circuit. 

The first category comprises circuits that consist of FFs but do not use the clock in a 
disciplined way. One example is the ripple counter, in which the clock port of an FF 
is connected to the output of the previous FE. Utilizing FFs in this way is a poor design 
practice. The second category includes the circuits that contain “clockless” memory 
components, such as a latch or a combinational circuit with closed feedback loops. 
This kind of circuit is sometimes simply referred to as an asynchronous circuit. The 
design of asynchronous circuits is very different from that of synchronous circuits and 
is not recommended for HDL synthesis. The danger is demonstrated by an example 
in Section 8.3. 

8.2 SYNCHRONOUS CIRCUITS 

8.2.1 Basic model of a synchronous circuit 

The basic diagram of a synchronous circuit is shown in Figure 8.5. The memory element, 
frequently know as a stute register, is a collection of D FFs, synchronized by a common 
global clock signal. The output of the register (i.e., the content stored in the register), 
the s tatereg  signal, represents the internal state of the system. The next-stute logic is 
a combinational circuit that determines the next state of the system. The output logic is 
another combinational circuit that generates the external output signal. Note that the output 
depends on the external input signal and the current state of the register. The circuit operates 
as follows: 

0 At the rising edge of the clock, the value of the statenext signal (appearing at the 
d port) is sampled and propagated to the q port, which becomes the new value of the 
s tatereg  signal. The value is also stored in FFs and remains unchanged for the 
rest of the clock period. It represent the current sfate of the system. 

0 Based on the value of the statereg signal and external input, the next-state logic 
computes the value of the statenext signal and the output logic computes the value 
of external output. 

0 At the next rising edge of the clock, the new value of the statenext signal is 
sampled and the statereg signal is updated. The process then repeats. 

To satisfy the timing constraints of the FFs, the clock period must be large enough to 
accommodate the propagation delay of the next-state logic, the clock-to-q delay of the FFs 
and the setup time of the FFs. This aspect is discussed in Section 8.6. 

There are several advantages of synchronous design. First, it simplifies circuit timing. 
Satisfying the timing constraints (i.e., avoiding setup time and hold time violation) is one 
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of the most difficult design tasks. When a circuit has hundreds or even thousands of FFs 
and each FF is driven by an individual clock, the design and analysis will be overwhelming. 
Since in a synchronous circuit all FFs are driven by the identical clock signal, the sampling 
of the clock edge occurs simultaneously. We only need to consider the timing constraints 
of a single memory component. Second, the synchronous model clearly separates the 
combinational circuits and the memory element. We can easily isolate the combinational 
part of the system, and design and analyze it as a regular combinational circuit. Third, 
the synchronous design can easily accommodate the timing hazards. As we discussed in 
Section 6.5.3, the timing hazards are unavoidable in a large synthesized combinational 
circuit. In a synchronous circuit, inputs are sampled and stored at the rising edge of the 
clock. The glitches do not matter as long as they are settled at the time of sampling. 
Instead of considering all the possible timing scenarios, we only need to focus on worst- 
case propagation delays of the combinational circuit. 

8.2.2 Synchronous circuits and design automation 

The synchronous model essentially reduces a complex sequential circuit to a single closed 
feedback loop and greatly simplifies the design process. We only need to analyze the timing 
of a simple loop. Once it is done, the memory elements can be isolated and separated 
from the circuit. The sequential design now becomes a combinational design and we can 
apply the previous optimization and synthesizing schemes of combinational circuits to 
construct sequential circuits. Because of this, the synchronous model is the most dominant 
methodology in today's design environment. Most EDA tools are based on this model. 

The benefit of synchronous methodology is not just limited to synthesis. It can facilitate 
the other tasks of the development process. The impact of synchronous methodology is 
summarized below. 

0 Synthesis. Since we can separate the memory elements, the system is reduced to a 
combinational circuit. All optimization algorithms and techniques used in combina- 
tional circuit synthesis can be applied accordingly. 

0 Eming analysis. The analysis involves only a single closed feedback loop. It is 
straightforward once the propagation delay of the combination circuit is known. 
Thus, the timing analysis of the sequential circuit is essentially reduced to the timing 
analysis of its combinational part. 

0 Cycle-based simulation. Cycle-based simulation ignores the exact propagation delay 
but simulates the circuit operation from one clock cycle to another clock cycle. Since 
we can easily identify the memory elements and their clock, cycle-based simulation 
can be used for synchronous design. 

0 Testing. One key testing technique is to use scan registers to shift in test patterns 
and shift out the results. Because the memory elements are isolated, we can easily 
replace them with scan registers when needed. 

0 Design reuse. The main timing constraint of the synchronous design is embedded in 
the period of the clock signal (to be discussed in Section 8.6). which depends mainly 
on the propagation delay of the combination part. As long as the clock period is large 
enough, the same design can be implemented by different device technologies. 

0 Hardware emulation. Because the same synchronous design can be targeted to dif- 
ferent device technologies, it is possible to first construct the design in FPGA tech- 
nology, run and verify the circuit at a slower clock rate, and then fabricate it in ASIC 
technology. 
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8.2.3 Types of synchronous circuits 

Based on the “representation and transition patterns” of state, we divide synchronous circuits 
into three types. These divisions are informal, just for clarity of coding. The three types of 
sequential circuits are: 

0 Regular sequential circuit, The state representation and state transitions have a sim- 
ple, regular pattern, as in a counter and a shift register. Similarly, the next-state logic 
can be implemented by regular, structural components, such as an incrementor and 
shifter. 

0 Random sequential circuit. The state transitions are more complicated and there is 
no special relation between the states and their binary representations. The next-state 
logic must be constructed from scratch (i.e., by random logic). This kind of circuit 
is known as afinite stare machine (FSM).  

0 Combined sequential circuit. A combined sequential circuit consists of both a regular 
sequential circuit and an FSM. The FSM is used to control operation of the regular 
sequential circuit. This kind of circuit is based on the register transfer methodology 
and is sometimes known as finite state machine with data path (FSMD). 

We discuss the design and description of regular sequential circuits in this chapter and the 
next chapter, and we cover the FSM and FSMD in Chapters 10, 11 and 12. 

8.3 DANGER OF SYNTHESIS THAT USES PRIMITIVE GATES 

As we discussed earlier, an asynchronous sequential circuit can be constructed from scratch 
by adding a feedback loop to the combinational components. Although asynchronous 
circuits potentially can run faster and consume less power, designing an asynchronous 
circuit is difficult because of the potential races and oscillations. The design procedure 
is totally different from the synchronous methodology, and we should avoid using normal 
EDA software to synthesize asynchronous circuits. Since this book focuses on RT-level 
synthesis, we do not discuss this topic in detail. The following example illustrates the 
potential danger of using the normal synthesis procedure to construct an asynchronous 
circuit. 

Consider the D latch discussed in Section 8.1.2. We can easily translate the truth table 
into VHDL code, as shown in Listing 8.1. 

Listing 8.1 D latch from scratch 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  dlatch is  

port ( 
5 c: in  std-logic; 

d: in  std-logic; 
q: out std-logic 

1 ;  
end dlatch ; 

a r c h i t e c t u r e  demo-arch of dlatch i s  

begin 

I0 

s i g n a l  q-latch : std-logic ; 

process  (c,d,q-latch) 
IS begin 
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Figure 8.6 Synthesizing a D latch from scratch. 

i f  ( c = ’ l ’ )  then 

e l s e  
q - l a t c h  <= d ;  

q - l a t c h  <= q - l a t c h ;  
20 end i f  ; 

end p r o c e s s ;  
q <= q - l a t c h ;  

end demo-arch;  

Synthesis software can normally recognize that this code is for a D latch and should infer 
a predesigned D-latch cell from the cell library accordingly. For demonstration purposes, 
let us try to use simple gates to synthesize it from scratch. We can derive the conceptual 
diagram and expand it to a gate-level diagram following the procedure to synthesize a 
combinational circuit, as shown in Figure 8.6(a) and (b). 

At first glance, the circuit is just like a combinational circuit except that the output is 
looped back as an input. However, there is a serious timing problem for this circuit. Let us 
assume that all gates have a propagation delay of T and the wire delays are negligible, and 
that c, d and q are ’ 1 ’ initially. Now consider what happens when c changes from ’ 1 ’ to ’0’ 
at time to. According to the function table, we expect that q should be latched to the value 
of d and thus should remain ’1’. Following the circuit diagram, we can derive a detailed 
timing diagram, as shown in Figure 8.6(c). The events are summarized below. 
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0 At to,  c changes to ’0’. 
0 At tl (after a delay of T) ,  dc and cn change. 
a At t 2  (after a delay of 227,  qcn changes (due to cn) and q changes (due to dc). 
0 At t 3  (after a delay of 3T), q changes (due to qcn) and qcn changes (due to q). 

Clearly, the output q continues to oscillate at a period of 2T and the circuit is unstable. 
Recall that in Section 6.5.4, we discussed delay-sensitive circuit, in which the correctness 

of circuit function depends on the delays of various components. Asynchronous circuits 
belong to this category and thus are not suitable for synthesis. If we really wish to implement 
an asynchronous circuit from scratch, it is better to do it manually using a schematic rather 
than relying on synthesis. 

8.4 INFERENCE OF BASIC MEMORY ELEMENTS 

All device libraries have predesigned memory cells. Internally, these cells are designed as 
asynchronous sequential circuits. They are carefully crafted and thoroughly analyzed and 
verified. These cells are treated as “leaf units,” and no further synthesis or optimization will 
be performed. The previous section has shown the danger of deriving a memory element 
from scratch. To avoid this, we must express our intent clearly and precisely in VHDL code 
so that these predesigned latches or FFs can be inferred. While we should be innovative 
about the design, it is a good idea to follow the standard VHDL description of latch and FF 
to avoid any unwanted surprise. 

8.4.1 D latch 

The function table of a D latch was shown in Figure 8.l(a). The corresponding VHDL code 
is shown in Listing 8.2. It is the standard description. Synthesis software should infer a 
predesigned D latch from the device library. 

Listiner 8.2 D latch 

l i b r a r y  i e e e  ; 
use ieee. s t d - l o g i c - 1 1 6 4 .  a l l  ; 
e n t i t y  d l a t c h  i s  

port ( 
5 c :  in s t d - l o g i c ;  

d :  in s t d - l o g i c ;  
q :  out s t d - l o g i c  

1; 
end d l a t c h ;  

a r c h i t e c t u r e  a r c h  of  d l a t c h  i s  
begin 

10 

process  ( c  , d )  
begin 

I5 i f  ( c = ’ l ’ )  then 

end i f  ; 
end p r o c e s s ;  

q (= d ;  

end a r c h ;  
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In this code, the value of d is passed to q when c is ’ 1 ’ . Note that there is no else branch 
in the if statement. According to the VHDL definition, q will keep its previous value when 
c is not ’1’ (i.e., c is ’0’). This is just what we want for the D latch. Alternatively, we can 
explicitly include the else branch to express that q has its previous value when c is ’O’, as in 
the VHDL code in Listing 8.1. The code is not as compact or clear and is not recommended. 

8.4.2 D FF 

Positiwe-edge-triggered D FF The function table of a positive-edge-triggered D FF 
was shown in Figure 8.l(b). The corresponding VHDL code is shown in Listing 8.3. This 
is a standard description and should be recognized by all synthesis software. A predesigned 
D FF should be inferred accordingly. 

Listing8.3 D FF 
l ibrary  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  d f f  i s  

port ( 
5 clk: in std-logic; 

d: in std-logic; 
q: out std-logic 

) ;  
end d f f  ; 

a r c h i t e c t u r e  arch of  dff i s  
begin 

10 

process  (clk) 
begin 

I5 i f  (clk’event and clk=’l’) then 
q <= d; 

end i f ;  
end p r o c e s s ;  

end arch; 

The key expression to infer the D FF is the Boolean expression 

clk event and clk= 1 ’ 
The ’event term is a VHDL attribute returning t rue  when there is a change in signal 
value (i.e., an evenf). Thus, when clk event is true,  it means that the value of clk has 
changed. When the clk= ’ 1 expression is true,  it means that the new value of c lk  is ’ 1 ’ . 
When both expressions are true,  it indicates that the clk signal changes to 1 ’, which is 
the rising edge of the clk signal. 

The if statement states that at the rising of the clk signal, q gets the value of d. Since 
there is no else branch, it means that q keeps its previous value otherwise. Thus, the 
VHDL code accurately describes the function of a D FE. Note that the d signal is not in 
the sensitivity list. It is reasonable since the output only responds to c lk  and does nothing 
when d changes its value. 

We can also add an extra condition clk ’ last-value-’ 0 ’ to the Boolean expression: 

clk ‘event and clk=’l and clk’last_value=’O’ 

to ensure that the transition is from ’ 0 ’ to ’ I rather than from a metavalue to ’ 1 ’ . This 
may affect simulation but has no impact on synthesis. The above Boolean expression is 
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defined as a function, rising-edge0, in the IEEE std-logic-1164 package. We can 
rewrite the previous VHDL code as 

a r c h i t e c t u r e  arch of  dff i s  
begin 

process  (clk) 
begin 

i f  rising-edge (clk) then 

end i f  ; 
end p r o c e s s ;  

q <= d; 

end arch; 

We can also use wait statement inside the process to infer the D FF: 

a r c h i t e c t u r e  wait-arch of  dff is  
begin 

process  
begin 

wait u n t i l  clk event and clk= 1 ’ ; 
q < = d ;  

end process  ; 
end wait-arch; 

However, since the sensitivity list makes the code easier to understand, we do not use this 
format in this book. 

Theoretically, a then branch can be added to the code: 

i f  (clk event and clk= ’ 1 then 

e l s e  

end i f  ; 

q <= d; 

q <= J l J ;  

Although it is syntactically correct, it is meaningless for synthesis purpose. 

~ e g ~ f ~ v e ~ ~ g e - f r ~ g g e r e ~  D FF Anegative-edge-triggered D FF is similar to a positive- 
edge-triggered D FF except that the input data is sampled at the falling edge of the clock. 
To specify the falling edge, we must revise the Boolean expression of the if statement: 

i f  (clk’event and clk=’OJ) then 

We can also use the Boolean expression 

clk event and clk- ’0’ and clk last-value= 1 

to ensure the ’ I ’ to ’ 0 ’ transition or use the shorthand function, f alling-edge (1, defined 
in the IEEE std-logic-1164 package. 

D FF with asynchronous reset A D FF may contain an asynchronous reset signal 
that clears the D FF to ’0’. The symbol and function table are shown in Figure 8.l(d). Note 
that the reset operation does not depend on the level or edge of the clock signal. Actually, 
we can consider that it has a higher priority than the clock-controlled operation. The VHDL 
code is shown in Listing 8.4. 
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Listing 8.4 D FF with asynchronous reset 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  dffr i s  

port ( 
5 clk: in  std-logic; 

reset : in  std-logic ; 
d: in  std-logic; 
q: out std-logic 

1; 
10 end dffr; 

a r c h i t e c t u r e  arch of  dffr i s  
begin 

process  (clk, reset) 
I S  begin 

i f  (reset=’l’> then 

e l s i f  (clk’event and clk=’l’) then 
q < = ’ O ’ ;  

q <= d; 
20 end i f  ; 

end p r o c e s s ;  
end arch; 

Both the reset and c lk  signals are in the sensitivity list since either can invoke the process. 
When the process is invoked, it first checks the reset signal. If it is ’ 1 J ,  the D FF is cleared 
to 0 ’ . Otherwise, the process continues checking the rising-edge condition, as in a regular 
D FF. Note that there is no else branch. 

Since the reset operation is independent of the clock, it cannot be synthesized from a 
regular D FF. A D FF with asynchronous reset is another leaf unit. The synthesis software 
recognizes this format and should infer the desired D FF cell from the device library. 

Asynchronous reset, as its name implies, is not synchronized by the clock signal and 
thus should not be used in normal synchronous operation. The major use of a reset signal is 
to clear the memory elements and set the system to an initial state. Once the system enters 
the initial state, it starts to operate synchronously and will never use the reset signal again. 
In many digital systems, a short reset pulse is generated when the power is turned on. 

Some D FFs may also have an asynchronous preset signal that sets the D FF to ’ 1’. The 
VHDL code is shown in Listing 8.5. 

Listing 8.5 D FF with asynchronous reset and preset 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  dffrp i s  

por t  ( 
5 clk: in  std-logic; 

reset, preset : in  std-logic ; 
d: in  std-logic; 
q: out std-logic 

) ;  
10 end dffrp; 

a r c h i t e c t u r e  arch of  dffrp is 
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begin 
process (clk reset preset) 

i f  (resetn’l’) then 

e l s i f  (preset- ’1 J ,  then 

IS begin 

q < = ’ O ’ ;  

q <= ’1’; 
20 e 1 s i  f (clk event and clk= ’ 1 ’ 1 then 

q <= d; 
end i f  ; 

end p r o c e s s ;  
end arch; 

Since the asynchronous signal is normally used for system initialization, a single preset or 
reset signal should be adequate most of the time. 

8.4.3 Register 

A register is a collection of a D FFs that is driven by the same clock and reset signals. The 
VHDL code of an 8-bit register is shown in Listing 8.6. 

Listing 8.6 Register 

l ibrary  ieee ; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  reg8 i s  

port ( 
5 clk: in std-logic; 

reset : in std-logic ; 
d: in std-logic-vector (7  downto 0) ; 
q :  out std-logic-vector ( 7  downto 0) 

1; 
10 end reg8; 

archi tecture  arch of reg8 is 
begin 

process (clk reset) 
IS begin 

i f  (resetn’l’) then 

e 1 s i f (clk ’ event and clk= ’ 1 ’ ) then 
q < = ( o t h e r s = >  ’0,); 

q <= d; 
20 end i f ;  

end p r o c e s s ;  
end arch; 

The code is similar to D FF except that the d input and the q output are now 8 bits wide. 
We use the symbol of D FF for the register. The size of the register can be derived by 
checking the bus width marks of the input and output connections. 

8.4.4 RAM 

Random access memory (RAM) can be considered as a collection of latches with special 
interface circuits. It is used to provide massive storage. While technically it is possible 
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to synthesize a RAM from scratch by assembling D-latch cells and control circuits, the 
result is bulky and inefficient. Utilizing the device library’s predesigned RAM module, 
whose memory cells are crafted and optimized at the transistor level, is a much better 
alternative. Although the basic structure of RAMS is similar, their sizes, speeds, interfaces, 
and timing characteristics vary widely, and thus it is not possible to derive a portable, 
device-independent VHDL code to infer the desired RAM module. We normally need to 
use explicit component instantiation statement for this task. 

8.5 SIMPLE DESIGN EXAMPLES 

The most effective way to derive a sequential circuit is to follow the block diagram in 
Figure 8.5. We first identify and separate the memory elements and then derive the next- 
state logic and output logic. After separating the memory elements, we are essentially 
designing the combinational circuits, and all the schemes we learned earlier can be applied 
accordingly. A clear separation between memory elements and combinational circuits is 
essential for the synthesis of large, complex design and is helpful for the verification and 
testing processes. Our VHDL code description follows this principle and we always use an 
isolated VHDL segment to describe the memory elements. 

Since identifying and separating the memory elements is the key in deriving a sequential 
circuit, we utilize the following coding practice to emphasize the existence of the memory 
elements: 

0 Use an individual VHDL code segment to infer memory elements. The segment 

0 Use the suffix l e g  to represent the output of a D FF or a register. 
0 Use the suffix next to indicate the next value (the d input) of a D FF or a register. 

should be the standard description of a D FF or register. 

We examine a few simple, representative sequential circuits in this section and study more 
sophisticated examples in Chapter 9. 

This coding practice may make the code appear to be somewhat cumbersome, especially 
for a simple circuit. However, its long-term benefits far outweigh the inconvenience. The 
alternative coding style, which mixes the memory elements and combinational circuit in 
one VHDL segment, is discussed briefly in Section 8.7. 

8.5.1 Other types of FFs 

There are other types of FFs, such as D FF with an enable signal, JK FF and T FF. They were 
popular when a digital system was constructed by SSI components because they may reduce 
the number of IC chips on a printed circuit board. Since all these FFs can be synthesized 
by a D FF, they are not used today. The following subsections show how to construct them 
from a D FE. 

D FF with enable Consider a D FF with an additional enable signal. The function table 
is shown in Figure 8.7(a). Note that the enable signal, en, has an effect only at the rising 
edge of the clock. This means that the signal is synchronized to the clock. At the rising 
edge of the clock, the FF samples both en and d. If en is 0 ), which means that the FF is 
not enabled, FF keeps its previous value. On the other hand, if en is 1 ’, the FF is enabled 
and functions as a regular D FF. The VHDL code is shown in Listing 8.7. 
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reset clk en qt 

reset 

(a) Function table (b) Conceptual diagram 

Figure 8.7 D FF with an enable signal. 

Listing 8.7 D FF with an enable signal 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  dff-en i s  

port ( 
S clk: i n  std-logic; 

reset : i n  std-logic ; 
en: i n  std-logic; 
d: in  Btd-logic; 
q: out std-logic 

10 1 ; 
end dff-en; 

a r c h i t e c t u r e  two-seg-arch of dff-en i s  
s i g n a l  q-rag : std-logic ; 

IS s i g n a l  q-next : std-logic ; 
begin 
- D FF 
process  (clk, reset 
begin 

20 i f  (reset=’lJ) then 
q-rag <= J O J ;  

q-reg <= q-next; 
e l s i f  (clk’event and c1k=’lJ) then 

end i f  ; 
zs end p r o c e s s ;  

-- n e x t - s t a t e  l o g i c  
q-next <= d when en =’ l ’  e l s e  

-- o u t p u t  l o g i c  
q-reg; 

30 q <= q-reg; 
end two-seg-arch; 

The VHDL code follows the basic sequential block diagram and is divided into three 
segments: a memory element, next-state logic and output logic. The memory element is 
a regular D FE. The next-state logic is implemented by a conditional signal assignment 
statement. The qnext signal can be either d or the original content of the FE, qxeg, 
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Figure8.8 TFF. 

depending on the value of en. At the rising edge of the clock, qnext will be sampled and 
stored into the memory element. The output logic is simply a wire that connects the output 
of the register to the q port. 

The conceptual diagram is shown in Figure 8.7(b). To obtain the diagram, we first 
separate and derive the memory element, and then derive the combinational circuit using 
the procedure described in Chapter 4. 

T FF A T FF has a control signal, t, which specifies whether the FF to invert (i.e., roggle) 
its content. The function table of a T FF is shown in Figure 8.8(a). Note that the t signal is 
sampled at the rising edge of the clock. The VHDL code is shown in Listing 8.8, and the 
conceptual diagram is shown in Figure 8.8(b). 

Listing 8.8 T FF 
l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  tff i s  

port ( 
J clk: in std-logic; 

reset : in std-logic ; 
t: in  std-logic; 
q: out std-logic 

1; 
10 end tff ; 

a r c h i t e c t u r e  two-seg-arch of tff i s  
s i g n a l  q-reg : std-logic ; 
s i g n a l  q-next : std-logic; 

I5 begin 
- D FF 
process  (clk, reset 1 
begin 

i f  (reset=’i’) then 

e l s i f  (clk’event and clk=’l’> then 

end i f  ; 
end p r o c e s s ;  

20 q-reg <= ’0’; 

q-reg C= q-next; 
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Figure 8.9 4-bit free-running shift-right register. 

-- n e x t - s t a t e  l o g i c  
q-next <= q-reg when t=’O’ e l s e  

not (q-reg) ; 
-- o u t p u t  l o g i c  
q <= q-reg; 

30 end two-seg-arch; 

8.5.2 Shift register 

A shift register shifts the content of the register left or right 1 bit in each clock cycle. One 
major application of a shifter register is to send parallel data through a serial line. In the 
transmitting end, a data word is first loaded to register in parallel and is then shifted out 1 bit 
at a time. In the receiving end, the data word is shifted in 1 bit at a time and reassembled. 

Free-running shiff-right register A free-running shift register performs the shifting 
operation continuously. It has no other control signals, A 4-bit free-running shift-right 
register is shown in Figure 8.9. We can rearrange the FFs and align them vertically, as 
in Figure 8.10(a). After grouping the four FFs together and treating them as a single 
memory block, we transform the circuit into the basic sequential circuit block diagram in 
Figure 8.10(b). The VHDL code can be derived according to the block diagram, as in 
Listing 8.9. 

Listing 8.9 Free-running shift-right register 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  shift-right-register i s  

port ( 
5 clk, reset: in  std-logic; 

d: in std-logic; 
q: out std-logic 

1; 
end shift-right-register; 

a r c h i t e c t u r e  two-seg-arch of shift-right-register i s  
10 

s i g n a l  r-reg : std-logic-vector ( 3  downto 0) ; 
s i g n a l  r-next : std-logic-vector ( 3  downto 0) ; 
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Figure 8.10 Shift register diagram in different forms. 
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begin 
I5 - r e g i s t e r  

process  (clk , reset) 
begin 

i f  (reset= 1’) then 
r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= r-next; 
20 e 1 s i f (clk ’ event and clk= ’ 1 ’ ) then 

end i f ;  
end p r o c e s s ;  
-- n e x t - s t a t e  l o g i c  ( s h i f t  r i g h t  I b i t )  

-- o u t p u t  
q <= r-reg(0); 

end two-seg-arch; 

2s r-next <= d & r-reg(3 downto 1); 

The VHDL code follows the basic sequential circuit block diagram, and the key is the 
code for the next-state logic. The statement 

r-next <= d & r-reg(3 downto 1) ; 

indicates that the original register content is shifted to the right 1 bit and a new bit, d, is 
inserted to the left. The memory element part of the code is the standard description of a 
4-bit register. 

Universal shift register A universal shift register can load a parallel data word and 
perform shifting in either direction. There are four operations: load, shift right, shift left 
and pause. A control signal, ctrl, specifies the desired operation. The VHDL code is 
shown in Listing 8.10. Note that the d(0) input and the q(3) output are used as serial-in 
and serial-out for the shift-left operation, and the d(3) input and the q(0) output are used 
as serial-in and serial-out for the shift-right operation. The block diagram is shown in 
Figure 8.1 1. 

Listing 8.10 Universal shift register 

l ibrary  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  shift-register i s  

port ( 
5 clk, reset: in std-logic; 

ctrl : in std-logic-vector (1 downto 0) ; 
d: in std-logic-vector (3 downto 0) ; 
q :  out std-logic-vector (3 downto 0) 

) ;  
10 end shift-register; 

a r c h i t e c t u r e  two-seg-arch of shift-register i s  
s ignal  r-reg: std-logic-vector (3 downto 0) ; 
s ignal  r-next : std-logic-vector (3 downto 0) ; 

- r e g i s t e r  
process  (clk ,reset) 
begin 

I5 begin 

i f  (reset=’l’) then 
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Figure 8.11 4-bit universal register. 

r - r e g  <= ( o t h e r s = > ' O ' ) ;  

r - r e g  <= r - n e x t ;  
e l s i f  ( c l k ' e v e n t  and c l k = ' l ' )  then 

end i f  ; 
end p r o c e s s ;  
-- n e x t - s t a t e  l o g i c  
with c t r l  s e l e c t  

r - n e x t  <= 
r - r e g  when "00". -pause 
r - r e g ( 2  downto 0) & d ( 0 )  when r l O 1 "  , - s h i f t  l e f t ;  
d ( 3 )  & r-reg(3  downto 1) when t l l O 1 o  , - s h i f t  r i g h r ;  
d when o t h e r s ;  - load  

- o u t p u t  l o g i c  
q <= r - r e g ;  

end two-seg -a rch ;  

8.5.3 Arbitrary-sequence counter 

A sequential counter circulates a predefined sequence of states. The next-state logic de- 
termines the patterns in the sequence. For example, if we need a counter to cycle through 
the sequence of "000", "011". "IIO", "101" and "ill", we can construct a combinational 
circuit with a function table that specifies the desired patterns, as in Table 8.1, 

The VHDL code is shown in Listing 8.11. Again, the code follows the basic block 
diagram of Figure 8.5. A conditional signal assignment statement is used to implement the 
function table. 

Listing 8.11 Arbitrary-sequence counter 

l i b r a r y  i e e e ;  
use  i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
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Table 8.1 Patterns of an arbitrary-sequence counter 

Input pattern Next pattern 

000 01 1 
01 1 110 
110 101 
101 111 
111 000 

e n t i t y  arbi-seq-counter4 i s  
port ( 

5 clk, reset: in std-logic; 
q :  out std-logic-vector ( 2  downto 0) 

) ;  
end arbi-seq-counter4; 

10 a r c h i t e c t u r e  two-seg-arch of arbi-seq-counter4 i s  
s i g n a l  r-reg: std-logic-vector ( 2  downto 0) ; 
s i g n a l  r-next : std-logic-vector (2 downto 0) ; 

begin 
-- r e g i s t e r  
process  (clk, reset I 
begin 

i f  (reset='l') then 

e l s i f  (clk'event and clk='l') then 

end i f  ; 
end p r o c e s s ;  
- n e x t - s t a t e  l o g i c  
r-next <= "011" when r-reg="OOO1l e l s e  

110 II when r-reg= I' 0 1 1 e 1 s e 
l B I O 1 "  when r-reg="llO" e l s e  
1 1 1 when r - r e g = 10 1 If e 1 s e 
"000"; - r _ r e g = " 1 1 1 "  

r-reg <= ( o t h e r s = > ' O ' ) ;  

r-reg <= r-next; 

- o u t p u t  l o g i c  
q <= r-reg; 

end two-seg-arch ; 

8.5.4 Binary counter 

A binary counter circulates through a sequence that resembles the unsigned binary number. 
For example, a 3-bit binary counter cycles through "OOO", "OOl", "OlO", "01 l", "lOO", 
"101", "1 10" and "1 1 l", and then repeats. 

Free-running binary counter An n-bit binary counter has a register with n FFs, and 
its output is interpreted as an unsigned integer. A free-running binary counter increments 
the content of the register every clock cycle, counting from 0 to 2n - 1 and then repeating. 
In addition to the register output, we assume that there is a status signal, max-pulse, which 
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is asserted when the counter is in the all-one state. The VHDL code of a 4-bit binary counter 
is shown in Listing 8.12. 

Listing 8.12 Free-running binary counter 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  binary-counter4,pulse i s  

clk, reset: in  std-logic; 
max-pulse: out std-logic; 
q: out std-logic-vector ( 3  downto 0) 

5 p o r t (  

1; 
10 end binary-counter4-pulse ; 

a r c h i t e c t u r e  two-seg-arch of binary-counter4-pulse i s  
s i g n a l  r-reg : unsigned (3 downto 0) ; 
s i g n a l  r-next : unsigned (3 downto 0) ; 

- r e g i s t e r  
process  (clk, reset 1 
begin 

IS begin 

i f  (reset='l') then 
20 r-reg <= ( o t h e r s = > ' O ' ) ;  

e l s i f  (clk'event and clk='l') then 

end i f  ; 
end p r o c e s s ;  

r-next <= r-reg + 1 ;  
- o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 
max-pulse <= '1' when r-reg="llll" e l s e  

r-reg <= r-next; 

25 - n e x t - s t a t e  l o g i c  ( i n c r e m e n t o r )  

M '0'; 
end two-seg-arch ; 

~ 

The next-state logic consists of an incrementor, which calculates the new value for the 
next state of the register. Note that the definition requests the 4-bit binary counter counts 
in a wrapped-around fashion; i.e., when the counter reaches the maximal number, "1 11 l", 
it should rehun to "0000" and start over again. It seems that we should replace statement 

r-next <= r-rag + 1 ;  

with 

r-next <= (r-reg + 1) mod 16; 

However, in the IEEE numeric-std package, the definition of + on the unsigned data type 
is modeled after a hardware adder, which behaves like wrapping around when the addition 
result exceeds the range. Thus, the original statement is fine. While correct, using the mod 
operator is redundant. It may confuse some synthesis software since the mod operator 
cannot be synthesized. The output logic uses a conditional signal assignment statement to 
implement the desired pulse. The conceptual diagram is shown in Figure 8.12. 
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Figure 8.12 Conceptual diagram of a free-running binary counter. 

Table 8.2 Function table of a featured binary counter 

syn-clr load en q* Operation 

1 - - 00 + . - 00 synchronous clear 
0 1 -  d parallel load 
0 0 1 q+l count 
0 0 0  9 pause 

(I 

maxgulse 

Featured binary counter Rather than leaving the counter in the free-running mode, 
we can exercise more control. The function table in Table 8.2 shows a binary counter with 
additional features. In the counter, we can synchronously clear the counter to 0, load a 
specific value, and enable or pause the counting. The VHDL code is shown in Listing 8.13. 

Listing 8.13 Featured binary counter 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  binary-counter4-f eature i s  

s p o r t (  
clk, reset: in  std-logic; 
syn-clr , en, load: in  std-logic; 
d: in  std-logic-vector (3 downto 0) ; 
q :  out std-logic-vector (3 downto 0) 

10 1 ; 
end binary-counter4-feature; 

a r c h i t e c t u r e  two-seg-arch of binary-counter4-feature i s  
s i g n a l  r-reg : unsigned (3 downto 0) ; 

I5 s i g n a l  r-next: unsigned(3 downto 0); 
begin 

-- r e g i s t e r  
process  (clk , reset I 
begin 

20 i f  (reset=’l’) then 
r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= r-next; 
e l s i f  (clk’event and clk=’l’) then 

end i f ;  
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E end p r o c e s s ;  
-- n e x t - s t a t e  l o g i c  
r-next <= ( o t h e r s = > ’ O ’ )  when syn-clr=’l’ e l s e  

unsigned(d) when load=’l’ e l s e  
r-reg + 1 when en =’I’ e l s e  

M r-reg ; 
- o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 

end two-sag-arch; 

8.5.5 Decade counter 

Instead of utilizing all possible 2” states of an n-bit binary counter, we sometime only want 
the counter to circulate through a subset of the states. We define a mod-m counter as a 
binary counter whose states circulate from 0 to m - 1 and then repeat. Let us consider the 
design of a mod-10 counter, also known as a decade counfer. The counter counts from 0 
to 9 and then repeats. We need at least 4 bits ([log, 101) to accommodate the 10 possible 
states, and the output is 4 bits wide. The VHDL description is shown in Listing 8.14. 

Listing 8.14 Decade counter 

l i b r a r y  ieee ; 
use ieee-std-logic-ll64.all; 
use ieee. numeric-std. a l l  ; 
e n t i t y  modl0-counter is  

s p o r t (  
clk, reset: in  std-logic; 
q: out std-logic-vector ( 3  downto 0) 

1; 
end modl0-counter ; 

a r c h i t e c t u r e  two-seg-arch of modl0-counter i s  
10 

cons tant  TEN: integer : =  10; 
s i g n a l  r-reg : unsigned (3 downto 0) ; 
s i g n a l  r-next : unsigned ( 3  downto 0) ; 

- r e g i s t e r  
process  (clk ,reset 
begin 

IS begin 

i f  (reset=’l’) then 
20 r-reg <= ( o t h e r s = > ’ O ’ ) ;  

e l s i f  (clk’event and clk=’l’) then 

end i f  ; 
end p r o c e s s ;  

r-next <= ( o t h e r s = > ’ O ’ )  when r-reg=(TEN-1) e l s e  
r-reg + 1; 

- o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 

r-reg <= r-next; 

E - n e x t - s t a t e  l o g i c  

M end two-seg-arch; 
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Figure 8.13 Conceptual diagram of a decade counter. 

The key to this design is the next-state logic. When the counter reaches 9, as indicated 
by the condition rieg=(TEN-l), the next value will be 0. Otherwise, the next value will 
be incremented by 1. The conceptual diagram is shown in Figure 8.13. 

We can rewrite the next-state logic as 

r-next <= (r-reg + 1) mod 10; 

Although the code is compact and clean, it cannot be synthesized due to the complexity of 
the mod operator. 

8.5.6 Programmable mod-rn counter 

We can easily modify the code of the previous decade counter to a mod-m counter for 
any m. However, the counter counts a fixed, predefined sequence. In this example, we 
design a "programmable" 4-bit mod-m counter, in which the value of m is specified by a 
4-bit input signal, m, which is interpreted as an unsigned number. The range of m is from 
"0010 to "llll", and thus the counter can be programmed as a mod-2, mod-3, . . . , or 
mod- 15 counter. 

The maximal number in the counting sequence of a mod-m counter is m - 1. Thus, 
when the counter reaches m - 1, the next state should be 0. Our first design is based on this 
observation. The VHDL code is similar to the decade counter except that we need to replace 
the r-reg=(TEN-I) conditionofthenext-statelogic withr-reg=(unsigned(m)-I). The 
code is shown in Listing 8.15. 

Listing 8.15 Initial description of a programmable mod-rn counter 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee . numeric-std. a l l  ; 
e n t i t y  prog-counter i s  

J p o r t (  
clk, reset: in  std-logic; 
m: in  std-logic-vector ( 3  downto 0) ; 
q :  out std-logic-vector (3  downto 0 )  

1; 
10 end prog-counter ; 
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Figure 8.14 Block diagrams of a programmable mod-m counter. 

U) 

s i g n a l  r-reg : unsigned (3 downto 0) ; 
s i g n a l  r-next : unsigned ( 3  downto 0) ; 

- r e g i s t e r  
process  (clk, reset) 
begin 

15 begin 

i f  (reset=’l’) then 

e l s i f  (clk’event and clk=’lJ> then 

end i f ;  
end p r o c e s s ;  

r-next <= ( o t h e r s = >  ’0 ’1 when r-reg=(unsigned(m)-l) e l s e  
r-reg + 1; 

- o u t p u t  logic 
q <= std-logic-vector(r-reg); 

mend two-seg-clear-arch; 

r-reg <= ( o t h e r s = >  ’0 ’) ; 

r-rag <= r-next; 

25 - n e x t - s t a t e  logic 

The conceptual diagram of this code is shown in Figure 8.14(a). The next-state logic 
consists of an incrementor, a decrementor and a comparator. There is an opportunity for 
sharing. Note that the Boolean expression 

r-reg=(unsigned(m) -1) 
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can also be written as 

(r-reg+l)=unsigned (m) 

Since the r,req+l operation is needed for incrementing operation, we can use it in com- 
parison and eliminate the decrementor. The revised VHDL code is shown in Listing 8.16. 

Listing 8.16 More efficient description of a programmable mod-rn counter 

archi tecture  two-seg-effi-arch of prog-counter i s  
s ignal  r-reg : unsigned (3  downto 0) ; 
s ignal  r-next , r-inc : unsigned(3 downto 0) ; 

begin 
5 -  r e g i s t e r  

process (clk, reset) 
begin 

i f  (reset=’l’) then 
r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-rag <= r-next; 
10 e l s i f  (clk’event and clk=’l’) then 

end i f  ; 
end process;  
-- n e x t - s t a t e  l o g i c  

IS r-inc <= r-reg + 1; 
r-next <= ( o t h e r s = > ’ O ’ )  when r-inc=unsigned(m) e l s e  

-- o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 

20 end two-seg-eff i-arch; 

r-inc ; 

Note that we employ a separate statement for the shared expression: 

r-inc <= r-reg + 1; 

and use the r-inc signal for both comparison and incrementing. The diagram of the revised 
code is shown in Figure 8.14(b). 

8.6 TIMING ANALYSIS OF A SYNCHRONOUS SEQUENTIAL CIRCUIT 

The timing of a combinational circuit is characterized primarily by the propagation de- 
lay, which is the time interval required to generate a stable output response from an input 
change. The timing characteristic of a sequential circuit is different because of the con- 
straints imposed by memory elements. The major timing parameter in a sequential circuit 
is the maximal clock rate, which embeds the effect of the propagation delay of the combina- 
tion circuit, the clock-to-q delay of the register and the setup time constraint of the register. 
Other timing issues include the condition to avoid hold time violation and VO-related timing 
parameters. 

8.6.1 Synchronized versus unsynchronlred input 

Satisfying the setup and hold time constraints is the most crucial task in designing a sequen- 
tial circuit. One motivation behind synchronous design methodology is to group all FFs 
together and control them with the same clock signal. Instead of considering the constraints 
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of tens or hundreds of FFs, we can treat them as one memory component and deal with the 
timing constraint of a single register. 

The conceptual diagram of Figure 8.5 can be considered as a simplified block diagram for 
all synchronous sequential circuits. In this diagram, FFs and registers are grouped together 
as the state register. The input of this register is the statenext signal. It is generated 
by next-state logic, which is a combinational logic with two inputs, including the external 
input and the output of the state register, s tate ieg .  To study the timing constraint of the 
state register, we need to examine the impact of the two inputs of the next-state logic. Our 
discussion considers the following effects: 

0 The effect of the s ta te i eg  signal. 
0 The effect of synchronized external input. 
0 The effect of unsynchronized external input. 

Since the statereg signal is the output of the state register, it is synchronized by the 
same clock. A closed feedback loop is formed in the diagram through this signal. The timing 
analysis of a synchronous sequential circuit focuses mainly on this loop and is discussed in 
Section 8.6.2 . 

A synchronized external input means that the generation of the input signal is controlled 
by the same clock signal, possibly from a subsystem of the same design. The timing 
analysis is somewhat similar to the closed-loop analysis describe above, and is discussed 
in Section 8.6.5. 

An unsynchronized external input means that the input signal is generated from an 
external source or an independent subsystem. Since the system has no information about 
the unsynchronized external input, it cannot prevent timing violations. For this kind of 
input, we must use an additional synchronization circuit to synchronize the signal with the 
system clock. This issue is be discussed in Chapter 16. 

8.6.2 Setup time violation and maximal clock rate 

In Figure 8.5, the output of the register is processed via next-state logic, whose output 
becomes the new input to the register. To analyze the timing, we have to study the operation 
of this closed feedback loop and examine the s ta te i eg  and statenext signals. The 
s tate ieg  signal is the output of the register, and it also serves as the input to the next-state 
logic. The statenext signal is the input of the register, and it is also the output of the 
next-state logic. 

Maximal clock rate The timing diagram in Figure 8.15 shows the responses of the 
statereg and statenext signals during one clock cycle. At time to ,  the clock changes 
from ’0’ to ’1’. We assume that the statenext signal has stabilized and doesn’t change 
within the setup and hold time periods. After the clock-to-q delay (i.e., Tcp), the register’s 
output, stateieg,  becomes available at time tl ,  which is t o  + Tcq. Since s ta te i eg  
is the input of the next-state logic, the next-state logic responds accordingly. We define 
the propagation delays of the fastest and slowest responses as Tnezt(min) and Tnezt(maz) 
respectively. In the timing diagram, the statenext signal changes at t z .  which is tl + 
Tnezt(min), and becomes stabilized at t 3 ,  which is tl + Tnezt(maz). At time t 5 ,  a new rising 
clock edge arrives and the current clock cycle ends. The statenext is sampled at t 5  and 
the process repeats again. t 5  is determined by the period (T,) of the clock signals, which is 
t o  + Tc. 

Now let us examine the impact of the setup time constraint. The setup time constraint 
indicates that the statenext signal must be stabilized at least Tsetvp before the next 



TIMING ANALYSIS OF A SYNCHRONOUS SEQUENTIAL CIRCUIT 241 

Figure 8.15 Timing analysis of a basic sequential circuit. 

sampling edge at t 5 .  This point is labeled t 4  in the timing diagram. To satisfy the setup 
time constraint, the s ta tenext  signal must be stabilized before t 4 .  This requirement 
translates into the condition 

t 3  t 4  

From the timing diagram, we see that 

t 3  = t o  + Tcq + Tnezt(maz) 
and 

We can rewrite the inequality equation as 

t 4  = t 5  - Tsetup = t o  + Tc - Tsetup 

t o  + Tcq + Tnezt(maz) < t o  + Tc - Tsetup 

which is simplified to 

This shows the role of the clock period on a sequential circuit. To avoid setup time violation, 
the minimal clock period must be 

Tcq + Tnezt(maz) + Tsetup < Tc 

Tc(min) = Tcq + Tnezt(rnaz) + Tsetup 
The clock period is the main parameter to characterize the timing and performance of a 
sequential circuit. We commonly use the maximal clock rate or frequency, the reciprocal 
of the minimal period, to describe the performance of a sequential circuit, as in a 500-MHz 
counter or 2-GHz processor. 
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Clock rate examples For a given technology, the Tcq and Tsetup of a D FF are obtained 
from the data sheet. We can determine the maximal clock rate of a sequential circuit once the 
propagation delay of the next-state logic is known. This information can only be determined 
after synthesis and placement and routing. However, we can calculate and estimate the rate 
of some simple examples. 

Assume that we use the technology discussed in Section 6.2.6, and Tcq and Tsetup of its 
D FF cell are 1 and 0.5 ns respectively. The delay information of combinational components 
can be obtained from Table 6.2. Let us first consider the free-running shift register of 
Section 8.5.2. The next-state logic of the shift register only involves the routing of the input 
and output signals. If we assume that the wiring delay is negligible, its propagation delay 
is 0. The minimal clock period and maximal clock rate become 

-- - x666.7MHz 1 
fmax = 

Tcq + Tsetup 1.5 ns 
Clearly, this is the maximal clock rate that can be achieved with this particular technology. 

The second example is an 8-bit free-running binary counter, similar to the 4-bit version of 
Section 8.5.4. The next-state logic of this circuit is the incrementor, as shown in Figure 8.12. 
If we choose the incrementor that is optimized for area, the clock rate for this %bit binary 
counter is 

x 256.4 MHz 
1 - - 1 

fmax = 
Tcq + TS-bit-inc(area) + Tsetup 1 ns + 2.4 ns 0.5 ns 

If we increase the size of the counter, a wider incrementor must be utilized, and the propa- 
gation delay of the incrementor is increased accordingly. The clock rate of a 16-bit binary 
counter is reduced to 

1 
x 142.9 MHz - - 1 

fmax = 
Tcq + TlG-biLznc(area) Tsetup 1 ns + 5.5 ns + 0.5 ns 

and the clock rate of a 32-bit counter is reduced to 

To increase the performance of a binary counter, we must reduce the value of Tcq + 
Tnezt(max) + Tsetup. Since Tcq and Tsetup are determined by the intrinsic characteristics 
of FFs, they cannot be altered unless we switch to a different device technology. The only 
way to increase performance is to reduce the propagation delay of the incrementor. If we 
replace the incrementors that are optimized for delay, the clock rates of the 8-, 16- and 
32-bit binary counters are increased to 

x 333.3 MHz 
1 - - 1 

fmax = 
Tcq -k TS-biLinc(delay) + Tsetup 1 ns 1.5 ns $. 0.5 ns 

1 
1 nS + 3.3 nS + 0.5 ns 

- - 1 

Tcq -k T16-bit-inc(delay) + Tsetup 
1 

Tcq 4- T32-bit-znc(delay) + Tsetup 

fmax = 

and 
1 

1 ns + 7.5 ns + 0.5 ns 
- - fmaz = 

respectively. 

M 208.3 MHz 

x 111.1 MHz 
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8.6.3 Hold time violation 

The impact of the hold time constraint is somewhat different from the setup time constraint. 
Hold time, Thold, is the time period that the input signal must be stabilized after the sampling 
edge. In the timing diagram of Figure 8.15, it means that the statenext  must be stable 
between t o  and t h ,  which is t o  +Thold. Note that the earliest time that statenext  changes 
is at time t 2 .  To satisfy the hold time constraint, we must ensure that 

th < t2 
From the timing diagram, we see that 

t 2  = t o  + Tcq + Tnert(min) 
and 

The inequality becomes 
t h  = t o  + Thold 

to -k Thold < t o  + Tcq + Tnezt(mzn) 
which is simplified to: 

Tnezt(min) depends on the complexity of next-state logic. In some applications, such as 
the shift register, the output of one FF is connected to the input of another FF, and the 
propagation delay of the next-state logic is the wire delay, which can be close to 0. Thus, 
in the worst-case scenario, the inequality becomes 

Thold < Tcq + Tnezt(min) 

Thold < Tcq 
Note that both parameters are the intrinsic timing parameters of the FF, and the inequality 
has nothing to do with the next-state logic. Manufacturers usually guarantee that their 
devices satisfy this condition. Thus, we need not worry about the hold time constraint 
unless the clock edge cannot arrive at all FFs at the same time. We discuss this issue in 
Chapter 16. 

8.6.4 Output-related timing considerations 

The closed feedback diagram in Figure 8.5 is the core of a sequential system. In addition, 
there are also external inputs and outputs. Let us first consider the output part of the circuit. 
The output signal of a sequential circuit can be divided into the Moore-typed output (or just 
Moore output) and Mealy-typed output (or just Mealy output). For Moore output, the output 
signal is a function of system state (i.e., the output of the register) only. On the other hand, 
for Mealy output, the output signal is a function of system state and the external input. The 
two types of output can coexist, as shown in Figure 8.16. The main timing parameter for 
both types of outputs is Tco, the time required to obtain a valid output signal after the rising 
edge of the clock. The value of Tco is the summation of Tcq and TWtpt (the propagation 
delay of the output logic); that is, 

Tco = Tcq + Toutput 
For Mealy output, there exists a path in which the input can affect the output directly. The 
propagation delay from input to output is simply the combinational propagation delay of 
output logic. 
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Figure 8.16 Output circuits of a sequential circuit. 
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Figure 8.17 Input timing of two synchronous subsystems. 

8.6.5 Input-related timing considerations 

In a large design, a system may contain several synchronous subsystems. Thus, it is possible 
that 'an input comes from a subsystem that is controlled and synchronized by the same clock. 
The block diagram of this situation is shown in Figure 8.17. Note that the two subsystems 
are controlled by the same clock and thus are synchronous. At the rising edge of the clock, 
the register of subsystem 1 samples a new input value. After Tco(systeml), its new output, 
which is the input for the next-state logic of subsystem 2, becomes available. At this point 
the timing analysis is identical to that in Section 8.6.2. To avoid setup time violation, the 
timing of the two circuits must satisfy the following condition: 

Tco(syatern1) + Tnezt(maz) f Tsetup Tc 

Note that Tnezt(maz), the propagation delay of next-state logic, is somewhat different 
from the calculation used in Section 8.6.2. The Tnezt(rnaz) here is the propagation delay 
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from the external input to statenext, whereas Tnez t (maz)  used in earlier minimal clock 
period calculation in Section 8.6.2 is the propagation delay from the internal register out- 
put (i.e., statereg) to statenext. To be more accurate, we should separate the two 
constraints. The constraint for the closed loop is 

Tcq + Tnezt(max of statereg-to-state-next) + Tsetup < ”‘1 

and the constraint for the external input is 

Tco(system1) + Tnezt(max of ext-input-to-state-nezt) + Tsetzlp < Tc2 

We usually determine the clock period based on the calculation of Tcl. If Tc2 turns out to 
be greater than T c l ,  we normally redesign the I/O buffer rather than slowing down the clock 
rate of the entire system. For example, we can employ an extra input buffer for the external 
input of subsystem 2. Although this approach delays the external input by one clock cycle, 
it reduces the Tco(systeml) to T,, in the second constraint. 

8.7 ALTERNATIVE ONE-SEGMENT CODING STYLE 

So far, all VHDL coding follows the basic block diagram of Figure 8.5 and separates the 
memory elements from the rest of the logic. Alternatively, we can describe the memory 
elements and the next-state logic in a single process segment. For a simple circuit, this 
style appears to be more compact. However, it becomes involved and error-prone for more 
complex circuits. In this section, we use some earlier examples to illustrate the one-segment 
VHDL description and the problems associated with this style. 

8.7.1 Examples of one-segment code 

D FF with enable Consider the D FF with an enable signal in Listing 8.7. It can be 
rewritten in one-segment style, as in Listing 8.17. 

Listing 8.17 One-segment description of a D FF with enable 

a r c h i t e c t u r e  one-seg-arch of dff-en is 
begin 

process  (clk ,reset) 
begin 

5 i f  (reset=’l’) then 
q < = ’ O ’ ;  

i f  (en=’l’) then 
e l s i f  (clk’event and clk=’l’) then 

q <= d; 
10 end i f  ; 

end i f  ; 
end p r o c e s s ;  

end one-seg-arch ; 

The code is similar to a regular D FF except that there is an if statement inside the elsif 
branch: 

i f  (en=’I’) then 

end i f  ; 
q <= d; 
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The interpretation the code is that at the rising edge of clk, if en is ’ 1 ’ , q gets the value 
of the d input. Note that there is no else branch in the previous statement. It implies that 
if en is not ’ 1 ’ , q will keep its previous value, which should be the value of the register’s 
output. Thus, the code correctly describes the function of the en signal. In the actual 
implementation, “keep its previous value” is achieved by sampling the FF’s output and 
again stores the value back to the FF. This point is elaborated in the next example. 

T FF Consider the T FF in Listing 8.8. It can be rewritten in one-segment style, as in 
Listing 8.18. 

Listing 8.18 One-segment description of a T FF 
a r c h i t e c t u r e  one-sag-arch of  tff i s  

begin 
s i g n a l  q-reg : std-logic ; 

process  (clk , reset 
5 begin 

i f  reset=’l then 
q-reg <= ’0’; 

e l s i f  (clk’event and clk=’lJ) t h e n .  
i f  (t=’l’) then 

end i f ;  
10 q-reg <= not  q-reg; 

end i f  ; 
end p r o c e s s ;  
q <= q-reg; 

IS end one-seg-arch ; 

We use an internal signal, q r e g ,  to represent the content and the output of an FF. The 
statement 

q-reg <= not q-reg; 

may appear strange at first glance. So let us examine it in more detail. The q r e g  signal 
on the right-hand side represents the output value of the FF, and the not q-reg expression 
forms the new value of q reg .  This value has no effect on the FFuntil the process is activated 
and the clk’event and clk=’l’  condition is true,  which specified the occurrence of 
the rising edge of the clk signal. At this point the value is assigned to q r e g  (actually, 
stored into the FF named qreg).  Thus, the code correctly describes the desired function. 
Note that if this statement is an isolated concurrent signal assignment statement, a closed 
combinational feedback loop is formed, in which the output and input of an inverter are tied 
together . 

As in the previous example, the inner if statement has no else branch, and thus q r e g  
will keep its previous value if the t=’ I condition is fa lse .  In actual implementation, 
“keep its previous value” is achieved by sampling the FF’s output and storing the value back 
to the FE. Thus, the more descriptive if statement can be written as 

i f  (t=’lJ) then 

e l s e  

end i f  ; 

q-reg <= not  (q-reg) ; 

q-reg <= q-reg; 
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Featured binary counter Consider the featured binary counter in Listing 8.13. We 
can convert it into one-segment code, as in Listing 8.19. 

Listing 8.19 One-segment description of a featured binary counter 

a r c h i t e c t u r e  one-seg-arch of binary-counter4-f eature i s  

begin 
s i g n a l  r-reg : unsigned ( 3  downto 0) ; 

-- r e g i s t e r  & n e x t - s t a t e  logic 

begin 
s process  (clk , reset) 

i f  (reset=’l’) then 

10 

I S  

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

i f  syn-clr- 1 ’ then 

e l s i f  load=’l’ then 

e l s i f  en = ’ l ’  then 

end i f  ; 

e l s i f  (clk’event and clk=’lJ) then 

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= unsigned (d) ; 

r-reg <= r-reg + 1; 

end i f  ; 
end p r o c e s s ;  
- o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 

end one-seg-arch; 

The key to this code is the incrementing part, which is done using the statement 

r-reg <= r-reg + 1; 

The interpretation of rreg in this statement is similar to that in T FF except that the not 
operation is replaced by incrementing. 

Free-running binary counter Consider the 4-bit free-running binary counter in List- 
ing 8.12. The first attempt to convert it to a single-segment style is shown in Listing 8.20. 

10 

IS  

Listing 8.20 Incorrect one-segment description of a free-running binary counter 

a r c h i t e c t u r e  not-work-one-seg-glitch-arch 

s i g n a l  r-reg : unsigned (3 downto 0) ; 
of binary-counter4-pulse i s  

begin 
s process  (clk reset) 

begin 
i f  (reset=’l’) then 

e l s i f  (clk’event and clk=’lJ) then 
r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= r-reg + 1; 
i f  r-reg=llilll” then 

max-pulse <= ’1’; 
e l s e  

max-pulse <= ’ O J ;  
end i f ;  

end i f ;  
end p r o c e s s ;  
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Figure 8.18 Free-running binary counter with an unintended output buffer. 

q <= std-logic-vector(r-reg); 
end not-work-one-seg-glitch-arch; 

The output logic does not function as we expected. Because the statement 

i f  r-reg=" 11 11 It then 
max-pulse <= '1'; 

e l s e  
max-pulse <= '0'; 

end i f  ; 

isinsidethe clk'event and c lk= ' l '  branch, a 1-bitregisterisinferredforthemax-pulse 
signal. The register works as a buffer and delays the output by one clock cycle, and thus the 
max-pulse signal will be asserted when rieg="0000". The block diagram of this code 
is shown in Figure 8.18. 

To correct the problem, we have to move the output logic outside the process, as in 
Listing 8.21. 

Listing 8.21 Correct one-segment description of a free-running binary counter 
a r c h i t e c t u r e  work-one-seg-glitch-arch 

of binary-counter4-pulse i s  
s i g n a l  r-reg : unsigned (3 downto 0) ; 

process  (clk , reset) 
begin 

begin 

i f  (reset= ' 1 ' then 

e l s i f  (clk'event and clk='l') then 

end i f  ; 
end p r o c e s s ;  
q <= std-logic-vector(r-reg); 
max-pulse <= '1' when r-reg="llll" e l s e  

r-reg <= ( o t h e r s = > ' O ' ) ;  

10 r-reg <= r-reg + 1; 

I S  '0'; 
end work-one-seg-glitch-arch; 

Programmable counter Consider the programmable mod-m counter in Listing 8.16. 
The first attempt to reconstruct the two-seg-ef f L a r c h  architecture in one-segment cod- 
ing style is shown in Listing 8.22. 
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Listing 8.22 Incorrect one-segment description of a programmable counter 

a r c h i t e c t u r e  not-work-one-arch of prog-counter is  

begin 
s i g n a l  r-reg : unsigned ( 3  downto 0) ; 

process  (clk, reset 
s begin 

i f  reset-’1’ t hen  
r-reg <= ( o t h e r s = > ’ O ’ ) ;  

e l s i f  (clk’event and clk=’l’) then 
r-reg <= r-reg+l; 
i f  (r-reg=unsigned(m)) then 

r-reg<= ( o t h e r s = > ’ o ’ ) ;  
end i f ;  

end i f  ; 
end p r o c e s s ;  

1 5  q <= std-logic-vector (r-reg) ; 
end not-work-one-arch; 

10 

The code does not work as specified. Recall that a signal will not be updated until the 
end of the process. Thus, r r e g  is updated to r_reg+l in the end. When the comparison 
r-reg=unsigned(m) is performed, the old value of r i e g  is used. Because the correct 
r r e g  value is late for one clock, the counter counts one extra value. The code actually 
specified a mod-(m + 1) counter instead. 

To correct the problem, we must move the incrementing operation outside the process 
so that it can be performed concurrently with the process. The modified VHDL code is 
shown in Listing 8.23. 

Listing 8.23 Correct one-segment description of a programmable counter 

a r c h i t e c t u r e  work-one-arch of prog-counter i s  
s i g n a l  r-reg : unsigned (3 downto 0) ; 
s i g n a l  r-inc : unsigned (3 downto 0) ; 

begin 
5 p r o c e s s  (clk ,reset 

begin 
i f  reset=’l’ t hen  

e l s i f  (clk’event and clk=’l’) t hen  

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= r-inc; 

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

10 i f  (r-inc=unsigned (m)) then 

e l s e  

end i f  ; 
IS end i f  ; 

end p r o c e s s ;  
r-inc <= r-reg + 1; 
q <= std-logic-vector(r-reg); 

end work-one-arch ; 
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8.7.2 Summary 

When we combine the memory elements and next-state logic in the same process, it is 
much harder to “visualize” the circuit and to map the VHDL statements into hardware 
components. This style may make code more compact for a few simple circuits, as in the 
first three examples. However, when a slightly more involved feature is needed, as the 
max-pulse output or the incrementor sharing of the last two examples, the one-segment 
style makes the code difficult to understand and error-prone. Although we can correct 
the problems, the resulting code contains extra statements and is far worse than the codes 
in Section 8.5. Furthermore, since the combinational logic and memory elements are 
mixed in the same process, it is more difficult to perform optimization and to fine-tune 
the combinational circuit. In summary, although the two-segment code may occasionally 
appear cumbersome, its benefits far outweigh the inconvenience, and we generally use this 
style in this book. 

8.8 USE OF VARIABLES IN SEQUENTIAL CIRCUIT DESCRIPTION 

We have learned how to infer an FF or a register from a signal. It is done by using the 
clk ’ event and clk= ’ 1 ’ condition to indicate the rising edge of the clock signal. Any 
signal assigned under this condition is required to keep its previous value, and thus an FF 
or a register is inferred accordingly. 

A variable can also be assigned under the clk’ event and clk=’ 1 ’ condition, but its 
implication is different because a variable is local to the process and its value is not needed 
outside the process. If a variable is assigned a value before it is used, it will get a value 
every time when the process is invoked and there is no need to keep its previous value. 
Thus, no memory element is inferred. On the other hand, if a variable is used before it is 
assigned a value, it will use the value from the previous process execution. The variable 
has to memorize the value between the process invocations, and thus an FF or a register 
will be inferred. 

Since using a variable to infer memory is more error-prone, we generally prefer to use 
a signal for this task. The major use of variables is to obtain an intermediate value inside 
the clk’event and clk=’l’ branch without introducing an unintended register. This 
can best be explained by an example. Let us consider a simple circuit that performs an 
operation a and b and stores the result into an FF at the rising edge of the clock. We use 
three outputs to illustrate the effect of different coding attempts. The VHDL code is shown 
in Listing 8.24. 

Listing 8.24 Using a variable to infer an FF 
l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  varaible-ff-demo i s  

port  ( 
5 a,b,clk: in  std-logic; 

ql  , q2, q3 : out std-logic 
1; 

end varaible-ff-demo; 

10 a r c h i t e c t u r e  arch of varaible-ff-demo is 
s i g n a l  tmp-sigl : std-logic ; 

begin 
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IS 
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-- a t t e m p t  I 
process  (clk) 
begin 

i f  (clk’event and clk=’l’) then 
tmp-sigl <= a and b; 
ql <= tmp-sigl; 

end i f  ; 
end process;  
- a t t e m p t  2 
process (clk) 

begin 
var iable  tmp-var2 : std-logic ; 

i f  (clk’event and clk=’l’) then 
tmp-var2 := a and b; 
q2 <= tmp-var2; 

end i f ;  
end p r o c e s s ;  
- a t t e m p t  3 
process  (clk) 

begin 
var iable  tmp-var3 : std-logic ; 

if (clk’event and clk=’l’) then 
q3 <= tmp-var3; 
tmp-var3 := a and b; 

end i f  ; 
end p r o c e s s ;  

end arch; 

In the first attempt, we try to use the tmp-sigl signal for the temporary result. However, 
since the tmp-sigl signal is inside the clk’event and clk-’ 1 ’ branch, an unintended 
D FF is inferred. The two statements 

tmp-sigl <= a and b; 
ql <= tmp-sigl; 

are interpreted as follows. At the rising edge of the clk signal, the value of a and b will 
be sampled and stored into an FF named tmp-sigl, and the old value (not current value of 
a and b) from the tmp-sigl signal will be stored into an FF named ql. The diagram is 
shown in Figure 8.19(a). 

The value of a and b is delayed by the unintended buffer, and thus this description fails 
to meet the specification. Since both statements are signal assignment statements, we will 
obtain the same result if we switch the order of the two statements. 

The second attempt uses a variable, tmp-var2, for the temporary result and the statements 
become 

tmp-var2 := a and b; 
q2 <= tmp-var2; 

Note that the tmp-var2 variable is first assigned a value and then used in the next statement. 
Thus, no memory element is inferred and the circuit meets the specification. The diagram 
is shown in Figure 8.19(b). 

The third attempt uses a variable, tmp-var3, for the temporary result. It is similar to the 
second process except that the order of the two statements is reversed: 

q3 <= tmp-var3; 
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clk 

(a) Block diagram of first attempt (b) Block diagram of second attempt 

Figure 8.19 Register inference with a variable. 

tmp-var3 := a and b; 

In this code, the tmp-var3 variable is first used before it is assigned a value. According to 
the VHDL definition, the value of tmp-var3 from the previous process invocation will be 
used. An FF will be inferred to store the previous value. Thus, the circuit described by the 
third attempt is the same as that of the first attempt, which contains an unwanted buffer. 

We can use a variable to overcome the problem of the one-segment programmable mod- 
m counter in Listing 8.22. The revised code is shown in Listing 8.25. 

Listing 8.25 Variable description of a programmable counter 

a r c  h i t  e c  t u r e  variable-arch of prog- count er i s  

begin 
s i g n a l  r-reg : unsigned (3 downto 0) ; 

process  (clk, reset) 

begin 
5 v a r i a b l e  q-tmp : unsigned (3 downto 0) ; 

i f  reset=’l’ then 

e 1 s i f ( clk ’ event and clk= ’ 1 ’ ) then 

i f  (q-tmp=unsigned(m)) then 

e l s e  

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

10 q-tmp : =  r-reg + 1; 

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= q-tmp; 
IS end i f  ; 

end i f  ; 
end p r o c e s s ;  

q <= std-logic-vector(r-reg); 
end variable-arch; 

Instead of using the r i e g  signal, we create a variable, q-tmp, to store the intermediate 
result of the incrementing operation. Unlike the signal assignment, the variable assignment 
takes effect immediately, and thus the code functions as intended. 
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8.9 SYNTHESIS OF SEQUENTIAL CIRCUITS 

In Chapter 6, we examined the synthesis procedure for a combinational circuit. The syn- 
thesis of a sequential circuit is identical to this procedure but has two extra steps: 

1. Identify and separate the memory elements from the circuit. 
2. Select the proper leaf cells from the device library to realize the memory elements. 
3. Synthesize the remaining combinational circuit. 

If we follow the recommended coding style, the memory elements are specified in individ- 
ual VHDL segments and thus can be easily inferred and properly instantiated by synthesis 
software. Once this is done, the remaining process is identical to the synthesis of a combi- 
national circuit. 

While synthesizing a combinational circuit, we can include a timing constraint to specify 
the desired maximal propagation delay, and the synthesis software will try to obtain a circuit 
to meet this constraint. For a sequential circuit, we can specify the desired maximal clock 
rate. In a synchronous design, this constraint can easily be translated into the maximal 
propagation delay of the combinational next-state logic, as indicated by the minimal clock 
period equation. Thus, all the optimization schemes used in combinational circuits can also 
be applied to sequential circuit synthesis. 

In summary, when we design and code a sequential circuit in a disciplined way, synthe- 
sizing it is just like the synthesis of a combinational circuit. We can apply the analysis and 
optimization schemes developed for combinational circuits to sequential circuit design. 

8.10 SYNTHESIS GUIDELINES 

0 Strictly follow the synchronous design methodology; i.e., all registers in a system 

0 Isolate the memory components from the VHDL description and code them in a 

should be synchronized by a common global clock signal. 

separate segment. One-segment coding style is not advisable. 

0 The memory components should be coded clearly so that a predesigned cell can be 
inferred from the device library. 

0 Avoid synthesizing a memory component from scratch. 

0 Asynchronous reset, if used, should be only for system initialization. It should not 
be used to clear the registers during regular operation. 

0 Unless there is a compelling reason, a variable should not be used to infer a memory 
component. 

8.1 1 BIBLIOGRAPHIC NOTES 

Design and analysis of intermediate-sized synchronous sequential circuits are covered by 
standard digital systems texts, such as Digital Design Principles and Practices by J. F. Wak- 
erly and Contemporary Logic Design by R. H. Katz. The former also has a section on the 
derivation and analysis of asynchronous sequential circuits. 



254 SEQUENTIAL CIRCUIT DESIGN: PRINCIPLE 

Problems 

8.1 
following assumptions and examine the q output. 

Repeat the timing analysis of Section 8.3 for the circuit shown in Figure 8.6 with the 

0 The propagation delay of the inverter is T and the propagation delays of and and or 
gates are 2T. 

0 The propagation delay of the inverter is 2T and the propagation delays of and and or 
gates are T. 

8.2 The SR latch is defined in the left table below. Some device library does not have an 
SR-latch cell. Instead of synthesizing it from scratch using combinational gates, we want 
to do this by using a D latch. Derive the VHDL code for this design. The code should 
contain a standard VHDL description to infer a D latch and a combinational segment that 
maps the s and r signals to the d and c ports of the D latch to achieve the desired function. 

i k clk q* 

S r q* o q  

o o q  1 q  
0 1 0  0 0 I q  
1 0 1  0 1 4 0  

not 1 0 l l  
1 1 I q' 

allowed 

SR latch JK FF 

8.3 A JK FF is defined as in the right table above. Use a D FF and a combinational 
circuit to design the circuit. Derive the VHDL code and draw the conceptual diagram for 
this circuit. 

8.4 If we replace the D FFs of the free-running shift register of Section 8.5.2 with D latches 
and connect the external clock signal to the c ports of all D latches, discuss what will happen 
to the circuit. 

8.5 Expand the design of the universal shift register of Section 8.5.2 to include rotate- 
right and rotate-left operations. To accommodate the revision, the ctrl signal has to be 
extended to 3 bits. Derive the VHDL code for this circuit. 

8.6 Consider an 8-bit free-running up-down binary counter. It has a control signal, up. 
The counter counts up when the up signal is ' 1 and counts down otherwise. Derive the 
VHDL code for this circuit and draw the conceptual top-level diagram. 

8.7 Consider a 4-bit counter that counts from 3 ("001 1") to 12 ("1 100") and then wraps 
around. If the counter enters an unused state (such as "0000") because of noise, it will 
restart from "001 1" at the next rising edge of the clock. Derive the VHDL code for this 
circuit and draw the conceptual top-level diagram. 

8.8 Redesign the arbitrary counter of Section 8.5.3 using a mod-5 counter and special 
output decoding logic. Derive the VHDL code for this design. 


