
11 Sequential Multiplier

This chapter discusses the design‚ simulation and prototyping of a sequential
multiplier. The multiplication process will be done by the shift-and-add
sequential multiplication procedure. After a discussion of the multiplication
method used‚ we present the details and interfacing of our design. Then the
multiplier will be partitioned into its data and control parts‚ and each part will
be designed separately. The completed design will be simulated in Verilog and
tested by programming the FLEX 10K device of the UP2 board.

11.1 Sequential Multiplier Specification

The project is the design of a 2-bit sequential multiplier‚ with 8-bit A and B
inputs and a 16-bit result. The block diagram of the circuit to be designed is
shown in Figure 11.1. This multiplier has an 8-bit bi-directional I/O for
inputting its A and B operands‚ and outputting its 16-bit output one byte at a
time.

Multiplication begins with the start pulse‚ and the databus will contain
operands A and B in two consecutive clock pulses. After accepting these data
inputs‚ the multiplier begins its multiplication process and when it is
completed‚ it starts sending the result out on the databus. When the least-
significant byte is placed on databus‚ the Lsb_out output is issued‚ and for the
most-significant byte‚ msb_out is issued. When both bytes are outputted‚ done
becomes 1‚ and the multiplier is ready for another set of data.

The multiplexed bi-directorial databus is used to reduce the total number of
pins of the multiplier.

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

230 Digital Design and Implementation with Field Programmable Devices

Figure 11.1 Multiplier Block Diagram

11.2 Shift-and-Add Multiplication

When designing multipliers there is always a compromise to be made between
how fast the multiplication process is done and how much hardware we are
using for its implementation.

A simple multiplication method that is slow‚ but efficient in use of hardware
is the shift-and-add method. In this method‚ depending on bit i of operand A‚
either operand B is added to the collected partial result and then shifted to the
right (when bit i is 1)‚ or (when bit i is 0) the collected partial result is shifted
one place to the right without being added to B.

This method is justified by considering how binary multiplication is done
manually. Figure 11.2 shows manual multiplication of two 8-bit binary
numbers.

We start considering bits of A from right to left. If a bit value is 0 we select
00000000 to be added with the next partial product‚ and if it is a 1‚ the value of
B is selected. This process repeats‚ but each time 00000000 or B is selected‚ it
is written one place to the left with respect to the previous value. When all bits
of A are considered‚ we add all calculated values to come up with the
multiplication results.

Understanding hardware implementation of this procedure becomes easier
if we make certain modifications to this procedure. First‚ instead of having to
move our observation point from one bit of A to another‚ we put A in a shift-
register‚ always observe its right-most bit‚ and after every calculation‚ we move
it one place to the right‚ making its next bit accessible.

Second‚ for the partial products‚ instead of writing one and the next one to
its left‚ when writing a partial product‚ we move it to the right as we are writing
it‚ and the next one will not have to be shifted.

Finally‚ instead of calculating all partial products and at the end adding
them up‚ when a partial product is calculated‚ we add it to the previous partial
result and write the newly calculated value as the new partial result.

Therefore‚ if the bit of A that is being observed is 0‚ 00000000 is to be
added to the previously calculated partial result‚ and the new value should be
shifted one place to the right. In this case‚ since the value being added to the
partial result is 00000000‚ adding is not necessary‚ and only shifting the partial
result is sufficient. This process is called shift. However‚ if bit of A being
observed is 1‚ B is to be added to the previously calculated partial result‚ and

231

the calculated new sum must be shifted one place to the right. This is called
add-and-shift.

Repeating the above procedure‚ when all bits of A are shifted out‚ the
partial result becomes the final multiplication result. We use a 4-bit example to
clarify the above procedure. As shown in Figure 11.3‚ A = 1001 and B = 1101
are to be multiplied. Initially at time 0‚ A is in a shift-register with a register for
partial results (P) on its left.

Figure 11.2 Manual Binary Multiplication

Figure 11.3 Hardware Oriented Multiplication Process

232 Digital Design and Implementation with Field Programmable Devices

At the time 0‚ because A[0] is 1‚ the partial sum of B + P is calculated. This
value is 01101 (shown in the upper part of time 1) and has 5 bits to consider
carry. The right most bit of this partial sum is shifted into the A register‚ and
the other bits replace the old value of P. When A is shifted‚ 0 moves into the
A[0] position. This value is observed at time 1. At this time‚ because A[0] is 0‚
0000 + P is calculated (instead of B + P). This value is 00110‚ the right most
bit of which is shifted into A‚ and the rest replace P. This process repeats 4
times‚ and at the end of the 4 cycle‚ the multiplication result becomes
available in P and A. The least significant 4 bits of the result are in A and the
most-significant bits are in P. The example used here performed 9*13 and 117
was obtained as the result of this operation.

Figure 11.4 Data and Control Parts

11.3 Sequential Multiplier Design

The multiplication process discussed in the previous section justifies the
hardware implementation that is being discussed here.

11.3.1 Control Data Partitioning

The multiplier has a datapath and a controller. The data part consists of
registers‚ logic units and their interconnecting busses. The controller is a state
machine that issues control signals for control of what gets clocked into the
data registers.

As shown in Figure 11.4‚ the data path registers and the controller are
triggered with the same clock signal. On the rising edge of a clock the
controller goes into a new state. In this state‚ several control signals are issued‚
and as a result the components of the datapath start reacting to these signals.
The time given for all activities of the datapath to stabilize is from one edge of
the clock to another. Values that are propagated to the inputs of the datapath
registers are clocked into these register with every clock edge.

th

233

11.3.2 Multiplier Datapath

Figure 11.5 shows the datapath of the sequential multiplier. As shown‚ P and B
are 8-bit registers and A is an 8-bit shift-register. An adder‚ a multiplexer and
a tri-state buffer constitute the other components of this datapath.

Control signals that are outputs of the controller and inputs of the datapath
(Figure 11.4)‚ are shown in bold in Figure 11.5 next to the data component that
they control. These control signals control register clocking‚ bus assignments
and logic unit output selections.

The input databus connects to the inputs of A and B to load multiplier and
multiplicand into these registers. This bi-directional bus is driven by the
output of P through an octal tri-state buffer‚ and by the tri-state output of A .
This bi-directional bus is driven by the output of P through an actual tri-state
buffer‚ and by the tri-state output of A. These tri-states become active when
multiplication result is ready.

Figure 11.5 Multiplier Block Diagram

The output from B and P are put into an 8-bit adder for partial result in P to
be added to B. The output of this adder (P+B) feeds one side of a multiplexer.
The other side of the multiplexer is driven by the P output‚ (P+0). The sel_sum
control input determines if P+B or P+0 is to go on the multiplexer output.

The AND gate shown in Figure 11.5 selects carry-out from the adder or 0
depending of the value of sel_sum control input. This value is concatenated to
the left of the multiplexer output to form a 9-bit vector. This vector has P+B or
P+0 with a carry to its left. The right-most bit of this 9-bit vector is split and

234 Digital Design and Implementation with Field Programmable Devices

goes into the serial input of the shift-register that contains A , and the other
eight bits go into register P. Note that concatenation of the AND gate output to
the left of multiplexer output and splitting the right bit from this 9-bit vector‚
effectively produces a shifted result that is clocked into P.

11.3.3 Description of Parts

Register P and B in Figure 11.5 are 8-bit registers with active high load-enable
inputs. Module Reg8‚ shown in Figure 11.6 is used for these registers.

The adder used for adding P and B is a simple 8-bit adder with a carry-in
and a carry-out and is shown in Figure 11.7. This description uses an assign
statement that assigns a+b+ci to the concatenation of co and s. With this
assignment‚ the carry-out from the operation on the right-hand-side is captured
in co.

Another component of the multiplier design is the 8-bit shift-register of
Figure 11.8. The shift-register keeps its contents in its im_data intermediate
variable. Depending on {s1,s0}‚ im_data is either untouched‚ shifted to the
right‚ loaded with data or reset to 0.

module Reg8(d_in‚ clk‚ en‚ d_out);

input [7:0] d_in;
inputclk‚ en;
output [7:0] d_out;
reg [7:0] d_out;

always @(posedge clk)
if (en) d_out = d_in;

endmodule

Figure 11.6 8-bit Register Used for P and B

module Add8 (a‚ b‚ ci‚ s‚ co);

input [7:0] a‚ b;
input ci;
output [7:0] s;
output co;

assign { co‚ s } = a + b + ci;

endmodule

Figure 11.7 8-bit Adder with Carry

235

module Shift8 (clk‚ sin‚ s1‚ s0‚ oe‚ qa‚ data);

inputclk‚ sin‚ s1‚s0‚oe;
output qa;
inout [7:0] data;

reg [7:0] im_data;

always @(posedge clk)
case ({ s1 ‚ s0 })

2'b00 : im_data = im_data;
2'b01 : im_data = { sin‚ im_data[7:1] };
2'b10 : im_data = data;
2'b11: im_data = 8'b00;

endcase

assign data = (oe & ~s1) ? im_data : 8'hzz;
assign qa = im_data[0];

endmodule

Figure 11.8 Shift-Register with Tri-state Output

module Mux8 (a, b, sel, zero, y);

input [7:0] a, b;
input sel, zero;
output [7:0] y;

assign y = zero ? 8'h0 : (~sel ? a : b);

endmodule

Figure 11.9 Multiplexer

module Tri8 (d_in, en, d_out);

input [7:0] d_in;
input en;
output [7:0] d_out;

assign d_out = en ? d_in : 8'hzz;

endmodule

Figure 11.10 Tri-state for Driving databus

236 Digital Design and Implementation with Field Programmable Devices

When the output enable (oe) of the shift-register is active‚ im_data is placed
on the data bi-directional port of the shift-register. Otherwise‚ data is float.
Placement of im_data on data is also conditioned by ~s1‚ so that data is driven
only when not used as input.

Another component of the datapath of Figure 11.5 is the multiplexer of
Figure 11.9. This multiplexer selects its a or b input depending on the value of
sel. In addition‚ the multiplexer has a zero input that when 1‚ it forces its
output to 8'h0. Since the multiplexer output connects to P‚ its zeroing feature
is used for initial resetting of the P register.

As shown in Figure 11.5‚ an octal tri-state buffer connects the output of P
to the bi-directional databus. The Verilog Code of this buffer is shown in Figure
11.10. The en input of this structure becomes active‚ when the most significant
byte of the result that is in P is to go on the multiplier output (databus).

11.3.4 Datapath Description

The Verilog Code of the datapath of the multiplier is shown in Figure 11.11. In
this description components described above are instantiated and wired
together according to the block diagram of Figure 11.5.

module datapath (clk‚ clr_P‚ load_P‚ load_B‚ msb_out‚
lsb_out‚ sel_sum‚ load_A‚ shift_A‚ data‚ A0);

input clk‚ clr_P‚ load_P‚ load_B‚ msb_out‚ lsb_out‚ sel_sum‚ load_A‚ shift_A;
inout [7:0] data;
output A0;

wire [7:0] B‚ P‚ sum‚ ShiftAdd;
wire co;

Reg8 latch_B (data‚ clk‚ load_B‚ B);

Add8 add_PB (P‚ B‚ 1'b0‚ sum‚ co);

Mux8 P_or_sum (P‚ sum‚ sel_sum‚ clr_P‚ ShiftAdd);

Reg8 latch_P ({co&sel_sum‚ShiftAdd[7:1]}‚ clk‚ load_P‚ P);

Shift8 latch_A_shift (clk‚ ShiftAdd[0]‚ load_A‚ shift_A‚ lsb_out‚ A0‚ data);

Tri8 buffer (P‚ msb_out‚ data);

endmodule

Figure 11.11 Datapath Verilog Code

237

11.3.5 Multiplier Controller

The multiplier controller is a finite state machine that has two starting states‚
eight multiplication states‚ and two ending states. States and their binary
assignments are shown in Figure 11.12. In the ìdle state the multiplier waits
for `start while loading A. In `init‚ it loads the second operand B. In `m1 to `m8‚
the multiplier performs add-and-shift of P+P‚or P+0‚ depending on A0. In the
last two states(`rslt1 and 1rslt2)‚ the two halves of the result are put on
databus.

`define idle
`define init
`define m1
`define m2
`define m3
`define m4
`define m5
`define m6
`define m7
`define m8
`define rslt1
`define rslt2

4'b0000
4'b0001

4'b0010
4'b0011
4'b0100
4'b0101
4'b0110
4'b0111
4'b1000
4'b1001

4'b1010
4'b1011

Figure 11.12 Multiplier Control States

The Verilog Code of controller is shown in Figure 11.13. This Code declares
datapath ports‚ and uses a single always block to issue control signals and
make state transitions. At the beginning of this always block all control signal
outputs are set to their inactive values. This eliminates unwanted latches that
may be generated by the synthesis tool for these outputs.

The 4-bit current variable represents the currently active state of the
machine. When current is `idle and start is 0‚ the done output remains high. In
this state if start becomes 1‚ control signals load_A‚ clr_P and load_P become
active to load A with databus and clear the P register. Clearing P requires clr_P
to put 0's on the multiplexer output by disabling it and loading the 0's into P by
asserting load_P.

In `m1 to `m8 states‚ A is shifted‚ P is loaded‚ and if A0 is 1‚ sel_sum is
asserted. As discussed in relation to datapath‚ sel_sum controls shifted P+B or
shifted P+0) to go into P.

In the result states lsb_out and msb_out are asserted in two consecutive
clocks in order to put A and P on the databus‚ respectively.

238 Digital Design and Implementation with Field Programmable Devices

module controller (clk‚ start‚ A0‚ clr_P‚ load_P‚ load_B‚
msb_out‚ lsb_out‚ sel_sum‚ load_A, Shift_A‚ done);

input clk‚ start‚ A0;
output clr_P‚ load_P‚ load_B‚ msb_out‚ lsb_out‚ sel_sum‚ done;
output load_A‚ Shift_A;

reg clr_P‚ load_P‚ load_B‚ msb_out‚ lsb_out‚ sel_sum‚ done;
reg load_A‚ Shift_A;

reg [3:0] current;

always @ (negedge clk) begin
clr_P = 0; load_P = 0; load_B = 0; msb_out = 0; Isb_out = 0; sel_sum = 0;
load_A = 0; Shift_A = 0; done = 0;

case (current)
ìdle :
if (~start) begin

current = ìdle;
done = 1;

end else begin
current= ̀ init;
load_A = 1;
clr_P = 1;load_P = 1;

end
`init:

begin
current=`m1;
load_B = 1;

end
`m1‚ `m2‚ `m3‚ `m4‚ `m5‚ `m6‚ `m6‚ `m7‚ `m8 :

begin
current = current + 1 ; Shift_A = 1 ; load_P = 1 ;
if(A0)sel_sum = 1;

end
`rslt1 :

begin
current=`rslt2; lsb_out = 1;

end
`rslt2 :

begin
current= ìdle; msb_out = 1;

end
default : current= ìdle;

endcase

end

endmodule

Figure 11.13 Verilog Code of Controller

239

module Multiplier (clk‚ start‚ databus‚ lsb_out‚ msb_out‚ done);

input clk‚ start;
inout [7:0] databus;
output done‚ lsb_out‚ msb_out;
wire clr_P‚ load_P‚ load_B‚ msb_out‚ lsb_out‚ sel_sum‚ load_A‚ Shift_A;

datapath dpu(clk‚ clr_P‚ load_P‚ load_B‚
msb_out‚ lsb_out‚ sel_sum‚ load_A‚ Shift_A, databus‚ A0);

controller cu(clk‚ start‚ A0‚ clr_P‚ load_P‚ load_B‚
msb_out‚ lsb_out‚ sel_sum‚ load_A‚ Shift_A‚ done);

endmodule

Figure 11.14 Top-Level Multiplier Code

11.3.6 Top-Level Code of the Multiplier

Figure 11.14 shows the top-level Multiplier module. The datapath and
controller modules are instantiated here. The input and output ports of this
unit are according to the diagram of Figure 11.1. This description is
synthesizable‚ and can be ported into Quartus II for synthesis and device
programming.

11.4 Multiplier Testing

This section shows an auto-check verifying testbench for our sequential
multiplier. Several forms of data applications and result monitoring are
demonstrated by this example. The outline of the test_multiplier module is
shown in Figure 11.15.

In the declarative part of this testbench inputs of the multiplier are declared
as reg and its outputs as wire. Since databus of the multiplier is a
bidirectional bus‚ it is declared as wire for reading it‚ and a corresponding
im_data reg is declared for writing into it. An assign statement drives databus
with im_data. When writing into this bus from the testbench‚ the writing must
be done into im_data‚ and after the completion of writing the bus must be
released by writing 8'hzz into it.

Other variables declared in the testbench of Figure 11.15 are
expected_result and multiplier_result. The latter is for the result read from the
multiplier‚ and the former is what is calculated in the testbench. It is expected
that these values are the same.

The testbench shown in Figure 11.15 applies three rounds of test to the
Multiplier module. In each round‚ data is applied to the module under test and
results are read and compared with the expected results. The following are
tasks performed by this testbench:

Read data files data1.dat and data2.dat and apply data to databus
Apply start to start multiplication

240 Digital Design and Implementation with Field Programmable Devices

Calculate the expected result
Wait for multiplication to complete‚ and collect the calculated result
Compare expected and calculated results and issue error if they do not
match

These tasks are independently timed‚ and at the same time‚ an always block
generates a periodic signal on clk that clocks the multiplier.

`timescale 1ns/100ps

module test_multiplier;
reg clk‚ start‚ error;
wire [7:0] databus;
wire lsb_out‚ msb_out‚ done;
reg [7:0] mem 1[0:2]‚ mem2[0:2];
reg [7:0] im_data‚ opnd1‚ opnd2;
reg [15:0] expected_result‚ multiplier_result;
integer indx;

Multiplier uut (clk‚ start‚ databus‚ lsb_out‚ msb_out‚ done);

initial begin: Apply_data . . . end
initial begin: Apply_Start . . . end
initial begin: Expected_Result . . . end
always @(posedge clk) begin: Actual_Result . . . end
always @(posedge clk) begin: Compare_Results . . . end
always #50 clk = ~clk;
assign databus=im_data;

endmodule

// Figure 11.16
// Figure 11.17
// Figure 11.18
// Figure 11.19
// Figure 11.20

Figure 11.15 Multiplier Testbench Outline

11.4.1 Reading Data Files

Figure 11.16 shows the Apply_data initial block that is responsible for reading
data and applying them to im_data‚ which in turn goes on databus. Data from
data1.dat and data2.dat external lines are read into men1 and men2. In each
round of test data from mem1 and mem2 are put on im_data. Data from mem2
is distanced from that of mem1 by 100 ns. This way‚ the latter is interpreted as
data for the A operand and the former for the B multiplication operand. After
placing this data‚ 8'hzz is put on im_data. This releases the databus so that it
can be driven by the multiplier when its result is ready.

11.4.2 Applying Start

Figure 11.17 shows an initial block in which variable initializations take place‚
and start signal is issued. Using a repeat statement‚ three 100 ns pulses
distanced by 1350 ns are placed on start.

241

11.4.3 Calculating Expected Result

Figure 11.18 shows an initial block that reads data that is put on databus by
the Apply_data block (Figure 11.16)‚ and calculates the expected multiplication
result. After start‚ when databus is updated‚ the first operand is read into
opnd1. The next time databus changes‚ opnd2 is read. The expected result is
calculated using these operands.

initial begin: Apply_data
indx=0;
$readmemh("data1.dat"‚ mem1);
$readmemh("data2.dat"‚ mem2);
repeat(3) begin

#300 im_data=mem1 [indx];
#100 im_data=mem2 [indx];
#100 im_data=8'hzz;
indx=indx+1;
#1000;

end
#200 $stop;

end

Figure 11.16 Reading Data Files

initial begin: Apply_Start
clk=1'b0;start=1'b0; im_data=8'hzz;
#200 ;
repeat(3) begin

#50 start=1'b1;
#100 start=1'b0;
#1350;

end
end

Figure 11.17 Initializations and Start

initial begin: Expected_Result
error=1'b0;
repeat(3) begin

wait (start==1'b1);
@ (databus);
opnd1=databus;
@(databus);
opnd2=databus;
expected_result = opnd1 * opnd2;

end
end

Figure 11.18 Calculating Expected Result

242 Digital Design and Implementation with Field Programmable Devices

11.4.4 Reading Multiplier Output

When the multiplier completes its task‚ it issues msb_out and lsb_out to signal
that it has readied the two bytes of the result. The always block of Figure
11.19 is triggered by the rising edge of the circuit clock. After a clock edge‚ if
msb_out or lsb_out is 1‚ it reads the databus and puts in its corresponding
position in multiplier_result.

always @(posedge clk) begin: Actual_Result
if (msb_out) multiplier_result[15:8] = databus;
if (lsb_out) multiplier_result[7:0] = databus;

end

Figure 11.19 Reading Multiplier Results

always @(posedge clk) begin: Compare_Results
if (done)
if (multiplier_result != expected_result) error = 1 ;
else error = 0;

end

Figure 11.20 Comparing Results

11.4.5 Comparing Results

Figure 11.20 shows the always block that is responsible for comparing actual
and expected multiplication results. After the active edge of the circuit clock if
done is 1‚ then comparing multiplier_result and expected_result takes place. If
values of these variables do not match error is issued.

The self-running testbench presented here verifies RT-level operation of our
multiplier. Prototyping this design using the UP2 board is presented in the next
section.

11.5 Multiplier Prototyping

We use the FLEX 10K device of UP2 for prototyping our multiplier. This section
describes porting the Verilog Code of the multiplier into Quartus II‚ generating
switch and display interfaces for our design and programming the EPF10K70 of
the UP2 development board. The Quartus II project used for this part is
SeqMultiplier in a design directory by the same name. BookLibrary is included
in the list of libraries available to the project.

11.5.1 Porting Multiplier into Quartus II

The Multiplier module of Figure 11.14 is the top-level module of our multiplier.
To be able to use this design in Quartus II‚ this and all its related Verilog Files
must be copied to the directory of the SeqMultiplier project.

243

In order to use the Multiplier module in a Quartus II schematic‚ a symbol
has to be created for it. Figure 11.21 shows this symbol created by Quartus II‚
after some manual editings.

Figure 11.21 Multiplier Symbol

11.5.2 Multiplier Interfaces

Figure 11.22 shows the Seq Multiplier schematic that includes the Multiplier and
its pushbutton and display interfaces. In order to step through the
multiplication process‚ its clock is driven by a pushbutton. The other
pushbutton available to FLEX is used for the start input. FLEX switch set is
used for the A and B operands. We manually set these switches to values that
are to be multiplied.

Figure 11.22 SeqMultiplier Prototype

244 Digital Design and Implementation with Field Programmable Devices

For the display of the output of the multiplier two instances of DisplayHEX
from BookLibrary are used. These outputs display both halves of the 16-bit
output of the multiplier.

11.5.3 Bidirectional Databus

The multiplier databus is a bidirectional bus used for A and B operands as well
as the two halves of the result. We have used the lpm_bustri megafunction of
Quartus II‚ that is available under gates category of megafunctions, to split the
in-side and out-side of the databus.

The FLEX switches connect to the input side of Bidirectional-IO component‚
and the displays connect to its output side. When either lsb_out or msb_out is
issued by the multiplier‚ the databus connects to the displays through the
Bidirectional-IO. At all other times that the multiplier is not driving its output‚
the switches drive the databus.

11.5.4 Operating the Prototype

Compiling SeqMultiplier of Figure 11.22 synthesizes the Multiplier module and
together with the rest of components of this design‚ generates the
SeqMultiplier.sof file for programming the FLEX 10K device.

Pin assignments are done according to permanently assigned pins of FLEX.
Bits of DataIn port of diagram of Figure 11.22 are connected to the switches
according to Figure 6.34. The outputs of the DisplayHEX components are
assigned to the seven segment displays according to Figure 6.35‚ and inputs
PB1 and PB2 are assigned to FLEX pushbuttons as shown in Figure 6.33.

To test the multiplier‚ the switches are set to a test value for A and while
start is 1‚ a clock pulse is given. Then‚ while start is 0‚ the switches are set to a
value for B and another clock pulse is given. Following the leading of A and B‚
eight clock pulses are given (releasing and pressing PB2 eight times) to
complete the multiplication process. With the next clock‚ the right-most byte of
the result becomes available on the SSDs‚ and with the next clock the left-most
byte of the multiplication result becomes available on the SSDs. Both values of
the output are displayed in hexadecimal Code.

Figure 11.23 shows part of the FLEX 10K timing closure floorplan after
being programmed with our multiplier. The complete SeqMultiplier project uses
230 Logic Elements of the total 3744 available on FLEX 10K. Of the available
36‚804 memory bits‚ none are used. The timing viewer allows cells to be
selected and timing between them be viewed. When a cell is selected‚ its fan-
ins and fan-outs are listed and corresponding delay values are shown on the
arrows going between the logic elements; Figure 11.23 shows an example.

245

Figure 11.23 Chip Floorplan (Partial View)

11.6 Summary

This chapter showed a complete design of a system with a well-defined datapath
and a good-size controller. The design demonstrates top-down design and
data/control partitioning. We showed how this design could be implemented by
coding lower level RTL parts and then wiring them into a complete system.
Concepts of controllers‚ control signals controlling data activities‚ bussing‚ and
various forms of unidirectional and bi-directional busses were demonstrated in
this design. We demonstrated how the UP2 board could be utilized to test the
physical implementation of an HDL based design.

This page intentionally left blank

