
For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

A Examples

Source files for examples demonstrating the use of VHDL are in
the /synopsys/syn/examples/vhdl directory. The examples are

 Moore Machine
 Mealy Machine
 Read–Only Memory (ROM)
 Waveform Generator
 Smart Waveform Generator
 Definable-Width Adder-Subtracter
 Count Zeros — Combinational Version
 Count Zeros — Sequential Version
 Soft Drink Machine — State Machine Version
 Soft Drink Machine — Count Nickels Version
 Carry-Lookahead Adder
 Serial-to-Parallel Converter — Counting Bits
 Serial-to-Parallel Converter — Shifting Bits
 Programmable Logic Array (PLA)

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Moore Machine
Figure A–1 is a diagram of a simple Moore finite-state ma-
chine. It has one input (X), four internal states (S0 to S3), and
one output (Z).

Figure A–1 Moore Machine Specification

 S0

 S1

 S3

 S2

0

1 1

0

0

1

1

0

1

0

1

0
Present Next Output

state state (Z)

X=0 X=1 X=0

 S0 S0 S2 0
 S1 S0 S2 1
 S2 S2 S3 1
 S3 S3 S1 0

The VHDL code implementing this finite-state machine is
shown in Example A–1, which includes a schematic of the
synthesized circuit.

The machine is described with two processes. One process
defines the synchronous elements of the design (state regis-
ters); the other process defines the combinational part of the
design (state assignment case statement). See the discussion
under ‘‘wait Statement” in Chapter 6 for more details on
using the two processes.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Example A–1 Implementation of a Moore Machine

entity MOORE is –– Moore machine
 port(X, CLOCK: in BIT;
 Z: out BIT);
end;

architecture BEHAVIOR of MOORE is
 type STATE_TYPE is (S0, S1, S2, S3);
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
begin

 –– Process to hold combinational logic
 COMBIN: process(CURRENT_STATE, X)
 begin
 case CURRENT_STATE is
 when S0 =>
 Z <= ’0’;
 if X = ’0’ then
 NEXT_STATE <= S0;
 else
 NEXT_STATE <= S2;
 end if;
 when S1 =>
 Z <= ’1’;
 if X = ’0’ then
 NEXT_STATE <= S0;
 else
 NEXT_STATE <= S2;
 end if;
 when S2 =>
 Z <= ’1’;
 if X = ’0’ then
 NEXT_STATE <= S2;
 else
 NEXT_STATE <= S3;
 end if;
 when S3 =>
 Z <= ’0’;
 if X = ’0’ then
 NEXT_STATE <= S3;
 else
 NEXT_STATE <= S1;
 end if;
 end case;
 end process;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 –– Process to hold synchronous elements (flip–flops)
 SYNCH: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 end process;
end BEHAVIOR;

Example A-1 (continued) Implementation of a Moore Machine

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Mealy Machine
Figure A–2 is a diagram of a simple Mealy finite-state ma-
chine. The VHDL code to implement this finite-state machine
is shown in Example A–2. The machine is described in two
processes, like the previous Moore machine example.

Figure A–2 Mealy Machine Specification

 S0

 S2S1

0/1

1/1

1/0

0/0

1/1

0/0

1/0

0/0
Present Next Output

state state (Z)

 X=0 X=1 X=0X=1

S0 S0 S2 0 1

S1 S0 S2 0 0

S2 S2 S3 1 0

S3 S3 S1 0 1

 S3

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Example A–2 Implementation of a Mealy Machine

entity MEALY is –– Mealy machine
 port(X, CLOCK: in BIT;
 Z: out BIT);
end;

architecture BEHAVIOR of MEALY is
 type STATE_TYPE is (S0, S1, S2, S3);
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
begin

 –– Process to hold combinational logic.
 COMBIN: process(CURRENT_STATE, X)
 begin
 case CURRENT_STATE is
 when S0 =>
 if X = ’0’ then
 Z <= ’0’;
 NEXT_STATE <= S0;
 else
 Z <= ’1’;
 NEXT_STATE <= S2;
 end if;
 when S1 =>
 if X = ’0’ then
 Z <= ’0’;
 NEXT_STATE <= S0;
 else
 Z <= ’0’;
 NEXT_STATE <= S2;
 end if;
 when S2 =>
 if X = ’0’ then
 Z <= ’1’;
 NEXT_STATE <= S2;
 else
 Z <= ’0’;
 NEXT_STATE <= S3;
 end if;
 when S3 =>
 if X = ’0’ then
 Z <= ’0’;
 NEXT_STATE <= S3;
 else
 Z <= ’1’;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 NEXT_STATE <= S1;
 end if;
 end case;
 end process;
 –– Process to hold synchronous elements (flip–flops)
 SYNCH: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 end process;
end BEHAVIOR;

Example A-2 (continued) Implementation of a Mealy Machine

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Read-Only Memory (ROM)
Example A–3 shows how a ROM can be defined in VHDL. The
ROM is defined as an array constant, ROM. Each line of the
constant array specification defines the contents of one ROM
address. To read from the ROM, simply index into the array.

The ROM’s number of storage locations and bit width can be
easily changed. The subtype ROM_RANGE specifies that the
ROM contains storage locations 0 to 7. The constant
ROM_WIDTH specifies that the ROM is five bits wide.

After you define a ROM constant, you can index into that
constant many times to read many values from the ROM. If
the ROM address is computable (see ‘‘Computable Oper-
ands” in Chapter 5), no logic is built. The appropriate data
value is simply inserted. If the ROM address is not comput-
able, logic is built for each index into the value. For this rea-
son, you need to consider resource sharing when using a
ROM (see Chapter 9, ‘‘Resource Sharing”). In the example,
ADDR is not computable, so logic is synthesized to compute
the value.

VHDL Compiler does not actually instantiate a typical array-
logic ROM, such as those available from ASIC vendors.
Instead, the ROM is created from random logic gates (AND,
OR, NOT, and so on). This type of implementation is prefera-
ble for small ROMs, or for ROMs that are very regular. For very
large ROMs, consider using an array-logic implementation
supplied by your ASIC vendor.

Example A–3 shows the VHDL source code and the synthe-
sized circuit schematic.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Example A–3 Implementation of a ROM in Random Logic

package ROMS is
 –– declare a 5x8 ROM called ROM
 constant ROM_WIDTH: INTEGER := 5;
 subtype ROM_WORD is BIT_VECTOR (1 to ROM_WIDTH);
 subtype ROM_RANGE is INTEGER range 0 to 7;
 type ROM_TABLE is array (0 to 7) of ROM_WORD;
 constant ROM: ROM_TABLE := ROM_TABLE’(
 ROM_WORD’(”10101”), –– ROM contents
 ROM_WORD’(”10000”),
 ROM_WORD’(”11111”),
 ROM_WORD’(”11111”),
 ROM_WORD’(”10000”),
 ROM_WORD’(”10101”),
 ROM_WORD’(”11111”),
 ROM_WORD’(”11111”));
end ROMS;
use work.ROMS.all; –– Entity that uses ROM
entity ROM_5x8 is
 port(ADDR: in ROM_RANGE;
 DATA: out ROM_WORD);
end;
architecture BEHAVIOR of ROM_5x8 is
begin
 DATA <= ROM(ADDR); –– Read from the ROM
end BEHAVIOR;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Waveform Generator
This example shows how to use the previous ROM example to
implement a waveform generator.

Assume you want to produce the waveform output shown in
Figure A–3. First, declare a ROM wide enough to hold the
output signals (four bits), and deep enough to hold all time
steps (0 to 12, for a total of 13).

Next, define the ROM so that each time step is represented
by an entry in the ROM.

Finally, create a counter that cycles through the time steps
(ROM addresses), generating the waveform at each time
step.

Figure A–3 Waveform Example

 0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

Example A–4 shows an implementation for the waveform
generator. It consists of a ROM, a counter, and some simple
reset logic.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Example A–4 Implementation of a Waveform Generator

package ROMS is
 –– a 4x13 ROM called ROM that contains the waveform
 constant ROM_WIDTH: INTEGER := 4;
 subtype ROM_WORD is BIT_VECTOR (1 to ROM_WIDTH);
 subtype ROM_RANGE is INTEGER range 0 to 12;
 type ROM_TABLE is array (0 to 12) of ROM_WORD;
 constant ROM: ROM_TABLE := ROM_TABLE’(
 ”1100”, –– time step 0
 ”1100”, –– time step 1
 ”0100”, –– time step 2
 ”0000”, –– time step 3
 ”0110”, –– time step 4
 ”0101”, –– time step 5
 ”0111”, –– time step 6
 ”1100”, –– time step 7
 ”0100”, –– time step 8
 ”0000”, –– time step 9
 ”0110”, –– time step 10
 ”0101”, –– time step 11
 ”0111”); –– time step 12
end ROMS;

use work.ROMS.all;
entity WAVEFORM is –– Waveform generator
 port(CLOCK: in BIT;
 RESET: in BOOLEAN;
 WAVES: out ROM_WORD);
end;

architecture BEHAVIOR of WAVEFORM is
 signal STEP: ROM_RANGE;
begin

 TIMESTEP_COUNTER: process –– Time stepping process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 if RESET then –– Detect reset
 STEP <= ROM_RANGE’low; –– Restart
 elsif STEP = ROM_RANGE’high then –– Finished?
 STEP <= ROM_RANGE’high; –– Hold at last value
 –– STEP <= ROM_RANGE’low; –– Continuous wave
 else
 STEP <= STEP + 1; –– Continue stepping
 end if;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 end process TIMESTEP_COUNTER;

 WAVES <= ROM(STEP);
end BEHAVIOR;

Example A-4 (continued) Implementation of a Waveform Generator

Note that when the counter STEP reaches the end of the
ROM, STEP stops, generates the last value, then waits until a
reset. To make the sequence automatically repeat, remove
the statement:

STEP <= ROM_RANGE’high; –– Hold at last value

and use the following statement instead (commented out in
Example A–4):

STEP <= ROM_RANGE’low; –– Continuous wave

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Smart Waveform Generator
This example is an extension of the waveform generator in the
previous example. This smart waveform generator is capable
of holding the waveform at any time step for several clock
cycles.

Figure A–4 shows a waveform similar to the waveform of the
previous example, where several of the time steps are held
for multiple clock cycles.

Figure A–4 Waveform for Smart Waveform Generator Example

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5 580 20

The implementation of the smart waveform generator is
shown in Example A–5. It is similar to the waveform generator
of the previous example, but with two additions. A new ROM,
D_ROM, has been added to hold the length of each time step.
A value of 1 specifies that the corresponding time step should
be one clock cycle long; a value of 80 specifies that the time
step should be 80 clock cycles long. The second addition to
the previous waveform generator is a delay counter that
counts out the clock cycles between time steps.

Note that in the architecture of this example, a selected
signal assignment determines the value of the NEXT_STEP

counter.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Example A–5 Implementation of a Smart Waveform Generator

package ROMS is

 –– a 4x13 ROM called W_ROM containing the waveform
 constant W_ROM_WIDTH: INTEGER := 4;
 subtype W_ROM_WORD is BIT_VECTOR (1 to W_ROM_WIDTH);
 subtype W_ROM_RANGE is INTEGER range 0 to 12;
 type W_ROM_TABLE is array (0 to 12) of W_ROM_WORD;
 constant W_ROM: W_ROM_TABLE := W_ROM_TABLE’(
 ”1100”, –– time step 0
 ”1100”, –– time step 1
 ”0100”, –– time step 2
 ”0000”, –– time step 3
 ”0110”, –– time step 4
 ”0101”, –– time step 5
 ”0111”, –– time step 6
 ”1100”, –– time step 7
 ”0100”, –– time step 8
 ”0000”, –– time step 9
 ”0110”, –– time step 10
 ”0101”, –– time step 11
 ”0111”); –– time step 12

 –– a 7x13 ROM called D_ROM containing the delays
 subtype D_ROM_WORD is INTEGER range 0 to 100;
 subtype D_ROM_RANGE is INTEGER range 0 to 12;
 type D_ROM_TABLE is array (0 to 12) of D_ROM_WORD;
 constant D_ROM: D_ROM_TABLE := D_ROM_TABLE’(
 1,80,5,1,1,1,1,20,5,1,1,1,1);
end ROMS;

use work.ROMS.all;
entity WAVEFORM is –– Smart Waveform Generator
 port(CLOCK: in BIT;
 RESET: in BOOLEAN;
 WAVES: out W_ROM_WORD);
end;

architecture BEHAVIOR of WAVEFORM is
 signal STEP, NEXT_STEP: W_ROM_RANGE;
 signal DELAY: D_ROM_WORD;
begin

 –– Determine the value of the next time step
 NEXT_STEP <= W_ROM_RANGE’high when

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 STEP = W_ROM_RANGE’high
 else
 STEP + 1;
 –– Keep track of which time step we are in
 TIMESTEP_COUNTER: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 if RESET then –– Detect reset
 STEP <= 0; –– Restart waveform
 elsif DELAY = 1 then
 STEP <= NEXT_STEP; –– Continue stepping
 else
 null; –– Wait for DELAY to count down;
 end if; –– do nothing here
 end process;

 –– Count the delay between time steps.
 DELAY_COUNTER: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 if RESET then –– Detect reset
 DELAY <= D_ROM(0); –– Restart
 elsif DELAY = 1 then –– Have we counted down?
 DELAY <= D_ROM(NEXT_STEP); –– Next delay value
 else
 DELAY <= DELAY – 1; –– decrement DELAY counter
 end if;
 end process;

 WAVES <= W_ROM(STEP); –– Output waveform value
end BEHAVIOR;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Definable-Width Adder-Subtracter
VHDL lets you create functions for use with array operands of
any size. This example shows an adder-subtracter circuit that,
when called, is adjusted to fit the size of its operands.

Example A–6 shows an adder-subtracter defined for two
unconstrained arrays of bits (type BIT_VECTOR), in a package
named MATH. When an unconstrained array type is used for
an argument to a subprogram, the actual constraints of the
array are taken from the actual parameter values in a sub-
program call.

Example A–7 shows how to use the adder–subtracter defined
in the MATH package. In this example the vector arguments to
functions ARG1 and ARG2 are declared as BIT_VECTOR(1 to 6) .
This declaration causes ADD_SUB to work with six-bit arrays. A
schematic of the synthesized circuit follows.

Example A–6 MATH Package for Example A–7

package MATH is
 function ADD_SUB(L, R: BIT_VECTOR; ADD: BOOLEAN)
 return BIT_VECTOR;
 –– Add or subtract two BIT_VECTORs of equal length
end MATH;

package body MATH is
 function ADD_SUB(L, R: BIT_VECTOR; ADD: BOOLEAN)
 return BIT_VECTOR is
 variable CARRY: BIT;
 variable A, B, SUM:
 BIT_VECTOR(L’length–1 downto 0);
 begin
 if ADD then
 –– Prepare for an ”add” operation
 A := L;
 B := R;
 CARRY := ’0’;
 else

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 –– Prepare for a ”subtract” operation
 A := L;
 B := not R;
 CARRY := ’1’;
 end if;

 –– Create a ripple–carry chain; sum up bits
 for i in 0 to A’left loop
 SUM(i) := A(i) xor B(i) xor CARRY;
 CARRY := (A(i) and B(i)) or
 (A(i) and CARRY) or
 (CARRY and B(i));
 end loop;
 return SUM; –– Result
 end;
end MATH;

Within the function ADD_SUB, two temporary variables, A and B,
are declared. These variables are declared to be the same
length as L (and necessarily, R), but have their index
constraints normalized to L’length–1 downto 0 . After the
arguments are normalized, you can create a ripple-carry
adder by using a for loop.

Note that no explicit references to a fixed array length are in
the function ADD_SUB. Instead, the VHDL array attributes ’left

and ’length are used. These attributes allow the function to
work on arrays of any length.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Example A–7 Implementation of a Six-Bit Adder-Subtracter

use work.MATH.all;

entity EXAMPLE is
 port(ARG1, ARG2: in BIT_VECTOR(1 to 6);
 ADD: in BOOLEAN;
 RESULT : out BIT_VECTOR(1 to 6));
end EXAMPLE;

architecture BEHAVIOR of EXAMPLE is
begin
 RESULT <= ADD_SUB(ARG1, ARG2, ADD);
end BEHAVIOR;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Count Zeros—Combinational Version
This example illustrates a design problem where an eight-bit-
wide value is given, and the circuit determines two things:

� That no more than one sequence of 0s is in the value.

� The number of 0s in that sequence (if any). This com-
putation must be completed in a single clock cycle.

The circuit produces two outputs: the number of zeros found,
and an error indication.

A legal input value can have at most one consecutive series
of zeros. A value consisting entirely of ones is defined as a
legal value. If a value is illegal, the zero counter resets to 0.
For example, the value 00000000 is legal and has eight zeros;
value 11000111 is legal and has three zeros; value 00111100 is
not legal.

Example A–8 shows the VHDL description for the circuit. It
consists of a single process with a for loop that iterates across
each bit in the given value. At each iteration, a temporary
INTEGER variable (TEMP_COUNT) counts the number of zeros
encountered. Two temporary BOOLEAN variables (SEEN_ZERO

and SEEN_TRAILING), initially FALSE, are set to TRUE when the
beginning and end of the first sequence of zeros is detected.

If a zero is detected after the end of the first sequence of
zeros (after SEEN_TRAILING is TRUE), the zero–count is reset (to
0), ERROR is set to TRUE, and the for loop is exited.

This example shows a combinational (parallel) approach to
counting the zeros. The next example shows a sequential
(serial) approach.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Example A–8 Count Zeros—Combinational

entity COUNT_COMB_VHDL is
 port(DATA: in BIT_VECTOR(7 downto 0);
 COUNT: out INTEGER range 0 to 8;
 ERROR: out BOOLEAN);
end;

architecture BEHAVIOR of COUNT_COMB_VHDL is
begin
 process(DATA)
 variable TEMP_COUNT : INTEGER range 0 to 8;
 variable SEEN_ZERO, SEEN_TRAILING : BOOLEAN;
 begin
 ERROR <= FALSE;
 SEEN_ZERO := FALSE;
 SEEN_TRAILING := FALSE;
 TEMP_COUNT := 0;
 for I in 0 to 7 loop
 if (SEEN_TRAILING and DATA(I) = ’0’) then
 TEMP_COUNT := 0;
 ERROR <= TRUE;
 exit;
 elsif (SEEN_ZERO and DATA(I) = ’1’) then
 SEEN_TRAILING := TRUE;
 elsif (DATA(I) = ’0’) then
 SEEN_ZERO := TRUE;
 TEMP_COUNT := TEMP_COUNT + 1;
 end if;
 end loop;

 COUNT <= TEMP_COUNT;
 end process;

end BEHAVIOR;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Example A-8 (continued) Count Zeros—Combinational

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Count Zeros—Sequential Version
This example shows a sequential (clocked) variant of the
preceding design (Count Zeros—Combinational Version).

The circuit now accepts the eight-bit data value serially, one
bit per clock cycle, by using the DATA and CLK inputs. The
other two inputs are

� RESET, which resets the circuit.

� READ, which causes the circuit to begin accepting data
bits.

The circuit’s three outputs are

� IS_LEGAL, which is TRUE if the data was a legal value.

� COUNT_READY, which is TRUE at the first illegal bit or when all
eight bits have been processed.

� COUNT, the number of zeros (if IS_LEGAL is TRUE).

Note that the output port COUNT is declared with mode BUFFER

so that it can be read inside the process. OUT ports can only
be written to, not read.

Example A–9 Count Zeros—Sequential

entity COUNT_SEQ_VHDL is
 port(DATA, CLK: in BIT;
 RESET, READ: in BOOLEAN;
 COUNT: buffer INTEGER range 0 to 8;
 IS_LEGAL: out BOOLEAN;
 COUNT_READY: out BOOLEAN);
end;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

architecture BEHAVIOR of COUNT_SEQ_VHDL is
begin
 process
 variable SEEN_ZERO, SEEN_TRAILING: BOOLEAN;
 variable BITS_SEEN: INTEGER range 0 to 7;
 begin
 wait until CLK’event and CLK = ’1’;

 if(RESET) then
 COUNT_READY <= FALSE;
 IS_LEGAL <= TRUE;
 SEEN_ZERO := FALSE;
 SEEN_TRAILING := FALSE;
 COUNT <= 0;
 BITS_SEEN := 0;
 else
 if (READ) then
 if (SEEN_TRAILING and DATA = ’0’) then
 IS_LEGAL <= FALSE;
 COUNT <= 0;
 COUNT_READY <= TRUE;
 elsif (SEEN_ZERO and DATA = ’1’) then
 SEEN_TRAILING := TRUE;
 elsif (DATA = ’0’) then
 SEEN_ZERO := TRUE;
 COUNT <= COUNT + 1;
 end if;

 if (BITS_SEEN = 7) then
 COUNT_READY <= TRUE;
 else
 BITS_SEEN := BITS_SEEN + 1;
 end if;

 end if; –– if (READ)
 end if; –– if (RESET)
 end process;
end BEHAVIOR;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Example A-9 (continued) Count Zeros—Sequential

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Soft Drink Machine—State Machine Version
This example is a control unit for a soft drink vending machine.
The circuit reads signals from a coin input unit and sends
outputs to a change dispensing unit and a drink dispensing
unit. This example assumes that only one kind of soft drink is
dispensed.

This is a clocked design with CLK and RESET input signals.

The price of the drink is 35 cents. Input signals from the coin
input unit are NICKEL_IN (nickel deposited), DIME_IN (dime
deposited), and QUARTER_IN (quarter deposited).

Output signals to the change dispensing unit are NICKEL_OUT

and DIME_OUT.

The output signal to the drink dispensing unit is DISPENSE

(dispense drink).

The first VHDL description for this design uses a state machine
description style. The second VHDL description is in the next
example section.

Example A–10 Soft Drink Machine—State Machine

library synopsys; use synopsys.attributes.all;

entity DRINK_STATE_VHDL is
 port(NICKEL_IN, DIME_IN, QUARTER_IN, RESET: BOOLEAN;
 CLK: BIT;
 NICKEL_OUT, DIME_OUT, DISPENSE: out BOOLEAN);
end;

architecture BEHAVIOR of DRINK_STATE_VHDL is
 type STATE_TYPE is (IDLE, FIVE, TEN, FIFTEEN,
 TWENTY, TWENTY_FIVE, THIRTY, OWE_DIME);
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
 attribute STATE_VECTOR : STRING;
 attribute STATE_VECTOR of BEHAVIOR : architecture is

 ”CURRENT_STATE”;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

attribute sync_sync_reset of reset : signal is ”true”;
begin

 process(NICKEL_IN, DIME_IN, QUARTER_IN,
 CURRENT_STATE, RESET, CLK)
 begin
 –– Default assignments
 NEXT_STATE <= CURRENT_STATE;
 NICKEL_OUT <= FALSE;
 DIME_OUT <= FALSE;
 DISPENSE <= FALSE;

 –– Synchronous reset
 if(RESET) then
 NEXT_STATE <= IDLE;
 else

 –– State transitions and output logic
 case CURRENT_STATE is
 when IDLE =>
 if(NICKEL_IN) then
 NEXT_STATE <= FIVE;
 elsif(DIME_IN) then
 NEXT_STATE <= TEN;
 elsif(QUARTER_IN) then
 NEXT_STATE <= TWENTY_FIVE;
 end if;

 when FIVE =>
 if(NICKEL_IN) then
 NEXT_STATE <= TEN;
 elsif(DIME_IN) then
 NEXT_STATE <= FIFTEEN;
 elsif(QUARTER_IN) then
 NEXT_STATE <= THIRTY;
 end if;
 when TEN =>
 if(NICKEL_IN) then
 NEXT_STATE <= FIFTEEN;
 elsif(DIME_IN) then
 NEXT_STATE <= TWENTY;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 end if;
 when FIFTEEN =>

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 if(NICKEL_IN) then
 NEXT_STATE <= TWENTY;
 elsif(DIME_IN) then
 NEXT_STATE <= TWENTY_FIVE;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 NICKEL_OUT <= TRUE;
 end if;

 when TWENTY =>
 if(NICKEL_IN) then
 NEXT_STATE <= TWENTY_FIVE;
 elsif(DIME_IN) then
 NEXT_STATE <= THIRTY;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 DIME_OUT <= TRUE;
 end if;

 when TWENTY_FIVE =>
 if(NICKEL_IN) then
 NEXT_STATE <= THIRTY;
 elsif(DIME_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 DIME_OUT <= TRUE;
 NICKEL_OUT <= TRUE;
 end if;

 when THIRTY =>
 if(NICKEL_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 elsif(DIME_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 NICKEL_OUT <= TRUE;
 elsif(QUARTER_IN) then
 NEXT_STATE <= OWE_DIME;
 DISPENSE <= TRUE;
 DIME_OUT <= TRUE;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 end if;

 when OWE_DIME =>
 NEXT_STATE <= IDLE;
 DIME_OUT <= TRUE;

 end case;
 end if;
 end process;

 –– Synchronize state value with clock.
 –– This causes it to be stored in flip flops
 process
 begin
 wait until CLK’event and CLK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 end process;

end BEHAVIOR;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Soft Drink Machine—Count Nickels Version
This example uses the same design parameters as the pre-
ceding example (Soft Drink Machine — State Machine Ver-
sion) with the same input and output signals.

In this version, a counter counts the number of nickels depos-
ited. This counter is incremented by 1 if the deposit is a nickel,
by 2 if it is a dime, and by 5 if it is a quarter.

Example A–11 Soft Drink Machine—Count Nickels

entity DRINK_COUNT_VHDL is
 port(NICKEL_IN, DIME_IN, QUARTER_IN, RESET: BOOLEAN;
 CLK: BIT;
 NICKEL_OUT, DIME_OUT, DISPENSE: out BOOLEAN);
end;

architecture BEHAVIOR of DRINK_COUNT_VHDL is
 signal CURRENT_NICKEL_COUNT,
 NEXT_NICKEL_COUNT: INTEGER range 0 to 7;
 signal CURRENT_RETURN_CHANGE, NEXT_RETURN_CHANGE : BOOLEAN;
begin

 process(NICKEL_IN, DIME_IN, QUARTER_IN, RESET, CLK,
 CURRENT_NICKEL_COUNT, CURRENT_RETURN_CHANGE)
 variable TEMP_NICKEL_COUNT: INTEGER range 0 to 12;
 begin
 –– Default assignments
 NICKEL_OUT <= FALSE;
 DIME_OUT <= FALSE;
 DISPENSE <= FALSE;
 NEXT_NICKEL_COUNT <= 0;
 NEXT_RETURN_CHANGE <= FALSE;

 –– Synchronous reset
 if (not RESET) then
 TEMP_NICKEL_COUNT := CURRENT_NICKEL_COUNT;

 –– Check whether money has come in
 if (NICKEL_IN) then
 –– NOTE: This design will be flattened, so
 –– these multiple adders will be optimized
 TEMP_NICKEL_COUNT := TEMP_NICKEL_COUNT + 1;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 elsif(DIME_IN) then
 TEMP_NICKEL_COUNT := TEMP_NICKEL_COUNT + 2;
 elsif(QUARTER_IN) then
 TEMP_NICKEL_COUNT := TEMP_NICKEL_COUNT + 5;
 end if;

 –– Enough deposited so far?
 if(TEMP_NICKEL_COUNT >= 7) then
 TEMP_NICKEL_COUNT := TEMP_NICKEL_COUNT – 7;
 DISPENSE <= TRUE;
 end if;

 –– Return change
 if(TEMP_NICKEL_COUNT >= 1 or
 CURRENT_RETURN_CHANGE) then
 if(TEMP_NICKEL_COUNT >= 2) then
 DIME_OUT <= TRUE;
 TEMP_NICKEL_COUNT := TEMP_NICKEL_COUNT – 2;
 NEXT_RETURN_CHANGE <= TRUE;
 end if;
 if(TEMP_NICKEL_COUNT = 1) then
 NICKEL_OUT <= TRUE;
 TEMP_NICKEL_COUNT := TEMP_NICKEL_COUNT – 1;
 end if;
 end if;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Example A-11 (continued) Soft Drink Machine—Count Nickels

 NEXT_NICKEL_COUNT <= TEMP_NICKEL_COUNT;
 end if;
 end process;

 –– Remember the return–change flag and
 –– the nickel count for the next cycle
 process
 begin
 wait until CLK’event and CLK = ’1’;
 CURRENT_RETURN_CHANGE <= NEXT_RETURN_CHANGE;
 CURRENT_NICKEL_COUNT <= NEXT_NICKEL_COUNT;
 end process;

end BEHAVIOR;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Carry-Lookahead Adder
This example uses concurrent procedure calls to build a 32-bit
carry-lookahead adder. The adder is built by partitioning the
32-bit input into eight slices of four bits each. Each of the
eight slices computes propagate and generate values by
using the PG procedure. Figure A–5 shows the overall struc-
ture.

Propagate (output P from PG) is ’1’ for a bit position if that
position propagates a carry from the next lower position to
the next higher position. Generate (output G) is ’1’ for a bit
position if that position generates a carry to the next higher
position, regardless of the carry-in from the next lower posi-
tion.

The carry-lookahead logic reads the carry-in, propagate, and
generate information computed from the inputs. It computes
the carry value for each bit position. This logic makes the
addition operation just an XOR of the inputs and the carry
values.

Carry Value Computations
The carry values are computed by a three-level tree of four-
bit carry-lookahead blocks.

1. The first level of the tree computes the 32 carry values
and the eight group-propagate and generate values.
Each of the first-level group-propagate and generate
values tells if that four-bit slice propagates and gener-
ates carry values from the next lower group to the next
higher. The first-level lookahead blocks read the group
carry computed at the second level.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

2. The second-level lookahead blocks read the group-
propagate and generate information from the four
first-level blocks, then compute their own group-propa-
gate and generate information. They also read group
carry information computed at the third level to com-
pute the carries for each of the third-level blocks.

3. The third-level block reads the propagate and generate
information of the second level to compute a propa-
gate and generate value for the entire adder. It also
reads the external carry to compute each second-level
carry. The carry-out for the adder is ’1’ if the third-level
generate is ’1’ , or if the third-level propagate is ’1’ and
the external carry is ’1’ .

The third-level carry-lookahead block is capable of
processing four second-level blocks. Since there are only
two, the high-order two bits of the computed carry are
ignored, the high-order two bits of the generate input to
the third-level are set to zero 00, and the propagate
high-order bits are set to 11. These settings cause the
unused portion to propagate carries, but not to gener-
ate them.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Figure A–5 Carry-Lookahead Adder Block Diagram (shown on next page)

CIN COUT 27:24

P
G

GP
GG

CLA

CIN COUT 23:20

P
G

GP
GG

CLA

CIN COUT 19:16

P
G

GP
GG

CLA

CIN COUT 31:28

P
G

GP
GG

CLA

0

A 27:24
B 27:24

P
G

PG

A 31:28
B 31:28

P
G

PG

A 23:20
B 23:20

P
G

PG

A 19:16
B 19:16

P
G

PG

CIN

P
G

COUT

GP
GG

CLA

CIN

P
G

COUT

GP
GG

CLA

7
7

4
4

6
6

5
5

1

CIN COUT 11:8

P
G

GP
GG

CLA

CIN COUT 7:4

P
G

GP
GG

CLA

CIN COUT 3:0

P
G

GP
GG

CLA

CIN COUT 15:12

P
G

GP
GG

CLA

A 11:8
B 11:8

P
G

PG

A 15:12
B 15:12

P
G

PG

A 7:4
B 7:4

P
G

PG

A 3:0
B 3:0

P
G

PG

CIN

P
G

COUT

GP
GG

CLA

3
3

0
0

2
2

1
1

0

1

GGGG or (GGGP and CIN)

GC 7:4

GC 3:0
GGGP

GGGG

GGC

CIN
B A

XOR

S

”00”

3:2
”11”

3:2

third–level

second–level

first–level

1

0

COUT

GP 7:4

GP 3:0

GG 7:4

GG 3:0

GGP

GGG

7

6

5

4

1

2

3

0

 blocks

 blocks

 block

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

The VHDL implementation of the design in Figure A–5 is done
with four procedures:

CLA a four-bit carry-lookahead block.

PG computes first-level propagate and generate informa-
tion.

SUM computes the sum by XORing the inputs with the carry
values computed by CLA.

BITSLICE
collects the first-level CLA blocks, the PG computations,
and the SUM. This procedure performs all the work for a
four-bit value except for the second- and third-level
lookaheads.

Example A–12 shows a VHDL description of the adder.

Example A–12 Carry-Lookahead Adder

package LOCAL is
 constant N: INTEGER := 4;

 procedure BITSLICE(
 A, B: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 signal S: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT);
 procedure PG(
 A, B: in BIT_VECTOR(3 downto 0);
 P, G: out BIT_VECTOR(3 downto 0));
 function SUM(A, B, C: BIT_VECTOR(3 downto 0))
 return BIT_VECTOR;
 procedure CLA(
 P, G: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 C: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT);
end LOCAL;

package body LOCAL is

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 –––
 –– Compute sum and group outputs from a, b, cin
 –––

 procedure BITSLICE(
 A, B: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 signal S: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT) is

 variable P, G, C: BIT_VECTOR(3 downto 0);
 begin
 PG(A, B, P, G);
 CLA(P, G, CIN, C, GP, GG);
 S <= SUM(A, B, C);
 end;

 –––
 –– Compute propagate and generate from input bits
 –––

 procedure PG(A, B: in BIT_VECTOR(3 downto 0);
 P, G: out BIT_VECTOR(3 downto 0)) is

 begin
 P := A or B;
 G := A and B;
 end;

 ––
 –– Compute sum from the input bits and the carries
 ––

 function SUM(A, B, C: BIT_VECTOR(3 downto 0))
 return BIT_VECTOR is

 begin
 return(A xor B xor C);
 end;

 ––––––––––––––––––––––––––––––
 –– 4–bit carry–lookahead block
 ––––––––––––––––––––––––––––––

 procedure CLA(
 P, G: in BIT_VECTOR(3 downto 0);

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 CIN: in BIT;
 C: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT) is

 variable TEMP_GP, TEMP_GG, LAST_C: BIT;
 begin
 TEMP_GP := P(0);
 TEMP_GG := G(0);
 LAST_C := CIN;
 C(0) := CIN;

 for I in 1 to N–1 loop
 TEMP_GP := TEMP_GP and P(I);
 TEMP_GG := (TEMP_GG and P(I)) or G(I);
 LAST_C := (LAST_C and P(I–1)) or G(I–1);
 C(I) := LAST_C;
 end loop;

 GP <= TEMP_GP;
 GG <= TEMP_GG;
 end;
end LOCAL;

use WORK.LOCAL.ALL;

–––––––––––––––––––––––––––––––––
–– A 32–bit carry–lookahead adder
–––––––––––––––––––––––––––––––––

entity ADDER is
 port(A, B: in BIT_VECTOR(31 downto 0);
 CIN: in BIT;
 S: out BIT_VECTOR(31 downto 0);
 COUT: out BIT);
end ADDER;
architecture BEHAVIOR of ADDER is

 signal GG,GP,GC: BIT_VECTOR(7 downto 0);
 –– First–level generate, propagate, carry
 signal GGG, GGP, GGC: BIT_VECTOR(3 downto 0);
 –– Second–level gen, prop, carry
 signal GGGG, GGGP: BIT;
 –– Third–level gen, prop

begin
 –– Compute Sum and 1st–level Generate and Propagate

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 –– Use input data and the 1st–level Carries computed
 –– later.
 BITSLICE(A(3 downto 0),B(3 downto 0),GC(0),
 S(3 downto 0),GP(0), GG(0));
 BITSLICE(A(7 downto 4),B(7 downto 4),GC(1),
 S(7 downto 4),GP(1), GG(1));
 BITSLICE(A(11 downto 8),B(11 downto 8),GC(2),
 S(11 downto 8),GP(2), GG(2));
 BITSLICE(A(15 downto 12),B(15 downto 12),GC(3),
 S(15 downto 12),GP(3), GG(3));
 BITSLICE(A(19 downto 16),B(19 downto 16),GC(4),
 S(19 downto 16),GP(4), GG(4));
 BITSLICE(A(23 downto 20),B(23 downto 20),GC(5),
 S(23 downto 20),GP(5), GG(5));
 BITSLICE(A(27 downto 24),B(27 downto 24),GC(6),
 S(27 downto 24),GP(6), GG(6));
 BITSLICE(A(31 downto 28),B(31 downto 28),GC(7),
 S(31 downto 28),GP(7), GG(7));

 –– Compute first–level Carries and second–level
 –– generate and propagate.
 –– Use first–level Generate, Propagate, and
 –– second–level carry.
 process(GP, GG, GGC)
 variable TEMP: BIT_VECTOR(3 downto 0);
 begin
 CLA(GP(3 downto 0), GG(3 downto 0), GGC(0), TEMP,
 GGP(0), GGG(0));
 GC(3 downto 0) <= TEMP;
 end process;

 process(GP, GG, GGC)
 variable TEMP: BIT_VECTOR(3 downto 0);
 begin
 CLA(GP(7 downto 4), GG(7 downto 4), GGC(1), TEMP,
 GGP(1), GGG(1));
 GC(7 downto 4) <= TEMP;
 end process;

 –– Compute second–level Carry and third–level
 –– Generate and Propagate
 –– Use second–level Generate, Propagate and Carry–in
 –– (CIN)
 process(GGP, GGG, CIN)
 variable TEMP: BIT_VECTOR(3 downto 0);
 begin

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 CLA(GGP, GGG, CIN, TEMP, GGGP, GGGG);
 GGC <= TEMP;
 end process;

 –– Assign unused bits of second–level Generate and
 –– Propagate
 GGP(3 downto 2) <= ”11”;
 GGG(3 downto 2) <= ”00”;

 –– Compute Carry–out (COUT)
 –– Use third–level Generate and Propagate and
 –– Carry–in (CIN).
 COUT <= GGGG or (GGGP and CIN);
end BEHAVIOR;

Implementation
In the carry-lookahead adder implementation, procedures
are used to perform the computation of the design. The
procedures can also be written as separate entities and used
by component instantiation, producing a hierarchical design.
VHDL Compiler does not collapse a hierarchy of entities, but
it does collapse the procedure call hierarchy into one design.

Note that the keyword signal is included before some of the
interface parameter declarations. This keyword is required for
out formal parameters when the actual parameters must be
signals.

The output parameter C from the CLA procedure is not de-
clared as a signal; thus it is not allowed in a concurrent pro-
cedure call; only signals can be used in such calls. To over-
come this problem, subprocesses are used, declaring a
temporary variable TEMP. TEMP receives the value of the C
parameter and assigns it to the appropriate signal (a gener-
ally useful technique).

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Serial-to-Parallel Converter—Counting Bits
The example below shows the design of a serial-to-parallel
converter that reads a serial, bit-stream input and produces
an eight-bit output.

The design reads the following inputs:

SERIAL_IN
Serial input data.

RESET
When ’1’ , causes the converter to reset. All outputs are
set to 0, and the converter is prepared to read the next
serial word.

CLOCK
The value of the RESET and SERIAL_IN is read on the
positive transition of this clock. Outputs of the converter
are also valid only on positive transitions.

The design produces the following outputs:

PARALLEL_OUT
Eight-bit value read from the SERIAL_IN port.

READ_ENABLE
When this output is ’1’ on the positive transition of CLOCK,
the data on PARALLEL_OUT can be read.

PARITY_ERROR
When this output is ’1’ on the positive transition of CLOCK,
a parity error has been detected on the SERIAL_IN port.
When a parity error is detected, the converter halts until
restarted by the RESET port.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Input Format
When no data is being transmitted to the serial port, keep it
at a value of ’0’ . Each eight-bit value requires 10 clock
cycles to read. On the 11th clock cycle, the parallel output
value can be read.

In the first cycle, a ’1’ is placed on the serial input. This assign-
ment indicates that an eight-bit value follows. The next eight
cycles are used to transmit each bit of the value. The most
significant bit is transmitted first. The 10th and final cycle
transmits the parity of the eight-bit value. It must be ’0’ if an
even number of ’1’ s are in the eight-bit data, and ’1’ other-
wise. If the converter detects a parity error, it sets the PAR-

ITY_ERROR output to ’1’ and waits until it is reset.

On the 11th cycle, the READ_ENABLE output is set to ’1’ and
the eight-bit value can be read from the PARALLEL_OUT port. If
the SERIAL_IN port has a ’1’ on the 11th cycle, another
eight-bit value is read immediately; otherwise, the converter
waits until SERIAL_IN goes to ’1’ .

Figure A–6 shows the timing of this design.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Figure A–6 Sample Waveform through the Converter

CLOCK

SERIAL_IN

RESET

PARALLEL_OUT

READ_ENABLE

PARITY_ERROR

XX 2D XX

Implementation Details
The converter is implemented as a four-state finite-state
machine with synchronous reset. When a reset is detected,
the WAIT_FOR_START state is entered. The description of each
state is

WAIT_FOR_START
Stay in this state until a ’1’ is detected on the serial
input. When a ’1’ is detected, clear the PARALLEL_OUT

registers and go to the READ_BITS state.

READ_BITS
If the value of the current_bit_position counter is 8, all
eight bits have been read. Check the computed parity
with the transmitted parity; if it is correct, go to the
ALLOW_READ state, otherwise go to the PARITY_ERROR state.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

If all eight bits have not yet been read, set the appropri-
ate bit in the PARALLEL_OUT buffer to the SERIAL_IN value,
compute the parity of the bits read so far, and incre-
ment the current_bit_position .

ALLOW_READ
This is the state where the outside world reads the PAR-

ALLEL_OUT value. When that value is read, the design
returns to the WAIT_FOR_START state.

PARITY_ERROR_DETECTED
In this state the PARITY_ERROR output is set to ’1’ and
nothing else is done.

This design has four values stored in registers:

CURRENT_STATE
remembers the state as of the last clock edge.

CURRENT_BIT_POSITION
remembers how many bits have been read so far.

CURRENT_PARITY
keeps a running XOR of the bits read.

CURRENT_PARALLEL_OUT
stores each parallel bit as it is found.

The design is divided between two processes: the combina-
tional NEXT_ST containing the combinational logic, and the
sequential SYNCH that is clocked.

NEXT_ST performs all the computations and state assignments.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

The NEXT_ST process starts by first assigning default values to
all the signals it drives. This assignment guarantees that all
signals are driven under all conditions. Next, the RESET input is
processed. If RESET is not active, a case statement determines
the current state and its computations. State transitions are
performed by assigning the next state’s value you want to
the NEXT_STATE signal.

The serial-to-parallel conversion itself is performed by these
two statements in the NEXT_ST process:

NEXT_PARALLEL_OUT(CURRENT_BIT_POSITION) <= SERIAL_IN;
NEXT_BIT_POSITION <= CURRENT_BIT_POSITION + 1;

The first statement assigns the current serial input bit to a
particular bit of the parallel output. The second statement
increments the next bit position to be assigned.

SYNCH registers and updates the stored values described
above. Each registered signal has two parts, NEXT_... and
CURRENT_...:

NEXT_...

signals hold values computed by the NEXT_ST process.

CURRENT_...
signals hold the values driven by the SYNCH process. The
CURRENT_... signals hold the values of the NEXT_...

signals as of the last clock edge.

Example A–13 Serial-to-Parallel Converter—Counting Bits

–– Serial–to–Parallel Converter, counting bits

package TYPES is
 –– Declares types used in the rest of the design
 type STATE_TYPE is (WAIT_FOR_START,
 READ_BITS,
 PARITY_ERROR_DETECTED,
 ALLOW_READ);
 constant PARALLEL_BIT_COUNT: INTEGER := 8;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 subtype PARALLEL_RANGE is INTEGER
 range 0 to (PARALLEL_BIT_COUNT–1);
 subtype PARALLEL_TYPE is BIT_VECTOR(PARALLEL_RANGE);
end TYPES;

use WORK.TYPES.ALL; –– Use the TYPES package

entity SER_PAR is –– Declare the interface
 port(SERIAL_IN, CLOCK, RESET: in BIT;
 PARALLEL_OUT: out PARALLEL_TYPE;
 PARITY_ERROR, READ_ENABLE: out BIT);
end;

architecture BEHAVIOR of SER_PAR is
 –– Signals for stored values
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
 signal CURRENT_PARITY, NEXT_PARITY: BIT;
 signal CURRENT_BIT_POSITION, NEXT_BIT_POSITION:
 INTEGER range PARALLEL_BIT_COUNT downto 0;
 signal CURRENT_PARALLEL_OUT, NEXT_PARALLEL_OUT:
 PARALLEL_TYPE;
begin
NEXT_ST: process(SERIAL_IN, CURRENT_STATE, RESET,
 CURRENT_BIT_POSITION, CURRENT_PARITY,
 CURRENT_PARALLEL_OUT)
 –– This process computes all outputs, the next
 –– state, and the next value of all stored values
 begin
 PARITY_ERROR <= ’0’; –– Default values for all
 READ_ENABLE <= ’0’; –– outputs and stored values
 NEXT_STATE <= CURRENT_STATE;
 NEXT_BIT_POSITION <= 0;
 NEXT_PARITY <= ’0’;
 NEXT_PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

 if (RESET = ’1’) then –– Synchronous reset
 NEXT_STATE <= WAIT_FOR_START;
 else
 case CURRENT_STATE is –– State processing
 when WAIT_FOR_START =>
 if (SERIAL_IN = ’1’) then
 NEXT_STATE <= READ_BITS;
 NEXT_PARALLEL_OUT <=
 PARALLEL_TYPE’(others=>’0’);
 end if;
 when READ_BITS =>

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Example A–13 (continued) Serial-to-Parallel Converter—Counting Bits

 if (CURRENT_BIT_POSITION =
 PARALLEL_BIT_COUNT) then
 if (CURRENT_PARITY = SERIAL_IN) then
 NEXT_STATE <= ALLOW_READ;
 READ_ENABLE <= ’1’;
 else
 NEXT_STATE <= PARITY_ERROR_DETECTED;
 end if;
 else
 NEXT_PARALLEL_OUT(CURRENT_BIT_POSITION) <=
 SERIAL_IN;
 NEXT_BIT_POSITION <=
 CURRENT_BIT_POSITION + 1;
 NEXT_PARITY <= CURRENT_PARITY xor
 SERIAL_IN;
 end if;
 when PARITY_ERROR_DETECTED =>
 PARITY_ERROR <= ’1’;
 when ALLOW_READ =>
 NEXT_STATE <= WAIT_FOR_START;
 end case;
 end if;
 end process;

 SYNCH: process
 –– This process remembers the stored values
 –– across clock cycles
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 CURRENT_BIT_POSITION <= NEXT_BIT_POSITION;
 CURRENT_PARITY <= NEXT_PARITY;
 CURRENT_PARALLEL_OUT <= NEXT_PARALLEL_OUT;
 end process;

 PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

end BEHAVIOR;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Example A–13 (continued) Serial-to-Parallel Converter—Counting Bits

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Serial-to-Parallel Converter—Shifting Bits
This example describes another implementation of the serial-
to-parallel converter in the last example. This design performs
the same function as the previous one, but uses a different
algorithm to do the conversion.

In the previous implementation, a counter was used to indi-
cate the bit of the output that was set when a new serial bit
was read. In this implementation, the serial bits are shifted
into place. Before the conversion takes place, a ’1’ is placed
in the least-significant bit position. When that ’1’ is shifted out
of the most significant position (position 0), the signal
NEXT_HIGH_BIT is set to ’1’ and the conversion is complete.

The listing of the second implementation follows. The differ-
ences are highlighted in bold. The differences relate to the
removal of the ..._BIT_POSITION signals, the addition of
..._HIGH_BIT signals, and the change in the way NEXT_PAR-

ALLEL_OUT is computed.

Example A–14 Serial-to-Parallel Converter—Shifting Bits

package TYPES is
 –– Declares types used in the rest of the design
 type STATE_TYPE is (WAIT_FOR_START,
 READ_BITS,
 PARITY_ERROR_DETECTED,
 ALLOW_READ);
 constant PARALLEL_BIT_COUNT: INTEGER := 8;
 subtype PARALLEL_RANGE is INTEGER
 range 0 to (PARALLEL_BIT_COUNT–1);
 subtype PARALLEL_TYPE is BIT_VECTOR(PARALLEL_RANGE);
end TYPES;

use WORK.TYPES.ALL; –– Use the TYPES package

entity SER_PAR is –– Declare the interface
 port(SERIAL_IN, CLOCK, RESET: in BIT;
 PARALLEL_OUT: out PARALLEL_TYPE;
 PARITY_ERROR, READ_ENABLE: out BIT);

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

end;

architecture BEHAVIOR of SER_PAR is
 –– Signals for stored values
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;

 signal CURRENT_PARITY, NEXT_PARITY: BIT;
 signal CURRENT_HIGH_BIT, NEXT_HIGH_BIT: BIT;
 signal CURRENT_PARALLEL_OUT, NEXT_PARALLEL_OUT:
 PARALLEL_TYPE;
begin

NEXT_ST: process(SERIAL_IN, CURRENT_STATE, RESET,
 CURRENT_HIGH_BIT, CURRENT_PARITY,
 CURRENT_PARALLEL_OUT)
 –– This process computes all outputs, the next
 –– state, and the next value of all stored values
 begin
 PARITY_ERROR <= ’0’; –– Default values for all
 READ_ENABLE <= ’0’; –– outputs and stored values
 NEXT_STATE <= CURRENT_STATE;
 NEXT_HIGH_BIT <= ’0’;
 NEXT_PARITY <= ’0’;
 NEXT_PARALLEL_OUT <= PARALLEL_TYPE’(others=>’0’);
 if(RESET = ’1’) then –– Synchronous reset
 NEXT_STATE <= WAIT_FOR_START;
 else
 case CURRENT_STATE is –– State processing
 when WAIT_FOR_START =>
 if (SERIAL_IN = ’1’) then
 NEXT_STATE <= READ_BITS;
 NEXT_PARALLEL_OUT <=
 PARALLEL_TYPE’(others=>’0’);
 end if;
 when READ_BITS =>
 if (CURRENT_HIGH_BIT = ’1’) then
 if (CURRENT_PARITY = SERIAL_IN) then
 NEXT_STATE <= ALLOW_READ;
 READ_ENABLE <= ’1’;
 else
 NEXT_STATE <= PARITY_ERROR_DETECTED;
 end if;
 else
 NEXT_HIGH_BIT <= CURRENT_PARALLEL_OUT(0);
 NEXT_PARALLEL_OUT <=
 CURRENT_PARALLEL_OUT(

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 1 to PARALLEL_BIT_COUNT–1) &
 SERIAL_IN;
 NEXT_PARITY <= CURRENT_PARITY xor
 SERIAL_IN;
 end if;
 when PARITY_ERROR_DETECTED =>
 PARITY_ERROR <= ’1’;
 when ALLOW_READ =>
 NEXT_STATE <= WAIT_FOR_START;
 end case;
 end if;
 end process;

 SYNCH: process
 –– This process remembers the stored values
 –– across clock cycles
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 CURRENT_HIGH_BIT <= NEXT_HIGH_BIT;
 CURRENT_PARITY <= NEXT_PARITY;
 CURRENT_PARALLEL_OUT <= NEXT_PARALLEL_OUT;
 end process;

 PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

end BEHAVIOR;

Note that the synthesized schematic for the shifter imple-
mentation is much simpler than the first (Example A–13). It is
simpler because the shifter algorithm is inherently easier to
implement.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Example A–14 (continued) Serial-to-Parallel Converter—Shifting Bits

With the count algorithm, each of the flip-flops holding the
PARALLEL_OUT bits needed logic that decoded the value
stored in the BIT_POSITION flip-flops to see when to route in
the value of SERIAL_IN . Also, the BIT_POSITION flip-flops need-
ed an incrementer to compute their next value.

In contrast, the shifter algorithm requires no incrementer, and
no flip-flops to hold BIT_POSITION . Additionally, the logic in
front of most PARALLEL_OUT bits needs to read only the value of
the previous flip-flop, or ’0’ . The value depends on whether
bits are currently being read. In the shifter algorithm, the
SERIAL_IN port needs to be connected only to the least
significant bit (number 7) of the PARALLEL_OUT flip-flops.

These two implementations illustrate the importance of de-
signing efficient algorithms. Both work properly, but the shifter
algorithm produces a faster, more area-efficient design.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Programmable Logic Array (PLA)
This example shows a way to build PLAs in VHDL. The PLA

function uses an input lookup vector as an index into a
constant PLA table, then returns the output vector specified
by the PLA.

The PLA table is an array of PLA_ROWs, where each row is an
array of PLA_ELEMENTs. Each element is either a 1, a 0, a minus,
or a space (’1’ , ’0’ , ’–’ , or ’ ’). The table is split between an
input plane and an output plane. The input plane is specified
by 0s, 1s, and minuses. The output plane is specified by 0s
and 1s. The two planes’ values are separated by a space.

In the PLA function, the output vector is first initialized to be all
’0’ s. When the input vector matches an input plane in a row
of the PLA table, the ’1’ s in the output plane are assigned to
the corresponding bits in the output vector. A match is deter-
mined as follows:

� If a ’0’ or ’1’ is in the input plane, the input vector must
have the same value in the same position.

� If a ’–’ is in the input plane, it matches any input vector
value at that position.

The generic PLA table types and the PLA function are defined
in a package named LOCAL. An entity PLA_VHDL that uses
LOCAL needs only to specify its PLA table as a constant, then
call the PLA function.

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

Note that the PLA function does not explicitly depend on the
size of the PLA. To change the size of the PLA, change the
initialization of the TABLE constant and the initialization of the
constants INPUT_COUNT, OUTPUT_COUNT and ROW_COUNT. In Exam-
ple A–15, these constants are initialized to a PLA equivalent
to the ROM shown previously (Example A–3). Accordingly, the
synthesized schematic is the same as that of the ROM, with
one difference: in Example A–3, the DATA output port range is
1 to 5 ; in Example A–15, the OUT_VECTOR output port range is 4
downto 0 .

This example is included mainly to show the capabilities of
VHDL. It is more efficient to define the PLA directly, by using
the PLA input format. See the Design Compiler Family Refer-
ence Manual for more information about the PLA input for-
mat.

Example A–15 Programmable Logic Array

package LOCAL is
 constant INPUT_COUNT: INTEGER := 3;
 constant OUTPUT_COUNT: INTEGER := 5;
 constant ROW_COUNT: INTEGER := 6;
 constant ROW_SIZE: INTEGER := INPUT_COUNT +
 OUTPUT_COUNT + 1;
 type PLA_ELEMENT is (’1’, ’0’, ’–’, ’ ’);
 type PLA_VECTOR is
 array (INTEGER range <>) of PLA_ELEMENT;
 subtype PLA_ROW is
 PLA_VECTOR(ROW_SIZE – 1 downto 0);
 subtype PLA_OUTPUT is
 PLA_VECTOR(OUTPUT_COUNT – 1 downto 0);
 type PLA_TABLE is
 array(ROW_COUNT – 1 downto 0) of PLA_ROW;

 function PLA(IN_VECTOR: BIT_VECTOR;
 TABLE: PLA_TABLE)
 return BIT_VECTOR;
end LOCAL;

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

package body LOCAL is

 function PLA(IN_VECTOR: BIT_VECTOR;
 TABLE: PLA_TABLE)
 return BIT_VECTOR is
 subtype RESULT_TYPE is
 BIT_VECTOR(OUTPUT_COUNT – 1 downto 0);
 variable RESULT: RESULT_TYPE;
 variable ROW: PLA_ROW;
 variable MATCH: BOOLEAN;
 variable IN_POS: INTEGER;

 begin
 RESULT := RESULT_TYPE’(others => BIT’(’0’));

 for I in TABLE’range loop
 ROW := TABLE(I);

 MATCH := TRUE;
 IN_POS := IN_VECTOR’left;

 –– Check for match in input plane
 for J in ROW_SIZE – 1 downto OUTPUT_COUNT loop
 if(ROW(J) = PLA_ELEMENT’(’1’)) then
 MATCH := MATCH and
 (IN_VECTOR(IN_POS) = BIT’(’1’));
 elsif(ROW(J) = PLA_ELEMENT’(’0’)) then
 MATCH := MATCH and
 (IN_VECTOR(IN_POS) = BIT’(’0’));
 else
 null; –– Must be minus (”don’t care”)
 end if;
 IN_POS := IN_POS – 1;
 end loop;

 –– Set output plane
 if(MATCH) then
 for J in RESULT’range loop
 if(ROW(J) = PLA_ELEMENT’(’1’)) then
 RESULT(J) := BIT’(’1’);
 end if;
 end loop;
 end if;
 end loop;

 return(RESULT);

VHDL Compiler Reference V3.4

For further assistance, email support_center@synopsys.com or call your local support center

 HOME CONTENTS INDEX

 end;
end LOCAL;

use WORK.LOCAL.all;

entity PLA_VHDL is
 port(IN_VECTOR: BIT_VECTOR(2 downto 0);
 OUT_VECTOR: out BIT_VECTOR(4 downto 0));
end;

architecture BEHAVIOR of PLA_VHDL is
 constant TABLE: PLA_TABLE := PLA_TABLE’(
 PLA_ROW’(”––– 10000”),
 PLA_ROW’(”–1– 01000”),
 PLA_ROW’(”0–0 00101”),
 PLA_ROW’(”–1– 00101”),
 PLA_ROW’(”1–1 00101”),
 PLA_ROW’(”–1– 00010”));

begin
 OUT_VECTOR <= PLA(IN_VECTOR, TABLE);
end BEHAVIOR;

