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nously set to 960. Create a MAX�PLUS II simulation to
verify the operation of the design.

9.9 Shift Register Counters

9.56 Write the VHDL code for a ring counter of generic width
and instantiate it as an 8-bit ring counter. List the se-
quence of states in a table, assuming the counter is ini-
tially cleared, and create a simulation to verify the cir-
cuit’s operation. Include a clear input (synchronous).

9.57 Construct the count sequence table of a 5-bit Johnson
counter, assuming the counter is initially cleared. What
changes must be made to the decoder part of the circuit in
Figure 9.84 (p. 446) if it is to decode the 5-bit Johnson
counter?

9.58 A control sequence has ten steps, each activated by a
logic HIGH. Use MAX�PLUS II to design a counter and
decoder in each of the following configurations to pro-
duce the required sequence: binary counter, ring counter,
and Johnson counter. You may use a Graphic Design File
or VHDL. Create a simulation for each counter and de-
coder.

9.59 Use the MAX�PLUS II Graphic Editor to design a 4-bit
ring counter that can be asynchronously initialized to
Q3Q2Q1Q0 � 1000 by using only the clear inputs of its
flip-flops. No presets allowed. Hint: use a circuit with a

“double twist” in the data path.

A N S W E R S  T O  S E C T I O N  R E V I E W
P R O B L E M S
Section 9.1

9.1 A mod-24 UP counter goes from 00000 to 10111 (0 to 23).
This requires 5 outputs. The counter is a truncated sequence
since its modulus is less than 25 � 32.

Section 9.2

9.2 1001, 0000

Section 9.3

9.3 JK flip-flops: J3K3 � X0, J2K2 � 1X, J1K1 � X1, J0K0 � X1
D flip-flops: D3 � 1, D2 � 1, D1 � 0, D0 � 0

Section 9.4

9.4 If (clock‘EVENT AND clock = ‘0’) THEN

count := count + 1;

END IF;

Section 9.5

9.5 The completed timing diagram is shown in Figure 9.93.

Section 9.6

9.6 Asynchronous clear: PROCESS (clock, clear); Synchronous
clear: PROCESS (clock)

Section 9.7

9.7 JK flip-flops can be used in the shift register of Figure 9.58.
The Q output of any stage connects to the J input of the next
stage and the �Q output of any stage connects to the K input of
the next. The serial_in input connects directly to the J input of
the first flip-flop. Serial_in is applied to K of the first flip-flop
through an inverter (NOT gate).

Section 9.8

9.8 A shift register output is defined as a port of mode BUFFER
because this mode allows a signal to be fed back into the PLD
matrix and reused as an input to another part of the circuit.

Section 9.9

Binary: 5 flip-flops, 24 5-inputs NANDs; Ring: 24 flip-flops, no
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FIGURE 9.93
Answer to Section Review Problem 9.5
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C H A P T E R 10

State Machine Design

O U T L I N E

10.1 State Machines

10.2 State Machines with
No Control Inputs

10.3 State Machines with
Control Inputs

10.4 Switch Debouncer
for a Normally Open
Pushbutton Switch

10.5 Unused States in
State Machines

10.6 Traffic Light
Controller

C H A P T E R  O B J E C T I V E S

Upon successful completion of this chapter you will be able to:

• Describe the components of a state machine.

• Distinguish between Moore and Mealy implementations of state machines.

• Draw the state diagram of a state machine from a verbal description.

• Use the “classical” (state table) method of state machine design to deter-
mine the Boolean equations of the state machine.

• Translate the Boolean equations of a state machine into a Graphic Design
File in Altera’s MAX�PLUS II software.

• Write VHDL code to implement state machines.

• Create simulations in MAX�PLUS II to verify the function of a state ma-
chine design.

• Determine whether the output of a state machine is vulnerable to asynchro-
nous changes of input.

• Design state machine applications, such as a switch debouncer, a single-
pulse generator, and a traffic light controller.

10.1 State Machines

State machine A synchronous sequential circuit, consisting of a sequential logic
section and a combinational logic section, whose outputs and internal flip-flops
progress through a predictable sequence of states in response to a clock and other
input signals.

Moore machine A state machine whose output is determined only by the sequen-
tial logic of the machine.

Mealy machine A state machine whose output is determined by both the sequen-
tial logic and the combinational logic of the machine.

State variables The variables held in the flip-flops of a state machine that deter-
mine its present state. The number of state variables in a machine is equivalent to
the number of flip-flops.

K E Y  T E R M S
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The synchronous counters and shift registers we examined in Chapter 9 are examples of a
larger class of circuits known as state machines. As described for synchronous counters in
Section 9.2, a state machine consists of a memory section that holds the present state of the
machine and a control section that determines the machine’s next state. These sections com-
municate via a series of command and status lines. Depending on the type of machine, the
outputs will either be functions of the present state only or of the present and next states.

Figure 10.1 shows the block diagram of a Moore machine. The outputs of a Moore
machine are determined solely by the present state of the machine’s memory section. The
output may be directly connected to the Q outputs of the internal flip-flops, or the Q out-
puts might pass through a decoder circuit. The output of a Moore machine is synchronous
to the system clock, since the output can only change when the machine’s internal state
variables change.

The block diagram of a Mealy machine is shown in Figure 10.2. The outputs of the
Mealy machine are derived from the combinational (control) section of the machine, as

FIGURE 10.1
Moore-Type State Machine

FIGURE 10.2
Mealy-Type State Machine
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well as the sequential (memory) part of the machine. Therefore, the outputs can change
asynchronously when the combinational circuit inputs change out of phase with the clock.
(When we say that the outputs change asynchronously, we generally do not mean a change
via a function such as asynchronous reset that directly affects the machine’s flip-flops.)

❘❙❚ SECTION 10.1 REVIEW PROBLEM

10.1 What is the main difference between a Moore-type state machine and a Mealy-type
state machine?

10.2 State Machines with No Control Inputs

Bubble A circle in a state diagram containing the state name and values of the
state variables.

A state machine can be designed using a classical technique, similar to that used to design
a synchronous counter. We can also use a VHDL design method. We will design several 
state machines, using both classical and VHDL techniques.

As an example of these techniques, we will design a state machine whose output de-
pends only on the clock input: a 3-bit counter with a Gray code count sequence. A 3-bit
Gray code, shown in Table 10.1, changes only one bit between adjacent codes and is there-
fore not a binary-weighted sequence.

K E Y  T E R M S

Table 10.1 3-bit Gray
Code Sequence

Q2Q1Q0

000
001
011
010
110
111
101
100

000

001

011

010110

111

101

100FIGURE 10.3
Gray Code on a Shaft Encoder

Gray code is often used in situations where it is important to minimize the effect of
single-bit errors. For example, suppose the angle of a motor shaft is measured by a detected
code on a Gray-coded shaft encoder, shown in Figure 10.3. The encoder indicates a 3-bit
number for each of eight angular positions by having three concentric circular segments for
each code. A dark band indicates a 1 and a transparent band indicates a 0, with the MSB as
the outermost band. The dark or transparent bands are detected by three sensors that detect
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light shining through a transparent band. (A real shaft encoder has more bits to indicate an
angle more precisely. For example, a shaft encoder that measures an angle of one degree
would require nine bits, since there are 360 degrees in a circle and 28 � 360 � 29.)

For most positions on the encoder, the error of a single bit results in a positional error of
only one eighth of the circle. This is not true with binary coding, where single bit errors can
give larger positional errors. For example if the positional decoder reads 100 instead of 000,
this is a difference of 4 in binary. The same codes differ by only one position in Gray code.

Classical Design Techniques

We can summarize the classical design technique for a state machine, as follows:

1. Define the problem.

2. Draw a state diagram.

3. Make a state table that lists all possible present states and inputs and the next state and
output state for each present state/input combination. List the present states and inputs
in binary order.

4. Use flip-flop excitation tables to determine at what states the flip-flop synchronous in-
puts must be to make the circuit go from each present state to its next state. The next
state variables are functions of the inputs and present state variables.

5. Write the output value for each present state/input combination. The output variables
are functions of the inputs and present state variables.

6. Simplify the Boolean expression for each output and synchronous input.

7. Use the Boolean expressions found in step 6 to draw the required logic circuit.

Let us follow this procedure to design a 3-bit Gray code counter. We will modify the
procedure to account for the fact that there are no inputs other than the clock and no out-
puts that must be designed apart from the counter itself.

1. Define the problem. Design a counter whose outputs progress in the sequence defined in
Table 10.1.

2. Draw a state diagram. The state diagram is shown in Figure 10.4. In addition to the val-
ues of state variables shown in each circle (or bubble), we also indicate a state name,
such as s0, s1, s2, and so on. This name is independent of the value of state variables.
We use numbered states (s0, s1, . . .) for convenience, but we could use any names we
wanted to.

000
S0

S1
001

S2
011

S3
010

S4
010

S5
111

S6
101

S7
100

FIGURE 10.4
State Diagram for a 3-bit Gray
Code Counter

3. Make a state table. The state table, based on D flip-flops, is shown in Table 10.2. Since
there are eight unique states in the state diagram, we require three state variables (23 �
8), and hence three flip-flops. Note that the present states are in binary-weighted order,
even though the count does not progress in this order. In such a case, it is essential to
have an accurate state diagram, from which we derive each next state. For example, if
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The K-maps yield three Boolean equations:

D2 � Q1Q�0 � Q2Q0

D1 � Q1Q�0 � Q�2Q0

D0 � Q�2 Q�1 � Q2Q1

6. Draw the logic circuit for the state machine. Figure 10.6 shows the circuit for a 3-bit
Gray code counter, drawn as a Graphic Design File in MAX�PLUS II. A simulation
for this circuit is shown in Figure 10.7, with the outputs shown as individual waveforms
and as a group with a binary value.

Table 10.2 State Table for a 3-bit Gray Code Counter

Synchronous
Present State Next State Inputs

Q2Q1Q0 Q2Q1Q0 D2D1D0

000 001 001
001 011 011
010 110 110
011 010 010

100 000 000
101 100 100
110 111 111
111 101 101

Q0 

D2

Q2 Q1

Q2 Q0

Q1 Q0
01

00 00

1 0

11

0 1

10

11

10

Q0 

D1

Q2 Q1

Q2 Q0

Q1 Q0

01

00 10

1 1

01

0 0

10

11

10

Q0 

D0

Q2 Q1

Q2 Q1

Q2 Q1

01

00 11

0 0

11

0 0

10

11

10

FIGURE 10.5
Karnaugh Maps for 3-bit Gray Code Counter

the present state is 010, the next state is not 011, as we would expect, but 110, which we
derive by examining the state diagram.

Why list the present states in binary order, rather than the same order as the output
sequence? By doing so, we can easily simplify the equations for the D inputs of the flip-
flops by using a series of Karnaugh maps. This is still possible, but harder to do, if we
list the present states in order of the output sequence.

4. Use flip-flop excitation tables to determine at what states the flip-flop synchronous in-
puts must be to make the circuit go from each present state to its next state. This is not
necessary if we use D flip-flops, since Q follows D. The D inputs are the same as the
next state outputs. For JK or T flip-flops, we would follow the same procedure as for the
design of synchronous counters outlined in Chapter 9.

5. Simplify the Boolean expression for each synchronous input. Figure 10.5 shows three
Karnaugh maps, one for each D input of the circuit.
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VHDL Design of State Machines

Enumerated type A user-defined type in VHDL in which all possible values of a
named identifier are listed in a type definition statement.

State machines can be defined in VHDL within a CASE statement. The VHDL code below
illustrates the principle, using the 3-bit Gray code counter as an example.

–– gray_ct1.vhd

–– 3-bit Gray code counter

–– (state machine with decoded outputs)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY gray_ct1 IS

PORT(

clk : IN STD_LOGIC;

q   : OUT STD_LOGIC_VECTOR(2 downto 0));

END gray_ct1;

ARCHITECTURE a OF gray_ct1 IS

TYPE STATE_TYPE IS (s0, s1, s2, s3, s4, s5, s6, s7);

SIGNAL state: STATE_TYPE;

BEGIN

PROCESS (clk)

BEGIN

IF clk’EVENT AND clk = ‘1’ THEN

CASE state IS

WHEN s0 =>

state <= s1;

WHEN s1 =>

state <= s2;

WHEN s2 =>

state <= s3;

WHEN s3 =>

state <= s4;

WHEN s4 =>

state <= s5;

K E Y  T E R M S

FIGURE 10.7
Simulation of a 3-bit Gray Code Counter (from Graphic Design File)

➥ gray_ct1.vhd

➥ gray_ct3.gof
gray_ct3.scf



464 C H A P T E R  1 0 • State Machine Design

WHEN s5 =>

state <= s6;

WHEN s6=>

state <= s7;

WHEN s7 =>

state <= s0;

END CASE;

END IF;

END PROCESS;

WITH state SELECT

q <= “000” WHEN s0,

“001” WHEN s1,

“011” WHEN s2,

“010” WHEN s3,

“110” WHEN s4,

“111” WHEN s5,

“101” WHEN s6,

“100” WHEN s7;

END a;

Recall that the format of a CASE statement is:

CASE __expression IS

WHEN__constant_value =>

__statement;

__statement;

WHEN__constant_value =>

__statement;

__statement;

WHEN OTHERS =>

__statement;

__statement;

END CASE;

The keyword expression in the CASE statement refers to a signal called state that we
define to represent the state variables within the machine. For each possible value of state,
we make an assignment indicating the next state of the machine. For example, the clause
(WHEN s0 => (state <= s1)); indicates a transition from state s0 to state s1. The ac-
tual output values of the counter are assigned in a selected signal assignment statement af-
ter the PROCESS statement.

Notice that the signal state can have one of eight different values, from s0 to s7. Un-
til now, we have seen signals with values such as ‘1’ (BIT or STD_LOGIC types),
“011” (BIT_VECTOR or STD_LOGIC_VECTOR types), or 7 (INTEGER types). The
signal state is of type STATE_TYPE, which is a user-defined enumerated type. An enu-
merated type is simply a list of all values a signal, variable, or port of that type is allowed
to have.

For example, we could define a type called DIRECTION with four values, with the
statement:

TYPE DIRECTION IS (up, down, left, right);

We could then define a signal called position of type DIRECTION:

SIGNAL position: DIRECTION:

An IF statement or other construct could then assign one of the four defined values of
type DIRECTION to the signal called position:



10.3 • State Machines with Control Inputs 465

IF (x=‘0’ and y=‘0’) THEN

position <= down;

ELSIF (x=‘0’ and y=‘1’) THEN

position <= left;

ELSIF (x=‘1’ and y=‘0’) THEN

position <= up;

ELSE

position <= right;

END IF;

Thus the named identifier position of type DIRECTION can take on only the four val-
ues specified in the enumerated type definition.

An alternative way to encode the 3-bit counter is to include output assignments within
the body of the CASE statement. Each case then has more than one statement, as indicated
in the following VHDL code.

-- gray_ct2.vhd

-- 3-bit Gray code counter

-- (outputs defined within states)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY gray_ct2 IS

PORT(

clk : IN   STD_LOGIC;

q   : OUT  STD_LOGIC_VECTOR(2 downto 0));

END gray_ct2;

ARCHITECTURE a OF gray_ct2 IS

TYPE STATE_TYPE IS (s0, s1, s2, s3, s4, s5, s6, s7);

SIGNAL state: STATE_TYPE;

BEGIN

PROCESS (clk)

BEGIN

IF clk’EVENT AND clk = ‘1’ THEN

CASE state IS

WHEN s0 =>

state <= s1;

q <= “001”;

WHEN s1 =>

state <= s2;

q <= “011”;

WHEN s2 =>

state <= s3;

q <= “010”;

WHEN s3 =>

state <= s4;

q <= “110”;

WHEN s4 =>

state <= s5;

q <= “111”;

WHEN s5 =>

state <= s6;

q <= “101”;

WHEN s6 =>

state <= s7;

q <= “100”;

WHEN s7 =>

➥ gray_ct2.vhd
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state <= s0;

q <= “000”;

END CASE;

END IF;

END PROCESS;

END a;

The above VHDL code is identical to that of the previous example, except for the way
the outputs are assigned.

❘❙❚ SECTION 10.2 REVIEW PROBLEM

10.2 Write the Boolean equations for the J and K inputs of the flip-flops in a 3-bit Gray
code counter based on JK flip-flops.

10.3 State Machines with Control Inputs

Control input A state machine input that directs the machine from state to state.

Conditional transition A transition between states of a state machine that occurs
only under specific conditions of one or more control inputs.

Unconditional transition A transition between states of a state machine that oc-
curs regardless of the status of any control inputs.

As an extension of the techniques used in the previous section, we will examine the design
of state machines that use control inputs, as well as the clock, to direct their operation.
Outputs of these state machines will not necessarily be the same as the states of the ma-
chine’s flip-flops. As a result, this type of state machine requires a more detailed state dia-
gram notation, such as that shown in Figure 10.8.

The state machine represented by the diagram in Figure 10.8 has two states, and thus

K E Y  T E R M S

0
start

in1/out1, out2

1/00

X /01

0/10

continue
1

State name

State variable

Legend

Input value

Output value

Conditional
transition

Unconditional
transition

FIGURE 10.8
State Diagram Notation

requires only one state variable. Each state is represented by a bubble (circle) containing
the state name and the value of the state variable. For example, the bubble containing the

notation 
start

0
indicates that the state called start corresponds to a state variable with a 

value of 0. Each state must have a unique value for the state variable(s).
Transitions between states are marked with a combination of input and output values
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corresponding to the transition. The inputs and outputs are labeled in1, in2, . . . ,
inx/out1, out2, . . . ,outx. The inputs and outputs are sometimes simply indicated by the
value of each variable for each transition. In this case, a legend indicates which variable
corresponds to which position in the label.

For example, the legend in the state diagram of Figure 10.8 indicates that the inputs
and outputs are labeled in the order in1/out1, out2. Thus if the machine is in the start state
and the input in1 goes to 0, there is a transition to the state continue. During this transition,
out1 goes to 1 and out2 goes to 0. This is indicated by the notation 0/10 beside the transi-
tional arrow. This is called a conditional transition because the transition depends on the
state of in1. The other possibility from the start state is a no-change transition, with both
outputs at 0, if in1 � 1. This is shown as 1/00.

If the machine is in the state named continue, the notation X/01 indicates that the ma-
chine makes a transition back to the start state, regardless of the value of in1, and that
out1 � 0 and out2 � 1 upon this transition. Since the transition always happens, it is
called an unconditional transition.

What does this state machine do? We can determine its function by analyzing the state
diagram, as follows.

1. There are two states, called start and continue. The machine begins in the start state
and waits for a LOW input on in1. As long as in1 is HIGH, the machine waits and the
outputs out1 and out2 are both LOW.

2. When in1 goes LOW, the machine makes a transition to continue in one clock pulse.
Output out1 goes HIGH.

3. On the next clock pulse, the machine goes back to start. The output out2 goes HIGH
and out1 goes back LOW.

4. If in1 is HIGH, the machine waits for a new LOW on in1. Both outputs are LOW again.
If in1 is LOW, the cycle repeats.

In summary, the machine waits for a LOW input on in1, then generates a pulse of one
clock cycle duration on out1, then on out2. A timing diagram describing this operation is
shown in Figure 10.9.

CLK

in1

out1

out2

start start

continue

FIGURE 10.9
Ideal Operation of State Machine in Figure 10.8

Classical Design of State Machines with Control Inputs

We can use the classical design technique of the previous section to design a circuit that
implements the state diagram of Figure 10.8.

1. Define the problem. Implement a digital circuit that generates a pulse on each of two
outputs, as described above. For this implementation, let us use JK flip-flops for the
state logic. If we so chose, we could also use D or T flip-flops.

2. Draw a state diagram. The state diagram is shown in Figure 10.8.
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3. Make a state table. The state table is shown in Table 10.3. The combination of present
state and input are listed in binary order, thus making Table 10.3 into a truth table for
the next state and output functions. Since there are two states, we require one state vari-
able, Q. The next state of Q, a function of the present state and the input in1, is deter-
mined by examining the state diagram. (Thus, if you are in state 0, the next state is 1 if
in1 � 0 and 0 if in1 � 1. If you are in state 1, the next state is always 0.)

4. Use flip-flop excitation tables to determine at what states the flip-flop synchronous in-
puts must be to make the circuit go from each present state to its next state. Table 10.4
shows the flip-flop excitation table for a JK flip-flop. The synchronous inputs are de-
rived from the present-to-next state transitions in Table 10.4 and entered into Table
10.3. (Refer to the synchronous counter design process in Chapter 9 for more detail
about using flip-flop excitation tables.)

5. Write the output values for each present state/input combination. These can be deter-
mined from the state diagram and are entered in the last two columns of Table 10.3.

6. Simplify the Boolean expression for each output and synchronous input. The following
equations represent the next state and output logic of the state machine:

J � Q� � �in1 � Q � �in1 � �in1

K � 1

out1 � Q� � �in1 

out2 � Q � �in1 � Q � in1 � Q

7. Use the Boolean expressions found in step 6 to draw the required logic circuit.

Figure 10.10 shows the circuit of the state machine drawn as a MAX�PLUS II
Graphic Design File. Since out1 is a function of the control section and the memory sec-
tion of the machine, we can categorize the circuit as a Mealy machine. (All counter circuits
that we have previously examined have been Moore machines since their outputs are de-
rived solely from the flip-flop outputs of the circuit.)

Since the circuit is a Mealy machine, it is vulnerable to asynchronous changes of out-
put due to asynchronous input changes. This is shown in the simulation waveforms of Fig-
ure 10.11.

JKFF
NOT

CLRN

PRN
QJ

K

OUTPUT
out1

OUTPUT
out2in1 INPUT

VCC

clk INPUT

BAND2

FIGURE 10.10
Implementation of State Machine of Figure 10.8

Table 10.4 JK Flip-Flop
Excitation Table

Transition JK

0→0 0X
0→1 1X
1→0 X1
1→1 X0

Table 10.3 State Table for State Diagram in Figure 10.8

Present Next Sync.
State Input State Inputs Outputs

Q in1 Q JK out1 out2

0 0 1 1X 1 0
0 1 0 0X 0 0
1 0 0 X1 0 1
1 1 0 X1 0 1

➥ state_x2a.gdf
state_x2a.scf



The state variable is stored as the state of the JK flip-flop. This state is clocked through
a D flip-flop to generate out2 and combined with in1 to generate out1 via another flip-flop.
The simulation for this circuit, shown in Figure 10.13, indicates that the two outputs are
synchronous with the clock, but delayed by one clock cycle after the state change.

VHDL Implementation of State Machines with Control Inputs

The VHDL code for a state machine with one or more control inputs is similar to that for a
machine with no control inputs. The machine states are still defined using a CASE state-
ment, but a case representing a conditional transition will contain an IF statement.

10.3 • State Machines with Control Inputs 469

Ideally, out1 should not change until the first positive clock edge after in1 goes LOW.
However, since out1 is derived from a combinational output, it will change as soon as in1
goes LOW, after allowing for a short propagation delay. Also, since out2 is derived directly
from a flip-flop and out1 is derived from the same flip-flop via a gate, out1 stays HIGH for
a short time after out2 goes HIGH. (The extra time represents the propagation delay of the
gate.)

If output synchronization is a problem (and it may not be), it can be fixed by adding a
synchronizing D flip-flop to each output, as shown in Figure 10.12.

FIGURE 10.11
Simulation of State Machine Circuit of Figure 10.10
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FIGURE 10.12
State Machine with Synchronous Outputs

➥ state_x3a.gdf
state_x3a.scf
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The VHDL code for the state machine implemented above is as follows.

-- state_x1.vhd

-- state machine example 1

-- Two states, one input, two outputs

-- Generates a pulse on one output, then the next

-- after receiving a LOW on the input

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY state_x1 IS

PORT(

clk, in1   : IN   STD_LOGIC;

out1, out2 : OUT  STD_LOGIC);

END state_x1;

ARCHITECTURE a OF state_x1 IS

TYPE PULSER IS (start, continue);

SIGNAL sequence: PULSER;

BEGIN

PROCESS (clk)

BEGIN

IF clk‘EVENT AND clk = ‘1’ THEN

CASE sequence IS

WHEN start =>

IF in1 = ‘1’ THEN

sequence <= start; -- no change if in1 � 1

out1 <= ‘0’;

out2 <= ‘0’;

ELSE

sequence <= continue; -- proceed if in1 � 0

out1 <= ‘1’;          -- pulse on out1

out2 <= ‘0’;

END IF;

WHEN continue =>

sequence <= start;

out1 <= ‘0’;

out2 <= ‘1’;             -- pulse on out2

END CASE;

END IF;

END PROCESS;

END a;

FIGURE 10.13
Simulation of the State Machine of Figure 10.12

➥ state_x1.vhd
state_x1.scf
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The transition from start is conditional, so the case for start contains an IF statement
that defines the possible state transitions and their associated output states. The transition
from continue is unconditional, so no IF statement is needed in the corresponding case.

Figure 10.14 shows the simulation for the VHDL design entity, state_x1.vhd. The val-
ues of the state variable, sequence, are also shown in the simulation. This gives us a ready
indication of the machine’s state (start or continue).

FIGURE 10.14
Simulation of the State Machine in VHDL Entity state_x1

FIGURE 10.15
Simulation of VHDL State Machine Showing a Repeated Output Cycle

Application

The design of the state machine is such that if the input in1 is held LOW beyond the
end of one pulse cycle, the cycle will repeat, as shown in the simulation of Figure 10.15.

❘❙❚ EXAMPLE 10.1 A state machine called a single-pulse generator operates as follows:

1. The circuit has two states: seek and find, an input called sync and an output called
pulse.

2. The state machine resets to the state seek. If sync � 1, the machine remains in seek and
the output, pulse, remains LOW.

3. When sync � 0, the machine makes a transition to find. In this transition, pulse goes
HIGH.

4. When the machine is in state find and sync � 0, the machine remains in find and pulse
goes LOW.

5. When the machine is in find and sync � 1, the machine goes back to seek and pulse re-
mains LOW.

Use classical state machine design techniques to design the circuit for the single-pulse
generator, using D flip-flops for the state logic. Use MAX�PLUS II to draw the state
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The next-state and output equations are:

D � Q� � �sync � Q � �sync � �sync

pulse � Q� � �sync

Figure 10.17 shows the state machine circuit derived from the above Boolean equa-
tions. The simulation for this circuit is shown in Figure 10.18. The simulation shows that
the circuit generates one pulse when the input sync goes LOW, regardless of the length of
time that sync is LOW. The circuit could be used in conjunction with a debounced push-
button to produce exactly one pulse, regardless of how long the pushbutton was held down.
Figure 10.19 shows such a circuit.

DFF
NOT

CLRN

PRN
QD

OUTPUT
PULSE

NOT

SYNC INPUT

CLK INPUT

AND2

FIGURE 10.17
Example 10.1
Single-pulse Generator

Table 10.5 State Table for Single-Pulse Generator

Present State Input Next State Sync. Input Output

Q sync Q D pulse

0 0 1 1 1
0 1 0 0 0
1 0 1 1 0
1 1 0 0 0

1/0

1/0

0/1

0/0

sync/pulse

0
seek

find
1

FIGURE 10.16
Example 10.1
State Diagram for a Single-pulse
Generator

machine circuit. Create a simulation to verify the design operation. Briefly describe what
this state machine does.

Solution Figure 10.16 shows the state diagram derived from the description of the state
machine. The state table is shown in Table 10.5. Since Q follows D, the D input is the same
as the next state of Q.

➥ pulse1.gdf
pulse1.scf



10.3 • State Machines with Control Inputs 473

❘❙❚ EXAMPLE 10.2 The state machine of Example 10.1 is vulnerable to asynchronous input changes. How do
we know this from the circuit schematic and from the simulation waveform? Modify the
circuit to eliminate the asynchronous behavior and show the effect of the change on a sim-
ulation of the design. How does this change improve the design?

Solution The output, pulse, in the state machine of Figure 10.17 is derived from the
state flip-flop and the combinational logic of the circuit. The output can be affected by a
change that is purely combinational, thus making the output asynchronous. This is demon-
strated on the first pulse of the simulation in Figure 10.18, where pulse momentarily goes
HIGH between clock edges. Since no clock edge was present when either the input, sync,
changed or when pulse changed, the output pulse must be due entirely to changes in the
combinational part of the circuit.

The circuit output can be synchronized to the clock by adding an output flip-flop, as in
Figure 10.20. A simulation of this circuit is shown in Figure 10.21. With the synchronized
output, the output pulse is always the same width: one clock period. This gives a more pre-
dictable operation of the circuit.

FIGURE 10.18
Example 10.1
Simulation of a Single-pulse Generator (from GDF)

PULSE

SYNC

CLK

Single-pulse
generator

Vcc

Debouncer
N.O.

FIGURE 10.19
Example 10.1
Single-pulse Generator Used with a Debounced Pushbutton
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FIGURE 10.20
Example 10.2
Single-pulse Generator with Synchronous Output



474 C H A P T E R  1 0 • State Machine Design

❘❙❚ EXAMPLE 10.3 Write the VHDL code for a design entity that implements the single-pulse generator, as de-
scribed in Example 10.1. Create a simulation that verifies the operation of the design.

Solution The required VHDL code is given here in the design entity sngl_pls.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY sngl_pls IS

PORT(

clk, sync : IN STD_LOGIC;

pulse     : OUT STD_LOGIC);

END sngl_pls;

ARCHITECTURE pulser OF sngl_pls IS

TYPE PULSE_STATE IS (seek, find);

SIGNAL status: PULSE_STATE;

BEGIN

PROCESS (clk, sync)

BEGIN

IF (clk‘EVENT and clk = ‘1’) THEN

CASE status IS

WHEN seek =>   IF (sync = ‘1’) THEN

status <= seek;

pulse <= ‘0’;

ELSE

status <= find;

pulse <= ‘1’;

END IF;

WHEN find =>    IF (sync = ‘1’) THEN

status <= seek;

pulse <= ‘0’;

ELSE

status <= find;

pulse <= ‘0’;

END IF;

END CASE;

END IF;

END PROCESS;

END pulser;

FIGURE 10.21
Example 10.2
Simulation of a Single-pulse Generator with Synchronous Output (from GDF)

➥ sngl_pls.vhd
sngl_pls.scf

➥ pulse1a.gdf
pulse1a.scf
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The simulation of the VHDL design entity sngl_pls is shown in Figure 10.22 ❘❙❚

❘❙❚ SECTION 10.3 REVIEW PROBLEM

10.3 Briefly explain why the single-pulse circuit in Figure 10.20 has a flip-flop on its output.

10.4 Switch Debouncer for a Normally 
Open Pushbutton Switch

Form A contact A normally open contact on a switch or relay.

Form B contact A normally closed contact on a switch or relay.

Form C contact A pair of contacts, one normally open and one normally closed,
that operate with a single action of a switch or relay.

A useful interface function is implemented by a digital circuit that removes the mechanical
bounce from a pushbutton switch. The easiest way to debounce a pushbutton switch is with
a NAND latch, as shown in Figure 10.23.

K E Y  T E R M S

FIGURE 10.22
Example 10.3
Simulation of a Single-pulse Generator (VHDL)

Vcc

Vcc

Q
R

S
Q

FIGURE 10.23
NAND Latch as a Switch Debouncer

The latch eliminates switch bounce by setting or resetting on the first bounce of a
switch contact and ignoring further bounces. The limitation of this circuit is that the input
switch must have Form C contacts. That is, the switch has normally open, normally
closed, and common contacts. This is so that the switch resets the latch when pressed (i.e.,

www.electronictech.com
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when the normally open contact closes) and sets the latch when released (normally closed
contact recloses). Each switch position activates an opposite latch function.

If the only available switch has a single set of contacts, such as the normally open
(Form A) pushbuttons on the Altera UP-1 Education Board, a different debouncer circuit
must be used. We will look at two solutions using VHDL: one based on an existing device
(the Motorola MC14490 Contact Bounce Eliminator) and another that implements a state
machine solution to the contact bounce problem.

Switch Debouncer Based on a 4-bit Shift Register

The circuit in Figure 10.24 is based on the same principle as the Motorola MC14490 Con-
tact Bounce Eliminator, adapted for use in an Altera CPLD, such as the EPM7128S or the
EPF10K20 on the Altera UP-1 Education Board.

FIGURE 10.25
Simulation of the Shift Register-Based Debouncer

Clock divider
CTR DIV 216

Q15CLOCK

D0 D1 D2

CLOCK

Shift in Shift out

Load

System clock
(25.175 MHZ)

Vcc

External
pushbutton

PBIN

SGR4

D3

PBOUT

FIGURE 10.24
Switch Debouncer Based on a 4-bit Shift Register

The heart of the debouncer circuit in Figure 10.24 is a 2-bit comparator (an Exclusive
NOR gate) and a 4-bit serial shift register, with active-HIGH synchronous LOAD. The
XNOR gate compares the shift register serial input and output. When the shift register in-
put and output are different, the input data are serially shifted through the register. When
input and output of the shift register are the same, the binary value at the serial output is
parallel-loaded back into all bits of the shift register.

Figure 10.25 shows the timing of the debouncer circuit with switch bounces on both
make and break phases of the switch contact. The line labeled 4-bit delay refers to the shift
register flip-flop outputs. Pushbutton input is pb_in, debounced output is pb_out and clk
is the UP-1 system clock, divided by 216. (Time values in Figure 10.25 are not to scale and
should be disregarded.)
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Assume the shift register is initially filled with 0s. The pushbutton rest state is HIGH.
As shown in Figure 10.24, the pushbutton input value is inverted and applied to the shift
register input. Therefore, before the switch is pressed, both input and output of the shift
register are LOW. Since they are the same, the XNOR output is HIGH, which keeps the
shift register in LOAD mode and the LOW at pb_out is reloaded to the register on every
positive clock edge.

When the switch is pressed, it will bounce, as shown above the second, third, and
fourth clock pulses on Figure 10.25. Just before the second clock pulse, pb_in is LOW.
This makes the shift register input and output different, so a 1 is shifted in. (Recall that
pb_in is at the opposite logic level to the shift register input.) On the next clock pulse,
pb_in has bounced HIGH again. The shift register input and output are now the same, so
the output value, 0, is loaded in parallel to all flip-flops of the shift register. On the fifth
pulse, pb_in is stable at logic LOW. Since the shift register input is now HIGH and the out-
put is LOW, the HIGH is shifted through the register. We see this by 4-bit delay increasing
in value: 0, 1, 3, 7, F, which in binary is equivalent to 0000, 0001, 0011, 0111, 1111. At this
point, the input and output are now the same and the output value, 1, is parallel-loaded into
the register on each clock pulse.

A similar process occurs when the waveform goes back to the HIGH state. When the
input goes HIGH, a LOW is shifted into the shift register. If the input bounces back LOW,
the shift register is parallel-loaded with HIGHs and the process starts over. When pb_in is
stable at a HIGH level, a LOW is shifted through the register, resulting in the hexadecimal
sequence F, E, C, 8, 0, which is equivalent to the binary values 1111, 1110, 1100, 1000,
0000.

To produce an output change, the shift register input and output must remain different
for at least four clock pulses. This implies that the input is stable for that period of time. If
the input and output are the same, this could mean one of two things. Either the input is sta-
ble and the shift register flip-flops should be kept at a constant state or the input has
bounced back to its previous level and the shift register should be reinitialized. In either
case, the output value should be parallel loaded back into the shift register. Serial shifting
should only occur if there has been an input change.

The debouncer in Figure 10.24 is effective for removing bounce that lasts for no more
than 4 clock periods. Since switch bounce is typically about 10 ms in duration, the clock
should have a period of about 2.5 ms. At 25.175 MHz (a clock period of about 40 ns), the
Altera UP-1 system clock is much too fast.

If we divide the oscillator frequency by 65536 (� 216) using a 16-bit counter, we
obtain a clock waveform for the debouncer with a period of 2.6 ms. Four clock periods
(10.2 ms) are sufficient to take care of switch bounce.

We can use VHDL to synthesize the switch debouncer by instantiating a counter and
shift register from the Altera Library of Parameterized Modules and connecting them to-
gether with internal signals. The VHDL code is as follows.

-- debounce.vhd

-- Switch Debouncer for a Form A contact, based on a 4-bit shift

-- register.  Function is similar to a Motorola MC14490 Contact

-- Bounce Eliminator.

-- Use modules from Library of Parameterized Modules (LPM):

-- LPM_SHIFTREG  (Shift Register)

-- LPM_COUNTER   (16-bit counter)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

➥ debounce.vhd
debounce.scf
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ENTITY debounce IS

PORT(

clk : IN STD_LOGIC;

pb_in : IN STD_LOGIC;

pb_out : OUT STD_LOGIC);

END debounce;

ARCHITECTURE debouncer OF debounce IS

-- Internal signals required to interconnect counter and shift

register

SIGNAL srg_ser_out, srg_ser_in, srg_clk, srg_load : STD_LOGIC;

SIGNAL srg_data   : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL ctr_q      : STD_LOGIC_VECTOR (15 DOWNTO 0);

BEGIN

-- Instantiate 16-bit counter

clock_divider: lpm_counter

GENERIC MAP (LPM_WIDTH    => 16)

PORT MAP (clock      => clk,

q          => ctr_q(15 DOWNTO 0));

-- Instantiate 4-bit shift register

four_bit_delay: lpm_shiftreg

GENERIC MAP (LPM_WIDTH     => 4)

PORT MAP (shiftin      => srg_ser_in,

clock       => srg_clk,

load        => srg_load,

data        => srg_data(3 downto 0),

shiftout     => srg_ser_out);

-- Shift register is clocked by counter output

-- (divides system clock by 2ˆ16)

srg_clk   <= ctr_q(15);

-- Undebounced pushbutton input to shift register

srg_ser_in <=  not pb_in;

-- Shift register is parallel-loaded with output data if

-- shift register input and output are the same.

-- If input and output are different,

-- data are serial-shifted.

srg_data(3)   <= srg_ser_out;

srg_data(2)   <= srg_ser_out;

srg_data(1)   <= srg_ser_out;

srg_data(0)   <= srg_ser_out;

pb_out        <= srg_ser_out;

srg_load      <= not((not pb_in) xor srg_ser_out);

END debouncer;

Figure 10.26 shows a fairly easy way to test the switch debouncer. The debouncer
output is used to clock an 8-bit counter whose outputs are decoded by two seven-segment
decoders. (The decoders are VHDL files developed in a similar way to the seven-segment
decoders in Chapter 5.)

Pin numbers are given for the EPM7128S CPLD on the Altera UP-1 circuit board.
Since the clock and seven segment displays are hardwired on the Altera board, the only ex-
ternal connections required for the circuit are wires for the two pushbutton inputs, reset
and pb_in.
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If the debouncer is working properly, the seven-segment display should advance by
one each time pb_in is pressed. If the debouncer is not working, the display will change by
an unpredictable number with each switch press.

The component source files for the debouncer and test circuit components are supplied
on the CD accompanying this book in the folder drive:\Student Files\Chapter 10\. To use
these files, create a symbol for each one (File menu; Project; Set Project to Current File;
then File menu; Create Default Symbol) and draw the Graphic Design File of Figure 10.26.

Alternatively, you can instantiate each file as a component in a VHDL design entity
(all components are designed in VHDL) and connect them together with internal signals.

Behaviorally Designed Switch Debouncer

We can also design a switch debouncer by using a behavioral state machine description in
VHDL. In order to do so, we need to define the operation of the circuit with a state dia-
gram, as in Figure 10.27.

00/0
11/1

00/0
11/1

00/0
11/1

00/1
11/0

01/1
10/0

01/1
10/0

01/1
10/0

01/1
10/0

pb-in, pb-out/pb-out 

00
s0

03
s3

02
s2

01
s1

FIGURE 10.27
State Diagram for a Behaviorally
Designed Switch Debouncer

➥ 2digit.gdf
count_8.vhd
sev_segv.vhd

Transitions between states are determined by comparing pb_in and pb_out. If they
are the same (00 or 11), the machine advances to the next state; if they are different (01 or
10), the machine reverts to the initial state, s0. At any point in the state diagram (including
state s3, the last state), the machine will reset if pb_in and pb_out are different, indicating
a bounce on the input.

If pb_in and pb_out are the same for four clock pulses, the input is deemed to be sta-
ble. Only at this point will the output change to its opposite state.

In the shift register–based debouncer, the circuit advanced to the next state if the
shift register input and output were different and reset if they were the same. This
might appear to be opposite to our behavioral description, but it is not if you look
carefully. The shift register debouncer circuit inverts pb_in before applying the sig-
nal to the serial input of the shift register. Therefore, viewed from the circuit input
and output terminals, rather than at the shift register input and output, the descrip-
tion is the same in both cases.

N O T E
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The VHDL code corresponding to the behavioral description of the switch debouncer
is given next. The only output change is specified on the transition from state s3 to s0 when
pb_in � pb_out. Since no change is allowed at any other time, no other output state needs
to be specified.

-- dbc_behv.vhd

-- Behavioral definition of a switch debouncer

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY dbc_behv IS

PORT(

clk, pb_in : IN STD_LOGIC;

pb_out     : BUFFER STD_LOGIC);

END dbc_behv;

ARCHITECTURE debounce of dbc_behv IS

TYPE sequence IS (s0, s1, s2, s3);

SIGNAL state: sequence;

BEGIN

PROCESS (clk, pb_in)

BEGIN

IF (clk‘EVENT and clk=‘1’) THEN

CASE state IS

WHEN s0=> IF (pb_in = pb_out) THEN

state <= s1;

ELSE

state <= s0;

END IF;

WHEN s1=> IF (pb_in = pb_out) THEN

state <= s2;

ELSE

state <= s0;

END IF;

WHEN S2=> IF (pb_in = pb_out) THEN

state <= s3;

ELSE

state <= s0;

END IF;

WHEN s3=> IF (pb_in = pb_out) THEN

state <= s0;

pb_out <= not pb_out;

ELSE

state <= s0;

END IF;

WHEN others => state <= s0;

END CASE;

END IF;

END PROCESS;

END debounce;

Figure 10.28 shows a simulation of the behaviorally-designed switch debouncer. State
s1 through s3 are of too short a duration to show properly on the simulation, so further de-
tails of the simulation are shown in Figures 10.29 and 10.30.

➥ dbc_behv.vhd
dbc_behv.scf



Note that the behaviorally designed switch debouncer does not have a built-in clock
divider. If we were to use the circuit on the Altera UP-1 board, we would need to include a
divide-by-216 counter to the circuit, as shown in Figure 10.31.

❘❙❚ SECTION 10.4 REVIEW PROBLEM

10.4 What is the fastest acceptable clock rate for the shift register portion of the debouncer
in Figure 10.24 if the pushbutton switch bounces for 15ms?

FIGURE 10.30
Simulation Detail (Behaviorally Designed Switch Debouncer)
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FIGURE 10.29
Simulation Detail (Behaviorally Designed Switch Debouncer)

FIGURE 10.28
Simulation of a Behaviorally Designed Switch Debouncer
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10.5 Unused States in State Machines
In our study of counter circuits in Chapter 9, we found that when a counter modulus is not
equal to a power of two there were unused states in the counter’s sequence. For example, a
mod-10 counter has six unused states, as the counter requires four bits to express ten states
and the maximum number of 4-bit states is sixteen. The unused states (1010, 1011, 1100,
1101, 1110, and 1111) have to be accounted for in the design of a mod-10 counter.

The same is true of state machines whose number of states does not equal a power of
two. For instance, a machine with five states requires three state variables. There are up to
eight states available in a machine with three state variables, leaving three unused states.
Figure 10.32 shows the state diagram of such a machine.

Unused states can be dealt with in two ways: they can be treated as don’t care states,
or they can be assigned specific destinations in the state diagram. In the latter case, the
safest destination is the first state, in this case the state called start.

❘❙❚ EXAMPLE 10.4 Redraw the state diagram of Figure 10.32 to include the unused states of the machine’s
state variables. Set the unused states to have a destination state of start. Briefly describe
the intended operation of the state machine.

Solution Figure 10.33 shows the revised state diagram.

The machine begins in state start and waits for a HIGH on in1. The machine then
makes a transition to wait1 and stays there until in1 goes LOW again. The machine goes to
wait2 and stays there until in1 goes HIGH and then makes an unconditional transition to
pulse1 on the next clock pulse. Until this point, there is no change in either output.

The machine makes an unconditional transition to pulse2 and makes out1 go HIGH.
The next transition, also unconditional, is to start, when out1 goes LOW and out2 goes
HIGH. If in1 is LOW, the machine stays in start. Otherwise, the cycle continues as above.
In either case, out2 goes LOW again.

in1/out1, out2

X /01

X /10

1/00

0/00

1/00

0/00

1/00

0/00

wait1
001

pulse2
100

wait2
010

pulse1
011

000
start

FIGURE 10.32
State Diagram for a Two-pulse Generator
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Thus the machine waits for a HIGH-LOW-HIGH input sequence and generates a pulse
sequence on two outputs.

❘❙❚ EXAMPLE 10.5 Use classical state machine design techniques to implement the state machine described in
the modified state diagram of Figure 10.33. Draw the state machine as a Graphic Design
File in Max�PLUS II and create a simulation to verify its function.

Solution Table 10.6 shows the state table of the state machine represented by Figure
10.33.

Table 10.6 State Table for State Machine of
Figure 10.33

Present Next
State Input State Outputs

Q2Q1Q0 in1 Q2Q1Q0 out1 out2

000 0 000 0 0
000 1 001 0 0
001 0 010 0 0
001 1 001 0 0

010 0 010 0 0
010 1 011 0 0
011 0 100 1 0
011 1 100 1 0

100 0 000 0 1
100 1 000 0 1
101 0 000 0 0
101 1 000 0 0

110 0 000 0 0
110 1 000 0 0
111 0 000 0 0
111 1 000 0 0

in1/out1, out2

X /00

X /01

X /10

1/00

0/00

1/00

0/00

1/00

0/00

X /00

X /00110
unused2

111
unused3

101
unused1

wait1
001

pulse2
100

wait2
010

pulse1
011

000
start

FIGURE 10.33
Example 10.4
State Diagram for Two-pulse
Generator Showing Unused
States
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Figure 10.34 shows the Karnaugh maps used to simplify the next-state equations for
the state variable flip-flops. The output equations can be simplified by inspection.

The next-state and output equations for the state machine are:

D2 � Q�2Q1Q0

D1 � Q�2Q1Q�0 � Q�2Q�1Q0�in1

D0 � Q�2Q�0in1 � Q�2Q�1in1

out1 � Q�2Q1Q0

out2 � Q2Q�1Q�0

Figure 10.35 shows the Graphic Design File schematic for the state machine. Figure
10.36 shows the MAX�PLUS II simulation waveforms.

We can monitor the state variables in the MAX�PLUS II simulation file by adding a
group of waveforms for the buried nodes q2, q1, and q0. These are shown on the simula-
tion as q[2..0].Q, meaning the Q outputs of the flip-flops named q2, q1, q0.

To add the buried nodes, select Enter Node from SNF from the Node menu in the
simulator window. In the dialog box shown in Figure 10.37, check the box that says All,
and click on List. Select the nodes q2.Q, q1.Q, and q0.Q from the Available Nodes and
Groups and transfer them to the Selected Nodes and Groups. ClickOK. Select the three
new waveforms and from the Node menu, select Group. Click OK in the resulting dialog
box.

Q0 in1

D2

Q2 Q1

01

00

10

0000

0 0 1 1

0000

0 0 0 0

110100

11

10

Q0 in1

D1

Q2 Q1

01

00

10

1000

1 1 0 0

0000

0 0 0 0

110100

11

10

Q0 in1

D0

Q2 Q1

01

00

10

0110

0 1 0 0

0000

0 0 0 0

110100

11

10

FIGURE 10.34
Example 10.5
K-Maps for Two-pulse Generator
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❘❙❚ EXAMPLE 10.6 Write the VHDL code required to implement the two-pulse generator described in Exam-
ples 10.4 and 10.5. Create a MAX�PLUS II simulation to verify the operation of the
design. Based on your examination of the simulations for the VHDL design and the GDF
design of the previous example, how do the two designs differ in their operation? What is
the reason for the difference?

Solution The VHDL code for the state machine in design entity two_pulse.vhd fol-
lows. The unused states are accounted for in the others clause.

-- two_pulse.vhd

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY two_pulse IS

PORT(

clk, in1 : IN    STD_LOGIC;

output   : OUT   STD_LOGIC_VECTOR (1 to 2));

END two_pulse;

ARCHITECTURE a OF two_pulse IS

TYPE SEQUENCE IS (start, wait1, wait2, pulse1, pulse2);

SIGNAL pulse_state : SEQUENCE;

BEGIN

PROCESS(clk)

BEGIN

IF (clk‘EVENT and clk = ‘1’) THEN

CASE pulse_state IS

FIGURE 10.37
Adding Buried Nodes to a
Simulation

FIGURE 10.36
Example 10.5
Simulation of a Two-pulse
Generator (GDF)
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WHEN start =>

IF in1 = ‘0’ THEN

pulse_state    <= start;

output     <= “00”;

ELSIF in1 = ‘1’ THEN

pulse_state <= wait1;

output     <= “00”;

END IF;

WHEN wait1 =>

IF in1 � ‘0’ THEN

pulse_state    <= wait2;

output     <= “00”;

ELSIF in1 = ‘1’ THEN

pulse_state <= wait1;

output     <= “00”;

END IF;

WHEN wait2 =>

IF in1 = ‘0’ THEN

pulse_state    <= wait2;

output     <= “00”;

ELSIF in1 = ‘1’ THEN

pulse_state <= pulse1;

output     <= “00”;

END IF;

WHEN pulse1 =>

pulse_state   <= pulse2;

output     <= “10”;

WHEN pulse2 =>

pulse_state   <= start;

output     <= “01”;

WHEN others =>

pulse_state   <= start;

output     <= “00”;

END CASE;

END IF;

END PROCESS;

END a;

Figure 10.38 shows the MAX�PLUS II simulation of the state machine.
If you closely examine the simulation waveforms in Figures 10.36 and 10.38, you will

note that the pulse outputs in Figure 10.38 (VHDL design) occur one clock cycle later than
they do in Figure 10.36 (graphical design). This is because the VHDL compiler has syn-
thesized each output with a D flip-flop, as we did for the single-pulse circuit in Figure

FIGURE 10.38
Example 10.6
Simulation of a Two-pulse
Generator (VHDL)

➥ two_pulse.vhd
two_pulse.scf
two_pulse.rpt
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10.20, in order to ensure synchronous output operation.(We can verify this by examining
the EQUATIONS section of the project report file, two_pulse.rpt.) Since the outputs are
both derived entirely from flip-flop outputs, this synthesis step is not strictly necessary to
ensure that the outputs are synchronous with the clock. ❘❙❚

❘❙❚ SECTION 10.5 REVIEW PROBLEM

10.5 Is the state machine designed in Example 10.5 a Moore machine or a Mealy ma-
chine? Why?

10.6 Traffic Light Controller
A simple traffic light controller can be implemented by a state machine with a state dia-
gram such as the one shown in Figure 10.39.

The control scheme assumes control over a north-south road and an east-west road.
The north-south lights are controlled by outputs called nsr, nsy, and nsg (north-south red,
yellow, green). The east-west road is controlled by similar outputs called ewr, ewy, and
ewg. A LOW controller output turns on a light. Thus an output 011110 corresponds to the
north-south red and east-west green lights.

An input called TIMER controls the length of the two green-light cycles. When
TIMER � 1, a transition from s0 to s1 or from s2 to s3 is possible (s0 represents the EW
green; s2 the NS green). This transition accompanies a change from green to yellow on the
active road. The light on the other road stays red. An unconditional transition follows,
changing the yellow light to red on one road and the red light to green on the other.

The cycle can be set to any length by changing the signal on the TIMER input. (The
yellow light will always be on for one clock pulse in this design.) For ease of observation,
we will use a cycle of ten clock pulses. For either direction, the cycle consists of 4 clocks
GREEN, 1 clock YELLOW, 5 clocks RED. This cycle can be generated by the MSB of a
mod-5 counter, as shown in Figure 10.40. If we model the traffic controller using the Altera
UP-1 board, we require a clock divider to slow down the 25.175 MHz clock to a rate of
about 0.75 Hz, making it easy to observe the changes of lights. These blocks can all be in-
stantiated in VHDL, which will be left as part of an exercise in the lab manual accompany-
ing this book.

Q0

Q1
Q2

CLOCK

RESET
Q24

CLOCKCLOCK

RESET

RESET

CTR DIV 225

Clock divider

CTR DIV 5

Cycle timer*

NSR

NSY

NSG

EWR

EWY

EWG

CLOCK

RESET

Output controller

TIMER
North-south

lights

East-west
lights

*Cycle: Red for 5 clocks
Green for 4 clocks
Yellow for 1 clock

FIGURE 10.40
Traffic Control Demonstration
Circuit for the Altera UP-1
Board

00
s0

s1

0/
011110

Q/
110011

1/
101011

X/
011110

1/
011101

X/
110011

TIMER/
nsr,nsy,nsg,

ewr,ewy,ewg 01

s2
10

s3
11

FIGURE 10.39
State Diagram of a Traffic
Light Controller
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FIGURE 10.42
Simulation of a Traffic Light Controller

FIGURE 10.41
Simulation of a Mod-5 Counter

Figure 10.41 shows the simulation of the mod-5 counter that generates the TIMER
control signal. The MSB goes HIGH for one clock period, then LOW for four. When ap-
plied to the TIMER input of the output controller, this signal directs the controller from
state to state.

Figure 10.42 shows a simulation of the mod-5 counter and output controller. The
north-south lights are red for five clock pulses (shown by 011 in the north_south wave-
form). At the same time, the east-west lights are green for four clock pulses (east_west �
110), followed by yellow for one clock pulse (east_west � 101). The cycle continues with
an east-west red and north-south green and yellow.

According to the state diagram, the yellow light should happen on the transition where
TIMER � 1. This corresponds to the point on the simulation waveforms where count � 4.
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However, the yellow light does not come on until count � 0. This is because the
MAX�PLUS II VHDL compiler synthesizes the controller outputs with synchronous out-
puts (flip-flops). As a result, the output states are delayed by one clock cycle. Since the rel-
ative lengths of the cycle proportions are preserved, this does not affect the operation of the
controller.

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

1. A state machine is a synchronous sequential circuit with a
memory section (flip-flops) to hold the present state of the
machine and a control section (gates) to determine the ma-
chine’s next state.

2. The number of flip-flops in a state machine’s memory section
is the same as the number of state variables.

3. Two main types of state machine are the Moore machine and
the Mealy machine.

4. The outputs of a Moore machine are entirely dependent on
the states of the machine’s flip-flops. Output changes will al-
ways be synchronous with the system clock.

5. The outputs of a Mealy machine depend on the states of the
machine’s flip-flops and the gates in the control section. A
Mealy machine’s outputs can change asynchronously, rela-
tive to the system clock.

6. A state machine can be designed in a classical fashion using
the same method as in designing a synchronous counter, as
follows:

a. Define the problem and draw a state diagram.

b. Construct a table of present and next states.

c. Use flip-flop excitation tables to determine the flip-
flop inputs for each state transition.

d. Use Boolean algebra or K-maps to find the simplest
Boolean expression for flip-flop inputs (D, T, or JK) in
terms of outputs (Q).

e. Draw the logic diagram of the state machine.

7. The state names in a state machine can be named numeri-
cally (s0, s1, s2, . . .) or literally (start, idle, read, write), de-
pending on the machine function. State names are indepen-
dent of the values of the state variables.

8. A state machine can be defined in VHDL by using a CASE
statement within a PROCESS to define the progression of

states. The output values can be defined by a separate de-
coder construct or they can be assigned within each case of
the CASE statement.

9. The possible values of the state variables of a machine are
defined within an enumerated type definition. An enumerated
type is a list of possible values that a port, variable, or signal
of that type is allowed to have.

10. Notation for a state diagram includes a series of bubbles (cir-
cles) containing state names and values of state variables in

the form     
state_name

state_variable(s)
.

11. The inputs and outputs of a state machine are labeled in1,
in2, . . . , inx/out1, out2, . . . ,outx.

12. Transitions between states can be conditional or uncondi-
tional. A conditional transition happens only under certain
conditions of a control input and is labeled with the relevant
input condition. An unconditional transition happens under
all conditions of input and is labeled with an X for each input
variable.

13. Conditional transitions in a VHDL state machine are de-
scribed by an IF statement within a particular case of the
CASE statement that describes the machine.

14. Mealy machine outputs are susceptible to asynchronous out-
put changes if a combinational input changes out of synchro-
nization with the clock. This can be remedied by clocking
each output through a separate synchronizing flip-flop.

15. A maximum of 2n states can be assigned to a state machine
that has n state variables. If the number of states is less than
2n, the unused states must be accounted for. Either they can
be treated as don’t care states, or they can be assigned a spe-
cific destination state, usually the reset state.

16. In a VHDL implementation of a state machine, any unused
states can be covered with an others clause in the CASE
statement that defines the machine.

S U M M A R Y

G L O S S A R Y

Conditional transition A transition between states of a state
machine that occurs only under specific conditions of one or
more control inputs.

Control input A state machine input that directs the operation
of the machine from state to state.

Enumerated type A user-defined type in VHDL in which all
possible values of a named identifier are listed in a type defini-
tion statement.

Form A contact A normally open contact on a switch or relay.

Form B contact A normally closed contact on a switch or
relay.

Form C contact A pair of contacts, one normally open and
one normally closed, that operate with a single action of a switch
or relay.

Mealy machine A state machine whose output is determined
by both the sequential logic and the combinational logic of the
machine.
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State variables The variables held in the flip-flops of a state
machine that determine its present state.

Unconditional transition A transition between states of a
state machine that occurs regardless of the status of any control
inputs.

DFF

CLRN

PRN
QD

in1 INPUT

clk INPUT

XOR
XOR

DFF

CLRN

PRN
QD

OUTPUT
out1

OUTPUT
out0

FIGURE 10.44
Problem 10.2
State Machine Circuit

Moore machine A state machine whose output is determined
only by the sequential logic of the machine.

State machine A synchronous sequential circuit, consisting of
a sequential logic section and a combinational logic section,
whose outputs and internal flip-flops progress through a pre-
dictable sequence of states in response to a clock and other input
signals.

DFF

CLRN

PRN
XOR

QD
OUTPUT

PULSE

in1 INPUT

clk INPUT

AND2

FIGURE 10.43
Problem 10.1
State Machine Circuit

P R O B L E M S

Problem numbers set in color indicate more difficult problems:
those with underlines indicate most difficult problems.

Section 10.1 State Machines

10.1 Is the state machine in Figure 10.43 a Moore machine or
a Mealy machine? Explain your answer.

10.2 Is the state machine in Figure 10.44 a Moore machine or
a Mealy machine? Explain your answer.
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10.4 Use classical state machine design techniques to design a
counter whose output sequence is shown in Table 10.8.
(This is a divide-by-twelve counter in which the MSB
output has a duty cycle of 50%.) Draw the state diagram,
derive synchronous equations of the flip-flops, and draw
the circuit implementation in MAX�PLUS II and create
a simulation to verify the circuit’s function.

Section 10.3 State Machines with Control Inputs

10.7 Use classical state machine design techniques to find the
Boolean next state and output equations for the state ma-
chine represented by the state diagram in Figure 10.45.
Draw the state machine circuit as a Graphic Design File
in MAX�PLUS II. Create a simulation file to verify the
operation of the circuit. Briefly explain the intended func-
tion of the state machine.Table 10.7 4-bit Gray code sequence

Q3Q2Q1Q0

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

Table 10.8 Counter Sequence 
for Problem 10.4

Q3Q2Q1Q0

0000
0001
0010
0011
0100
0101
1000
1001
1010
1011
1100
1101

10.5 Write the VHDL code required to implement a 4-bit Gray
code counter. Create a simulation in MAX�PLUS II to
verify the operation of the circuit.

10.6 Write the VHDL code required to implement a counter
with the sequence shown in Table 10.8. Create a simulation
in MAX�PLUS II to verify the operation of the circuit.

1/0,1

0/1,0

in1/out1, out2

0/0,0

1/0,0
X/0,0

X/0,0

s1
01

s2
10

00
s0

11
s3

FIGURE 10.45
Problem 10.7
State Diagram

10.8 Referring to the simulation for the state machine in Prob-
lem 10.7, briefly explain why it is susceptible to asyn-
chronous input changes. Modify the state machine circuit
to eliminate the asynchronous behavior of the outputs.
Create a MAX�PLUS II simulation to verify the func-
tion of the modified state machine.

10.9 Write the VHDL code required to implement the state
machine in Problem 10.7. Create a simulation to verify
the operation of the state machine.

10.10 A state machine is used to control an analog-to-digital
converter, as shown in the block diagram of Figure 10.46.

sc

oego

eoc

go

reset reset

sc

oe

eoc

clk

Controller
Analog-to-digital

converter

FIGURE 10.46
Problem 10.10
Analog-to-Digital Converter and Controller

The controller has four states, defined by state variables
Q1 and Q0 as follows: idle (00), start (01), waiting (11),
and read (10). There are two outputs: sc (Start Conver-
sion; active-HIGH) and oe (Output Enable; active LOW).
There are four inputs: clock, go (active-LOW) eoc (End
of Conversion), and asynchronous reset (active LOW).
The machine operates as follows:

Section 10.2 State Machines with No Control Inputs

10.3 A 4-bit Gray code sequence is shown in Table 10.7. Use
classical design methods to design a counter with this se-
quence, using D flip-flops. Draw the resulting circuit dia-
gram in a MAX�PLUS II Graphic Design File. Create a
simulation to verify the circuit operation.
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a. In the idle state, the outputs are: sc � 0, oe � 1. The
machine defaults to the idle state when the machine is
reset.

b. Upon detecting a 0 at the go input, the machine makes
a transition to the start state. In this transition, sc � 1,
oe � 1.

c. The machine makes an unconditional transition to the
waiting state; sc � 0, oe � 1. It remains in this state,
with no output change, until input eoc � 1.

d. When eoc � 1, the machine goes to the read state; sc
� 0, oe � 0.

e. The machine makes an unconditional transition to the
idle state; sc � 0, oe � 1.

Use classical state machine design techniques to de-
sign the controller. Draw the required circuit in
MAX�PLUS II and create a simulation to verify its oper-
ation. Is this machine vulnerable to asynchronous input
change?

10.11 Use VHDL to implement the controller circuit of Problem
10.10. Create a simulation to verify its operation.

10.12 Write a VHDL file for a state machine that selects a 3-bit
binary or Gray code count, depending on the state of an
input called gray. If gray � 1, count in Gray code.
Otherwise count in binary. Create a simulation file that
verifies the operation of the circuit, clearly showing the
full Gray code count, binary count, and reset function.

Section 10.4 Switch Debouncer for a Normally Open
Pushbutton Switch

10.13 Why is it not possible to debounce the pushbuttons on the
Altera UP-1 board using a NAND latch?

10.14 Refer to the switch debouncer circuit in Figure 10.24 (p.
476). For how many clock periods must the input of the
debouncer remain stable before the output can change?

10.15 What is the maximum switch bounce time that can be re-
moved by the circuit of Figure 10.24 if the clock at the
shift register is running at a rate of 480 Hz?

10.16 Briefly explain how the Exclusive NOR gate in the de-
bounce circuit of Figure 10.24 determines if switch
bounce has occurred.

10.17 Refer to the section on the behaviorally designed switch
debouncer in Section 10.4. For how many clock periods
must the input of the debouncer remain stable before the
output can change? What is the maximum switch bounce
time that can be removed by the circuit of Figure 10.24. if
the state machine clock is running at a rate of 480 Hz?
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FIGURE 10.47
Problem 10.18
State Diagram
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FIGURE 10.48
Problem 10.18
Partial Timing Diagram

Section 10.5 Unused States in State Machines

10.18 Refer to the state diagram in Figure 10.47.

a. How many state variables are required to implement
this state machine? Why?

b. How many unused states are there for this state ma-
chine? List the unused states.

c. Complete the partial timing diagram shown in Figure
10.48 to illustrate one complete cycle of the state ma-
chine represented by the state diagram of Figure
10.47.
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10.19 Write the VHDL code required to implement the state
machine described by the state diagram of Figure 10.47.
Create a simulation file to verify the operation of the
circuit.

10.20 Use classical state machine design techniques to design a
state machine described by the state diagram of Figure
10.49. Briefly describe the intended operation of the cir-
cuit. Create a MAX�PLUS II simulation to verify the
operation of the state machine design. Unused states may
be treated as don’t care states, but unspecified outputs
should always be assigned to 0.

10.22 Write the VHDL code for the state machine described in
Problem 10.20. Create a MAX�PLUS II simulation to
verify the function of the state machine.

10.23 A state machine is used to control an analog-to-digital
converter, as shown in the block diagram of Figure 10.46.
(The following description is a modified version of the
controller described in Problem 10.10.)

Five states are used: idle, start, waiting1, waiting2,
and read. There are two outputs: sc (Start Conversion;
active-HIGH) and oe (Output Enable; active HIGH).
There are four inputs: clock, reset, go, and eoc (End of
Conversion). The machine operates as follows:

a. In the idle state, the outputs are: sc � 0, oe � 0. The
machine defaults to the idle state when asynchro-
nously reset and remains there until go � 0.

b. When go � 0, the machine makes a transition to the
start state. In this transition, sc � 1, oe � 0.

c. The machine makes an unconditional transition to the
waiting1 state; sc � 0, oe � 0. It remains in this state,
with no output change, until input eoc � 0.

d. When eoc � 0, the machine goes to the waiting2
state; sc � 0, oe � 0. It remains in this state, with no
output change, until input eoc � 1.

e. The machine makes a transition to the read state when
eoc � 1, sc � 0, oe � 1.

f. The machine makes an unconditional transition to the
idle state; sc �, 0, oe � 0.

After reviewing the block diagram and the states just
listed,

a. Draw the state diagram of the controller.

b. How many state variables are required for the con-
troller described in this question?

10.24 Write the VHDL code for the state machine described in
Problem 10.23. Create a simulation file to verify the func-
tion of the design.
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FIGURE 10.49
Problem 10.20
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A N S W E R S  T O  S E C T I O N  R E V I E W  P R O B L E M S

Section 10.1

10.1 A Moore state machine has outputs that depend only on
the states of the flip-flops in the machine. A Mealy ma-
chine’s outputs depend on the states of its flip-flops as well
as the gates of the machine’s control section. This can re-
sult in asynchronous output changes in the Mealy machine
outputs.

Section 10.2

10.2

J2 � Q1Q�0

K2 � Q�1Q�0

J1 � Q�2Q0

K1 � Q2Q0

J0 � Q�2Q�1 � Q2Q1 � Q�2�����Q�1�
K0 � Q�2Q1 � Q2Q�1 � Q2 � Q1

Section 10.3

10.3 The output flip-flop synchronizes the output to the system
clock, yielding the following advantages: (1) the output is
always a known width of one clock cycle; and (2) the out-
put is not vulnerable to change due to asynchronous
changes of input.

Section 10.4

10.4 Tc � 3.75 ms; fc � 267 Hz

Section 10.5

10.5 Moore machine. The outputs are derived entirely from the
output states of the state machine and are not vulnerable to
asynchronous changes of input.

10.21 Determine the next state for each of the unused states of
the state machine designed in Problem 10.20. Use this
analysis to redraw the state diagram of Figure 10.49 so
that it properly includes the unused states. (There is more
than one right answer, depending on the result of the
Boolean simplification process used in Problem 10.20.)
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Logic Gate Circuitry

O U T L I N E

11.1 Electrical
Characteristics of
Logic Gates

11.2 Propagation Delay

11.3 Fanout

11.4 Power Dissipation

11.5 Noise Margin

11.6 Interfacing TTL and
CMOS Gates

11.7 Internal Circuitry of
TTL Gates

11.8 Internal Circuitry of
CMOS Gates

11.9 TTL and CMOS
Variations

C H A P T E R  O B J E C T I V E S

Upon successful completion of this chapter, you will be able to:

• Name the various logic families most commonly in use today and state
several advantages and disadvantages of each.

• Define propagation delay.

• Calculate propagation delay of simple circuits, using data sheets.

• Define fanout and calculate its value, using data sheets.

• Calculate power dissipation of TTL and CMOS circuits.

• Calculate noise margin of a logic gate from data sheets.

• Draw circuits that will interface various CMOS and TTL gates.

• Explain how a bipolar junction transistor can be used as a logic inverter.

• Describe the function of a TTL input transistor in all possible input states:
HIGH, LOW, and open-circuit.

• Explain the operation of a totem pole output.

• Illustrate how a totem pole output generates power line noise and describe
how to remedy this problem.

• Illustrate why totem pole outputs cannot be tied together.

• Explain the difference between open-collector and totem pole outputs of a
TTL gate.

• Illustrate the operation of TTL open-collector inverter, NAND, and NOR
gates.

• Write the Boolean expression of a wired-AND circuit.

• Design a circuit that uses an open-collector gate to drive a high-current
load.

• Calculate the value of a pull-up resistor at the output of an open-collector
gate.

• Explain the operation of a tristate gate and name several of its advantages.

• Design a circuit using a tristate bus driver to direct the flow of data from
one device to another.

• Describe the basic structure of a MOSFET and state its bias voltage
requirements.

• Draw the circuit of an CMOS inverter and show how it works.


