
3 Verilog for Simulation and Synthesis

This chapter presents Verilog from the point of view of a designer wanting to
describe a design‚ perform pre-synthesis simulation‚ and synthesize his or her
design for programming an FPGA or generating a layout. Many of the complex
Verilog constructs related to timing and fine modeling features of this language
will not be covered here. The chapter first describes Verilog with emphasis on
design using simple examples. We will cover the basics‚ just enough to describe
our examples. In a later section after a general familiarity with the language is
gained‚ more complex features of the Verilog language with emphasis on
testbench development will be described.

3.1 Design with Verilog

Verilog syntax and language constructs are designed to facilitate description of
hardware components for simulation and synthesis. In addition‚ Verilog can be
used to describe testbenches‚ specify test data and monitor circuit responses.
Figure 3.1 shows a simulation model that consists of a design and its testbench
in Verilog. Simulation output is generated in form of a waveform for visual
inspection or data files for machine readability.

After a design passes basic functional validations‚ it must be synthesized
into a netlist of components of a target library. Constructs used for verification
of a design‚ or timing checks and timing specifications are not synthesizable. A
Verilog design that is to be synthesized must use language constructs that have
a clear hardware correspondence. Figure 3.2 shows a block diagram specifying
the synthesis process.
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Figure 3.1  Simulation in Verilog

The output of synthesis is a netlist of components of the target library.
Often synthesis tools have an option to generate this netlist in Verilog. In this
case‚ the same testbench prepared for pre-synthesis simulation can be used
with the netlist generated by the synthesis tool.

Figure 3.2  Synthesis

3.1.1 Modules

The entity used in Verilog for description of hardware components is a module.
A module can describe a hardware component as simple as a transistor or a
network of complex digital systems. As shown in Figure 3.3‚ modules begin
with the module keyword and end with endmodule.

module

endmodule

Figure 3.3 Module
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Figure 3.4  Module Hierarchy

A design may be described in a hierarchy of other modules. The top-level
module is the complete design‚ and modules lower in the hierarchy are the
design's components. Module instantiation is the construct used for bringing a
lower level module into a higher level one. Figure 3.4 shows a hierarchy of
several nested modules.

As shown in Figure 3.5‚ in addition to the module keyword‚ a module
header also includes the module name and list of its ports. Following the
module header‚ its ports and internal signals and variables are declared.
Specification of the operation of a module follows module declarations.

module name (ports);
port declarations;
other declarations;

statements

endmodule

Figure 3.5  Module Outline

Figure 3.6  Module Definition Alternatives



module acircuit (a‚ b‚ c‚ av‚ bv‚ cv‚ w‚ wv);
input a‚ b;
output w;
inout c;
input [7:0] av‚ bv;
output [7:0] wv;
inout [7:0] cv;

endmodule

Figure 3.8  Module Ports

Following module header‚ ports of a module are declared. In this part‚ size
and direction of each port listed in the module header are specified. A port may
be input‚ output or inout. The latter type is used for bidirectional
input/output lines. Size of vectored ports of a module is also declared in the
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Operation of a module can be described at the gate level‚ using Boolean
expressions‚ at the behavioral level‚ or a mixture of various levels of
abstraction. Figure 3.6 shows three ways operation of a module may be
described. Module simple1a in Figure 3.6 uses Verilog's gate primitives‚
simple1b uses concurrent statements‚ and simple1c uses a procedural
statement.

The subsections that follow describe details of module ports and description
styles. In the examples in this chapter Verilog keywords and reserved words
are shown in bold. Verilog is case sensitive. It allows letters‚ numbers and
special character "_" to be used for names. Names are used for modules‚
parameters‚ ports‚ variables‚ and instance of gates and modules.

For readability of graphics‚ we use the symbol shown in Figure 3.7 for
representing a Verilog module. Inputs are shown as hollow boxes‚ and outputs
as solid ones. The name of the module appears inside the module box on its
upper side.

Figure 3.7  Module Notation

3.1.2 Module Ports

Following the name of a module is a set of parenthesis with a list of module
ports. This list includes inputs‚ outputs and bidirectional input lines. Ports
may be listed in any order. This ordering can only become significant when a
module is instantiated‚ and does not affect the way its operation is described.
Top-level modules used for testbenches have no ports.
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module port declaration part. Size and indexing of a port is specified after its
type name within square brackets. Figure 3.8 shows an example circuit with
scalar‚ vectored‚ input‚ output and inout ports. Ports named a‚ and b are one-
bit inputs. Ports av and bv are 8-bit inputs of acircuit. The set of square
brackets that follow the input keyword applies to all ports that follow it. Port w
of acircuit is declared as a 1-bit output‚ and wv is an 8-bit bi-directional port of
this module.

module bcircuit (a‚ b‚ av‚ bv‚ w‚ wv);
input a‚ b;
output w;
Input [7:0] av‚ bv;
output [7:0] wv;
wire d;
wire [7:0] dv;
reg e;
reg [7:0] ev;

endmodule

Figure 3.9  Wire and Variable Declaration

In addition to port declarations‚ a module declarative part may also include
wire and variable declarations that are to be used inside the module. Wires
(that are called net in Verilog) are declared by their types‚ wire‚ wand or wor;
and variables are declared as reg. Wires are used for interconnections and
have properties of actual signals in a hardware component. Variables are used
for behavioral descriptions and are very much like variables in software
languages. Figure 3.9 shows several wire and variable declarations.

module vcircuit (av‚ bv‚ cv‚ wv);
input [7:0] av‚ bv‚ cv;
output [7:0] wv;
wire [7 :0] iv‚ jv;
assign iv = av & cv;
assign jv = av l cv;
assign wv = iv ^ jv;

endmodule

Figure 3.10  Using Wires

Wires represent simple interconnection wires‚ busses‚ and simple gate or
complex logical expression outputs. When wires are used on the left hand sides
of assign statements‚ they represent outputs of logical structures. Wires can be
used in scalar or vector form. Figure 3.10 shows several examples of wires
used on the right and left hand sides of assign statements.
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In the vector form‚ inputs‚ outputs‚ wires and variables may be used as a
complete vector‚ part of a vector‚ or a bit of the vector. The latter two are
referred to as part-select and bit-select.

3.1.3 Logic Value System

Verilog uses a 4-value logic value system. Values in this system are 0‚ 1‚ Z‚
and X. Value 0 is for logical 0 which in most cases represent a path to ground
(Gnd). Value 1 is logical 1 and it represents a path to supply (Vdd). Value Z is
for float‚ and X is used for un-initialized‚ undefined‚ un-driven‚ unknown‚ and
value conflicts. Values Z and X are used for wired-logic‚ busses‚ initialization
values‚ tri-state structures‚ and switch-level logic.

For more logic precision‚ Verilog uses strengths values as well as logic
values. Our dealing with Verilog is for design and synthesis‚ and these issues
will not be discussed here.

3.2 Combinational Circuits

A combinational circuit can be represented by its gate level structure‚ its
Boolean functionality‚ or description of its behavior. At the gate level‚
interconnection of its gates are shown; at the functional level‚ Boolean
expressions representing its outputs are written; and at the behavioral level a
software-like procedural description represents its functionality. This section
shows these three levels of abstraction for describing combinational circuits.

Figure 3.11  Basic Primitives
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3.2.1 Gate Level Combinational Circuits

Verilog provides primitive gates and transistors. Some of the more important
Verilog primitives and their logical representations are shown in Figure 3.11. In
this figure w is used for gate outputs‚ i for inputs and c for control inputs.

Basic logic gates are and‚ nand‚ or‚ nor‚ xor‚ xnor. These gates can be
used with one output and any number of inputs. The other two structures
shown‚ are not and buf. These gates can be used with one input and any
number of outputs.

Another group of primitives shown in this figure are three-state (tri-state is
also used to refer to these structures) gates. Gates shown have w for their
outputs‚ i for data inputs‚ and c for their control inputs. These primitives are
bufif1‚ notif1‚ bufif0‚ and notif0. When control c for such gates is active (1 for
first and third‚ and 0 for the others)‚ the data input‚ i‚ or its complement
appears on the output of the gate. When control input of a gate is not active‚
its output becomes high-impedance‚ or Z.

Also shown in Figure 3.11 are NMOS‚ PMOS and CMOS structures. These
are switches that are used in switch level description of gates‚ complex gates‚
and busses. The nmos (pmos) primitive is a simple switch with an active high
(low) control input. The cmos switch is usually used with two complementary
control inputs. These switches behave like the three-state gates. They are
different in their output voltage levels and drive strengths. These parameters
are modeled by wire strengths and are not discussed in this book.

Figure 3.12 A Majority Circuit

Majority Example. We use the majority circuit of Figure 3.12 to illustrate how
primitive gates are used in a design. The description shown in Figure 3.13
corresponds to this circuit. The module description has inputs and outputs
according to the schematic of Figure 3.12.

Line 1 of the code shown is the timescale directive. This defines all time
units in the description and their precision. For our example‚ 1ns/100Ps
means that all numbers in the code that represent a time value are in
nanoseconds and they can have up to one fractional digit (100 Ps).

The statement that begins in Line 6 and ends in Line 9 instantiates three
and primitives. The construct that follows the primitive name specifies rise and



66 Digital Designand Implementationwith Field ProgrammableDevices

fall delays for the instantiated primitive This part is optional and
if eliminated‚ 0 values are assumed for rise and fall delays. Line 7 shows
inputs and outputs of one of the three instances of the and primitive. The
output is im1 and inputs are module input ports a and b. The port list on Line
7 must be followed by a comma if other instances of the same primitive are to
follow‚ otherwise a semicolon should be used‚ like the end of Line 9. Line 8 and
Line 9 specify input and output ports of the other two instances of the and
primitive. Line 10 is for instantiation of the or primitive at the output of the
majority gate. The output of this gate is y that comes first in the port list‚ and
is followed by inputs of the gate. In this example‚ intermediate signals for
interconnection of gates are im1‚ im2‚ and im3. Scalar interconnecting wires
need not be explicitly declared in Verilog.

`timescale 1ns/100ps
module maj3 ( a‚ b‚ c‚ y );

input a‚ b‚ c;
output y;

and #(2‚4)
(im1‚ a‚ b)‚
(im2‚ b‚ c )‚
(im3‚ c‚ a );

or #(3‚5) (y‚ im1‚ im2‚ im3);

endmodule

// Line 1

// Line 6
// Line 7
// Line 8
// Line 9
//Line 10

Figure 3.13  Verilog Code for the Majority Circuit

The three and instances could be written as three separate statements‚ like
instantiation of the or primitive. If we were to specify different delay values for
the three instances of the and primitive‚ we had to have three separate primitive
instantiation statements.

Three-state gates are instantiated in the same way as the regular logic
gates. Outputs of three-state gates can be wired to form wired-and‚ wired-or‚ or
wiring logic. For various wiring functions‚ Verilog uses wire‚ wand‚ wor‚ tri‚
tri0 and tri1 net types. When two wires (nets) are connected‚ the resulting
value depends on the two net values‚ as well as the type of the interconnecting
net. Figure 3.14 shows net values for net types wire‚ wand and wor.

Figure 3.14  "net" Type Resolutions
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The table shown in Figure 3.14 is called a net resolution table. Several
examples of net resolutions are shown in Figure 3.15. The tri net type
mentioned above is the same as the wire type. tri0 and tri1 types resolve to 0
and 1‚ respectively‚ when driven by all Z values.

Figure 3.15  "net" Resolution Examples

Multiplexer Example. Figure 3.16 shows a 2-to-1 multiplexer using three-state
gates. The Verilog code of this multiplexer is shown in Figure 3.17.

Lines 6 and 7 in Figure 3.17 instantiate two three-state gates. Their output
is y‚ and since it is driven by both gates a wired-net is formed. Since y is not
declared‚ its net type defaults to wire. When s is 1‚ bufif1 conducts and the
value of b propagates to its output. At the same time‚ because s is 1‚ bufif0
does not conduct and its output becomes Z. Resolution of these values driving
net y is determined by the wire net resolution as shown in Figure 3.14.

Figure 3.16  Multiplexer Using Three-state Gates

`timescale 1ns/100ps

module mux_2to1 ( a‚ b‚ s‚ y );
input a‚ b‚ s;
output y;
bufif1 #(3) (y‚ b‚ s);
bufif0 #(5) (y‚ a‚ s);

endmodule

// Line 6
// Line 7

Figure 3.17  Multiplexer Verilog Code
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CMOS NAND Example.  As another example of instantiation of primitives‚
consider the two-input CMOS NAND gate shown in Figure 3.18.

The Verilog code of Figure 3.19 describes this CMOS NAND gate. Logically‚
NMOS transistors in a CMOS structure push 0 into the output of the gate.
Therefore‚ in the Verilog code of the CMOS NAND‚ input to output direction of
NMOS transistors are from Gnd towards w. Likewise‚ PMOS transistors push a
1 value into w‚ and therefore‚ their inputs are considered the Vdd node and
their outputs are connected to the w node. The im1 signal is an intermediate
net and is explicitly declared.

In the Verilog code of CMOS NAND gate‚ primitive gate instance names are
used. This naming (T1‚ T2‚ T3‚ T4) is optional for primitives and mandatory
when modules are instantiated. Examples of module instantiations are shown
in the next section.

Figure 3.18  CMOS NAND Gate

module cmos_nand (a‚ b‚ w);
input a‚ b;
output w;
wire im1;
supply1 vdd;
supply0 gnd;

nmos #(3‚ 4)
T1 (im1, gnd‚ b)‚
T2 (w‚ im1‚ a);

pmos #(4‚ 5)
T3 (w‚ vdd‚ a)‚
T4 (w‚ vdd‚ b);

endmodule

Figure 3.19  CMOS NAND Verilog Description
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3.2.2 Descriptions by Use of Equations

At a higher level than gates and transistors‚ a combinational circuit may be
described by use of Boolean‚ logical‚ and arithmetic expressions. For this
purpose the Verilog concurrent assign statement is used. Figure 3.20 shows
Verilog operators that can be used with assign statements.

XOR Example.  As our first example for using an assign statement consider the
description of an XOR gate as shown in Figure 3.21. The assign statement
uses y on the left-hand-side and equates it to Exclusive-OR of a‚ b‚ and c
inputs.

Effectively‚ this assign statement is like driving y with the output of a 3-
input xor primitive gate. The difference is that‚ the use of an assign statement
gives us more flexibility and allows the use of more complex functions than
what is available as primitive gates. Instead of being limited to the gates shown
in Figure 3.11‚ we can write our own expressions using operators of Figure
3.20.

Figure 3.20 Verilog Operators

module xor3 ( a‚ b‚ c‚ y );
input a‚ b‚ c;
output y;

assign y = a ^ b ^ c ;

endmodule

Figure 3.21 XOR Verilog Code

Full-Adder Example.   Figure 3.22 shows another example of using assign
statements. This code corresponds to a full-adder circuit (see Chapter 2). The
s output is the XOR result of a‚ b and ci inputs‚ and the co output is an AND-
OR expression involving these inputs.

A delay value of 10 ns is used for the s output and 8 ns for the co output.
As with the gate outputs‚ rise and fall delay values can be specified for a net
that is used on the left-hand side of an assign statement. This construct allows
the use of two delay values. If only one value is specified‚ it applies to both rise
and fall transitions.
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`timescale 1ns/100ps

module add_1bit ( a‚ b‚ ci‚ s‚ co );
input a‚ b‚ ci;
output s‚ co;
assign #(10) s = a^b^ci;
assign #(8) co = ( a & b ) I ( b & ci ) I ( a & ci );

endmodule

Figure 3.22  Full Adder Verilog Code

Another property of assign statements that also corresponds to gate
instantiations is their concurrency. The statements in the Verilog module of
Figure 3.22 are concurrent. This means that the order in which they appear in
this module is not important. These statements are sensitive to events on their
right hand sides. When a change of value occurs on any of the right hand side
net or variables‚ the statement is evaluated and the resulting value is
scheduled for the left hand side net.

Comparator Example. Figure 3.23 shows another example of using assign
statements. This code describes a 4-bit comparator. The first assign statement
uses a bitwise XOR operation on its right hand side. The result that is assigned
to the im intermediate net is a 4-bit vector formed by XORing bits of a and b
input vectors. The second assign statement uses the NOR reduction operator
to NOR bits of im to generate the equal output for the 4-bit comparator.

The above describes the comparator using its Boolean function. However‚
using compare operators of Verilog‚ the eq output of the comparator may be
written as:

assign eq = (a == b);

In this expression‚ (a == b) results in 1 if a and b are equal‚ and 0 if they are
not. This result is simply assigned to eq.

The right-hand side expression of an assign statement can have a condition
expression using the ? and : operators. These operators are like if-then-else.
In reading expressions that involve a condition operator‚ ? and : take places of
then and else respectively. The if-condition appears to the left of ?.

module comp_4bit ( a‚ b‚ eq );
input [3:0]a‚ b;
output eq;
wire [3:0] im;
assign im = a^b ;
assign eq = ~l im;

endmodule

Figure 3.23  Four-Bit Comparator
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Multiplexer Example.  Figure 3.24 shows a 2-to-1 multiplexer using a condition
operator. The expression shown reads as follows: if s is 1‚ then y is i1 else it
becomes  i0.

module mux2_1 ( i0 ‚ i1‚ s‚ y );
input [3:0] i0‚ i1;
input s;
output [3:0] y;

assign y = s ? i1 : i0;

endmodule

Figure 3.24  A 2-to-1 Mux Using Condition Operator

Decoder Example. Figure 3.25 shows another example using the condition
operator. In this example a nesting of several ?: operations are used to describe
a decoder.

`timescale 1ns/100ps

module dcd2_4( a‚ b‚ d0‚ d1‚ d2‚ d3 );
input a‚ b;
output d0‚ d1‚ d2‚ d3;

assign {d3‚ d2‚ d1‚ d0} =
( {a‚ b} == 2'b00 ) ? 4'b0001 :
( {a‚ b} == 2'b01 ) ? 4'b0010 :
( {a‚ b} == 2'b10 ) ? 4'b0100 :
( {a‚ b} == 2'b11 ) ? 4'b1000 :

4'b0000;

endmodule

Figure 3.25  Decoder Using ?: and Concatenation

The decoder description also uses the concatenation operator { } to form
vectors from its scalar inputs and outputs. The decoder has four outputs‚ d3‚
d2‚ d1 and d0 and two inputs a and b. Input values 00‚ 01‚ 10‚ and 11
produce 0001‚ 0010‚ 0100‚ and 1000 outputs. In order to be able to compare
a and b with their possible values‚ a two-bit vector is formed by concatenating a
and b. The {a‚ b} vector is then compared with the four possible values it can
take using a nesting of ?: operations.

Similarly‚ in order to be able to place vector values on the outputs‚ the four
outputs are concatenated using the { } operator and used on the left-hand side
of the assign statement shown in Figure 3.25.
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This example also shows the use of sized numbers. Constants for the
inputs and outputs have the general format of n`bm. In this format‚ n is the
number of bits‚ b is the base specification and m is the number in base b. For
calculation of the corresponding constant‚ number m in base b is translated to
n bit binary. For example‚ 4 `hA becomes 1010 in binary.

Adder Example.  For another example using assign statements‚ consider an 8-
bit adder circuit with a carry-in and a carry-out output. The Verilog code of
this adder‚ shown in Figure 3.26‚ uses an assign statement to set
concatenation of co on the left-hand side of s to the sum of a‚ b and ci. This
sum results in nine bits with the left-most bit being the resulting carry. The
sum is captured in the 9-bit left-hand side of the assign statement in {co‚ s}.

So far in this section we have shown the use of operators of Figure 3.20 in
assign statements. A Verilog description may contain any number of assign
statements and can use any mix of the operators discussed. The next example
shows multiple assign statements.

module add_4bit ( a‚ b‚ ci‚ s‚ co );
input [7:0] a‚ b;
output [7:0] s;
input ci;
output co;

assign {co‚ s} = a + b + ci;

endmodule

Figure 3.26  Adder with Carry-in and Carry-out

ALU Example. As our final example of assign statements‚ consider an ALU that
performs add and subtract operations and has two flag outputs gt and zero.
The gt output becomes 1 when input a is greater than input b‚ and the zero
output becomes 1 when the result of the operation performed by the ALU is 0.

Figure 3.27 shows the Verilog code of this ALU. Used in this description
are arithmetic‚ concatenation‚ condition‚ compare and relational operations.

module ALU ( a‚ b‚ ci‚ addsub‚ gt‚ zero‚ co‚ r );
input [7:0] a‚ b;
output [7:0] r;
input ci;
output gt‚ zero‚ co;

assign {co‚ s} = addsub ? (a + b + ci) : (a – b – ci);
assign gt = (a>b);
assign zero = (r == 0);

endmodule

Figure 3.27  ALU Verilog Code Using a Mix of Operations
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3.2.3 Descriptions with Procedural Statements

At a higher level of abstraction than describing hardware with gates and
expressions‚ Verilog provides constructs for procedural description of hardware.
Unlike gate instantiations and assign statements that correspond to concurrent
sub-structures of a hardware component‚ procedural statements describe the
hardware by its behavior. Also‚ unlike concurrent statements that appear
directly in a module body‚ procedural statements must be enclosed in
procedural blocks before they can be put inside a module.

The main procedural block in Verilog is the always block. This is
considered a concurrent statement that runs concurrent with all other
statements in a module. Within this statement‚ procedural statements like if-
else and case statements are used and are executed sequentially. If there are
more than one procedural statement inside a procedural block‚ they must be
bracketed by begin and end keywords.

Unlike assignments in concurrent bodies that model driving logic for left
hand side wires‚ assignments in procedural blocks are assignments of values to
variables that hold their assigned values until a different value is assigned to
them. A variable used on the left hand side of a procedural assignment must
be declared as reg.

An event control statement is considered a procedural statement‚ and is
used inside an always block. This statement begins with an at-sign‚ and in its
simplest form‚ includes a list of variables in the set of parenthesis that follow
the at-sign‚ e.g.‚ @ (v1 or v2 ...); .

When the flow of the program execution within an always block reaches an
event-control statement‚ the execution halts (suspends) until an event occurs
on one of the variables in the enclosed list of variables. If an event-control
statement appears at the beginning of an always block‚ the variable list it
contains is referred to as the sensitivity list of the always block. For
combinational circuit modeling all variables that are read inside a procedural
block must appear on its sensitivity list.

Examples that follow show various ways combinational component may be
modeled by procedural blocks.

Majority Example. Figure 3.28 shows a majority circuit described by use of an
always block. In the declarative part of the module shown‚ the y output is
declared as reg since this variable is to be assigned a value inside a procedural
block.

The always block describing the behavior of this circuit uses an event
control statement that encloses a list of variables that is considered as the
sensitivity list of the always block. The always block is said to be sensitive to
a‚ b and c variables. When an event occurs on any of these variables‚ the flow
into the always block begins and as a result‚ the result of the Boolean
expression shown will be assigned to variable y. This variable holds its value
until the next time an event occurs on a‚ b‚ or c inputs.

In this example‚ since the begin and end bracketing only includes one
statement‚ its use is not necessary. Furthermore‚ the syntax of Verilog allows
elimination of semicolon after an event control statement. This effectively
collapses the event control and the statement that follows it into one statement.
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module maj3 ( a‚ b‚ c‚ y );
input a‚ b‚ c;
output y;
reg y;

always @( a or b or c)
begin

y = (a&b)l(b&c)l(a&c);
end

endmodule

Figure 3.28  Procedural Block Describing a Majority Circuit

Majority Example with Delay. The Verilog code shown in Figure 3.29 is a
majority circuit with a 5ns delay. Following the always keyword‚ the
statements in this procedural block are an event-control‚ a delay-control and a
procedural assignment. The delay-control statement begins with a sharp-sign
and is followed by a delay value. This statement causes the flow into this
procedural block to be suspended for 5ns. This means that after an event on
one of the circuit inputs‚ evaluation and assignment of the output value to y
takes place after 5 nanoseconds.

Note in the description of Figure 3.29 that begin and end bracketing is not
used. As with the event-control statement‚ a delay-control statement can
collapse into its next statement by removing their separating semicolon. The
event-control‚ delay-control and assignment to y become a single procedural
statement in the always block of maj3 code.

`timescale 1ns/100ps

module maj3 ( a‚ b‚ c‚ y );
input a‚ b‚ c;
output y;
reg y;

always @( a or b or c ) #5 y = (a & b) I (b &c) I (a & c);

endmodule

Figure 3.29  Majority Gate with Delay

Full-Adder Example. Another example of using procedural assignments in a
procedural block is shown in Figure 3.30. This example describes a full-adder
with sum and carry-out outputs.

The always block shown is sensitive to a‚ b‚ and ci inputs. This means that
when an event occurs on any of these inputs‚ the always block wakes up and
executes all its statements in the order that they appear. Since assignments to
s and co outputs are procedural‚ both these outputs are declared as reg.
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The delay mechanism used in the full-adder of Figure 3.30 is called an
intra-statement delay that is different than that of the majority circuit of Figure
3.29.

`timescale 1ns/100ps

module add_1 bit ( a‚ b‚ ci‚ s‚ co );
input a‚ b‚ ci;
output s‚ co;
reg s‚ co;

always @(a or b or ci )
begin

s = #5 a ^ b ^ ci;
co = #3 (a & b) I (b &ci) I (a & ci);

end
endmodule

Figure 3.30  Full-Adder Using Procedural Assignments

In the majority circuit‚ the delay simply delays execution of its next statement.
However‚ the intra-statement delay of Figure 3.30 only delays the assignment of
the calculated value of the right-hand side to the left-hand side variable. This
means that in Figure 3.30‚ as soon as an event occurs on an input‚ the
expression a^b^c is evaluated. But‚ the assignment of the evaluated value to s
and proceeding to the next statement takes 5ns.

Because assignment to co follows that to s‚ the timing of the former
depends on that of the latter‚ and evaluation of the right-hand side of co begins
5ns after an input change. Therefore‚ co receives its value 8ns after an input
change occurs. To remove this timing dependency and be able to define the
timing of each statement independent of its previous one‚ a different kind of
assignment must be used.

`timescale 1ns/100ps

module add_1bit ( a‚ b‚ ci‚ s‚ co );
input a‚ b‚ ci;
output s‚ co;
reg s‚ co;

always @(a or b or ci)
begin

s <= #5 a ^ b ^ ci;
co <= #8 (a & b) I (b &ci) I (a & ci);

end
endmodule

Figure 3.31  Full-Adder Using Non-Blocking Assignments
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Assignments in Figure 3.30 are of the blocking type. Such statements
block the flow of the program until they are completed. A different assignment
is of the non-blocking type. A different version of the full-adder that uses this
construct is shown in Figure 3.31. This assignment schedules its right hand
side value into its left hand side to take place after the specified delay. Program
flow continues into the next statement while propagation of values into the first
left hand side is still going on.

In the example of Figure 3.31‚ evaluation of the right hand side of s is done
immediately after an input changes. Evaluation of the right hand side of co
occurs 8ns after that. To make s and co delays match those of Figure 3.30‚ an
8 nanoseconds delay is used for assignment to co.

Since our focus is on synthesizable coding and gate delay timing issues are
not of importance‚ we will mostly use blocking assignments in this book.

Procedural Multiplexer Example.   For another example of a procedural block‚
consider the 2-to-1 multiplexer of Figure 3.32. This example uses an if-else
construct to set y to i0 or i1 depending on the value of s.

As in the previous examples‚ all circuit variables that participate in
determination of value of y appear on the sensitivity list of the always block.
Also since y appears on the left hand side of a procedural assignment‚ it is
declared as reg.

The if-else statement shown in Figure 3.32 has a condition part that uses
an equality operator. If the condition is false (or equal to 0)‚ the block of
statements that follow it will be taken‚ otherwise block of statements after the
else are taken. In both cases‚ the block of statements must be bracketed by
begin and end keywords if there is more than one statement in a block.

module mux2_1 ( i0‚ i1 ‚ s‚ y );
input i0‚ i1‚ s;
output y;
reg y;

always @( i0 or i1 or s ) begin
if (s==1'b0)

y = i0;
else

y = i1;
end

endmodule

Figure 3.32  Procedural Multiplexer

Procedural ALU Example. The if-else statement‚ used in the previous example‚
is easy to use‚ descriptive and expandable. However‚ when many choices exist‚
a case-statement which is more structured may be a better choice. The ALU
description of Figure 3.33 uses a case statement to describe an ALU with add‚
subtract‚ AND and XOR functions.
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module alu_4bit ( a‚ b‚ f‚ y );
input [3:0] a‚ b;
input [1:0] f;
output [3:0] y;
reg [3:0] y;

always @ ( a or b or f ) begin
case (f)

2'b00 : y = a + b;
2'b01 : y = a - b;
2'b10 : y = a & b;
2'b11 : y = a ^ b;
default: y = 4'b0000;

endcase
end

endmodule

Figure 3.33  Procedural ALU

The ALU has a and b data inputs and a 2-bit f input that selects its
function. The Verilog code shown in Figure 3.33 uses a‚ b and f on its
sensitivity list. The case-statement shown in the always block uses f to select
one of the case alternatives. The last alternative is the default alternative that
is taken when f does not match any of the alternatives that appear before it.
This is necessary to make sure that unspecified input values (here‚ those that
contain X and/or Z) cause the assignment of the default value to the output
and not leave it unspecified.

3.2.4 Combinational Rules

Completion of case alternatives or if-else conditions is an important issue in
combinational circuit coding. In an always block‚ if there are conditions under
which the output of a combinational circuit is not assigned a value‚ because of
the property of reg variables the output retains its old value. The retaining of
old value infers a latch on the output. Although‚ in some designs this latching
is intentional‚ obviously it is unwanted when describing combinational circuits.
With this‚ we have set two rules for coding combinational circuits with always
blocks.

List all inputs of the combinational circuit in the sensitivity list of the
always block describing it.
Make sure all combinational circuit outputs receive some value
regardless of how the program flows in the conditions of if-else and/or
case statements. If there are too many conditions to check‚ set all
outputs to their inactive values at the beginning of the always block.

1.

2.
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3.2.5 Bussing

Bus structures can be implemented by use of multiplexers or three-state logic.
In Verilog‚ various methods of describing combinational circuits can be used for
the description of a bus.

Figure 3.34 shows Verilog coding of busout that is a three-state bus and
has three sources‚ busin1‚ busin2‚ and busin3. Sources of busout are put on
this bus by active-high enabling control signals‚ en1‚ en2 and en3. Using the
value of an enabling signal‚ a condition statement either selects a bus driver or
a 4-bit Z value to drive the busout output.

module bussing (busin1‚ busin2‚ busin3‚ en1‚ en2‚ en3‚ busout );
input [3:0] busin1‚ busin2‚ busin3;
input en1‚ en2‚ en3;
output [3:0] busout;

assign busout = en1 ? busin1 : 4'bzzzz;
assign busout = en2 ? busin2 : 4'bzzzz;
assign busout = en3 ? busin3 : 4'bzzzz;

endmodule

Figure 3.34  Implementing a 3-State Bus

Verilog allows multiple concurrent drivers for nets. However‚ a variable
declared as a reg and used on a left hand side in a procedural block (always
block)‚ can only be driven by one source. This makes the use of nets more
appropriate for representing busses.

3.3 Sequential Circuits

As with any digital circuit‚ a sequential circuit can be described in Verilog by
use of gates‚ Boolean expressions‚ or behavioral constructs (e.g.‚ the always
statement). While gate level descriptions enable a more detailed description of
timing and delays‚ because of complexity of clocking and register and flip-flop
controls‚ these circuits are usually described by use of procedural always
blocks. This section shows various ways sequential circuits are described in
Verilog. The following discusses primitive structures like latch and flip-flops‚
and then generalizes coding styles used for representing these structures to
more complex sequential circuits including counters and state machines.

3.3.1 Basic Memory Elements at the Gate Level

A clocked D-latch latches its input data during an active clock cycle. The latch
structure retains the latched value until the next active clock cycle. This
element is the basis of all static memory elements.



79

A simple implementation of the D-latch that uses cross-coupled NOR gates
is shown in Figure 3.35. The Verilog code of Figure 3.36 corresponds to this D-
latch circuit. This description uses primitive and and nor structures.

Figure 3.35  Clocked D-latch

`timescale 1ns/100ps

module latch ( d‚ c‚ q‚ q_b );
input d‚ c;
output q‚ q_b;
wire _s‚  _r;

and #(6) g1(_s‚ c‚ d)‚
g2(_r‚ c‚ ~d);

nor #(4)    g3(q_b‚ _s‚ q)‚
g4 ( q‚  _r‚  q_b );

endmodule

Figure 3.36  Verilog Code for a Clocked D-latch

As shown in this Verilog code‚ the tilde (~) operator is used to generate the
complement of the d input of the latch. Using AND gates‚ the d input and its
complement are gated to generate internal _s and _r inputs. These are inputs
to the cross-coupled NOR structure that is the core of the memory in this latch.

Alternatively‚ the same latch can be described with an assign statement as
shown below.

assign #(3) q = c ? d : q;

This statement simply describes what happens in a latch. The statement
says that when c is 1‚ the q output receives d‚ and when c is 0 it retains its old
value. Using two such statements with complementary clock values describe a
master-slave flip-flop. As shown in Figure 3.37‚ the qm net is the master
output and q is the flip-flop output.
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`timescale 1ns/100ps

module master_slave ( d‚ c‚ q );
input d‚ c;
output q;

wire qm;

assign #(3) qm = c ? d : qm;
assign #(3) q = ~c ? qm : q;

endmodule

Figure 3.37  Master-Slave Flip-Flop

This code uses two concurrent assign statements. As discussed before‚
these statements model logic structures with net driven outputs (qm and q).
The order in which the statements appear in the body of the master_slave
module is not important.

3.3.2 Memory Elements Using Procedural Statements

Although latches and flip-flops can be described by primitive gates and assign
statements‚ such descriptions are hard to generalize‚ and describing more
complex register structures cannot be done this way. This section uses always
statements to describe latches and flip-flops. We will show that the same
coding styles used for these simple memory elements can be generalized to
describe memories with complex control as well as functional register
structures like counters and shift-registers.

module latch ( d‚ c‚ q‚ q_b );
input d‚ c;
output q‚ q_b;
reg q‚ q_b;

always @ ( c or d )
if ( c ) begin

#4 q = d;
#3 q_b = ~d;

end
endmodule

Figure 3.38  Procedural Latch

Latches.  Figure 3.38 shows a D-latch described by an always statement. The
outputs of the latch are declared as reg because they are being driven inside
the always procedural block. Latch clock and data inputs (c and d) appear in
the sensitivity list of the always block‚ making this procedural statement
sensitive to c and d. This means that when an event occurs on c or d‚ the
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always block wakes up and it executes all its statements in the sequential order
from begin to end.

The if-statement enclosed in the always block puts d into q when c is
active. This means that if c is 1 and d changes‚ the change on d propagates to
the q output. This behavior is referred to as transparency‚ which is how latches
work. While clock is active‚ a latch structure is transparent‚ and input changes
affect its output.

Any time the always statement wakes up‚ if c is 1‚ it waits 4 nanoseconds
and then puts d into q. It then waits another 3 nanoseconds and then puts the
complement of d into q_b. This makes the delay of the q_b output 7 ns.

D Flip-Flop.  While a latch is transparent‚ a change on the D-input of a D flip-
flops does not directly pass on to its output. The Verilog code of Figure 3.39
describes a positive-edge trigger D-type flip-flop.

The sensitivity list of the procedural statement shown includes posedge of
clk. This always statement only wakes up when clk makes a 0 to 1 transition.
When this statement does wake up‚ the value of d is put into q. Obviously this
behavior implements a rising-edge D flip-flop.

`timescale 1ns/100ps

module d_ff ( d‚ clk‚ q‚ q_b );
input d‚ clk;
output q‚ q_b;
reg q‚ q_b;

always @ ( posedge clk )
begin

#4 q = d;
#3 q_b = ~d;

end
endmodule

Figure 3.39  A Positive-Edge D Flip-Flop

Instead of posedge‚ use of negedge would implement a falling-edge D flip-
flop. After the specified edge‚ the flow into the always block begins. In our
description‚ this flow is halted by 4 nanoseconds by the #4 delay-control
statement. After this delay‚ the value of d is read and put into q. Following this
transaction‚ the flow into the always block is again halted by 3 nanoseconds‚
after which ~d is put into qb. This makes the delay of q after the edge of the
clock equal to 4 nanoseconds. The delay for q_b becomes the accumulation of
the delay values shown‚ and it is 7 nanoseconds. Delay values are ignored in
synthesis.

Synchronous Control.  The coding style presented for the above simple D flip-
flop is a general one and can be expanded to cover many features found in flip-
flops and even memory structures. The description shown in Figure 3.40 is a
D-type flip-flop with synchronous set and reset (s and r) inputs.
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The description uses an always block that is sensitive to the positive-edge
of clk. When clk makes a 0 to 1 transition‚ the flow into the always block
begins. Immediately after the positive-edge‚ s is inspected and if it is active (1),
after 4 ns q is set to 1 and 3 ns after that q_b is set to 0. Following the positive-
edge of clk‚ if s is not 1‚ r is inspected and if it is active‚ q is set to 0. If neither
s nor r are 1‚ the flow of the program reaches the last else part of the if-
statement and assigns d to q.

The behavior discussed here only looks at s and r on the positive-edge of
clk‚ which corresponds to a rising-edge trigger D-type flip-flop with synchronous
active high set and reset inputs. Furthermore‚ the set input is given a higher
priority over the reset input. The flip-flop structure that corresponds to this
description is shown in Figure 3.41.

Other synchronous control inputs can be added to this flip-flop in a similar
fashion. A clock enable (en) input would only require inclusion of an if-
statement in the last else part of the if-statement in the code of Figure 3.40.

module d_ff ( d‚ s‚ r‚ clk‚ q‚ q_b );
input d‚ clk‚ s‚ r;
output q‚ q_b;
reg q‚ q_b;

always @ ( posedge clk ) begin
if ( s ) begin

#4q = 1'b1;
#3q_b=1'b0;

end else if ( r ) begin
#4q = 1'b0;
#3q_b=1'b1;

end else begin
#4 q = d;
#3 q_b = ~d;

end
end

endmodule

Figure 3.40 D Flip-Flop with Synchronous Control

Figure 3.41 D Flip-Flop with Synchronous Control
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Asynchronous Control. The control inputs of the flip-flop of Figure 3.40 are
synchronous because the flow into the always statement is only allowed to start
when the posedge of clk is observed. To change this to a flip-flop with
asynchronous control‚ it is only required to include asynchronous control
inputs in the sensitivity list of its procedural statement.

Figure 3.42 shows a D flip-flop with active high asynchronous set and reset
control inputs. Note that the only difference between this description and the
code of Figure 3.40 (synchronous control) is the inclusion of posedge s and
posedge r in the sensitivity list of the always block. This inclusion allows the
flow into the procedural block to begin when clk becomes 1 or s becomes 1 or r
becomes 1. The if-statement in this block checks for s and r being 1‚ and if
none are active (activity levels are high) then clocking d into q occurs.

An active high (low) asynchronous input requires inclusion of posedge
(negedge) of the input in the sensitivity list‚ and checking its 1 (0) value in the
if-statement in the always statement. Furthermore‚ clocking activity in the flip-
flop (assignment of d into q) must always be the last choice in the if-statement

the procedural block.
The graphic symbol corresponding to the flip-flop of Figure 3.42 is shown in

Figure 3.43.

module d_ff ( d‚ s‚ r‚ clk‚ q‚ q_b );
input d‚ clk‚ s‚ r;
output q‚ q_b;
reg q‚ q_b;
always @ (posedge clk or posedge s or posedge r )
begin

if ( s ) begin
#4q = 1'b1;
#3q_b = 1'b0;

end else if ( r ) begin
#4q = 1'b0;
#3q_b = 1'b1;

end else begin
#4q = d;
#3 q_b = ~d;

end
end

endmodule

Figure 3.42  D Flip-Flop with Asynchronous Control

Figure 3.43  Flip-Flop with Asynchronous Control Inputs
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3.3.3 Registers‚ Shifters and Counters

Registers‚ shifter-registers‚ counters and even sequential circuits with more
complex functionalities can be described by simple extensions of the coding
styles presented for the flip-flops. In most cases‚ the functionality of the circuit
only affects the last else of the if-statement in the procedural statement of
codes shown for the flip-flops.

Registers. Figure 3.44 shows an 8-bit register with synchronous set and reset
Inputs. The set input puts all 1s in the register and the reset input resets it to
all 0s. The main difference between this and the flip-flop with synchronous
control is the vector declaration of inputs and outputs.

Figure 3.44  An 8-bit Register

Shift-Registers. A 4-bit shift-register with right- and left-shift capabilities‚ a
serial-input‚ synchronous reset input‚ and parallel loading capability is shown
in Figure 3.45. As shown‚ only the positive-edge of clk is included in the
sensitivity list of the always block of this code‚ which makes all activities of the
shift-register synchronous with the clock input. If rst is 1‚ the register is reset‚
if ld is 1 parallel d inputs are loaded into the register‚ and if none are 1 shifting
left or right takes place depending on the value of the l_r input (1 for left‚ 0 for
right). Shifting in this code is done by use of the concatenation operator { }.
For left-shift‚ s_in is concatenated to the right of q[2:0] to form a 4-bit vector
that is put into q. For right-shift‚ s_in is concatenated to the left of q[3:1] to
form a 4-bit vector that is clocked into q[3:0].

The style used for coding this register is the same as that used for flip-flops
and registers presented earlier. In all these examples‚ a single procedural block
handles function selection (e.g.‚ zeroing‚ shifting‚ or parallel loading) as well as
clocking data into the register output.
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module shift_reg (d‚ clk‚ Id‚ rst‚ l_r‚ s_in‚ q);
input [3:0] d;
input clk‚ Id‚ rst‚ l_r‚ s_in;
output [3:0] q;
reg [3:0]q;

always @( posedge clk ) begin
if (rst)

#5 q = 4'b0000;
else if ( ld )

#5 q = d;
else if ( l_r )

#5 q = {q[2:0]‚ s_in};
else

#5 q = {s_in‚ q[3:1]};
end

endmodule

Figure 3.45  A 4-bit Shift Register

Another style of coding registers‚ shift-registers and counters is to use a
combinational procedural block for function selection and another for clocking.

As an example‚ consider a shift-register that shifts s_cnt number of places
to the right or left depending on its sr or sl control inputs (Figure 3.46). The
shift-register also has an ld input that enables its clocked parallel loading. If no
shifting is specified‚ i.e.‚ sr and sl are both zero‚ then the shift register retains
its old value.

The Verilog code of Figure 3.46 shows two procedural blocks that are
identified by combinational and register. A block name appears after the begin
keyword that begins a block and is separated from this keyword by use of a
colon. Figure 3.47 shows a graphical representation of the coding style used for
the description of our shifter.

The combinational block is sensitive to all inputs that can affect the shift
register output. These include the parallel d_in‚ the s_cnt shift-count‚ sr and sl

if-else statement decides on the value placed on the int_q internal variable. The
value selection is based on values of ld‚ sr‚ and sl.  If ld is 1‚ int_q becomes d_in
that is the parallel input of the shift register. If sr or sl is active‚ int_q receives
the previous value of int_q shifted to right or left as many as s_cnt places. In
this example‚ shifting is done by use of the >> and << operators. On the left‚
these operators take the vector to be shifted‚ and on the right they take the
number of places to shift.

The int_q variable that is being assigned values in the combinational block is
a 4-bit reg that connects the output of this block to the input of the register
block.

The register block is a sequential block that handles clocking int_q into the
shift register output. This block (as shown in Figure 3.46) is sensitive to the
positive edge of clk and its body consists of a single reg assignment.

Note in this code that both q and int_q are declared as reg because they are
both receiving values in procedural blocks.

shift control inputs‚ and the ld load control input. In the body of this block an
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module shift_reg ( d_in‚ clk‚ s_cnt‚ sr‚ sl‚ Id‚ q );
input [3:0] d_in;
input clk‚ sr‚ sl‚ Id;
input [1:0] s_cnt;
output [3:0] q;
reg [3:0] q‚ int_q;

always @ ( d_in or s_cnt or sr or sl or Id ) begin: combinational
if ( ld ) int_q = d_in;
else if ( sr ) int_q = int_q >> s_cnt;
else if ( sl ) int_q = int_q << s_cnt;
else int_q = int_q;

end

always @ ( posedge clk ) begin: register
q = int_q;

end

endmodule

Figure 3.46  Shift-Register Using Two Procedural Blocks

Figure 3.47  Shifter Block Diagram

Counters. Any of the styles described for the shift-registers in the previous
discussion can be used for describing counters. A counter counts up or down‚
while a shift-register shifts right or left. We use arithmetic operations in
counting as opposed to shift or concatenation operators in shift-registers.
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Figure 3.48 shows a 4-bit up-down counter with a synchronous rst reset
input. The counter has an ld input for doing the parallel loading of d_in into
the counter. The counter output is q and it is declared as reg since it is
receiving values within a procedural statement.

Discussion about synchronous and asynchronous control of flip-flops and
registers also apply to the counter circuits. For example‚ inclusion of posedge
rst in the sensitivity list of the counter of Figure 3.48 would make its resetting
asynchronous.

module counter (d_in‚ clk‚ rst‚ Id‚ u_d‚ q );
input [3:0] d_in;
input clk‚ rst‚ Id‚ u_d;
output [3:0] q;
reg [3:0] q;

always @ ( posedge clk ) begin
if (rst)

q = 4'b0000;
else if ( Id )

q = d_in;
else if ( u_d )

q = q + 1;
else

q = q - 1;
end

endmodule

Figure 3.48  An Up-Down Counter

3.3.4 State Machine Coding

Coding styles presented so far can be further generalized to cover finite state
machines of any type. This section shows coding for Moore and Mealy state
machines. The examples we will use are simple sequence detectors. These
circuits represent the controller part of a digital system that has been
partitioned into a data path and a controller. The coding styles used here apply
to such controllers‚ and will be used in later chapters of this book to describe
CPU and multiplier controllers.

Moore Detector. State diagram for a Moore sequence detector detecting 101 on
its x input is shown in Figure 3.49. The machine has four states that are
labeled‚ reset‚ got1‚ got10‚ and got101. Starting in reset‚ if the 101 sequence is
detected‚ the machine goes into the got101 state in which the output becomes
1. In addition to the x input‚ the machine has a rst input that forces the
machine into its reset state. The resetting of the machine is synchronized with
the clock.
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Figure 3.49  A Moore Sequence Detector

module moore_detector (x‚ rst‚ clk‚ z );
input x‚ rst‚ clk;
output z; reg z;
parameter [1:0] reset = 0‚ got1 = 1‚ got10 = 2‚ got101 = 3;
reg [1:0] current;
always @ ( posedge clk ) begin

if (rst) begin
current = reset; z = 1'b0;

end
else case ( current )

reset: begin
if ( x==1 'b1 ) current = got1 ;
else current = reset; z = 1'b0;

end
got1: begin

if ( x==1'b0 ) current = got10;
else current = got1; z = 1'b0;

end
got 10: begin

if ( x==1'b1 ) begin
current = got101; z=1'b1;

end else begin
current = reset; z = 1'b0;

end
end

got 101: begin
if ( x==1'b1 ) current = got1;
else current = got10;
z = 1'b0;

end
endcase

end
endmodule

Figure 3.50  Moore Machine Verilog Code
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The Verilog code of the Moore machine of Figure 3.49 is shown in Figure
3.50. After the declaration of inputs and outputs of this module‚ parameter
declaration declares four states of the machine as two-bit parameters. The
square-brackets following the parameter keyword specify the size of parameters
being declared. Following parameter declarations in the code of Figure 3.50‚
the two-bit current reg type variable is declared. This variable holds the current
state of the state machine.

The always block used in the module of Figure 3.50 describes state
transitions and output assignments of the state diagram of Figure 3.49. The
main task of this procedural block is to inspect input conditions (values on rst
and x) during the present state of the machine defined by current and set values
into current for the next state of the machine.

The flow into the always block begins with the positive edge of clk. Since all
activities in this machine are synchronized with the clock‚ only clk appears on
the sensitivity list of the always block. Upon entry into this block‚ the rst input
is checked and if it is active‚ current is set to reset (reset is a declared parameter
and its value is 0). The value put into current in this pass through the always
block gets checked in the next pass with the next edge of the clock. Therefore
this assignment is regarded as the next-state assignment. When this
assignment is made‚ the if-else statements skip the rest of the code of the
always block‚ and this always block will next be entered with the next positive
edge of clk.

Upon entry into the always block‚ if rst is not 1‚ program flow reaches the
case statement that checks the value of current against the four states of the
machine. Figure 3.51 shows an outline of this case-statement.

Figure 3.51  case-Statement Outline

case ( current )
reset: begin
got1: begin
got10: begin

got101: begin
endcase

end
end
end
end

The case-statement shown has four case-alternatives. A case-alternative is
followed by a block of statements bracketed by the begin and end keywords. In
each such block‚ actions corresponding to the active state of the machine are
taken.

Figure 3.52 shows the Verilog code of the got10 state and its diagram from
the state diagram of Figure 3.49. As shown here‚ the case-alternative that
corresponds to the got10 state only specifies the next values for the state and
output of the circuit.

Note‚ for example‚ that the Verilog code segment of state got10 does not
specify the output of this state. Instead‚ the next value of current and the next
value of z are specified based on the value of x. If x is 1‚ the next state becomes
got101 in which z is 1‚ and if x is 0‚ the next state becomes reset.



90 Digital Design and Implementation with Field Programmable Devices

Figure 3.52  Next Values from got10

In this coding style‚ for every state of the machine there is a case-
alternative that specifies the next state values. For larger machines‚ there will
be more case-alternatives‚ and more conditions within an alternative.
Otherwise‚ this style can be applied to state machines of any size and
complexity.

This same machine can be described in Verilog in many other ways. We
will show alternative styles of coding state machines by use of examples that
follow.

A Mealy Machine Example. Unlike a Moore machine that has outputs that are
only determined by the current state of the machine‚ in a Mealy machine‚ the
outputs are determined by the state the machine is in as well as the inputs of
the circuit. This makes Mealy outputs not fully synchronized with the circuit
clock. In the state diagram of a Mealy machine the outputs are specified along
the edges that branch out of the states of the machine.

Figure 3.53  A 101 Mealy Detector
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Figure 3.53 shows a 101 Mealy detector. The machine has three states‚
reset‚ got1 and got10. While in got10‚ if the x input becomes 1 the machine
prepares to go to its next state with the next clock. While waiting for the clock‚
its output becomes 1. While on the edge that takes the machine out of got10‚ if
the clock arrives the machine goes into the got1 state. This machine allows
overlapping sequences. The machine has no external resetting mechanism. A
sequence of two zeros on input x puts the machine into the reset state in a
maximum of two clocks.

The Verilog code of the 101 Mealy detector is shown in Figure 3.54. After
input and output declarations‚ a parameter declaration defines bit patterns
(state assignments) for the states of the machine. Note here that state value 3
or 11 is unused. As in the previous example‚ we use the current two-bit reg to
hold the current state of the machine.

After the declarations‚ an initial block sets the initial state of the machine
to reset. This procedure for initializing the machine is only good for simulation
and is not synthesizable.

This example uses an always block for specifying state transitions and a
separate statement for setting values to the z output. The always statement
responsible for state transitions is sensitive to the circuit clock and has a case
statement that has case alternatives for every state of the machine. Consider
for example‚ the got10 state and its corresponding Verilog code segment‚ as
shown in Figure 3.55.

module mealy_detector ( x‚ clk‚ z );
input x‚ clk;
output z;
parameter [1:0]
reset = 0‚ // 0 = 0 0
got1 = 1‚ // 1 = 0 1
got10 = 2; // 2 = 1 0

reg [1:0] current;

initial current = reset;
always @ ( posedge clk )
begin
case ( current )
reset: if ( x==1 'b1 ) current = got1;

else current = reset;
got1:  if ( x==1'b0 ) current = got10;

else current = got1;
got10:  if ( x==1 'b1 ) current = got1;

else current = reset;
default: current = reset;

endcase
end
assign z= ( current==got10 && x==1'b1 ) ? 1'b1 : 1'b0;

endmodule

Figure 3.54  Verilog Code of 101 Mealy Detector
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Figure 3.55  Coding a Mealy State

As shown, the Verilog code of this state only specifies its next states and
does not specify the output values. Notice also in this code segment that the
case alternative shown does not have begin and end bracketing. Actually,
begin and end keywords do not appear in blocks following if and else keywords
either.

Verilog only requires begin and end bracketing if there is more than one
statement in a block. The use of this bracketing around one statement is
optional. Since the if part and the else part each only contain one statement,
begin and end keywords are not used. Furthermore, since the entire if-else
statement reduces to only one statement, the begin and end keywords for the
case-alternative are also eliminated.

The last case-alternative shown in Figure 3.54 is the default alternative.
When checking current against all alternatives that appear before the default
statement fail, this alternative is taken. There are several reasons that we use
this default alternative. One is that, our machine only uses three of the
possible four 2-bit assignments and 11 is unused. If the machine ever begins
in this state, the default case makes reset the next state of the machine. The
second reason why we use default is that Verilog assumes a four-value logic
system that includes Z and X. If current ever contains a Z or X, it does not
match any of the defined case alternatives, and the default case is taken.
Another reason for use of default is that our machine does not have a hard
reset and we are making provisions for it to go to the reset state. The last
reason for default is that it is just a good idea to have it.

The last statement in the code fragment of Figure 3.55 is an assign
statement that sets the z output of the circuit. This statement is a concurrent
statement and is independent of the always statement above it. When current
or x changes, the right hand side of this assignment is evaluated and a value of
0 or 1 is assigned to z. Conditions on the right hand side of this assignment
are according to values put in z in the state diagram of Figure 3.54.
Specifically, the output is 1 when current is got10 and x is 1, otherwise it is 0.
This statement implements a combinational logic structure with current and x
inputs and z output.
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Huffman Coding Style. The Huffman model for a digital system characterizes it
as a combinational block with feedbacks through an array of registers. Verilog
coding of digital systems according to the Huffman model uses an always
statement for describing the register part and another concurrent statement for
describing the combinational part.

We will describe the state machine of Figure 3.49 to illustrate this style of
coding. Figure 3.56 shows the combinational and register part partitioning that
we will use for describing this machine. The combinational block uses x and
p_state as input and generates z and n_state. The register block clocks n_state
into p_state, and reset p_state when rst is active.

Figure 3.56  Huffman Partitioning of 101 Moore Detector

Figure 3.57 shows the Verilog code of Figure 3.49 according to the
partitioning of Figure 3.56. As shown, parameter declaration declares the
states of the machine. Following this declaration, n_state and p_state variables
are declared as two-bit regs that hold values corresponding to the states of the
101 Moore detector. The combinational always block follows this reg
declaration. Since this a purely combinational block, it is sensitive to all its
inputs, namely x and p_state. Immediately following the block heading, n_state
and z are set to their inactive or reset values. This is done so that these
variables are always reset with the clock to make sure they do not retain their
old values. As discussed before, retaining old values implies latches, which is
not what we want in our combinational block.

The body of the combinational always block of Figure 3.57 contains a case-
statement that uses the p_state input of the always block for its case-
expression. This expression is checked against the states of the Moore
machine. As in the other styles discussed before, this case-statement has
case-alternatives for reset, got1, got10, and got101 states.

In a block corresponding to a case-alternative, based on input values,
n_state and z output are assigned values. Unlike the other styles where current
is used both for the present and next states, here we use two different variables,
p_state and n_state.

The next procedural block shown in Figure 3.57 handles the register part of
the Huffman model of Figure 3.56. In this part, n_state is treated as the
register input and p_state as its output. On the positive edge of the clock,
p_state is either set to the reset state (00) or is loaded with contents of n_state.
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Together, combinational and register blocks describe our state machine in a very
modular fashion.

module moore_detector ( x, rst, clk, z );
input x, rst, clk;
output z;
reg z;
parameter [1:0]

reset = 2'b00, got1 = 2'b01, got10 = 2'b10, got101 = 2'b11;

reg [1:0] p_state, n_state;

always @ ( p_state or x ) begin : combinational
n_state = 0; z = 0;
case ( p_state )

reset: begin
if( x==1'b1 ) n_state = got1;
else n_state = reset; z = 1'b0;

end
got1: begin

if( x==1'b0 ) n_state = got10;
else n_state = got1; z = 1'b0;

end
got 10: begin

if( x==1'b1 ) n_state = got101;
else n_state = reset; z = 1 'b0;

end
got 101: begin

if( x==1'b1 ) n_state = got1;
else n_state = got10; z = 1 'b1;

end
default: n_state = reset;

endcase
end

always @ ( posedge clk ) begin : register
if ( rst ) p_state = reset;
else p_state = n_state;

end

endmodule

Figure 3.57  Verilog Huffman Coding Style

The advantage of this style of coding is in its modularity and defined tasks
of each block. State transitions are handled by the combinational block and
clocking is done by the register block. Changes in clocking, resetting, enabling
or presetting the machine only affect the coding of the register block. If we were
to change the synchronous resetting to asynchronous, the only change we had
to make was adding posedge rst to the sensitivity list of the register block.

A More Modular Style. For a design with more input and output lines and more
complex output logic, the combinational block may further be partitioned into a
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block for handling transitions and another for assigning values to the outputs
of the circuit. For coding both of these blocks‚ it is necessary to follow the rules
discussed for combinational blocks in Section 3.2.4.

module mealy_detector ( x‚ en‚ clk‚ rst‚ z );
input x‚ en‚ clk‚ rst; output z; reg z;
parameter [1:0] reset = 0‚ got1 = 1‚ got10 = 2‚ got11 = 3;

reg [1:0] p_state‚ n_state;

always @( p_state or x ) begin : Transitions
n_state = reset;
case ( p_state )

reset: if ( x == 1'b1 ) n_state = got1;
else n_state = reset;

got1: if ( x == 1'b0 ) n_state = got10;
else n_state = got11;

got10: if ( x == 1'b1 ) n_state = got1;
else n_state = reset;

got11: if ( x == 1'b1 ) n_state = got11;
else n_state = got10;

default: n_state = reset;
endcase

end

always @(p_state or x) begin: Outputting
z = 0;
case ( p_state )

reset: z = 1'b0;
got1: z = 1'b0;
got10: if (x == 1'b1 ) z = 1'b1;

else z = 1'b0;
got11: if ( x==1'b1 ) z = 1'b0;

else z = 1'b1;
default: z = 1'b0;

endcase
end

always @ ( posedge clk ) begin: Registering
if ( rst ) p_state = reset;
else if( en ) p_state = n_state;

end

endmodule

Figure 3.58  Separate Transition and Output Blocks

Figure 3.58 shows the coding of the 110-101 Moore detector using two
separate blocks for assigning values to n_state and the z output. In a situation
like what we have in which the output logic is fairly simple‚ a simple assign
statement could replace the outputting procedural block. In this case‚ z must
be a net and not a reg.
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The examples discussed above‚ in particular‚ the last two styles‚ show how
combinational and sequential coding styles can be combined to describe very
complex digital systems.

3.3.5 Memories

Verilog allows description and use of memories. Memories are two-dimensional
variables that are declared as reg. Verilog only allows reg data types for
memories. Figure 3.59 shows a reg declaration declaring mem and its
corresponding block diagram. This figure also shows several valid memory
operations.

Figure 3.59  Memory Representation

Square brackets that follow the reg keyword specify the word-length of the
memory. The square brackets that follow the name of the memory (mem)‚
specify its address space. A memory can be read by addressing it within its
address range‚ e.g.‚ mem[956]. Part of a word in a memory cannot be read
directly‚ i.e.‚ slicing a memory word is not possible. To read part of a word‚ the
whole word must first be read in a variable and then slicing done on this
variable. For example‚ data[7:4] can be used after a memory word has been
placed into data.

With proper indexing‚ a memory word can be written into by placing the
memory name and its index on the left hand side of an assignment‚ e.g.‚
mem[932] = data; ‚ memories can also be indexed by reg or net type variables‚
e.g.‚ mem[addr]‚ when addr is a 10-bit address bus. Writing into a part of the
memory is not possible. In all cases data directly written into a memory word
affects all bits of the word being written into. For example to write the four-bit
short_data into a location of mem‚ we have to decide what goes into the other
four bits of the memory word.
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Figure 3.60 shows a memory block with separate input and output busses.
Writing into the memory is clocked‚ while reading from it only requires rw to be
1. An assign statement handles reading and an always block performs writing
into this memory.

module memory (inbus‚ outbus‚ addr‚ clk‚ rw);
input [7:0] inbus;
input [9:0] addr;
output [7:0] outbus;
input clk‚ rw;

reg [7:0] mem [0:1023];

assign outbus = rw ? mem [addr] : 8’bz;

always @ (posedge clk)
if (rw == 0) mem [addr] = inbus;

endmodule

Figure 3.60  Memory Description

3.4 Writing Testbenches

Verilog coding styles discussed so far were for coding hardware structures‚ and
in all cases synthesizability and direct correspondence to hardware were our
main concerns. On the other hand‚ testbenches do not have to have hardware
correspondence and they usually do not follow any synthesizability rules. We
will see that delay specifications‚ and initial statements that do not have a one-
to-one hardware correspondence are used generously in testbenches.

For demonstration of testbench coding styles‚ we use the Verilog code of
Figure 3.61 that is a 101 Moore detector‚ as the circuit to be tested.

This description is functionally equivalent to that of Figure 3.50. The
difference is in the use of condition expressions (?:) instead of if-else
statements‚ and separating the output assignment from the main always block.
This code will be instantiated in the testbenches that follow.

3.4.1 Generating Periodic Data

Figure 3.62 shows a testbench module that instantiates moore_detector and
applies test data to its inputs. The first statement in this code is the 'timescale
directive that defines the time unit of this description. The testbench itself has
no ports‚ which is typical of all testbenches. All data inputs to a circuit-under-
test are locally generated in its testbench.
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module moore_detector ( x‚ rst‚ clk‚ z );
input x‚ rst‚ clk;
output z;
parameter [1:0] a=0‚ b=1‚ c=2‚ d=3;
reg [1:0] current;

always @( posedge clk )
if ( rst ) current = a;
else case ( current )

a : current = x ? b : a ;
b : current = x ? b : c ;
c : current = x ? d : a ;
d : current = x ? b : c ;
default : current = a;

endcase
assign z = (current==d) ? 1'b1 : 1'b0;

endmodule

Figure 3.61  Circuit Under Test

Because we are using procedural statements for assigning values to ports of
the circuit-under-test‚ all variables mapped with the input ports of this circuit
are declared as reg. The testbench uses two initial blocks and two always
blocks. The first initial block initializes clock‚ x‚ and reset to 0‚ 0‚ and 1
respectively. The next initial block waits for 24 time units (ns in this code)‚
and then sets reset back to 0 to allow the state machine to operate.

The always blocks shown produce periodic signals with different
frequencies on clock and x. Each block waits for a certain amount of time and
then it complements its variable. Complementing begins with the initial values
of clock and x as set in the first initial block. We are using different periods for
clock and x‚ so that a combination of patterns on these circuit inputs is seen. A
more deterministic set of values could be set by specifying exact values at
specific times.

`timescale 1 ns / 100 ps

module test_moore_detector;
reg x‚ reset‚ clock;
wire z;
moore_detector uut ( x‚ reset‚ clock‚ z );
initial begin

clock=1'b0; x=1'b0; reset=1'b1;
end
initial #24 reset=1'b0;
always #5 clock=~clock;
always #7 x=~x;

endmodule

Figure 3.62  Generating Periodic Data
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3.4.2 Random Input Data

Instead of the periodic data on x we can use the $random predefined system
function to generate random data for the x input. Figure 3.63 shows such a
testbench.

This testbench also combines the two initial blocks for initially activating
and deactivating reset into one. In addition‚ this testbench has an initial block
that finishes the simulation after 165 ns.

When the flow into a procedural block reaches the $finish system task‚ the
simulation terminates and exits. Another simulation control task that is often
used is the $stop task that only stops the simulation and allows resumption of
the stopped simulation run.

`timescale 1 ns / 100 ps

module test_moore_detector;
reg x‚ reset‚ clock;
wire z;
moore_detector uut( x‚ reset‚ clock‚ z );
initial begin

clock=1'b0; x=1'b0; reset=1'b1;
#24 reset=1'b0;

end
initial #165 $finish;
always #5 clock=~clock;
always #7 x=~x;

endmodule

Figure 3.63  Random Data Generation

3.4.3 Synchronized Data

Independent data put into various inputs of a circuit may not be random
enough to be able to catch many design errors. Figure 3.64 shows another
testbench for our Moore detector that only reads random data into the x input
after the positive edge of the clock.

The third initial statement shown in this code uses the forever construct
to loop forever. Every time when the positive edge of clock is detected‚ after 3
nanoseconds a new random value is put into x. The initial statement in charge
of clock generation uses a repeat loop to toggle the clock 13 times every 5
nanoseconds and stop. This way‚ after clock stops‚ all activities cease‚ and the
simulation run terminates. For this testbench we do not need a simulation
control task.

The testbench of Figure 3.64 uses an invocation of $monitor task to
display the contents of the current state of the sequence detector every time it
changes. The initial statement that invokes this task puts it in the background
and every time uut.current changes‚ $monitor reports its new value. The
uut.current name is a hierarchical name that uses the instance name of the
circuit-under-test to look at its internal variable‚ current.
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`timescale 1ns/100ps

module test_moore_detector;
reg x‚ reset‚ clock;
wire z;

moore_detector uut( x‚ reset‚ clock‚ z );

initial begin
clock=1'b0; x=1'b0; reset=1'b1;
#24 reset=1'b0;

end
initial repeat(13) #5 clock=~clock;
initial forever @(posedge clock) #3 x=$random;
initial $monitor("New state is %d and occurs at %t"‚ uut.current‚ $time);
always @(z) $display("Output changes at %t to %b"‚ $time‚ z);

endmodule

Figure 3.64  Synchronized Test Data

The $monitor task shown also reports the time that current takes a new
value. This time is reported by the $time task. The uut.current variable uses
the decimal format (%d) and $time is reported using the time format (%t).
Binary‚ Octal and Hexadecimal output can be obtained by using %b‚ %o‚ and
%h format specifications.

The last statement in this testbench is an always statement that is
sensitive to z. This statement uses the $display task to report values put on z.
The $display task is like the $monitor‚ except that it only becomes active when
flow into a procedural block reaches it. When z changes‚ flow into the always
statement begins and the $display task is invoked to display the new value of z
and its time of change. This output is displayed in binary format. Using
$monitor inside an initial statement‚ for displaying z (similar to that for
uut.current) would result in exactly the same thing as the $display inside an
always block that is sensitive to z.

3.4.4 Applying Buffered Data

Examples discussed above use random or semi-random data on the x input of
the circuit being tested. It is possible that we never succeed in giving x
appropriate data to generate a 1 on the z output of our sequence detector. To
correct this situation‚ we define a buffer‚ put the data we want in it and
continuously apply this data to the x input.

Figure 3.65 shows another testbench for our sequence detector of Figure
3.61. In this testbench the 5-bit buff variable is initialized to contain 10110.
The initial block that follows the clock generation block‚ rotates concatenation
of x and buff one place to the right 3 nanoseconds after every time the clock
ticks. This process repeats for as long as the circuit clock ticks.



`timescale 1ns/100ps

module test_moore_detector;
reg x, reset, clock;
wire z;

reg [4:0] buff;
initial buff = 5'b10110;

moore_detector uut( x, reset, clock, z );

initial begin
clock=1'b0; x=1'b0; reset=1'b1;
#24 reset=1'b0;

end

initial repeat(18) #5 clock=~clock;
initial forever @(posedge clock) #3 {buff,x}={x,buff};
initial forever @(posedge clock) #1 $display(z, uut.current);

endmodule
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Figure 3.65  Buffered Test Data

The last initial statement in this description outputs z and uut.current 1
nanosecond after every time the clock ticks. The $display task used for this
purpose is unformatted which defaults to the decimal data output.

3.4.5 Timed Data

A very simple testbench for our sequence detector can be done by applying test
data to x and timing them appropriately to generate the sequence we want, very
similar to the way values were applied to reset in the previous examples. Figure
3.66 shows this simple testbench.

Techniques discussed in the above examples are just some of what one can
do for test data generation. These techniques can be combined for more
complex examples. After using Verilog for some time, users form their own test
generation techniques. For small designs, simulation environments generally
provide waveform editors and other tool-dependent test generation schemes.
Some tools come with code fragments that can be used as templates for
testbenches.

An important issue is developing testbenches is external file IO. Verilog
allows the use of $readmemh and $readmemb system tasks for reading hex
and binary test data into a declared memory. Moreover, for writing responses
from a circuit-under-test to an external file, $fdisplay can be used. Examples
for these features of the language will be shown in Chapters 11 and 14.
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`timescale 1ns/100ps

module test_moore_detector;
reg x, reset, clock;
wire z;

moore_detector uut( x, reset, clock, z) ;

initial begin
clock=1'b0; x=1'b0; reset=1'b1;
#24 reset=1'b0;

end

always #5 clock=~clock;

initial begin
#7 x=1;
#5 x=0;
#18 x=1;
#21 x=0;
#11 x=1;
#13 x=0;
#33 $stop;

end

endmodule

Figure 3.66  Timed Test Data Generation

3.5 Synthesis Issues

Verilog constructs described in this chapter included those for cell modeling as
well as those for designs to be synthesized. In describing an existing cell,
timing issues are important and must be included in the Verilog code of the
cell. At the same time, description of an existing cell may require parts of this
cell to be described by interconnection of gates and transistors. On the other
hand, a design to be synthesized does not include any timing information
because this information is not available until the design is synthesized, and
designers usually do not use gates and transistors for high level descriptions for
synthesis.

Considering the above, taking timing out of the descriptions, and only using
gates when we really have to, the codes presented in this chapter all have one-
to-one hardware correspondence and are synthesizable. For synthesis, a
designer must consider his or her target library to see what and how certain
parts can be synthesized. For example, most FPGAs do not have internal three-
state structures and three-state bussings are converted to AND-OR busses.
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3.6 Summary

This chapter presented the Verilog HDL language from a hardware design point
of view. The chapter used complete design examples at various levels of
abstraction for showing ways in which Verilog could be used in a design. We
showed how timing details could be incorporated in cell descriptions. Aside
from this discussion of timing‚ all examples that were presented had one-to-one
hardware correspondence and were synthesizable. We have shown how
combinational and sequential components can be described for synthesis and
how a complete system can be put together using combinational and sequential
blocks for it to be tested and synthesized.

This chapter did not cover all of Verilog‚ but only the most often used parts
of the language.
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