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Abstract

In order to determine the applicability of both programmable software tools and pro-
grammable hardware for asynchronous logic applications an implementation, employing
FPGA devices, of the instruction decode and the instruction execution stages of an asyn-
chronous microprocessor, the ADLX, is presented. The foundation for that microprocessor
is based on the employment of event driven logic, specifically 2-phase transition signalling,
that functions within the conceptual framework of a Sutherland micropipeline.

The entire design has been constructed from a series of VHDL descriptions that have
been compiled and simulated using both the Cypress WARP VHDL Development System
and the AMD MACHXL software packages. A number of the asynchronous specific areas of
the ADLX have been synthesized using Petrify, a Petri Net tool designed for the manipula-
tion of concurrent specifications of asynchronous control circuits. The ADLX itself has been
constructed from a range of “off-the-shelf” products including HM 65764 high speed CMOS
SRAM semiconductors and FPGA logic devices.
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1 Introduction

Almost all digital logic produced today is based upon the synchronous design approach. In
such a framework a system is a collection of clocked finite state machines which themselves are
controlled by a master clock. These synchronous systems require specific interface protocols
whenever a signal crosses from the domain of one particular clock to the domain of another
clock. These systems behave in a discrete and deterministic manner.

Asynchronous logic is significantly different. There is no clock that is used to regulate
the timings of state changes. All subsystems are allowed to exchange information at mutually
negotiated instants whilst not being bounded by any external timing regime. This removal of

the clock allows an asynchronous design to be naturally conservative with regards to power



consumption. As the inherent nature of asynchronous logic is to be data driven, only those
areas of a circuit that are actually performing useful work will be consuming power. The fewer
the number of transistors that are active in a device, the less current will be consumed.

The only asynchronous versions of commercial processors currently available are the Amulet
series [2], which are based upon Sutherlands micropipeline architecture [19]. The Amulet designs
were produced without the help of formal asynchronous design tools, which required a lot of
effort. Often, asynchronous CAD tools tend to be “bolt-ons” to more sophisticated synchronous
design packages [18] or tend to be “experimental” in aspect and thus have not been so widely
disseminated throughout the design community. Of the currently available asynchronous CAD
tools, the Tangram language compiler [21] is best known for being able to produce circuits that
are equivalent to or better than their synchronous counterparts [20].

Petri Nets [12] are a well established mechanism for systems modelling. They are mathemat-
ically sound and can be subjected to a large variety of analysis methods, for example, to test for
the presence of deadlocks. Since Petri Nets are essentially an event driven formalism they are
ideal for modelling asynchronous hardware, which is also event driven. Petri Net descriptions
must be translated into logic equations by means of an appropriate software tool since the stan-
dard techniques for designing synchronous logic are not valid. In order to generate asynchronous
hardware from Petri Net descriptions, a state of the art software tool, Petrify [1], can be used.

A methodology for the high level design of processor architectures using Petri Nets was
described in [16]. This methodology allows the development of Petri Net models of the main
stages of any type of asynchronous processor that functions with a Sutherland micropipeline
framework. This allows a designer to refine the model according to the results of the behavioural
analysis of the nets. The analysis can be performed using existing methods for state graph and
partial order traversal. The properties obtained include freedom from deadlocks, concurrency
and conflict relations between individual actions and performance characteristics.

After the design has been developed and validated it becomes possible, through the use of
VHDL descriptions, to employ field-programmable gate array logic that will allow a custom
device to be rapidly prototyped and tested. As any asynchronous circuit can be represented by
a combination of one or more of the above methods, it therefore becomes possible to develop
FPGA versions of equivalent synchronous digital devices that can then be used for comparison
purposes. An FPGA version of a digital circuit is always likely to be slower than an equivalent
ASIC version, due to the fact that the FPGA will very likely be constructed from a series of
logic blocks interconnected via regularly structured wiring channels rather than custom-built
logic, but this does not mean that meaningful comparisons cannot be made.

We present the design of a microprocessor that utilises the framework of asynchronous logic in
the design of a simple micropipelined microprocessing unit. This microprocessor, called ADLX
(Asynchronous Deluxe), is essentially the asynchronous version of Henessey and Patterson’s
well known DLX RISC processor design [6]. Unlike [16], which concentrated on the high level
aspects of the design, this paper presents the implementation aspects. This was accomplished

using commonly available FPGA logic devices.



The paper is organised as follows. In section 2 the issues relating to synchronous and asyn-
chronous FPGA design will be discussed and in section 3 the modelling approach of the ADLX
using Petri Nets will be presented. In section 4 we examine the main datapath pipeline of the
ADLX together with a description of the signalling mechanism implemented in the design. Sec-
tion 5 details the synthesis of the asynchronous specific areas of the datapath as carried out by
performing a Petri Net analysis whilst section 6 will be concerned with describing the CAD tools
used and simulation results achieved. The implementation of the ADLX is covered in section 7

with testing issues described in section 8. Section 9 concludes the paper.

2 FPGA design issues for Asynchronous logic

There is no denying that FPGA’s are an extremely effective means of performing fast develop-
ment and test of digital circuits. The employment of large amounts of simple logic gates and
datapaths that can be rapidly programmed and reprogrammed until a desired solution has been
found is a very cost effective method of hardware design.

The disadvantage in using FPGA’s for asynchronous logic development is concerned with
the physical architecture of such devices. Asynchronous circuits have to be able to deal with
synchronisation issues, hazards and arbitration concerns and currently it is still not possible to
address these problems efficiently in current FPGA architectures that have been constructed
with the implementation of strictly synchronous designs in mind [4].

These restrictions though do not mean that asynchronous FPGA’s cannot be developed.
Whilst it is true that the software mapping, routing and placement algorithms may reintroduce
hazards into a design, for example isochronic forking problems in quasi-delay insensitive circuits
[5], more robust asynchronous designs, especially in the case of bounded-delay circuits, can be
constructed.

With regards to timing issues it has already been stated that FPGA’s are geared towards
synchronous clocked implementations of circuit designs. There is a discipline though, “self-
timed design”, that allows a signal exchange to be carried out in a “handshaking” manner and
which functions by allowing actions to be decided upon the edge of a signal transition which
may have an indeterminate, but finite, periodicity between such events. This process of signal
exchange fits in very well with the bounded-delay domain of asynchronous logic. By using
a technology-independent method a designer can model at a high level, for example using a
hardware description language, asynchronous circuits that can be directly targeted to a specific
hardware device. There are problems associated with this procedure in that there may be a loss
of efficiency in such a translation from software to hardware but these issues can and have been
overcome [11] [15]. Self-timed implementations of asynchronous circuits tend also to be expensive
in terms of logic cells and routing resources required but efficient self-timed micropipelines have

been developed [13].



3 Petri Net modelling of ADLX

DLX, pronounced “Deluxe”, was a simple microprocessor designed to use a load/store archi-
tecture and is described as “the average of a number of recent experimental and commercial
machines” [6]. The overall design was based upon observations of the most commonly occurring
primitives in programs, thus allowing an efficient pipeline and an easily decoded instruction
set to be developed. Over the years, DLX has provided such a good architectural model for
both study and design evaluation that recent reworking has resulted in the development of a
superscalar version [7].

The fact that DLX has an architecture that is very simple to understand has made it an
excellent model to use as the basis for the equivalent design of an asynchronous microprocessor.
This asynchronous processor, called ADLX, was first modelled and verified at a high level in
[9] using Petri Nets. Since Petri Nets are an ideal means for the modelling and simulation
of concurrent systems, they can be effectively employed in the development of VLSI circuits.
As such, Petri Nets have recently been used in the design of a number of synchronous and
asynchronous microprocessor projects [16, 23].

A brief description of the semantics of Petri Nets is as follows. Any Petri Net is a tuple
(representing a graph) such that P = (5,7, F, My) where S = the set of vertices that represents
the state components of the graph, T' = the set of transitions (or actions) that can be performed,
I = the flow relation, defined as #' C (S x T) U (1 x ) (both S and T are finite disjoint sets)
and My = the initial state marking of the graph, defined as My C 5. Tokens flow round a net,
representing events. In circuit terms, they indicate signal changes. For a fuller description of
the semantics of Petri Nets see [12]. A thorough discussion of hardware synthesis from Petri
nets falls outside the scope of this paper; the interested reader is referred to [1].

The design methodology employed during the development of ADLX was as follows. The
main ADLX processor design was first modelled at a high level within a micropipeline frame-
work, with decomposition taking place by creating refined Petri Net models of each processing
stage. A basic model was developed for all possible instructions that could be executed in that
stage. These individual instruction execution Petri Nets could then be combined into one single
processing stage Petri Net which could then be translated by the Petrify software tool into a
logic diagram that could be used for subsequent logical decomposition and synthesis. In this
paper we are only concerned, for the sake of brevity, with the implementation of the Instruction
Decode and Execution stages of ADLX. We aim to show how the top-level abstract view was of
those stages was decomposed. The top-level view of ADLX is shown in Figure 1.

The decomposition of the Instruction Decode unit as relating to the execution of an R-type
(ALU operation) instruction is shown in Figure 2. This shows how an instruction can be decoded
into a number of address or opcodes that are employed in either the ID stage or further down
the ADLX pipeline. The rs! and rs2 addresses are used to forward a 32-bit data value to the A
and B multiplexor units respectively. The rd address is forwarded into a 3-stage FIFO pipeline

which is ultimately used for the write back of a data value to the register file.
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Figure 1: Top-level abstract view of the ADLX design.
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Figure 2: Petri Net model of decode operation of an R-type instruction.



In [16] it was shown how such a model can be refined to produce more detailed Petri Net

descriptions of each stage of the pipeline. The paper presented techniques for converting detailed

Petri Net models into parts of the micropipeline control of the processor. A brief summary of

these techniques can be described as follows: In order to convert a Petri Net into a circuit

description a /it net-level transformation /rm must be performed. There are two possible ways

of doing this:

Conversion of multiple input ares: This is the merging of a number of control oper-
ations and so can often be described through the use of an XOR element, for example if
we take the Petri Net fragment below (taken from the Petri Net of the Instruction Fetch
pipeline stage) and provided that we ensure that all inputs will be mutually exclusive we

will realise a hazard-free circuit.
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Figure 3: Petri Net to circuit translation of places with multiple input arcs

Synchronisation of transitions: This may be a collection of transitions that, not being
capable of synchronisation by themselves, would require a single input event to enable
the synchronisation of a request for a particular operation. This type of sequencing is

employed extensively throughout the various processing stages of the ADLX.
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Figure 4: Petri Net to circuit translation for the synchronisation of transitions

4 Logical implementation of ADLX

The development of ADLX was carried out under the following constraints:

o The stages of execution or how an instruction is actually pipelined through the synchronous

DLX was to be adhered to as closely as possible;

o The physical logic devices of the DLX were to be duplicated in the ADLX including, where

it was necessary, the employment of strictly asynchronous control circuitry;



¢ The DLX instruction set was to be implemented without any changes to the composition

of that instruction set.

The fundamental change that distinguishes ADLX from DLX is in the manner of the pipeline
control of these processors. DLX has one central control unit that is used to forward control
signals to the relevant logic units at fixed intervals. In ADLX the control signals that are required
to ensure correct operation of a particular stage of pipeline execution are generated from within
that particular pipeline stage. This effectively allows each pipeline stage to be actively processing
for as long as required in order to perform a specific function.

The signal control mechanism used within ADLX is known as transition signalling. In using
such a transition signalling method, the actual transition itself (i.e. an event) is active on both
the rising and falling edges and allows up to twice the normal clocking rate. The operation of

such a signalling method is shown in Figure 5.
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Figure 5: Rising and falling transition events.

e The sender initiates a communication by first placing data onto the data lines at a and

then placing an event onto the request line at b.

e The receiver accepts the request. The data presented to the receiver will be stable at ¢,

and so can be processed according to the logic of the receiver at d.

o When the receiver has finished processing, an acknowledgement is returned to the sender

at e.

Transition signalling removes the need to view signals as having either a high or low state
and thus of having to return to some neutral state between events (the electrical level of the
signal then contains no information). Communication using transition signalling, known as the
Two-Phase Bundled Data protocol, is illustrated in Figure 6.
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Figure 6: Two-phase bundled data protocol.

A sequence of sender-receiver logic functions is then connected as shown in Figure 7.
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Figure 7: Sender-receiver interconnections.

This type of topology is the Sutherland micropipeline [19]. Typically, a micropipeline is
composed of a hybrid of bounded-delay and delay-insensitive logic whose topology is to have
all the processing actions, the combinatorial logic, forming a bounded-delay datapath that is
encapsulated within a delay-insensitive control circuit [3]. The general configuration of a mi-
cropipeline employing 2-phase signalling can be seen in Figure 8 and can be translated into a

top-level abstract view of the ADLX pipeline, Figure 9.
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Figure 9: Top-level view of the ADLX pipeline.



The main drawback of 2-phase signalling is that a individual wire is required for the transfer
of the enabling signal relating to a particular instruction. This can be very costly in terms
of the required silicon area, especially where large instruction sets are involved, but if suitable
translation logic is employed a collection of independent signals can be multiplexed in order to
utilise common logic blocks. A top-level schematic of the logic implemented in the FPGA ADLX

can be seen in Figure 10.
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Figure 10: Complete logic schematic of the implemented area of the ADLX.

ADLX incorporates a 32-bit pipeline and has a basic functionality that reads operands from
the register file, manipulates those operands in the ALU, and then stores any resultant value back
to the register file or to an external memory. The instruction set embodies a fixed-field method
of decoding with three types of instruction being provided: loads and stores, ALU operations

(integer arithmetic only - no floating point functionality is implemented) and branches. The



bitmap pattern of these instructions is shown in Figure 11.
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Figure 11: Instruction layout of the ADLX.

The main features of the ADLX implementation are as follows.

4.1 The Decode Unit

The function of the decode unit is to convert a 2-bit level-based bit pattern into a 1-bit event-
based signal which is then used as the enabling signal for the processing actions of an instruction
within the Instruction Decode pipeline stage. Initially, bits 0-1 of an instruction opcode are
decoded to produce a series of level-based signals which are then forwarded to a number of
select elements as boolean enables, see [14]. When used in conjunction with the data value, the
enabling signal for the Instruction Decode stage is generated within the Instruction Fetch stage.
This Boolean input generates an event-based signal on one of the output true lines of one of
those select elements (when the boolean has a logical high value) and no outputs on any of the
other true select output lines. Signals will be generated on the output false lines but these are

not required as part of the ADLX specification. This 1-hot of 3 decoding allows for the efficient

translation of a level-based signal into an event-based signal.
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Figure 12: 1-hot of 3 decoding of an instruction opcode.

Bits 2-5 of the opcode are forwarded to the Iixecution stage to be decoded there. As much
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as possible all cases of decode and function determination are carried out only when and where

they are needed.

4.2 The Forward FIFO

The Forward FIFO is a simple three stage micropipeline with no internal combinatorial logic
that is used to propagate a Register File destination address, for reading or writing operations,
to the Register File. Each destination address is a 5-bit opcode that is stored in a series of

transparent latches.

4.3 The Register File

The Register File consists of 32 x 32-bit latches that provide 1024 storage elements in total.
Register(0) is hard-wired to zero whilst Register(31) is used to preserve the old value of the

Program Counter after a branch address calculation has been carried out.

4.4 The Arithmetic Logic Unit

In order to simplify the basic design the implementation of the Arithmetic Logic Unit provides
only the integer functions of addition and subtraction. The internal configuration of the ALU

is based on an implementation described in [22] and is shown in Figure 13.

B3 carry(4)
sum(3)
e
B2 ‘j carry(3)
sum(2)
B
B1 ‘j carry(2)
sum(l)
=R
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} > Lo sum(0)
carry(0)
@
subtract

Figure 13: Internal configuration of the Arithmetic Logic Unit.

4.5 Storage elements - the Event Buffer

The logic elements in Figure 10 labelled eb are an asynchronous version of synchronous tri-state
devices and have been designed to respond to transitional input events. These event buffers are
a modified form of a capture-pass storage element and have been derived from an original design
of a transparent latch as detailed in [14]. The design of the event buffer has been verified by
Petrify. The full analysis of this device is described in [10].
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5 Petri Net based synthesis of ADLX

Petri Nets provide a highly suitable means for the modelling of asynchronous behaviour. Petrify
has been used to carry out the required synthesis tasks. Petrify produces an optimised net-list
in the target gate library that preserves the original input/output signal behaviour. This net-list
is guaranteed to be speed-independent, ensuring that the net-list will be hazard-free regardless
of the distribution of gate delays or multiple input signal changes. For a fuller description of the
theory and functionality of Petrify see [1].

The realisation of the Call elements of ADLX was carried out by using Petrify to perform
the generation of the synthesis equations. The 2-input Call element, of the type that is used to
control the functional operation of the PC increment unit, has a Petri Net whose behavioural
analysis leads to the production of those synthesis equations.

The 2-input Call element has the symbolic representation shown in Figure 14(a) with a

corresponding internal logic configuration shown in 14(b).

R1 L
Yp— Dﬁ@*
D1~ -~ req b1 |[” R req

CALL Lf JD—‘
D2 <-—— <— ack D2 L»

A T—»)D:@

R2

ack

(a) symbol (b) logic configuration
notation

Figure 14: Call element specification.

The Call has a behaviour that is illustrated in the Petri Net shown in Figure 15.

R1 D1 D2 R2

(setl) (resetl)

O

req

Figure 15: Petri Net specification of a Call element.

The synthesis equations for this Call element as produced by Petrify are as follows:
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req = (R1-R2)+ (R1-R2)

D1 = (ack-D2-D1)+ (ack-D2-D1)+ (R1-ack - D2) +
(R1-ack - D2)+ (R1-D1)

D2 = (ack-D2-D1)+ (ack-D2-D1)+ (R2-ack - D1) +
(R2-ack - D1)+ (R2- D2)

These equations are exactly the same as those generated from a VHDL structural description
of the Call element as synthesized by the WARP tool [17]. If we take the DI synthesis equation

we can minimise the sum-of-products as follows.

ack®D2

D1 = ((ack- D24 ack-D2)-D1)+
ack®D2

((ack - D2+ ack - D2)-R1) + (R1- D1)

Let

r = (ack® D2)

then

D1 = (R1-D1)+ (¢ D1)+ (z- R1)

and so rearranging to a more familiar format for a C-element

D1 = (2-R1)+(D1-(x+ R1))

we can show that this is equivalent to one half of the Call element as we would expect.

Figure 16: Logical implementation of synthesis equation D1.

The technology mapping aspects of Petrify allow for the targeting of specific cell libraries for
implementation, but at the moment this facility does not extend towards FPGA architectures.
Petrify essentially processes an original specification as a single unit and generates a complex

gate description as an end result. Care must therefore be taken when employing Petrify for
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FPGA synthesis in that the initial specification has been sufficiently decomposed into modules
that are of a size that can be mapped to the FPGA architecture under question. The case may
be that inefficient logic utilization by design tools can significantly reduce the physical amount
of gates available for an implementation. If we consider the complex gate in 17(a) we can see
how the decomposition of this gate, 17(b), may result in a circuit into which hazards may be

introduced purely because the complexity of inter-chip routing will cause greater delays.

. aHjI
b
p— .
b >>
c— ) c >

d —-
e —» d——-
e —»

(@) (b)

Figure 17: Decomposition of complex gates.

Alternatively, a large logic block may be implemented as a single complex gate that cannot be
mapped to an individual FPGA macrocell or the complex gate may require a greater number of
product terms than that macrocell supports. In either case this may result in a partitioning that
could violate a timing constraint giving a circuit realization that is no longer speed-independant.
These concerns are especially relevant when developing bounded-delay or quasi-insensitive delay,
QDI, applications. In the case of QDI logic decomposition by a fitter program across several
macrocells may introduce extra levels of logic that disrupts the timing conditions necessary for
correct operation.

Petrify does address some of these issues and will perform a resynthesis of a logic design
in order to ensure that no gate transition is left unsensed. In this respect Petrify answers the

application of decomposition and synthesis concerns raised in [5].

6 Compilation and simulation

ADLX has been implemented using a number of structural representations that have been devel-
oped as a series of VHDL behavioural descriptions. A top-down, divide and conquer approach
was taken in which logic diagrams were partitioned into a collection of smaller and smaller mod-
ules until a point was reached at which it could be determined that a VHDL description could
be implemented with the aim of target fitment in a particular device. An abstract view of the
logic to be realised in ADLX, as seen in Figure 10, can be seen as a collection of the modules
that were constructed.

A number of both software and hardware tools were used for the VHDL compilation and
subsequent programming of the FPGA devices. A flowchart illustrating how these packages were

connected together is shown in Figure 19.
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Figure 18: FPGA design modules.
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Figure 19: FPGA design flowchart.

Depending upon the current FPGA device to be programmed a typical sequence of operations

of compilation, simulation and device targeting would be as follows.

e A VHDL file describing a logic module, either structural or behavioural in aspect, would
be written and compiled using the VHDL compiler in the CYPRESS WARP Development
System [17]. By incorporating a specific target device in the compilation process two
main output files would be generated. The first would be a report file that would list
the minimised logic equations describing that logic along with other such information as
pin-out placement details. The second file would be an industry standard jedec file that

could be used to program the target device in question.

e Once a successful compilation had taken place the jedec file could be imported into the
CYPRESS NOVA Simulation package. NOVA is a jedec functional simulator tool that
can be used to read or write stimulus files and simulate the behaviour of a design using a

waveform editor.
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o After the simulation of the compiled design the jedec file could then be used to program
a device by employing a Micromaster 1000 programming as supplied by ICE Technology.

o If the device to be targeted for implementation was not of a type supported by the CY-
PRESS FPGA development tools an alternative software package as produced by Advanced
Micro Devices, MACHXL [8], was employed instead. MACHXL is a software package that
is designed for the generation of jedec files that are used to program a number of devices

in the AMD Mach1XX - Mach4XX range of FPGA products.

¢ In order to program a Mach device a VHDL file would be compiled and simulated in exactly
the same manner as described above. If the design was satisfactory a skeleton MACHXL
pds file would be created into which would be incorporated the synthesis equations as
generated by the respective WARP report file. This pds file could then be compiled to

produce a MACHXI jedec to program a device in the manner described above.

o If Petrify was to be employed in order to synthesise an asynchronous logic block a Petri
Net that represented the behaviour of that logic would be created. This Petri Net would
be used to generate the speed-independent synthesis equations that represented the logic
under investigation. These synthesis equations would be imported into a MACHXL pds

file for compilation using exactly the same procedure as above.

With regards to the process of performing simulation using the WARP NOVA tool two
examples illustrating the usage of the waveform editor can be seen in the following diagrams.
In the first case the functionality of the 1-hot of 3 decode mechanism can be seen followed by

the operation of a 2-input Call element.

T

EE Mova: DECODER Device: C22¥10
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19i
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26r
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Figure 20: NOVA simulation of the decode unit.
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Figure 21: NOVA simulation of a 2-input Call element.

From the point of view of the complete synthesis of any design both WARP and MACHXL

will follow a common route;

o Boolean equations which may be generated from a schematic diagram, a truth table or an

HDL.

o Simplification in which Boolean equations may be reduced often with the aim of removing

redundant terms.

o Minimisation in which further equation manipulation may be carried out depending upon
the target technology at which they are aimed. Such manipulation may be mandatory in
order to comply with device resource requirements or may be purely optional e.g. compiling

for area or speed concerns.

e Technology mapping in which the Boolean equations are implemented in a specific archi-

tecture.

The last two points described above are often referred to as place-and-fitting methods and
they raise important questions for asynchronous logic design especially with regards to signal
delay requirements. Currently most FPGA architectures have little or no support for building
delay elements and this can have serious implications for example when attempting to implement
bounded-delay circuits. There is the possibility that changes in the ordering of bounded-delay
signals, as carried out by a routing algorithm, may reorder those signals to the extent that
bounded delay data constraints are no longer valid.

A converse argument to the above concerns speed-independent circuits. As modules of this
type of logic will be beholden to local time constraints, partitioning and placement issues will
be less likely to cause timing problems within a design. This allows greater flexibility in how

these circuits may be mapped to an architecture.
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7 Implementation

The physical implementation of ADLX has used a number semiconductor devices, e.g. 4 x HM
65764 8K x 8 High Speed CMOS SRAM memory elements that are used to implement the
register file, and two types of programmable logic devices, iCT 22V10’s and AMD Mach110’s.
The iCT logic has been used to implement event buffers and control circuitry, for example,
C-elements, Call blocks, Select elements, and Multiplexors.

The Mach110 devices, which are capable of supporting approximately three times the logic
of a 22V10, have been used to construct the larger and more regular array type structures, such
as the Register file, the Increment unit, the ALU, and the Forward FIFO mechanism.

When examining implementation issues we can see how the asynchronous aspects of a logical
design have to be embedded within the strictly synchronous framework of a programmable
device. If we consider the event buffer, which has been described as an asynchronous version of
a synchronous tri-state element, and implemented in a 22V10 we can see how the output from
that event buffer, which may be an asynchronous event based control signal, is still requlated by

the controlling actions of a synchronous tri-state.

product

Tl U

. ~

In > Event 1/10 Out
Buffer - cell

AND/OR
plane

Figure 22: Asynchronous logic embedded in a synchronous framework.

With regards to ensuring that timing conditions were met throughout the ADLX pipeline
a mixture of strategies had to be used. When a Petrify complex gate representation of a logic
block was being developed it was necessary to ensure that the logic specification had been
sufficiently decomposed down to a module size that, even if partitioning was to occur within
the target device, the delay constraints would still be met. The fact that Petrify generated
a speed-independent circuit description did not remove the small but finite delay requirements
that would still be needed to guarantee the correct functionality of the design. A certain amount
of partitioning could take place of a complex gate, but it must be ensured that changes to the
delay propagation of any internal signal did not conflict with the timing requirements of the
surrounding environment. If these constraints were exceeded due to partitioning it would be
likely that hazards would be introduced into the circuit.

To ensure bounded-delay timing conditions were met a more ad-hoc approach had to be

taken. To overcome the lack of delay element support by the FPGA, hardware invertor chains
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were built into the VHDL descriptions. As tools were not available to perform sufficient timing
analysis this often meant that a VHDL logic description had to undergo several revisions, essen-
tially by altering invertor chain length, in order to achieve the necessary timing requirements.

This was especially the case when designing the access cycle time of the register file.

8 Testing

In order to test the implementation of ADLX a simple program was designed that could be
used to exercise all the paths of the pipeline as required by the three instruction types. The
general purpose of this program was to load data from an external memory into the register
file, manipulate that data through addition and subtraction functions and then return any
resultant values back to that external memory. Table 1 shows a typical sequence of execution

of instructions.

Instruction Decode Execution Write Back

1 load1 - -

2 load?2 load1 -

3 load3 load?2 load1
4 alul load3 load?2
5 jumpl alul load3
6 alu2 jumpl alul
7 storel alu2 jumpl
8 store2 storel alu2
9 - store2 storel
10 - - store2

Table 1: Sequence of instruction execution.

There are instances in the execution of a number of instructions in ADLX that require the
concurrent access of the register file or of other such logic. As ADLX has not been designed
to function in a concurrent pipelined manner, e.g. only sequential processing of instructions
can occur in any pipeline stage, there are times when a particular processing action must take
precedence over some other such action. With regards to the Instruction Fetch stage there are
three cases of when such precedence of action must be allowed to take place. These can be

described as follows;

e Priority 1: Read/write access of the register file as dictated by a Write Back stage pro-

cessing action.

e Priority 2: Read/write access of the register file as dictated by an Execution stage pro-

cessing action.
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o Priority 3: Read access of the register file as dictated by an Instruction Decode stage

processing action.

The obvious conclusions from the above statements are that there are likely to be a large
number of stalls in the ADLX pipeline and this has in fact been determined to be the case.
Changes to the design of the ADLX as implemented and described in this paper for the correction
of these problems have already been suggested. The initial proposal for an ADLX2 is to employ
a 4-way superscalar rotary pipeline that also incorporates a binary translation mechanism to
allow for the concurrent execution of functionally independent scalar instruction sets.

The ADLX test program, along with a number of other numeric constants, e.g. values
representing data that would be actually found in the external memory, have been implemented
in a number of EEPROM devices which have been connected to the ADLX pipeline. The general
configuration of this external logic with the associated connectivity can be seen in Figure 23.

Instructions

push-button
enable
push-button
enable
push-button
enable
ADLX
Program PC value ALU data Write Back
Counter data
Logic
analyser

Figure 23: EEPROM input vector test units as connected to the ADLX.

The type of EEPROM unit employed was a 32K 27256 device that was 8-bit addressed. In
order to present a 32-bit instruction or data value to an ADLX bus four of these devices would
be enabled in parallel in order to construct that 32-bit word. The structural organisation of

these EEPROM units can be seen in Figure 24.

[ [ [ [
[ [ [ [ 8
° ° ° ° bytes
\ 1 Il 1 Il | -}
4
push-button ‘ . ‘ . ‘ . ‘ .
enable \ 1l | 1l | 1l | 1
\ Il | Il | Il | |
N [a— | % N " "] “linstructionl
,,,‘,,,,,.,{:‘,,,,!,F‘,,,,! F,‘ ,,,,, | ! (load1)

Y Y Y i

bits  0-7 8-15 16-23 24-31

32-bit word

Figure 24: EEPROM 32-bit word configuration.
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Three such EEPROM configurations were required to provide the simulation ofj

e The program instructions as received from the external memory;
e The program counter;

¢ The data values/memory addresses as calculated and returned from the Write Back stage

to the Instruction Decode stage.

These were activated using a simple push-button mechanism to supply the relevant 2-phase
enabling signal. All calculations of addresses or the products from arithmetic functions as
performed in the ALU together with the incrementation of the program counter value were

captured by a logic analyser for examination and evaluation.

9 Conclusions

The design and implementation of ADLX has shown that a combination of both academic and
commercially available tools can be used to construct relatively complex asynchronous circuits
using programmable logic. ADLX was not intended to be a fully custom designed processor
such as the AMULET processors, but rather as a prototype device to investigate how existing
tools could cope with such a task.

One aspect of asynchronous design that was not addressed is the problem of arbitration. The
metastable nature of an arbiter means that such logic cannot be implemented in the current
programmable logic devices that exist today. Metastability cannot be eliminated from syn-
chronous systems subject to asynchronous inputs but these effects can be reduced by employing
low frequency signal rates, by synchronising asynchronous inputs or by the addition of extra
clock cycles to improve signal resolution. A combination of these solutions may be implemented
in the future.

If programmable hardware tools are to be used with the aim of the manufacture of commercial
asynchronous programmable logic devices, then the major software tool vendors must begin to
incorporate into their software the facility for the correct verification and synthesis of those
designs.

A more realistic approach to the development of asynchronous logic for programmable hard-
ware may be to use a sea-of-gates approach. In such an architecture all macrocells touch each
other, thus allowing for fast interconnections between those cells. This means that compact
functions can be implemented that do not suffer from having to be decomposed over a number
of logic blocks, and therefore ensure that all timing constraints can be adhered to. A sea-of-gates
architecture would be an ideal target for Petrify because there would be no restrictions to the

size of complex gates that Petrify could synthesise.
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