
Asynchronous Microprocessors: From High Level Model toFPGA ImplementationL. Lloyd, K. Heron, A. M. Koelmans, A. V. YakovlevDepartment of Computing Science,University of Newcastle upon Tyne, NE1 7RU, England.September 8, 1997AbstractIn order to determine the applicability of both programmable software tools and pro-grammable hardware for asynchronous logic applications an implementation, employingFPGA devices, of the instruction decode and the instruction execution stages of an asyn-chronous microprocessor, the ADLX, is presented. The foundation for that microprocessoris based on the employment of event driven logic, speci�cally 2-phase transition signalling,that functions within the conceptual framework of a Sutherland micropipeline.The entire design has been constructed from a series of VHDL descriptions that havebeen compiled and simulated using both the Cypress WARP VHDL Development Systemand the AMD MACHXL software packages. A number of the asynchronous speci�c areas ofthe ADLX have been synthesized using Petrify, a Petri Net tool designed for the manipula-tion of concurrent speci�cations of asynchronous control circuits. The ADLX itself has beenconstructed from a range of \o�-the-shelf" products including HM 65764 high speed CMOSSRAM semiconductors and FPGA logic devices.Keywords: Asynchronous Logic, Petri Nets, Field Programmable Gate Arrays.1 IntroductionAlmost all digital logic produced today is based upon the synchronous design approach. Insuch a framework a system is a collection of clocked �nite state machines which themselves arecontrolled by a master clock. These synchronous systems require speci�c interface protocolswhenever a signal crosses from the domain of one particular clock to the domain of anotherclock. These systems behave in a discrete and deterministic manner.Asynchronous logic is signi�cantly di�erent. There is no clock that is used to regulatethe timings of state changes. All subsystems are allowed to exchange information at mutuallynegotiated instants whilst not being bounded by any external timing regime. This removal ofthe clock allows an asynchronous design to be naturally conservative with regards to power1



consumption. As the inherent nature of asynchronous logic is to be data driven, only thoseareas of a circuit that are actually performing useful work will be consuming power. The fewerthe number of transistors that are active in a device, the less current will be consumed.The only asynchronous versions of commercial processors currently available are the Amuletseries [2], which are based upon Sutherlands micropipeline architecture [19]. The Amulet designswere produced without the help of formal asynchronous design tools, which required a lot ofe�ort. Often, asynchronous CAD tools tend to be \bolt-ons" to more sophisticated synchronousdesign packages [18] or tend to be \experimental" in aspect and thus have not been so widelydisseminated throughout the design community. Of the currently available asynchronous CADtools, the Tangram language compiler [21] is best known for being able to produce circuits thatare equivalent to or better than their synchronous counterparts [20].Petri Nets [12] are a well established mechanism for systems modelling. They are mathemat-ically sound and can be subjected to a large variety of analysis methods, for example, to test forthe presence of deadlocks. Since Petri Nets are essentially an event driven formalism they areideal for modelling asynchronous hardware, which is also event driven. Petri Net descriptionsmust be translated into logic equations by means of an appropriate software tool since the stan-dard techniques for designing synchronous logic are not valid. In order to generate asynchronoushardware from Petri Net descriptions, a state of the art software tool, Petrify [1], can be used.A methodology for the high level design of processor architectures using Petri Nets wasdescribed in [16]. This methodology allows the development of Petri Net models of the mainstages of any type of asynchronous processor that functions with a Sutherland micropipelineframework. This allows a designer to re�ne the model according to the results of the behaviouralanalysis of the nets. The analysis can be performed using existing methods for state graph andpartial order traversal. The properties obtained include freedom from deadlocks, concurrencyand conict relations between individual actions and performance characteristics.After the design has been developed and validated it becomes possible, through the use ofVHDL descriptions, to employ �eld-programmable gate array logic that will allow a customdevice to be rapidly prototyped and tested. As any asynchronous circuit can be represented bya combination of one or more of the above methods, it therefore becomes possible to developFPGA versions of equivalent synchronous digital devices that can then be used for comparisonpurposes. An FPGA version of a digital circuit is always likely to be slower than an equivalentASIC version, due to the fact that the FPGA will very likely be constructed from a series oflogic blocks interconnected via regularly structured wiring channels rather than custom-builtlogic, but this does not mean that meaningful comparisons cannot be made.We present the design of a microprocessor that utilises the framework of asynchronous logic inthe design of a simple micropipelined microprocessing unit. This microprocessor, called ADLX(Asynchronous Deluxe), is essentially the asynchronous version of Henessey and Patterson'swell known DLX RISC processor design [6]. Unlike [16], which concentrated on the high levelaspects of the design, this paper presents the implementation aspects. This was accomplishedusing commonly available FPGA logic devices. 2



The paper is organised as follows. In section 2 the issues relating to synchronous and asyn-chronous FPGA design will be discussed and in section 3 the modelling approach of the ADLXusing Petri Nets will be presented. In section 4 we examine the main datapath pipeline of theADLX together with a description of the signalling mechanism implemented in the design. Sec-tion 5 details the synthesis of the asynchronous speci�c areas of the datapath as carried out byperforming a Petri Net analysis whilst section 6 will be concerned with describing the CAD toolsused and simulation results achieved. The implementation of the ADLX is covered in section 7with testing issues described in section 8. Section 9 concludes the paper.2 FPGA design issues for Asynchronous logicThere is no denying that FPGA's are an extremely e�ective means of performing fast develop-ment and test of digital circuits. The employment of large amounts of simple logic gates anddatapaths that can be rapidly programmed and reprogrammed until a desired solution has beenfound is a very cost e�ective method of hardware design.The disadvantage in using FPGA's for asynchronous logic development is concerned withthe physical architecture of such devices. Asynchronous circuits have to be able to deal withsynchronisation issues, hazards and arbitration concerns and currently it is still not possible toaddress these problems e�ciently in current FPGA architectures that have been constructedwith the implementation of strictly synchronous designs in mind [4].These restrictions though do not mean that asynchronous FPGA's cannot be developed.Whilst it is true that the software mapping, routing and placement algorithms may reintroducehazards into a design, for example isochronic forking problems in quasi-delay insensitive circuits[5], more robust asynchronous designs, especially in the case of bounded-delay circuits, can beconstructed.With regards to timing issues it has already been stated that FPGA's are geared towardssynchronous clocked implementations of circuit designs. There is a discipline though, \self-timed design", that allows a signal exchange to be carried out in a \handshaking" manner andwhich functions by allowing actions to be decided upon the edge of a signal transition whichmay have an indeterminate, but �nite, periodicity between such events. This process of signalexchange �ts in very well with the bounded-delay domain of asynchronous logic. By usinga technology-independent method a designer can model at a high level, for example using ahardware description language, asynchronous circuits that can be directly targeted to a speci�chardware device. There are problems associated with this procedure in that there may be a lossof e�ciency in such a translation from software to hardware but these issues can and have beenovercome [11] [15]. Self-timed implementations of asynchronous circuits tend also to be expensivein terms of logic cells and routing resources required but e�cient self-timed micropipelines havebeen developed [13]. 3



3 Petri Net modelling of ADLXDLX, pronounced \Deluxe", was a simple microprocessor designed to use a load/store archi-tecture and is described as \the average of a number of recent experimental and commercialmachines" [6]. The overall design was based upon observations of the most commonly occurringprimitives in programs, thus allowing an e�cient pipeline and an easily decoded instructionset to be developed. Over the years, DLX has provided such a good architectural model forboth study and design evaluation that recent reworking has resulted in the development of asuperscalar version [7].The fact that DLX has an architecture that is very simple to understand has made it anexcellent model to use as the basis for the equivalent design of an asynchronous microprocessor.This asynchronous processor, called ADLX, was �rst modelled and veri�ed at a high level in[9] using Petri Nets. Since Petri Nets are an ideal means for the modelling and simulationof concurrent systems, they can be e�ectively employed in the development of VLSI circuits.As such, Petri Nets have recently been used in the design of a number of synchronous andasynchronous microprocessor projects [16, 23].A brief description of the semantics of Petri Nets is as follows. Any Petri Net is a tuple(representing a graph) such that P = (S; T; F;M0) where S = the set of vertices that representsthe state components of the graph, T = the set of transitions (or actions) that can be performed,F = the ow relation, de�ned as F � (S � T ) [ (T � S) (both S and T are �nite disjoint sets)and M0 = the initial state marking of the graph, de�ned as M0 � S. Tokens ow round a net,representing events. In circuit terms, they indicate signal changes. For a fuller description ofthe semantics of Petri Nets see [12]. A thorough discussion of hardware synthesis from Petrinets falls outside the scope of this paper; the interested reader is referred to [1].The design methodology employed during the development of ADLX was as follows. Themain ADLX processor design was �rst modelled at a high level within a micropipeline frame-work, with decomposition taking place by creating re�ned Petri Net models of each processingstage. A basic model was developed for all possible instructions that could be executed in thatstage. These individual instruction execution Petri Nets could then be combined into one singleprocessing stage Petri Net which could then be translated by the Petrify software tool into alogic diagram that could be used for subsequent logical decomposition and synthesis. In thispaper we are only concerned, for the sake of brevity, with the implementation of the InstructionDecode and Execution stages of ADLX. We aim to show how the top-level abstract view was ofthose stages was decomposed. The top-level view of ADLX is shown in Figure 1.The decomposition of the Instruction Decode unit as relating to the execution of an R-type(ALU operation) instruction is shown in Figure 2. This shows how an instruction can be decodedinto a number of address or opcodes that are employed in either the ID stage or further downthe ADLX pipeline. The rs1 and rs2 addresses are used to forward a 32-bit data value to the Aand B multiplexor units respectively. The rd address is forwarded into a 3-stage FIFO pipelinewhich is ultimately used for the write back of a data value to the register �le.4
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In [16] it was shown how such a model can be re�ned to produce more detailed Petri Netdescriptions of each stage of the pipeline. The paper presented techniques for converting detailedPetri Net models into parts of the micropipeline control of the processor. A brief summary ofthese techniques can be described as follows: In order to convert a Petri Net into a circuitdescription a /it net-level transformation /rm must be performed. There are two possible waysof doing this:� Conversion of multiple input arcs: This is the merging of a number of control oper-ations and so can often be described through the use of an XOR element, for example ifwe take the Petri Net fragment below (taken from the Petri Net of the Instruction Fetchpipeline stage) and provided that we ensure that all inputs will be mutually exclusive wewill realise a hazard-free circuit.
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� The DLX instruction set was to be implemented without any changes to the compositionof that instruction set.The fundamental change that distinguishes ADLX from DLX is in the manner of the pipelinecontrol of these processors. DLX has one central control unit that is used to forward controlsignals to the relevant logic units at �xed intervals. In ADLX the control signals that are requiredto ensure correct operation of a particular stage of pipeline execution are generated from withinthat particular pipeline stage. This e�ectively allows each pipeline stage to be actively processingfor as long as required in order to perform a speci�c function.The signal control mechanism used within ADLX is known as transition signalling. In usingsuch a transition signalling method, the actual transition itself (i.e. an event) is active on boththe rising and falling edges and allows up to twice the normal clocking rate. The operation ofsuch a signalling method is shown in Figure 5.
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1st cycle 2nd cycleFigure 5: Rising and falling transition events.� The sender initiates a communication by �rst placing data onto the data lines at a andthen placing an event onto the request line at b.� The receiver accepts the request. The data presented to the receiver will be stable at c,and so can be processed according to the logic of the receiver at d.� When the receiver has �nished processing, an acknowledgement is returned to the senderat e.Transition signalling removes the need to view signals as having either a high or low stateand thus of having to return to some neutral state between events (the electrical level of thesignal then contains no information). Communication using transition signalling, known as theTwo-Phase Bundled Data protocol, is illustrated in Figure 6.
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The main drawback of 2-phase signalling is that a individual wire is required for the transferof the enabling signal relating to a particular instruction. This can be very costly in termsof the required silicon area, especially where large instruction sets are involved, but if suitabletranslation logic is employed a collection of independent signals can be multiplexed in order toutilise common logic blocks. A top-level schematic of the logic implemented in the FPGA ADLXcan be seen in Figure 10.
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bitmap pattern of these instructions is shown in Figure 11.
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as possible all cases of decode and function determination are carried out only when and wherethey are needed.4.2 The Forward FIFOThe Forward FIFO is a simple three stage micropipeline with no internal combinatorial logicthat is used to propagate a Register File destination address, for reading or writing operations,to the Register File. Each destination address is a 5-bit opcode that is stored in a series oftransparent latches.4.3 The Register FileThe Register File consists of 32 x 32-bit latches that provide 1024 storage elements in total.Register(0) is hard-wired to zero whilst Register(31) is used to preserve the old value of theProgram Counter after a branch address calculation has been carried out.4.4 The Arithmetic Logic UnitIn order to simplify the basic design the implementation of the Arithmetic Logic Unit providesonly the integer functions of addition and subtraction. The internal con�guration of the ALUis based on an implementation described in [22] and is shown in Figure 13.
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Figure 13: Internal con�guration of the Arithmetic Logic Unit.4.5 Storage elements - the Event Bu�erThe logic elements in Figure 10 labelled eb are an asynchronous version of synchronous tri-statedevices and have been designed to respond to transitional input events. These event bu�ers area modi�ed form of a capture-pass storage element and have been derived from an original designof a transparent latch as detailed in [14]. The design of the event bu�er has been veri�ed byPetrify. The full analysis of this device is described in [10].11



5 Petri Net based synthesis of ADLXPetri Nets provide a highly suitable means for the modelling of asynchronous behaviour. Petrifyhas been used to carry out the required synthesis tasks. Petrify produces an optimised net-listin the target gate library that preserves the original input/output signal behaviour. This net-listis guaranteed to be speed-independent, ensuring that the net-list will be hazard-free regardlessof the distribution of gate delays or multiple input signal changes. For a fuller description of thetheory and functionality of Petrify see [1].The realisation of the Call elements of ADLX was carried out by using Petrify to performthe generation of the synthesis equations. The 2-input Call element, of the type that is used tocontrol the functional operation of the PC increment unit, has a Petri Net whose behaviouralanalysis leads to the production of those synthesis equations.The 2-input Call element has the symbolic representation shown in Figure 14(a) with acorresponding internal logic con�guration shown in 14(b).
C

C

D1
R1

R2

R1

D2

req

ack D2

reqD1

ack

R2

(b) logic configuration(a) symbol
      notation

CALLFigure 14: Call element speci�cation.The Call has a behaviour that is illustrated in the Petri Net shown in Figure 15.
R1 R2D1 D2

req ack

(set1) (set2)(reset1) (reset2)

Figure 15: Petri Net speci�cation of a Call element.The synthesis equations for this Call element as produced by Petrify are as follows:12



req = (R1 �R2) + (R1 �R2)D1 = (ack �D2 �D1) + (ack �D2 �D1) + (R1 � ack �D2) +(R1 � ack �D2) + (R1 �D1)D2 = (ack �D2 �D1) + (ack �D2 �D1) + (R2 � ack �D1) +(R2 � ack �D1) + (R2 �D2)These equations are exactly the same as those generated from a VHDL structural descriptionof the Call element as synthesized by the WARP tool [17]. If we take the D1 synthesis equationwe can minimise the sum-of-products as follows.D1 = ( ack�D2z }| {(ack �D2 + ack �D2) �D1) +( ack�D2z }| {(ack �D2 + ack �D2) �R1) + (R1 �D1)Letx = (ack �D2)thenD1 = (R1 �D1) + (x �D1) + (x �R1)and so rearranging to a more familiar format for a C-elementD1 = (x �R1) + (D1 � (x+R1))we can show that this is equivalent to one half of the Call element as we would expect.
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FPGA synthesis in that the initial speci�cation has been su�ciently decomposed into modulesthat are of a size that can be mapped to the FPGA architecture under question. The case maybe that ine�cient logic utilization by design tools can signi�cantly reduce the physical amountof gates available for an implementation. If we consider the complex gate in 17(a) we can seehow the decomposition of this gate, 17(b), may result in a circuit into which hazards may beintroduced purely because the complexity of inter-chip routing will cause greater delays.
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eFigure 17: Decomposition of complex gates.Alternatively, a large logic block may be implemented as a single complex gate that cannot bemapped to an individual FPGA macrocell or the complex gate may require a greater number ofproduct terms than that macrocell supports. In either case this may result in a partitioning thatcould violate a timing constraint giving a circuit realization that is no longer speed-independant.These concerns are especially relevant when developing bounded-delay or quasi-insensitive delay,QDI, applications. In the case of QDI logic decomposition by a �tter program across severalmacrocells may introduce extra levels of logic that disrupts the timing conditions necessary forcorrect operation.Petrify does address some of these issues and will perform a resynthesis of a logic designin order to ensure that no gate transition is left unsensed. In this respect Petrify answers theapplication of decomposition and synthesis concerns raised in [5].6 Compilation and simulationADLX has been implemented using a number of structural representations that have been devel-oped as a series of VHDL behavioural descriptions. A top-down, divide and conquer approachwas taken in which logic diagrams were partitioned into a collection of smaller and smaller mod-ules until a point was reached at which it could be determined that a VHDL description couldbe implemented with the aim of target �tment in a particular device. An abstract view of thelogic to be realised in ADLX, as seen in Figure 10, can be seen as a collection of the modulesthat were constructed.A number of both software and hardware tools were used for the VHDL compilation andsubsequent programming of the FPGA devices. A owchart illustrating how these packages wereconnected together is shown in Figure 19. 14
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� After the simulation of the compiled design the jedec �le could then be used to programa device by employing a Micromaster 1000 programming as supplied by ICE Technology.� If the device to be targeted for implementation was not of a type supported by the CY-PRESS FPGA development tools an alternative software package as produced by AdvancedMicro Devices, MACHXL [8], was employed instead. MACHXL is a software package thatis designed for the generation of jedec �les that are used to program a number of devicesin the AMD Mach1XX - Mach4XX range of FPGA products.� In order to program aMach device a VHDL �le would be compiled and simulated in exactlythe same manner as described above. If the design was satisfactory a skeleton MACHXLpds �le would be created into which would be incorporated the synthesis equations asgenerated by the respective WARP report �le. This pds �le could then be compiled toproduce a MACHXL jedec to program a device in the manner described above.� If Petrify was to be employed in order to synthesise an asynchronous logic block a PetriNet that represented the behaviour of that logic would be created. This Petri Net wouldbe used to generate the speed-independent synthesis equations that represented the logicunder investigation. These synthesis equations would be imported into a MACHXL pds�le for compilation using exactly the same procedure as above.With regards to the process of performing simulation using the WARP NOVA tool twoexamples illustrating the usage of the waveform editor can be seen in the following diagrams.In the �rst case the functionality of the 1-hot of 3 decode mechanism can be seen followed bythe operation of a 2-input Call element.
Figure 20: NOVA simulation of the decode unit.
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Figure 21: NOVA simulation of a 2-input Call element.From the point of view of the complete synthesis of any design both WARP and MACHXLwill follow a common route;� Boolean equations which may be generated from a schematic diagram, a truth table or anHDL.� Simpli�cation in which Boolean equations may be reduced often with the aim of removingredundant terms.� Minimisation in which further equation manipulation may be carried out depending uponthe target technology at which they are aimed. Such manipulation may be mandatory inorder to comply with device resource requirements or may be purely optional e.g. compilingfor area or speed concerns.� Technology mapping in which the Boolean equations are implemented in a speci�c archi-tecture.The last two points described above are often referred to as place-and-�tting methods andthey raise important questions for asynchronous logic design especially with regards to signaldelay requirements. Currently most FPGA architectures have little or no support for buildingdelay elements and this can have serious implications for example when attempting to implementbounded-delay circuits. There is the possibility that changes in the ordering of bounded-delaysignals, as carried out by a routing algorithm, may reorder those signals to the extent thatbounded delay data constraints are no longer valid.A converse argument to the above concerns speed-independent circuits. As modules of thistype of logic will be beholden to local time constraints, partitioning and placement issues willbe less likely to cause timing problems within a design. This allows greater exibility in howthese circuits may be mapped to an architecture.17



7 ImplementationThe physical implementation of ADLX has used a number semiconductor devices, e.g. 4 x HM65764 8K x 8 High Speed CMOS SRAM memory elements that are used to implement theregister �le, and two types of programmable logic devices, iCT 22V10's and AMD Mach110's.The iCT logic has been used to implement event bu�ers and control circuitry, for example,C-elements, Call blocks, Select elements, and Multiplexors.The Mach110 devices, which are capable of supporting approximately three times the logicof a 22V10, have been used to construct the larger and more regular array type structures, suchas the Register �le, the Increment unit, the ALU, and the Forward FIFO mechanism.When examining implementation issues we can see how the asynchronous aspects of a logicaldesign have to be embedded within the strictly synchronous framework of a programmabledevice. If we consider the event bu�er, which has been described as an asynchronous version ofa synchronous tri-state element, and implemented in a 22V10 we can see how the output fromthat event bu�er, which may be an asynchronous event based control signal, is still regulated bythe controlling actions of a synchronous tri-state.
AND/OR

Buffer
Event

plane

product

cell
I/O

terms

OutIn

feedback

Figure 22: Asynchronous logic embedded in a synchronous framework.With regards to ensuring that timing conditions were met throughout the ADLX pipelinea mixture of strategies had to be used. When a Petrify complex gate representation of a logicblock was being developed it was necessary to ensure that the logic speci�cation had beensu�ciently decomposed down to a module size that, even if partitioning was to occur withinthe target device, the delay constraints would still be met. The fact that Petrify generateda speed-independent circuit description did not remove the small but �nite delay requirementsthat would still be needed to guarantee the correct functionality of the design. A certain amountof partitioning could take place of a complex gate, but it must be ensured that changes to thedelay propagation of any internal signal did not conict with the timing requirements of thesurrounding environment. If these constraints were exceeded due to partitioning it would belikely that hazards would be introduced into the circuit.To ensure bounded-delay timing conditions were met a more ad-hoc approach had to betaken. To overcome the lack of delay element support by the FPGA, hardware invertor chains18



were built into the VHDL descriptions. As tools were not available to perform su�cient timinganalysis this often meant that a VHDL logic description had to undergo several revisions, essen-tially by altering invertor chain length, in order to achieve the necessary timing requirements.This was especially the case when designing the access cycle time of the register �le.8 TestingIn order to test the implementation of ADLX a simple program was designed that could beused to exercise all the paths of the pipeline as required by the three instruction types. Thegeneral purpose of this program was to load data from an external memory into the register�le, manipulate that data through addition and subtraction functions and then return anyresultant values back to that external memory. Table 1 shows a typical sequence of executionof instructions. Instruction Decode Execution Write Back1 load1 - -2 load2 load1 -3 load3 load2 load14 alu1 load3 load25 jump1 alu1 load36 alu2 jump1 alu17 store1 alu2 jump18 store2 store1 alu29 - store2 store110 - - store2Table 1: Sequence of instruction execution.There are instances in the execution of a number of instructions in ADLX that require theconcurrent access of the register �le or of other such logic. As ADLX has not been designedto function in a concurrent pipelined manner, e.g. only sequential processing of instructionscan occur in any pipeline stage, there are times when a particular processing action must takeprecedence over some other such action. With regards to the Instruction Fetch stage there arethree cases of when such precedence of action must be allowed to take place. These can bedescribed as follows;� Priority 1: Read/write access of the register �le as dictated by a Write Back stage pro-cessing action.� Priority 2: Read/write access of the register �le as dictated by an Execution stage pro-cessing action. 19



� Priority 3: Read access of the register �le as dictated by an Instruction Decode stageprocessing action.The obvious conclusions from the above statements are that there are likely to be a largenumber of stalls in the ADLX pipeline and this has in fact been determined to be the case.Changes to the design of the ADLX as implemented and described in this paper for the correctionof these problems have already been suggested. The initial proposal for an ADLX2 is to employa 4-way superscalar rotary pipeline that also incorporates a binary translation mechanism toallow for the concurrent execution of functionally independent scalar instruction sets.The ADLX test program, along with a number of other numeric constants, e.g. valuesrepresenting data that would be actually found in the external memory, have been implementedin a number of EEPROM devices which have been connected to the ADLX pipeline. The generalcon�guration of this external logic with the associated connectivity can be seen in Figure 23.
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Three such EEPROM con�gurations were required to provide the simulation of;� The program instructions as received from the external memory;� The program counter;� The data values/memory addresses as calculated and returned from the Write Back stageto the Instruction Decode stage.These were activated using a simple push-button mechanism to supply the relevant 2-phaseenabling signal. All calculations of addresses or the products from arithmetic functions asperformed in the ALU together with the incrementation of the program counter value werecaptured by a logic analyser for examination and evaluation.9 ConclusionsThe design and implementation of ADLX has shown that a combination of both academic andcommercially available tools can be used to construct relatively complex asynchronous circuitsusing programmable logic. ADLX was not intended to be a fully custom designed processorsuch as the AMULET processors, but rather as a prototype device to investigate how existingtools could cope with such a task.One aspect of asynchronous design that was not addressed is the problem of arbitration. Themetastable nature of an arbiter means that such logic cannot be implemented in the currentprogrammable logic devices that exist today. Metastability cannot be eliminated from syn-chronous systems subject to asynchronous inputs but these e�ects can be reduced by employinglow frequency signal rates, by synchronising asynchronous inputs or by the addition of extraclock cycles to improve signal resolution. A combination of these solutions may be implementedin the future.If programmable hardware tools are to be used with the aim of the manufacture of commercialasynchronous programmable logic devices, then the major software tool vendors must begin toincorporate into their software the facility for the correct veri�cation and synthesis of thosedesigns.A more realistic approach to the development of asynchronous logic for programmable hard-ware may be to use a sea-of-gates approach. In such an architecture all macrocells touch eachother, thus allowing for fast interconnections between those cells. This means that compactfunctions can be implemented that do not su�er from having to be decomposed over a numberof logic blocks, and therefore ensure that all timing constraints can be adhered to. A sea-of-gatesarchitecture would be an ideal target for Petrify because there would be no restrictions to thesize of complex gates that Petrify could synthesise.21
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