

Design Recipes for FPGAs

Prelims-H6845.qxd 4/6/07 1:25 PM Page i

This page intentionally left blank

Design Recipes for FPGAs

Dr Peter R. Wilson

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD

PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

Prelims-H6845.qxd 4/6/07 1:25 PM Page iii

Newnes is an imprint of Elsevier
Linacre House, Jordan Hill, Oxford OX2 8DP
30 Corporate Drive, Suite 400, Burlington MA 01803

First published 2007

Copyright © 2007, Peter R. Wilson All rights reserved

The right of Peter R. Wilson to be identified as the author of this work has been asserted in
accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means electronic, mechanical, photocopying, recording or otherwise without the
prior written permission of the publisher

Permission may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (�44) (0) 1865 843830; fax (�44) (0) 1865 853333;
email: permissions@elsevier.com. Alternatively you can submit your request online by
visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons or property as
a matter of products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions or ideas contained in the material herein.

British Library Cataloguing in Publication Data
Wilson, Peter R.

Design recipes for FPGAs
1. Field programmable gate arrays – Design and construction
I. Title
621.3�95

Library of Congress Number: 2007923611

ISBN: 978-0-7506-6845-3

Printed and bound in Great Britain by MPG Books Ltd, Bodmin Cornwall

07 08 09 10 11 10 9 8 7 6 5 4 3 2 1

Cover image of an Actel RTAX4000S FPGA chip supplied courtesy of Actel – www.actel.com

For information on all Newnes publications
visit our website at www.books.elsevier.com

Prelims-H6845.qxd 4/6/07 1:25 PM Page iv

This eBook does not include ancillary media that was packaged with
the printed version of the book.

For Heather

Prelims-H6845.qxd 4/6/07 1:25 PM Page v

This page intentionally left blank

Contents

Acknowledgements xvii
Preface xix
List of Figures xxi

Part 1 Overview 1

Chapter 1 Introduction 3
Why FPGAS? 3

Chapter 2 An FPGA Primer 5
Introduction 5
FPGA evolution 5
Programmable logic devices 6
Field programmable gate arrays 6
FPGA design techniques 10
Design constraints using FPGAs 10
Summary 10

Chapter 3 A VHDL Primer: The Essentials 11
Introduction 11
Entity: model interface 12

Entity definition 12
Ports 13
Generics 13
Constants 14
Entity examples 14

Architecture: model behavior 14
Basic definition of an architecture 14
Architecture declaration section 15
Architecture statement section 15

Process: basic functional unit in VHDL 16

Prelims-H6845.qxd 4/6/07 1:25 PM Page vii

Basic variable types and operators 17
Constants 17
Signals 17
Variables 18
Boolean operators 18
Arithmetic operators 18
Comparison operators 19
Shifting functions 19
Concatenation 19

Decisions and loops 20
If-then-else 20
Case 21
For 21
While and loop 22
Exit 22
Next 22

Hierarchical design 23
Functions 23
Packages 23
Components 24
Procedures 25

Debugging models 26
Assertions 26

Basic data types 26
Basic types 26
Data type: BIT 26
Data type: Boolean 27
Data type: integer 27

Integer subtypes: natural 27
Integer subtypes: positive 27

Data type: character 27
Data type: real 28
Data type: time 28

Summary 28

Chapter 4 Design Automation and Testing for FPGAs 30
Simulation 30

Test benches 30
Test bench goals 30
Simple test bench: instantiating components 31
Adding stimuli 32

Libraries 33
Introduction 33

Contents

viii

Prelims-H6845.qxd 4/6/07 1:25 PM Page viii

Using libraries 34
Std_logic libraries 35
Std_logic type definition 35

Synthesis 36
Design flow for synthesis 36
Synthesis issues 38
RTL design flow 38

Physical design flow 39
Place and route 40

Recursive cut 40
Timing analysis 40
Design pitfalls 40
VHDL issues for FPGA design 41

Initialization 41
Floating point numbers and operations 41

Summary 41

Part 2 Applications 43

Chapter 5 Images and High-Speed Processing 45
Introduction 45
The camera link interface 46

Hardware interface 46
Data rates 47
The Bayer pattern 47
Memory requirements 48

Getting started 49
Specifying the interfaces 51
Defining the top level design 51
System block definitions and interfaces 52

Overall system decomposition 52
Mouse and keyboard interfaces 52
Memory interface 53
The display interface: VGA 53

The cameralink interface 54
The PC interface 55
Summary 56

Chapter 6 Embedded Processors 57
Introduction 57
A simple embedded processor 57

Embedded processor architecture 57
Basic instructions 59

Contents

ix

Prelims-H6845.qxd 4/6/07 1:25 PM Page ix

Fetch execute cycle 61
Embedded processor register allocation 62
A basic instruction set 62
Structural or behavioral? 65
Machine code instruction set 65
Structural elements of the microprocessor 66
Processor functions package 67
The PC 68
The IR 69
The Arithmetic and Logic Unit 71
The memory 72
Microcontroller: controller 74
Summary of a simple microprocessor 78

Soft core processors on an FPGA 78
Summary 79

Part 3 Designer’s Toolbox 81

Chapter 7 Serial Communications 83
Introduction 83
Manchester encoding and decoding 83
NRZ coding and decoding 87
NRZI coding and decoding 87
RS-232 89

Introduction 89
RS-232 baud rate generator 89
RS-232 receiver 90

Universal Serial Bus 93
Summary 96

Chapter 8 Digital Filters 97
Introduction 97
Converting S-domain to Z-domain 98
Implementing Z-domain functions in VHDL 100

Introduction 100
Gain block 100
Sum and difference 101
Division model 102
Unit delay model 104

Basic low pass filter model 105
FIR filters 108
IIR filters 109
Summary 109

Contents

x

Prelims-H6845.qxd 4/6/07 1:25 PM Page x

Chapter 9 Secure Systems 110
Introduction to block ciphers 110
Feistel lattice structures 110
The Data Encryption Standard 113

Introduction 113
DES VHDL implementation 115
Validation of DES 121

Advanced Encryption Standard 121
Implementing AES in VHDL 126

Summary 139

Chapter 10 Memory 140
Introduction 140
Modeling memory in VHDL 141
Read Only Memory 141
Random Access Memory 143
Synchronous RAM 145
FLASH memory 147
Summary 149

Chapter 11 PS/2 Mouse Interface 150
Introduction 150
PS/2 mouse basics 150
PS/2 mouse commands 151
PS/2 mouse data packets 151
PS/2 operation modes 151
PS/2 mouse with wheel 152
Basic PS/2 mouse handler VHDL 152
Modified PS/2 mouse handler VHDL 153
Summary 155

Chapter 12 PS/2 Keyboard Interface 156
Introduction 156
PS/2 keyboard basics 156
PS/2 keyboard commands 157
PS/2 keyboard data packets 157
PS/2 keyboard operation modes 157

Basic PS/2 keyboard handler VHDL 157
Modified PS/2 keyboard handler VHDL 158

Summary 160

Chapter 13 A Simple VGA Interface 161
Introduction 161
Basic pixel timing 162

Contents

xi

Prelims-H6845.qxd 4/6/07 1:25 PM Page xi

Image handling 162
VGA interface VHDL 162
Horizontal sync 164
Vertical sync 165
Horizontal and vertical blanking pulses 166
Calculating the correct pixel data 167
Summary 168

Part 4 Optimizing Designs 169

Chapter 14 Synthesis 171
Introduction 171
VHDL supported in RTL synthesis 172

Initial conditions 172
Concurrent edges 172
Numeric types 173
Wait statements 173
Assertions 174
Loops 174

Some interesting cases where synthesis may fail 174
What is being synthesized? 175

Overall design structure 175
Controller 175
Data path 177

Summary 178

Chapter 15 Behavioral Modeling in VHDL 179
Introduction 179
How to go from RTL to behavioral VHDL 179
Summary 183

Chapter 16 Design Optimization 184
Introduction 184
Techniques for logic optimization 184
Improving performance 186
Critical path analysis 187
Summary 188

Chapter 17 VHDL-AMS 189
Introduction 189
Introduction to VHDL-AMS 190
Analog pins: TERMINALS 191
Mixed-domain modeling 192

Contents

xii

Prelims-H6845.qxd 4/6/07 1:25 PM Page xii

Analog variables: quantities 193
Simultaneous equations in VHDL-AMS 194
A VHDL-AMS example 194

A DC voltage source 194
Resistor 195

Differential equations in VHDL-AMS 196
Mixed-signal modeling with VHDL-AMS 197
A basic switch model 201
Basic VHDL-AMS comparator model 202
Multiple domain modeling 204
Summary 205

Chapter 18 Design Optimization Example: DES 207
Introduction 207
The DES 207
Moods 208
Initial design 208

Introduction 208
Overall structure 208
Data transformations 211
Key transformations 213

Initial synthesis 214
Optimizing the data path 215

Optimizing the key transformations 217
Final optimization 218
Results 219
Triple DES 219

Introduction 219
Minimum area: iterative 220
Minimum latency: pipelined 222

Comparing the approaches 223
Summary 224

Part 5 Fundamental Techniques 225

Chapter 19 Counters 227
Introduction 227
Basic binary counter 227
Synthesized simple binary counter 230
Shift register 233
The Johnson counter 234
BCD counter 236
Summary 237

Contents

xiii

Prelims-H6845.qxd 4/6/07 1:25 PM Page xiii

Chapter 20 Latches, Flip-Flops and Registers 238
Introduction 238
Latches 238
Flip-flops 240
Registers 243
Summary 244

Chapter 21 Serial to Parallel & Parallel to Serial Conversion 245
Serial to Parallel Conversion 245
Parallel to Serial Conversion 246
Summary 247

Chapter 22 ALU Functions 248
Introduction 248
Logic functions 248
1-bit adder 251
Structural n-bit addition 252
Configurable n-bit addition 253
Twos complement 254
Summary 257

Chapter 23 Decoders and Multiplexers 258
Decoders 258
Multiplexers 260
Summary 262

Chapter 24 Finite State Machines in VHDL 263
Introduction 263
State transition diagrams 263
Implementing FSM in VHDL 264
Summary 265

Chapter 25 Fixed Point Arithmetic in VHDL 266
Introduction 266
Basic fixed point types 268
Fixed point functions 269

Fixed-point to std_logic_vector functions 269
Fixed point to real conversion 271

Testing the fixed point function 272
Summary 274

Chapter 26 Binary Multiplication 275
Introduction 275
Basic binary multiplication 275
VHDL unsigned multiplier 276

Contents

xiv

Prelims-H6845.qxd 4/6/07 1:25 PM Page xiv

Contents

Synthesis of the multiplication function 279
‘Simple’ multiplication 280
Summary 282

Chapter 27 Bibliography 283
Introduction 283
Useful texts for VHDL 283

Digital Systems Design 283
Designers Guide to VHDL 283
VHDL: Analysis and Modeling of Digital Systems 284
VHDL for Logic Synthesis 284

Useful Texts for FPGAs 284
Design Warriors Guide to FPGAs 284

General Digital Design Books 284
Digital Design 284

Index 287

xv

Prelims-H6845.qxd 4/6/07 1:25 PM Page xv

This page intentionally left blank

Acknowledgements

I would like to thank Professor Andrew Brown, the head of the
Electronic Systems Design Group, School of Electronics and
Computer Science, at the University of Southampton, UK. Giving
me the opportunity to first study and then work in his group has led
directly to me being able to write this book. For that I am deeply
grateful. In addition, the continuing support and encouragement of
colleagues and students in the ESD research group has been a con-
stant source of support and ideas.

I also wish to single out Tim Pitts (Elsevier Publishing) who was
instrumental in me starting this project, and also for his encour-
agement to see it through to a conclusion. I also would like to
thank those who have contributed to the production of the book
including Lisa Jones, Helen Eaton, Lewin Edwards, Charon Tec
and team and all at Elsevier.

Finally a heartfelt thank you to all of my family, especially my
wife Caroline, and children, Nathan and Heather. As always, with-
out their support, none of this would be possible.

Peter R. Wilson

Prelims-H6845.qxd 4/6/07 1:25 PM Page xvii

This page intentionally left blank

Preface

This book is designed to be a desktop reference for engineers, stu-
dents and researchers who use Field Programmable Gate Arrays
(FPGA) as their hardware platform of choice. This book has been
produced in the spirit of the ‘numerical recipe’ series of books for
various programing languages – where the intention is not to teach
the language per se, but rather the philosophy and techniques
required, making your application work. The rationale of this book
is similar in that the intention is to provide the methods and under-
standing to make the reader able to develop practical, operational
VHDL that will run correctly on FPGAs.

It is important to stress that his book is not designed as a lan-
guage reference manual for VHDL. There are plenty of those
available and I have referenced them throughout the text. This
book is intended as a reference for design with VHDL and can be
seen as complementary to a conventional VHDL textbook.

Prelims-H6845.qxd 4/6/07 1:25 PM Page xix

This page intentionally left blank

List of Figures

Figure 1 Programmable Logic Device 7
Figure 2 Complex Programmable Logic Device 8
Figure 3 FPGA CLB 8
Figure 4 Xilinx CLB 9
Figure 5 FPGA Structure of CLBs 9
Figure 6 VHDL Models with Different Architectures 12
Figure 7 HDL Design Flow 37
Figure 8 RTL Synthesis and Design Flow 38
Figure 9 Video Monitor System Overview 45
Figure 10 Basic Bayer Pattern, and Extended Over a Larger Image Area 47
Figure 11 Top Level Design – Sketch 50
Figure 12 Simple Microcontroller 58
Figure 13 Embedded Microcontroller Architecture 59
Figure 14 Structural Model of the Microprocessor 66
Figure 15 Basic Processor Controller State Machine 76
Figure 16 Manchester Encoding Scheme 84
Figure 17 Manchester Encoding Using XOR Function 86
Figure 18 Baud Clock Generator 89
Figure 19 Serial Data Receiver 91
Figure 20 Basic Serial Receiver 91
Figure 21 USB Transceiver Chip CP2101 93
Figure 22 RC Filter in the Analog Domain 97
Figure 23 Simple Z-Domain Low Pass Filter 105
Figure 24 Basic Low Pass Filter Simulation Waveforms 107
Figure 25 FIR Filter Schematic 108
Figure 26 Reversible and Irreversible Transformations 110
Figure 27 Feistel Lattice Structure 112
Figure 28 DES Coarse Structure 113
Figure 29 DES Fine Structure 114
Figure 30 S Box Architecture 114
Figure 31 DES Round Key Generation 115
Figure 32 AES Round Structure 122

Prelims-H6845.qxd 4/6/07 1:25 PM Page xxi

List of Figures

xxii

Figure 33 AES Structure 122
Figure 34 DRAM Simulation Results 145
Figure 35 Synthesizable Digital Circuit 175
Figure 36 Basic State Machine 176
Figure 37 Data Path 177
Figure 38 Cross Product Multiplier Specification 180
Figure 39 Data Path Model 180
Figure 40 Basic 4 Input Karnaugh Map 185
Figure 41 Specific Karnaugh Map Example 185
Figure 42 Functions Identified on Karnaugh Map 186
Figure 43 Naïve Dataflow Diagram for Addition 186
Figure 44 Reduced Cycle Implementation 187
Figure 45 Critical Path Analysis 188
Figure 46 Scope of VHDL-AMS 191
Figure 47 Basic Voltage Source 194
Figure 48 VHDL-AMS Resistor Symbol 195
Figure 49 Newton–Raphson Method 199
Figure 50 Comparator 203
Figure 51 Overall Structure of the DES Algorithm 209
Figure 52 Control State Machine for Initial Synthesis 215
Figure 53 Control State Machine for Optimized S-blocks 216
Figure 54 Control State Machine for Optimized Key Rotate 217
Figure 55 Area vs. Throughput for All DES Designs 219
Figure 56 Control State Machine for Pipelined Triple DES 223
Figure 57 Simple Binary Counter 228
Figure 58 Shift Register Functionality: (a) before and (b) after the clock edge 233
Figure 59 D Latch Symbol 238
Figure 60 Synthesised Latch 240
Figure 61 D-Type Flip-Flop 240
Figure 62 D-Type Flip-Flop with Asynchronous Set and Reset 242
Figure 63 Simple 1-Bit Adder 251
Figure 64 1-Bit Adder with Carry-in and Carry-out 251
Figure 65 3–8 Decoder 258
Figure 66 2 Input Multiplexer with a single select line 261
Figure 67 Hardware State Machine Structure 263
Figure 68 State Transition Diagram 264
Figure 69 Basic Binary Notation 266
Figure 70 Negative Number Binary Notation 267
Figure 71 Fixed Point Notation 267
Figure 72 Basic Signed Multiplication 277

Prelims-H6845.qxd 4/6/07 1:25 PM Page xxii

Part 1
Overview

The book is divided into five main parts. In the introductory part
of the book, primers are given into Field Programmable Gate
Arrays (FPGA), VHDL and the standard design flow. In the sec-
ond part of the book, a series of complex applications that encom-
pass many of the key design problems facing designers today are
worked through from start to finish in a practical way. This will
show how the designer can interpret a specification and develop a
top-down design methodology and eventually build in detailed
design blocks perhaps developed previously or by a third party. In
the third part of the book, important techniques are discussed,
worked through and explained from an example perspective, so
you can see exactly how to implement a particular function. This
part is really a toolbox of advanced specific functions that are
commonly required in modern digital design. The fourth part on
advanced techniques discusses the important aspect of design
optimization, that is how can I make my design faster? Or more
compact? The fifth part investigates the details of fundamental
issues that are implemented in VHDL. This final part is aimed at
designers with a limited VHDL background, perhaps those look-
ing for simpler examples to get started, or to solve a particular
detailed issue.

Ch01-H6845.qxd 4/5/07 11:21 AM Page 1

This page intentionally left blank

1
Introduction

Why FPGAs?

There are numerous options for designers in selecting a hardware
platform for custom electronics design, ranging from embedded
processors, Application Specific Integrated Circuits (ASICs),
Programmable Micro-processors (PICs), FPGAs to Programmable
Logic Devices (PLDs). The decision to choose a specific technology
such as an FPGA should depend primarily on the design require-
ments rather than a personal preference for one technique over
another.

For example, if the design requires a programmable device with
many design changes, and algorithms using complex operations
such asmultiplications and looping, then it may make more sense to
use a dedicated signal processor device such as a DSP that can be
programmed and reprogrammed easily using C or some other
high-level language. If the speed requirements are not particularly
stringent, and a compact cheap platform is required, then a general
purpose microprocessor such as a PIC would be an ideal choice.
Finally, if the hardware requirements require a higher level of per-
formance, say up to several 100 MHz operation, then an FPGA
offers a suitable level of performance, while still retaining the
flexibility and reusability of programmable logic.

Other issues to consider are the level of optimization in the hard-
ware design required. For example, a simple software program can
be written in C, and then a PIC device programmed, but the per-
formance may be limited by the inability of the processor to offer
parallel operation of key functions. This can be implemented
much more directly in an FPGA using parallelism and pipelining

Ch01-H6845.qxd 4/5/07 11:21 AM Page 3

to achieve much greater throughput than would be possible using
a PIC.

A general rule of thumb when choosing a hardware platform is to
identify both the design requirements and the hardware options,
and then select a suitable platform based on those considerations.

For example, if the design requires a basic clock speed of up to
100 MHz then an FPGA would be a suitable platform. If the clock
speed could be 3–4 MHz, then the FPGA may be an expensive
(overkill) option.

If the design requires a flexible processor option, although the
FPGAs available today support embedded processors, it probably
makes sense to use a DSP or PIC. If the design requires dedicated
hardware functionality, then an FPGA is the route to take.

If the design requires specific hardware functions such as multi-
plication and addition, then a DSP may well be the best route, but if
custom hardware design is required, then an FPGA would be the
appropriate choice.

If the design requires small simple hardware blocks, then a PLD or
CPLD (Complex Programmable Logic Device) may be the best
option (compact, simple programmable logic), however, if the design
has multiple functions, or a combination of complex controller and
specific hardware functions, then the FPGA is the route to take.

Examples of this kind of decision can be dependent on the com-
plexity of the hardware involved. For example, a Video Graphics
Array (VGA) controller will probably require an FPGA rather than a
PLD device, simply due to the complexity of the hardware involved.
Another related issue is that of flexibility and programmability. If an
FPGA is used, and the resources are not used upon a specific device
(say up to 60 per cent for example), then if a communications proto-
col changes, or is updated, then the device may well have enough
headroom to support several variants, or updates, in the future.

Using these simple guidelines, an intelligent choice can be made
about the best platform to choose, and also which hardware device
to select based on these assumptions. The nice aspect of most syn-
thesis software packages is that multiple design platforms can be
tested for performance and utilization (e.g. PLD or FPGA) prior to
making a final decision on the hardware of choice.

Design Recipes for FPGAs

4

Ch01-H6845.qxd 4/5/07 11:21 AM Page 4

2
An FPGA Primer

Introduction

This chapter is an introduction to the Field Programmable Gate
Array (FPGA) platform for those unfamiliar with the technology.
It is useful when designing hardware to understand the context
that the hardware description language models (VHDL) are
important and relevant to the ultimate design.

FPGA evolution

Since the inception of digital logic hardware in the 1970s, there has
been a plethora of individual devices – leading to the ubiquitous
TTL logic series still in use today (74/54 series logic), extended
to CMOS technology (HC, AC, FC, FCT, HCT and so on). While
these have been used extensively in Printed Circuit Board (PCB)
design and still are today, there has been a consistent effort over the
last 20 years to introduce greater programmability into basic digi-
tal devices.

The reason for this need is the dichotomy resulting from the two
differing design approaches used for most digital systems. On the
hardware side, the drive is usually toward ultimate performance:
faster, smaller, lower power and cheaper. This leads to custom
integrated circuit design (Application Specific Integrated Circuits
or ASICs) where each chip (ASIC) has to be designed, laid out,
fabricated and packaged individually. For large production runs
this is cost effective, but obviously this approach is hugely expen-
sive (masks alone for a current Silicon process may cost over
$500 000) and time consuming (up to a year).

Ch02-H6845.qxd 4/5/07 11:21 AM Page 5

Design Recipes for FPGAs

6

From a software perspective, however, the approach is more
to use a standard processor architecture such as Intel Pentium,
PowerPC or ARM, and develop software applications that can be
downloaded onto such a platform. This type of approach is obvi-
ously quicker to implement a platform; however, usually there is a
significant overhead due to the need for operating systems, com-
piler inefficiency and also a performance reduction due to the
indirect relationship between the hardware and the software on the
processor.

As a result, programmable devices have been developed as a form
of intermediate approach; hardware design on a high-performance
platform, optimal resources – no operating system required and
reconfigurable as the devices can be reprogrammed.

Programmable logic devices

The first type of devices to be programmable was Programmable
Array Logic (PAL). This consists of an array of logic gates that
could be connected using an array of connections. These devices
could support a small number of flip-flops (usually �10) and were
able to implement small state machines (Figure 1).

Complex Programmable Logic Devices (CPLDs) were developed
to address the limitations of simple PAL devices. These devices
used the same basic principle as PALs, but had a series of macro-
blocks (each roughly equivalent to a PAL) and connected using
routing blocks (Figure 2).

Field programmable gate arrays

The FPGAs were the next step from CPLD. Instead of a fixed
array of gates, the FPGA uses the concept of a Complex Logic
Block (CLB). This is configurable and allows not only routing on
the device, but also each logic block can be configured optimally.
A typical CLB is shown in Figure 3.

The CLB has a Look-Up Table (LUT) that can be configured to
give a specific type of logic function when programmed. There is
also a clocked d-type flip-flop that allows the CLB to be combina-
torial (non-clocked) or synchronous (clocked), and there is also an
enable signal. A Xilinx CLB is shown in Figure 4 and this shows

Ch02-H6845.qxd 4/5/07 11:21 AM Page 6

An FPGA Primer

7

clearly the two 4 input LUTs and various multiplexers and flip-
flops in a real device.

A typical FPGA will have hundreds or thousands of CLBs, of
different types, on a single device allowing very complex devices
to be implemented on a single chip and configured easily. Modern
FPGAs have enough capacity to hold a number of 32-bit proces-
sors on a single device. The layout of a typical FPGA (in CLB
terms) is shown in Figure 5.

Clock

Figure 1

Programmable Logic
Device

Ch02-H6845.qxd 4/5/07 11:21 AM Page 7

Design Recipes for FPGAs

8

Look-Up
Table
(LUT)

Inputs

Clock

Enable

State

Out

Figure 3

FPGA CLB

PIA

Macrocell 1
Macrocell 2
Macrocell 3
Macrocell 4
Macrocell 5
Macrocell 6
Macrocell 7
Macrocell 8

Macrocell 9–16

Macrocell 1
Macrocell 2
Macrocell 3
Macrocell 4
Macrocell 5
Macrocell 6
Macrocell 7
Macrocell 8

Macrocell 9–16

Macrocell 1
Macrocell 2
Macrocell 3
Macrocell 4
Macrocell 5
Macrocell 6
Macrocell 7
Macrocell 8

Macrocell 9–16

Macrocell 1
Macrocell 2
Macrocell 3
Macrocell 4
Macrocell 5
Macrocell 6
Macrocell 7
Macrocell 8

Macrocell 9–16

Macrocell 1
Macrocell 2
Macrocell 3
Macrocell 4
Macrocell 5
Macrocell 6
Macrocell 7
Macrocell 8

Macrocell 9–16

Macrocell 1
Macrocell 2
Macrocell 3
Macrocell 4
Macrocell 5
Macrocell 6
Macrocell 7
Macrocell 8

Macrocell 9–16

Macrocell 1
Macrocell 2
Macrocell 3
Macrocell 4
Macrocell 5
Macrocell 6
Macrocell 7
Macrocell 8

Macrocell 9–16

Macrocell 1
Macrocell 2
Macrocell 3
Macrocell 4
Macrocell 5
Macrocell 6
Macrocell 7
Macrocell 8

Macrocell 9–16

Figure 2

Complex
Programmable Logic
Device

Ch02-H6845.qxd 4/5/07 11:21 AM Page 8

An FPGA Primer

9

IO IO IO CLKM IO IO IO IO IO IO

S C C S C S IO IOSCCSCSIOIO

S C C S C S IO IOSCCSCSIOIO

S C C S C S IO IOSCCSCSIOIO

S C C S C S IO IOSCCSCSIOIO

IO IO IO IO IO IOIOIOIOIOIOIO

0 1 2 3 4 5 c�1 c c�1 m m�1m�2 m�3 Columns

Top IOs

Rows

n�1

n

n�1

.

.

.
2

1

0

Channels
n�2

n�1

n

n�1

.

.

.
2

1

0

Left IOs Right IOs
Bottom IOs

Figure 5

FPGA Structure of CLBs

Logic
Func

G4

G3

G2

G1

Logic
Func

F4

F3

F2

F1

Logic
Func

SR
Control

SR
Control

C1–C4

Clock

Y2

Y

X2

X

1

1

Figure 4

Xilinx CLB

Ch02-H6845.qxd 4/5/07 11:21 AM Page 9

10

Design Recipes for FPGAs

FPGA design techniques

When we design using VHDL, these functions need to be mapped
onto the low-level logic blocks on an FPGA. In order to do this, we
need to carry out three specific functions:

1. Mapping: Logic functions mapped onto CLBs.

2. Placement: CLBs placed on FPGA.

3. Routing: Routed connections between CLBs.

It is clearly impossible to design ‘by hand’ using today’s complex
designs, we therefore rely on synthesis software to turn our VHDL
design description into the logic functions that can be mapped onto
the FPGA CLBs. This design flow is an iterative process including
optimization and implies a complete design flow. This will be dis-
cussed in more detail later in this book.

Design constraints using FPGAs

It is very easy to produce unrealistic designs using VHDL if the
target FPGA platform is not considered carefully. FPGAs obvi-
ously have a limited number of logic blocks and routing resources,
and the design has to consider this. The style of VHDL code used
by the designer should make the best use of resources, and this
book will give examples of how that can be achieved. VHDL code
may be transferable between technologies, but may need rewriting
for best results due to these constraints.

Summary

This chapter introduces the basic technology behind FPGAs and
their development. The key design issues are highlighted and
some of the important design techniques introduced. Later chap-
ters in this book will develop these in more detail either from a
detailed design perspective or from a methodology point of view.

Ch02-H6845.qxd 4/5/07 11:21 AM Page 10

3
A VHDL Primer: The Essentials

Introduction

This chapter of the book is not intended as a comprehensive VHDL
reference book – there are many excellent texts available that fit
that purpose including Mark Zwolinski’s Digital System Design
with VHDL, Zainalabedin Navabi’s VHDL: Analysis and modeling
of digital systems or Peter Ashenden’s Designer’s Guide to VHDL.
This section is designed to give concise and useful summary infor-
mation on important language constructs and usage in VHDL –
helpful and easy to use, but not necessarily complete.

This chapter will introduce the key concepts in VHDL and the
important syntax required for most VHDL designs, particularly
with reference to Field Programmable Gate Arrays (FPGAs). In
most cases, the decision to use VHDL over other languages such as
Verilog or SystemC, will have less to do with designer choice, and
more to do with software availability and company decisions. Over
the last decade or so, a ‘war of words’has raged between the VHDL
and Verilog communities about which is the best language, and in
most cases it is completely pointless as the issue is more about
design than syntax. There are numerous differences in the detail
between VHDL and Verilog, but the fundamental philosophical dif-
ference historically has been the design context of the two lan-
guages. Verilog has come from a ‘bottom-up’ tradition and has
been heavily used by the IC industry for cell-based design, whereas
the VHDL language has been developed much more from a ‘top-
down’ perspective. Of course, these are generalizations and largely
out of date in a modern context, but the result is clearly seen in the
basic syntax and methods of the two languages.

Without descending into a minute dissection of the differences
between Verilog and VHDL one important advantage of VHDL is

Ch03-H6845.qxd 4/5/07 11:22 AM Page 11

Design Recipes for FPGAs

12

the ability to use multiple levels of model with different architec-
tures as shown in Figure 6.

This is not unique to VHDL, and in fact Verilog does have the con-
cept of different behavior in a single ‘module’; however, it is explic-
itly defined in VHDL and is extremely useful in putting together
practical multi-level designs in VHDL. The division of a model into
its interface part (the ‘entity’ in VHDL) and the behavior part (the
‘architecture’ in VHDL) is an incredibly practical approach for
modeling multiple behavior for a single interface and makes model
exchange and multiple implementations straightforward.

The remainder of this chapter will describe the key parts of
VHDL, starting with the definition of a basic model structure using
entities and architectures, discuss the important variable types,
review the methods of encapsulating concurrent, sequential and
hierarchical behavior and finally introduce the important funda-
mental data types required in VHDL.

Entity: model interface

Entity definition

The entity defines how a design element described in VHDL con-
nects to other VHDL models and also defines the name of the
model. The entity also allows the definition of any parameters that
are to be passed into the model using hierarchy. The basic template
for an entity is as follows:

entity <name> is
....
entity <name>;

Figure 6

VHDL Models
with Different
Architectures

Ch03-H6845.qxd 4/5/07 11:22 AM Page 12

If the entity has the name ‘test’, then the entity template could be
either:

entity test is
end entity test;

or:

entity test is
end test;

Ports

The method of connecting entities together is using PORTS. These
are defined in the entity using the following method:

port (
...list of port declarations...
);

The port declaration defines the type of connection and direc-
tion where appropriate. For example, the port declaration for an
input bit called in1 would be as follows:

in1 : in bit;

And if the model had two inputs (in1 and in2) of type bit and a
single output (out1) of type bit, then the declaration of the ports
would be as follows:

port (
in1, in2 : in bit;
out1 : out bit

);

As the connection points between entities are effectively the
same as those inter-process connections, they are effectively sig-
nals and can be used as such within the VHDL of the model.

Generics

If the model has a parameter, then this is defined using generics.
The general declaration of generics is shown below:

generic (
...list of generic declarations...
);

A VHDL Primer: The Essentials

13

Ch03-H6845.qxd 4/5/07 11:22 AM Page 13

In the case of generics, the declaration is similar to that of a con-
stant with the form as shown below:

param1 : integer := 4;

Taking an example of a model that had two generics (gain (inte-
ger) and time_delay (time)), they could be defined in the entity as
follows:

generic (
gain : integer := 4;
time_delay : time = 10 ns

);

Constants

It is also possible to include model specific constants in the entity
using the standard declaration of constants method previously
described, for example:

constant : rpullup : real := 1000.0;

Entity examples

To illustrate a complete entity, we can bring together the ports and
generics examples previously and construct the complete entity
for this example:

entity test is
port (

in1, in2 : in bit;
out1 : out bit

);
generic (

gain : integer := 4;
time_delay : time := 10 ns

);
constant : rpullup : real := 1000.0;

end entity test;

Architecture: model behavior

Basic definition of an architecture

While the entity describes the interface and parameter aspects of the
model, the architecture defines the behavior. There are several types
of VHDL architecture and VHDL allows different architectures to

Design Recipes for FPGAs

14

Ch03-H6845.qxd 4/5/07 11:22 AM Page 14

A VHDL Primer: The Essentials

15

be defined for the same entity. This is ideal for developing behav-
ioral, Register Transfer Level RTL and gate Level architectures
that can be incorporated into designs and tested using the same
test benches.

The basic approach for declaring an architecture could be as
follows:

architecture behaviour of test is
..architecture declarations
begin
...architecture contents
end architecture behaviour;

or

architecture behaviour of test is
..architecture declarations
begin
...architecture contents
end behaviour;

Architecture declaration section

After the declaration of the architecture name and before the begin
statement, any local signals or variables can be declared. For
example, if there were two internal signals to the architecture
called sig1 and sig2, they could be declared in the declaration sec-
tion of the model as follows:

architecture behaviour of test is
signal sig1, sig2 : bit;

begin

Then the signals can be used in the architecture statement section.

Architecture statement section

VHDL architectures can have a variety of structures to achieve
different types of functionality. Simple combinatorial expressions
use signal assignments to set new signal values as shown below:

out1 <= in1 and in2 after 10 ns;

Note that for practical design, the use of the ‘after 10 ns’ is not
synthesizable. In practice, the only way to ensure correct synthe-
sizable design is to either make the design delay insensitive or
synchronous. The design of combinatorial VHDL will result is

Ch03-H6845.qxd 4/5/07 11:22 AM Page 15

Design Recipes for FPGAs

16

additional delays due to the technology library gate delays, poten-
tially resulting in glitches or hazards. An example of a multiple
gate combinatorial architecture using internal signal declarations
is given below:

architecture behavioural of test is
signal int1, int2 : bit;

begin
int1 <= in1 and in2;
int2 <= in3 or in4;
out1 <= int1 xor int2;

end architecture behavioural;

Process: basic functional unit in VHDL

The process in VHDL is the mechanism by which sequential state-
ments can be executed in the correct sequence, and with more than
one process, concurrently. Each process consists of a sensitivity list,
declarations and statements. The basic process syntax is given below:

process sensitivity_list is
... declaration part

begin
... statement part

end process;

The sensitivity list allows a process to be activated when a spe-
cific signal changes value, for example a typical usage would be to
have a global clock and reset signal to control the activity of the
process, for example:

process (clk, rst) is
begin

... process statements
end process;

In this example, the process would only be activated when either
clk or rst changed value. Another way of encapsulating the same
behavior is to use a wait statement in the process so that the process
is automatically activated once, and then waits for activity on either
signal before running the process again. The same process could
then be written as follows:

process
begin

... process statements
wait on clk, rst;

end process;

Ch03-H6845.qxd 4/5/07 11:22 AM Page 16

In fact, the location of the wait statement is not important, as
the VHDL simulation cycle executes each process once during
initialization, and so the wait statement could be at the start or
the end of the process and the behavior would be the same in
both cases.

In the declaration section of the process, signals and variables
can be defined locally as described previously, for example a typi-
cal process may look like the following:

process (a) is
signal na : bit;

begin
na <= not a;

end process;

With the local signal na and the process activated by changes
on the signal a that is externally declared (with respect to the
process).

Basic variable types and operators

Constants

When a value needs to be static throughout a simulation, the type
of element to use is a constant. This is often used to initialize
parameters or to set fixed register values for comparison. A con-
stant can be declared for any defined type in VHDL with examples
as follows:

constant a : integer := 1;
constant b : real := 0.123;
constant c : std_logic := ‘0’;

Signals

Signals are the link between processes and sequential elements
within the processes. They are effectively ‘wires’ in the design
and connect all the design elements together. When simulating
signals, the simulator will in turn look at updating the signal val-
ues and also checking the sensitivity lists in processes to see
whether any changes have occurred that will mean that processes
become active.

Signals can be assigned immediately or with a time delay, so
that an event is scheduled for sometime in the future (after the

A VHDL Primer: The Essentials

17

Ch03-H6845.qxd 4/5/07 11:22 AM Page 17

Design Recipes for FPGAs

18

specified delay). It is also important to recognize that signals are
not the same as a set of sequential program code (such as in C), but
are effectively concurrent signals that will not be able to be con-
sidered stable until the next time the process is activated.

Examples of signal declaration and assignment are shown
below:

signal sig1 : integer := 0;
signal sig2 : integer := 1;
sig1 <= 14;
sig1 <= sig2;
sig1 <= sig2 after 10 ns;

Variables

While signals are the external connections between processes,
variables are the internal values within a process. They are only
used in a sequential manner, unlike the concurrent nature of sig-
nals within and between processes. Variables are used within
processes and are declared and used as follows:

variable var1 : integer := 0;
variable var2 : integer := 1;
var1 := var2;

Notice that there is no concept of a delay in the variable
assignment – if you need to schedule an event, it is necessary to
use a signal.

Boolean operators

VHDL has a set of standard Boolean operators built in, which are
self-explanatory. The list of operators are and, or, nand, not, nor,
xor. These operators can be applied to BIT, BOOLEAN or logic
types with examples as follows:

out1 <= in1 and in2;
out2 <= in3 or in4;
out5 <= not in5;

Arithmetic operators

There are a set of arithmetic operators built into VHDL which
again are self-explanatory and these are described and examples
provided, see next page.

Ch03-H6845.qxd 4/5/07 11:22 AM Page 18

A VHDL Primer: The Essentials

19

Comparison operators

VHDL has a set of standard comparison operators built in, which
are self-explanatory. The list of operators are �, /�, �, ��, �,
��. These operators can be applied to a variety of types as follows:

in1 < 1
in1 /= in2
in2 >= 0.4

Shifting functions

VHDL has a set of six built in logical shift functions which are
summarized below:

Operator Description Example

� Addition out1 �� in1 � in2;

� Subtraction out1 �� in1 � in2;

* Multiplication out1 �� in1 * in2;

/ Division out1 �� in1/in2;

abs Absolute Value absin1 �� abs(in1);

mod Modulus modin1 �� mod(in1);

rem Remainder remin1 �� rem(in1);

** Exponent out1 �� in1 ** 3;

Operator Description Example

sll Shift Left Logical reg �� reg sll 2;

srl Shift Right Logical reg �� reg srl 2;

sla Shift Left Arithmetic reg �� reg sla 2;

sra Shift Right Arithmetic reg �� reg sra 2;

rol Rotate Left reg �� reg rol 2;

ror Rotate Right reg �� reg ror 2;

Concatenation

The concatenation function XE ‘VHDL:concatenation’ in VHDL
is denoted by the & symbol and is used as follows:

A <= ‘1111’;
B <= ‘000’;
out1 <= A & B & ‘1’; -- out1 = ‘11110001’;

Ch03-H6845.qxd 4/5/07 11:22 AM Page 19

Decisions and loops

If-then-else

The basic syntax for a simple if statement is as follows:

if (condition) then
... statements

end if;

The condition is a Boolean expression, of the form a � b or
a � b. Note that the comparison operator for equality is a single
� , not to be confused with the double �� used in some program-
ming languages. For example, if two signals are equal, then set an
output high would be written in VHDL as:

if (a = b) then
out1 <= ‘1’;

end if;

If the decision needs to have both the if and else options, then the
statement is extended as follows:

if (condition) then
... statements

else
... statements

end if;

So in the previous example, we could add the else statements as
follows:

if (a = b) then
out1 <= ‘1’;

else
out1 <= ‘0’;

end if;

And finally, multiple if conditions can be implemented using the
general form:

if (condition1) then
... statements

elsif (condition2)
... statements

... more elsif conditions & statements
else

... statements
end if;

Design Recipes for FPGAs

20

Ch03-H6845.qxd 4/5/07 11:22 AM Page 20

With an example:

if (a > 10) then
out1 <= ‘1’;

elsif (a > 5) then
out1 <= ‘0’;

else
out1 <= ‘1’;

end if;

Case

As we have seen with the IF statement, it is relatively simple to
define multiple conditions, but it becomes a little cumbersome, and
so the case statement offers a simple approach to branching, without
having to use Boolean conditions in every case. This is especially
useful for defining state diagrams or for specific transitions between
states using enumerated types. An example of a case statement is:

case testvariable is
when 1 =>

out1 <= ‘1’;
when 2 =>

out2 <= ‘1’;
when 3 =>

out3 <= ‘1’;
end case;

This can be extended to a range of values, not just a single value :

case test is
when 0 to 4 => out1 <= ‘1’;

It is also possible to use Boolean conditions and equations. In
the case of the default option (i.e. when none of the conditions
have been met), then the term when others can be used:

case test is
when 0 => out1 <= ‘1’;
when others => out1 <= ‘0’;

end case;

For

The most basic loop in VHDL is the FOR loop. This is a loop that
executes a fixed number of times. The basic syntax for the FOR
loop is shown below:

for loopvar in start to finish loop
... loop statements

end loop;

A VHDL Primer: The Essentials

21

Ch03-H6845.qxd 4/5/07 11:22 AM Page 21

Design Recipes for FPGAs

22

It is also possible to execute a loop that counts down rather than
up, and the general form of this loop is:

for loopvar in start downto finish loop
... loop statements

end loop;

A typical example of a for loop would be to pack an array with
values bit by bit, for example:

signal a : std_logic_vector(7 downto 0);
for i in 0 to 7 loop

a(i) <= ‘1’;
end loop;

While and loop

Both the while and loop loops have an in-determinant number of
loops, compared to the fixed number of loops in a FOR loop and
as such are usually not able to be synthesized. For FPGA design,
they are not feasible as they will usually cause an error when the
VHDL model is compiled by the synthesis software.

Exit

The exit command allows a FOR loop to be exited completely.
This can be useful when a condition is reached and the remainder
of the loop is no longer required. The syntax for the exit command
is shown below:

for i in 0 to 7 loop
if (i = 4) then

exit;
endif;

endloop;

Next

The next command allows a FOR loop iteration to be exited, this
is slightly different to the exit command in that the current itera-
tion is exited, but the overall loop continues onto the next iteration.
This can be useful when a condition is reached and the remainder
of the iteration is no longer required. An example for the next
command is shown below:

for i in 0 to 7 loop
if (i = 4) then

next;
endif;

endloop;

Ch03-H6845.qxd 4/5/07 11:22 AM Page 22

A VHDL Primer: The Essentials

23

Hierarchical design

Functions

Functions are a simple way of encapsulating behavior in a model
that can be reused in multiple architectures. Functions can be
defined locally to an architecture or more commonly in a package
(discussed in the next section of this book), but in this section the
basic approach of defining functions will be described. The sim-
ple form of a function is to define a header with the input and
output variables as shown below:

function name (input declarations) return output_type is
... variable declarations

begin
... function body

end

For example, a simple function that takes two input numbers and
multiplies them together could be defined as follows:

function mult (a,b : integer) return integer is
begin

return a * b;
end;

Packages

Packages are a common single way of disseminating type and
function information in the VHDL design community. The basic
definition of a package is as follows:

package name is
...package header contents
end package;
package body name is

... package body contents
end package body;

As can be seen, the package consists of two parts, the header and
the body. The header is the place where the types and functions are
declared, and the package body is where the declarations them-
selves take place.

For example, a function could be described in the package body
and the function is declared in the package header. Take a simple
example of a function used to carry out a simple logic function:

and10 = and(a,b,c,d,e,f,g,h,i,j)

Ch03-H6845.qxd 4/5/07 11:22 AM Page 23

The VHDL function would be something like the following:

function and10 (a,b,c,d,e,f,g,h,i,j : bit) return bit is
begin

return a and b and c and d and e and f and g and h
and i and j;

end;

The resulting package declaration would then use the function in
the body and the function header in the package header thus:

package new_functions is
function and10 (a,b,c,d,e,f,g,h,i,j : bit) return bit;
end;
package body new_functions is

function and10 (a,b,c,d,e,f,g,h,i,j : bit) return
bit is

begin
return a and b and c and d and e \
and f and g and h and i and j;

end;
end;

Components

While procedures, functions and packages are useful in including
behavioral constructs generally, with VHDL being used in a hard-
ware design context, often there is a need to encapsulate design
blocks as a separate component that can be included in a design,
usually higher in the system hierarchy. The method for doing this
in VHDL is called a COMPONENT. Caution needs to be exer-
cised with components as the method of including components
changed radically between VHDL 1987 and VHDL 1993, as such
care needs to be taken to ensure that the correct language defini-
tions are used consistently.

Components are a way of incorporating an existing VHDL
entity and architecture into a new design without including the
previously created model. The first step is to declare the compo-
nent – in a similar way that functions need to be declared. For
example, if an entity is called and4, and it has 4 inputs (a, b, c, d
of type bit) and 1 output (q of type bit), then the component decla-
ration would be of the form shown below:

component and4
port (a, b, c, d : in bit; q : out bit);

end component;

Design Recipes for FPGAs

24

Ch03-H6845.qxd 4/5/07 11:22 AM Page 24

A VHDL Primer: The Essentials

25

Then this component can be instantiated in a netlist form in the
VHDL model architecture:

d1 : and4 port map (a, b, c, d, q);

Note that in this case, there is no explicit mapping between port
names and the signals in the current level of VHDL, the pins are
mapped in the same order as defined in the component declara-
tion. If each pin is to be defined independent of the order of the
pins, then the explicit port map definition needs to be used:

d1: and4 port map (a => a, b => b, c => c, d => d, q =>
q);

The final thing to note is that this is called the default binding. The
binding is the link between the compiled architecture in the current
library and the component being used. It is possible, for example, to
use different architectures for different instantiated components
using the following statement for a single specific device:

for d1 : and4 use entity work.and4(behaviour) port map
(a,b,c,d,q);

or the following to specify a specific device for all the instanti-
ated components:

for all : and4 use entity work.and4(behaviour) port
map (a,b,c,d,q);

Procedures

Procedures are similar to functions, except that they have more flex-
ibility in the parameters, in that the direction can be in, out or inout.
This is useful in comparison to functions where there is generally
only a single output (although it may be an array) and avoids the need
to create a record structure to manage the return value. Although
procedures are useful, they should be used only for small specific
functions. Components should be used to partition the design, not
procedures, and this is especially true in FPGA design, as the injudi-
cious use of procedures can lead to bloated and inefficient imple-
mentations, although the VHDL description can be very compact.
A simple procedure to execute a full adder could be of the form:

procedure full_adder (a,b : in bit; sum, carry : out bit)
is

begin
sum := a xor b;
carry := a and b;

end;

Ch03-H6845.qxd 4/5/07 11:22 AM Page 25

Design Recipes for FPGAs

26

Notice that the syntax is the same as that for variables (NOT sig-
nals), and that multiple outputs are defined without the need for a
return statement.

Debugging models

Assertions

Assertions are used to check if certain conditions have been met in
the model and are extremely useful in debugging models. Some
examples:

assert value <= max_value
report “Value too large”;

assert clock_width >= 100 ns
report “clock width too small”
severity failure;

Basic data types

Basic types

VHDL has the following standard types defined as built in data types:

• BIT

• BOOLEAN

• BIT_VECTOR

• INTEGER

• REAL

Data type: BIT

The BIT data type is the simple logic type built into VHDL. The
type can have two legal values ‘0’ or ‘1’. The elements defined as
of type BIT can have the standard VHDL built in logic functions
applied to them. Examples of signal and variable declarations of
type BIT follow:

signal ina : bit;
variable inb : bit := ‘0’;
ina <= inb and inc;
ind <= ‘1’ after 10 ns;

Ch03-H6845.qxd 4/5/07 11:22 AM Page 26

Data type: Boolean

The Boolean data type is primarily used for decision-making, so
the test value for ‘if ’ statements is a Boolean type. The elements
defined as of type Boolean can have the standard VHDL built in
logic functions applied to them. Examples of signal and variable
declarations of type Boolean follow:

signal test1 : Boolean;
variable test2 : Boolean := FALSE;

Data type: integer

The basic numeric type in VHDL is the integer and is defined as
an integer in the range �2147483647 to �2147483647. There are
obviously implications for synthesis in the definition of integers in
any VHDL model, particularly the effective number of bits, and so
it is quite common to use a specified range of integer to constrain
the values of the signals or variables to within physical bounds.
Examples of integer usage follow:

signal int1 : integer;
variable int2 : integer := 124;

There are two subtypes (new types based on the fundamental
type) derived from the integer type which are integer in nature, but
simply define a different range of values.

Integer subtypes: natural

The natural subtype is used to define all integers greater than and
equal to zero. They are actually defined with respect to the high
value of the integer range as follows:

natural values : 0 to integer’high

Integer subtypes: positive

The positive subtype is used to define all integers greater than and
equal to one. They are actually defined with respect to the high
value of the integer range as follows:

positive values : 1 to integer’high

Data type: character

In addition to the numeric types inherent in VHDL, there are also
the complete set of ASCII characters available for designers.
There is no automatic conversion between characters and a

A VHDL Primer: The Essentials

27

Ch03-H6845.qxd 4/5/07 11:22 AM Page 27

Design Recipes for FPGAs

28

numeric value per se; however, there is an implied ordering of the
characters defined in the VHDL standard (IEEE Std 1076-1993).
The characters can be defined as individual characters or arrays of
characters to create strings. The best way to consider characters is
an enumerated type.

Data type: real

Floating point numbers are used in VHDL to define real numbers
and the predefined floating point type in VHDL is called real. This
defines a floating point number in the range �1.0e38 to �10e38.
This is an important issue for many FPGA designs, as most com-
mercial synthesis products do not support real numbers – precisely
because they are floating point. In practice, it is necessary to use
integer or fixed point numbers which can be directly and simply
synthesized into hardware. An example of defining real signals or
variables is shown below:

signal realno : real;
variable realno : real := 123.456;

Data type: time

Time values are defined using the special time type. These not only
include the time value, but also the unit – separated by a space.
The basic range of the time type value is between �2147483647
and 2147483647, and the basic unit of time is defined as the
femto-second (fs). Each subsequent time unit is derived from this
basic unit of the fs as shown below:

ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
min = 60 sec;
hr = 60 min;

Examples of time definitions are shown below:

delay : time := 10 ns;
wait for 20 us;
y <= x after 10 ms;
z <= y after delay;

Summary

This chapter provides a very brief introduction to VHDL and is
certainly not a comprehensive reference. It enables the reader,

Ch03-H6845.qxd 4/5/07 11:22 AM Page 28

A VHDL Primer: The Essentials

29

hopefully, to have enough knowledge to understand the syntax of
the examples in this book. The author strongly recommends that
anyone serious about design with VHDL should also obtain a
detailed and comprehensive reference book on VHDL, such as
Zwolinski (a useful introduction to digital design with VHDL – a
common student textbook) or Ashenden (a more heavy duty VHDL
reference that is perhaps more comprehensive, but less easy for a
beginner to VHDL).

Ch03-H6845.qxd 4/5/07 11:22 AM Page 29

4
Design Automation and Testing for FPGAs

Simulation

Test benches

The overall goal of any hardware design is to ensure that the
design meets the requirements of the design specification. In
order to measure this is indeed the case we need to not only simu-
late the design representation in a hardware description language
(such as VHDL), but also to ensure that whatever tests we under-
take are appropriate and demonstrate that the specification has
been met.

The way that designers can test their designs in a simulator is by
creating a ‘test bench’. This is directly analogous to a real experi-
mental test bench in the sense that stimuli are defined, and the
responses of the circuit measured to ensure that they meet the
specification.

In practice, the test bench is simply a VHDL model that gener-
ates the required stimuli and checks the responses. This can be in
such a way that the designer can view the waveforms and manu-
ally check them, or by using VHDL constructs to check the design
responses automatically.

Test bench goals

The goals of any test bench are twofold. The first is primarily to
ensure that correct operation is achieved. This is essentially a
‘functional’ test. The second goal is to ensure that a synthesised
design still meets the specification (particularly with a view to
timing errors).

Ch04-H6845.qxd 4/5/07 11:23 AM Page 30

Simple test bench: instantiating components

Consider a simple combinatorial VHDL model given below:

library ieee;
use ieee.std_logic_1164.all;
entity cct is

port (in0, in1 : in std_logic;
out1 : out std_logic

);
end;

architecture simple of cct is
begin

out1 <= in0 AND in1 ;
end;

This simple model is clearly a two input AND gate, and to test the
operation of the component we need to do several things.

First, we must include the component in a new VHDL design. So
we need to create a basic test bench. The listing below shows how
a basic entity (with no connections) is created, and then the archi-
tecture contains both the component declaration and the signals to
test the design.

-- library declarations
library ieee;
use ieee.std_logic_1164.all;

-- empty entity declaration
entity test is
end;

-- test bench architecture
architecture testbench of test is

-- component declaration
component cct

port (in0, in1 : in std_logic;
out1 : out std_logic

);
end component;
-- test bench signal declarations
signal in0, in1, out1 : std_logic;

-- architecture body
Begin

-- declare the Circuit Under Test (CUT)
CUT : cct port map (in0, in1, out1);

end;

This test bench will compile in a VHDL simulator, but is not par-
ticularly useful as there are no definitions of the input stimuli (sig-
nals in0 and in1) that will exercise the Circuit Under Test (CUT).

Design Automation and Testing for FPGAs

31

Ch04-H6845.qxd 4/5/07 11:23 AM Page 31

Design Recipes for FPGAs

32

If we wish to add stimuli to our test bench we have some signif-
icant advantages over our design VHDL – the most appealing is
that we generally don’t need to adhere to any design rules or even
make the code synthesisable. Test bench code is generally designed
to be ‘off chip’ and therefore we can make the code as abstract or
behavioral as we like and it will still be fit for purpose. We can use
wait statements, file read and write, assertions and other non-
synthesisable code options.

Adding stimuli

In order to add a basic set of stimuli to our test bench, we could
simply define the values of the input signals in0 and in1 with a
simple signal assignment:

begin
CUT : cct port map (in0, in1, out1);

in0 <= ‘0’;
in1 <= ‘1’;

end;

Clearly this is not very complex or dynamic test bench, so to
add a sequence of events we can modify the signal assignments to
include numerous value, time pairs defining a sequence of values.

begin
CUT : cct port map (in0, in1, out1);

in0 <= ‘0’ after 0 ns, ‘1’ after 10 ns, ‘0’ after
20 ns;

in1 <= ‘0’ after 0 ns, ‘1’ after 15 ns, ‘0’ after
25 ns;

end;

While this method is useful for small circuits, clearly for more
complex realistic designs it is of limited value. Another approach
is to define a constant array of values that allow a number of tests
to be carried out with a relatively simple test bench and applying a
different set of stimuli and responses in turn.

For example, we can exhaustively test our simple two input logic
design using a set of data in a record. A VHDL record is simply a
collection of types grouped together defined as a new type.

type testdata is record
in0 : std_logic;
in1 : std_logic;

end;

Ch04-H6845.qxd 4/5/07 11:23 AM Page 32

Design Automation and Testing for FPGAs

33

With a new composite type, such as a record, we can then create an
array, just as in any standard VHDL type. This requires another type
declaration, of the array type itself.

type data_array is array (natural range <>) of data_array

With these two new types we can simply declare a constant (of
type data_array) that is an array of record values (of type testdata)
that fully describe the data set to be used to test the design. Notice
that the type data_array does not have a default range, but that this
is defined by the declaration in this particular test bench.

constant test_data : data_array := ((‘0’, ‘0’), (‘0’,
‘1’), (‘1’, ‘0’), (‘1’, ‘1’));

The beauty of this approach is that we can change from a system
that requires every test stimulus to be defined explicitly, to one
where a generic test data process will read values from pre-
defined arrays of data. In the simple test example presented here,
an example process to apply each set of test data in turn could be
implemented as follows:

process
begin

for i in test_data’range loop
in0 <= test_data(i).in0;
in1 <= test_data(i).in1;
wait for 100 ns;

end loop
wait;

end process;

There are several interesting aspects to this piece of test bench
VHDL. The first is that we can use behavioral VHDL (wait for
100 ns) as we are not constrained to synthesize this to hardware.
Secondly, by using the range operator, the test bench becomes
unconstrained by the size of the data set. Finally, the individual
record elements are accessed using the hierarchical construct
test_data(i).in0 or test_data(i).in1, respectively.

Libraries

Introduction

VHDL as a language on its own is actually very limited in the
breadth of the data types and primitive models available. As a result,
libraries are required to facilitate design re-use and standard data

Ch04-H6845.qxd 4/5/07 11:23 AM Page 33

Design Recipes for FPGAs

34

types for model exchange, re-use and synthesis. The primary
library for standard VHDL design is the IEEE library. Within the
IEEE Design Automation Standards Committee (DASC), various
committees have developed libraries, packages and extensions to
standard VHDL. Some of these are listed below:

• IEEE Std 1076 Standard VHDL Language

• IEEE Std 1076.1 Standard VHDL Analog and Mixed-Signal
Extensions (VHDL-AMS)

• IEEE Std 1076.1.1 Standard VHDL Analog and Mixed-
Signal Extensions – Packages for Multiple Energy Domain
Support

• IEEE Std 1076.4 Standard VITAL ASIC (Application
Specific Integrated Circuit) Modeling Specification (VITAL)

• IEEE Std 1076.6 Standard for VHDL Register Transfer
Level (RTL) Synthesis (SIWG)

• IEEE Std 1076.2 IEEE Standard VHDL Mathematical
Packages (math)

• IEEE Std 1076.3 Standard VHDL Synthesis Packages
(vhdlsynth)

• IEEE Std 1164 Standard Multivalue Logic System for
VHDL Model Interoperability (Std_logic_1164)

Each of these ‘working groups’ are volunteers who come from a
combination of academia, EDA industry and user communities,
and collaborate to produce the IEEE Standards (usually revised
every 4 years).

Using libraries

In order to use a library, first the library must be declared:

library ieee;

Within each library a number of VHDL packages are defined, that
allow specific data types or functions to be employed in the design.
For example, in digital systems design, we require logic data types,
and these are not defined in the basic VHDL standard (1076).
Standard VHDL defines integer, boolean and bit types, but not a
standard logic definition. This is obviously required for digital
design and an appropriate IEEE standard was developed for this
purpose – IEEE 1164. It is important to note that IEEE Std 1164 is

Ch04-H6845.qxd 4/5/07 11:23 AM Page 34

Design Automation and Testing for FPGAs

35

NOT a subset of VHDL (IEEE 1076), but is defined for hardware
description languages in general.

Std_logic libraries

There are a number of std_logic libraries available in the IEEE
library and these are:

• std_logic_1164

• std_logic_arith

• std_logic_unsigned

• std_logic_signed

• std_logic_entities

• std_logic_components

• std_logic_misc

• std_logic_textio

In order to use a particular element of a package in a design, the
user is required to declare their use of a package using the USE com-
mand. For example, to use the standard IEEE logic library, the use
needs to add a declaration after the library declaration as follows:

library ieee;
use ieee.std_logic_1164.all;

The std_logic_1164 package is particularly important for most
digital design, especially for Field Programmable Gate Array
(FPGA), because it defines the standard logic types used by ALL
the commercially available simulation and synthesis software tools,
and is included as a standard library. It incorporates not only the
definition of the standard logic types, but also conversion functions
(to and from the standard logic types) and also manages the conver-
sion between signed, unsigned and logic array variables.

Std_logic type definition

As it is such an important type, the std_logic type is described in
this section. The type has the following definition:

• ‘U’: uninitialized; this signal hasn’t been set yet

• ‘X’: unknown; impossible to determine this value/result

• ‘0’: logic 0

Ch04-H6845.qxd 4/5/07 11:23 AM Page 35

Design Recipes for FPGAs

36

• ‘1’: logic 1

• ‘Z’: High Impedance

• ‘W’: Weak signal, can’t tell if it should be 0 or 1

• ‘L’: Weak signal that should probably go to 0

• ‘H’: Weak signal that should probably go to 1

• ‘-’: Don’t care

These definitions allow resolution of logic signals in digital
designs in a standard manner that is predictable and repeatable
across software tools and platforms. The operations that can be
carried out on the basic std_logic data types are the standard built
in VHDL logic functions:

• and

• nand

• or

• nor

• xor

• xnor

• not

An example of the use of the std_logic library would be to define
a simple logic gate – in this case a three input nand gate:

library ieee;
use ieee.std_logic_1164.all;

entity nand3 is
port (in0, in1, in2 : in std_logic;

out1 : out std_logic) ;
end;

architecture simple of nand3 is
begin

out1 <= in0 nand in1 nand in2;
end;

Synthesis

Design flow for synthesis

The basic HDL design flow is shown in Figure 7.

Ch04-H6845.qxd 4/5/07 11:23 AM Page 36

Design Automation and Testing for FPGAs

37

As can be seen from this figure, Synthesis is the key stage
between high-level design and the physical place and route which
is the final product of the design flow. There are several different
types of synthesis ranging from behavioral, to RTL and finally
physical synthesis.

Behavioral synthesis is the mechanism by which high level
abstract models are synthesized to an intermediate model that is
physically realizable. Behavioral models can be written in VHDL
that are not directly synthesizable and so care must be taken with
high level models to ensure that this can take place, in fact. There
are limited tools that can synthesize behavioral VHDL and these
include the Behavioral Compiler from Synopsys, Inc and MOODS,
a research synthesis platform from the University of Southampton.

RTL Synthesis is what most designers call synthesis, and is the
mechanism whereby a direct translation of structural and register
level VHDL can be synthesized to individual gates targeted at a
specific FPGA platform. At this stage, detailed timing analysis can
be carried out and an estimate of power consumption obtained.
There are numerous commercial synthesis software packages
including Design Compiler (Synopsys), Leonardo Spectrum (Mentor
Graphics) and Synplify (Synplicity) – but this is not an exhaustive
list – there are numerous offerings available at a variety of prices.

Physical synthesis is the last stage in a synthesis design flow and is
where the individual gates are placed (using a ‘floorplan’) and
routed on the specific FPGA platform.

Specification

HDL Entry

Synthesis

Bread board

Timing
Simulation

errors?

Place and Route

Netlist Simulation

RTL Simulation

Figure 7

HDL Design Flow

Ch04-H6845.qxd 4/5/07 11:23 AM Page 37

Design Recipes for FPGAs

38

Synthesis issues

Synthesis basically transforms program-like VHDL into a true
hardware design (netlist). It requires a set of inputs, a VHDL
description, timing constraints (when outputs need to be ready,
when inputs will be ready, data to estimate wire delay), a technol-
ogy to map to (list of available blocks and their size/timing infor-
mation) and information about design priorities (area vs. speed)

For big designs, the VHDL will typically be broken into modules
and then synthesized separately. 10 K gates per module was a rea-
sonable size in the 1990s, however tools can handle a lot more now.

RTL design flow

RTL VHDL is the input to most standard synthesis software tools.
The VHDL must be written in a form that contains Registers, State
Machines (FSM) and combinational logic functions. The synthesis
software translates these blocks and functions into gates and library
cells from the FPGA library. The RTL design flow is shown in
Figure 8, in more detail than the overall HDL design flow. Using

VHDL
Model

RTL
Simulation

Testbench

Synthesis Structural
VHDL

EDIF
Netlist

Place&Route

Bit File

Timing
Information

Timing
Simulation

Figure 8

RTL Synthesis and
Design Flow

Ch04-H6845.qxd 4/5/07 11:23 AM Page 38

Design Automation and Testing for FPGAs

39

RTL VHDL restricts the scope of the designer as it precludes algo-
rithmic design – as we shall see later. This approach forces the
designer to think at quite a low level – making the resulting code
sometimes verbose and cumbersome. It also forces structural
decisions early in the design process – restrictive and not always
advisable, or helpful.

The Design process starts from RTL VHDL:

• Simulation (RTL) – is needed to develop a test bench
(VHDL).

• Synthesis (RTL) – targeted at a standard FPGA platform.

• Timing simulation (Structural) – simulate to check timing.

• Place and route using standard tools (e.g. Xilinx Design
Manager).

Although there are a variety of software tools available for synthe-
sis (such as Leonardo Spectrum or Synplify), they all have gener-
ally similar approaches and design flows.

Physical design flow

Synthesis generates a netlist of devices plus interconnections. The
‘place and route’ software figures out where the devices go and
how to connect them. The results not as good as you’d like; a 40 to
60 per cent utilization of devices and wires is typical. The designer
can trade off run time against greater utilization to some degree, but
there are serious limits. Typically the FPGA vendor will provide a
software toolkit (such as the Xilinx Design Navigator or Altera’s
Quartus tools) that manages the steps involved in physical design.

Regardless of the particular physical synthesis flow chosen, the
steps required to translate the VHDL or EDIF output from an RTL
synthesis software program into a physically downloadable bit file
are essentially the same and are listed below:

1. Translate

2. Map

3. Place

4. Route

5. Generate accurate timing models and reports

6. Create binary files for download to device

Ch04-H6845.qxd 4/5/07 11:23 AM Page 39

Design Recipes for FPGAs

40

Place and route

There are two main techniques to place and route in current com-
mercial software which are recursive cut and simulated annealing.

Recursive cut

In a recursive cut algorithm, we divide the netlist into two halves,
move devices between halves to minimize the number of wires
that cross cut (while keeping the number of devices in each half
the same). This is repeated to get smaller and smaller blocks.

Timing analysis

Static timing analysis is the most commonly-used approach. In
static timing analysis, we calculate the delay from each input to
each output of all devices. The delays are added up along each path
through circuit to get the critical path through the design and hence
the fastest design speed.

This works as long as there are no cycles in the circuit, however in
these cases the analysis becomes less easy. Design software allows
you to break cycles at registers to handle feedback if this is the case.

As in any timing analysis, the designer can trade off some accuracy
for run time. Digital simulation software such as Modelism or
Verilog will give fast results, but will use approximate models of
timing, whereas analog simulation tools like SPICE will give more
accurate numbers, but take much longer to run.

Design pitfalls

The most common mistake that inexperienced designers make is
simply making things too complex. The best approach to success-
ful design is to keep the design elements simple, and the easiest
way to manage that is efficient use of hierarchy.

The second mistake that is closely related to design complexity
is not testing enough. It is vital to ensure that all aspects of the
design are adequately tested. This means not only carrying out
basic functional testing, but also systematic testing, and checking
for redundant states and potential error states.

Another common pitfall is to use multiple clocks unnecessarily.
Multiple clocks can create timing related bugs that are transient or

Ch04-H6845.qxd 4/5/07 11:23 AM Page 40

hardware dependent. They can also occur in hardware and yet be
missed by simulation.

VHDL issues for FPGA design

Initialization

Any default values of signals and variables are ignored. This
means that you must ensure that synchronous (or asynchronous)
sets and resets must be used on all flip-flops to ensure a stable
starting condition. Remember that synthesis tools are basically
stupid and follows a basic set of rules that may not always result in
the hardware that you expect.

Floating point numbers and operations

Data types using floating point are currently not supported by syn-
thesis software tools. They generally require 32 bits and the requi-
site hardware is just too large for most FPGA and ASIC platforms.

Summary

This chapter has introduced the practical aspect of developing test
benches and validating VHDL models using simulation. This is an
often overlooked skill in VHDL (or any hardware description lan-
guage) and is vital to ensuring correct behavior of the final imple-
mented design. We have also introduced the concept of design
synthesis and highlighted the problem of not only ensuring that a
design simulates correctly, but also how we can make sure that the
design will synthesize to the target technology and still operate cor-
rectly with practical delays and parasitics. Finally, we have raised
some of the practical implementation issues and potential problems
that can occur with real designs, and these will be discussed in more
detail in Part 4 of this book.

An important concept useful to define here is the difference
between validation and verification. The terms are often confused
leading to problems in the final design and meeting a specifica-
tion. Validation is the task of ensuring that the design is ‘doing the
right thing’. If the specification asks for a low pass filter, then we
must implement a low pass filter to have a valid design. We can
even be more specific and state that the design must perform

Design Automation and Testing for FPGAs

41

Ch04-H6845.qxd 4/5/07 11:23 AM Page 41

within a constraint. Verification, on the other hand, is much more
specific and can be stated as ‘doing the right thing right’. In other
words, verification is ensuring that not only does our design do
what is required functionally, but in addition it must meet ALL the
criteria defined by the specification, preferably with some head-
room to ensure that the design will operate to the specification
under all possible operating conditions.

Design Recipes for FPGAs

42

Ch04-H6845.qxd 4/5/07 11:23 AM Page 42

Part 2
Applications

The aim is of the applications section of this book is to identify
key points/issues and ‘nuggets’ of information that are of practical
use to the designer. The technical information on the issues pro-
vided later in the book are referenced, enabling the reader to see
the ‘wood for the trees’ and select the ‘trees’ they need to solve a
particular issues. Each application uses a combination of block
diagrams, state diagrams and code snippets to explain the key con-
cepts in making the application work. Detailed analysis of specific
aspects of the design are forward referenced as required.

The first application is a high speed video monitor system that
requires the implementation of a link to a video camera, and also
interfaces to Random Access Memory (RAM) and a hard disk.
While this is a notional system, the concept is in common usage in
a variety of industries. The techniques involved are in exactly the
area that is useful for a wide range of similar testing and monitor-
ing applications.

The second application is more about processing power and
illustrates the practical aspects of developing multiple processor
cores on a standard Field Programmable Gate Array (FPGA) plat-
form and how that can be managed in practice.

Ch05-H6845.qxd 4/5/07 11:25 AM Page 43

This page intentionally left blank

5
Images and High-Speed Processing

Introduction

This application is designed to show how several high data rate appli-
cations can be handled using VHDL on FPGAs (Field Programmable
Gate Arrays). The system consists of a high speed camera, processor
core, disk drive interface, Random Access Memory (RAM) interface
and serial link to an external Program Counter (PC). The overall sys-
tem has been chosen to illustrate how to move large amounts of data
around quickly and efficiently. The outline of such a test application
is shown in the figure below. As can be seen, there are several key
aspects involved, but mainly it is about moving large amounts of data
around a system quickly, efficiently and reliably.

The basic system is shown in outline form in Figure 9.

FPGA

Camera

Hard disk drive

RAM

Figure 9

Video Monitor
System Overview

Ch05-H6845.qxd 4/5/07 11:25 AM Page 45

The key performance aspect of this system is in the three inter-
faces:

1. Camera ⇔ FPGA

2. 1FPGA ⇔ PC/Hard disk drive (HDD)

3. FPGA ⇔ RAM

If we consider the basic camera performance criteria, we have four
issues to consider:

1. Resolution

2. Frame rate

3. Color specification

4. Clip size

In this example, the resolution is defined as being 640�480 pixels,
the color mode is 24-bit color (3�8 bit planes), the maximum frame
rate is 100 s and finally the basic clip size is anything up to 10 s.

What is not shown in the overview figure above is the require-
ment for some basic control options (such as ‘play’, ‘record’,
‘store’) to allow the stored clips to be replayed using a standard
Video Graphics Array (VGA) output (available on most FPGA
development kits) or stored for long-term storage on an HDD (or
similar high-capacity storage device). This could be handled sepa-
rately using a PC interface, but that detail is beyond the scope of
this basic system description.

The camera link interface

Hardware interface

There are a number of approaches for linking cameras for the high-
speed transfer of data, with the two most common being Universal
Serial Bus USB (to PCs) and a standard Camera Link using Low
Voltage Differential Swing (LVDS) serial data transmission. The
LVDS system is a differential serial link that uses voltages of about
350 mV to transmit high-speed data with low noise and low power.
Many FPGA development kits have a standard LVDS bus available
and this means that the signals can be connected directly between the
camera and the FPGA board to transfer data from the camera to the
FPGA and hence to the storage (either RAM or HDD).

Design Recipes for FPGAs

46

Ch05-H6845.qxd 4/5/07 11:25 AM Page 46

Data rates

The actual data rate required is theoretically the resolution multi-
plied by the frame rate multiplied by the number of bits required
for each pixel, which in this example would mean the following
calculation:

Data rate � Resolution * frame rate * bits/pixel (1)

Which for the specification would mean a total data rate of:

Data rate � 640 * 480 * 100 * 24 (2)

Data rate � 737 280 000 bps (3)

This equates to a data rate of over 90 MB/s (M bytes per second)
and as such is extremely fast for a practical application. Even if the
FPGA could run at 100 MHz, the margin on such a system is
pretty small.

The Bayer pattern

Luckily, in practice, most camera systems do not use 24 bits in this
raw fashion. Kodak have developed the Bayer pattern which is a
technique whereby instead of requiring each pixel to have its own
individual 3 color planes (requiring 24 bits in total), an array of
color filters is placed over the camera sensor and this limits the
requirement for data bits per pixel to a single 8-bit byte (with a
known color filter in place). The Bayer pattern is repeated over the
image in a fixed configuration to standardize this process. The
Bayer pattern is shown in Figure 10.

Clearly, using this approach, the required data rate can be
divided by three and reduces to a more manageable 30 MB/s.

Images and High-Speed Processing

47

B

RG

G B

RG

G B

RG

G B

RG

G

B

RG

G B

RG

G B

RG

G

B

RG

G B

RG

G B

RG

G

Bayer pattern Bayer Pattern extended
over an image

(0,0) (0,0)

Figure 10

Basic Bayer Pattern,
and Extended Over a
Larger Image Area

Ch05-H6845.qxd 4/5/07 11:25 AM Page 47

However, the disadvantage of this approach is that the resolution
is reduced, however, most images can be reconstructed fairly read-
ily using a method of interpolation which checks firstly which
color the current pixel is (red, green or blue) and then takes an
average of the neighboring pixels of the missing colors. For exam-
ple, if the current pixel color is green, then the blue and red color
of the current pixel is obtained by averaging the neighboring blue
(2) and red (2) pixels, respectively.

Memory requirements

Taking the use of Bayer patterns to reduce the sheer amount of
data required into account, this means that the RAM requirements
are still high, in this case for a 640�480 image size, this will
require a memory size of:

Memory size � resolution * bits/pixel

Memory size � resolution * 8 bits

Memory size � 640 * 480 * 8 bits

Memory size � 307200 * 8 bits (per frame)

Clearly, a large memory is going to be required for any signifi-
cant memory storage and it is unlikely to be possible to store this
on the FPGA itself. A more practical solution will be to use some
RAM connected to the FPGA (or perhaps available on the develop-
ment board itself). Options for the memory could include
Synchronous Dynamic Random Access Memory (SDRAM) or
Flash Memory. Both of these options will be discussed in detail
later in the book, however it is useful to consider the advantages
and disadvantages of each approach in general.

If we consider SDRAM, the key aspects of this type of memory
to consider are:

1. This type of DRAM (Dynamic RAM) relies on transistor
capacitance on gates to store data.

2. DRAM is much more compact than SRAM (Static RAM).

3. DRAM cannot be synthesized – you need a separate DRAM
chip.

4. SDRAM requires a synchronization clock that is consistent
with the rest of the hardware system (it is designed to oper-
ate with microprocessors).

Design Recipes for FPGAs

48

Ch05-H6845.qxd 4/5/07 11:25 AM Page 48

5. DRAM data must be refreshed as it is stored charge and
decays after a certain time.

6. DRAM is slower than SRAM.

Static RAM (SRAM) can be considered in a similar way to a
Read Only Memory (ROM) chip and it also has (differing) key
aspects of behavior to consider:

1. Memory cells are based on standard latches.

2. SRAM is fast.

3. SRAM is less compact than DRAM (or SDRAM).

4. SRAM can be synthesized on an FPGA – so is ideal for
small, fast registers or memory blocks.

Static RAM is essentially asynchronous, but can be modified to
behave synchronously (as SDRAM is the synchronous equivalent
of DRAM), and this is often called Synchronous RAM.

Flash Memory is useful to consider at this point, even though its
operation is fundamentally different from the memory types con-
sidered thus far, simply because it is easy to use and is commonly
available on many FPGA development boards.

Flash Memory is essentially a form of EEPROM (Electrically
Programmable ROM) that can be used as a form of persistent
RAM. Why persistent? In Flash Memory, the device memory is
retained even when the power is removed, so it is often used as a
form of ROM, which makes it an interesting memory to use on
FPGA systems as it could be used to store the FPGA program, but
also used as a RAM storage (dynamically) for current data.

Getting started

Now that the basic context of the design has been described, and
the basic specification firmed up, the first stage of the actual
design can start. In practice, many of the individual blocks may
exist in some form, but may need to be modified to fit the specific
application requirements. However, generally speaking it is sensi-
ble to start with a top-down design methodology.

What that means is that based on the specification, a top level
block can be designed that has the correct pin interface (although
this may change as the design is refined) and an outline block
structure that contains the functional blocks in the design. If we

Images and High-Speed Processing

49

Ch05-H6845.qxd 4/5/07 11:25 AM Page 49

consider the design example in this section of the book a typical
starting point will be a top level diagram showing the basic build-
ing blocks of the design and the overall interfaces. Some of the
details will not be complete at this stage, but we can start to con-
struct a top level design that we can ‘fill in’ the details later as we
go on with the details of each design block.

Figure 11 shows the outline top level design for the application.

The essential features of the design are captured in this sketch –
the main functional blocks, the key interfaces and also notice that
we have identified a system clock and reset that will propagate to
all the individual functional blocks.

Notice also, that in the original design we did not specify the
user input mechanism (i.e. how does the user control the camera
interface or store data?). We have taken a design decision at this
point, which is to use a simple mouse and keyboard interface to
provide the user control to the FPGA system. This allows a flexible

Design Recipes for FPGAs

50

Figure 11

Top Level Design –
Sketch

Ch05-H6845.qxd 4/5/07 11:25 AM Page 50

approach, so in the first instance, we could use mouse keys or spe-
cific keys on the keyboard to initiate a record sequence, or play-
back, or store, but ultimately, depending on how complex we wish
to make the design, it would be possible to design a simple user
interface with buttons or similar user interface features, actually
on the display to allow controls to drive the system.

Specifying the interfaces

From the sketch shown in Figure 11 we can begin to identify the
interface requirements for the top level design. First we clearly
need a clock and reset (active low), so keeping things simple
(always a good strategy) we can define the clock pin as clk and the
reset pin as nrst. These are standard logic connections, and so we
will use the basic standard logic type defined in the IEEE
std_logic library. This does not define any details about the actual
implementation of the pins (5 V or 3.3 V or even 1 V), but simply
the number of logic levels in the model. The actual implementa-
tion is defined by the FPGA being used.

Defining the top level design

For this design we must define a top level entity name, and also
individual block names. It is always a good idea to use meaningful
names (unless they become unmanageable in which case acronyms
can be helpful), and hierarchy can also help in keeping duplicate
name problems to a minimum. For example, in this case, the design
is designed as an image handler and storage interface, which is
clearly a handful, so in this example, we will shorten to IHSI
(remember that VHDL is case insensitive). Each main block below
this top level will then have the prefix ihsi_ to identify the block in
the design. This also has the effect of keeping all the blocks
grouped together in the same place alphabetically in the compiled
library, which makes things easier to find. We can therefore pro-
duce the first initial top level entity for the complete application:

library ieee;
use ieee.std_logic_1164.all;
entity ihsi is

Port (
clk : IN std_logic;
nrst : IN std_logic

);
end entity ihsi;

Images and High-Speed Processing

51

Ch05-H6845.qxd 4/5/07 11:25 AM Page 51

We can then identify each major block that requires an external
interface and add the requisite connection points to the top level
entity. It is worth remembering that at each stage of the design, we
do not need to have every block defined completely to test other
parts of the design. We can use behavioral models or even empty
models to simply ensure that the interfaces are in place and then
replace each empty block with a fully functional one. We can also
start with behavioral models, replace with Register Transfer Level
(RTL) models and finally even replace these with synthesized
ones. Thus a complete system can be tested piece by piece until all
the blocks are in place.

System block definitions and interfaces

Overall system decomposition

In this specific application we have several important blocks with
external interfaces including:

• Mouse controller (PS/2)

• Keyboard controller (PS/2)

• Flash memory

• VGA output

• CameraLink

• PC interface

We can take each of these interfaces in turn and specify the req-
uisite interface connections required for the design.

Mouse and keyboard interfaces

The mouse and keyboard PS/2 interfaces are relatively easy. Each
of these has a clock and a data connection and so for each we can
define two pins as follows:

Mouse: mouse_clk, mouse_data
Keyboard: key_clk, key_data

In the general case, the PS/2 interface (to be covered in more
detail in the design toolbox section of this book in the PS/2 Mouse
and PS/2 Keyboard Chapters [150–160]) allows both directions to
be used (i.e. device to controller and vice versa) so these connections

Design Recipes for FPGAs

52

Ch05-H6845.qxd 4/5/07 11:25 AM Page 52

must be defined as INOUT std_logic connections in our top level
entity.

Memory interface

For the memory interface, we have two options. The first option is
to define precisely the type of memory we are going to use in this
application (RAM, Flash, EEROM, DRAM, SRAM) and produce
a specific interface that will work for only that type of memory.
Another approach is to consider that we will treat whatever type of
memory we have as generic RAM internally, and to design a mem-
ory block that will interface to the actual memory (i.e. we will
treat the memory interface as essentially a virtual RAM block).
For the initial design, therefore, we can treat the memory as a sim-
ple synchronous RAM block that has a clock, data bus, address
bus, and write and read signals. For this initial interface, therefore,
we will require the following signals only:

Signal Name Direction Type Notes
Clock mem_clk OUT std_logic
Data mem_data(31:0) INOUT std_logic
bus
Address mem_addr(31:0) OUT std_logic
bus
Write mem_nwr OUT std_logic (active low)
Read mem_nrd OUT std_logic (active low)

More details on modeling the memory interface and dedicated
memory itself is given in the chapter on memory later in this book
[140–149].

The display interface: VGA

For the VGA output (to be described later in this book in more
detail) we require a specific definition of pins for the connec-
tion to the VGA connector on a development board or system. The
first set of pins required in any VGA system is the clock and
sync pins.

The global VGA clock needs to be set to a specific frequency
(depending on the monitor), such as 25 MHz, and this must be
derived from the system clock on the FPGA board (say 100 MHz).
The VGA clock pin is called the pixel clock and we can use the nam-
ing convention of vga_ as a prefix, followed by the functional name.
So, for the pixel clock, the pin is named vga_out_pixel_clock.

Images and High-Speed Processing

53

Ch05-H6845.qxd 4/5/07 11:25 AM Page 53

In addition to the clock, there are three synchronization signals
required, the horizontal sync (vga_hsync), the vertical sync (vga_
vsync) and the composite sync (vga_comp_sync). Finally, there is
a blank pulse (vga_out_blank_z).

The set of pins defined next are the three color data sets. VGA
has three color planes (red, green and blue) each with a definition
of 8 bits, giving 24 bits in total. As has been described previously,
these can be processed using a Bayer pattern, but when the final
output pixel data is put together, all three planes require some out-
put values to be set (even if they are all zero). We can define these
pins as 8-bit vectors as follows:

vga_out_red : OUT std_logic_vector (7 downto 0);
vga_out_green : OUT std_logic_vector (7 downto 0);
vga_out_blue : OUT std_logic_vector (7 downto 0);

This provides a complete definition of the VGA interface to the
monitor from the system as a whole. More details of the VGA
interface mechanism is given in the dedicated chapter on VGA in
the designer’s toolbox section later in this book [161–168].

The cameralink interface

The cameralink standard has been devised to provide a generic 26
pin interface to a wide range of digital camera and as such we can
specify a standard interface at the top level of our design.
Although the interface requires 26 pins, they are configured dif-
ferentially, and so we can specify the basic interface functionally
using only 11 pins.

There is a clock pin, which we can define as camera_clk, and
then 4 camera control lines defined as cc1 to cc4, respectively.
Using the ‘camera_’ prefix, we can therefore name these as cam-
era_cc1, camera_cc2, camera_cc3 and camera_cc4. There are two
serial communication lines serTFG (comms to frame grabber) and
serTC (comms to camera) which we can name as camera_sertfg
and camera_sertc, respectively. Finally, we have the 4 connection
pins from the camera which will contain the data from the device
and these are named camera_x0, camera_x1, camera_x2 and
camera_x3.

Clearly, the actual interface requires differential outputs, and so
eventually an extra interface will be required to translate the simple
form of interface defined here to the specific pins of the connector.

Design Recipes for FPGAs

54

Ch05-H6845.qxd 4/5/07 11:25 AM Page 54

The PC interface

The interface to the PC could be using either a standard serial
interface such as USB (covered later in this book [93–95]) or
using a direct interface to an HDD.

The HDD interface offers a different challenge to the RAM
memory interface discussed previously. There are numerous stan-
dards for interfacing to HDDs including the major two in current
use IDE/AT (Intelligent Drive Electronics/Advanced Technology)
and SCSI (Small Computers System Interface). SCSI is commonly
used for high-speed drives and has been historically used exten-
sively in Unix-based systems. SCSI is a generic systems interface,
and therefore it allows almost ANY type of device to be attached to
the system (SCSI) bus. The IDE/AT standard was devised for
HDDs only and so has the advantage of being specifically designed
for HDD interfaces. IDE (Intelligent Drive Electronics/AT
Attachment) drives are generally slower, but significantly cheaper
than SCSI drives and so PCs tend to use an IDE/ATA interface and
higher end workstations will use SCSI drives instead.

In this context, the IDE/ATA drive is highly appropriate as the
interface is much simpler than the SCSI interface, and therefore
more practical in developing a prototype system. If a more
advanced system is required, then clearly this can be changed later.
The IDE approach is to have a number of master and slave devices
on the bus (anyone who has looked inside a PC will recognize the
need for setting a master/slave switch or jumper on a drive before
installation of an extra or new HDD). A bus controller sets a series
of registers with commands and the selected device on the chain
will execute. It is worth noting that the bus will operate at the
speed of the slowest device on the chain.

There are a total of 13 registers in the IDE/ATA configuration.
These registers are divided into command block registers and con-
trol block registers. The command block registers are for sending
commands to the device or for posting the status of the device. The
control block registers are used for device control and for posting
an alternate status. The full details of interfacing to an IDE/ATA
device is beyond the scope of this book and is not used in this
example.

The complexity of the IDE/ATA interface is such that it would
probably take several thousand lines of VHDL to implement
completely. If the performance requirements were such that it was

Images and High-Speed Processing

55

Ch05-H6845.qxd 4/5/07 11:25 AM Page 55

essential, then the reader can find numerous sources of informa-
tion to implement this design, including the ATA 6/UDMA100
specification.

An alternative approach is to use a standard interface such as
USB with memory buffering and compression to manage the data
storage issues, where the USB interface is discussed in detail in
the designer’s toolbox part of this book [93–96].

Summary

In summary, this chapter shows how a high-level specification can
be practically decomposed into a series of manageable problems
that may all have a relatively simple solution. The key to successful
systems design is to decompose the design into blocks that have a
definable core function. This can then be implemented directly in
VHDL. The second aspect of the design is to analyze the boundaries.

A common phrase coined by systems designers is ‘problems
migrate to the boundaries’. In other words, we can easily construct
a VHDL design if we know the core functionality, however, get-
ting the individual blocks to communicate successfully is often
much harder. As a result, the designer often spends a lot of debug
time in integrating a number of different functions together, and
being forced to rewrite large sections of code to make that happen.

A useful approach to handling this specific problem is to create
‘empty’ VHDL models that do not operate functionally, but do
have the correct interfaces. These models can be tested with basic
communications test data to ensure that the correct signals are in
place, the data can be passed around the complete design at the
required data rates, and that errors in signal names, directions and
types can be sorted out prior to developing the core VHDL.

Hopefully this chapter has provided a useful introduction to mod-
eling and designing complex systems using VHDL and the general
approach of thinking at a high level without going too deeply into
the details of each block has been highlighted as a useful approach.

Design Recipes for FPGAs

56

Ch05-H6845.qxd 4/5/07 11:25 AM Page 56

6
Embedded Processors

Introduction

This application example chapter concentrates on the key topic of
Integrating Processors onto Field Programmable Gate Array (FPGA)
designs. This ranges from simple 8-bit microprocessors up to large
IP processor cores that require an element of hardware–software
co-design involved. This chapter will take the reader through the
basics of implementing a behavioral-based microprocessor for evalu-
ation of algorithms, through to the practicalities of structurally correct
models that can be synthesised and implemented on an FPGA.

One of the major challenges facing hardware designers in the
21st century is the problem of hardware–software co-design. This
has moved on from a basic partitioning mechanism based on stan-
dard hardware architectures to the current situation where the
algorithm itself can be optimized at a compilation level for per-
formance or power by implementing appropriately at different
levels with hardware or software as required.

This aspect suits FPGAs perfectly, as they can handle fixed
hardware architecture that runs software compiled onto memory,
they can implement optimal hardware running at much faster rates
than a software equivalent could, and there is now the option of
configurable hardware that can adapt to the changing requirements
of a modified environment.

A simple embedded processor

Embedded processor architecture

A useful example of an embedded processor is to consider a
generic microcontroller in the context of an FPGA platform. Take

Ch06-H6845.qxd 4/5/07 11:27 AM Page 57

Design Recipes for FPGAs

58

a simple example of a generic 8-bit microcontroller shown in
Figure 12.

As can be seen from Figure 12, the microcontroller is a ‘general
purpose microprocessor’, with a simple clock (clk) and reset (clr),
and three 8-bit ports (A, B and C). Within the microcontroller
itself, there needs to be the following basic elements:

1. A control unit: This is required to manage the clock and reset
of the processor, manage the data flow and instruction set
flow, and control the port interfaces. There will also need to
be a Program Counter (PC).

2. An Arithmetic Logic Unit (ALU): a PIC will need to be able to
carry out at least some rudimentary processing – carried out
in the ALU.

3. An address bus.

4. A data bus.

5. Internal registers.

6. An instruction decoder.

7. A Read Only Memory (ROM) to hold the program.

While each of these individual elements (1–6) can be imple-
mented simply enough using a standard FPGA, the ROM presents
a specific difficulty. If we implement a ROM as a set of registers,
then obviously this will be hugely inefficient in an FPGA architec-
ture. However, in most modern FPGA platforms, there are blocks
of Random Access Memory (RAM) on the FPGA that can be
accessed and it makes a lot of sense to design a RAM block for use
as a ROM by initializing it with the ROM values on reset and then
using that to run the program.

Generic PIC
microcontroller

clk

clr

Port A

Port B

Port CFigure 12

Simple
Microcontroller

Ch06-H6845.qxd 4/5/07 11:27 AM Page 58

Embedded Processors

59

This aspect of the embedded core raises an important issue, which
is the reduction in efficiency of using embedded rather than dedi-
cated cores. There is usually a compromise involved and in this case
it is that the ROM needs to be implemented in a different manner,
in this case with a hardware penalty. The second issue is what type
of memory core to use? In an FPGA RAM, the memory can usu-
ally be organized in a variety of configurations to vary the depth
(number of memory addresses required) and the width (width of
the data bus). For example a 512 address RAM block, with an
8-bit address width would be equivalent to a 256 address RAM
block with a 16-bit address width.

If the equivalent ROM is, say 12 bits wide and 256, then we can
use the 256 � 16 RAM block and ignore the top four bits. The result-
ing embedded processor architecture could be of the form shown
in Figure 13.

Basic instructions

When we program a microprocessor of any type, there are three
different ways of representing the code that will run on the proces-
sor. These are machine code (1’s and 0’s), assembler (low-level
instructions such as LOAD, STORE, . . .) and high-level code
(such as C, Fortran or Pascal). Regardless of the language used,
the code will always be compiled or assembled into machine code
at the lowest level for programming into memory. High-level code

Generic PIC microcontroller
clk

clr
Port A

Port C

Control
Unit

256 � 12
RAM

PC

Instruction
Decoder

ALU

Port B

PORT
A

PORT
B

PORT
C

D
at

a
B

us

Registers

Address Bus

Figure 13

Embedded
Microcontroller
Architecture

Ch06-H6845.qxd 4/5/07 11:27 AM Page 59

(e.g. C) is compiled and assembler code is assembled (as the name
suggests) into machine code for the specific platform.

Clearly a detailed explanation of a compiler is beyond the scope
of this book, but the same basic process can be seen in an assem-
bler and this is useful to discuss in this context.

Every processor has a basic ‘Instruction Set’ which is simply the
list of functions that can be run in a program on the processor.
Take the simple example of the following pseudocode expression:

b � a � 2

In this example, we are taking the variable a and adding the inte-
ger value 2 to it, and then storing the result in the variable b. In a
processor, the use of a variable is simply a memory location that
stores the value, and so to load a variable we use an assembler
command as follows:

LOAD a

What is actually going on here? Whenever we retrieve a variable
value from memory, the implication is that we are going to put the
value of the variable in the register called the accumulator (ACC).
The command ‘LOAD a’ could be expressed in natural language as
‘LOAD the value of the memory location denoted by a into the
accumulator register ACC’.

The next stage of the process is to add the integer value 2 to the
accumulator. This is a simple matter, as instead of an address, the
value is simply added to the current value stored in the accumula-
tor. The assembly language command would be something like:

ADD #x02

Notice that we have used the x to denote a hexadecimal number.
If we wished to add a variable, say called c, then the command
would be the same, except that it would use the address c instead
of the absolute number. The command would therefore be:

ADD c

Now we have the value of a � 2 stored in the accumulator register
(ACC). This could be stored in a memory location, or put onto a port
(e.g. PORT A). It is useful to notice that for a number we use the key
character # to indicate that we are adding the value and not using the
argument as the address.

Design Recipes for FPGAs

60

Ch06-H6845.qxd 4/5/07 11:27 AM Page 60

In the pseudocode example, we are storing the result of the addi-
tion in the variable called b, so the command would be something
like this:

STORE b

While this is superficially a complete definition of the instruc-
tion set requirements, there is one specific design detail that has to
be decided on for any processor. This is the number of instructions
and the data bus size. If we have a set of instructions with the num-
ber of instructions denoted by I, then the number of bits in the
opcode (n) must conform to the following rule:

2n 	 I (4)

In other words, the number of bits provides the number of
unique different codes that can be defined, and this defines the
size of the instruction set possible. For example, if n� 3, then with
three bits there are eight possible unique opcodes, and so the max-
imum size of the instruction set is eight.

Fetch execute cycle

The standard method of executing a program in a processor is to
store the program in memory and then follow a strict sequence of
events to carry out the instructions. The first stage is to use the PC
to increment the program line, this then calls up the next command
from memory in the correct order, and then the instruction can be
loaded into the appropriate register for execution. This is called
the ‘fetch execute cycle’.

What is happening at this point? First the contents of the PC is
loaded into the Memory Address Register (MAR). The data in the
memory location are then retrieved and loaded into the Memory
Data Register (MDR). The contents of the MDR can then be trans-
ferred into the Instruction Register (IR). In a basic processor, the PC
can then be incremented by one (or in fact this could take place
immediately after the PC has been loaded into the MDR).

Once the opcode (and arguments if appropriate) are loaded, then
the instruction can be executed. Essentially, each instruction has its
own state machine and control path, which is linked to the IR and a
sequencer that defines all the control signals required to move the
data correctly around the memory and registers for that instruction.
We will discuss registers in the next section, but in addition to the

Embedded Processors

61

Ch06-H6845.qxd 4/5/07 11:27 AM Page 61

Design Recipes for FPGAs

62

PC, IR and accumulator (ACC) mentioned already, we require two
memory registers as a minimum, the MDR and MAR.

For example, consider the simple command LOAD a, from the
previous example. What is required to actually execute this
instruction? First, the opcode is decoded and this defines that the
command is a ‘LOAD’ command. The next stage is to identify the
address. As the command has not used the # symbol to denote an
absolute address, this is stored in the variable ‘a’. The next stage,
therefore is to load the value in location ‘a’ into the MDR, by setting
MAR � a and then retrieving the value of a from the RAM. This
value is then transferred to the accumulator (ACC).

Embedded processor register allocation

The design of the registers partly depends on whether we wish to
‘clone’ a PIC device or create a modified version that has more
custom behavior. In either case there are some mandatory registers
that must be defined as part of the design. We can assume that we
need an accumulator (ACC), a Program Counter (PC), and the three
input/output ports (PORTA, PORTB, PORTC). Also, we can define
the IR, MAR, and MDR.

In addition to the data for the ports, we need to have a definition
of the port direction and this requires three more registers for man-
aging the tristate buffers into the data bus to and from the ports
(DIRA, DIRB, DIRC). In addition to this, we can define a number
(essentially arbitrary) of registers for general purpose usage. In the
general case the naming, order and numbering of registers does
not matter, however, if we intend to use a specific device as a tem-
plate, and perhaps use the same bit code, then it is vital that the
registers are configured in exactly the same way as the original
device and in the same order.

In this example, we do not have a base device to worry about,
and so we can define the general purpose registers (24 in all) with the
names REG0 to REG23. In conjunction with the general purpose
registers, we need to have a small decoder to select the correct reg-
ister and put the contents onto the data bus (F).

A basic instruction set

In order for the device to operate as a processor, we must define
some basic instructions in the form of an instruction set. For this
simple example we can define some very basic instructions that

Ch06-H6845.qxd 4/5/07 11:27 AM Page 62

Embedded Processors

63

Command Description

LOAD arg This command loads an argument into the
accumulator. If the argument has the prefix # then it is
the absolute number, otherwise it is the address and
this is taken from the relevant memory address.

Examples:

LOAD #01

LOAD abc

STORE arg This command stores an argument from the accumulator
into memory. If the argument has the prefix # then it is
the absolute address, otherwise it is the address and this
is taken from the relevant memory address.

Examples:

STORE #01

STORE abc

ADD arg This command adds an argument to the accumulator.
If the argument has the prefix # then it is the absolute
number, otherwise it is the address and this is taken
from the relevant memory address.

Examples:

ADD #01

ADD abc

NOT This command carries out the NOT function on the
accumulator.

AND arg This command ands an argument with the accumulator.
If the argument has the prefix # then it is the absolute
number, otherwise it is the address and this is taken
from the relevant memory address.

Examples:

AND #01

AND abc

OR arg This command ors an argument with the accumulator.
If the argument has the prefix # then it is the absolute
number, otherwise it is the address and this is taken
from the relevant memory address.

Examples:

OR #01

OR abc

(continued)

will carry out basic program elements, ALU functions, memory
functions. These are summarised in the following table:

Ch06-H6845.qxd 4/5/07 11:27 AM Page 63

Design Recipes for FPGAs

64

In this simple instruction set, there are 10 separate instructions.
This implies, from the rule given in equation (4) previously in
this chapter, that we need at least 4 bits to describe each of the
instructions given in the table above. Given that we wish to have
8 bits for each data word, we need to have the ability to store the
program memory in a ROM that has words of at least 12 bits wide.
In order to cater for a greater number of instructions, and also to
handle the situation for specification of different addressing
modes (such as the difference between absolute numbers and vari-
ables), we can therefore suggest a 16-bit system for the program
memory.

Table (continued)

Command Description

XOR arg This command xors an argument with the accumulator.
If the argument has the prefix # then it is the absolute
number, otherwise it is the address and this is taken
from the relevant memory address.

Examples:

XOR #01

XOR abc

INC This command carries out an increment by one on the
accumulator.

SUB arg This command subtracts an argument from the
accumulator. If the argument has the prefix # then
it is the absolute number, otherwise it is the address
and this is taken from the relevant memory
address.

Examples:

SUB #01

SUB abc

BRANCH arg This command allows the program to branch to a
specific point in the program. This may be very useful
for looping and program flow. If the argument has the
prefix # then it is the absolute number, otherwise it is
the address and this is taken from the relevant
memory address.

Examples:

BRANCH #01

BRANCH abc

Ch06-H6845.qxd 4/5/07 11:27 AM Page 64

Embedded Processors

65

Notice that at this stage there are no definitions for port inter-
faces or registers. We can extend the model to handle this behav-
ior later.

Structural or behavioral?

So far in the design of the simple microprocessor, we have not
specified detailed beyond a fairly abstract structural description of
the processor in terms of registers and busses. At this stage we have
a decision about the implementation of the design with regard to the
program and architecture.

One option is to take a program (written in assembly language)
and simply convert this into a state machine that can easily be
implemented in a VHDL model for testing out the algorithm. Using
this approach, the program can be very simply modified and
recompiled based on simple rules that restrict the code to the use
of registers and techniques applicable to the processor in question.
This can be useful for investigating and developing algorithms,
but is more ideal than the final implementation as there will be
control signals and delays due to memory access in a processor
plus memory configuration, that will be better in a dedicated hard-
ware design.

Another option is to develop a simple model of the processor
that does have some of the features of the final implementation of
the processor, but still uses an assembly language description of the
model to test. This has advantages in that no compilation to machine
code is required, but there are still not the detailed hardware char-
acteristics of the final processor architecture that may cause prac-
tical issues on final implementation.

The third option is to develop the model of the processor struc-
turally and then the machine code can be read in directly from the
ROM. This is an excellent approach that is very useful for checking
both the program and the possible quirks of the hardware/software
combination as the architecture of the model reflects directly the
structure of the model to be implemented on the FPGA.

Machine code instruction set

In order to create a suitable instruction set for decoding instructions
for our processor, the assembly language instruction set needs to
have an equivalent machine code instruction set that can be decoded

Ch06-H6845.qxd 4/5/07 11:27 AM Page 65

Design Recipes for FPGAs

66

Command Opcode (Binary)

LOAD arg 0000

STORE arg 0001

ADD arg 0010

NOT 0011

AND arg 0100

OR arg 0101

XOR arg 0110

INC 0111

SUB arg 1000

BRANCH arg 1001

Internal Bus

PC ACC ALU MAR MDR

MEMORY

IR

CONTROL

Figure 14

Structural Model of the Microprocessor

Structural elements of the microprocessor

Taking the abstract design of the microprocessor given in Figure 13
we can redraw with the exact registers and bus configuration as
shown in the structural diagram in Figure 14. Using this model we
can create separate VHDL models for each of the blocks that are

by the sequencer in the processor. The resulting opcode/instruction
table is given below:

Ch06-H6845.qxd 4/5/07 11:27 AM Page 66

Embedded Processors

67

connected to the internal bus and then design the control block to
handle all the relevant sequencing and control flags to each of the
blocks in turn.

Before this can be started, however, it makes sense to define the
basic criteria of the models and the first is to define the basic type.
In any digital model (as we have seen elsewhere in this book) it is
sensible to ensure that data can be passed between standard mod-
els and so in this case we shall use the std_logic_1164 library that
is the standard for digital models.

In order to use this library, each signal shall be defined as of the
basic type std_logic and also the library ieee.std_logic_1164.all
shall be declared in the header of each of the models in the
processor.

Finally, each block in the processor shall be defined as a separate
block for implementation in VHDL.

Processor functions package

In order to simplify the VHDL for each of the individual blocks, a
set of standard functions have been defined in a package call
processor_functions. This is used to define useful types and func-
tions for this set of models. The VHDL for the package is given
below:

Library ieee;
Use ieee.std_logic_1164.all;

Package processor_functions is
Type opcode is (load, store, add, not, and, or,

xor, inc, sub, branch);
Function Decode (word : std_logic_vector) return
opcode;

Constant n : integer := 16;
Constant oplen : integer := 4;
Type memory_array is array (0 to 2**(n-oplen-1)

of Std_logic_vector(n-1 downto 0);
Constant reg_zero : unsigned (n-1 downto 0) :=
(others => ‘0’);

End package processor_functions;

Package body processor_functions is
Function Decode (word : std_logic_vector) return

opcode is
Variable opcode_out : opcode;

Ch06-H6845.qxd 4/5/07 11:27 AM Page 67

Design Recipes for FPGAs

68

Begin
Case word(n-1 downto n-oplen-1) is

When “0000” => opcode_out : = load;
When “0001” => opcode_out : = store;
When “0010” => opcode_out : = add;
When “0011” => opcode_out : = not;
When “0100” => opcode_out : = and;
When “0101” => opcode_out : = or;
When “0110” => opcode_out : = xor;
When “0111” => opcode_out : = inc;
When “1000” => opcode_out : = sub;
When “1001” => opcode_out : = branch;
When others => null;

End case;
Return opcode_out;

End function decode;
End package body processor_functions;

The PC

The PC needs to have the system clock and reset connections, the
system bus (defined as inout so as to be readable and writable by
the PC register block). In addition, there are several control signals
required for correct operation. The first is the signal to increment
the PC (PC_inc), the second is the control signal load the PC with
a specified value (PC_load) and the final is the signal to make the
register contents visible on the internal bus (PC_valid). This signal
ensures that the value of the PC register will appear to be high
impedance (‘Z’) when the register is not required on the processor
bus. The system bus (PC_bus) is defined as a std_logic_vector,
with direction inout to ensure the ability to read and write. The
resulting VHDL entity is given below:

library ieee;
use ieee.std_logic_1164.all;
entity pc is

Port (
Clk : IN std_logic;
Nrst : IN std_logic;
PC_inc : IN std_logic;
PC_load : IN std_logic;
PC_valid : IN std_logic;
PC_bus : INOUT std_logic_vector(n-1 downto 0)

);
End entity PC;

The architecture for the PC must handle all of the various con-
figurations of the PC control signals and also the communication
of the data into and from the internal bus correctly. The PC model

Ch06-H6845.qxd 4/5/07 11:27 AM Page 68

Embedded Processors

69

has an asynchronous part and a synchronous section. If the PC_valid
goes low at any time, the value of the PC_bus signal should be set
to ‘Z’ across all of its bits. Also, if the reset signal goes low, then
the PC should reset to zero.

The synchronous part of the model is the increment and load
functionality. When the clk rising edge occurs, then the two sig-
nals PC_load and PC_inc are used to define the function of the
counter. The precedence is that if the increment function is high,
then regardless of the load function, then the counter will incre-
ment. If the increment function (PC_inc) is low, then the PC will
load the current value on the bus, if and only if the PC_load signal
is also high.

The resulting VHDL is given below:

architecture RTL of PC is
signal counter : unsigned (n-1 downto 0);

begin
PC_bus <= std_logic_vector(counter)

when PC_valid = ‘1’ else (others =>
‘Z’);

process (clk, nrst) is
begin

if nrst = ‘0’ then
count <= 0;

elsif rising_edge(clk) then
if PC_inc = ‘1’ then

count <= count + 1;
else

if PC_load = ‘1’ then
count <= unsigned(PC_bus);

end if;
end if;

end if;
end process;

end architecture RTL;

The IR

The IR has the same clock and reset signals as the PC, and also the
same interface to the bus (IR_bus) defined as a std_logic_vector
of type INOUT. The IR also has two further control signals, the
first being the command to load the IR (IR_load), and the second
being to load the required address onto the system bus (IR_address).
The final connection is the decoded opcode that is to be sent to the
system controller. This is defined as a simple unsigned integer

Ch06-H6845.qxd 4/5/07 11:27 AM Page 69

Design Recipes for FPGAs

70

value with the same size as the basic system bus. The basic VHDL
for the entity of the IR is given below:

library ieee;
use ieee.std_logic_1164.all;
use work.processor_functions.all;
entity ir is

Port (
Clk : IN std_logic;
Nrst : IN std_logic;
IR_load : IN std_logic;
IR_valid : IN std_logic;
IR_address : IN std_logic;
IR_opcode : OUT opcode;
IR_bus : INOUT std_logic_vector(n-1 downto 0)

);
End entity IR;

The function of the IR is to decode the opcode in binary form
and then pass to the control block. If the IR_valid is low, the bus
value should be set to ‘Z’ for all bits. If the reset signal (nsrt) is
low, then the register value internally should be set to all 0’s.

On the rising edge of the clock, the value on the bus shall be sent
to the internal register and the output opcode shall be decoded
asynchronously when the value in the IR changes.

The resulting VHDL architecture is given below:

architecture RTL of IR is
signal IR_internal : std_logic_vector (n-1 downto 0);

begin
IR_bus <= IR_internal

when IR_valid = ‘1’ else (others => ‘Z’);
IR_opcode <= Decode(IR_internal);
process (clk, nrst) is
begin

if nrst = ‘0’ then
IR_internal <= (others => ‘0’);

elsif rising_edge(clk) then
if IR_load = ‘1’ then

IR_internal <= IR_bus;
end if;

end if;
end process;

end architecture RTL;

In this VHDL, notice that we have used the predefined function
Decode from the processor_functions package previously defined.
This will look at the top four bits of the address given to the IR and
decode the relevant opcode for passing to the controller.

Ch06-H6845.qxd 4/5/07 11:27 AM Page 70

Embedded Processors

71

The Arithmetic and Logic Unit

The Arithmetic and Logic Unit (ALU) has the same clock and
reset signals as the PC, and also the same interface to the bus
(ALU_bus) defined as a std_logic_vector of type INOUT. The
ALU also has three further control signals, which can be decoded
to map to the eight individual functions required of the ALU.
The ALU also contains the Accumulator (ACC) which is a
std_logic_vector of the size defined for the system bus width.
There is also a single-bit output ALU_zero which goes high when
all the bits in the accumulator are zero.

The basic VHDL for the entity of the ALU is given below:

library ieee;
use ieee.std_logic_1164.all;
use work.processor_functions.all;
entity alu is

Port (
Clk : IN std_logic;
Nrst : IN std_logic;
ALU_cmd : IN std_logic_vector(2 downto 0);
ALU_zero : OUT std_logic;
ALU_valid : IN std_logic;
ALU_bus : INOUT std_logic_vector(n-1 downto 0)

);
End entity alu;

The function of the ALU is to decode the ALU_cmd in binary
form and then carry out the relevant function on the data on the
bus, and the current data in the accumulator. If the ALU_valid is
low, the bus value should be set to ‘Z’ for all bits. If the reset sig-
nal (nsrt) is low, then the register value internally should be set to
all 0’s.

On the rising edge of the clock, the value on the bus shall be sent
to the internal register and the command shall be decoded.

The resulting VHDL architecture is given below:

architecture RTL of ALU is
signal ACC : std_logic_vector (n-1 downto 0);

begin
ALU_bus <= ACC

when ACC_valid � ‘1’ else (others => ‘Z’);
ALU_zero <= ‘1’ when acc � reg_zero else ‘0’;
process (clk, nrst) is
begin

if nrst = ‘0’ then
ACC <= (others => ‘0’);

Ch06-H6845.qxd 4/5/07 11:27 AM Page 71

Design Recipes for FPGAs

72

elsif rising_edge(clk) then
case ACC_cmd is
-- Load the Bus value into the

accumulator
when “000” => ACC <= ALU_bus;
-- Add the ACC to the Bus value
When “001” => ACC <= add(ACC,ALU_bus);
-- NOT the Bus value
When “010” => ACC <= NOT ALU_bus;
-- OR the ACC to the Bus value
When “011” => ACC <= ACC or ALU_bus;
-- AND the ACC to the Bus value
When “100” => ACC <= ACC and ALU_bus;
-- XOR the ACC to the Bus value
When “101” => ACC <= ACC xor ALU_bus;
-- Increment ACC
When “110” => ACC <= ACC + 1;
-- Store the ACC value
When “111” => ALU_bus <= ACC;

end if;
end process;

end architecture RTL;

The memory

The processor requires a RAM memory, with an address register
(MAR) and a data register (MDR). There therefore needs to be a
load signal for each of these registers: MDR_load and MAR_load.
As it is a memory, there also needs to be an enable signal (M_en),
and also a signal denote Read or Write modes (M_rw). Finally, the
connection to the system bus is a standard inout vector as has been
defined for the other registers in the microprocessor.

The basic VHDL for the entity of the memory block is given below:

library ieee;
use ieee.std_logic_1164.all;
use work.processor_functions.all;
entity memory is

Port (
Clk : IN std_logic;
Nrst : IN std_logic;
MDR_load : IN std_logic;
MAR_load : IN std_logic;
MAR_valid : IN std_logic;
M_en : IN std_logic;
M_rw : IN std_logic;
MEM_bus : INOUT std_logic_vector(n-1
downto 0)

);
End entity memory;

Ch06-H6845.qxd 4/5/07 11:27 AM Page 72

Embedded Processors

73

The memory block has three aspects. The first is the function
that the memory address is loaded into the MAR. The second
function is either reading from or writing to the memory using the
MDR. The final function, or aspect of the memory is to store the
actual program that the processor will run. In the VHDL model,
we will achieve this by using a constant array to store the program
values.

The resulting basic VHDL architecture is given below:

architecture RTL of memory is
signal mdr : std_logic_vector(wordlen-1 downto 0);
signal mar : unsigned(wordlen-oplen-1 downto 0);

begin
MEM_bus <= mdr

when MEM_valid = ‘1’ else (others => ‘Z’);
process (clk, nrst) is

variable contents : memory_array;
constant program : contents :=
(

0 => “0000000000000011”,
1 => “0010000000000100”,
2 => “0001000000000101”,
3 => “0000000000001100”,
4 => “0000000000000011”,
5 => “0000000000000000” ,
Others => (others => ‘0’)

);
begin

if nrst = ‘0’ then
mdr <= (others => ‘0’);
mdr <= (others => ‘0’);
contents := program;

elsif rising_edge(clk) then
if MAR_load = ‘1’ then

mar <= unsigned(MEM_bus(n-oplen-
1 downto 0));

elsif MDR_load = ‘1’ then
mdr <= MEM_bus;

elsif MEM_en = ‘1’ then
if MEM_rw = ‘0’ then

mdr <= contents(to_integer
(mar));

else
mem(to_integer(mar))
:= mdr;

end if;
end if;

end if;
end process;

end architecture RTL;

Ch06-H6845.qxd 4/5/07 11:27 AM Page 73

Design Recipes for FPGAs

74

We can look at some of the VHDL in a bit more detail and
explain what is going on at this stage. There are two internal sig-
nals to the block, mdr and mar (the data and address, respectively).
The first aspect to notice is that we have defined the MAR as an
unsigned rather than as a std_logic_vector. We have done this to
make indexing direct. The MDR remains as a std_logic_vector.
We can use an integer directly, but an unsigned translates easily
into a std_logic_vector.

signal mdr : std_logic_vector(wordlen-1 downto 0);
signal mar : unsigned(wordlen-oplen-1 downto 0);

The second aspect is to look at the actual program itself. We
clearly have the possibility of a large array of addresses, but in this
case we are defining a simple three line program:

c � a � b

The binary code is shown below:

0 => “0000000000000011”,

1 => “0010000000000100”,

2 => “0001000000000101”,

3 => “0000000000001100”,

4 => “0000000000000011”,

5 => “0000000000000000” ,

Others => (others => ‘0’)

For example, consider the line of the declared value for address
0. The 16 bits are defined as 0000000000000011. If we split this
into the opcode and data parts we get the following:

Opcode 0000

Data 000000000011 (3)

In other words this means LOAD the variable from address 3.
Similarly, the second line is ADD from 4, finally the third command
is STORE in 5. In addresses 3, 4 and 5, the three data variables are
stored.

Microcontroller: controller

The operation of the processor is controlled in detail by the
sequencer, or controller block. The function of this part of the

Ch06-H6845.qxd 4/5/07 11:27 AM Page 74

Embedded Processors

75

processor is to take the current PC address, look up the relevant
instruction from memory, move the data around as required,
setting up all the relevant control signals at the right time, with the
right values.

As a result, the controller must have the clock and reset signals
(as for the other blocks in the design), a connection to the global
bus and finally all the relevant control signals must be output. An
example entity of a controller is given below:

library ieee;
use ieee.std_logic_1164.all;
use work.processor_functions.all;
entity controller is

generic (
n : integer := 16

);
Port (

Clk : IN std_logic;
Nrst : IN std_logic;
IR_load : OUT std_logic;
IR_valid : OUT std_logic;
IR_address : OUT std_logic;
PC_inc : OUT std_logic;
PC_load : OUT std_logic;
PC_valid : OUT std_logic;
MDR_load : OUT std_logic;
MAR_load : OUT std_logic;
MAR_valid : OUT std_logic;
M_en : OUT std_logic;
M_rw : OUT std_logic;
ALU_cmd : OUT std_logic_vector(2 downto 0);
CONTROL_bus : INOUT std_logic_vector(n-1
downto 0)

);
End entity controller;

Using this entity, the control signals for each separate block
are then defined, and these can be used to carry out the function-
ality requested by the program. The architecture for the controller
is then defined as a basic state machine to drive the correct
signals. The basic state machine for the processor is defined in
Figure 15.

We can implement this using a basic VHDL architecture that
implements each state using a new state type and a case statement
to manage the flow of the state machine. The basic VHDL archi-
tecture is shown below and it includes the basic synchronous

Ch06-H6845.qxd 4/5/07 11:27 AM Page 75

Design Recipes for FPGAs

76

machine control section (reset and clock) the management of the
next stage logic:

architecture RTL of controller is
type states is

(s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10);
signal current_state, next_state : states;

begin
state_sequence: process (clk, nrst) is

if nrst = ‘0’ then
current_state <= s0;

else
if rising_edge(clk) then

current_state <=
next_state;

end if;
end if;

end process state_sequence;

state_machine : process (present_state,
opcode) is

-- state machine goes here
End process state_machine;

end architecture;

S0
PC_BUS <= 1
MAR_load <= 1
PC <= PC � 1

S1
M_en <= 1
M_rw <= 1

S2
MDR_load <= 1
IR_load <= 1

S3

S6

op != STORE

S4

op == STORE

ACC_valid <= 1
MDR_load <= 1

S5M_en <= 1

M_en <= 1
M_rw <= 1

S7

op == LOAD

MDR_valid <= 1
ACC_load <= 1 S8

op != LOAD

MDR_valid <= 1
ALU_load <= 1

S9 S10

op == ADD op != ADD

ALU_add <= 1 ALU_sub <= 1

MAR_load <= 1
IR_address <= 1

Figure 15

Basic Processor Controller State Machine

Ch06-H6845.qxd 4/5/07 11:27 AM Page 76

Embedded Processors

77

You can see from this VHDL that the first process (state_sequence)
manages the transition of the current_state to the next_state and
also the reset condition. Notice that this is a synchronous machine
and as such waits for the rising_edge of the clock, and that the
reset is asynchronous. The second process (state_machine) waits for
a change in the state or the opcode and this is used to manage the
transition to the next state, although the actual transition itself is
managed by the state_sequence process. This process is given in
the VHDL below:

state_machine : process (present_state,
opcode) is

begin
-- Reset all the control signals
IR_load <= ‘0’;
IR_valid <= ‘0’;
IR_address <= ‘0’;
PC_inc <= ‘0’;
PC_load <= ‘0’;
PC_valid <= ‘0’;
MDR_load <= ‘0’;
MAR_load <= ‘0’;
MAR_valid <= ‘0’;
M_en <= ‘0’;
M_rw <= ‘0’;
Case current_state is
When s0 =>

PC_valid <= ’1’; MAR_load <= ’1’;
PC_inc <= ’1’; PC_load <= ’1’;
Next_state <= s1;

When s1 =>
M_en <=’1’; M_rw <= ’1’;
Next_state <= s2;

When s2 =>
MDR_valid <= ’1’; IR_load <= ’1’;
Next_state <= s3;

When s3 =>
MAR_load <= ’1’; IR_address <= ’1’;
If opcode = STORE then

Next_state <= s4;
else

Next_state <=s6;
End if;

When s4 =>
MDR_load <= ’1’; ACC_valid <= ’1’;
Next_state <= s5;

When s5 =>
M_en <= ‘1’;
Next_state <= s0;

When s6 =>
M_en <= ’1’; M_rw <= ’1’;

Ch06-H6845.qxd 4/5/07 11:27 AM Page 77

If opcode = LOAD then
Next_state <= s7;

else
Next_state <= s8;

End if;
When s7 =>

MDR_valid <= ’1’; ACC_load <= ’1’;
Next_state <= s0;

When s8 =>
M_en<=’1’; M_rw <= ’1’;
If opcode = ADD then

Next_state <= s9;
else

Next_state <= s10;
End if;

When s9 =>
ALU_add <= ‘1’;
Next_state <= s0;

When s10 =>
ALU_sub <= ‘1’;
Next_state <= s0;

End case;
End process state_machine;

Summary of a simple microprocessor

Now that the important elements of the processor have been defined,
it is a simple matter to instantiate them in a basic VHDL netlist and
create a microprocessor using these building blocks. It is also a sim-
ple matter to modify the functionality of the processor by changing
the address/data bus widths or extend the instruction set.

Soft core processors on an FPGA

While the previous example of a simple microprocessor is useful
as a design exercise and helpful to gain understanding about how
microprocessors operate, in practice most FPGA vendors provide
standard processor cores as part of an embedded development kit
that includes compilers and other libraries. For example this could
be the Microblaze core from Xilinx or the NIOS core supplied by
Altera. In all these cases the basic idea is the same, that a standard
configurable core can be instantiated in the design and code com-
piled using a standard compiler and downloaded to the processor
core in question.

Each soft core is different and rather than describe the details
of a particular case, in this section the general principles will be

Design Recipes for FPGAs

78

Ch06-H6845.qxd 4/5/07 11:27 AM Page 78

Embedded Processors

79

covered and the reader is encouraged to experiment with the offer-
ings from the FPGA vendors to see which suits their application
the best.

In any soft core development system there are several key func-
tions that are required to make the process easy to implement. The
first is the system building function. This enables a core to be
designed into a hardware system that includes memory modules,
control functions, Direct Memory Access (DMA) functions, data
interfaces and interrupts. The second is the choice of processor
types to implement. A basic NIOS II or similar embedded core
will typically have a performance in the region of 100–200 MIPS,
and the processor design tools will allow the size of the core to be
traded off with the hardware resources available and the perform-
ance required.

Summary

The topic of embedded processors on FPGAs would be suitable for
a complete book in itself. In this chapter the basic techniques have
been described for implementing a simple processor directly on
the FPGA and the approach for implementing soft cores on
FPGAs have been introduced.

Ch06-H6845.qxd 4/5/07 11:27 AM Page 79

This page intentionally left blank

Part 3
Designer’s Toolbox

The third section of this book is a designer’s toolbox of functions.
These are relatively standard functions that occur in many designs
and test circuits, and so it is incredibly useful to have at least an ini-
tial design to evaluate rather than having to develop one from scratch.

The first chapter in this part (chapter 7) looks at serial communi-
cations, starting from the fundamentals of data transmission and
discussing a practical approach of incorporating USB into the
design. The next chapter (chapter 8) discusses digital filtering, with
a simple example to show how to take a standard Laplace (S
domain) description and implement it in a VHDL digital filter.
Chapter 9 is an introduction to an increasingly important topic –
secure systems – with a description of block ciphers, DES and AES.
The second half of this section is concerned with standard inter-
faces. Chapter 10 looks at modeling memory in VHDL, with a
description of ROM, RAM, Flash and SRAM. Chapters 11 and 12
describe how to implement a simple PS/2 interface to a mouse and
keyboard respectively. The data modes and protocols are reviewed
and a simple implementation for each is described. Finally, Chapter
13 shows how to build a simple VGA interface, complete with Sync
timing code in VHDL.

This chapter is a useful starting point for those who need to
develop complex applications, but often need to build a frame-
work from scratch, but do not wish to develop all the routines from
nothing. This part of the book gives a ‘helping hand’ up the learn-
ing curve, although it must be stressed that the examples given are
purely for education and as such have been written with simplicity
and clarity in mind.

Ch07-H6845.qxd 4/5/07 11:28 AM Page 81

This page intentionally left blank

7
Serial Communications

Introduction

There are a wide variety of serial communications protocols avail-
able, but all rely on some form of coding scheme to efficiently
and effectively transmit the serial data across the transmission
medium. In this chapter, not only will the common methods of
transmitting data be reviewed (RS-232 and Universal Serial Bus
(USB)), but in addition some useful coding mechanisms will be
described (Manchester, Code Mark Inversion, Non-Return-toZero –
NRZ, Non-Return-toZero-Inverted – NRZI) as they often are used
as part of a higher level transmission protocol. For example, the
NRZI coding technique is used in the USB protocol.

Manchester encoding and decoding

Manchester encoding is a simple coding scheme that translates
a basic bit stream into a series of transitions. It is extremely useful
for ensuring that a specific bandwidth can be used for data trans-
mission, as no matter what the sequence of the data bits, the
frequency of the transmitted stream will be exactly twice the fre-
quency of the original data. It also makes signal recovery trivial,
because there is no need to attempt to extract a clock as the data
can be recovered simply by looking for the edges in the data and
extracting asynchronously. The basic approach to Manchester
encoding is shown in Figure 16.

Another advantage of the scheme is that the method is highly
tolerant of errors in the data, if an error occurs, then the subse-
quent data is not affected at all by an error in the transmitter, the
medium or the receiver, and after the immediate glitch, the data
can continue to be transmitted effectively without any need

Ch07-H6845.qxd 4/5/07 11:28 AM Page 83

for error recovery. Of course, the original data can use some
form of data coding to add in error correction (see the chapter on
data checking on this book for methods such as parity checks,
or CRC).

If we wish to create a VHDL model for this type of coding
scheme, it is actually relatively simple. The first step is to identify
that we have a single data input (D) and a clock (CLK). Why syn-
chronous? Using a synchronous clock we can define a sample on
the rising edge of the clock for the data input and use BOTH edges
of the clock to define the transitions on the output. The resulting
behavioural VHDL code is shown below:

Library ieee;
Use ieee.std_logic_1664.all;

Entity Manchester_encoder is
Port (

Clk : in std_logic;
D : in std_logic;
Q : out std_logic

);
End entity Manchester_encoder;

Architecture basic of Manchester_encoder is
Signal lastd : std_logic := '0';

Begin
P1: Process (clk)
Begin

If rising_edge(clk) then
if (d = '0') then

Q <= '1';
Lastd <= '0';

elsif (d = '1') then
Q <= '0';
Lastd <= '1';

Design Recipes for FPGAs

84

1 1 1 1 110 00

Figure 16

Manchester Encoding
Scheme

Ch07-H6845.qxd 4/5/07 11:28 AM Page 84

Else
Q <= 'X';
Lastd <= 'X';

End if;
End if;

If falling_edge(clk) then
If (lastd = '0') then

Q <= '0';
elsif (lastd = '1') then

Q <= '1';
Else

Q <= 'X';
End if

End if;
End process p1;

End architecture basic;

This VHDL is simple but there is an even simpler way to encode
the data and that is to simply XOR the clock with the data. If
we look at the same data sequence, we can see that if we add a
clock, and observe the original data and the Manchester encoded
output, that this is simple the data XORd with the clock shown in
Figure 17.

So, using this simple mechanism, we can create a much simpler
Manchester encoder that simply XORs the clock and the data to
obtain the resulting Manchester encoded data stream with the
resulting VHDL:

Library ieee;
Use ieee.std_logic_1664.all;

Entity Manchester_encoder is
Port (

Clk : in std_logic;
D : in std_logic;
Q : out std_logic

);
End entity Manchester_encoder;

Architecture basic of Manchester_encoder is
Begin

Q <= D XOR CLK;
End architecture basic;

Decoding the Manchester data stream is also a choice between
asynchronous and synchronous approaches. We can use a local clk
and detect the values of the input to evaluate whether the values on
the rising and falling edges are 0 or 1, respectively and ascertain the
values of the data as a result, but clearly this is dependent on the

Serial Communications

85

Ch07-H6845.qxd 4/5/07 11:28 AM Page 85

transmitter and receiver clocks being synchronized to a reasonable
degree. Such a simple decoder could look like this:

Entity Manchester_decoder is
Port (

Clk : in std_logic;
D : in std_logic;
Q : out std_logic

);
End entity Manchester_decoder;

Architecture basic of Manchester_decoder is
Signal lastd : std_logic := '0';

Begin
P1 : process (clk)
Begin

If rising_edge(clk) then
Lastd <= d;

End if;
If falling_edge(clk) then

If (lastd = '0') and (d = '1') then
Q <= '1';

Elsif (lastd = '1') and (d = '0') then
Q <= '0';

Else
Q <= 'X';

End if;
End if;

End process p1;
End architecture basic;

In this VHDL model, the clock is at the same rate as the trans-
mitter clock, and the data should be sent in packets (see the data
checking chapter of this book) to ensure that the data is not sent in
too large blocks such that the clock can get out of sync, and also

Design Recipes for FPGAs

86

CLK

D

Q

0 0 01 1 1 1 1 1

Figure 17

Manchester Encoding
Using XOR Function

Ch07-H6845.qxd 4/5/07 11:28 AM Page 86

that the data can be checked for integrity to correct for mistakes or
the clock on the receiver being out of phase.

NRZ coding and decoding

The NRZ encoding scheme is actually not a coding scheme at all.
It simply states that a ‘0’ is transmitted as a ‘0’ and a ‘1’ is transmit-
ted as a ‘1’. It is only worth mentioning because a designer may see
the term NRZ and assume that a specific encoder or decoder was
required, whereas in fact this is not the case. It is also worth noting
that there are some significant disadvantages in using this simple
approach. The first disadvantage, especially when compared to the
Manchester coding scheme is that long sequences of ‘0’s or ‘1’s
give effectively DC values when transmitted, that are susceptible to
problems of noise and also make clock recovery very difficult. The
other issue is that of bandwidth. Again if we compare the coding
scheme to that of the Manchester example, it is obvious that the
Manchester scheme requires quite a narrow bandwidth (relatively)
to transmit the data, whereas the NRZ scheme may require any-
thing from DC up to half the data rate (Nyquist frequency) and any-
thing in between. This makes line design and filter design very
much more problematic.

NRZI coding and decoding

In the NRZI scheme, the potential problems of the NRZ scheme,
particularly the long periods of DC levels are partially alleviated. In
the NRZI, if the data is a ‘0’, then the data does not change,
whereas if a ‘1’ occurs on the data line, then the output changes.
Therefore the issue of long sequences of ‘1’s is addressed, but the
potential for long sequences of ‘0’s remains. It is a simple matter to
create a basic model for a NRZI encoder using the following
VHDL model:

Entity nrzi_encoder is
Port (

CLK : in std_logic;
D : in std_logic;
Q : out std_logic

);
End entity nrzi_encoder;

Architecture basic of nrzi_encoder is
Signal qint : std_logic := '0';

Serial Communications

87

Ch07-H6845.qxd 4/5/07 11:28 AM Page 87

Begin
p1 : process (clk)
Begin

If (d = '1') then
If (qint = '0') then

Qint <= '1';
else

Qint <= '0';
End if;

End if;
End process p1;
Q <= qint;

End architecture basic;

Notice that this model is synchronous, but if we wished to make it
asynchronous, the only changes would be to remove the clk port and
change the process sensitivity list from clk to d. We can apply the
same logic to the output, to obtain the decoded data stream, using
the VHDL below. Again we are using a synchronous approach:

Entity nrzi_decoder is
Port (

CLK : in std_logic;
D : in std_logic;
Q : out std_logic

);
End entity nrzi_decoder;

Architecture basic of nrzi_decoder is
Signal lastd : std_logic := '0';

Begin
p1 : process (clk)
Begin

If rising_edge(clk) then
If (d = lastd) then

Q <= '0';
Else

Q <= '1';
End if;
Lastd <= d;

End if;
End process p1;

End architecture basic;

The NRZI decoder is extremely simple, in that the only thing we
need to check is whether the data stream has changed since the
last clock edge. If the data has changed since the last clock, then
we know that the data is a ‘1’, but if the data is unchanged, then
we know that it is a ‘0’. Clearly we could use an asynchronous
approach, but this would rely on the data checking algorithm
downstream being synchronized correctly.

Design Recipes for FPGAs

88

Ch07-H6845.qxd 4/5/07 11:28 AM Page 88

RS-232

Introduction

The basic approach of RS-232 serial transmission is that of a UART.
UART stands for Universal Asynchronous Receiver/Transmitter.
It is the standard method of translating a serial communication
stream into the parallel form used by computers. RS-232 is a
UART that has a specific standard defined for start, stop, break,
data, parity and pin names.

RS-232 baud rate generator

The RS-232 is an asynchronous transmission scheme and so the cor-
rect clock rate must be defined prior to transmission to ensure that
the data is transmitted and received correctly. The RS-232 baud rate
can range from 1200 baud up to 115200 baud. This is based on a
standard clock frequency of 14.7456 MHz, and this is then divided
down by 8,16,28,48,96,192,384 and 768 to get the correct baud rates.
We therefore need to define a clock divider circuit that can output the
correct baud rate configured by a control word. We have obviously
got 8 different ratios, and so we can use a 3 bit control word
(baud[2:0]) plus a clock and reset to create the correct frequencies,
assuming that the basic clock frequency is 14.7456 MHz (Figure 18).

The VHDL for this controller is given below and uses a single
process to select the correct baud rate and another to divide down
the input clock accordingly:

LIBRARY ieee;
USE ieee.Std_logic_1164.ALL;
USE ieee.Std_logic_unsigned.ALL;

Serial Communications

89

Baud Rate Generator

CLK

RST

2:0

BAUD

CLKOUT

Figure 18

Baud Clock Generator

Ch07-H6845.qxd 4/5/07 11:28 AM Page 89

ENTITY baudcontroller IS
PORT(

clk : IN std_logic;
rst : IN std_logic;
baud : IN std_logic_vector(0 to 2);
clkout : OUT std_logic);

END baudcontroller;

ARCHITECTURE simple OF baudcontroller IS
SIGNAL clkdiv : integer := 0;

SIGNAL count : integer := 0;
BEGIN
Div: process (rst, clk)
begin

if rst = '0' then
clkdiv <= 0;
count <= 0;

elsif rising_edge(CLK) then
case Baud is

when "000" => clkdiv <= 7; -- 115200
when "001" => clkdiv <= 15; -- 57600
when "010" => clkdiv <= 23; -- 38400
when "011" => clkdiv <= 47; -- 19200
when "100" => clkdiv <= 95; -- 9600
when "101" => clkdiv <= 191; -- 4800
when "110" => clkdiv <= 383; -- 2400
when "111" => clkdiv <= 767; -- 1200
when others => clkdiv <= 7;

end case;
end if;

end process;

clockdivision: process (clk, rst)
begin

if rst='0' then
clkdiv <= 0;
count <= 0;

elsif rising_edge(CLK) then
count <= count + 1;
if (count > clkdiv) then

clkout <= not clkout;
count <= 0;

end if;
end if;

end process;
END simple;

RS-232 receiver

The RS-232 receiver wait for data to arrive on the RX line and has
a specification defined as follows �number of bits��parity�

Design Recipes for FPGAs

90

Ch07-H6845.qxd 4/5/07 11:28 AM Page 90

�stop bits�. So, for example an 8 bit, No parity, 1 stop bit
specification would be given as 8N1. The RS-232 voltage levels
are between �12 V and �12 V, and so we will assume that an
interface chip has translated these to standard logic levels (e.g.
0–5 V or 0–3.3 V). A sample bit stream would be of the format
shown in Figure 19.

The idle state for RS-232 is high, and in this figure, after the
stop bit, the line is shown as going low, in fact that only happens
when another data word is coming. If the data transmission has
finished, then the line will go high (‘idle’) again. We can in fact
model this as a simple state machine as shown in Figure 20.

We can implement this simple state machine in VHDL using the
following model:

LIBRARY ieee;
USE ieee.Std_logic_1164.ALL;
USE ieee.Std_logic_unsigned.ALL;

ENTITY serialrx IS
PORT(

clk : IN std_logic;
rst : IN std_logic;
rx : IN std_logic;
dout : OUT std_logic_vector (7 downto 0)
);

END serialrx;

Serial Communications

91

0 1 2 3 4 5 6 7Start Stop

‘1’

‘0’
Figure 19

Serial Data Receiver

rx � ‘1’

rx � ‘1’

rx � ‘0’
rx � ‘0’

IDLE

0 1 2 3 4 5 6 7

STOP

Figure 20

Basic Serial
Receiver

Ch07-H6845.qxd 4/5/07 11:28 AM Page 91

ARCHITECTURE simple OF serialrx IS
type state is (idle, s0, s1, s2, s3, s4, s5, s6, s7,
stop);

signal current_state, next_state : state;
signal databuffer : std_logic_vector(7 downto 0);

BEGIN
receive: process (rst, clk)
begin

if rst=‘0’ then
current_state <= idle;
for i in 7 downto 0 loop

dout(i) <= ‘0’;
end loop;

elsif rising_edge(CLK) then

case current_state is
when idle =>
if rx = ‘0’ then

next_state <= s0;
else

next_state <= idle;
end if;

when s0 =>
next_state <= s1;
databuffer(0) <= rx;

when s1 =>
next_state <= s2;
databuffer(1) <= rx;

when s2 =>
next_state <= s3;
databuffer(2) <= rx;

when s3 =>
next_state <= s4;
databuffer(3) <= rx;

when s4 =>
next_state <= s5;
databuffer(4) <= rx;

when s5 =>
next_state <= s6;
databuffer(5) <= rx;

when s6 =>
next_state <= s7;
databuffer(6) <= rx;

when s7 =>
next_state <= stop;
databuffer(7) <= rx;

when stop =>
if rx = '0' then

next_state <= s0;
else

next_state <= idle;
end if;

Design Recipes for FPGAs

92

Ch07-H6845.qxd 4/5/07 11:28 AM Page 92

Serial Communications

93

VBUS

D�

D�

GND

nRST

SUSPEND

nSUSPEND

RI

DCD

DTR

DSR

TXD

RXD

RTS

CTS

USB
Transceiver

Chip

Figure 21

USB Transceiver
Chip CP2101

dout <= databuffer;
end case;
current_state <= next_state;

end if;
end process;

END;

Universal Serial Bus

The USB protocol has become pervasive and ubiquitous in the
computing and electronics industries in recent years. The protocol
supports a variety of data rates from low speed (10–100 kbits/s) up
to high speed devices (up to 400 Mbits/s). While in principle it is
possible to create Field Programmable Gate Array (FPGA) inter-
faces directly to a USB bus, for anything other than the lower data
rates it requires accurate voltage matching and impedance match-
ing of the serial bus. For example, the low data rates require 2.8 V
(‘1’) and 0.3 V (‘0’), differentially, whereas the high speed bus
requires 400 mV signals, and in both cases termination resistors
are required.

In practice, therefore, it is common when working with FPGAs
to use a simple interface chip that handles all the analogue inter-
face issues and can then be connected directly to the FPGA with a
simple UART style interface. An example device is the Silicon
Labs CP2101, that takes the basic USB Connector pins (Differential
Data and Power and Ground) and then sets up the basic serial data
transmission pins. The block diagram of this device is given in
Figure 21.

Ch07-H6845.qxd 4/5/07 11:28 AM Page 93

The pins on this device are relatively self explanatory and are
summarized below:

Design Recipes for FPGAs

94

nRST The Reset pin for the device – Active Low

Suspend This pin shows when the USB device is in SUSPEND
mode – Active High

nSuspend The Active Low (i.e. inverse) of the SUSPEND pin

RI Ring Indicator

DCD Data Carrier Detection – shows that data is on the USB
line – Active low

DTR Data Transmit Detection – this is Active Low when the line
is ready for data transmission

DSR Digital Sound Reconstruction

TXD Asynchronous Data transmission line

RXD Asynchronous Data received line

RTS Clear to Receive – Active Low

CTS Clear to Send – Active Low

The basic operation of the serial port starts from the use of the
TXD and RXD (data) lines. If the configuration is as a NULL
modem with no handshaking, it is possible to simply use the trans-
mit (TXD) and receive (RXD) lines alone.

If you wish to check that the line is clear for sending data, then
the RTS signal can be set (Request to Send), in this case Active
Low, and if the line is ready, then the CTS line will go low and the
data can be sent. This basic scheme is defined in such a way that
once the receiver signal goes low, that the transmitter can send at
any rate, the assumption being that the receiver can handle what-
ever rate is provided.

The protocol can be made more capable by using the DTR line,
and this notifies the other end of the link that the device is ready for
receiving data communications. The DCD line is not used directly
in the link, but indicates that there is a valid communications link
between the devices.

We can develop a VHDL model for such a communications link
with as much complexity as we need to communicate with the

Ch07-H6845.qxd 4/5/07 11:28 AM Page 94

hardware in the system under consideration, starting with a simple
template:

Entity serial_handler is
Port(

Clk : in std_logic;
Nrst : in std_logic;
Data_in : in std_logic;
Data_out : out std_logic;
TXD : out std_logic;
RXD : in std_logic

);
End entity serial_handler;

In this initial model, we have a simple clock and reset, with two
data connections for the synchronous side, and the TXD and RXD
asynchronous data communications lines. We can put together a
simple architecture that simply samples the data lines and trans-
fers them into an intermediate variable for use on the synchronous
side of the model:

Architecture basic of serial_handler is
Begin

p1 : process (clk)
Begin

If rising_edge(clk) then
Rxd_int <= rxd;

End if;
End process p1;

End architecture basic;

We can extend this model to handle the transmit side also, using
a similar approach:

Architecture basic of serial_handler is
Begin

p1 : process (clk)
Begin

If rising_edge(clk) then
Data_out <= rxd;
Txd <= data_in;

End if;
End process p1;

End architecture basic;

This entity is the equivalent to a NULL modem architecture.
If we wish to add the DTR notification that the device is ready
for receiving data, we can add this to the entity list of ports and

Serial Communications

95

Ch07-H6845.qxd 4/5/07 11:28 AM Page 95

then gate the receive data if statement using the DTR signal:

Entity serial_handler is
Port(

Clk : in std_logic;
Nrst : in std_logic;
Data_in : in std_logic;
Data_out : out std_logic;
DTR : in std_logic;
TXD : out std_logic;
RXD : in std_logic

);
End entity serial_handler;
Architecture serial_dtr of serial_handler is
Begin

p1 : process (clk)
Begin

If rising_edge(clk) then
If DTR = '0' then

Data_out <= rxd;
End if;
Txd <= data_in;

End if;
End process p1;

End architecture basic;

Using this type of approach we can extend the serial handler to
incorporate as much or as little of the modem communications link
protocol as we require.

Summary

In this chapter we have introduced a variety of serial communica-
tions coding and decoding schemes, and also reviewed the practi-
cal methods of interfacing using RS-232 and a USB device.
Clearly, there are many more variations on this theme, and in fact
a complete USB handler description would be worthy of a com-
plete book in itself.

Design Recipes for FPGAs

96

Ch07-H6845.qxd 4/5/07 11:28 AM Page 96

8
Digital Filters

Introduction

An important part of systems that interface to the ‘real world’ is
the ability to process sampled data in the digital domain. This
is often called Sampled Data Systems (SDS) or operating in the
Z-domain. Most engineers are familiar with the operation of filters
in the Laplace or S-domain where a continuous function defines
the characteristics of the filter and this is the digital domain equiv-
alent to that.

For example, consider a simple RC circuit in the analog domain
as shown in Figure 22. This is a low pass filter function and can be
represented using the Laplace notation shown in Figure 22.

This has the equivalent S-domain (or Laplace) function as follows:

This function is a low pass filter because the Laplace operator s
is equivalent to jω, where w � 2πf (with f being the frequency). If
f is zero (the DC condition), then the gain will be 1, but if the value
of sCR is equal to 1, then the gain will be 0.5. This in dB is �3 dB
and is the classical low pass filter cut off frequency.

L s() �
�

1
1 sCR

R

C

Input Output

Figure 22

RC Filter in the
Analog Domain

Ch08-H6845.qxd 4/6/07 1:54 PM Page 97

Design Recipes for FPGAs

98

In the digital domain, the s operation is replaced by Z. Z�1 is prac-
tically equivalent to a delay operator, and similar functions to the
Laplace filter equations can be constructed for the digital, or Z-
domain equivalent.

There are a number of design techniques, many beyond the
scope of this book (if the reader requires a more detailed introduc-
tion to the realm of digital filters, Cunningham’s Digital filtering:
an introduction is a useful starting point), however it is useful to
introduce some of the basic techniques used in practice and illus-
trate them with examples.

The remainder of this chapter will cover the introduction to
the basic techniques and then demonstrate how these can be imple-
mented using VHDL on Field Programmable Gate Array (FPGAs).

Converting S-domain to Z-domain

The method of converting an S-domain equation for a filter to its
equivalent Z-domain expression is done using the ‘bilinear trans-
form’. This is simply a method of expressing the equation in the
S-domain in terms of Z. The basic approach is to replace each
instance of s with its equivalent Z-domain notation and then
rearrange into the most convenient form. The transform is called
bilinear as both the numerator and denominator of the expression
are linear in terms of z.

If we take a simple example of a basic second order filter we can
show how this is translated into the equivalent Z-domain form:

H s
s s

replace s with z z

H Z

()

() ()

(

�
� �

� �

1
2 1

1 1

2

/ :

))
()
()

()
()

(

�
�

�
�

�

�
�

1

1
1

2
1
1

1
2

z
z

z
z

H Z

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

))
()

() ()() ()

()

�
�

� � � � � �

�
�

z

z z z z

H Z
z z

1
1 1 1 1

2

2

2 2

2 ��

�

1
3 12z

s
z
z

�
�

�

1
1

Ch08-H6845.qxd 4/6/07 1:54 PM Page 98

Digital Filters

99

Now, the term H(Z) is really the output Y(Z) over the input X(Z)
and we can use this to express the Z-domain equation in terms of
the input and output:

This can then be turned into a sequence expression using delays (z
is one delay, z2 is two delays and so on) with the following result:

3z2Y(Z) � Y(Z) � z2X(Z) � 2zX(Z) � X(Z)

3y(n � 2) � y(n) � x(n�) � 2x(n � 1) � x(n)

This is useful because we are now expressing the Z-domain equa-
tion in terms of delay terms, and the final step is to express the
value of y(n) (the current output) in terms of past elements by
reducing the delays accordingly (by 2 in this case):

3y(n � 2) � y(n) � x(n � 2) � 2x(n � 1) � x(n)

3y(n) � y(n � 2) � x(n) � 2x(n � 1) � x(n � 2)

y(n) � 1/3y(n � 2) � 1/3x(n) � 2/3x(n � 1) � 1/3x(n � 2)

y(n) � 1/3x(n) � 2/3x(n � 1) � 1/3x(n � 2) � 1/3y(n � 2)

The final design note at this point is to make sure that the design
frequency is correct, for example the low pass cut off frequency.
The frequencies are different between the S- and Z-domain mod-
els, even after the bilinear transformation, and in fact the desired
digital domain frequency must be translated into the equivalent S-
domain frequency using a technique called pre-warping. This sim-
ple step translates the frequency from one domain to the other
using the expression below:

Where Ωc is the digital domain frequency, T is the sampling period
of the Z-domain system and ωc is the resulting frequency for the
analog domain calculations.

Once we have obtained our Z-domain expressions, how do we
turn this into practical designs? The next section will explain how
this can be achieved.

ωc
ctan�

Ω T
2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

H Z
z z

z
Y Z
X Z

z z

z

z Y

()

()
()

(

=
2

2

2

2

2

2 1
3 1

2 1
3 1

3

� �

�

�
� �

�

ZZ Y Z z X Z zX Z X Z) () () () ()� � � �2 2

Ch08-H6845.qxd 4/6/07 1:54 PM Page 99

Design Recipes for FPGAs

100

Implementing Z-domain functions in VHDL

Introduction

Z-domain functions are essentially digital in the time domain as
they are discrete and sampled. The functions are also discrete in the
amplitude axis, as the variables or signals are defined using a fixed
number of bits in a real hardware system, whether this is integer,
signed, fixed point or floating point, there is always a finite resolu-
tion to the signals. For the remainder of this chapter, signed arith-
metic is assumed for simplicity and ease of understanding. This also
essentially defines the number of bits to be used in the system. If we
have 8 bits, the resolution is 1 bit and the range is �128–�127.

Gain block

The first main Z-domain block is a simple gain block. This requires
a single signed input, a single signed output and a parameter for the
gain. This could be an integer or also a signed value. The VHDL
model for a simple Z-domain gain block is given below:

Library ieee;
Use ieee.numeric_std.all;

Entity zgain is
Generic (n : integer := 8;

gain : signed
);
Port (

Zin : in signed (n-1 downto 0);
Zout : out signed (n-1 downto 0)

);
End entity zgain;

Architecture zdomain of zgain is
Begin

p1 : process(zin)
variable product : signed (2*n-1 downto 0);

begin
product := zin * gain;
zout <= product (n-1 downto 0);

end process p1;
End architecture zdomain;

We can test this with a simple testbench that ramps up the input
and we can observe the output being changed in turn:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

Ch08-H6845.qxd 4/6/07 1:54 PM Page 100

Digital Filters

101

entity tb is
end entity tb;

architecture testbench of tb is

signal clk : std_logic := '0';
signal dir : std_logic := '0';
signal zin : signed (7 downto 0):= X"00";
signal zout : signed (7 downto 0):= X"00";

component zgain
generic (

n : integer := 8;
gain :signed := X"02"

);
port (

signal zin : in signed(n-1 downto 0);
signal zout : out signed(n-1 downto 0)

);
end component;
for all : zgain use entity work.zgain;

begin
clk <= not clk after 1 us;

DUT : zgain generic map (8, X"02") port map
(zin, zout);

p1 : process (clk)
begin

zin <= zin + 1;
end process p1;

end architecture testbench;

Clearly, this model has no error checking or range checking and
the obvious problem with this type of approach is that of overflow.
For example, if we multiply the input (64) by a gain of 2, we will
get 128, but that is the sign bit, and so the result will show �128!
This is an obvious problem with this simplistic model and care
must be taken to ensure that adequate checking takes place in the
model.

Sum and difference

Using this same basic approach, we can create sum and difference
models which are also essential building blocks for a Z-domain
system. The sum model VHDL is shown below:

Library ieee;
Use ieee.numeric_std.all;

Ch08-H6845.qxd 4/6/07 1:54 PM Page 101

Design Recipes for FPGAs

102

Entity zsum is
Generic (n : integer := 8
);
Port (

Zin1 : in signed (n-1 downto 0);
Zin2 : in signed (n-1 downto 0);
Zout : out signed (n-1 downto 0)

);
End entity zsum;

Architecture zdomain of zsum is
Begin

p1 : process(zin)
variable zsum : signed (2*n-1 downto 0);

begin
zsum := zin1 + zin2;
zout <= zsum (n-1 downto 0);

end process p1;
End architecture zdomain;

Despite the potential for problems with overflow, both of the
models shown have the internal variable that is twice the number
of bits required, and so this can take care of any possible overflow
internal to the model, and in fact checking could take place prior
to the final assignment of the output to ensure the data is correct.
The difference model is almost identical to the sum model except
that the difference of zin1 and zin2 is computed.

Division model

A useful model for scaling numbers simply in the Z-domain is the
division by 2 model. This model simply shifts the current value in
the input to the right by 1 bit – hence giving a division by 2. The
model could easily be extended to shift right by any number of
bits, but this simple version is very useful by itself. The VHDL for
the model relies on the logical shift right operator (SRL) which not
only shifts the bits right (losing the least significant bit) but adding
a zero at the most significant bit. The resulting VHDL is shown
below for this specific function:

zout <= zin srl 1;

The unit shift can be replaced by any integer number to give
a shift of a specific number of bits. For example, to shift right
by 3 bits (effectively a divide by 8) would have the following
VHDL:

zout <= zin srl 3;

Ch08-H6845.qxd 4/6/07 1:54 PM Page 102

Digital Filters

103

The complete division by 2 model is given below:

Library ieee;
Use ieee.numeric_std.all;

Entity zdiv2 is
Generic (n : integer := 8
);
Port (

Zin : in signed (n-1 downto 0);
Zout : out signed (n-1 downto 0)

);
End entity zdiv2;

Architecture zdomain of zdiv2 is
Begin

zout <= zin srl 1;
End architecture zdomain;

In order to test the model a simple test circuit that ramps up the
input is used and this is given below:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb is
end entity tb;

architecture testbench of tb is

signal clk : std_logic := ‘0’;
signal dir : std_logic := ‘0’;
signal zin : signed (7 downto 0) := X"00";
signal zout : signed (7 downto 0) := X"00";

component zdiv2
generic (

n : integer := 8
);
port (

signal zin : in signed (n-1 downto 0);
signal zout : out signed (n-1 downto 0)

);
end component;
for all : zdiv2 use entity work.zdiv2;

begin
clk <= not clk after 1 us;

DUT : zdiv2 generic map (8) port map (zin, zout);

p1 : process (clk)

Ch08-H6845.qxd 4/6/07 1:54 PM Page 103

Design Recipes for FPGAs

104

begin
zin <= zin + 1;

end process p1;
end architecture testbench;

The behavior of the model is useful to review, if the input is X”03”
(Decimal 3), binary ‘00000011’ and the number is right shifted by 1,
then the resulting binary number will be ‘00000001’ (X”01” or dec-
imal 1), in other words this operation always rounds down. This has
obvious implications for potential loss of accuracy and the operation
is skewed downwards, which has again, implications for how num-
bers will be treated using this operator in a more complex circuit.

Unit delay model

The final basic model is the unit delay model (zdelay). This has a
clock input (clk) using a std_logic signal to make it simple to
interface to standard digital controls. The output is simply a one
clock cycle delayed version of the input.

Library ieee;
use ieee.std_logic_1164.all;
Use ieee.numeric_std.all;

Entity zdelay is
Generic (n : integer := 8);
Port (

clk : in std_logic;
Zin : in signed (n-1 downto 0);
Zout : out signed (n-1 downto 0) := (others
=> ‘0’)

);
End entity zdelay;

Architecture zdomain of zdelay is
signal lastzin : signed (n-1 downto 0) := (others
=> ‘0’);

Begin
p1 : process(clk)
begin

if rising_edge(clk) then
zout <= lastzin;
lastzin <= zin;

end if;
end process p1;

End architecture zdomain;

Notice that the output zout is initialized to all zeros for the initial
state, otherwise ‘don’t care’ conditions can result that propagate
across the complete model.

Ch08-H6845.qxd 4/6/07 1:54 PM Page 104

Digital Filters

105

Basic low pass filter model

We can put these elements together in simple models that implement
basic filter blocks in any configuration we require, as always taking
care to ensure that overflow errors are checked for in practice.

To demonstrate this, we can implement a simple low pass filter
using the basic block diagram shown in Figure 23.

We can create a simple test circuit that uses the individual mod-
els we have already shown for the sum and delay blocks and apply
a step change and observe the response of the filter to this stimu-
lus. (Clearly, in this case, with unity gain the filter exhibits posi-
tive feedback and so to ensure the correct behavior we use the
divide by 2 model zdiv2 in both the inputs to the sum block to
ensure gain of 0.5 on both. These are not shown in the Figure 23.)
The resulting VHDL model is shown below (note the use of the
zdiv2 model):

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity tb is
end entity tb;

architecture testbench of tb is
signal clk : std_logic := ‘0’;
signal x : signed (7 downto 0):= X"00";
signal y : signed (7 downto 0):= X"00";
signal y1 : signed (7 downto 0):= X"00";
signal yd : signed (7 downto 0):= X"00";
signal yd2 : signed (7 downto 0):= X"00";
signal x2 : signed (7 downto 0):= X"00";

component zsum
generic (

n : integer : = 8
);

Delay

x y

Figure 23

Simple Z-Domain Low
Pass Filter

Ch08-H6845.qxd 4/6/07 1:54 PM Page 105

Design Recipes for FPGAs

106

port (
signal zin1 : in signed(n-1 downto 0);
signal zin2 : in signed(n-1 downto 0);
signal zout : out signed(n-1 downto 0)

);
end component;
for all : zsum use entity work.zsum;

component zdiff
generic (

n : integer := 8
);
port (

signal zin1 : in signed(n-1 downto 0);
signal zin2 : in signed(n-1 downto 0);
signal zout : out signed(n-1 downto 0)

);
end component;
for all : zdiff use entity work.zdiff;

component zdiv2
generic (

n : integer := 8
);
port (

signal zin : in signed(n-1 downto 0);
signal zout : out signed(n-1 downto 0)

);
end component;
for all : zdiv2 use entity work.zdiv2;

component zdelay
generic (

n : integer := 8
);
port (

signal clk : in std_logic;
signal zin : in signed(n-1 downto 0);
signal zout : out signed(n-1 downto 0)

);
end component;
for all : zdelay use entity work.zdelay;

begin
clk <= not clk after 1 us;

GAIN1 : zdiv2 generic map (8) port map (x, x2);
GAIN2 : zdiv2 generic map (8) port map (yd, yd2);
SUM1 : zsum generic map (8) port map (x2, yd2,
y);

D1 : zdelay generic map (8) port map (clk, y,
yd);

x <= X"00", X"0F" after 10 us;
end architecture testbench;

Ch08-H6845.qxd 4/6/07 1:54 PM Page 106

Digital Filters

107

The test circuit applies a step change of X”00” to X”0F” after 10
us, and this results in the filter response. We can show this graph-
ically in Figure 24 with the output in both Hexadecimal and ‘ana-
log’ form for illustration.

It is interesting to note the effect of using the zdiv2 function on
the results. With the input of 0F (binary 00001111) we lose the
LSB when we divide by 2, giving the resulting input to the sum
block of 00000111 (7) which added together with the division of
the output gives a total of 14 as the maximum possible output from
the filter. In fact, the filter gives an output of X”0D” or binary
00001101, which is two down from the theoretical maximum of
X”0F” and this highlights the practical difficulties when using a
‘coarse’ approximation technique for numerical work rather than a
fixed or floating point method. On the other hand, it is clearly a sim-
ple and effective method of implementing a basic filter in VHDL.

Later in this book, the use of fixed and floating point numbers are
discussed, as is the use of multiplication for more exact calcula-
tions and for practical filter design, where higher accuracy is
required, then it is likely that both these methods would be used.
There may be situations, however, where it is simply not possible to
use these advanced techniques, particularly a problem when space
is at a premium on the FPGA and in these cases, the simple
approach described in this chapter will be required.

There are numerous texts on more advanced topics in digital fil-
ter design, and these are beyond the scope of this book, but it is

CLK

X”00” X”0F”X

Y X”00” X”00” X”07” X”0A” X”0C” X”0D”

Y

Figure 24

Basic Low Pass Filter Simulation Waveforms

Ch08-H6845.qxd 4/6/07 1:54 PM Page 107

Design Recipes for FPGAs

108

useful to introduce some key concepts at this stage of the two main
types of digital filter in common usage today. These are the recur-
sive (or Infinite Impulse Response – IIR) filters and non-recursive
(or Finite Impulse Response – FIR) filters.

FIR filters

FIR filters are characterized by the fact that they use only delayed
versions of the input signal to filter the input to the output. For
example, if we take the expression for a general FIR filter below,
we can see that the output is a function of a series of delayed,
scaled versions of the input:

Where Ai is the scale factor for the ith delayed version of the input.
We can represent this graphically in the diagram shown in Figure
25. We can implement this model using the basic building blocks
described in this chapter of gain, division, sums and delays to
develop block based models for such filters. As noted in the previous
section, it is important to ensure that for higher accuracy filters,

y A x ii
i

n
�

�

[]
0

∑

Delay

Delay

�

X

Y
�

�

�

�

�

A0

A1

A2

Delay

Figure 25

FIR Filter Schematic

Ch08-H6845.qxd 4/6/07 1:54 PM Page 108

Digital Filters

109

fixed or floating point arithmetic is required and also the use of
multipliers for added accuracy is preferable in most cases to that
of simple gain and division blocks as described previously in this
chapter.

IIR filters

IIR filters are characterized by the fact that they use delayed ver-
sions of the input signal and fed back and delayed version of the
output signal to filter the input to the output. For example, if we
take the expression for a general IIR filter below, we can see that
the output is a function of a series of delayed, scaled versions of
the input and output:

Where Ai is the scale factor for the ith delayed version of the input
and Bi is the scale factor for the ith delayed version of the output. This
is obviously very similar to the FIR example previously and can be
built up using the same basic elements. If we consider the simple
example earlier in this chapter, it can be seen that this is in fact a sim-
ple first order (single delay) IIR filter, with no delayed versions of
the input and a single delayed version of the output.

Summary

This chapter has introduced the concepts of implementing basic
digital filters in VHDL and has given examples of both the build-
ing blocks and constructed filters for implementation on an FPGA
platform. The general concepts of FIR and IIR filters have been
introduced so that the reader can implement the topology and type
of filter appropriate for their own application.

y
A x i
B y i

i

ii

n
�

�

[]
[]0

∑

Ch08-H6845.qxd 4/6/07 1:54 PM Page 109

9
Secure Systems

Introduction to block ciphers

The Data Encryption Standard (DES) is a symmetric ‘block
cipher’. A stream cipher operates on a digital data stream one or
more bits at a time. A block cipher operates on complete blocks of
data at any one time and produces a ciphertext block of equal size.
DES is a block cipher that operates on data blocks of 64 bits in
size. DES uses a 64-bit key – 8 � 8 including 1 bit for parity, so
the actual key is 56 bits. DES, in common with other block ciphers
is based around a structure called a ‘FEISTEL LATTICE’, so it is
useful to describe how this works.

Feistel lattice structures

A block cipher operates on a plaintext block of n bits to produce
a block of ciphertext of n bits. For the algorithm to be reversible
(i.e. for decryption to be possible) there must be a unique mapping
between the two sets of blocks. This can also be called a non-
singular transformation. For example, consider the transformations
given in Figure 26.

Obviously this is essentially a substitution cipher, that may be
susceptible to the standard statistical analysis techniques used for

Reversible Irreversible

Plaintext
00
01
10
11

Ciphertext
11
10
00
10

Plaintext
00
01
10
11

Ciphertext
11
10
10
10

Figure 26

Reversible and
Irreversible
Transformations

Ch09-H6845.qxd 4/5/07 11:32 AM Page 110

simple cryptanalysis of text (such as frequency analysis). As the
block size increases, then this becomes increasingly less feasible.
An obvious practical difficulty with this approach is the number of
transformations required as n increases. This mapping is essentially
the key and for an n bit general substitution block cipher, the key
size is n � 2n. For n � 64, the key size becomes 64 � 264 �� 1021

In order to get around this complexity problem, Feistel proposed
an approach called a ‘product cipher’ whereby the combination of
several simple steps leads to a much more cryptographically
secure solution than any of the component ciphers used. His
approach relies on the alternation of two types of function:

• Diffusion

• Confusion

These two concepts are grounded in an approach developed by
Shannon and is used in most standard block ciphers in common
use today. Shannon’s goal was to define cryptographic functions
that would not be susceptible to statistical analysis. Shannon pro-
posed two methods for reducing the ability of statistical crypt-
analysis to find the original message – diffusion and confusion.

In diffusion, the statistical structure of the plaintext is dissipated
throughout the long term statistics of the ciphertext. This is
achieved by making each bit of the plaintext affect the value of
many bits of the ciphertext. An example of this would be to add
letters to a ciphertext such that the frequency of each letter is the
same – regardless of the message. In binary block ciphers the tech-
nique uses multiple permutations and functions such that each bit
of the ciphertext is affected by multiple bits in the plaintext.

Each block of plaintext is transformed into a block of ciphertext,
and this depends on the key. Confusion aims to make the relation-
ship between the ciphertext and the key as complex as possible to
reduce the possibility of ascertaining the key. This requires a com-
plex substitution algorithm as a linear substitution would not pro-
tect the key.

Both diffusion and confusion are the cornerstones of successful
block cipher design.

The result of these requirements is the Feistel Lattice (shown in
Figure 27). This is the basic architecture in ciphers such as DES.

The inputs to the algorithm are the plaintext (of length 2w bits) and
a key K. The plaintext is split into two halves L and R, and the data

Secure Systems

111

Ch09-H6845.qxd 4/5/07 11:32 AM Page 111

Design Recipes for FPGAs

112

is then passed through n ‘rounds’of processing and then recombined
to pro-duce the ciphertext. Each round has an input Li�1 and Ri�1
derived from the previous round and a subkey Ki, derived from the
overall key K. Each round has the same structure. The left halve of
the data has a substitution performed. This requires a ‘round func-
tion’ F to be performed on the right half of the data and then XORd
with the left half. Finally a permutation is performed that requires the
interchange of the two halves of the data.

The implementation of a Feistel network has the following key
parameters:

• Block size: A larger block size generally means greater secu-
rity, but reduced speed. 64-bit block sizes are very heavily
used as being a reasonable trade-off although Advanced
Encryption Standards (AES) now uses 128 bits.

• Key Size: The same trade-off applies as for block size.
Generally 64 bits is not now considered adequate and 128
bits is preferred.

• Number of rounds: Each round adds additional security. A
single round is inadequate, but 16 is considered standard.

• Subkey generation: The more complex this algorithm is, the
more secure the overall system will be.

• Round function: Greater complexity again means greater
resistance to cryptanalysis.

Plaintext – 2w bits

F

K1

w bits w bits

Round 1

F

Kn
Round n

Rounds 1�n

Ln

Ln�1 Rn�1

Rn

Ciphertext – 2w bits

Figure 27

Feistel Lattice
Structure

Ch09-H6845.qxd 4/5/07 11:32 AM Page 112

Secure Systems

113

The Data Encryption Standard

Introduction

The DES was adopted by the National Institute of Standards and
Technology (NIST) in 1977 as the Federal Information Processing
Standards 46 (FIPS PUB 46).

As mentioned previously, the algorithm operates on plaintext
blocks of 64 bits and the key size is 56 bits. By 1999, NIST had
decreed that DES was no longer secure and should only be used for
legacy systems and that triple DES should be used instead. As will
be described later, DES has since been superceded by the AES.

The coarse structure (overall architecture) of DES is shown in
Figure 28.

The center section (where the main repetition occurs) is called
the fine structure and is where the details of the encryption take
place. This fine structure is detailed in Figure 29.

The fine structure of DES consists of several important func-
tional blocks:

• Initial permutation: Fixed, known mapping 64�64 bits

• Key transformations: Circular L shift of keys by Ai bits in
round (A(i) is known and fixed)

P (64 bits)

IP

64 bits

Initial permutation

L0 (32)

32 bits

R0 (32)

32 bits

f

48

K0

32 bits

32 bits

L1 (32) R1 (32)

IP�1 Final permutation

C (64 bits)
64 bits

R
ep

ea
te

d
16

 ti
m

es

Figure 28

DES Coarse
Structure

Ch09-H6845.qxd 4/5/07 11:32 AM Page 113

Design Recipes for FPGAs

114

• Compression Permutation: Fixed known subset of 56 bit
input mapped onto 48 bit output

• Expansion permutation: 32 bit data shuffled and mapped
(both operations fixed and known) onto 48 bits by duplicat-
ing 16 input bits. This makes diffusion quicker.

Another significant section of the algorithm is the substitution or
S box. The Non-linear aspect of the cipher is vital in cryptography.
In DES the 8 S boxes each contain 4 different (fixed & known) 4:4
input maps. These are selected by the extra bits created in the
expansion box. The S boxes are structured as shown in Figure 30.

The final part of the DES structure is the key generation archi-
tecture for the individual round keys and this is given in Figure 31.

Li�1 (32)

32 bits

Ri�1 (32)

XOR

48

K i

48 bits

32 bits

Li (32) Ri (32)

32 bits

XOR

Expansion/Permutation
E Table

48 bits

Substitution/Choice
S Table

Permutation
(P)

32 bits

32 bits

Figure 29

DES Fine Structure

48 bits

S box 1 S box 8

32 bits
Figure 30

S Box Architecture

Ch09-H6845.qxd 4/5/07 11:32 AM Page 114

Secure Systems

115

The remaining functional block is the initial and final permuta-
tion. The initial permutation (P box) is a 32:32 fixed, known bit
permutation. The Final Permutation is the inverse of the initial per-
mutation. The initial permutation is defined using the following
table:

Permutation/contraction
(permuted choice 2)

Ci � 1

28 bits

Di � 1

28 bits

Left Shift Left Shift

Ci Di

48

Ki

Figure 31

DES Round Key
Generation

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

DES VHDL implementation

DES can be implemented in VHDL using a structural or a func-
tional approach. As has been discussed previously, there are
advantages to both methods, however the DES algorithm is tied

The final permutation is simply the inverse of the initial permutation.

Ch09-H6845.qxd 4/5/07 11:32 AM Page 115

Design Recipes for FPGAs

116

implicitly to the structure, so a structural approach will give an
efficient implementation.

Implementing the initial permutation in VHDL requires a 64-bit
input vector and a 64-bit output vector. We can create this in
VHDL with an entity that defines an input and output std_logic
vector as follows:

library ieee;
use ieee.std_logic_1164.all;

entity des_ip is port
(

D : in std_logic_vector(1 TO 64);
Y : out std_logic_vector(1 TO 64)

);
end des_ip;

The architecture is simply the assignment of bits from input to
output according to the initial permutation table previously
defined:

architecture behavior of des_ip is
begin
Y(1)<=D(58); Y(2)<=D(50); Y(3)<=D(42); Y(4)<=D(34);
Y(5)<=D(26); Y(6)<=D(18); Y(7)<=D(10); Y(8)<=D(2);
Y(9)<=D(60); Y(10)<=D(52); Y(11)<=D(44); Y(12)<=D(36);
Y(13)<=D(28); Y(14)<=D(20); Y(15)<=D(12); Y(16)<=D(4);
Y(17)<=D(62); Y(18)<=D(54); Y(19)<=D(46); Y(20)<=D(38);
Y(21)<=D(30); Y(22)<=D(22); Y(23)<=D(14); Y(24)<=D(6);
Y(25)<=D(64); Y(26)<=D(56); Y(27)<=D(48); Y(28)<=D(40);
Y(29)<=D(32); Y(30)<=D(24); Y(31)<=D(16); Y(32)<=D(8);
Y(33)<=D(57); Y(34)<=D(49); Y(35)<=D(41); Y(36)<=D(33);
Y(37)<=D(25); Y(38)<=D(17); Y(39)<=D(9); Y(40)<=D(1);
Y(41)<=D(59); Y(42)<=D(51); Y(43)<=D(43); Y(44)<=D(35);
Y(45)<=D(27); Y(46)<=D(19); Y(47)<=D(11); Y(48)<=D(3);
Y(49)<=D(61); Y(50)<=D(53); Y(51)<=D(45); Y(52)<=D(37);
Y(53)<=D(29); Y(54)<=D(21); Y(55)<=D(13); Y(56)<=D(5);
Y(57)<=D(63); Y(58)<=D(55); Y(59)<=D(47); Y(60)<=D(39);
Y(61)<=D(31); Y(62)<=D(23); Y(63)<=D(15); Y(64)<=D(7);

end behavior;

As this function is purely combinatorial we don’t need to have a
register (i.e. clocked input) on this model, although we could
implement that if required using a simple process.

As shown in the previous description of the expansion function, we
need to take a word consisting of 32 bits and expand it to 48 bits. This

Ch09-H6845.qxd 4/5/07 11:32 AM Page 116

Secure Systems

117

requires a translation table as shown below. Notice that there are
duplicates in the cell which mean that you only need 32 input bits to
obtain 48 output bits:

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

We can use a VHDL model similar to the initial permutation func-
tion, except that in this case there are 32 input bits and 48 output bits.
Notice that some of the input bits are repeated giving a straight-
forward expansion function:

library ieee;
use ieee.std_logic_1164.all;

entity des_e is port
(

D : in std_logic_vector(1 TO 32);
Y : out std_logic_vector(1 TO 48)

);
end des_e;

The architecture is simply the assignment of bits from input to
output according to the initial permutation table previously
defined:

architecture behavior of des_e is
begin
Y(1)<=D(32); Y(2)<=D(1); Y(3)<=D(2); Y(4)<=D(3);
Y(5)<=D(4); Y(6)<=D(5); Y(7)<=D(4); Y(8)<=D(5);
Y(9)<=D(6); Y(10)<=D(7); Y(11)<=D(8); Y(12)<=D(9);
Y(13)<=D(8); Y(14)<=D(9); Y(15)<=D(10); Y(16)<=D(11);
Y(17)<=D(12); Y(18)<=D(13); Y(19)<=D(12); Y(20)<=D(13);
Y(21)<=D(14); Y(22)<=D(15); Y(23)<=D(16); Y(24)<=D(17);
Y(25)<=D(16); Y(26)<=D(17); Y(27)<=D(18); Y(28)<=D(19);
Y(29)<=D(20); Y(30)<=D(21); Y(31)<=D(20); Y(32)<=D(21);
Y(33)<=D(22); Y(34)<=D(23); Y(35)<=D(24); Y(36)<=D(25);
Y(37)<=D(24); Y(38)<=D(25); Y(39)<=D(26); Y(40)<=D(27);
Y(41)<=D(28); Y(42)<=D(29); Y(43)<=D(28); Y(44)<=D(29);
Y(45)<=D(30); Y(46)<=D(31); Y(47)<=D(32); Y(48)<=D(1);

end behavior;

The final ‘permutation’ block is the permutation marked (P) on
the fine structure in Figure 29 after the key function. This is a

Ch09-H6845.qxd 4/5/07 11:32 AM Page 117

Design Recipes for FPGAs

118

straightforward bit substitution function with 32 bits input and 32
bits output. The bit translation table is shown in the table below:

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

This is implemented in VHDL using exactly the same approach
as the previous expansion and permutation functions as follows:

library ieee;
use ieee.std_logic_1164.all;

entity des_p is port
(

D : in std_logic_vector(1 TO 32);
Y : out std_logic_vector(1 TO 32)

);
end des_p;

The architecture is simply the assignment of bits from input to
output according to the initial permutation table previously
defined:

architecture behavior of des_p is
begin
Y(1)<=D(16); Y(2)<=D(7); Y(3)<=D(20); Y(4)<=D(21);
Y(5)<=D(29); Y(6)<=D(12); Y(7)<=D(28); Y(8)<=D(17);
Y(9)<=D(1); Y(10)<=D(15); Y(11)<=D(23); Y(12)<=D(26);
Y(13)<=D(5); Y(14)<=D(18); Y(15)<=D(31); Y(16)<=D(10);
Y(17)<=D(2); Y(18)<=D(8); Y(19)<=D(24); Y(20)<=D(14);
Y(21)<=D(32); Y(22)<=D(27); Y(23)<=D(3); Y(24)<=D(9);
Y(25)<=D(19); Y(26)<=D(13); Y(27)<=D(30); Y(28)<=D(6);
Y(29)<=D(22); Y(30)<=D(11); Y(31)<=D(4); Y(32)<=D(25);

end behavior;

The non-linear part of the DES algorithm is the S box. This is a
set of 6 → 4 bit transformations that reduce the 48 bits of the
expanded word in the DES f function, to the 32 bits for the next
round. The required row and column are obtained from the data
passed into the S box. The data into the S box is a 6 bit binary word.
The row is obtained from 2b1 � b6 and the column is obtained from
b2b3b4b5. For example, S(011011) would give a row of 01 (1) and
a column of 1101 (13). For S8 this would result in a value return-
ing of 1110 (14).

Ch09-H6845.qxd 4/5/07 11:32 AM Page 118

Secure Systems

119

The basic S box entity can therefore be constructed using the fol-
lowing VHDL:

Library ieee;
Use ieee.std_logic_1164.all;
Entity des_sbox is

Port (
D : in std_logic_vector (1 to 6);
Y : out std_logic_vector (1 to 4)

);
End entity des_sbox;

One approach is to define the row and column from the input D
word and then calculate the output Y word from that using a look
up table approach or minimize the logic as a truth table. The basic
architecture could then look something like this:

Architecture behaviour of sbox is
Signal r : std_logic_vector (1 to 2);
Signal c : std_logic_vector (3 to 6);

Begin
R <= d (1 to 2);
C <= d (3 to 6);
-- The look up table or logic goes here

End;

Another approach is to define a simple lookup table with the
input D as the unique address and the output Y stored in the mem-
ory – this is exactly the same as a Read Only Memory (ROM), so
the input is defined as an unsigned integer to look up the required
value. In this case the memory is defined in exactly the same way
as the ROM separately in this book.

The S box substitutions are given in the table below and the VHDL
can either use the lookup table approach to store the address of each
substitution, or logic can be used to decode the correct output.

In order to use this table, the appropriate S box is selected and then
the two bits of the row select the appropriate row and the same for the
column. For example, for S box S1, if the row is 3 (11) and the
column is 10 (1010) then the output can be read off as 3 (0011). This
can be coded in VHDL using nested case statements as follows:

Case row is
When 0 =>

Case column is
When 0 => y <= 14;
When 1 => y <= 4;
...

End case;

Ch09-H6845.qxd 4/5/07 11:32 AM Page 119

Design Recipes for FPGAs

120

row Column number

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

S1

[0] 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

[1] 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

[2] 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

[3] 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2

[0] 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

[1] 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

[2] 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

[3] 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3

[0] 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

[1] 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

[2] 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

[3] 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4

[0] 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

[1] 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

[2] 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

[3] 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5

[0] 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

[1] 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

[2] 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

[3] 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6

[0] 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

[1] 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

[2] 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

[3] 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7

[0] 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

[1] 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

[2] 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

[3] 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8

[0] 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

[1] 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

[2] 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

[3] 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Ch09-H6845.qxd 4/5/07 11:32 AM Page 120

Secure Systems

121

When 1 =>
Case column is

...
End case

...
End case;

Obviously this is quite cumbersome, but also very easy to code
automatically using a simple code generator and offers the possibil-
ity of the synthesis tool carrying out logic optimization and provid-
ing a much more efficient implementation than a memory block.

Validation of DES

In order to validate the implementation of DES, a set of test vec-
tors can be used (i.e. plaintext/ciphertext pairs) to ensure that the
correct processing is taking place. A suitable set of test vectors is
given below:

Plaintext � 4E6F772069732074 68652074696D6520
666F7220616C6C20

Ciphertext � 3FA40E8A984D4815 6A271787AB8883F9
893D51EC4B563B53

In this case the key to be used is 0123456789ABCDEF

Each of the groups of hexadecimal characters is represented by
7-bit ASCII and adding an extra bit.

Advanced Encryption Standard

In the 1997, the US NIST published a request for information
regarding the creation of a new AES for non-classified government
documents. The call also stipulated that the AES would specify an
unclassified, publicly disclosed encryption algorithm(s), available
royalty free, worldwide. In addition, the algorithm(s) must imple-
ment symmetric key cryptography as a block cipher and (at a mini-
mum) support block sizes of 128 bits and key sizes of 128, 192, and
256 bits.

After an open competition, the Rijndael algorithm was chosen as
the winner and implemented as the AES standard. Rijndael allows
key and block sizes to be 128, 192 or 256 bits. AES allows the same
key sizes, but operates using a block size of 128 bits. The algorithm
operates in a similar way to DES, with 10 rounds of confusion and
diffusion operators (shuffling and mixing) block at a time. Each

Ch09-H6845.qxd 4/5/07 11:32 AM Page 121

Design Recipes for FPGAs

122

round has a separate key, generated from the overall key. The round
structure is shown in Figure 32.

The overall AES structure is given in Figure 33.

Each block consists of 128 bits, and these are divided into 16,
8 bit bytes. Each of the operations acts upon these 8 bit bytes in a
4 � 4 matrix:

(1)

Note that each (ai, j) is an 8-bit byte, viewed as elements of
GF(28). The arithmetic operators take advantage of the Galois
Field rules defined in the Rijndael algorithm, an example is that of
addition that is implemented by XOR.

Multiplication is more complicated, but each byte has the multi-
plicative inverse such that b.b��00000001 (apart from 00000000,
whose multiplicative inverse is 00000000).

a a a a
a a a a
a a a

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,22 2,3

3,0 3,1 3,2 3,3

a
a a a a

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Byte Substitution

Shift Row

Mix Column

Add Round Key

Figure 32

AES Round
Structure

Add Round KeyKey (Round 0)

Byte Substitution

Shift Row

Mix Column

Add Round KeyKey (Rounds 1�9)

Repeat for
Rounds 1,…,9

Byte Substitution

Shift Row

Add Round KeyKey (Rounds 10)
Figure 33

AES Structure

Ch09-H6845.qxd 4/5/07 11:32 AM Page 122

Secure Systems

123

The model of the finite field GF(28) depends on the choice of an
irreducible polynomial of degree 8, which for Rijndael is:

(2)

Each of the round operations requires a specific mathematical
exploration. Taking each in turn:

Byte Substitution requires that for each input data block a(3,3),
we look up a table of substitutions and replace the bytes to produce
a new matrix b(3,3). The way it works, is that for each input byte
abcdefgh, we look up row abcd and column efgh and use the byte
at that location in the output.

(3)

The complete byte substitution table is defined using the following
figure:

a a a a
a a a a
a a a

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,22 2,3

3,0 3,1 3,2 3,3

a
a a a a

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⇒

⇒

Byte substitution

b b b b
b b

0,0 0,1 0,2 0,3

1,0 11,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,

b b
b b b b
b b b b 33

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

X X X8 4 3 1� � �

099 124 119 123 242 107 111 197 048 001 103 043 254 215 171 118
202 130 201 125 250 089 071 240 173 212 162 175 156 164 114 192
183 253 147 038 054 063 247 204 052 165 229 241 113 216 049 021
004 199 035 195 024 150 005 154 007 018 128 226 235 039 178 117
009 131 044 026 027 110 090 160 082 059 214 179 041 227 047 132
083 209 000 237 032 252 177 091 106 203 190 057 074 076 088 207
208 239 170 251 067 077 051 133 069 249 002 127 080 060 159 168
081 163 064 143 146 157 056 245 188 182 218 033 016 255 243 210
205 012 019 236 095 151 068 023 196 167 126 061 100 093 025 115
096 129 079 220 034 042 144 136 070 238 184 020 222 094 011 219
224 050 058 010 073 006 036 092 194 211 172 098 145 149 228 121
231 200 055 109 141 213 078 169 108 086 244 234 101 122 174 008
186 120 037 046 028 166 180 198 232 221 116 031 075 189 139 138
112 062 181 102 072 003 246 014 097 053 087 185 134 193 029 158
225 248 152 017 105 217 142 148 155 030 135 233 206 085 040 223
140 161 137 013 191 230 066 104 065 153 045 015 176 084 187 022

AES Byte Substitution Table

Ch09-H6845.qxd 4/5/07 11:32 AM Page 123

Design Recipes for FPGAs

124

For Example: If the input data byte was 7A, then this in binary
terms is

0111 1010

So the row required is 7 (0111) and the column required is A
(1010). From this we can read off the resulting number from the table:

218 � 1101 1010 � DA

This is illustrated in the figure below:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 099 124 119 123 242 107 111 197 048 001 103 043 254 215 171 118
1 202 130 201 125 250 089 071 240 173 212 162 175 156 164 114 192
2 183 253 147 038 054 063 247 204 052 165 229 241 113 216 049 021
3 004 199 035 195 024 150 005 154 007 018 128 226 235 039 178 117
4 009 131 044 026 027 110 090 160 082 059 214 179 041 227 047 132
5 083 209 000 237 032 252 177 091 106 203 190 057 074 076 088 207
6 208 239 170 251 067 077 051 133 069 249 002 127 080 060 159 168
7 081 163 064 143 146 157 056 245 188 182 218 033 016 255 243 210
8 205 012 019 236 095 151 068 023 196 167 126 061 100 093 025 115
9 096 129 079 220 034 042 144 136 070 238 184 020 222 094 011 219
A 224 050 058 010 073 006 036 092 194 211 172 098 145 149 228 121
B 231 200 055 109 141 213 078 169 108 086 244 234 101 122 174 008
C 186 120 037 046 028 166 180 198 232 221 116 031 075 189 139 138
D 112 062 181 102 072 003 246 014 097 053 087 185 134 193 029 158
E 225 248 152 017 105 217 142 148 155 030 135 233 206 085 040 223
F 140 161 137 013 191 230 066 104 065 153 045 015 176 084 187 022

We can see that this is a bit shuffling operation that is simply
moving bytes around in a publicly defined manner that does not
have anything to do with a key.

Also note that the individual bits within the byte are not changed
per se. This is a bytewise operation.

The Shift Row function is essentially a set of cyclic shifts to the
left with offsets of 0,1,2,3 respectively.

c c c c
c c c c
c c c

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,22 2,3

3,0 3,1 3,2 3,3

c
c c c c

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

�

b b b b
b b b b
b b

0,0 0,1 0,2 0,3

1,1 1,2 1,3 1,0

2,2 2,33 2,0 2,1

3,3 3,0 3,1 3,2

b b
b b b b

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

(4)

Ch09-H6845.qxd 4/5/07 11:32 AM Page 124

Secure Systems

125

The Mix Columns function is a series of specific multiplications:

Where:

’01’ � 00000001

’02’ � 00000010

’03’ � 00000011

All multiplications are GF(28) and this transformation is invertible.

The final operation in each round is to add the key using the fol-
lowing function:

The round keys are generated using the following method. The
original key of 128 bits is represented as a 4�4 matrix of bytes (of
8 bits). This can be thought of as 4 columns W(0), W(1), W(2),
W(3). Adjoin 40 columns W(4), . . . , W(43).

Round key for round i consists of columns (W(i), W(i � 1),
W(i � 2), W(i � 3)). If i is a multiple of 4,

) where T is a transformation of a, b, c, d in column
W(i � 1):

• Shift cyclically to get b, c, d, a.

• Replace each byte with S box entry using ByteSub, to get e,
f, g, h.

T W i((1)�
W i W i() (4)� � ⊕

e e e e
e e e e
e e e

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,22 2,3

3,0 3,1 3,2 3,3

e
e e e e

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

�

d d d d
d d d d
d d

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,11 2,2 2,3

3,0 3,1 3,2 3,3

d d
d d d d

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⊕
0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2

k k k k
k k k k
k ,,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

k k k
k k k k

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

d d d d
d d d d
d d d

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,22 2,3

3,0 3,1 3,2 3,3

d
d d d d

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

�

'02' '03' '01' '01'
'01' '02' '03' '01'
'01' '01'' '02' '03'
'03' '01' '01' '02'

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

*

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2

c c c c
c c c c
c c ,,1 2,2 2,3

3,0 3,1 3,2 3,3

c c
c c c c

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

(6)

(5)

Ch09-H6845.qxd 4/5/07 11:32 AM Page 125

Design Recipes for FPGAs

126

• Compute round constant r(i) � 00000010 (i � 4)/4 in
GF(28).

•

If i is not a multiple of 4,

•

Implementing AES in VHDL

We have two options for implementing block cipher operations in
VHDL. We can use the structural approach (shown in the DES
example previously in this chapter), or sometimes it makes sense
to define a library of functions and use those to make much sim-
pler models.

In the AES example, we can define a top level entity and archi-
tecture that has the bare minimum of structure and is completely
defined using functions. This can be especially useful when work-
ing with behavioral synthesis software as this allows complete
flexibility for architectural optimization:

library ieee;
use ieee.std_logic_1164.all;
entity AES is

port(
plaintext : in std_logic_vector(127 downto 0);
keytext : in std_logic_vector(127 downto 0);
encrypt : in std_logic;
go : in std_logic;
ciphertext : out std_logic_vector
(127 downto 0);

done : out std_logic := ‘0’
);

end;

use work.aes_functions.all;
architecture behaviour of AES is
begin

process
begin

wait until go = ‘1’;
done <= ‘0’;
ciphertext <= aes_core(plaintext, keytext,
encrypt);

done <= ‘1’;
end process;

end;

W i W i W i() (4) (1)� � �⊕

T W i e r i f g h((1)) (())� � ⊕ , , ,

Ch09-H6845.qxd 4/5/07 11:32 AM Page 126

Secure Systems

127

In this example, we have the plaintext and keytext inputs defined
as 128 bit wide vectors and the ciphertext output is also defined as
128 bits wide. The ‘go’ flag initiates the encryption and the ‘done’
flag shows when this has been completed.

Notice that we have a work library defined called aes_functions
which encapsulates all the relevant functions for the AES algo-
rithm. The set of functions are defined in a package (aes_func-
tions) and this VHDL is given below:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
package aes_functions is

constant nr : integer := 10;
constant nb : integer := 4;
constant nk : integer := 4;

subtype vec1408 is std_logic_vector(1407 downto 0);
subtype vec128 is std_logic_vector(127 downto 0);
subtype vec64 is std_logic_vector(63 downto 0);
subtype vec32 is std_logic_vector(31 downto 0);
subtype vec16 is std_logic_vector(15 downto 0);
subtype vec8 is std_logic_vector(7 downto 0);

subtype int9 is integer range 0 to 9;

function input_output (input : vec128) return
vec128;

function sBox (pt : vec8) return vec8;
function subBytes (plaintext : vec128) return
vec128;

function shiftRows (plaintext : vec128) return
vec128;

function ffmul(pt : vec8; mul : vec8) return vec8;
function mixCL(l0 : vec8; l1 : vec8; l2 : vec8;
l3 : vec8) return vec8;

function mixColumns(pt : vec128) return vec128;
function rcon (input : int9) return vec8;
function aes_keyexpansion(key : vec128) return
vec1408;

function aes_core (signal plaintext : vec128;
signal keytext : vec128; signal encrypt :
std_logic) return vec128;

end;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
package body aes_functions is

Ch09-H6845.qxd 4/5/07 11:32 AM Page 127

Design Recipes for FPGAs

128

--

function subBytes (plaintext : vec128)
-- moods inline

return vec128 is
variable ciphertext : vec128;

begin
ciphertext := sBox(plaintext(127 DOWNTO 120)) &

sBox(plaintext(119 DOWNTO 112)) &
sBox(plaintext(111 DOWNTO 104)) &
sBox(plaintext(103 DOWNTO 96)) &
sBox(plaintext(95 DOWNTO 88)) &
sBox(plaintext(87 DOWNTO 80)) &
sBox(plaintext(79 DOWNTO 72)) &
sBox(plaintext(71 DOWNTO 64)) &
sBox(plaintext(63 DOWNTO 56)) &
sBox(plaintext(55 DOWNTO 48)) &
sBox(plaintext(47 DOWNTO 40)) &
sBox(plaintext(39 DOWNTO 32)) &
sBox(plaintext(31 DOWNTO 24)) &
sBox(plaintext(23 DOWNTO 16)) &
sBox(plaintext(15 DOWNTO 8)) &
sBox(plaintext(7 DOWNTO 0));

return ciphertext;
end;

--

function shiftRows (plaintext : vec128)
-- moods inline

return vec128 is
variable ciphertext : vec128;

begin
--line 0 (the first): no shift

ciphertext := plaintext(31 DOWNTO 24) &
plaintext(55 DOWNTO 48) &
plaintext(79 DOWNTO 72) &
plaintext(103 DOWNTO 96) &
plaintext(127 DOWNTO 120) &
plaintext(23 DOWNTO 16) &
plaintext(47 DOWNTO 40) &
plaintext(71 DOWNTO 64) &
plaintext(95 DOWNTO 88) &
plaintext(119 DOWNTO 112) &
plaintext(15 DOWNTO 8) &
plaintext(39 DOWNTO 32) &
plaintext(63 DOWNTO 56) &
plaintext(87 DOWNTO 80) &
plaintext(111 DOWNTO 104) &
plaintext(7 DOWNTO 0);

return ciphertext;
end;

Ch09-H6845.qxd 4/5/07 11:32 AM Page 128

Secure Systems

129

--

function tableLog (input : vec8)
-- moods inline

return vec8 is
variable output : vec8;
type table256 is array(0 to 255) of vec8;
constant pt_256 : table256 := (
-- moods rom

X”00”, X”00”, X”19”, X”01”, X”32”,
X”02”, X”1a”, X”c6”, X”4b”,
X”c7”, X”1b”, X”68”, X”33”,
X”ee”, X”df”, X”03”, X”64”,

X”04”, X”e0”, X”0e”, X”34”,
X”8d”, X”81”, X”ef”, X”4c”,
X”71”, X”08”, X”c8”, X”f8”,
X”69”, X”1c”, X”c1”, X”7d”,

X”c2”, X”1d”, X”b5”, X”f9”,
X”b9”, X”27”, X”6a”, X”4d”,
X”e4”, X”a6”, X”72”, X”9a”,
X”c9”, X”09”, X”78”, X”65”,

X”2f”, X”8a”, X”05”, X”21”,
X”0f”, X”e1”, X”24”, X”12”,
X”f0”, X”82”, X”45”, X”35”,
X”93”, X”da”, X”8e”, X”96”,

X”8f”, X”db”, X”bd”, X”36”,
X”d0”, X”ce”, X”94”, X”13”,
X”5c”, X”d2”, X”f1”, X”40”,
X”46”, X”83”, X”38”, X”66”,
X”dd”, X”fd”, X”30”, X”bf”,
X”06”, X”8b”, X”62”, X”b3”,
X”25”, X”e2”, X”98”, X”22”,
X”88”, X”91”, X”10”, X”7e”,

X”6e”, X”48”, X”c3”, X”a3”,
X”b6”, X”1e”, X”42”, X”3a”,
X”6b”, X”28”, X”54”, X”fa”,
X”85”, X”3d”, X”ba”, X”2b”,

X”79”, X”0a”, X”15”, X”9b”,
X”9f”, X”5e”, X”ca”, X”4e”,
X”d4”, X”ac”, X”e5”, X”f3”,
X”73”, X”a7”, X”57”, X”af”,

X”58”, X”a8”, X”50”, X”f4”,
X”ea”, X”d6”, X”74”, X”4f”,
X”ae”, X”e9”, X”d5”, X”e7”,
X”e6”, X”ad”, X”e8”, X”2c”,

Ch09-H6845.qxd 4/5/07 11:32 AM Page 129

Design Recipes for FPGAs

130

X”d7”, X”75”, X”7a”, X”eb”,
X”16”, X”0b”, X”f5”, X”59”,
X”cb”, X”5f”, X”b0”, X”9c”,
X”a9”, X”51”, X”a0”, X”7f”,

X”0c”, X”f6”, X”6f”, X”17”,
X”c4”, X”49”, X”ec”, X”d8”,
X”43”, X”1f”, X”2d”, X”a4”,
X”76”, X”7b”, X”b7”, X”cc”,

X”bb”, X”3e”, X”5a”, X”fb”,
X”60”, X”b1”, X”86”, X”3b”,
X”52”, X”a1”, X”6c”, X”aa”,
X”55”, X”29”, X”9d”, X”97”,

X”b2”, X”87”, X”90”, X”61”,
X”be”, X”dc”, X”fc”, X”bc”,
X”95”, X”cf”, X”cd”, X”37”,
X”3f”, X”5b”, X”d1”, X”53”,

X”39”, X”84”, X”3c”, X”41”,
X”a2”, X”6d”, X”47”, X”14”,
X”2a”, X”9e”, X”5d”, X”56”,
X”f2”, X”d3”, X”ab”, X”44”,

X”11”, X”92”, X”d9”, X”23”,
X”20”, X”2e”, X”89”, X”b4”,
X”7c”, X”b8”, X”26”, X”77”,
X”99”, X”e3”, X”a5”, X”67”,

X”4a”, X”ed”, X”de”, X”c5”,
X”31”, X”fe”, X”18”, X”0d”,
X”63”, X”8c”, X”80”, X”c0”,
X”f7”, X”70”, X”07”);

begin
output := pt_256(TO_INTEGER(UNSIGNED(input)));
return output;

end;

--

function tableExp (input : vec8)
-- moods inline

return vec8 is
variable output : vec8;
type table256 is array(0 to 255) of vec8;
constant pt_256 : table256 := (
-- moods rom

X”01”, X”03”, X”05”, X”0f”,
X”11”, X”33”, X”55”, X”ff”,
X”1a”, X”2e”, X”72”, X”96”,
X”a1”, X”f8”, X”13”, X”35”,

Ch09-H6845.qxd 4/5/07 11:32 AM Page 130

Secure Systems

131

X”5f”, X”e1”, X”38”, X”48”,
X”d8”, X”73”, X”95”, X”a4”,
X”f7”, X”02”, X”06”, X”0a”,
X”1e”, X”22”, X”66”, X”aa”,

X”e5”, X”34”, X”5c”, X”e4”,
X”37”, X”59”, X”eb”, X”26”,
X”6a”, X”be”, X”d9”, X”70”,
X”90”, X”ab”, X”e6”, X”31”,

X”53”, X”f5”, X”04”, X”0c”,
X”14”, X”3c”, X”44”, X”cc”,
X”4f”, X”d1”, X”68”, X”b8”,
X”d3”, X”6e”, X”b2”, X”cd”,

X”4c”, X”d4”, X”67”, X”a9”,
X”e0”, X”3b”, X”4d”, X”d7”,
X”62”, X”a6”, X”f1”, X”08”,
X”18”, X”28”, X”78”, X”88”,

X”83”, X”9e”, X”b9”, X”d0”,
X”6b”, X”bd”, X”dc”, X”7f”,
X”81”, X”98”, X”b3”, X”ce”,
X”49”, X”db”, X”76”, X”9a”,

X”b5”, X”c4”, X”57”, X”f9”,
X”10”, X”30”, X”50”, X”f0”,
X”0b”, X”1d”, X”27”, X”69”,
X”bb”, X”d6”, X”61”, X”a3”,

X”fe”, X”19”, X”2b”, X”7d”,
X”87”, X”92”, X”ad”, X”ec”,
X”2f”, X”71”, X”93”, X”ae”,
X”e9”, X”20”, X”60”, X”a0”,

X”fb”, X”16”, X”3a”, X”4e”,
X”d2”, X”6d”, X”b7”, X”c2”,
X”5d”, X”e7”, X”32”, X”56”,
X”fa”, X”15”, X”3f”, X”41”,

X”c3”, X”5e”, X”e2”, X”3d”,
X”47”, X”c9”, X”40”, X”c0”,
X”5b”, X”ed”, X”2c”, X”74”,
X”9c”, X”bf”, X”da”, X”75”,

X”9f”, X”ba”, X”d5”, X”64”,
X”ac”, X”ef”, X”2a”, X”7e”,
X”82”, X”9d”, X”bc”, X”df”,
X”7a”, X”8e”, X”89”, X”80”,

Ch09-H6845.qxd 4/5/07 11:32 AM Page 131

Design Recipes for FPGAs

132

X”9b”, X”b6”, X”c1”, X”58”,
X”e8”, X”23”, X”65”, X”af”,
X”ea”, X”25”, X”6f”, X”b1”,
X”c8”, X”43”, X”c5”, X”54”,

X”fc”, X”1f”, X”21”, X”63”,
X”a5”, X”f4”, X”07”, X”09”,
X”1b”, X”2d”, X”77”, X”99”,
X”b0”, X”cb”, X”46”, X”ca”,

X”45”, X”cf”, X”4a”, X”de”,
X”79”, X”8b”, X”86”, X”91”,
X”a8”, X”e3”, X”3e”, X”42”,
X”c6”, X”51”, X”f3”, X”0e”,

X”12”, X”36”, X”5a”, X”ee”,
X”29”, X”7b”, X”8d”, X”8c”,
X”8f”, X”8a”, X”85”, X”94”,
X”a7”, X”f2”, X”0d”, X”17”,

X”39”, X”4b”, X”dd”, X”7c”,
X”84”, X”97”, X”a2”, X”fd”,
X”1c”, X”24”, X”6c”, X”b4”,
X”c7”, X”52”, X”f6”, X”01”);

begin
output := pt_256(TO_INTEGER(UNSIGNED(input)));

return output;
end;

function ffmul(pt : vec8; mul : vec8)
-- moods inline

return vec8 is
-- variable res : vec8;
variable tablogpt : vec8;
variable tablogmul : vec8;
variable tablogpt8 : unsigned(8 downto 0);
variable tablogmul8 : unsigned(8 downto 0);
variable carrie : std_logic_vector (8 downto 0);
variable power : vec8;

variable result: vec8;
begin

tablogpt := tableLog(pt);
tablogmul := tableLog(mul);

tablogpt8 := unsigned(“0” & tablogpt);
tablogmul8 := unsigned(“0” & tablogmul);

carrie := std_logic_vector(tablogmul8 + tablogpt8);

Ch09-H6845.qxd 4/5/07 11:32 AM Page 132

Secure Systems

133

if pt = X”00” or mul = X”00” then
result := X”00”;

elsif carrie(8) = ‘1’ or carrie(7 DOWNTO 0) =
X”ff” then -- mod 255
power := std_logic_vector(unsigned(carrie
(7 DOWNTO 0)) + 1); -- power = power - 255

result := tableExp(power);
else

power := carrie(7 DOWNTO 0);
result := tableExp(power);
end if;

return result;
end;

function mixCL(l0 : vec8; l1 : vec8; l2 : vec8;
l3 : vec8)

-- moods inline
return vec8 is

variable ct : vec8;
begin

ct := ffmul(l0, X”02”) xor ffmul(l1, X”01”)
xor ffmul(l2, X”01”) xor ffmul(l3, X”03”);

return ct;
end;

function mixColumns(pt : vec128)
-- moods inline

return vec128 is
variable ct : vec128;

begin

ct := mixCL(pt(127 DOWNTO 120), pt(119 DOWNTO
112), pt(111 DOWNTO 104), pt(103 DOWNTO 96)) &

mixCL(pt(119 DOWNTO 112), pt(111 DOWNTO 104),
pt(103 DOWNTO 96), pt(127 DOWNTO 120)) &

mixCL(pt(111 DOWNTO 104), pt(103 DOWNTO 96),
pt(127 DOWNTO 120), pt(119 DOWNTO 112)) &

mixCL(pt(103 DOWNTO 96), pt(127 DOWNTO 120),
pt(119 DOWNTO 112), pt(111 DOWNTO 104)) &

mixCL(pt(95 DOWNTO 88), pt(87 DOWNTO 80),
pt(79 DOWNTO 72), pt(71 DOWNTO 64)) &

mixCL(pt(87 DOWNTO 80), pt(79 DOWNTO 72), pt(71
DOWNTO 64), pt(95 DOWNTO 88)) &

mixCL(pt(79 DOWNTO 72), pt(71 DOWNTO 64), pt(95
DOWNTO 88), pt(87 DOWNTO 80)) &

mixCL(pt(71 DOWNTO 64), pt(95 DOWNTO 88), pt(87
DOWNTO 80), pt(79 DOWNTO 72)) &

Ch09-H6845.qxd 4/5/07 11:32 AM Page 133

Design Recipes for FPGAs

134

mixCL(pt(63 DOWNTO 56), pt(55 DOWNTO 48), pt(47
DOWNTO 40), pt(39 DOWNTO 32)) &

mixCL(pt(55 DOWNTO 48), pt(47 DOWNTO 40), pt(39
DOWNTO 32), pt(63 DOWNTO 56)) &

mixCL(pt(47 DOWNTO 40), pt(39 DOWNTO 32), pt(63
DOWNTO 56), pt(55 DOWNTO 48)) &

mixCL(pt(39 DOWNTO 32), pt(63 DOWNTO 56), pt(55
DOWNTO 48), pt(47 DOWNTO 40)) &

mixCL(pt(31 DOWNTO 24), pt(23 DOWNTO 16), pt(15
DOWNTO 8), pt(7 DOWNTO 0)) &
mixCL(pt(23 DOWNTO 16), pt(15 DOWNTO 8), pt(7
DOWNTO 0), pt(31 DOWNTO 24)) &

mixCL(pt(15 DOWNTO 8), pt(7 DOWNTO 0), pt(31
DOWNTO 24), pt(23 DOWNTO 16)) &

mixCL(pt(7 DOWNTO 0), pt(31 DOWNTO 24), pt(23
DOWNTO 16), pt(15 DOWNTO 8));

return ct;
end;

function input_output (input : vec128)
-- moods inline

return vec128 is
variable output : vec128;

function flip(input:vec32) return vec32 is
-- moods inline
begin
return input(7 DOWNTO 0) & input(15 DOWNTO 8) &
input(23 DOWNTO 16) & input(31 DOWNTO 24);

end;

begin
return flip(input(127 downto 96)) & flip(input
(95 downto 64)) & flip(input(63 downto 32)) &
flip(input(31 downto 0));

end;

function aes_keyexpansion(key : vec128)
-- moods inline

return vec1408 is
variable iok : vec128;
variable er0,er1,er2,er3,er4,er5,er6,er7,
er8,er9:vec128;

-- variable zero: vec128;
-- variable expandedkeys: vec1408;

function exp_round(input : vec128; round: int9)
return vec128 is

-- moods inline
variable r1,r2,r3,r4,r5: vec32;

Ch09-H6845.qxd 4/5/07 11:32 AM Page 134

Secure Systems

135

begin
r1 := sBox(input(7 downto 0)) &

sBox(input(31 downto 24)) &
sBox(input(23 downto 16)) &
(sBox(input(15 downto 8)) xor rcon(round));

r2 := input(127 downto 96) xor r1;
r3 := input(95 downto 64) xor r2;
r4 := input(63 downto 32) xor r3;
r5 := input(31 downto 0) xor r4;
return r2 & r3 & r4 & r5;

end;

begin
-- First Round
iok := input_output(key);
-- other rounds
er9 := exp_round(iok,9);
er8 := exp_round(er9,8);
er7 := exp_round(er8,7);
er6 := exp_round(er7,6);
er5 := exp_round(er6,5);
er4 := exp_round(er5,4);
er3 := exp_round(er4,3);
er2 := exp_round(er3,2);
er1 := exp_round(er2,1);
er0 := exp_round(er1,0);

return (iok & er9 & er8 & er7 & er6 & er5 & er4 &
er3 & er2 & er1 & er0);

end;

--

function aes_core (signal plaintext : vec128; signal
keytext : vec128; signal encrypt : std_logic)

-- moods inline
return vec128 is

variable rk0 : vec128;
variable ciphertext, expkey : vec128;
variable ct1, ct2,ct3,ct4,ct5,ct6,ct7,ct8: vec128;
variable expandedkeys : vec1408;

begin
-- expanded key schedule
expandedkeys := aes_keyexpansion(keytext);

-- Round 0
ct1 := input_output(plaintext) xor
expandedkeys(1407 downto 1280);

-- Round 1 to Nr-1
-- for i in 1 to Nr-1 loop

Ch09-H6845.qxd 4/5/07 11:32 AM Page 135

Design Recipes for FPGAs

136

for i in 1 to 9 loop
ct2 := subBytes(ct1);
ct3 := shiftRows(ct2);
ct4 := mixColumns(ct3);

case(i) is
when 1 => expkey := expandedkeys(1279 downto 1152);
when 2 => expkey := expandedkeys(1151 downto 1024);
when 3 => expkey := expandedkeys(1023 downto 896);
when 4 => expkey := expandedkeys(895 downto 768);
when 5 => expkey := expandedkeys(767 downto 640);
when 6 => expkey := expandedkeys(639 downto 512);
when 7 => expkey := expandedkeys(511 downto 384);
when 8 => expkey := expandedkeys(383 downto 256);
when 9 => expkey := expandedkeys(255 downto 128);
when others => null;

end case;
ct1 := ct4 xor expkey;

end loop;

-- Final Round Nr=10
ct5 := subBytes(ct1);
ct6 := shiftRows(ct5);
ct7 := ct6 xor expandedkeys(1407-128*Nr downto
1280-128*Nr);

ciphertext := input_output(ct7);
return ciphertext;

end;

--

function rcon (input : int9)
-- moods inline

return vec8 is
type rcont_t is array(0 to 9) of vec8;
constant table_rcon: rcont_t := (
-- moods rom
X”36”, X”1b”, X”80”, X”40”, X”20”, X”10”, X”08”, X”04”,
X”02”, X”01”);

begin
return table_rcon(input);

end;

--

function sBox (pt : vec8)
-- moods inline

return vec8 is
variable ct : vec8;
type table256 is array(0 to 255) of vec8;
constant pt_256 : table256 := (
-- moods rom

X”63”, X”7c”, X”77”, X”7b”, X”f2”, X”6b”, X”6f”, X”c5”,
X”30”, X”01”, X”67”, X”2b”, X”fe”, X”d7”, X”ab”, X”76”,

Ch09-H6845.qxd 4/5/07 11:32 AM Page 136

Secure Systems

137

X”ca”, X”82”, X”c9”, X”7d”, X”fa”, X”59”, X”47”, X”f0”,
X”ad”, X”d4”, X”a2”, X”af”, X”9c”, X”a4”, X”72”, X”c0”,
X”b7”, X”fd”, X”93”, X”26”, X”36”, X”3f”, X”f7”, X”cc”,
X”34”, X”a5”, X”e5”, X”f1”, X”71”, X”d8”, X”31”, X”15”,
X”04”, X”c7”, X”23”, X”c3”, X”18”, X”96”, X”05”, X”9a”,
X”07”, X”12”, X”80”, X”e2”, X”eb”, X”27”, X”b2”, X”75”,
X”09”, X”83”, X”2c”, X”1a”, X”1b”, X”6e”, X”5a”, X”a0”,
X”52”, X”3b”, X”d6”, X”b3”, X”29”, X”e3”, X”2f”, X”84”,
X”53”, X”d1”, X”00”, X”ed”, X”20”, X”fc”, X”b1”, X”5b”,
X”6a”, X”cb”, X”be”, X”39”, X”4a”, X”4c”, X”58”, X”cf”,
X”d0”, X”ef”, X”aa”, X”fb”, X”43”, X”4d”, X”33”, X”85”,
X”45”, X”f9”, X”02”, X”7f”, X”50”, X”3c”, X”9f”, X”a8”,
X”51”, X”a3”, X”40”, X”8f”, X”92”, X”9d”, X”38”, X”f5”,
X”bc”, X”b6”, X”da”, X”21”, X”10”, X”ff”, X”f3”, X”d2”,
X”cd”, X”0c”, X”13”, X”ec”, X”5f”, X”97”, X”44”, X”17”,
X”c4”, X”a7”, X”7e”, X”3d”, X”64”, X”5d”, X”19”, X”73”,
X”60”, X”81”, X”4f”, X”dc”, X”22”, X”2a”, X”90”, X”88”,
X”46”, X”ee”, X”b8”, X”14”, X”de”, X”5e”, X”0b”, X”db”,
X”e0”, X”32”, X”3a”, X”0a”, X”49”, X”06”, X”24”, X”5c”,
X”c2”, X”d3”, X”ac”, X”62”, X”91”, X”95”, X”e4”, X”79”,
X”e7”, X”c8”, X”37”, X”6d”, X”8d”, X”d5”, X”4e”, X”a9”,
X”6c”, X”56”, X”f4”, X”ea”, X”65”, X”7a”, X”ae”, X”08”,
X”ba”, X”78”, X”25”, X”2e”, X”1c”, X”a6”, X”b4”, X”c6”,
X”e8”, X”dd”, X”74”, X”1f”, X”4b”, X”bd”, X”8b”, X”8a”,
X”70”, X”3e”, X”b5”, X”66”, X”48”, X”03”, X”f6”, X”0e”,
X”61”, X”35”, X”57”, X”b9”, X”86”, X”c1”, X”1d”, X”9e”,
X”e1”, X”f8”, X”98”, X”11”, X”69”, X”d9”, X”8e”, X”94”,
X”9b”, X”1e”, X”87”, X”e9”, X”ce”, X”55”, X”28”, X”df”,
X”8c”, X”a1”, X”89”, X”0d”, X”bf”, X”e6”, X”42”, X”68”,
X”41”, X”99”, X”2d”, X”0f”, X”b0”, X”54”, X”bb”, X”16”);
begin

ct := pt_256(TO_INTEGER(UNSIGNED(pt)));
return ct;

end;

--
end;

After the functions and top level entity have been defined,
we can implement a test bench that applies a set of test data to
the inputs and verifies that the correct output has been obtained.
Notice that we use the assertion technique to identify correct
operation:

library ieee;
use ieee.std_logic_1164.all;
entity testAES is
end;

library ieee;
use ieee.std_logic_1164.all;

Ch09-H6845.qxd 4/5/07 11:32 AM Page 137

use work.aes_functions.all;
architecture behaviour of testAES is

component aes
port(

plaintext : in std_logic_vector (127
downto 0);

keytext : in std_logic_vector(127
downto 0);

encrypt : in std_logic;
go : in std_logic;
ciphertext : out std_logic_vector
(127 downto 0);

done : out std_logic
);

end component;

for all : aes use entity work.aes;

signal plaintext : std_logic_vector(127 downto 0);
signal keytext : std_logic_vector(127 downto 0);
signal encrypt : std_logic;
signal go : std_logic := ‘0’;
signal ciphertext : std_logic_vector(127 downto 0);
signal done : std_logic;
signal ok : std_logic := ‘0’;

begin
plaintext <= X”00000000000000000000000000000000”,
X”3243f6a8885a308d313198a2e0370734” after 50 ns ;

keytext <= X”00000000000000000000000000000000”,
X”2b7e151628aed2a6abf7158809cf4f3c” after 100 ns;

process (ciphertext)
variable ct : std_logic_vector(127
downto 0) :=
X”3925841d02dc09fbdc118597196a0b32”;

begin
assert ct = ciphertext

report “Test vectors do not match”
severity note;

assert not (ct = ciphertext)
report “Test vectors Matched”
severity note;

end process;

process
begin

go <= not go after 20 ns;
end process;

DUT : aes port map (plaintext, keytext, encrypt,
go, ciphertext, done);

end;

Design Recipes for FPGAs

138

Ch09-H6845.qxd 4/5/07 11:32 AM Page 138

Summary

This chapter shows how two standard block ciphers can be imple-
mented in VHDL. Both of these algorithms are in common usage
today and in operational hardware. There are numerous other
methods, as security requires a constant evolution of encryption
techniques and no doubt more robust and secure methods will
emerge that require implementation in VHDL.

Secure Systems

139

Ch09-H6845.qxd 4/5/07 11:32 AM Page 139

10
Memory

Introduction

If we consider SDRAM (Synchronous Dynamic Random Access
Memory), the key aspects of this type of memory to consider are:

1. This type of DRAM (Dynamic RAM) relies on transistor
capacitance on gates to store data.

2. DRAM is much more compact than SRAM (Static RAM).

3. DRAM cannot be synthesized – you need a separate DRAM
chip.

4. SDRAM requires a synchronization clock that is consistent
with the rest of the hardware system (it is designed to operate
with microprocessors).

5. DRAM data must be refreshed as it is stored charge and
decays after a certain time.

6. DRAM is slower than SRAM.

Static RAM (SRAM) can be considered in a similar way to a
Read Only Memory (ROM) chip and it also has (differing) key
aspects of behavior to consider:

1. Memory cells are based on standard latches.

2. SRAM is fast.

3. SRAM is less compact than DRAM (or SDRAM).

4. SRAM can be synthesized on an Field Programmable Gate
Array (FPGA) – so is ideal for small, fast registers or memory
blocks.

Ch10-H6845.qxd 4/5/07 11:32 AM Page 140

Memory

141

Statics RAM is essentially asynchronous, but can be modified to
behave synchronously (as SDRAM is the synchronous equivalent
of DRAM), and this is often called Synchronous RAM.

Flash Memory is useful to consider at this point, even though its
operation is fundamentally different from the memory types con-
sidered thus far, simply because it is easy to use and is commonly
available on many FPGA development boards.

Flash Memory is essentially a form of EEPROM – electrically
programmable ROM – that can be used as a form of persis-
tent RAM. Why persistent? In Flash Memory, the device memory
is retained even when the power is removed, so it is often used
as a form of ROM, which makes it an interesting memory to
use on FPGA systems as it could be used to store the FPGA
program, but also used as a RAM storage (dynamically) for
current data.

Modeling memory in VHDL

Great care must be exercised when modeling memory in VHDL.
As some memory cannot be synthesized, if a model is used, it must
reflect the correct physical behavior of the real device if it is off
chip. This particularly applies to access times and timing viola-
tion conditions. If the timing is violated, then the data may be at
best suspect and at worst totally useless. The designer can find
themselves in the invidious position of having a simulation model
that works perfectly, and real hardware that is completely
non-functional.

In this chapter, we have used VHDL that does not have any phys-
ical delays in any of the models, and these must be added if the
models are to be used in a realistic system.

Read Only Memory

ROM is essentially a set of predefined data values in a storage reg-
ister. The memory has two definitions, first the number of storage
areas and second the number of bits. For example, if the memory
has 16 storage areas and 8 bits each, the memory is defined as a
16 � 8 ROM. The basic ROM has one input, the definition of the
address to be accessed, and one output, which is a logic vector

Ch10-H6845.qxd 4/5/07 11:32 AM Page 141

Design Recipes for FPGAs

142

which is where the data will be put. Consider the entity for a sim-
ple behavioral ROM model in VHDL:

ENTITY ROM16x8 IS
PORT (address : IN INTEGER RANGE 0 TO 15;

dout : OUT std_logic_vector (7 DOWNTO 0));
END ENTITY ROM16x8;

As can be seen, the address has been defined as an integer, but
the range has been restricted to the range of the ROM. The archi-
tecture of the ROM is defined as a fixed array of elements that can
be accessed directly. Therefore an example ROM with a set of
example data elements could be defined as follows:

ARCHITECTURE example OF rom16x8 IS
TYPE romdata IS ARRAY (0 TO 15)
OF std_logic_vector(7 DOWNTO 0);

CONSTANT romvals : romdata := (“00000000”,
“01010011”,
“01110010”,
“01101100”,
“01110101”,
“11010111”,
“11011111”,
“00111110”,
“11101100”,
“10000110”,
“11111001”,
“00111001”,
“01010101”,
“11110111”,
“10111111”,
“11101101”);

BEGIN
data <= romvals(address);

END ARCHITECTURE example;

If we wish to use this in an example, we first need to declare the
ROM in a VHDL testbench and then specify the address using an
integer signal. A sample testbench is given below:

library ieee;
use ieee.std_logic_1164.all;

entity testrom is
end entity testrom;

architecture test of testrom is
signal address : integer := 0;
signal data : std_logic_vector (7 downto 0);

Ch10-H6845.qxd 4/5/07 11:32 AM Page 142

Memory

143

begin
rom16x8: entity work.rom16x8 (example)

port map (address, data);
end architecture test;

Notice that the IEEE library, std_logic_1164, is required for the
std_logic_vector type and the value of the data will depend on the
address chosen.

Random Access Memory

A DRAM block has a two-dimensional structure of memory that
is divided into a grid structure accessed by a row address and col-
umn address. Note that this is asynchronous and therefore has no
clock. The implication of being asynchronous is that care must be
taken with the timing of the memory access to ensure data integrity
throughout the transfer process.

The VHDL model has a single address input and two control sig-
nals, RADDR and CADDR, are used to specify the Row and
Column Address, respectively. There is also a RW signal that is
defined as being write when high and read when low. Finally, the
data is put onto the DATA signal which is defined as an INOUT
(bidirectional) signal. The resulting entity is given in the VHDL
below. In this example, the number of rows is 28 and the number of
columns also 28. This gives a total data storage with 16 bits of 1 Mbit

ENTITY DRAM1MB IS
PORT (

address : IN INTEGER RANGE 0 TO 2**8-1;
RW : std_logic;
data : OUT std_logic_vector (15 DOWNTO 0));

END ENTITY DRAM1MB;

The architecture is shown in the VHDL below:

architecture behav of DRAM1MB is
begin
process (RADDR, CADDR, RW) is

type dram is array (0 to 2**16 - 1) of
std_logic_vector(15 downto 0);

variable radd: INTEGER range 0 to 2**8 - 1;
variable madd: INTEGER range 0 to 2**16 - 1;
variable memory: dram;

begin
data <= (others => ‘Z’);
if falling_edge(RADDR) then

radd := address;
elsif falling_edge(CADDR) then

Ch10-H6845.qxd 4/5/07 11:32 AM Page 143

Design Recipes for FPGAs

144

madd:=radd*2**18 +Address;
if RADDR = ‘0’ and RW = ‘0’ then
memory(madd) := data;

end if;
elsif CADDR = ‘0’ and RADDR = ‘0’ and RW = ‘1’ then

data <= memory(madd);
end if;

end process;
end architecture behav;

Using this model a simple testbench can be used to read in a data
value to an address, then another value to another address and then
the original value read back. The test bench to achieve this is given in
the VHDL below.

library ieee;
use ieee.std_logic_1164.all;

entity testram is
end entity testram;

architecture test of testram is
signal address : integer range 0 to 2**8-1 := 0;
signal rw : std_logic;
signal c : std_logic;
signal r : std_logic;
signal data : std_logic_vector (15 downto 0);

begin

dram: entity work.dram1mb(behav)
port map (address, rw, c, r, data);

address <= 23 after 0 ns, 47 after 30 ns, 23 after
90 ns;

rw <= ‘0’ after 0 ns, ‘1’ after 90 ns;
c <= ‘1’ after 0 ns, ‘0’ after 20 ns,

‘1’ after 50 ns, ‘0’ after 70 ns,
‘1’ after 90 ns, ‘0’ after 100 ns;

r <= ‘1’ after 0 ns, ‘0’ after 10 ns,
‘1’ after 40 ns, ‘0’ after 60 ns,
‘1’ after 80 ns, ‘0’ after 100 ns;

data <= X”1234” after 0 ns, X”5678” after 40 ns;

end architecture test;

The results of testing this model can be seen in the waveform
(Figure 34), which shows the correct behavior of the address, data
and control lines.

It is important to note that the RAM model does not model any
of the actual delays that would appear in practice and if this is
important to the functionality of the design, then it MUST be added
to the model.

Ch10-H6845.qxd 4/5/07 11:32 AM Page 144

Memory

145

Synchronous RAM

In the preceding chapter, we observed how the memory is accessed
asynchronously, whereas Synchronous RAM (SRAM) requires a
clock. In most practical designs, the RAM will be implemented
off chip as a separate memory device, but sometimes it is useful to
define a small block of RAM on the FPGA for fast access or local
storage close to the hardware device that requires frequent access
to a relatively small memory block.

The usual design constraints apply to memory, more so than
some other possible functions, as the use of flip-flops to store
data without using much of the other logic in a Look-Up Table
(LUT) is area intensive. The trade-off, as ever with FPGA design,
is whether the potential for improved performance and speed
using on board RAM outweighs the increased area required as a
result.

From the design perspective, the synchronous RAM VHDL model
is very similar to the previously demonstrated basic asynchronous

M

c

r

rw

Data 1234 5678

50.0

45.0

40.0

35.0

30.0

25.0

20.0

0.0 50n 100n

t(s)

(13.774n, 23.0)

(50.047n, 47.0)

(94.951n, 23.0)

-:t(s)

address

Figure 34

DRAM Simulation Results

Ch10-H6845.qxd 4/5/07 11:32 AM Page 145

Design Recipes for FPGAs

146

RAM model. The only difference is that instead of the data being
available immediately on the address being applied (or after some
short delay), the data in a synchronous RAM is only accessed when
the clock edge occurs (rising or falling edge depending on the
design required).

If we consider the VHDL for the entity of the SRAM we can see
that for a memory size of 2m and a data bus of 2n, the following
entity is required. The VHDL model has two parameters, m and n.
In the default case, the value of m as 10 provides 1024 address
words and the number of bits (n) set to 8 gives a total of 8 K bits in
the RAM. Obviously this could be made any size, bit this shows
the type of calculation required to obtain the specified memory
blocks.

ENTITY SRAM IS
GENERIC (
M : natural := 10;
N : natural := 8
);

PORT (
clk : in std_logic;
addr : in std_logic_vector(m-1 downto 0);
wr : in std_logic;
d : in std_logic_vector (n-1 downto 0);
q : out std_logic_vector (n-1 downto 0)
);

END ENTITY DRAM1MB;

Notice that there are two control signals, the clock (clk) and the
write enable (wr). We could make the memory synchronous write,
synchronous read or a more complex port structure, but in this
case, we will show the operation as being synchronous read and
write, on the rising edge of the clock. Also, the convention we will
use is for the write enable state to be active when wr is low. The
resulting VHDL for this synchronous RAM is shown below:

Architecture dualport of sram is
Type sramdata is array (0 to 2**m-1) of

Std_logic_vector (n-1 downto 0);
Signal memory : sramdata;

Begin
Process (clk) is
Begin

If rising_edge(clk) then
If wr = ‘0’ then

Memory(to_integer(unsigned(addr))) <= d;

Ch10-H6845.qxd 4/5/07 11:32 AM Page 146

Memory

147

Else
Q <= memory(to_integer(unsigned(addr)));

End if;
End if;

End process;
End architecture dualport;

There are several interesting aspects to this model that are
worth considering. The first is the access of the memory. If we
define the address as a std_logic_vector type in VHDL, then
we can’t simply use this value to access a specific element of an
array. This requires an integer argument. We also cannot simply
cast a std_logic_vector type directly to an integer. The first thing
we must do is convert the std_logic_vector type to an unsigned
number. This is a half way house from std_logic_vector to integer,
in that we can use the variable as a number, but it is limited to the
same bit resolution as the original std_logic_vector. In this case,
clearly this is not an issue as we do not want the address to be
larger than the memory otherwise errors will result. The final step
is to convert the unsigned type to an integer. This is accomplished
using the to_integer function and is the final step to convert the
address into the integer form required to access the individual
element of the array.

As a consequence of using these numeric functions, we need to
also include the ieee standard numeric library in the header of the
model as shown:

Library ieee;
Use ieee.std_logic_1164.all;
Use ieee.numeric_std.all;

It is also worth noting that the read and write functions are mutu-
ally exclusive, in that you cannot read from the memory and write
to it at the same time. This ensures the integrity of the data. Also
note that the read and write functions are both clocked and so the
memory is both read and write synchronous.

FLASH memory

As has been discussed previously, FLASH memory is essentially a
form of EEPROM (Electrically Erasable and Programmable Read
Only Memory). This is slightly different to a standard RAM where
the address is given to the memory and depending on the R/W
signals, the data is read or written, respectively. A typical set of

Ch10-H6845.qxd 4/5/07 11:32 AM Page 147

Design Recipes for FPGAs

148

interface pins for a FLASH memory consists of the following
elements:

Pin Function Active State

CLE Command Latch H, activated on rising_edge(WE)

ALE Address Latch H, activated on rising_edge(WE)

CE Chip Enable L

RE Read Enable Falling_edge(RE)

WE Write Enable Rising_edge(WE)

WP Write Protect Low

Busy Ready/Busy L � busy, H � ready

In addition to these control signals there is of course an address
bus and a data bus. To implement this we can use a similar entity
to that for a standard RAM block in VHDL:

ENTITY FLASH IS
GENERIC (
A : natural := 10;
D : natural := 8
);

PORT (
clk : in std_logic;
addr : in std_logic_vector(A-1 downto 0);
data : inout std_logic_vector (D-1 downto 0);
cle : IN std_logic;
ale : IN std_logic;
ce : IN std_logic;
re : IN std_logic;
we : IN std_logic;
wp : IN std_logic;
busy : OUT std_logic;
);

END ENTITY FLASH;

In most cases we won’t need to model the FLASH memory
itself, but rather we need to interface to it, so the entity for a
FLASH interface controller could be as follows:

ENTITY FLASHIF IS
PORT (
Clk : IN std_logic;
read : IN std_logic;
en : IN std_logic;
cle : OUT std_logic;
ale : OUT std_logic;
ce : OUT std_logic;
re : OUT std_logic;

Ch10-H6845.qxd 4/5/07 11:32 AM Page 148

Memory

149

we : OUT std_logic;
wp : OUT std_logic;
busy : IN std_logic;
);

END ENTITY FLASHIF;

A typical architecture for this device could be as follows:

Architecture basic of FLASHIF is
Begin

Process (clk) is
If busy = ‘1’ then
If rising_edge(clk) then

Ce <= en;
Ale <= ‘1’;
Cle < ‘1’;
If read = ‘0’ then

We <= ‘1’;
Re <= ‘1’;

Else
We <= ‘0’;
Re <= ‘0’;

End if;
If prog = ‘0’ then

Wp <= ‘0’;
Else

Wp <= ‘1’;
End if;

End if;
End if;

End process;
End architecture basic;

This is a basic outline for a flash controller and this will obvi-
ously change from device to device.

Summary

This chapter has introduced the important memory types of ROM,
asynchronous RAM, FLASH memory and synchronous RAM. It is
important to remember that in most cases, large memory blocks will
be contained off chip and so it may be necessary to use these mod-
els purely for simulation rather than synthesis, but that it is possible
to use RAM sparingly on the FPGA itself if absolutely required.

In this case, the trade-off of speed vs. area becomes particularly
acute and as such great care must be taken to not make naïve deci-
sions about putting large amounts of memory on the FPGA – as
this may take up far too much memory to be practical.

Ch10-H6845.qxd 4/5/07 11:32 AM Page 149

11
PS/2 Mouse Interface

Introduction

The PS/2 mouse is a standard interface to both computers and also
many Field Programmable Gate Array (FPGA) development kits.
The protocol is a serial one and in this chapter the basics of the
protocol will be reviewed and also a simple VHDL interface code
to enable the designer to use a mouse, primarily on a standard
FPGA development kit.

PS/2 mouse basics

The origins of the PS/2 mouse are back in the 1980s with the pro-
liferation of the IBM Personal Computer (PC). This had the
generic name of a ‘Personal System’ – hence PS and the second
version of this was therefore called the PS/2 – and the interface
technology has remained under that name ever since.

The PS/2 interface is essentially a custom serial interface with
one device supported per connector (unlike the modern USB –
Universal Serial Bus – which can handle numerous devices on a
single port). The data rate is relatively slow – 40 kbps and the
device is powered off a 5 V dc supply.

Unlike the USB approach where devices are generally ‘hot
swappable’ that is they can be plugged in or unplugged at will, the
PS/2 device cannot be removed without a system crash or freeze
resulting.

The PS/2 mouse supports communication from the mouse to the
host and vice versa, and the supply is provided from the host to the
mouse in the form of a 5 V line.

Ch11-H6845.qxd 4/5/07 11:32 AM Page 150

PS/2 Mouse Interface

151

PS/2 mouse commands

The PS/2 mouse has a limited set of commands that are essentially
either button press commands or mouse movement commands.
The standard mouse has a left, middle and right button click com-
mand, and the X and Y movement. The X and Y movements are
tracked using counters, where the value is relative to the previous
value sent by the mouse not the absolute position itself.

PS/2 mouse data packets

The PS/2 mouse sends data in serial packets down a data line and
this is synchronous with a clock line also on the mouse interface.
Each packet consists of 3, 8 bit words where the first word is a con-
figuration word with a set of flags, the second word provides the
mouse X movement and the third word provides the mouse Y move-
ment. The description of the mouse bits are given in the table below:

Bit Byte 1 Byte 2 Byte 3

7 Y overflow

6 X overflow

5 Y sign bit

4 X sign bit

3 Always 1

2 Middle Btn

1 Right Btn

0 Left Btn

X
 M

ov
em

en
t

Y
 m

ov
em

en
t

Each of the movement bytes are defined as 9 bit 2’s complement
numbers, where the sign bit is defined in byte 1. The range of move-
ment that can be defined is �255 to �255 using this approach.

PS/2 operation modes

The PS/2 mouse operates in four basic modes. On power up the
mouse goes into a ‘reset’ mode and this can also be initiated by a
reset command from the host which is defined as 0xFF. After reset
has been completed, the mouse automatically goes into a ‘stream’
mode in which the data is streamed back from the mouse to the
host. These two modes are he most commonly used modes of
operation for most applications, but there are two other used

Ch11-H6845.qxd 4/5/07 11:32 AM Page 151

Design Recipes for FPGAs

152

modes which are remote and wrap. These are mostly useful in
testing that the interface is operating correctly.

In the reset mode the mouse itself will reset and carry out some
basic self checks. The default settings are then defined for the
mouse to operate with which are a sample period of 10 ms, a basic
resolution of 4 counts per mm, a 1 to 1 scaling and the data report-
ing option is disabled.

The mouse sends a device ID of 0x00 to the host to let it know that
it is not a keyboard or more complex mouse – just a basic PS/2 mouse.

Once the mouse is running it goes into stream mode and the mouse
will send packets to the host at the defined sample rate of activity
such as mouse movement or button presses. The mouse ONLY sends
data when activity is present, otherwise it will do nothing.

If the mouse is asked by the host to go into remote mode, then the
mouse only sends data when requested by the host and finally in
wrap mode, the mouse sends back every command back to the host
(apart from the reset and reset wrap commands).

PS/2 mouse with wheel

A mouse that has a wheel is defined as a separate type of device
and so it has a difference device id – 0x03. In this case, after reset,
the mouse sends the ID and in the case of a wheel mouse, the data
packet is now 4 bytes long and there is an extra byte to provide the
wheel movement. This byte only uses the least significant bits in a
2’s complement form and therefore has a range of �8 to �7.

Basic PS/2 mouse handler VHDL

The simplest form of the VHDL handler could use the mouse
clock signal as the system clock and then monitor the data coming
from the mouse and this is shown below:

Library ieee;
Use ieee.std_logic_1164.all;

Entity psmouse is
Port (
Clock : IN std_logic;
Data : IN std_logic
);

End entity psmouse;

Ch11-H6845.qxd 4/5/07 11:32 AM Page 152

Architecture basic of psmouse is
Signal d : std_logic_vector (23 downto 0);
Signal byte1 : std_logic_vector (7 downto 0);
Signal byte2 : std_logic_vector (7 downto 0);
Signal byte3 : std_logic_vector (7 downto 0);
Signal index : integer := 23;

Begin
Process(clock) is
Begin

If falling_edge(clock) then
D(index) <= data;
If index > 0 then

Index <= index-1;
Else

Byte1 <= d(23 downto 16);
Byte2 <= d(15 downto 8);
Byte3 <= d(7 downto 0);
Index <= 23;

End if;
End if;

End process;
End architecture basic;

This VHDL is very simple and on each falling edge of the clock
the current value of the data is read into the next element of the data
array (d) and when the complete 24 bits packet has been read in (and
index has counted down to zero) then the 3 bytes are then tran-
scribed from the packet.

Modified PS/2 mouse handler VHDL

The trouble with the previous mouse handler is that although syn-
tactically correct, there could be noise on the mouse clock and
data signals leading to an incorrect clocking of the data and so
another approach would be to have a much higher frequency sig-
nal clock and to monitor the PS/2 clock as if it was a signal. An
extra check would be to filter the PS/2 clock so that only if there
were a certain number of values the same would the clock be con-
sidered to have changed.

Library ieee;
Use ieee.std_logic_1164.all;

Entity psmouse is
Port (

Clk : IN std_logic;
Ps2_clock : IN std_logic;
Data : IN std_logic

);
End entity psmouse;

PS/2 Mouse Interface

153

Ch11-H6845.qxd 4/5/07 11:32 AM Page 153

Design Recipes for FPGAs

154

Architecture basic of psmouse is
Signal clk_internal : std_logic := ‘0’;
Signal d : std_logic_vector (23 downto 0);
Signal byte1 : std_logic_vector (7 downto 0);
Signal byte2 : std_logic_vector (7 downto 0);
Signal byte3 : std_logic_vector (7 downto 0);
Signal index : integer : = 23;

Begin
Process(clock) is

High : integer : = 0;
Low : integer : = 0;

Begin
If rising_edge(clock) then
if (ps2_clock = ‘1’) then

if high = 8 then
clk_internal <= ‘1’;
high <= 0;
low <= 0

else
high <= high + 1;

end if;
else

if low <= 8 then
clk_internal <= ‘0’;
low <= 0;
high <= 0;

else
low <= low + 1;

end if;
end if;
End if;

End process;
Process(clk_internal) is
Begin

If falling_edge(clk_internal) then
D(index) <= data;
If index > 0 then

Index <= index - 1;
Else

Byte1 <= d(23 downto 16);
Byte2 <= d(15 downto 8);
Byte3 <= d(7 downto 0);
Index <= 23;

End if;
End if;

End process;
End architecture basic;

In this case the modified mouse handler waits for 8 consecutive
highs or lows on the clock signal at the higher internal clock rate
of the FPGA and then it will set the internal clock high or low

Ch11-H6845.qxd 4/5/07 11:32 AM Page 154

respectively. Then the same mouse handler routine takes over to
manage the data input, this time using the internally generated
clock.

Summary

This chapter has shown how to handle a basic PS/2 signal for a
mouse and then store the data in 3 bytes for further processing.
Two methods are shown for collecting the data, one using the PS/2
clock and the other using a sampled version with a much faster
internal clock.

PS/2 Mouse Interface

155

Ch11-H6845.qxd 4/5/07 11:32 AM Page 155

12
PS/2 Keyboard Interface

Introduction

The PS/2 keyboard is a standard interface to both computers and
also many Field Programmable Array (FPGA) development kits.
The protocol is a serial one and in this chapter the basics of the
protocol will be reviewed and also a simple VHDL interface code
to enable the designer to use a PS/2 keyboard, primarily on a stan-
dard FPGA development kit.

PS/2 keyboard basics

The origins of the PS/2 keyboard are back in the 1980s with the pro-
liferation of the IBM Personal Computer (PC). This had the generic
name of a ‘Personal System’ – hence PS and the second version of
this was therefore called the PS/2 – and the interface technology has
remained under that name ever since. The keyboard interface evolved
from the XT (83 key, 5 pin DIN), through the AT (84–101 key, 5 pin
DIN) and eventually settled on the PS/2 (84–101 Key, 6 pin miniDIN).

The PS/2 interface is essentially a custom serial interface with
one device supported per connector (unlike the modern USB –
Universal Serial Bus – which can handle numerous devices on a
single port). The data rate is relatively slow – 40 kbps and the
device is powered off a 5 V DC supply.

Unlike the USB approach where devices are generally ‘hot swap-
pable’ that is they can be plugged in or unplugged at will, the PS/2
device cannot be removed without a system crash or freeze resulting.

The PS/2 keyboard supports communication from the keyboard
to the host and vice versa, and the supply is provided from the host
to the keyboard in the form of a 5 V line.

Ch12-H6845.qxd 4/5/07 11:37 AM Page 156

Unlike the mouse, the keyboard has an on-board processor that
checks the matrix of keys for any key presses and sends the appro-
priate code down the PS/2 data line.

PS/2 keyboard commands

The keyboard processor has two commands that are sent to the host
system when a key is pressed, the ‘make’and the ‘break’command.
Each key has a separate code that is sent in each case. The code that
is actually sent to the host has no relationship to the ASCII code of
the character sent. It is up to the host code to decode the key com-
mand sent. For example, the character ‘5’ has the make code 0x2E
and the break code 0xF0,0x2E. Most standard characters have a 1
byte make code and a 2 bytes break code, and extended characters
often have 2 bytes make codes and 3 bytes break codes.

If a key is pressed, then the make code is sent periodically until
another key is pressed. The rate of this is called the typematic rate
and is defined as default at approximately 10 characters per second.

PS/2 keyboard data packets

The PS/2 keyboard sends data in serial packets down a data line
and this is synchronous with a clock line also on the mouse inter-
face. Each packet consists of up to 3, 8-bit bytes and this can be
decoded by a look-up table for the keyboard scan codes.

PS/2 keyboard operation modes

Basic PS/2 keyboard handler VHDL

The simplest form of the VHDL handler could use the keyboard
clock signal as the system clock and then monitor the data coming
from the keyboard and this is shown below:

Library ieee;
Use ieee.std_logic_1164.all;

Entity pskeyboard is
Port (

Clock : IN std_logic;
Data : IN std_logic

);
End entity pskeyboard;

PS/2 Keyboard Interface

157

Ch12-H6845.qxd 4/5/07 11:37 AM Page 157

Design Recipes for FPGAs

158

Architecture basic of pskeyboard is
Signal d : std_logic_vector (23 downto 0);
Signal byte1 : std_logic_vector (7 downto 0);
Signal byte2 : std_logic_vector (7 downto 0);
Signal byte3 : std_logic_vector (7 downto 0);
Signal index : integer := 23;

Begin
Process(clock) is
Begin

If falling_edge(clock) then
D(index) <= data;
If index > 0 then

Index <= index-1;
Else

Byte1 <= d(23 downto 16);
Byte2 <= d(15 downto 8);
Byte3 <= d(7 downto 0);
Index <= 23;

End if;
End if;

End process;
End architecture basic;

This VHDL is very simple and on each falling edge of the clock
the current value of the data is read into the next element of the data
array (d) and when the complete 24-bit packet has been read in (and
index has counted down to zero) then the three bytes are then tran-
scribed from the packet.

Modified PS/2 keyboard handler VHDL

The trouble with the previous keyboard handler is that although syn-
tactically correct, there could be noise on the keyboard clock and data
signals leading to an incorrect clocking of the data and so another
approach would be to have a much higher frequency signal clock and
to monitor the PS/2 clock as if it was a signal. An extra check would
be to filter the PS/2 clock so that only if there were a certain number
of values the same would the clock be considered to have changed.

Library ieee;
Use ieee.std_logic_1164.all;

Entity pskeyboard is
Port (

Clk : IN std_logic;
Ps2_clock : IN std_logic;
Data : IN std_logic

);
End entity pskeyboard;

Ch12-H6845.qxd 4/5/07 11:37 AM Page 158

PS/2 Keyboard Interface

159

Architecture basic of pskeyboard is
Signal clk_internal : std_logic := ‘0’;
Signal d : std_logic_vector (23 downto 0);
Signal byte1 : std_logic_vector (7 downto 0);
Signal byte2 : std_logic_vector (7 downto 0);
Signal byte3 : std_logic_vector (7 downto 0);
Signal index : integer := 23;

Begin
Process(clock) is

High : integer := 0;
Low : integer := 0;

Begin
If rising_edge(clock) then
if (ps2_clock = ‘1’) then

if high = 8 then
clk_internal <= ‘1’;
high <= 0;
low <= 0

else
high <= high +1;

end if;
else

if low = 8 then
clk_internal <= ‘0’;
low <= 0;
high <= 0;

else
low <= low +1;

end if;
end if;

End if;
End process;

Process(clk_internal) is
Begin

If falling_edge(clk_internal) then
D(index) <= data;
If index > 0 then

Index <= index-1;
Else

Byte1 <= d(23 downto 16);
Byte2 <= d(15 downto 8);
Byte3 <= d(7 downto 0);
Index <= 23;

End if;
End if;

End process;
End architecture basic;

In this case the modified keyboard handler waits for 8 consecu-
tive highs or lows on the clock signal at the higher internal clock
rate of the FPGA and then it will set the internal clock high or low

Ch12-H6845.qxd 4/5/07 11:37 AM Page 159

respectively. Then the same keyboard handler routine takes over to
manage the data input, this time using the internally generated
clock.

Summary

This chapter has shown how to handle a basic PS/2 signal for a
keyboard and then store the data in 3 bytes for further processing.
Two methods are shown for collecting the data, one using the PS/2
clock and the other using a sampled version with a much faster
internal clock.

Design Recipes for FPGAs

160

Ch12-H6845.qxd 4/5/07 11:37 AM Page 160

13
A Simple VGA Interface

Introduction

The Video Graphics Array (VGA) interface is common to most
modern computer displays and is based on a pixel map, color planes
and horizontal and vertical sync signals. A VGA monitor has three
color signals (red, green and blue) that set one of these colors on or
off on the screen. The intensity of each of those colors sets the final
color seen on the display. For example, if the red was fully on, but
the blue and green off, then the color would be seen as a strong red.
Each analog intensity is defined by a two bit digital word for each
color (e.g. red0 and red1) that are connected to a simple digital to
analog converter to obtain the correct output signal.

The resolution of the screen can vary from 480�320 up to much
large screens, but a standard default size is 640�480 pixels. This
is 480 lines of 640 pixels in each line, so the aspect ratio is
640/480 leading to the classic landscape layout of a conventional
monitor screen.

The VGA image is controlled by two signals – horizontal sync
and vertical sync. The horizontal sync marks the start and finish of
a line of pixels with a negative pulse in each case. The actual image
data is sent in a 25.17 μs window in a 31.77 μs space between the
sync pulses. (The time that image data is not sent is where the
image is defined as a blank space and the image is dark.) The ver-
tical sync is similar to the horizontal sync except that in this case
the negative pulse mark the start and finish of each frame as a
whole and the time for the frame (image as a whole) takes place
in a 15.25 ms window in the space between pulses, which is
16.784 ms.

Ch13-H6845.qxd 4/5/07 11:37 AM Page 161

Design Recipes for FPGAs

162

There are some constraints about the spacing of the data between
pulses which will be considered later in this chapter, but it is clear
that the key to a correct VGA output is the accurate definition of
timing and data by the VHDL.

Basic pixel timing

If there is a space of 25.17 μs to handle all of the required pixels,
then some basic calculations needs to be carried out to make sure
that the Field Programmable Gate Arrays (FPGA) can display the
correct data in the time available. For example, if we have a 640 �
480 VGA system, then that means that 640 pixels must be sent to
the monitor in 25.17 μs. Doing the simple calculation shows that
for each pixel we need 25.17 μs/640 � 39.328 ns per pixel. If our
clock frequency is 100 MHz on the FPGA then that gives a minimum
clock period of 10 ns, so this can be achieved with a relatively
standard FPGA.

Image handling

Clearly it is not sensible to use an integrated image system on the
FPGA, but rather it makes much more sense to store the image in
memory (Random Access Memory (RAM)) and retrieve it frame
by frame. Therefore as well as the basic VGA interface it makes a
lot of sense for the images to be moved around in memory and
therefore using the same basic RAM interface as defined previ-
ously is sensible. Therefore, as well as the VGA interface pins, our
VGA handler should include a RAM interface.

VGA interface VHDL

The first stage in defining the VHDL for the VGA driver is to cre-
ate a VHDL entity that has the global clock and reset, the VGA
output pins and a memory interface. The outline VHDL entity is
therefore given below:

Library ieee;
Use ieee.std_logic_1164.all;
Entity vga is

Port (
Clk : IN std_logic;
Nrst : IN std_logic;

Ch13-H6845.qxd 4/5/07 11:37 AM Page 162

A Simple VGA Interface

163

Hsync : OUT std_logic;
Vsync : OUT std_logic;
Red : OUT std_logic_vector (1 downto 0);
Green : OUT std_logic_vector (1 downto 0);
Blue : OUT std_logic_vector (1 downto 0);
Address : OUT (std_logic_vector (15 downto 0);
Data : IN (std_logic_vector (7 downto 0);
RAM_en : OUT std_logic;
RAM_oe : OUT std_logic;
RAM_wr : OUT std_logic

);
End entity vga;

Architecture core of vga is
-- VGA internal signals go here

Begin
-- VGA Interface core goes here

End architecture core;

The architecture contains a number of processes, with internal
signals that manage the transfer of pixel data from memory to the
screen. As can be seen from the entity, the data comes back from
the memory in 8 bit blocks and we require 3�2 bits for each pixel
and so when the data is returned, each memory byte will contain
the data for a single pixel. In this example, as we are using a
640�480 pixel image, this will therefore require a memory that is
307 200 bytes in size as a minimum. To put this in perspective, this
means that using a raw memory approach we can put three frames
per megabyte. In practice, of course, we would use a form of image
compression (such as JPEG for photographic images), but this is
beyond the scope of this book.

We can therefore use a simple process to obtain the current pixel
of data from memory as follows:

Mem_read : process (pclk, nrst) is
signal current_address : unsigned (16 downto 0);

Begin
If nrst = ‘0’ then

Pixelcount <= 0;
Current_address <= 0;

Else
If rising_edge(pclk) then

Current_address <= current_address + 1;
Address <= std_logic_vector
(current_address);

Pixel_data <= data;
End if;

End if;
End process;

Ch13-H6845.qxd 4/5/07 11:37 AM Page 163

Design Recipes for FPGAs

164

This process returns the current value of the pixel data into a sig-
nal called pixel_data which is declared at the architecture level:

signal pixel_data : std_logic_vector (7 downto 0);

This has the red, green and blue data defined in lowest 6 bits of
the 8 bit data word with the indexes, respectively, of 0–1, 2–3, 4–5.

Horizontal sync

The next key process is the timing of the horizontal and vertical
sync pulses, and the blanking intervals. The line timing for VGA is
31 770 ns per line with a window for displaying the data of 25 170 ns.
If the FPGA is running at 100 MHz (period of 10 ns) then this
means that each line requires 3177 clock cycles with 2517 for each
line of pixel data, with 660 pulses in total for blanking (330 at either
side). This also means that for a 640 pixel wide line, 39.3 ns are
required for each pixel. We could round this up to 4 clock cycles
per pixel. As you may have noticed, for the pixel retrieval we have
a new internal clock signal called pclk, and we can create a process
that generates the appropriate pixel clock (pclk) with this timing in
place.

With this slightly elongated window, the blanking pulses must
therefore reduce to 617 clock cycles and this means 308 before
and 309 after the display window.

The horizontal sync pulse, on the other hand takes place between
26 110 ns and 29 880 ns of the overall interval. This is 189 clock
pulse less than the overall line time, and so the horizontal sync pulse
go low after 94 clock cycles and then at the end must return high
95 clock cycles prior to the end of the line. The difference between
the outside and inside timings for the horizontal sync pulse is 377
clock cycles and so the sync pulse must return high 94 � 188 clock
cycles and then return low 95 � 189 prior to the end of the window.

Thus the horizontal sync has the following basic behavior:

Clock Cycle Value

0 1

94 0

282 1

2893 0

3082 1

Ch13-H6845.qxd 4/5/07 11:37 AM Page 164

A Simple VGA Interface

165

And this can be implemented using a process with a simple
counter:

Hsync_counter : process (clk, nrst) is
Hcount : unsigned (11 downto 0);

Begin
If nrst = ‘0’ then

Hcount <= 0;
Hsync <= ‘1’;

Else
If hcount > and hcount < 2988 then

hsync <= ‘0’;
else

hsync <= ‘1’;
End if;
If hcount < 3177 then

Hcount <= hcount + 1;
Else

Hcount <= 0;
End if;

End if;
End process;

Vertical sync

The horizontal sync process manages the individual pixels in a line,
and the vertical sync does the same for the lines as a whole to create
the image. The period of a frame (containing all the lines) is defined
as 16 784 000 ns. Within this timescale, the lines of the image are
displayed (within 15 250 000 ns), then the vertical blanking interval
is defined (up to the whole frame period of 16 784 000 ns) and
finally the vertical sync pulse is defined as 1 until 15 700 000 ns at
which time it goes to zero, returning to 1 at 15 764 000 ns.

Clearly it would not be sensible to define a clock of 10 ns for these
calculations, so the largest common divisor is a clock of 2 μs, so we
can divide down the system clock by 2000 to get a vertical sync clock
of 2 μs to simplify and make the design as compact as possible.

Clk_div : process (clk, nrst) is
Begin

If nrst = ‘0’ then
Count <= 0;
Vclk <= ‘0’;

Else
If count = 1999 then

Count <= 0;
Vclk <= not vclk;

Ch13-H6845.qxd 4/5/07 11:37 AM Page 165

Design Recipes for FPGAs

166

Else
Count <= count + 1;

End if;
End if;

End process;

Where the vertical sync clock (vclk) is defined as a std_logic
signal in the architecture. This can then be used to control the vsync
pulses in a second process that now waits for the vertical sync
derived clock:

Vsync_timing : process (vclk) is
Begin

If nrst = ‘0’ then
Vcount <= 0;

Else
If vcount>15700 and vcount < 15764 then

Vsync <= ‘0’;
Else

Vsync <= ‘1’;
End if;
If vcount > 16784 then

Vcount <= 0;
Else

Vcount <= vcount + 1;
End if;

End if;
End process;

Using this process, the vertical sync (frame synchronization)
pulses are generated.

Horizontal and vertical blanking pulses

In addition to the basic horizontal and vertical sync pulse counters,
we have to define a horizontal blanking pulse which sets the line
data low after 25 170 ns (2517 clock cycles). This can be imple-
mented as a simple counter in exactly the same way as the horizon-
tal sync pulse and similarly for a vertical blanking pulse. The two
processes to implement these are given in the following VHDL.

Hblank_counter : process (clk, nrst) is
Hcount : unsigned (11 downto 0);

Begin
If nrst = ‘0’ then

Hcount <= 0;
hblank <= ‘1’;

Ch13-H6845.qxd 4/5/07 11:37 AM Page 166

A Simple VGA Interface

167

Else
if hcount > 2517 and hcount < 3177 then

hblank <= ‘0’;
else

hblank <= ‘1’;
End if;
If hcount < 3177 then

Hcount <= hcount + 1;
Else

Hcount <= 0;
End if;

End if;
End process;
Vblank_timing : process (vclk) is
Begin

If nrst = ‘0’ then
Vcount <= 0;
Vblank<=’1’;

Else
If vcount > 15250 and vcount < 16784 then

vblank <= ‘0’;
Else

vblank <= ‘1’;
End if;
If vcount > 16784 then

Vblank <= 0;
Else

Vcount <= vcount + 1;
End if;

End if;
End process;

Calculating the correct pixel data

As we have seen previously, the data of reach pixel is retrieved
from a memory location and this is obtained using the pixel clock
(pclk). The pixel clock is simply a divided (by 4) version of the
system clock and at each rising edge of this pclk signal, the next
pixel data is obtained from the memory data stored in the signal
called data and translated into the red, green and blue line signals.
This is handled using the basic process given below:

Pixel_handler : process (pclk) is
Begin

Red <= data(1 downto 0);
Green <= data(3 downto 2);
Blue <= data(5 downto 4);

End process;

This is a basic handler process that picks out the correct
pixel data, but is does not include the video blanking signal and

Ch13-H6845.qxd 4/5/07 11:37 AM Page 167

168

Design Recipes for FPGAs

if this is included, then the simple VHDL changes slightly to
this form:

Pixel_handler : process (pclk) is
Blank : std_logic_vector (1 downto 0);

Begin
Blank(0) <= hblank or vblank;
Blank(1) <= hblank or vblank;
Red <= data(1 downto 0) & blank;
Green <= data(3 downto 2) & blank;
Blue <= data(5 downto 4) & blank;

End process;

This is the final step and completes the basic VHDL VGA handler.

Summary

This chapter has introduced the basics of developing a simple VGA
handler in VHDL. While it is a simplistic view of the process,
hopefully it has shown how a simple VGA interface can be devel-
oped using not very complex VHDL and a building block approach.
It is left to the reader to develop their own complete VGA routines
for the specific monitor that they have using the techniques devel-
oped in this chapter as a basis.

Ch13-H6845.qxd 4/5/07 11:37 AM Page 168

Part 4
Optimizing Designs

In this part of the book we will introduce a number of ‘advanced’
topics. In the other parts of the book, the emphasis is on the
‘what’, however in this part is it more about the ‘how’. How can
we make designs synthesize? How can our designs be made smaller
or faster? How can we interface to mixed signal systems in prac-
tice? How can we develop verifiable designs? All of these design
challenges will be addressed in this part of the book.

Ch14-H6845.qxd 4/5/07 11:38 AM Page 169

This page intentionally left blank

14
Synthesis

Introduction

The original intention of VHDL was to have a design specification
language for digital circuits. The main goal of the work was to have
a design representation that could be simulated to test whether the
specification was fit for purpose. When VHDL was standardized as
IEEE Std 1076, the broader application of VHDL for not just simu-
lation but as an integral part of the hardware design flow became
possible.

The original method of designing digital circuits was primarily
through the development of schematic-based designs, using gate
libraries to effectively generate Register Transfer Logic (RTL)
netlists directly from the schematics. This is clearly a reasonable
technique when the designs are relatively small, however it quickly
becomes apparent that for designs of any size this approach is simply
not realistic for modern Field Programmable Gate Arrays (FPGAs)
that require millions of gates.

EDA companies realized fairly early on in the VHDL development
process that if there was a standard language that could represent a
data flow and a control flow, then the potential existed for automati-
cally generating the gate level VHDL from a higher level description,
and RTL was the obvious place to start. RTL has the advantage of
representing the data flow and control flow directly, and can be mapped
easily onto standard gate level logic. The resulting synthesis software
(such as the Design Compiler from Synopsys) quickly established an
important role in the digital design flow for both ASIC and FPGA
designs and have in fact provided to be the driving force in the explo-
sion of productivity of digital designers. The modern high density
designs would not be possible without RTL synthesis.

Ch14-H6845.qxd 4/5/07 11:38 AM Page 171

As such, modern day designers often simplify ‘RTL synthesis’
to just ‘synthesis’, however this is not the whole story. As designs
have continued to get more complex, there has been a push to ever
increasing behavioral synthesis however there is not the same sup-
port from the EDA industry for behavioral synthesis software.

VHDL supported in RTL synthesis

While VHDL is standardized, synthesis is not, and as such the
VHDL that can be synthesized is a subset of the complete VHDL
language. Another common problem for designers is the fact that
different synthesis software packages will give different output
results for the same input VHDL, even to the extent that some will
synthesize and some will not under certain conditions.

There are some standard VHDL techniques that cannot be syn-
thesized however and these are summarized in this chapter.

There are two types of unsupported elements in VHDL – those
that will cause a synthesis failure and those that are ignored. The
failure elements are in many respects easier to manage as the syn-
thesis software will provide an error message. It is the ‘ignored’ ele-
ments that can be more insidious as they can obviously leave errors
in the synthesized design that may not be picked up until the hard-
ware is tested.

Initial conditions

VHDL supports the initial condition being set for signals and vari-
ables, however this is not physically realized. In practice the initial
conditions in the synthesized design are random and so in a prac-
tical design a reset condition should always be defined using an
external reset pin. This is because during synthesis, the initial con-
ditions are ignored.

Concurrent edges

It is common to use a clock edge as a trigger for a model, so a sim-
ple VHDL model may have a process with VHDL something like
this to wait for the rising edge of a clock:

Process (clk)
If rising_edge(clk) then

Q <= q;
End if;

End process;

Design Recipes for FPGAs

172

Ch14-H6845.qxd 4/5/07 11:38 AM Page 172

Or in a similar way:

Process (clk)
If clk’event and clk = ‘1’ then

Q <= q;
End if;

End process;

What is NOT valid is to have more than one rising edge as the trig-
ger condition:

Process (clk1, clk2)
If rising_edge(clk1) and rising_edge(clk2) then

Q <= d;
End if;

End process;

This would fail the synthesis.

Numeric types

Synthesis is only supported for numbers that have a finite range.
For example, an integer type with an undefined range (infinite) is not
supported by synthesis software. In general terms it is often required
that designers specify the range of integers and other integer-based
numbers prior to synthesis (such as signed or unsigned).

This can be a subtle restriction as vectors that have a number as
the index, must have this number defined in advance, so busses
cannot be of a variable size.

Floating point (real) numbers are generally not supported by
synthesis software tools as they do not have floating point libraries
defined.

Wait statements

Wait statements are only supported if the wait is of the form of an
implied sensitivity list and a specific value. So, if the statement is
something like:

Wait on clk = ‘1’;

Then this is supported for synthesis. If the wait statement is
dependent on a specific time delay then this is NOT supported for
synthesis. For example a statement in VHDL such as this is not
supported:

Wait for 10 ns;

Synthesis

173

Ch14-H6845.qxd 4/5/07 11:38 AM Page 173

Assertions

Assertions in any form are ignored by the synthesis software.

Loops

The for loop is a special case of the general loop mechanism in
VHDL and synthesis requires that the range of the loop must be
defined as a static value, globally. This means that you cannot use
variables to define the range of the for loop ‘on the fly’ for synthesis.

If a while loop is implemented, then there has to be a wait state-
ment in the loop somewhere – otherwise it becomes a potentially
infinite loop.

Some interesting cases where synthesis may fail

Unfortunately, there are differences between synthesis software
packages and so care must be taken to ensure interoperability
between packages, particularly in multi-team designs or when using
third party VHDL cores. The cores may have been synthesized using
software different to the one you are using in your design flow, so the
advertised ‘synthesizable’core may not always be synthesizable for
you, in your design flow.

As such it is usually a good idea to keep the VHDL as generic as
possible and avoid using ‘tricks’ of a particular package if you plan
to deliver IP cores or use different tools. This may lead to slightly
less compact VHDL, but the reliability of the VHDL will be greater,
and potential problems (which could cause significant delays later
in the design process, particularly in an integration phase) can be
avoided.

One case is the use of different trigger variables in a process. For
example, if there is a clock and a reset signal, or a clock and an
enable signal, it is tempting to combine the logic into one expres-
sion such as:

If (clk’event and clk = ‘1’ and nrst = ‘1’) then
. . .

End if;

However, in some synthesis software this would cause an error. It
is always preferable to separate these variables into nested if state-
ments for three reasons: (1) the code will be more readable, (2) the

Design Recipes for FPGAs

174

Ch14-H6845.qxd 4/5/07 11:38 AM Page 174

chance of undefined logic states is reduced and (3) the synthesis
software will not have a problem with your VHDL!

What is being synthesized?

Overall design structure

The basic approach for synthesizing digital circuits is to consider
every design block as a combination of a controller and a data path.
The controller is generally a Finite State Machine (FSM), clocked,
and the data path is usually combinatorial logic, but there may also
be storage in there and so a clock may also be required. The basic
outline is shown in Figure 35.

Controller

The controller is producing the control signals for the data path
logic and may also have external control signals, so there are both
internal and external control signals in the general case. As this is
a FSM, the design is synchronous and therefore is clocked and
will generally have a reset condition.

The controller can be represented using a state diagram or bubble
diagram. This shows each individual state and all the transitions
between the states. The controller can be of two basic types: Moore
(where the output of the state machine is purely dependent on the
state variables) and Mealy (where the output can depend on the cur-
rent state variable values AND the input values). The behavior of the
state machine is represented by the state diagram (also sometimes
called a state chart) as shown in Figure 36.

Synthesis

175

Input data Output data
Data
Path
Logic

Controller

External control

Internal control

Clock

Figure 35

Synthesizable Digital
Circuit

Ch14-H6845.qxd 4/5/07 11:38 AM Page 175

The technique for modeling FSMs will be covered later in this
book, but the key elements to remember are that as this is a Finite
State Machine, there are a Finite number of states, and hence the
number of storage elements (D types) is implicit in this definition.
Also, the VHDL allows the definition of the state names as an enu-
merated type, which makes the VHDL readable, easy to understand
and also easily synthesizable.

For example, take a simple example of a two state machine,
where the states are called ON and OFF. If the on off signal is low
then the machine will be OFF and if the on off switch is high, then
the state machine will go into the ON state.

To implement this simple state machine in VHDL, we can use a
new type to represent the states:

Type states is (OFF, ON) ;
Signal current_state, next_state : states;

Notice that in the FSM VHDL we have defined both the current
and the next state. The main part of the FSM can be easily imple-
mented using a case statement in VHDL within a process that
waits for changes in both the current_state signal and any external
variables or control signals:

Process (current_state, onoff)
Begin

Case current_state is
When OFF =>

If onoff = ‘1’ then

Design Recipes for FPGAs

176

S0
out1 � 0

S1
out1 � 1

S3
out1 � 3S2

out1 � 2

rst � ‘0’

rst � ‘1’

choice � ‘0’
choice � ‘1’

Figure 36

Basic State Machine

Ch14-H6845.qxd 4/5/07 11:38 AM Page 176

Next_state <= ON;
End if;

When ON =>
If onoff = ‘0’ then

Next_state <= OFF;
End if;

End case;
End process;

Elsewhere in the architecture, the current_state needs to be
assigned to the next state as follows:

Current_state <= next_state;

Data path

The data path logic is the logic (as the name suggests) to process the
input data and generate the correct output data. The functionality of
the data path logic will usually be divided into blocks and this offers
the possibility of optimization for speed or area. For example, if area
is not an issue, but speed is the primary concern, then a large design
could be constructed to generate the output in potentially a single
clock cycle. If the area is not an issue, but throughput is required,
then pipelining could be used to maximize the overall data rates,
although the individual latency may be high. Finally, if area is the
critical factor, then single functional blocks can be used and regis-
ters used to store intermediate values and the same function applied
repeatedly. Clearly this will be a lot slower, but potentially take a lot
less space.

In the basic data path model there are blocks of combinational
logic separated by registers. Clearly there are options for optimizing

Synthesis

177

Register
Combinational

Logic
Register

Combinational
Logic

Register

Clock

Figure 37

Data Path

Ch14-H6845.qxd 4/5/07 11:38 AM Page 177

the data flow by considering how best to move the data between
the registers for speed or area optimization.

It is important to ensure that some simple rules are followed to
ensure robust synthesis. The first is to make sure that each signal
in the combinational block is defined for every cycle, in other
words it is important not to leave undefined branches in case or if
statements. If this occurs, then a memory latch is inferred and
therefore a latch will be synthesized and as this is not linked to the
global clock, unpredictable behavior can result.

Summary

This chapter has introduced the concept of synthesis, both from a
designers point of view and also the implications of using certain
types of VHDL with the intention of synthesizing it. The assump-
tions and limitations of the various approaches have been described
and some sensible practical approaches to obtaining more robust
designs defined.

Design Recipes for FPGAs

178

Ch14-H6845.qxd 4/5/07 11:38 AM Page 178

15
Behavioral Modeling in VHDL

Introduction

There is a real need to abstract to a higher level in many designs to
make the overall system level design easier. There is less need to
worry about details of implementation at the system level if the
design can be expressed behaviorally, especially if the synthesis
method can handle any clock, partitioning or implementation
issues automatically.

Furthermore, by using system level, or behavioral, analysis,
decisions can be made early in the design process so that poten-
tially costly mistakes can be avoided. Preliminary area and power
estimates can be made and key performance specifications and
architectural decisions can be made using this approach, without
requiring to have detailed designs for every block.

How to go from RTL to behavioral VHDL

The abstraction from RTL (Register Transfer Level) VHDL
to behavioral is straightforward in one sense, in that the VHDL
is actually simpler. There is no need to ensure that correct clock-
ing takes place, or that separate processes are implemented for
different areas of the architecture, or even separate components
instantiated.

It is useful to consider an example to illustrate this point by
looking at the difference between the RTL and behavioral VHDL
in an example such as a cross product multiplier. In this case we
will demonstrate the RTL method and then show how to abstract
to a behavioral model. First consider the specification for the
model shown in Figure 38.

Ch15-H6845.qxd 4/5/07 11:38 AM Page 179

Design Recipes for FPGAS

180

This has the data path model as shown in Figure 39.

The first task is to define the types for the VHDL for the entity
of the model and this is shown below. Notice that we have defined
a new type sig8 that is a signed type and a vector based on this for
the cross product multiplications.

library ieee;
Use ieee.std_logic_1164.all;
Use ieee.numeric_std.all;
Package cross_product_types is

subtype sig8 is signed (7 downto 0);
type sig8_vector is array

(natural range<>) of sig8;
End package;

The entity can now be put together and this is shown below.
Notice that for RTL we require both a clock and a reset.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.cross_product_types.all;

entity cross_product is
port(

a,b : in sig8_vector(0 to 7);
clk, reset : in bit;
result : out signed(15 downto 0)

);
end entity cross_product;

i8

a

0

7

a_reg

8

i8

b

0

7

b_reg

8

�
16 16

0

Result

sum

16

Figure 39

Data Path Model

X

a (signed 7:0)

b (signed 7:0)

Result (signed 15:0)Figure 38

Cross Product
Multiplier
Specification

Ch15-H6845.qxd 4/5/07 11:38 AM Page 180

The basic architecture can be set up that has the basic internal
signals defined, and the processes will be explained separately.

architecture rtl of cross_product is
signal I : unsigned (2 downto 0);
signal ai, bi : sig8;
signal product, add_in, sum, accumulator : signed (15

downto 0);
begin

control: process (clk)
begin

if clk’event and clk = ‘1’ then
if reset = ‘1’ then
i <= (others => ‘0’);

else
i <= i + 1;

end if;
end if;

end process;
a_mux: ai <= a(i);
b_mux <= bi <= b(i);
multiply: product <= ai * bi;
z_mux: add_in <= X”000” when i = 0 else

accumulator;

accumulate: process (clk)
begin

if clk’event and clk = ‘1’ then
accumulator <= sum;

end if;
end process;

output : result <= accumulator;
end;

Notice that there are two processes, one for the accumulation and
the other to handle the multiplication. One important aspect is that it
is not immediately obvious what is going on. Even in this simple
model it is difficult to extract the key behavior of the state machine.
In a complex controller it verges on the impossible unless the struc-
ture is well known and understood, which is an important lesson when
using any kind of synthesis tool using VHDL or Verilog at any level.

Now reconsider using behavioral VHDL instead. The model
uses the same packages and libraries as the RTL model, however
notice that there is no need for an explicit clock or reset.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.cross_product_types.all;

Behavioral Modeling in VHDL

181

Ch15-H6845.qxd 4/5/07 11:38 AM Page 181

entity cross_product is
port(

a,b : in sig8_vector(0 to 7);
result : out signed(15 downto 0)

);
end entity cross_product;

In this model, the architecture becomes much simpler and can be
modeled in a much more direct way than the RTL approach.

architecture behav of cross_product is
begin

process
variable sum : signed(15 downto 0);

begin
sum := to_signed(0,16);
for i in 0 to 7 loop

sum := sum + a(i) * b(i);
end loop;
result <= sum;
wait for 100 ns;

end process;

end architecture;

Notice that it is much easier to observe the functionality of the
model and also the behavior can be debugged more simply than in
the RTL model. The design is obvious, the code is readable and the
function is easily ascertained. Note that there is no explicit con-
troller, the synthesis mechanism will define the appropriate mech-
anism. Also notice that the model is defined with a single process.
The synthesis mechanism will partition the design depending on
the optimization constraints specified.

Note the wait statement. This introduces an implicit clock delay
into the system. Obviously this will depend on the clock mecha-
nism used in reality. There is also an implied reset. If an explicit
clock is required then use a wait until rising_edge (clk) or similar
approach, but retaining the behavioral nature of the model.

Consider a another useful example: a Finite Impulse Response
(FIR) filter. Ignoring the entity and declarations, how can we
model an ideal FIR filter behaviorally in VHDL?

The specification of the interface is as follows:

Input : signed (15 downto 0)
Output : signed(15 downto 0)
Coefficients : array(natural range<>) of integer...

Design Recipes for FPGAS

182

Ch15-H6845.qxd 4/5/07 11:38 AM Page 182

And the resulting VHDL code would be something like the
following:

for I in samples’right downto 1 loop
samples(I) := samples(I-1);

end loop
samples(0) := input;

sum := to_signed(0,32);
for j in 0 to samples’right loop

sum := sum + (to_signed(coeffs(j),16) *
samples(j));

end loop;

output <= sum(30 downto 15);
wait for 1 us;

This is easily parameterized, modified and clear to understand.

Summary

Behavioral VHDL is a useful technique for both initial design
ideas and also the starting point for an RTL design. It is important
to remember, however, that quite a lot of behavioral VHDL cannot
be synthesized and is therefore purely for conceptual design or use
in test benches. In order to make this a practically useful design
tool, the designer can take advantage of the ability of VHDL to
have numerous architectures and by using the same test bench val-
idate the RTL against the behavioral model to ensure correctness.

In summary, we can use behavioral modeling early with high
impact to:

• carry out fast functional simulation,

• make performance criteria/design trade-offs,

• investigate non-linear effects,

• look at implementation issues,

• carry out topology evaluation.

Behavioral Modeling in VHDL

183

Ch15-H6845.qxd 4/5/07 11:38 AM Page 183

16
Design Optimization

Introduction

The area of design optimization is where the performance of a
design can be made drastically better than an initial naïve imple-
mentation. Before discussing details of how to make the designs
optimal for the individual goals of speed, area and power, the ‘big
three’ for design optimization generally in digital design and par-
ticularly for Field Programmable Gate Arrays (FPGAs), it is
useful to discuss some principles of what happens when we syn-
thesize a function into hardware.

There are two main areas for optimization of the design when
working with VHDL for FPGAs and these are in the optimization
of the Register Transfer Level (RTL) VHDL which is leading
to an optimal description of the VHDL in terms of logic expres-
sions. The second key area is in the basic logic minimization prior
to the mapping of low-level functions to the individual technology
gates.

Techniques for logic optimization

There are two approaches to minimizing the logic in a design,
one that maintains the hierarchy and the other that flattens it.
Often a synthesis tool will allow the user to choose which option
is required. Clearly the advantage of flattening a design is that
the logic can be considered as a whole, whereas if the logic hierar-
chy is maintained, then there may be structural aspects of the
design that will be of benefit to the behavior of the circuit as a
whole.

Ch16-H6845.qxd 4/5/07 11:38 AM Page 184

Design Optimization

185

The basic approach of the logic minimization is to reduce
the logic equation set to a two level form (otherwise known as
sum-of-products). The most common approach for simple designs
is to use a Karnaugh map to show the input and output variables
graphically and then produce an output expression that can pro-
vide the same outputs but using a smaller amount of logic than the
original Boolean expressions.

For example, consider the basic 4 input Karnaugh map shown in
Figure 40.

When a logic expression is described using a logic equation,
we can select all valid outputs by circling all the required output
‘1’s and this defines the basic logic behavior. The basic technique
is to make the circles as large as possible to encompass as many
output ‘1’s with as few input variables as possible. For example,
if a basic logic equation was defined as Z � A
B
C— � A—
B
D �
A—
B
D, then the resulting Karnaugh map would be as shown in
Figure 41.

Currently, with this basic implementation this would require 3, 3
input AND gates, a 3 input OR gate and several inverters. We can

Z0

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z9

Z10

Z11

Z12

Z13

Z14

Z15

AB

CD
00 01 11 10

00

01

11

10

Figure 40

Basic 4 Input
Karnaugh Map

0

0

0

0

0

1

1

0

1

1

0

0

0

0

0

0

AB

CD
00 01 11 10

00

01

11

10

Figure 41

Specific Karnaugh
Map Example

Ch16-H6845.qxd 4/5/07 11:38 AM Page 185

Design Recipes for FPGAs

186

see from the Karnaugh map however that if we define only two of
those logic functions, that there is redundancy in the original def-
inition, and we can reduce this to the same output for two logic
combinations of the input in Figure 42.

We could therefore define this model using the simplified
expression defined as Z � A
B
C— � A—
B
D which has clearly
reduced the size of the logic by 1, 3 input AND gate and the OR
gate has reduced to a 2 input gate.

Improving performance

Consider a simple example of an addition x � a � b � c � d,
where all the variables are digital words. We could implement this
using adders taking two numbers at a time and then adding the
answer to the next input. This would give the following data flow
diagram in Figure 43.

0

0

0

0

0

1

1

0

1

1

0

0

0

0

0

0

AB

CD
00 01 11 10

00

01

11

10

Logic Expressions

Implied Function

Figure 42

Functions Identified
on Karnaugh Map

�

a b

�

c

�

d

x

Figure 43

Naïve Dataflow
Diagram for Addition

Ch16-H6845.qxd 4/5/07 11:38 AM Page 186

Design Optimization

187

This implementation requires 3 adders and takes 3 cycles to get
the answer. If we were more systematic with the same resources,
we could reduce this to two cycles by adopting a different struc-
ture shown in Figure 44.

This is a classic case of an expression tree being reduced so
that the control path can take fewer cycles, but achieving the
same data path result. We could also the visage the case where
we only use a single addition block, but use registers to store
the intermediate sums and then ‘pipeline’ the sums until we com-
plete the expression. This would potentially take the longest,
however would result in the smallest area requirement – as there
would only be the need for a single addition block (however of
course this would be a trade-off with an increased number of
registers).

Critical path analysis

Another approach to logic optimization is to analyze the critical
path through a design from a timing perspective. This is often car-
ried out automatically by the synthesis software, for example the
Synopsys Design Compiler software automatically generates a
synthesized schematic that highlights the critical path through the
design for timing and as such the designer can concentrate their
efforts on that area of the design to improve the overall throughput
in that case shown in Figure 45.

�

a b

�

x

�

c d

Figure 44

Reduced Cycle
Implementation

Ch16-H6845.qxd 4/5/07 11:38 AM Page 187

Design Recipes for FPGAs

188

Summary

This chapter has discussed some techniques for improving the per-
formance of VHDL designs on FPGAs and how they work. Much
of the actual optimization is taken care of in the synthesis soft-
ware, however it is useful to understand the processes involved so
that of a specific target is required for optimization this can be
achieved in a reasonable time in a controlled manner.

Figure 45

Critical Path Analysis

Ch16-H6845.qxd 4/5/07 11:38 AM Page 188

17
VHDL-AMS

Introduction

With the increasingly high level of system integration it is becoming
necessary to model not only electronic behavior of systems, but
also interfaces to ‘real-world’ applications and the detailed physical
behavior of elements of the system in question. The emergence of
standard languages such as VHDL-AMS has made it possible to
now describe a variety of physical systems using a single design
approach and simulate a complete system. Application areas where
this is becoming increasingly important include mixed-signal elec-
tronics, electro-magnetic interfaces, integrated thermal modeling,
electro-mechanical and mechanical systems (including micro-electro-
mechanical systems, MEMS), fluidics (including hydraulics and
micro-fluidics), power electronics with digital control and sensors
of various kinds.

In this chapter, we will show how the behavioral modeling of mul-
tiple energy domains is achieved using VHDL-AMS, demonstrating
with the use of examples how the interactions between domains
takes place, and provide an insight into design techniques for a vari-
ety of these disciplines. The basic framework is described, showing
how standard packages can define a coherent basis for a wide range
of models, and specific examples used to illustrate the practical
details of such an approach. Examples such as integrated simula-
tion of power electronics systems including electrical, magnetic and
thermal effects, mixed-domain electronics and mechanical systems
are presented to demonstrate the key concepts involved in multiple
energy domain behavioral modeling.

The basic approach for modeling devices in VHDL-AMS is to
define a model entity and architecture(s). The model entity defines

Ch17-H6845.qxd 4/5/07 11:39 AM Page 189

Design Recipes for FPGAs

190

the interface of the model to the system and includes connection
points and parameters. A number of architectures can be associated
with an entity to describe the model behavior such as a behavioral
or a physical level description. A complete model consists of a sin-
gle entity combined with a single architecture. The domain or tech-
nology type of the model is defined by the type of terminal used in
the entity declaration of the ports. The IEEE Std 1076.1.1 defines
standard types for multiple energy domains including electrical,
thermal, magnetic, mechanical and radiant systems. Within the
architecture of the model, each energy domain type has a defined
set of through and across variables (in the electrical domain these
are voltage and current, respectively) that can be used to define the
relationship between the model interface pins and the internal
behavior of the model.

In the ‘conventional’ electronics arena, the nature of the VHDL-
AMS language is designed to support ‘mixed-signal’ systems (con-
taining digital elements, analog elements and the boundary between
them) with a focus on IC design. Where the strengths of the VHDL-
AMS language have really become apparent, however, is in the
multi-disciplinary areas of mechatronic and MEMS. In this chapter,
I have highlighted several interesting examples that illustrate the
strengths of this modeling approach, with emphasis on multiple
domain simulations.

Introduction to VHDL-AMS

VHDL-AMS is a set of analog extensions to standard digital
VHDL to allow mixed-signal modeling of systems. The VHDL-
AMS language was approved as IEEE Std 1076.1 in 1999; how-
ever, it is important to note that IEEE 1076.1-1999 encompasses
the complete digital VHDL 1076 standard and is not a subset.

The standard does not specify any libraries for analog disciplines
(e.g. electrical, mechanical, etc.). This is a separate exercise and is
covered by a subset working group IEEE 1076.1.1, which was
released as an IEEE Std 1076.1.1 in 2004.

In order to put the extensions into context it is useful to show
the scope of VHDL, and then VHDL-AMS alongside it and this is
shown in Figure 46.

The key extensions for VHDL-AMS is the ability to look upward
to transfer functions (behavioural and in the Laplace domain) and
downwards to differential equations at the circuit level.

Ch17-H6845.qxd 4/5/07 11:39 AM Page 190

VHDL-AMS

191

The extensions to VHDL for VHDL-AMS can be summarized as
follows:

1. A new type of ports called TERMINALS – basically analog
pins.

2. A new type of TYPE called a NATURE that defines the rela-
tionship between analog pins and variables.

3. A new type of variable called a QUANTITY that is an ana-
log variable.

4. A new type of variable assignment that is used to define ana-
log equations that are solved simultaneously.

5. Differential equation operators for derivative (‘DOT) and
integration (‘INTEG) with respect to time.

6. IF statements for equations (IF USE).

7. Break statement to initialize the non-linear solver.

8. STEP LIMIT control for limiting the analog time step in the
solver.

Analog pins: TERMINALS

In order to define analog pins in VHDL-AMS we need to use the
TERMINAL keyword in a standard entity PORT declaration. For
example, if we have a two pins device that has two analog pins (of

Level Content

System Specification

Chip Algorithms

Register
Truth Tables
State Tables

Logic
Boolean

Equations

Circuit
Differential
Equations

System Transfer Function

V
H

D
L

V
H

D
L

-A
M

S

Figure 46

Scope of VHDL-AMS

Ch17-H6845.qxd 4/5/07 11:39 AM Page 191

Design Recipes for FPGAs

192

type electrical, more on this later), then the entity would have the
basic form as shown below:

LIBRARY IEEE;
USE IEEE.ELECTRICAL_SYSTEMS.ALL;
ENTITY model IS
GENERIC();
PORT(

TERMINAL p : electrical;
TERMINAL m : electrical
);

END ENTITY;

Notice that as the VHDL-AMS extensions are defined as an
IEEE standard, then the use of a standard library such as electrical
pins requires the use of the electrical_systems.all; packages from
the IEEE library.

Notice that the pins do not have a direction assigned as analog
pins are part of a conserved energy system and are therefore solved
simultaneously.

Mixed-domain modeling

In order to use standard models, there has to be a framework for
terminals and variables which is where the standard packages are
used. There is a complete IEEE Std (1076.1.1) which defines the
standard packages in their entirety; however, it is useful to look at a
simplified package (electrical systems in this case) to see how the
package is put together.

For example, electrical systems models need to be able to handle
several key aspects:

• Electrical connection points

• Electrical ‘through’ variables (i.e. current)

• Electrical ‘across’ variables (i.e. voltages)

The electrical systems ‘package’ needs to encompass these
elements.

First, the basic subtypes need to be defined. In ALL the analog
systems and types, the basic underlying VHDL type is always

Ch17-H6845.qxd 4/5/07 11:39 AM Page 192

VHDL-AMS

193

REAL, and so the voltage and current must be defined as subtypes
of REAL:

Subtype voltage is REAL;
Subtype current is REAL;

Notice that there is no automatic unit assignment for either, but
this is handled separately by the UNIT and SYMBOL attributes in
IEEE Std 1076.1.1. For example, for voltage the unit is defined as
‘Volt’ and the symbol is defined as ‘V’.

The remainder of the basic electrical type definition then links
these subtypes to the through and across variable of the type,
respectively:

PACKAGE electrical_system IS
SUBTYPE voltage IS real;
SUBTYPE current IS real;
NATURE electrical IS

voltage ACROSS
current THROUGH
ground REFERENCE;

END PACKAGE electrical_system;

Analog variables: quantities

Quantities are purely analog variables and can be defined in one of
three ways. Free quantities are simply analog variables that do not
have a relationship with a conserved energy system. Branch quan-
tities have a direct relationship between one or more analog termi-
nals and finally source quantities are used to define special source
functions (such as AC sources or noise sources).

For example to define a simple analog variable called x, that
is a voltage (but not related directly to an electrical connection
(TERMINAL), then the following VHDL could be used:

QUANTITY x : voltage;

On the other hand, a branch between two electrical pins has a
through variable (current) and an across variable (voltage) and this
requires a ‘branch’ quantity so that the complete description can
be solved simultaneously. For example, the complete quantity dec-
laration for the voltage (v) and current (i) of a component between
two pins (p & m) could be defined as:

QUANTITY v across i through p to m;

Ch17-H6845.qxd 4/5/07 11:39 AM Page 193

Design Recipes for FPGAs

194

Simultaneous equations in VHDL-AMS

In VHDL-AMS the equations are analog and solved simultaneously,
which is in contrast to signals that are solved concurrently using
logic techniques and variables which are evaluated sequentially.
For example in VHDL-AMS to solve an equation use the ‘��’
operator:

Y == x**2;

Where both Y and X have to be defined as real numbers (quan-
tities or other VHDL variable types).

A VHDL-AMS example

A DC voltage source

In order to illustrate some of these basic concepts consider a simple
example of a DC voltage source. This has two electrical pins p & m,
and a single parameter dc_value that is used to define the output
voltage of the source (Figure 47).

This can be modeled in VHDL-AMS in two parts, the entity and
architecture. First, consider the entity. This has two electrical pins,
so we need to use the ieee.electrical_systems.all; package and there-
fore the ports are to be declared as TERMINALS. Also the generic
de_value must be defined as a real number with the default value
also defined as a real number (e.g. 1.0):

LIBRARY IEEE;
USE IEEE.ELECTRICAL_SYSTEMS.ALL;
ENTITY v_dc IS
GENERIC(

dc_value : real := 1.0);
PORT(

TERMINAL p : electrical;
TERMINAL m : electrical
);

END ENTITY;

p

m

dc_value � 1.0v

i

Figure 47

Basic Voltage Source

Ch17-H6845.qxd 4/5/07 11:39 AM Page 194

VHDL-AMS

195

The architecture must define the quantities for voltage and cur-
rent through the source and then link those to the terminal pin
names. Also, the output equation of the source must be modeled as
an analog equation in VHDL-AMS using the ‘��’ operator to
implement the function v � dc_value:

ARCHITECTURE simple OF v_dc IS
QUANTITY v ACROSS I THROUGH p TO m;

BEGIN
v == dc_value;

END ARCHITECTURE simple;

Resistor

In the case of the resistor, the basic entity is very similar to the
voltage source with two electrical pins p & m with a single generic,
this time for the nominal resistance rnom (Figure 48).

This can be modeled in VHDL-AMS in two parts, the entity and
architecture. First consider the entity. This has two electrical pins,
so we need to use the ieee.electrical_systems.all; package and
therefore the ports are to be declared as TERMINALS. Also the
generic rnom must be defined as a real number with the default
value also defined as a real number (e.g. 1000.0):

LIBRARY IEEE;
USE IEEE.ELECTRICAL_SYSTEMS.ALL;
ENTITY resistor IS
GENERIC(

rnom : real := 1000.0);
PORT(

TERMINAL p : electrical;
TERMINAL m : electrical
);

END ENTITY;

The architecture must define the quantities for voltage and cur-
rent through the resistor and then link those to the terminal pin names.

p

m

rnom � 1000.0
v

i

Figure 48

VHDL-AMS Resistor
Symbol

Ch17-H6845.qxd 4/5/07 11:39 AM Page 195

Design Recipes for FPGAs

196

Also, the output equation of the resistor must be modeled as an
analog equation in VHDL-AMS using the ‘��’ operator to
implement the function v � I * rnom:

ARCHITECTURE simple OF resistor IS
QUANTITY v ACROSS I THROUGH p TO m;

BEGIN
v == I * rnom;

END ARCHITECTURE simple;

Differential equations in VHDL-AMS

VHDL-AMS also allows the modeling of linear differential equa-
tions using the two differential operators:

1. ‘DOT (Differentiate the variable with respect to time)

2. ‘INTEG (Integrate the variable with respect to time)

We can illustrate this by taking two examples, a capacitor and an
inductor. First, consider the basic equation of a capacitor:

Using a similar model structure as the resistor, we can define a
model entity and architecture, but what about the equation? In
VHDL-AMS, the ‘DOT operator is used on the voltage to repre-
sent the differentiation as follows:

i == c*v’DOT;

Therefore, a complete capacitor model in VHDL-AMS could be
implemented as follows:

LIBRARY IEEE;
USE IEEE.ELECTRICAL_SYSTEMS.ALL;
ENTITY capacitor IS
GENERIC(

cap : real := 1.0e-9);
PORT(

TERMINAL p : electrical;
TERMINAL m : electrical
);

END ENTITY;

i C
dV
dt

�

Ch17-H6845.qxd 4/5/07 11:39 AM Page 196

VHDL-AMS

197

ARCHITECTURE simple OF capacitor IS
QUANTITY v ACROSS I THROUGH p TO m;

BEGIN
I == cap * v’DOT;

END ARCHITECTURE simple;

What about an inductor? The basic equation for an inductor is
given below:

Obviously, the most direct way to implement this equation would
be to use the ‘INTEG operator, however care should be taken with the
integration operator.

Obviously, the initial condition must be considered and in addition
different implementations can occur across simulators. However, the
resulting implementation in its simplest form could be as follows:

LIBRARY IEEE;
USE IEEE.ELECTRICAL_SYSTEMS.ALL;
ENTITY inductor IS
GENERIC(

ind : real := 1.0e-9);
PORT(

TERMINAL p : electrical;
TERMINAL m : electrical
);

END ENTITY;

ARCHITECTURE simple OF inductor IS
QUANTITY v ACROSS I THROUGH p TO m;

BEGIN
I == (1.0/ind) * v’INTEG;

END ARCHITECTURE simple;

Mixed-signal modeling with VHDL-AMS

Most design engineers are familiar with the concepts of ‘digital’ or
‘analog’ modeling; however, a true understanding of ‘mixed-signal’
modeling is often lacking. In order to explain the term ‘mixed-signal
modeling’, it is necessary to review what we mean by analog and
digital modeling first. First, consider digital modeling techniques.

Digital systems can be modeled using digital gates or events.
This is a fast way of simulating digital systems structurally and is

i
L

v dt�
1

∫

Ch17-H6845.qxd 4/5/07 11:39 AM Page 197

Design Recipes for FPGAs

198

based on VHDL or Verilog gate level models. Digital simulation with
digital computers relies on an event-based approach, so rather than
solve differential equations, events are scheduled at certain points
in time, with discrete changes in level. The resolution of multiple
events and connections is achieved using logic methods. The digital
models are usually gates, or logic based and the resulting simulation
waveforms are of fixed, predefined levels (such as ‘0’ or ‘1’). Also,
‘instantaneous’ changes can take place, that is the state can change
from ‘0’ to ‘1’ with zero risetime.

In the analog world, in contrast, the lowest level of detail in prac-
tical electrical system design is the use of analog equation models
in an analog simulator – the benchmark of this approach is histor-
ically the SPICE simulator. In many cases the circuit is extracted
in the form of a netlist. The netlist is a list of the components in the
design, their connection points and any parameters (such as length,
width or scaling) that customize the individual devices.

Each device is modeled using non-linear differential equations
that must be solved using a Newton–Raphson type approach. This
approach can be very accurate, but is also fraught with problems
such as:

• Convergence: If the model does not converge, then the sim-
ulation will not give any meaningful result or fail altogether.

• Oscillation: If there are discontinuities, the solution may be
impossible to find.

• Time: The simulations can take hours to complete, days for
large designs with detailed device models.

In the analog domain the Newton–Raphson approach is generally
used to find a solution which relies on calculating the derivatives as
well as the function value to obtain the next solution. The basic
Newton–Raphson method for non-linear equations is defined as:

F(xn) and F�(xn) must be explicitly known and coded into the sim-
ulator (for SPICE) and this gives an approximate solution to the
exact problem. For VHDL-AMS simulators the derivatives must
be estimated using a Secant method (or similar) (Figure 49).

x x
F x
F xn n

n

n
� � �

�
1

()
()

Ch17-H6845.qxd 4/5/07 11:39 AM Page 198

VHDL-AMS

199

So given these diametrically opposed methods, how can we put
them together? What about mixed-signal systems? In these cases,
there is a mixture of continuous analog variables and digital events.
The models need to be able to represent the boundaries and transi-
tions between these different domains effectively and efficiently.
The basic mechanism to checking if an analog variable crosses a
threshold is to use the ABOVE operator in VHDL-AMS.

For example, to check if a voltage ‘vin’ is above 1.0 V, the fol-
lowing VHDL-AMS could be used:

if (vin’above(1.0)) then
flag <= true;

end if;

This can be extended to use parameters in the model – say a
threshold voltage parameter (vth) – defined previously as a generic
or constant:

if (vin’above(vth)) then
flag <= true;

end if;

Notice that flag is a signal and is therefore able to be used in the
sensitivity list to a process enabling digital behavior to be triggered
when the threshold is crossed. If the opposite condition is required,
that is BELOW the threshold, then the condition is simply inverted
using the NOT operator:

if (NOT vin’above(vth)) then
flag <= true;

end if;

The digital-to-analog interface is slightly more complex than the
analog-to-digital interface inasmuch as the output variable needs
to be controlled in the analog domain.

x

F(x)

Lo

(x0,F(x0),F �(x0))

(x1,F(x1),F �(x1))

Load line

Figure 49

Newton–Raphson
Method

Ch17-H6845.qxd 4/5/07 11:39 AM Page 199

Design Recipes for FPGAs

200

When a digital event changes (this can be easily monitored by a
sensitivity list in a process) the analog variable needs to have the
correct value and the correct rate of change. To achieve this we use
the RAMP attribute in VHDL-AMS.

Consider a simple example of a digital-logic-to-analog-voltage
interface:

• When Din � ‘1’ Vout � 5 V

• When Din � ‘0’ Vout � 0 V

This can be implemented using VHDL-AMS as follows:

process (din) :
begin

if (din = ‘1’) then
vdin = 5.0;

else
vdin = 0.0;

end if;
end process;
vout == vdin;

Clearly, there will be problems with this simplistic interface as
the transition of vout will be instantaneous – causing potential
convergence problems. The technique to solve this problem is to
introduce a RAMP on the definition of the value of vout with a
transition time to change continuously from one value to another:

vout == dvin’RAMP(tt)

Where tt (the transition time) is defined as a real number (e.g. tt :
real : � 1.0e � 9;).

An alternative to the specific transition time definition is to limit
the slew rate using the SLEW operator. The technique to solve this
problem is to introduce a slew rate definition on the definition of
the value of vout with a transition time to change continuously from
one value to another:

vout == dvin’SLEW(max_slew_rate)

Where max_slew_rate is defined as a real number (e.g.
max_slew_rate : real : � 1.0e6;).

Ch17-H6845.qxd 4/5/07 11:39 AM Page 200

VHDL-AMS

201

A basic switch model

Consider a simple digitally controlled switch that has the follow-
ing characteristics:

• Digital control input (d)

• Two electrical terminals (p & m)

• On resistance (Ron)

• Off resistance (Roff)

• Turn on time (Ton)

• Turn off time (Toff)

Using this simple outline a basic switch model can be created in
VHDL-AMS. The entity is given below:

USE ieee.electrical_system.ALL;
USE ieee.std_logic_1164.ALL;
ENTITY switch IS

GENERIC (ron : real := 0.1; — On resistance
roff : real := 1.0e6; — Off resistance
ton : real := 1.0e-6; — turn on time
toff : real := 1.0e-6); — turn off time

PORT (
d : IN std_logic;
TERMINAL p,m : electrical);

END ENTITY switch;

The basic structure of the architecture requires that the voltage
and current across the terminals of the switch be dependent on the
effective resistance of the switch (reff):

ARCHITECTURE simple OF switch IS
QUANTITY v ACROSS i THROUGH p TO m;
QUANTITY reff : real;
SIGNAL r_eff : real := roff;

BEGIN
PROCESS (d)
BEGIN

...
END;

i = v / reff;
END;

The process waits for changes on the input digital signal (d) and
schedules a signal r_eff to take the value of the effective resistance

Ch17-H6845.qxd 4/5/07 11:39 AM Page 201

Design Recipes for FPGAs

202

(ron or roff) depending on the logic value of the input signal. The
VHDL for this functionality is shown below:

PROCESS (d)
BEGIN

if (d = ‘1’) then
r_eff <= ron;

else
r_eff <= roff;

end if;
END;

When the signal r_eff changes, then this must be linked to the
analog quantity reff using the ramp function. Previously we showed
how the ramp could define a risetime, but in fact it can also define
a falltime. Implementing this in the switch model architecture we
get the following VHDL-AMS:

reff == r_eff’RAMP (ton, toff);
i == v / reff;

The complete VHDL-AMS model for the switch is given below:

ARCHITECTURE simple OF switch IS
QUANTITY v ACROSS i THROUGH p TO m;
QUANTITY reff : real;
SIGNAL r_eff : real := roff;

BEGIN
PROCESS (d)

BEGIN
if (d = ‘1’) then

r_eff <= ron;
else

r_eff <= roff;
end if;

END PROCESS;

reff == r_eff’RAMP (ton, toff);
i == v / reff;

END;

Basic VHDL-AMS comparator model

Consider a simple comparator that has two electrical inputs (p &
m), an electrical ground (gnd) and a digital output (d). The com-
parator has a digital output of ‘1’ when p is greater than m and ‘0’
otherwise (Figure 50).

Ch17-H6845.qxd 4/5/07 11:39 AM Page 202

VHDL-AMS

203

The entity defines the terminals (p, m, gnd), digital output (d),
input hysteresis (hys) and the propagation delay (td):

USE ieee.electrical_system.ALL;
USE ieee.std_logic_1164.ALL;
ENTITY comparator IS

GENERIC (
td : time := 10 ns;
hys : real := 1.0e-6);

PORT (
d : OUT std_logic := ‘0’;
TERMINAL p,m,gnd : electrical);
END ENTITY comparator;

The first step in the architecture is to define the input voltage
and basic process structure:

architecture simple of comparator is
quantity vin across p to m;
begin
p1 : process

constant vh : real := ABS(hys)/2.0;
constant vl : real := -ABS(hys)/2.0;

begin
...
wait on vin’above(vh), vin’above(vl);

end process;
end architecture simple;

The quantity vin is defined as the voltage across the input pins p
and m:

quantity vin across p to m;

Notice that no current is defined, assumed to be zero, so there is
no input current to the comparator. Also notice that there is no
input voltage offset defined – this could be added as a refinement
to the model later. The process defines the upper and lower thresh-
olds (vh and vl) based on the hysteresis:

constant vh : real := ABS(hys)/2.0;
constant vl : real := -ABS(hys)/2.0;

p

m

gnd

d

Figure 50

Comparator

Ch17-H6845.qxd 4/5/07 11:39 AM Page 203

Design Recipes for FPGAs

204

The process then defines a wait statement checking vin for
crossing either of those threshold values:

wait on vin’above(vh), vin’above(vl);

The final part of the process is to add the digital output logic
state dependent on the threshold status of vin:

if vin’above(vh) then
d <= ‘1’ after td;

elsif not vin’above(vl) then
d <= ‘0’ after td;

end if;

The output state (d) is then scheduled after the delay time defined
by td.

The completed architecture is shown below:

architecture simple of comparator is
quantity vin across p to m;
begin
p1 : process

constant vh : real := ABS(hys)/2.0;
constant vl : real := -ABS(hys)/2.0;

begin
if vin’above(vh) then

d <= ‘1’ after td;
elsif not vin’above(vl) then

d <= ‘0’ after td;
end if;
wait on vin’above(vh), vin’above(vl);

end process;
end architecture simple;

Multiple domain modeling

A final significant application area for VHDL-AMS has been the
modeling of electro-mechanical systems, particularly micro-
machines (or MEMS). Exactly the same principles are used for
these devices, with the mechanical domain models defined as
required for the mechanical equations. It is worth noting that the
mechanical models are divided into rotational (angular velocity
and torque) and translational (force and distance) types. A typical
simple example of a mixed-domain system is a motor, in this case
a simple DC motor. Taking the standard motor equations as shown
below, it can be seen that the parameter ke links the rotor speed to

Ch17-H6845.qxd 4/5/07 11:39 AM Page 204

VHDL-AMS

205

the electrical domain (back emf) and the parameter kt links the cur-
rent to the torque:

This is implemented using the VHDL-AMS model shown below:

Library ieee;
use ieee.electrical_systems.all;
use ieee.mechanical_systems.all;

entity dc_motor is
generic (kt : real;

j : real;
r : real;
ke : real;
d : real;
l : real);

port (terminal p, m : electrical;
terminal rotor : rotational_v);

end entity dc_motor;

architecture behav of dc_motor is
quantity w across t through rotor

to rotational_v_ref;
quantity v across i through p to m;

begin
v == l*i’DOT + i*r + ke*w;
t == i*kt - j*w’DOT - d*w;

end architecture behav;

Summary

It has become crucial for effective design of integrated systems,
whether on a macro- or microscopic scale, to accurately predict
the behavior of such systems prior to manufacture. Whether it is
ensuring that sensors or actuators operate correctly, or integrated
components such as magnetics also operate correctly, or analyzing
the effect of parasitics and non-ideal effects such as temperature,
losses and non-linearities, the requirement for multiple domain
modeling has never been greater.

Now languages such as VHDL-AMS offer an effective and effi-
cient route for engineers to describe these systems and effects,

V L
di
dt

iR Ke

T Kti J
d
dt

D

� � � �

� �
�

� �

Ch17-H6845.qxd 4/5/07 11:39 AM Page 205

with the added benefit of standardization leading to interoperability
and model exchange. The challenge for the EDA industry is to pro-
vide adequate simulation and particularly modeling tools to sup-
port engineering design.

The opportunity for Field Programmable Gate Array (FPGA)
designers is to take advantage of this huge advance in modeling
technology and use it to make sure that digital controllers and
designs can operate effectively and robustly in real-world
applications.

206

Design Recipes for FPGAs

Ch17-H6845.qxd 4/5/07 11:39 AM Page 206

18
Design Optimization Example: DES

Introduction

Elsewhere in this book the basics of design optimization are
discussed, but in general these are at a Register Transfer Level
(RTL) level. The use of behavioral modeling has also been
described, but in general the use of behavioral synthesis is still
rarely used. In this chapter, the use of behavioral synthesis is
investigated as an alternative to create optimal designs rather than
using an RTL approach.

This chapter describes the experience of designing a Data
Encryption Standard (DES) core in Electronic Code Book (ECB)
mode using the MOODS behavioral synthesis system. The main
objective was to write a high-level language description that was
both readable and synthesizable. The secondary objective was to
explore the area/delay design space of both single and triple DES.
The designs were simulated using both the pre-synthesis (behav-
ioral) and post-synthesis (RTL) VHDL, verifying that the outputs
were not only the same, but also were the expected outputs
defined in the test set.

The DES

The DES, usually referred to by the acronym DES, is a well-
established encryption algorithm which was first standardized by
the National Institute of Standards and Technology (NIST) in the
1980s. It is described in detail later in this book in the chapter on
secure systems, so only the basic information about the algorithm
is presented here.

Ch18-H6845.qxd 4/5/07 11:39 AM Page 207

Design Recipes for FPGAs

208

While DES has largely been superceded by AES (Advanced
Encryption Algorithm), it is now common to find the algorithm
being used in triplicate – an algorithm known as triple DES or
TDES for short. This algorithm uses the same DES core, but uses
three passes with different keys. DES was designed to be small
and fast, and the algorithm is mainly based on shuffling and sub-
stitution – there is very little computation involved – which makes
it ideal for hardware implementation.

Moods

MOODS (Multiple Objective Optimization in Control and
Datapath Synthesis) is a high-level behavioral synthesis suite
developed at the University of Southampton. It takes as input
behavioral VHDL and transforms this into structural VHDL that
is behaviorally equivalent. MOODS uses optimization and design
space exploration to obtain suitable RTL designs to meet designer’s
constraints and requirements.

The optimizer converts the behavioral VHDL into a form that
can be described using a simple Dataflow Graph (DFG) which
allows the control flow to be optimized. This is effectively a state
machine that can be easily converted into RTL VHDL. The opti-
mization of this with respect to area can be achieved by sharing
data units (such as registers) using multiplexing and with respect
to delay by combining data units to reduce the number of clock
cycles required.

Initial design

Introduction

The overall structure of the DES algorithm is shown in Figure 51.

The core algorithm is repeated 16 times with a different subkey
for each round. These subkeys are 48 bits long and are generated
from the original 56-bit key. The algorithm was converted directly
to VHDL using a functional decomposition style (i.e. functions
were created to represent each equivalent function in DES).

Overall structure

The first stage in this design was to create an entity and an archi-
tecture with the required inputs and outputs and a single process

Ch18-H6845.qxd 4/5/07 11:39 AM Page 208

Design Optimization Example: DES

209

containing the overall algorithm. This resulted in the VHDL out-
line below:

library ieee;
use ieee.std_logic_1164.all;
entity DES is
port (

plaintext : in std_logic_vector(1 to 64);
key : in std_logic_vector(1 to 64);
encrypt : in std_logic;
go : in std_logic;
ciphertext : out std_logic_vector(1 to 64);
done : out std_logic

);
end;

architecture behavior of DES is
subtype vec56 is std_logic_vector(1 to 56);
...
subtype vec64 is std_logic_vector(1 to 64);

begin
process
begin

wait until go = ‘1’;
done <= ‘0’;
wait for 0 ns;
ciphertext <=
des_core(plaintext, key_reduce(key), encrypt);

done <= ‘1’;
end process;

end;

This process is a direct implementation of the main DES routine.
The only implementation specific feature is that the model waits

P (64 bits)

IP

64 bits

Initial Permutation

L0 (32)

32 bits

R0 (32)

32 bits

f
48

K0

32 bits

32 bits

L1 (32) R1 (32)

IP�1 Final Permutation

C (64 bits)
64 bits

R
ep

ea
te

d
16

 ti
m

es

Figure 51

Overall Structure
of the DES Algorithm

Ch18-H6845.qxd 4/5/07 11:39 AM Page 209

Design Recipes for FPGAs

210

for the signal go to be raised before starting processing and it
raises the signal done at the end of processing, implementing a
basic handshaking protocol.

This algorithm requires the two functions: key_reduce and
des_core. The former strips the parity bits from the key and the lat-
ter then implements the whole DES algorithm. The key_reduce
function reduces the key from 64 to 56 bits and permutes the bits
to form the initial state of the subkey:

function key_reduce(key : in vec64) return vec56 is
--moods inline
begin

return
key(57) & key(49) & key(41) & key(33) &
...
key(28) & key(20) & key(12) & key(4);

end;

The compiler directive --moods inline causes the synthesizer to
inline the function. This allows the optimizer more scope for opti-
mization of the circuit. The des_core function applies the basic
DES algorithm 16 times on a slice of the data using a different
subkey on each iteration:

function des_core
--moods inline
(plaintext : vec64;
key : vec56;
encrypt : std_logic)

return vec64
is

variable data : vec64;
variable working_key : vec56 := key;

begin
data := initial_permutation(plaintext);
for round in 0 to 15 loop

working_key :=
key_rotate(working_key,round,encrypt);

data := data(33 to 64) &
(f(data(33 to 64),key_compress(working_key))

xor
data(1 to 32));

end loop;
return

final_permutation(data(33 to 64) & data(1 to 32));
end;

The DES algorithm is made up of the key transformation func-
tions key_rotate and key_compress, and the data transformation
functions initial_permutation, f and final_permutation.

Ch18-H6845.qxd 4/5/07 11:39 AM Page 210

Design Optimization Example: DES

211

Data transformations

The data transformations initial_permutation and final_permu-
tation are simply hard-wired bit-swapping routines implemented
using concatenation:

function initial_permutation(data : vec64) return vec64 is
--moods inline

begin
return
data(58) & data(50) & data(42) & data(34) &
...
data(31) & data(23) & data(15) & data(7);

end;

function final_permutation(data : in vec64) return vec64 is
--moods inline

begin
return
data(40) & data(8) & data(48) & data(16) &
...
data(49) & data(17) & data(57) & data(25);

end;

The f function is the main data transform which is applied 16
times to the rightmost half, a 32-bit slice, of the data path. It takes
as its second argument a 48-bit subkey generated by the key_com-
press function:

function f(data : vec32; subkey : vec48) return vec32 is
--moods inline

begin
return permute(substitute(expand(data) xor
subkey));

end;

The function first takes the 32-bit slice of the data path and
expands it into 48 bits using the expand function. The expand
function is again just a rearrangement of bits, input bits are repli-
cated in a special pattern to expand the 32-bit input to the 48-bit
output:

function expand(data : vec32) return vec48 is
--moods inline

begin
return
data(32) & data(1) & data(2) &
...
data(31) & data(32) & data(1);

end;

Ch18-H6845.qxd 4/5/07 11:39 AM Page 211

This expanded word is then exclusive-ored with the subkey and
fed into a substitute block. This substitutes a different 4-bit pattern
for each 6-bit slice of the input pattern (remember that the original
input has been expanded from 32 to 48 bits, so there are eight sub-
stitutions in all). The substitution also has the effect of reducing
the output back to 32 bits again. The substitute algorithm first
splits the input 48 bits into eight 6-bit slices. Each slice is then
used to look up a substitution pattern for that 6-bit input. This
structure is known as the S-block. In the initial implementation, a
single Read Only Memory (ROM) is used to store all the substitu-
tion patterns. The substitution combines a block index with the
input data to form an address which is then used to look up the
substitution value in the S-block ROM. This address calculation is
encapsulated in the smap function:

function smap(index : vec3; data : vec6) return vec4 is
--moods inline
type S_block_type is
array(0 to 511) of natural range 0 to 15;

constant S_block : S_block_type :=
--moods ROM

(
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
...
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
);

begin
return
vec4(to_unsigned(S_block(to_integer(unsigned(

index & data(1) & data(6) & data(2 to 5)))), 4));
end;

The eight substitutions are carried out by the eight calls to smap
in the substitute function:

function substitute(data : vec48) return vec32 is
--moods inline

begin
return

smap(“000”,data(1 to 6)) &
...
smap(“111”,data(43 to 48));

end;

The final stage of the data path transform is the permute func-
tion which is another bit-swapping routine:

function permute (data : in vec32) return vec32 is
--moods inline

Design Recipes for FPGAs

212

Ch18-H6845.qxd 4/5/07 11:39 AM Page 212

begin
return

data(16) & data(7) & data(20) & data(21) &
...
data(22) & data(11) & data(4) & data(25);

end;

These functions define the whole of the data path part of the
algorithm.

Key transformations

The encryption key also needs to be transformed a number of
times – specifically, before each data transformation, the key is
rotated and then a smaller subkey is extracted by selecting 48 of
the 56 bits of the key. The rotation is the most complicated part of
the key transformation. The 56-bit key is split into two halves and
each half rotated by 0, 1 or 2 bits depending on which round of the
DES algorithm is being implemented. The direction of the rotation
is to the left during encryption and to the right during decryption.
The algorithm is split into two functions: do_rotate which, as the
name suggests, does the rotation and key_rotate which calls
do_rotate twice, once for each half of the key. The do_rotate
function uses a ROM to store the rotate distances for each round,
numbered from 0 to 15:

function do_rotate
--moods inline
(key : in vec28;
round : natural range 0 to 15;
encrypt : std_logic)

return vec28 is
type distance_type is
array (natural range 0 to 15) of integer range 0 to 2;
constant encrypt_shift_distance : distance_type :=
--moods ROM
(1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1);
constant decrypt_shift_distance : distance_type :=
--moods ROM
(0, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1);
variable result : vec28;

begin
if encrypt = ‘1’ then
result :=
vec28(unsigned(key) rol
encrypt_shift_distance(round));
else
result :=
vec28(unsigned(key) ror

Design Optimization Example: DES

213

Ch18-H6845.qxd 4/5/07 11:39 AM Page 213

Design Recipes for FPGAs

214

decrypt_shift_distance(round));
end if;
return result;

end;

The key_rotate function simply calls the above function twice:

function key_rotate
--moods inline
(key : in vec56;
round : natural range 0 to 15;
encrypt : std_logic)
return vec56 is

begin
return do_rotate(key(1 to 28),round,encrypt) &
do_rotate(key(29 to 56),round,encrypt);

end;

Finally, the key compression function key_compress selects 48
of the 56 bits to pass to the S-block algorithm:

function key_compress(key : in vec56) return vec48 is
--moods inline

begin
return
key(14) & key(17) & key(11) & key(24) &
...
key(50) & key(36) & key(29) & key(32);
end;

Initial synthesis

The design was synthesized by MOODS with delay prioritized
first and area prioritized second. The target technology was the
Xilinx Virtex library. Figure 52 shows the control state machine of
the synthesized design. The whole state sequence represents the
process, which is a loop as shown by the state transition from the
last state (c11) back to the first (c1).

The first two states c1 and c2 implement the input handshake on
signal go to trigger the process. The DES core is implemented by
the remaining states, namely states c3 to c11, which are in the
main loop as shown by the state transition back from c11 to c3, so
are executed 16 times. There are nine states in this inner loop, giv-
ing a total algorithm length of 146 cycles including the two states
required for the input handshake and 144 for the DES core itself.
However, an inspection of the original structure shown in Figure
51 suggests that a reasonable target for the inner loop is two cycles

Ch18-H6845.qxd 4/5/07 11:39 AM Page 214

Design Optimization Example: DES

215

per round with an optimistic target of one cycle. Clearly, there is a
problem with this design. MOODS predicts that this design has
the area and delay characteristics shown in the first table in this
chapter in the line labeled (1).

Optimizing the data path

Examining the nine control states in the main loop and relating
these to the mapping of the control graph to the DFG showed that
the last eight cycles were performing the S-block and the first two
cycles were mainly related to transforming the key. The second
state is an overlap state where both key and data transforms are
taking place. The problem with the last eight cycles was fairly self-
evident since there are eight substitutions and there are eight con-
trol states to perform them. Clearly, there was something causing
each substitution to be locked into a separate control state and
therefore preventing optimization with respect to latency. It wasn’t
difficult to see what – each of these states contained just register
assignments, concatenations and a ROM read operation. It is the
last of these that is the problem – the ROM implementation being
targeted is a synchronous circuit, so the S-block ROM can only be
accessed once per clock cycle – in other words once per control
state. It is this that is preventing the data path operations from
being performed in parallel.

Attacking this problem is beyond the capabilities of behavioral
synthesis because it requires knowledge of the dataflow at a much

Figure 52

Control State Machine
for Initial Synthesis

Ch18-H6845.qxd 4/5/07 11:39 AM Page 215

Design Recipes for FPGAs

216

higher level than can be automatically extracted. The solution
therefore requires modification of the original design.

There are two obvious solutions to this problem – either split the
S-block into eight smaller ROMs that can therefore be accessed in
parallel or make the S-block a non-ROM so that the array gets
expanded into a decoder block once for each access, giving eight
decoders. The latter solution appears simplest, but it will result in
eight 512-way decoders, which will be a very large implementa-
tion. The solution of splitting the ROMs is more likely to yield a
useful solution. The substitute function was rewritten to have eight
mini-ROMs:

function substitute(data : vec48) return vec32 is
--moods inline
type S_block_type is
array(0 to 63) of natural range 0 to 15;

constant S_block0 : S_block_type := (...);
--moods ROM
...
constant S_block7 : S_block_type := (...);
--moods ROM

begin
return std_logic_vector(to_unsigned(S_block0(to_integer(
unsigned(data(1) & data(6) & data(2 to 5)))),4)) &
...
std_logic_vector(to_unsigned(S_block7(to_integer(
unsigned(data(43) & data(48) & data(44 to 47)))),4));

end;

This was resynthesized and resulted in the control graph shown
in Figure 53. The inner loop was found to have been reduced to
two states, and examination of the last state confirmed that all of
the S-block substitutions were being carried out in the one state

Figure 53

Control State
Machine for
Optimized S-blocks

Ch18-H6845.qxd 4/5/07 11:39 AM Page 216

Design Optimization Example: DES

217

c4. The key transformations were still split across the two inner
states c3 and c4.

One interesting side effect of this optimization is that it is also a
smaller design. MOODS predicts that this design has the area and
delay characteristics shown in the table (section Results) in the
line labeled (2).

Optimizing the key transformations

Examination of the two control states in the main loop, which both
contain key transformations, showed that both of these states were
performing ROM access and rotate operations. Examination of the
original key_rotate function showed that the shift distance ROMs
are accessed twice per call, so this turned out to be exactly the
same problem as with the S-block ROM. Since ROMs are syn-
chronous, they can only be accessed once per cycle and this forces
at least two cycles to be used for the rotate. To solve this, the func-
tion can be rewritten to only access the ROMs once per call:

if encrypt = ‘1’ then
distance := encrypt_shift_distance(round);
result :=

vec28(unsigned(key(1 to 28)) rol distance) &
vec28(unsigned(key(29 to 56)) rol distance);

else
distance := decrypt_shift_distance(round);
result :=

vec28(unsigned(key(1 to 28)) ror distance) &
vec28(unsigned(key(29 to 56)) ror distance);

end if;

This was resynthesized and resulted in the control graph shown
in Figure 54. The inner loop was found to have been reduced to
one state (c3) containing both the key and data transformations

Figure 54

Control State Machine
for Optimized Key
Rotate

Ch18-H6845.qxd 4/5/07 11:39 AM Page 217

Design Recipes for FPGAs

218

which are repeated 16 times. As before, states c1 and c2 imple-
ment the input handshake.

So, this optimization means that the target of 1 clock cycle per
round of the core was achieved. MOODS predicts that this design
has the area and delay characteristics shown in the table (section
Results) in the line labeled (3).

Final optimization

It was recognized that the key_rotate function could be simplified
by rethinking the rotate algorithm such that a right rotate of 1 bit
was replaced by a left rotate of 27 bits (for a 28-bit word). This
eliminates a conditional statement, which it was felt could be pre-
venting some optimizations from taking place. This means that
there was no need to have a different algorithm for encryption and
decryption. This led to the following rework:

function key_rotate
--moods inline
(key : vec56;
round : natural range 0 to 15;
encrypt : std_logic)

return vec56 is
type distance_type is
array (natural range 0 to 31) of integer range
0 to 31;

constant shift_distance : distance_type :=
--moods ROM
(0, 1, 2, 2, 2, 2, 2, 2,
1, 2, 2, 2, 2, 2, 2, 1,
27, 27, 26, 26, 26, 26, 26, 26,
27, 26, 26, 26, 26, 26, 26, 27);
variable distance : natural range 0 to 31;

begin
distance := shift_distance(to_integer(unsigned(

encrypt & to_unsigned(round,4))));
return vec28(unsigned(key(1 to 28)) ror distance) &

vec28(unsigned(key(29 to 56)) ror distance);
end;

The state machine for this design was basically the same as for the
previous design as shown in Figure 54. It was found that this version
was slightly slower than the previous design but significantly smaller.

MOODS predicts that this design has the area and delay charac-
teristics shown in the table (section Results) in the line labeled (4).

Ch18-H6845.qxd 4/5/07 11:39 AM Page 218

Design Optimization Example: DES

219

Results

The results predicted by MOODS for all the variations of the
design discussed so far are summarized in the table below:

Figure 55

Area vs. Throughput
for All DES Designs

Physical Metrics for Single DES Designs

Design Area Latency Clock Throughput
(slices) (cycles) (ns) (MB/s)

(1) Initial Design 552 146 7.8 7.12

(2) Optimized 426 34 7.1 35.2
S-Blocks

(3) Optimized Key 489 18 7.1 62.6

(4) Optimized 307 18 8.4 52.9
Branch

It can be seen that design (3) is the fastest, but design (4) is the
smallest. Figure 55 plots area vs. throughput for these 4 designs.
The X-axis represents the area of the design and the Y-axis the
throughput.

Triple DES

Introduction

Building on this, the DES core developed above was used as the
core for a triple DES implementation.

Ch18-H6845.qxd 4/5/07 11:39 AM Page 219

Design Recipes for FPGAs

220

The idea of triple DES is that data is encrypted 3 times. The
rationale for choosing three iterations and the advantages and the
disadvantages of this are explained by Scheier in Applied Crypto-
graphy. A common form of triple DES is known as EDE2, which
means data is encrypted, decrypted and then encrypted again using
two different keys. The first key is used for both encryptions and
the second key for the decryption. There are obviously a number of
different trade-offs that can be made in this design. Each of these is
examined in the following sections. In all cases, the smallest imple-
mentation (design (4)) was used as the DES core.

Minimum area: iterative

To achieve a minimum area implementation, a single DES core is
used for all three stages. The data is passed through this core 3
times with the different permutations of keys and encryption
mode to achieve the EDE2 algorithm. Two different styles of
VHDL were tried. These differed in the method used to select the
different inputs for each encryption step. The first style used a
case statement and the second style used indexed arrays. The case
statement style results in the following VHDL design:

library ieee;
use ieee.std_logic_1164.all;
entity tdes_ede2_iterative is

port(
plaintext : in std_logic_vector(1 to 64);
key1 : in std_logic_vector(1 to 64);
key2 : in std_logic_vector(1 to 64);
encrypt : in std_logic;
go : in std_logic;
ciphertext : out std_logic_vector(1 to 64);
done : out std_logic);

end;
architecture behavior of tdes_ede2_iterative is

...
begin

process
variable data : vec64;
variable key : vec56;
variable mode : std_logic;

begin
wait until go = ‘1’;
done <= ‘0’;
wait for 0 ns;
data := plaintext;

for i in 0 to 2 loop
case i is

Ch18-H6845.qxd 4/5/07 11:39 AM Page 220

Design Optimization Example: DES

221

when 1=>
key := key_reduce(key2);
mode := not encrypt;

when others =>
key := key_reduce(key1);
mode := encrypt;

end case;
data := des_core(data,key,mode);

end loop;
ciphertext <= data;
done <= ‘1’;

end process;
end;

It can be seen that this uses a case statement to select the appro-
priate key and encryption mode for each iteration. The character-
istics of the case statement solution are shown in the table (section
Comparing the Approaches) in the line labeled (5).

The core DES algorithm accounts for 48 cycles (3 iterations of
16 rounds with 1 cycle per round), leaving an additional overhead
of 3 cycles. This additional 3 cycles is due to the case statement
selection of the key which adds an extra cycle per iteration of the
core. The second style uses arrays to store the keys and modes and
then indexes these arrays to set the key and mode for each itera-
tion. The process becomes:

process
...
type keys_type is array (0 to 2) of vec56;
variable keys : keys_type;
type modes_type is array (0 to 2) of std_logic;
variable modes : modes_type;

begin
...
modes := (encrypt, not encrypt, encrypt);
keys := (key_reduce(key1),
key_reduce(key2),
key_reduce(key1));

for i in 0 to 2 loop
data := des_core(data,keys(i),modes(i));

end loop;
...

It was found that the latency was the same as the case statement
solution but the area was approximately 25 per cent larger. This
overhead is mostly due to the use of the register arrays which add
up to about 200 extra flip-flops. Clearly the case statement design
is the most efficient of the two and so this solution was kept and
the array style solution discarded.

Ch18-H6845.qxd 4/5/07 11:39 AM Page 221

Design Recipes for FPGAs

222

Minimum latency: pipelined

To achieve minimum latency between samples, three DES cores
are used to form a pipeline. Data samples can then be fed into the
pipeline every 18 cycles (the latency of the single core), although
the time taken for a result to be generated is 50 cycles because of
the pipeline length. The circuit is simply three copies of the single
DES process:

architecture behavior of tdes_ede2_pipe is
...
signal intermediate1, intermediate2 : vec64;

begin
process
begin
wait until go = ‘1’;
intermediate1 <=
des_core(plaintext,key_reduce(key1),encrypt);

end process;
process
begin
wait until go = ‘1’;
intermediate2 <=
des_core(intermediate1,key_reduce(key2),not
encrypt);

end process;
process
begin
wait until go = ‘1’;
done <= ‘0’;
wait for 0 ns;
ciphertext <=

des_core(intermediate2,key_reduce(key1),
encrypt);

done <= ‘1’;
end process;

end;

Note how the done output is driven only by one of the cores – this
will give the right result provided all three cores synthesize to the
same delay, which in practice they will. This design decision alle-
viates the need to have handshaking between the cores. MOODS
predicts that this design has the area and delay characteristics
shown in the table (section Comparing the Approaches) in the line
labeled (6). The state machine in Figure 56 shows the three inde-
pendent processes. For example, the first process is represented by
states c2, c3 and c4. The first two states perform the handshaking
on go and c4 implements the DES core with its 16 iterations. State
c7 is the second DES core and c10 the third.

Ch18-H6845.qxd 4/5/07 11:39 AM Page 222

Design Optimization Example: DES

223

Comparing the approaches

The physical metrics of the previous section are the predicted val-
ues given by MOODS. To get a more accurate assessment of the

Figure 56

Control State
Machine for Pipelined
Triple DES

Design Tool Area Latency Clock Throughput
(slices) (cycles) (ns) (MB/s)

DES MOODS 307 18 8.4 52.9
Leonardo 258 13.4 33.2
Foundation 274 18.4 24.2

Iterative MOODS 500 53 8.4 18.0
TDES Leonardo 381 13.7 11.0

Foundation 422 17.8 8.5

Pipelined MOODS 920 18 8.4 52.9
TIDES Leonardo 774 13.7 32.4

Foundation 826 18.4 24.2

design, RTL synthesis of the structural VHDL output of MOODS
is required. This was carried out using Mentor Graphics’ Leonardo
Spectrum RTL synthesis suite. These results can be finessed fur-
ther by carrying out placement and routing using the Xilinx
Integrated Software Environment (ISE) Foundation suite. The
results predicted by all three tools (MOODS, Leonardo and
Foundation) for the three approaches (DES, Iterative TDES and
Pipelined TDES) are shown in the table below. In all cases, the
design was optimized during RTL synthesis using the vendor’s
default optimization settings – a combination of area and delay
optimization – with maximum optimization effort. Placement and

Ch18-H6845.qxd 4/5/07 11:39 AM Page 223

routing was performed with an unreachable clock period to force
Foundation to produce the fastest design.

This shows that MOODS tends to overestimate the area of the
design and underestimate the delay. Both of these are expected
outcomes. The tendency to overestimate area is because it isn’t
possible to predict the effect of logic minimization when working
at the behavioral level. The tendency to underestimate delay is
because it isn’t possible to predict routing delays.

Summary

This chapter has shown that it is possible to design complex algo-
rithms such as DES using the abstraction of high-level VHDL and
get a synthesizable design. However, the synthesis process is not
and cannot ever be fully automated – human guidance is still nec-
essary to optimize the design’s structure to get the best from the
synthesis tools. Nevertheless the modifications are high-level
design decisions and the final design is still readable and abstract.
There has been no need to descend to low-level VHDL to imple-
ment DES. The implementations of triple DES show how VHDL
code can easily be reused when written at this level of abstraction.
It is quite an achievement to implement the DES and two imple-
mentations of the triple DES algorithm in 4 working days includ-
ing testing and this demonstrates the kind of productivity that
result from the application of behavioral synthesis tools.

224

Design Recipes for FPGAs

Ch18-H6845.qxd 4/5/07 11:39 AM Page 224

Part 5
Fundamental Techniques

In this fifth part of the book, the aim is to present a collection of
standard functions in VHDL that are quite basic. This is directed
to those who perhaps are new to VHDL and need even simple
functions to be provided for them in VHDL. This part of the book
describes standard techniques for implementing registers, coun-
ters, decoders, multiplexers, latches and flip flops, and also covers
background information such as fixed point arithmetic operations,
binary multiplication, finite state machines, serial to parallel and
parallel to serial conversion and ALU functions.

The VHDL provided is ‘examplar’ in that clarity and simplicity
were preferred over efficiency, speed or area and as such a practi-
cal implementation will require optimisation and further design.
The VHDL is designed to enable a designer to understand how
these operation work and to implement their own functions in the
light of that knowledge.

Ch19-H6845.qxd 4/5/07 11:40 AM Page 225

This page intentionally left blank

19
Counters

Introduction

One of the most commonly used applications of flip-flops in prac-
tical systems is counters. They are used in microprocessors to count
the program instructions (program counter or PC), for accessing
sequential addresses in memory (such as ROM) or for checking
progress of a test. Counters can start at any value, although most
often they start at zero and they can increment or decrement.
Counters may also change values by more than one at a time, or in
different sequences (such as gray code, binary or Binary Coded
Decimal (BCD) counters).

Basic binary counter

The simplest counter to implement in many cases is the basic
binary counter. The basic structure of a counter is a series of flip-
flops (a register), that is controlled by a reset (to reset the counter
to zero literally) and a clock signal used to increment the counter.
The final signal is the counter output, the size of which is deter-
mined by the generic parameter n, which defines the size of the
counter. The symbol for the counter is given in Figure 57. Notice
that the reset is active low and the counter and reset inputs are
given in a separate block of the symbol as defined in the IEEE
standard format.

From an Field Programmable Gate Array (FPGA) implementa-
tion point of view, the value of generic n also defines the number
of D type flip-flops required (usually a single LUT) and hence the

Ch19-H6845.qxd 4/5/07 11:40 AM Page 227

usage of the resources in the FPGA. A simple implementation of
such a counter is given below:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity counter is
generic (

n : integer := 4);
port (

clk : in std_logic;
rst : in std_logic;
output : out std_logic_vector((n-1) downto 0)

);
end;

architecture simple of counter is
begin
process(clk, rst)
variable count : unsigned((n-1) downto 0);
begin
if rst= '0' then
count := (others => '0');

elsif rising_edge(clk) then
count := count + 1;

end if;
output <= std_logic_vector(count);
end process;

end;

The important aspect of this approach to the counter VHDL is
that this is effectively a state machine, however we do not have to
explicitly define the next state logic – this will be taken care of by
the synthesis software. This counter can now be tested using a sim-
ple test bench that resets the counter and then clocks the state

Design Recipes For FPGAS

228

3

2

1

0

rst

clk

Output

Figure 57

Simple Binary
Counter

Ch19-H6845.qxd 4/5/07 11:40 AM Page 228

machine until the counter flips round to the next counter round.
The test bench is given below:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity CounterTest is
end CounterTest;

architecture stimulus of CounterTest is
signal rst : std_logic := '0';
signal clk : std_logic := '0';
signal count : std_logic_vector (3 downto 0);

component counter
port(

clk : in std_logic;
rst : in std_logic;
output : out std_logic_vector(3 downto 0)

);
end component;
for all : counter use entity work.counter ;

begin
CUT: counter port map(clk=>clk,rst=>rst,

output=>count);
clk <= not clk after 1 us;
process
begin
rst <= '0','1' after 2.5 us;
wait;
end process;

end;

Using this simple VHDL testbench, we reset the counter until
2.5 us and then the counter will count on the rising edge of the
clock after 2 us (i.e. the counter is running at 500 kHz).

If we dissect this model, there are several interesting features to
notice. The first is that we need to define an internal variable count
rather than simply increment the output variable q. The output vari-
able q has been defined as a standard logic vector (std_logic_vector)
and with it being defined as an output we cannot use it as the input
variable to an equation. Therefore we need to define a local variable
(in this case count) to store the current value of the counter.

The initial decision to make is should we use a variable or a sig-
nal? In this case, we need an internal variable that we can effectively

Counters

229

Ch19-H6845.qxd 4/5/07 11:40 AM Page 229

treat as a sequential signal, and also one that changes instanta-
neously, which immediately requires the use of a variable. If we
chose a signal, then the changes would only take place when the
cycle is resolved (i.e. the next time the process is activated).

The second decision is what type of unit should the count variable
be? The output variable is a std_logic_vector type which has the
advantage of being an array of std_logic signals, and so we don’t
need to specify the individual bits on a word, this is done automati-
cally. The major disadvantage, however, is that the std_logic_vector
does not support simple arithmetic operations, such as addition,
directly. In this example, we want the counter to have a simple defi-
nition in VHDL and so the best compromise type that has the bit-
wise definition and also the arithmetic functionality would be the
unsigned or signed type. In this case, we wish to have a direct map-
ping between the std_logic_vector bits and the counter bits, so the
unsigned type is appropriate. Thus the declaration of the internal
counter variable count is as follows:

variable count : unsigned((n-1) downto 0);

The final stage of the model is to assign the internal value of the
count variable to the external std_logic_vector q. Luckily, the
translation from unsigned to std_logic_vector is fairly direct,
using the standard casting technique:

q <= std_logic_vector(count);

As the basic types of both q and count are consistent, this can be
done directly.

Synthesized simple binary counter

At this point it is useful to consider what happens when we synthe-
size this VHDL, so to test this point the VHDL model of the sim-
ple binary counter was run through a typical RTL synthesis
software package (Leonardo Spectrum) with the resultant synthe-
sized VHDL model given below:

entity counter is
port (

clk : IN std_logic;
rst : IN std_logic;
output : OUT std_logic_vector (3 DOWNTO 0));

end counter;

Design Recipes For FPGAS

230

Ch19-H6845.qxd 4/5/07 11:40 AM Page 230

architecture simple of counter is
signal clk_int, rst_int, output_dup0_3,
output_dup0_2, output_dup0_1,
output_dup0_0, output_nx4, output_nx7,
output_nx10, NOT_rst,
output_NOT_a_0: std_logic;

begin
output_obuf_0 : OBUF port map (O=>output(0),
I=>output_dup0_0);
output_obuf_1 : OBUF port map (O=>output(1),
I=>output_dup0_1);
output_obuf_2 : OBUF port map (O=>output(2),
I=>output_dup0_2);
output_obuf_3 : OBUF port map (O=>output(3),
I=>output_dup0_3);
rst_ibuf : IBUF port map (O=>rst_int, I=>rst);
output_3_EXMPLR_EXMPLR : FDC port map
(Q=>output_dup0_3, D=>output_nx4,
C=>clk_int, CLR=>NOT_rst);

output_2_EXMPLR_EXMPLR : FDC port map
(Q=>output_dup0_2, D=>output_nx7,
C=>clk_int, CLR=>NOT_rst);

output_1_EXMPLR_EXMPLR : FDC port map
(Q=>output_dup0_1, D=>output_nx10,
C=>clk_int, CLR=>NOT_rst);

output_0_EXMPLR_EXMPLR : FDC port map
(Q=>output_dup0_0, D=> output_NOT_a_0,
C=>clk_int, CLR=>NOT_rst);

clk_ibuf : BUFGP port map (O=>clk_int, I=>clk);
output_nx4 <= (not output_dup0_3 and output_dup0_2
and output_dup0_1 and output_dup0_0) or
(output_dup0_3 and not output_dup0_0) or
(output_dup0_3 and not output_dup0_2) or
(output_dup0_3 and not output_dup0_1);

output_nx7 <= (output_dup0_2 and not output_dup0_0)
or (not output_dup0_2 and output_dup0_1 and
output_dup0_0) or (output_dup0_2 and not
output_dup0_1);

output_nx10 <= (output_dup0_0 and not
output_dup0_1) or (not output_dup0_0 and
output_dup0_1);

NOT_rst <= (not rst_int);
output_NOT_a_0 <= (not output_dup0_0);

end simple;

The first obvious aspect of the model is that it is much longer
than the simple RTL VHDL created originally. The next stage logic
is now in evidence, as this is synthesized, the physical gates must
be defined for the model. Finally the outputs are buffered which
leads to even more gates in the final model. If the optimization

Counters

231

Ch19-H6845.qxd 4/5/07 11:40 AM Page 231

report is observed, the overall statistics of the resource usage of the
FPGA can be examined (in this case a Xilinx Virtex-II Pro device):

Cell Library References Total Area

===

BUFGP xcv2p 1 x 1 1 BUFGP
FDC xcv2p 4 x 1 4 Dffs or Latches
IBUF xcv2p 1 x 1 1 IBUF
LUT1 xcv2p 2 x 1 2 Function Generators
LUT2 xcv2p 1 x 1 1 Function Generators
LUT3 xcv2p 1 x 1 1 Function Generators
LUT4 xcv2p 1 x 1 1 Function Generators
OBUF xcv2p 4 x 1 4 OBUF

Number of ports : 6
Number of nets : 17
Number of instances : 15
Number of references to this view : 0

Total accumulated area :
Number of BUFGP : 1
Number of Dffs or Latches : 4
Number of Function Generators : 5
Number of IBUF : 1
Number of OBUF : 4
Number of gates : 5
Number of accumulated instances : 15

Number of global buffers used: 1

Device Utilization for 2VP2fg256

Resource Used Avail Utilization

IOs 5 140 3.57%
Global Buffers 1 16 6.25%
Function Generators 5 2816 0.18%
CLB Slices 3 1408 0.21%
Dffs or Latches 4 3236 0.12%
Block RAMs 0 12 0.00%
Block Multipliers 0 12 0.00%

In this simple example, it can be seen that the overall utilization of
the FPGA is minimal, with the relative resource allocation of IOs,
buffers and functional blocks. This is an important aspect of FPGA
design in that even though the overall device may be underutilized,
a particular resource (such as IO) might be used up. The output
VHDL can then be used in a physical place and route software tool
(such as the Xilinx Design Navigator) to produce the final bit file
that will be downloaded to the device.

Design Recipes For FPGAS

232

Ch19-H6845.qxd 4/5/07 11:40 AM Page 232

Shift register

While a shift register is strictly speaking not a counter, it is useful to
consider this in the context of other counters as it can be converted
into a counter with very small changes. We will consider this ele-
ment layer in this book, in more detail, but consider a simple case of
a shift register that takes a single bit and stores in the least signifi-
cant bit of a register and shifts each bit up one bit on the occurrence
of a clock edge. If we consider an n-bit register and show the status
before and after a clock edge, then the functionality of the shift reg-
ister becomes clear as shown in Figure 58.

A basic shift register can be implemented in VHDL as shown
below:

library ieee;
use ieee.std_logic_1164.all;

entity shift_register is
generic (

n : integer := 4);
port (

clk : in std_logic;
rst : in std_logic;
din : in std_logic;
q : out std_logic_vector((n-1) downto 0)

);
end entity;

Counters

233

n � 1 n � 2 n � 3 n � 4 3 2 1 0din1

Next Bit In

(a)

(b)

Register Contents

din1 n � 1 n � 2 n � 3 4 3 2 1din2

Next Bit In Register Contents

Figure 58

Shift Register
Functionality: (a)
before and (b) after
the clock edge

Ch19-H6845.qxd 4/5/07 11:40 AM Page 233

architecture simple of shift_register is
begin
process(clk, rst)
variable shift_reg : std_logic_vector((n-1) downto 0);

begin
if rst= '0' then
shift_reg := (others => '0');

elsif rising_edge(clk) then
shift_reg := shift_reg(n-2 downto 0) & din;

end if;
q <= shift_reg;

end process;
end architecture simple;

The interesting parts of this model are very similar to the simple
binary counter, but subtly different. As for the counter, we have
defined an internal variable (shift_reg), but unlike the counter we
do not need to carry out arithmetic functions, so we do not need to
define this as an unsigned variable, but instead we can define
directly as a std_logic_vector – the same as the output q.

Notice that we have an asynchronous clock in this case. As we have
discussed previously in this book, there are techniques for com-
pletely synchronous sets or resets, and these can be used if required.

The fundamental difference between the counter and the shift reg-
ister is in how we move the bits around. In the counter we use arith-
metic to add one to the internal counter variable (count). In this case
we just require to shift the register up by one bit, and to achieve this
we simply assign the lowest (n�1) bits of the internal register vari-
able (shift_reg) to the upper (n�1) bits and concatenate the input bit
(din), effectively setting the lowest bit of the register to the input sig-
nal (din). This is accomplished using the VHDL below:

shift_reg := shift_reg(n-2 downto 0) & din;

The final stage of the model is similar to the basic counter in that
we then assign the output signal to the value of the internal variable
(shift_reg) using a standard signal assignment. In the shift register,
we do not need to ‘cast’ the type as both the internal and signal vari-
able types are std_logic_vector:

q <= shift_reg;

The Johnson counter

The Johnson counter is a counter that is a simple extension of
the shift register. The only difference between the two is that the

Design Recipes For FPGAS

234

Ch19-H6845.qxd 4/5/07 11:40 AM Page 234

Johnson counter has its least significant bit inverted and fed back
into the most significant bit of the register. In contrast to the
classical binary counter that has 2n states, the Johnson counter
has 2n states. While this has some specific advantages, a disadvan-
tage is that the Johnson counter has what is called a ‘parasitic
counter’ in the design. In other words, while the 2n counter is oper-
ating, there is another state machine that also operates concurrently
with the Johnson counter using the unused states of the binary
counter.

A potential problem with this counter is that if, due to an error,
noise or other glitch, the counter enters a state NOT in the standard
Johnson counting sequence, it cannot return to the correct Johnson
counter without a reset function. The normal Johnson counter
sequence is shown in the following table:

The VHDL implementation of a simple Johnson counter can
then be made by modifying the next stage logic of the internal
shift_register function as shown below:

library ieee;
use ieee.std_logic_1164.all;

entity johnson_counter is
generic (

n : integer := 4);
port (

clk : in std_logic;
rst : in std_logic;
din : in std_logic;
q : out std_logic_vector((n-1) downto 0)

);
end entity;

Count Q(3:0)

0 0000

1 1000

2 1100

3 1110

4 1111

5 0111

6 0011

7 0001

Counters

235

Ch19-H6845.qxd 4/5/07 11:40 AM Page 235

architecture simple of Johnson_counter is
begin

process(clk, rst)
variable j_state : std_logic_vector((n-1) downto 0);

begin
if rst= '0' then

j_state:= (others => '0');
elsif rising_edge(clk) then

j_state:= not j_state(0) & j_state(n-1 downto 1);
end if;
q <= j_state;

end process;
end architecture simple;

Notice that the concatenation is now putting the inverse (NOT) of
the least significant bit of the internal state variable (j_state(0))
onto the next state most significant bit, and then shifting the cur-
rent state down by one bit.

It is also worth noting that the counter does not have any check-
ing for the case of an incorrect state. It would be sensible in a prac-
tical design to perhaps include a check for an invalid state and then
reset the counter in the event of that occurrence. The worst case
scenario would be that the counter would be incorrect for a further
7 clock cycles before correctly resuming the Johnson counter
sequence.

BCD counter

The BCD counter is simply a counter that resets when the decimal
value 10 is reached instead of the normal 15 for a 4 bit binary
counter. This counter is often used for decimal displays and other
human interface hardware. The VHDL for a BCD counter is very
similar to that of a basic binary counter except that the maximum
value is 10 (hexadecimal A) instead of 15 (hexadecimal F). The
VHDL for a simple BCD counter is given below. The only change
is that the counter has an extra check to reset when the value of the
count variable is greater than 9 (the counter range is 0 to 9).

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity counter is
generic (

n : integer := 4);

Design Recipes For FPGAS

236

Ch19-H6845.qxd 4/5/07 11:40 AM Page 236

port (
clk : in std_logic;
rst : in std_logic;
output : out std_logic_vector((n-1) downto 0)

);
end;

architecture simple of counter is
begin
process(clk, rst)
variable count : unsigned((n-1) downto 0);
begin
if rst= '0' then

count := (others => '0');
elsif rising_edge(clk) then

count := count + 1;
if count > 9 then

count := 0;
else if

end if;
output <= std_logic_vector(count);
end process;
end;

Summary

In this chapter, we have investigated some basic counters and shown
how VHDL can be used to carry out arithmetic functions or logic
functions to obtain the required counting sequence. The possibilities
of counters based on these basic types are numerous, possibly infi-
nite, and it is left to the reader to develop their own variations based
on these standard types.

A useful exercise would be to modify the basic binary counter by
adding an up/down flag so that depending on this flag, the counter
would increment or decrement, respectively.

Counters

237

Ch19-H6845.qxd 4/5/07 11:40 AM Page 237

20
Latches, Flip-Flops and Registers

Introduction

There are different types of storage elements that will occur from
different VHDL code, and it is important to understand each of
them, so that the correct one results when a design is synthesized.
Often bugs in hardware happen due to misunderstanding about
what effect a VHDL construct will have on the resulting synthe-
sized hardware. In this chapter we will introduce three main types
of storage elements used in VHDL that can be synthesized from
VHDL to an Field Programmable Gate Array (FPGA) platform,
latches, flip-flops and registers.

Latches

A latch can be simply defined as a level sensitive memory device.
In other words, the output depends purely on the value of the inputs.
There are several different types of latch, the most common being
the D Latch and the SR Latch.

First consider a simple D latch as shown in Figure 59. In this type
of latch, the output (Q) follows the input (D), but only when the
Enable (En) is high. In this case we are referring to a D latch, and the
full definition is in fact a level sensitive D latch. The assumption

1D

C1

D

Enable

Q

Figure 59

D Latch Symbol

Ch20-H6845.qxd 4/5/07 11:40 AM Page 238

Latches, Flip-Flops and Registers

239

made in this book is that whenever we refer to a latch is that it is
always level sensitive.

The notation on the Enable signal (C1) and the Data input (1D)
denote that they are linked together. Also notice that the output Q
is purely dependent on the level of D and the Enable. In other
words, when the Enable is high, then Q � D. This is called a level
sensitive latch.

The VHDL that represents this kind of level sensitive D latch is
shown below:

library ieee;
use ieee.std_logic_1164.all;
entity latch is

port (d : in std_logic;
en : in std_logic;
q : out std_logic);

end entity latch;

architecture beh of latch is
begin

process (d, en) is
begin

if (en = ‘1’) then
q <= d;
end if;

end process;
end architecture beh;

This is an example of an ‘incomplete if’ statement, where the con-
dition ‘if (en � ‘1’)’ is given, but the ‘else’ condition is not defined.
Both d and en are in the sensitivity list and so this could be combina-
torial, but due to the incomplete definition of en, then an implied
latch occurs, i.e. storage.

This aspect of storage is important when we are developing
models, particularly behavioral as in this case (i.e. the structure is
not explicitly defined), as we may end up with latches in our
design even though we think that we have created a model for a
purely combinatorial circuit.

Other instances when this may occur are the incomplete definition
of case statements. For example, consider the simple VHDL exam-
ple below:

case s is
when “00” => y <= a;
when “10” => y <= b;
when others => null;

end case;

Ch20-H6845.qxd 4/5/07 11:40 AM Page 239

Design Recipes for FPGAs

240

In this statement, it is incomplete and so instead of a simple com-
binatorial circuit, a latch is implied. The resulting synthesized cir-
cuit is shown below in Figure 60.

Flip-flops

In contrast to the level triggered latch, the flip-flop changes state
when an edge occurs on an enable or a clock signal. This is the
cornerstone of synchronous design, with an important building
block being the D-type flip-flop as shown in Figure 61. The output
(Q) will take on the value of the input (D) on the rising edge of the
clock signal. The triangle on the symbol denotes a clock signal
and in the absence of a circle (notation for active low), the defini-
tion is for a rising edge to activate the flip-flop.

The equivalent VHDL code is of the form shown below:

library ieee;
use ieee.std_logic_1164.all;
entity dff is

port (d : std_logic;
clk : in std_logic;
q : out std_logic);

end entity dff;

architecture simple of dff is
begin
process (clk) is

begin
if rising_edge(clk) then

q <= d;
end if;

end process;
end architecture simple;

s(0)

b

G

D

Q

Q
–

y
s(1)

aFigure 60

Synthesised Latch

1D

C1

D

Clock

Q

Figure 61

D-Type Flip-Flop

Ch20-H6845.qxd 4/5/07 11:40 AM Page 240

Latches, Flip-Flops and Registers

241

Notice that in this case, d does not appear in the sensitivity list – it
is not required. The flip-flop will only do something when a rising
edge occurs on the clock signal (clk). There are a number of differ-
ent methods of describing this functionality, all of them equivalent.
In this case, we have explicitly defined the clk signal in the sensi-
tivity list. An alternative method would be to have no sensitivity
list, but to add a wait on statement inside the process. The equiva-
lent architecture would be as follows:

architecture wait_clk of dff is
begin

process is
begin

if rising_edge(clk) then
q <= d;

end if;
wait on clk;

end process;
end architecture simple;

We have also perhaps used a more complex definition of the ris-
ing_edge function than is required (or may be available in all sim-
ulators or synthesis tools). The alternative simple method is to use
the clock in the sensitivity list and then check that the value of
clock is ‘1’ for rising edge or ‘0’ for falling edge. The equivalent
VHDL for a rising edge D-type flip-flop is given below. Notice
that we have used the implicit sensitivity list (using a wait on clk
statement) as opposed to the explicit sensitivity list, although we
could use either interchangeably.

architecture rising_edge_clk of dff is
begin

process is
begin
if (clk = ‘1’) then

q <= d;
end if;
wait on clk;

end process;
end architecture simple;

We can extend this basic model for a D-type to include an asyn-
chronous set and reset function. If they are asynchronous, this
means that they could happen whether there is a clock edge or not,
therefore they need to be added to the sensitivity list of the model.

Ch20-H6845.qxd 4/5/07 11:40 AM Page 241

Design Recipes for FPGAs

242

The symbol for such a flip-flop assuming active low set and reset
would be as shown in Figure 62.

The VHDL is extended from the simple dff model previously
given to include the asynchronous set and reset as shown below:

library ieee;
use ieee.std_logic_1164.all;
entity dff_sr is

port (d : in std_logic;
clk : in std_logic;
nrst : std_logic;
nset : in std_logic;
q : out std_logic);

end entity dff_sr;

architecture simple of dff_sr is
begin
process (clk, nrst, nset) is

begin
if (nrst = ‘0’) then

q <= ‘0’;
elsif (nset = ‘1’) then

q <= ‘1’;
elsif rising_edge(clk) then

q <= d;
end if;

end process;
end architecture beh;

As for the basic D-type flip-flops, we could use a variation of the
check for the clock edge, although due to the fact that we have
three possible input state control variables (set, reset and clk) it is
not enough now to check whether the clock is high (for a rising
edge flip-flop). It is necessary to check that the clock is high and
that an event has occurred.

Notice that this model may cause interesting behavior when syn-
thesized as the reset will always be checked before the set and so
there is a specific functionality that allows the concurrent setting
of the set and reset variables, but the reset will take precedence.

1D

C1

D

Clock

Q

R

SSet

Reset

Figure 62

D-Type Flip-Flop
with Asynchronous
Set and Reset

Ch20-H6845.qxd 4/5/07 11:40 AM Page 242

Latches, Flip-Flops and Registers

243

Finally, when considering the use of transitions between ‘0’ and
‘1’, there are issues with synthesis and simulation when using the
different approaches. For example, with the standard logic package
(std_logic variables), the transitions are strictly defined and so we
may have the case of high impedance or don’t care states occurring
during a transition. This is where the rising_edge (and its opposite
the falling_edge) function are useful as they simplify all these
options into a single function that handles all the possible transi-
tion states cleanly.

It is generally best, therefore, to use the rising_edge or falling_
edge functions wherever possible to ensure consistent and interop-
erable functionality of models.

It is also worth considering a synchronous set or reset function, so
that the clock will be the only edge that is considered. The only caveat
with this type of approach is that the set and reset signals should be
checked immediately following the clock edge to make sure that con-
current edges on the set or reset signals have not occurred.

Registers

Registers use a bank of flip-flops to load and store data in a bus.
The difference between a basic flip-flop and a register is that while
there is a data input, clock and usually a reset (or clear), there is
also a ‘load’ signal that defines whether the data on the input is to
be loaded onto the register or not. The VHDL code for an example
8-bit register would be as follows:

library ieee;
use ieee.std_logic_1164.all;
entity register is

generic (n : natural := 8);
port (d : in std_logic_vector(n-1 downto 1);

clk : in std_logic;
nrst : in std_logic;
load : in std_logic;
q : out std_logic_vector(n-1 downto 1));

end entity register;

architecture beh of register is
begin
process (clk, nrst) is
begin

if (nrst = ‘0’) then
q <= (others => ‘0’);

Ch20-H6845.qxd 4/5/07 11:40 AM Page 243

Design Recipes for FPGAs

244

elsif (rising_edge(Clock) and (load = ‘1’)) then
q <= d;

end if;
end process;

end architecture beh;

Notice that although there are four inputs (clk, nrst, load and d),
only clk and nrst are included in the process sensitivity list. If load
and d change, then the process will ignore these changes until the
clk rising edge or nrst goes low. If the load is not used, then the reg-
ister will load the data on every clock rising edge unless the reset is
low. The VHDL for this slightly simpler register is given below:

library ieee;
use ieee.std_logic_1164.all;
entity reg_rst is

port (d, clk, nrst : in std_logic;
q : out std_logic);

end entity reg_rst;

architecture beh of reg_rst is
begin
process (clk, nrst) is
begin

if (nrst = ‘0’) then
q <= ‘0’;

elsif rising_edge(clk) then
q <= d;

end if;
end process;
end architecture beh;

Summary

In this chapter the basic type of latch and register have been intro-
duced and examples given. This is a fundamental building block
of synchronous digital systems and is the basis of RTL (Register
Transfer Logic) design with VHDL.

Ch20-H6845.qxd 4/5/07 11:40 AM Page 244

21
Serial to Parallel & Parallel to

Serial Conversion

Serial to Parallel Conversion

Serial to Parallel Conversion (SIPO) is a relatively simple matter of
clocking in a single bit stream into a register and shifting each bit
in turn until the register is full. Then the parallel output can be read
directly. In this example VHDL model, the size of the register is set
by the generic (n), which in this case defaults to 8. Notice that in
this example, the reset signal (nrst) is synchronous, not asynchro-
nous as has been used before. In this case, the only signal that the
process will react to is an event on the clock (clk), and a rising_edge
event at that. When this event occurs, the reset signal is checked to
see if it is low, otherwise the register is clocked through. If the reset
signal is low, then the register is cleared to all zeros.

LIBRARY ieee;
USE ieee.Std_logic_1164.ALL;
USE ieee.Std_logic_unsigned.ALL;

ENTITY sipo IS
GENERIC(n : Positive := 8);
PORT(

clk : in std_logic;
nrst : in std_logic;
di : in std_logic;
q: out std_logic_vector((n-1) DOWNTO 0)

);
END sipo;

ARCHITECTURE simple OF sipo IS
SIGNAL int_reg : Std_logic_vector((n-1) DOWNTO 0);
signal index : integer := 0;

Ch21-H6845.qxd 4/5/07 11:41 AM Page 245

Design Recipes for FPGAs

246

BEGIN
out_process : PROCESS

BEGIN
WAIT UNTIL rising_edge(clk);
if nrst = ‘0’ then

int_reg <= “00000000”;
index <= 0;

else
int_reg(index) <= di;
if index = 7 then

index <= 0;
else

index <= index + 1;
end if;

end if;
END PROCESS;
q <= int_reg;

END simple;

Parallel to Serial Conversion

The parallel to serial register has two stages of operation. The first
stage is to load in the parallel data. In this model, the load signal
is active low and synchronous. In other words, just like the SIPO
model, there is no asynchronous function and the clock is the only
signal in the sensitivity list. If the load signal is high, then the data
in the register is clocked out one bit at a time. Note that the
Parallel to Serial Conversion (PISO) model cycles around, and
does not stop after the data has been output.

LIBRARY ieee;
USE ieee.Std_logic_1164.ALL;
USE ieee.Std_logic_unsigned.ALL;

ENTITY piso IS
GENERIC(n : Positive := 8); --size of register
PORT(

clk : IN Std_logic;
load: IN std_logic;
do : OUT std_logic;
q : IN Std_logic_vector((n-1) DOWNTO 0));

END piso;

ARCHITECTURE simple OF piso IS
SIGNAL int_reg : Std_logic_vector((n-1) DOWNTO 0);
SIGNAL index : integer := 0;

BEGIN
out_process : PROCESS

Ch21-H6845.qxd 4/5/07 11:41 AM Page 246

BEGIN
WAIT UNTIL rising_edge(clk);
if load = ‘0’ then

int_reg <= q;
index <= 0;

else
do <= int_reg(index);
if index = 7 then

index <= 0;
else

index <= index + 1;
end if;

end if;
END PROCESS;

END simple;

Summary

This short chapter has demonstrated a useful function of convert-
ing serial to parallel data and vice versa. This is an extremely com-
mon task in modern Field Programmable Gate Array (FPGA)
interfaces, with most communications data being in a serial for-
mat, and most processors requiring the data to be stored in paral-
lel registers and operating in a parallel fashion.

Serial to Parallel & Parallel to Serial Conversion

247

Ch21-H6845.qxd 4/5/07 11:41 AM Page 247

22
ALU Functions

Introduction

A central part of microprocessors is the ALU (Arithmetic Logic
Unit). This block in a processor takes a number of inputs from reg-
isters and as its name suggests carries out either logic functions
(such as NOT, AND, OR and XOR) on the inputs, or arithmetic
functions (addition or subtraction as a minimum). This chapter of
the book will describe how the low-level logic and arithmetic func-
tions can be implemented in VHDL.

Logic functions

If we consider a simple inverter in VHDL, this takes a single input
bit, inverts it and applies this to the output bit. This simple VHDL
is shown below:

Library ieee;
Use ieee.std_logic_1164.all;
Entity inverter is

Port (
A : in std_logic;
Q : out std_logic

);
End entity inverter;
Architecture simple of inverter is
Begin

Q <= NOT A;
End architecture simple;

Clearly the inputs and output are defined as single std_logic pins,
with direction in and out respectively. The logic equation is also

Ch22-H6845.qxd 4/5/07 11:41 AM Page 248

ALU Functions

249

intuitive and straightforward to implement. We can extend this
be applicable to n bit logic busses by changing the entity (the
architecture remains the same) and simply assigning the input
and outputs the type std_logic_vector instead of std_logic as
follows:

Library ieee;
Use ieee.std_logic_1164.all;
Entity bus_inverter is

Port (
A : in std_logic_vector(15 downto 0);
Q : out std_logic_vector(15 downto 0)

);
End entity bus_inverter;
Architecture simple of bus_inverter is
Begin

Q <= NOT A;
End architecture simple;

As can be seen from the VHDL, we have defined a specific 16 bit
bus in this example, and while this is generally fine for processor
design with a fixed architecture, sometimes it is useful to have a
more general case, with a configurable bus width. In this case we
can modify the entity again to make the bus width a parameter of
the model:

Library ieee;
Use ieee.std_logic_1164.all;
Entity n_inverter is

Generic (
N : natural := 16

);
Port (

A : in std_logic_vector((n-1) downto 0);
Q : out std_logic_vector((n-1) downto 0)

);
End entity n_inverter;
Architecture simple of n_inverter is
Begin

Q <= NOT A;
End architecture simple;

We can of course create separate models of this form to implement
multiple logic functions, but we can also create a compact multiple
function logic block by using a set of configuration pins to define
which function is required. If we define a general logic block that
has 2 n-bit inputs (A & B), a control bus (S) and an n-bit output (Q),

Ch22-H6845.qxd 4/5/07 11:41 AM Page 249

Design Recipes for FPGAs

250

then by setting the 2 bit control word (S) we can select an appro-
priate logic function according to the table below:

Clearly we could define more functions, and this would require
more bits for the select function (S), but this limited set of func-
tions demonstrates the principle involved. We can define a modi-
fied entity as shown below:

Library ieee;
Use ieee.std_logic_1164.all;
Entity alu_logic is

Generic (
N : natural:= 16

);
Port (

A : in std_logic_vector((n-1) downto 0);
B : in std_logic_vector((n-1) downto 0);
S : in std_logic_vector(1 downto 0);
Q : out std_logic_vector((n-1) downto 0)

);
End entity alu_logic;

Now, depending on the value of the input word (S), the appropri-
ate logic function can be selected. We can use the case statement
introduced in the VHDL primer chapter of this book to define
each state of S and which function will be carried out in a very
compact form of VHDL:

Architecture basic of alu_logic is
Begin

Case S is
When “00” => Q <= NOT A;
When “01” => Q <= A AND B;
When “10” => Q <= A OR B;
When “11” => Q <= A XOR B;

End case;
End architecture basic;

Clearly this is an efficient and compact method of defining the
combinatorial logic for each state of the control word (S), but great
care must be taken to assign values for every combination to avoid
inadvertent latches being introduced into the logic when synthesised.

S Function

00 Q �� NOT A

01 Q �� A AND B

10 Q �� A OR B

11 Q �� A XOR B

Ch22-H6845.qxd 4/5/07 11:41 AM Page 250

ALU Functions

251

1-bit adder

The arithmetic ‘heart’ of an ALU is the addition function – the
Adder. This starts form a simple 1 bit adder and is then extended
to multiple bits, to whatever sized of addition function is required
in the ALU. The basic design of a 1-bit adder is to take two logic
inputs (a & b) and produce a sum and carry output according to
the following truth table:

This can be implemented using simple logic with a 2 input AND
gate for the carry, and a 2 input XOR gate for the sum function as
shown in Figure 63.

This function has a carry-out (carry), but no carry-in, so to
extend this to multiple bit addition, we need to implement a carry-
in function (cin) and a carry-out (cout) as shown in next page.

With an equivalent logic function as shown in Figure 64.

a b sum carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 1 1

a

b

sum

carry

g0

g1

Figure 63

Simple 1-Bit
Adder

a

b

cin

sum

cout

j

k

l

g0
g1

g2

g3

g4

g5Figure 64

1-Bit Adder with
Carry-in and
Carry-out

Ch22-H6845.qxd 4/5/07 11:41 AM Page 251

Design Recipes for FPGAs

252

This can be implemented using standard VHDL logic functions
with bit inputs and outputs as follows. First define the entity with
the input and output ports defined using bit types:

entity full_adder is
port (sum, co : out bit;

a, b, ci : in bit);
end entity full_adder;

Then the architecture can use the standard built-in logic functions
in a ‘dataflow’ type of model, where logic equations are used
to define the behaviour, without any delays implemented in the
model.

architecture dataflow of full_adder is
begin

sum <= a xor b xor ci;
co <= (a and b) or

(a and ci) or
(b and ci);

end architecture dataflow;

This model is now a simple building block that we can use to create
multiple bit adders structurally by linking a number of these models
together.

Structural n-bit addition

Using the simple 1-bit full adder defined previously, it is a simple
matter to create a multiple bit full adder using this model as a build-
ing block. As an example, to create a 4 bit adder, with a single

a b cin sum Cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Ch22-H6845.qxd 4/5/07 11:41 AM Page 252

ALU Functions

253

carry-in and single bit carry-out, we can define a VHDL model as
shown below:

entity four_bit_adder is
port (sum: out bit_vector (3 downto 0); co : out bit;

a, b : in bit_vector (3 downto 0); ci : in bit);
end entity four_bit_adder;

architecture simple of four_bit_adder is
signal carry : bit_vector (3 downto 1);

begin
fa0 : entity work.full_adder

port map (sum(0),carry(1),a(0),b(0),ci);
fa1 : entity work.full_adder

port map (sum(1),carry(2),a(1),b(1),carry(1));
fa2 : entity work.full_adder

port map (sum(2),carry(3),a(2),b(2),carry(2));
fa3 : entity work.full_adder

port map (sum(3),co,a(3),b(3),carry(3));
end architecture simple;

This can obviously be extended to multiple bits by repeating the
component use in the architecture for as many bits are required.

Configurable n-bit addition

While the structural approach is useful, it is clearly cumbersome
and difficult to configure easily. A more sensible approach is to
add a generic (parameter) to the model to enable the number of
bits to be customised. For example, if we define an entity to add
two logic vectors (as opposed to bit vectors used previously), the
entity will look something like this:

library IEEE;
use IEEE.std_logic_1164.all;

entity add_beh is
generic(top : natural := 15);
port (a : in std_logic_vector (top downto 0);

b : in std_logic_vector (top downto 0);
cin : in std_logic;
sum : out std_logic_vector (top downto 0);
cout : out std_logic);

end entity add_beh;

As can be seen from this entity, we have a new parameter, top,
which defines the size of the input vectors (a and b) and the output
sum (cout). We can then use the same original logic equations that

Ch22-H6845.qxd 4/5/07 11:41 AM Page 253

Design Recipes for FPGAs

254

we defined for the initial 1-bit adder and use more behavioural
VHDL to create a much more readable model:

architecture behavior of add_beh is
begin

adder: process(a,b,cin)
variable carry : std_logic;
variable tempsum : std_logic_vector(top
downto 0);

begin
carry := cin;
for i in 0 to top loop

tempsum(i) := a(i) xor b(i) xor carry;
carry := (a(i) and b(i))

or (a(i) and carry)
or (b(i) and carry);

end loop;
sum <= tempsum;
cout <= carry;

end process adder;
end architecture behavior;

This architecture shows how a single process (with sensitivity list
a, b, cin) is used to encapsulate the addition. The process is activated
when a, b or cin changes. A for loop is used to calculated a tempo-
rary sum (tempsum) that increments each time around the loop if
required and the final value is assigned to the output sum. Also, a
stage by stage carry is calculated and used each time around the
loop. After the final loop, the value of carry is used to become the
final carry-out.

Twos complement

An integral part of subtraction in logic systems is the use of ‘twos
complement’. This enables us to execute a subtraction function
using only an adder rather than requiring a separate subtraction
function. Twos complement is an extension to the basic ones com-
plement (or basic inversion of bits) previously considered.

If we consider an ‘unsigned’ number system based on 4 bits, then
the range of the numbers is 0–15 (0000–1111). If we consider a
‘signed’ system, however, the Most Significant Bit (MSB) is con-
sidered to be the sign (� or �) of the number system and therefore
the range of numbers with 4 bits will instead be from �8 to �7.
The method of conversion from positive to negative number in
binary logic is a simple two stage process of first inverting all the
bits and then adding 1 to the result.

Ch22-H6845.qxd 4/5/07 11:41 AM Page 254

ALU Functions

255

Consider an example. Take a number 00112. In signed number
form, the MSB is 0, so the number is positive and the lower three
bits 011 can be directly translated into decimal 3. To get the twos
complement (�3), we first invert all the bits to get 1100, and then
add a single bit to get the final twos complement value 1101. To
check that this is indeed the inverse in binary, simple add the
number 0011 to its twos complement 1101 and the result should
be 0000.

This function can be implemented simply in VHDL using the
following model:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity twoscomplement is
generic (

n : integer := 8
);
port (

input : in std_logic_vector((n-1) downto 0);
output : out std_logic_vector((n-1) downto 0)

);
end;

architecture simple of twoscomplement is
begin

process(input)
variable inv : unsigned((n-1) downto 0);

begin
inv := unsigned(NOT input);
inv := inv + 1;
output <= std_logic_vector(inv);

end process;
end;

As can be seen from the VHDL, we operate using logic func-
tions first (NOT) and then convert to unsigned to utilise the addi-
tion function (inv �1), and finally convert the result back into a
std_logic_vector type. Also notice that the generic n allows this
model to be configured for any data size. In this example, the test
bench is used to check that the function is operating correctly by
using two test circuits back to back, inverting and re-inverting the
input word and checking that the function returns the same value.
While this does not guarantee correct operation (the same bug
could be present in both transforms!), it is a simple quick check

Ch22-H6845.qxd 4/5/07 11:41 AM Page 255

Design Recipes for FPGAs

256

that is very useful and makes generation of test data and checks
very easy as the input and final output signal check can be XORd
to check for differences:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity twoscomplementtest is
end twoscomplementtest ;

architecture stimulus of twoscomplementtest is
signal rst : std_logic := ‘0’;
signal clk : std_logic:= ‘0’;
signal count : std_logic_vector (7 downto 0);
signal inverse : std_logic_vector (7 downto 0);
signal check : std_logic_vector (7 downto 0);
component twoscomplement

port(
input : in std_logic_vector(7 downto 0);
output : out std_logic_vector(7 downto 0)

);
end component;
for all : twoscomplement use entity

work.twoscomplement ;
begin

CUT1: twoscomplement port map(input => count,
output => inverse);

CUT2: twoscomplement port map(input => inverse,
output => check);

-- clock and reset process
clk <= not clk after 1 us;
process
begin

rst <= ‘0’,’1’ after 2.5 us;
wait;

end process;

-- generate data
process(clk, rst)

variable tempcount : unsigned(7 downto 0);
begin

if rst = ‘0’ then
tempcount := (others => ‘0’);

elsif rising_edge(clk) then
tempcount := tempcount + 1;

end if;
count <= std_logic_vector(tempcount);
end process;

end;

Ch22-H6845.qxd 4/5/07 11:41 AM Page 256

Summary

This chapter has introduced the key elements required in an
Arithmetic and Logic Unit of a processor. Whether the designer
needs to implement a complete ALU from scratch, or if it is purely
to understand the behaviour of an existing architecture, these func-
tions are very useful in analysing the behaviour of ALUs and
processors.

ALU Functions

257

Ch22-H6845.qxd 4/5/07 11:41 AM Page 257

23
Decoders and Multiplexers

Decoders

Decoders are a simple combinatorial block that converts one form
of digital representation into another. Usually, a decoder takes a
smaller representation and converts it into a larger one (the opposite
of encoding). Typical examples are the decoding of an n-bit word
into 2n individual logic signals. For example, a 3–8 decoder takes 3
logic signals in and decodes the value of one of the 8 output signals
(23) to the selected value. The symbol for such a decoder is given in
Figure 65 with its functional behavior in the following table:

Select(2:0)

q(7:0)

Figure 65

3–8 Decoder

s2 s1 s0 q7 q6 q5 q4 q3 q2 q1 q0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

Ch23-H6845.qxd 4/5/07 11:42 AM Page 258

The VHDL for this decoder uses a simple VHDL construct similar
to the if – else – end if form, except using the when – else syntax. If
a signal is assigned a value when a condition is satisfied, then a sin-
gle assignment can be made using the following basic pseudo-code:

output <= value when condition;

This can be extended with else statements to cover a set of dif-
ferent conditions, thus:

output <= value1 when condition1 else
value2 when condition2 else

…
valuen when condition;

Finally, if there is a ‘catch all’ condition, similar to the final else in
an if – elsif – else – endif conditional statement in VHDL, then the
final assignment would be added as follows:

output <= value1 when condition1 else
value2 when condition2 else

…
valuen when conditionn else
valuedefault;

Using this approach, the 3–8 decoder can be simply implemented
using the following VHDL:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity decoder38 is
port (

s : in std_logic_vector (2 downto 0);
q : out std_logic_vector(7 downto 0)

);
end;

architecture simple of decoder38 is
begin

q <= "00000001" when s = "000" else
"00000010" when s = "001" else
"00000100" when s = "010" else
"00001000" when s = "011" else
"00010000" when s = "100" else
"00100000" when s = "101" else
"01000000" when s = "110" else
"10000000" when s = "111" else
"XXXXXXXX";

end;

Decoders and Multiplexers

259

Ch23-H6845.qxd 4/5/07 11:42 AM Page 259

Design Recipes for FPGAs

260

The test bench for this decoder could be a simple look-up table of
values, but in fact we could combine the clock and reset test bench
from the counter example, and include a simple counter in the test
bench to generate the signals input to the decoder as follows:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity Decoder38Test is
end Decoder38Test;

architecture stimulus of Decoder38Test is
signal rst : std_logic := '0';
signal clk : std_logic:='0';
signal s : std_logic_vector(2 downto 0);
signal q : std_logic_vector(7 downto 0);

component decoder38
port(

s : in std_logic_vector(2 downto 0);
q : out std_logic_vector(7 downto 0)

);
end component;
for all : decoder38 use entity work.decoder38;

begin

CUT: decoder38 port map(s => s, q => q);
clk <= not clk after 1 us;
process
begin
rst <= '0','1' after 2.5 us;
wait;
end process;

process(clk, rst)
variable count : unsigned(2 downto 0);

begin
if rst = '0' then

count := (others => '0');
elsif rising_edge(clk) then

count := count + 1;
end if;
s <= std_logic_vector(count);

end process;

end;

Multiplexers

A multiplexer is an extension of a simple decoder in that a series of
inputs are decoded to provide select enables for one of a number

Ch23-H6845.qxd 4/5/07 11:42 AM Page 260

Decoders and Multiplexers

261

of inputs. In a similar way that n-bits can decode 2n signals, in a
multiplexer, n-bits of select line are required to multiplex 2n signals.
For example, consider the simplest multiplexer, a 2 input (A and B),
single output (Q) multiplexer, with a single select line (S). The IEEE
symbol for such a MUX is given in Figure 66.

A similar approach to the decoder by using the when – else
structure can be used to create a simple implementation of the
multiplexer as shown in the following VHDL:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity mux21 is
port (

s : in std_logic;
a : in std_logic;
b : in std_logic;
q : out std_logic

);
end;

architecture simple of mux21 is
begin

q <= a when s = '0' else
b when s = '1' else
'X';

end;

This is an extremely useful model and is extensively used in test
structures where it is required to choose between a functional and
test input signal input to a flip-flop. The model can be easily extended

1

0

s

q

0 G
0

1

MUX

a

b

Figure 66

2 Input Multiplexer with
a single select line

Ch23-H6845.qxd 4/5/07 11:42 AM Page 261

Design Recipes for FPGAs

262

to accommodate multiple input signals. For example, consider a 4
input multiplexer, with 2 select signals (inputs � 2select) and a
single output. The VHDL model has largely the same structure, but
would look like this:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity mux21 is
port (

s : in std_logic_vector (1 downto 0);
a : in std_logic;
b : in std_logic;
c : in std_logic;
d : in std_logic;
q : out std_logic

);
end;

architecture simple of mux21 is
begin

q <= a when s = "00" else
b when s = "01" else
c when s = "10" else
d when s = "11" else
'X';

end;

Summary

This short chapter has describe the basic mechanism for decoding
and multiplexing signals using VHDL. This is an extremely useful
function as it is central to much of the data and control signal man-
agement on Field Programmable Gate Arrays (FPGAs).

Ch23-H6845.qxd 4/5/07 11:42 AM Page 262

24
Finite State Machines in VHDL

Introduction

Finite State Machines (FSM) are at the heart of most digital
design. The basic idea of a FSM is to store a sequence of different
unique states and transition between them depending on the values
of the inputs and the current state of the machine. The FSM can be
of two types Moore (where the output of the state machine is
purely dependent on the state variables) and Mealy (where the out-
put can depend on the current state variable values AND the input
values). The general structure of an FSM is shown in Figure 67.

State transition diagrams

The method of describing FSM from a design point of view is
using a state transition diagram (bubble chart) which shows the

clk

Memory

Next
Stage
Logic

Inputs

next_state

Output
Logic

Outputs

(Mealy Only)

Figure 67

Hardware State
Machine Structure

Ch24-H6845.qxd 4/5/07 11:42 AM Page 263

states, outputs and transition conditions. A simple state transition
diagram is shown in Figure 68.

Interpreting this state transition diagram it is clear that there are
four bubbles (states). The transitions are controlled by two signals
(‘rst’ and ‘choice’), both of which could be represented by bit or
std_logic types (or another similar logic type). There is an implicit
clock signal, which we shall call ‘clk’ and the single output ‘out1’.

Implementing FSM in VHDL

This transition diagram can be implemented using a case state-
ment in a process using the following VHDL:

library ieee;
use ieee.std_logic_1164.all;

entity fsm is
port(

clk, rst, choice : in std_logic;
count : out std_logic

);
end entity fsm;
architecture simple of fsm1 is

type state_type is (s0, s1, s2, s3);
signal current, next_state : state_type;

begin
process (clk)
begin

if (clk = ‘1’) then
current <= next_state;

end if;
end process;

Design Recipes for FPGAs

264

S0
out1 � 0

S1
out1 � 1

S3
out1� 3S2

out1 � 2

rst � ‘0’

rst � ‘1’

choice � ‘0’
choice � ‘1’

Figure 68

State Transition
Diagram

Ch24-H6845.qxd 4/5/07 11:42 AM Page 264

process (current)
begin

case current is
when s0 =>

out <= 0;
if (rst = ‘1’) then

next <= s1;
else

next <= s0;
end if;

when s1 =>
out <= 1;
if (choice = ‘1’) then

next <= s3;
else

next <= s2;
end if;

when s2 =>
out <= 2;
next <= s0;

when s3 =>
out <= 3;
next <= s0;

end case;
end process;

end;

Summary

FSM are a fundamental technique for designing control algo-
rithms in digital hardware. This chapter of this book is purely an
introduction to the key concepts and if the reader is not already
fully familiar with the basic concepts of digital hardware design,
you are encouraged to obtain a standard text on digital design
techniques to complement the practical implementation methods
described in this book.

Finite State Machines in VHDL

265

Ch24-H6845.qxd 4/5/07 11:42 AM Page 265

25
Fixed Point Arithmetic in VHDL

Introduction

In VHDL we have complete access to a range of types from bits
and Booleans (which consist of two states ‘0’ and ‘1’ (or true and
false) which are effectively enumerated types, through integer
numbers (including positive and natural subtypes) and eventually
we can use real numbers (floating point). Unfortunately, the big
drawback is not necessarily what we can use in VHDL, but rather
what we can synthesize in hardware.

Despite recent research efforts and standardization efforts, there
is still a limited availability of packages and libraries that support
both fixed point and floating point arithmetic specifically for
Field Programmable Gate Arrays (FPGAs). If we consider most
FPGA applications, there is a need for some DSP type application,
and generally a form of fixed point arithmetic will be adequate in
most of these cases.

So, what is fixed point arithmetic and how can we use it in FPGA
design? In integer arithmetic, unsigned, signed or std_logic, the
basis of the number is a bitwise representation of an integer number,
with no decimal point. For example, to represent the number 23,
using 8 bits, we simply set a bit for each binary element required to
construct the integer value of 23. This is shown in Figure 69.

128 64 32 16 8 4 2 1

0 0 0 01 1 1 1

16 � 4 � 2 � 1 � 23

Figure 69

Basic Binary
Notation

Ch25-H6845.qxd 4/5/07 11:43 AM Page 266

Fixed Point Arithmetic in VHDL

267

If we require a negative number, then we use the ‘signed’
approach, where the Most Significant Bit (MSB) is simply the
sign bit as shown in Figure 70. In fact, the two’s complement nota-
tion (discussed previously in the chapter on Arithmetic Logic Unit
(ALU) functions), can be obtained by inverting the bits and adding
one to the LSB.

With this basic idea of handling numbers, we can extend the
notation to a ‘fixed point’ scheme by defining where the decimal
point will go. For example, in the same number scheme shown we
have 8 bits. We can therefore define this in terms of 5 bits above
the decimal point and 3 below it. This will give some limited frac-
tional usage for the numbers. The way that this is implemented is
by using fractions of 1 for each ‘negative’ bit to the right of the
decimal point. As an example, take the same number in terms of
bits used in Figure 70 and use the new fixed point numbering sys-
tem for the bits. In this case we get a value of �2.875 (Figure 71).

The nice thing about this notation is that the bitwise functions
defined for the integer-based ALU developed previously can also
be applied to this new fixed point notation with almost no modifi-
cation. The only difference is that we need to translate from the
new fixed point type toa std_logic_vector type and also consider
how to handle overflow conditions.

For example, if two numbers are added together and the result is
too large, how is this handled by the fixed point algorithms? Do
we simply flag an overflow and output the result? Or do we set the
maximum value and output this?

�128 64 32 16 8 4 2 1

1 1 1 1 10 0 0

�128 � 64 � 32 � 8 � 1 = �23

Figure 70

Negative Number
Binary Notation

�16 8 4 2 1 1/81/41/2

1 1 1 0 1 0 0 1

�16 � 8 � 4 � 1 � 0.125 � �2.875
Figure 71

Fixed Point Notation

Ch25-H6845.qxd 4/5/07 11:43 AM Page 267

Similarly, for numbers which may be too small, and we can
potentially lose precision, do we simply round up or flag another
loss of precision condition? These are questions that the designer
needs to answer for their application, but for the rest of the chap-
ter a simple approach will be taken that illustrates how the basic
functions operate, and the details of handling these issues will be
left to the reader, unless specifically identified and discussed.

Basic fixed point types

The first task in defining a custom fixed point library, is to spec-
ify a new type for the numbers. The closest similar types in stan-
dard VHDL, that can be synthesized, are unsigned and signed.
These are defined in terms of a specific number of bits. In most
cases we are interested in linking directly to std_logic systems,
and so in this case we can effectively define a new type based on
an array of std_logic bits. For the remainder of this chapter we will
discuss signed arithmetic only, as this is the most potentially used
from a DSP and application point of view.

The basic type that defines our base type is to be called fixsign
and is defined as an unrestricted array of std_logic:

Type fixsign is array (integer range <>) of std_logic;

From this, we can define specific subtypes that have a defined
range of fixed point. For example, we can define a type that has 8
bits above the decimal point and 3 bits below using the following
declaration:

Subtype fp8_3 is fixsign (8 downto -3);

Using these new types we can declare signals of this new type
and use it in fixed point VHDL models:

Signal a1 : fp8_3;
A1 <= X”0CA”;

Clearly this is useful, but limited as this type needs to be able to
be converted from one type to another easily and quickly. The sim-
plest way to manage this process is to create a new package that
contains not only the type declarations, but also the functions that
are associated with this set of types. Therefore we can define a

Design Recipes for FPGAs

268

Ch25-H6845.qxd 4/5/07 11:43 AM Page 268

new package called fp_pkg that as a minimum contains these type
declarations:

package fp_pkg is
type fixsign is array (integer range <>) of std_logic;
subtype fp8_3 is fixsign (8 downto -3);

end package;

package body fp_pkg is
end package body;

We can now use this package in a VHDL model by compiling the
package into the current work library and calling the package as
we need it:

Use work.fp_pkg.all;

This will provide access to all the fixed point functions and types
required.

In this library, we have two types of functions. The first type are
required for translating physical types (such as std_logic_vector)
to our new types and vice versa. These are important as they will be
synthesized and eventually end up on hardware. The second type
are purely for debug purposes and displaying values to the screen.
For example, it is useful to be able to convert fixed point data to real
numbers and then use the real’image VHDL function to display the
value to the screen. A useful set of functions is therefore presented
in this chapter. Again, these are exemplar functions, and the reader
is encouraged to develop these basic functions and produce their
own for their own applications.

Fixed point functions

Fixed point to std_logic_vector functions

The most important functions are the conversion between fixed
point and std_logic_vector variables. If we can translate from one to
the other, then we can use our standard logic functional blocks
where appropriate on the fixed point data directly, rather than need-
ing to come up with brand new blocks every time.

The easiest function is the mapping from fixed point to
std_logic_vector and is simply a matter of starting from the LSB
defined in the range of the fixed point number and then setting

Fixed Point Arithmetic in VHDL

269

Ch25-H6845.qxd 4/5/07 11:43 AM Page 269

each bit on the output std_logic_vector in turn to the correct value.
The VHDL for this is given below:

function fp2std_logic_vector (d:fixsign;top:integer;
low:integer)

return std_logic_vector is
variable outval : std_logic_vector (top-low

downto 0) := (others => ‘0’);
begin

for i in 0 to top-low loop
outval(i) := d(i + low);

end loop;
return outval;

end;

If we look at this function we can see that the arguments to the
function are the fixed point number, and then the two integer val-
ues that denote the number of bits above and below the decimal
point, respectively. For example, if our notation is 8.3, the function
call in this case would be:

Q <= fp2std_logic_vector(d,8,-3);

Notice the negative number denoting the bits below the decimal
point. If you would prefer both numbers to be positive, they can
simply be changed. One reason for using the negative form, is that
the numbers match the basic type definition and therefore make
checking easy.

Similarly, we can convert from std_logic_vector back to fixed
point using a very similar function in the opposite direction:

function std_logic_vector2fp
(d:std_logic_vector;top:integer;low:integer)

return fixsign is
variable outval : fixsign (top downto low)

:= (others => ‘0’);
begin

for i in 0 to top-low loop
outval(i + low) := d(i);

end loop;
return outval;

end;

With the similar usage:

Q <= std_logic_vector(d,8,-3);

Design Recipes for FPGAs

270

Ch25-H6845.qxd 4/5/07 11:43 AM Page 270

Using these functions, the conversion between the std_logic_vec-
tor and fixed point arithmetic domains becomes straightforward.
Also, these functions are easily synthesizable as they simply map
bits and do not carry out any sophisticated functions other than
that.

Fixed point to real conversion

An extremely useful function is the ability to convert from fixed
point to real numbers. Obviously this is no use for synthesis, but is
ideal for adding, checking and reports to test benches. As a result
we only define a single function fp2real which takes a fixed point
number and converts in to a real number for display. Once we have
the number, then the real’image function can be used to display
the value. The VHDL for the conversion function is given below:

function fp2real (d:fixsign; top:integer; low:integer)
return real is

variable outreal : real := 0.0;
variable mult : real := 1.0;
variable max : real := 1.0;
variable debug : boolean := false;

begin
for i in 0 to top-1 loop

if d(i) = ‘1’ then
outreal := outreal + mult;
if debug then
report “ fp2real : “ &
integer’image(i);

end if;
end if;
mult := mult * 2.0;

end loop;
if debug then

REPORT “ fp2real middle : “ & real’image(outreal);
end if;
max := mult;

mult := 0.5;

for i in -1 downto low loop
if d(i) = ‘1’ then

outreal := outreal + mult;
if debug then
report “ fp2real : “ & integer’image(i);

end if;
end if;
mult := mult * 0.5;

end loop;

Fixed Point Arithmetic in VHDL

271

Ch25-H6845.qxd 4/5/07 11:43 AM Page 271

if debug then
REPORT “ fp2real : “ & real’image(outreal);

end if;

if d(top) = ‘1’ then
outreal := outreal - max;

end if;
if debug then

REPORT “ fp2real FINAL VALUE : “ &
real’image(outreal);

end if;

return outreal;
end;

This function is a simple converter that handles the bits above
and below the decimal point in turn. Also notice the internal
Boolean debug variable that allows checking of each individual
bit. This can be very useful when observing the passing of num-
bers across boundaries ensuring correct translation – this defaults
to false (off).

If we need to report a fixed point value, we can therefore use this
function to report the values using simple VHDL such as this:

D : fp8_3;
Dr : real;
Dr <= fp2real(fp8_3,8,-3);
Report “The value is : “ & real’image(Dr);

Testing the fixed point function

As stated previously, we can use these functions to incorporate
standard std_logic ALU functions into the model. In this simple
test case, we are using the standard n-bit adder created in the ALU
functions chapter of this book to add two fixed point numbers
together. How does this work? What we do is convert the two input
fixed point numbers into std_logic_vectors, apply them to the
adder block, then convert the output back to a fixed point number.
We can convert both inputs and outputs into real numbers for
observation on the screen:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.fp_pkg.all;

Design Recipes for FPGAs

272

Ch25-H6845.qxd 4/5/07 11:43 AM Page 272

Fixed Point Arithmetic in VHDL

273

entity simple1 is
end entity simple1;

architecture tb of simple1 is
signal clk : std_logic := ‘0’;
signal cin : std_logic := ‘0’;
signal cout : std_logic;
signal testa : fp8_3 := “000000000000”;
signal testa1 : fixsign (8 downto -3);
signal testa2 : fixsign (8 downto -3);
signal testb1 : fixsign (8 downto -3);
signal testsum : fixsign (8 downto -3);
signal as : signed (11 downto 0) := X”000”;
signal a1std : std_logic_vector (11 downto 0) :=

X”800”;
signal b1std : std_logic_vector (11 downto 0) :=

X”800”;
signal sum : std_logic_vector (11 downto 0) ;
signal a1out : real;
signal b1out : real;
signal a2out : real;
signal sumout : real;
signal a1 : integer := 0;
signal bs : signed (11 downto 0) := X”8f0”;

component add_beh
generic (

top : integer := 7
);
port (

signal a : in std_logic_vector(top
downto 0);

signal b : in std_logic_vector(top
downto 0);

signal cin : in std_logic;
signal cout : out std_logic;
signal sum : out std_logic_vector(top
downto 0)

);
end component;
for all : add_beh use entity work.add_beh;

begin
clk <= not clk after 1 us;

DUT :add_beh generic map (11) port map (a1std,
b1std, cin, cout, sum);

p1 : process (clk)
begin

as <= as + 1;
testa1 <= signed2fp(as,8,-3);
testb1 <= signed2fp(bs,8,-3);

Ch25-H6845.qxd 4/5/07 11:43 AM Page 273

a1out <= fp2real(testa1,8,-3);
b1out <= fp2real(testb1,8,-3);
a1std <= fp2std_logic_vector(testa1,8,-3);

b1std <= fp2std_logic_vector(testb1,8,-3);
testa2 <= std_logic_vector2fp(a1std,8,-3);
testsum <= std_logic_vector2fp(sum,8,-3);
a2out <= fp2real(testa2,8,-3);
sumout <= fp2real(testsum,8,-3);
report “a1out : “ & real’image(a1out);
report “a2out : “ & real’image(b1out);
report “sumout : “ & real’image(sumout);

end process p1;
end;

An important aspect to note in this model is the use of signals and
a clock (clk). By making this model synchronous, we have ensured
correct, predictable behavior, but on each clock cycle there are sev-
eral delays built in. The final observed result on sumout (the real
number output for display) will appear 2 clock cycles after the data
is input to the model.

In this case we are using signed numbers as the original input
(as) as these can be incremented easily and setting one number to
a constant (bs). These inputs are converted to real numbers (a1out,
b1out) that are displayed to the screen to show the results.

Summary

This chapter has introduced the concept of fixed point arithmetic in
VHDL and provided a basic package of functions and types to get
started using VHDL. It must be stressed that this package is purely
for exemplar designs and the reader is encouraged to either use
commercially available libraries for optimum performance or to
develop their own libraries.

Design Recipes for FPGAs

274

Ch25-H6845.qxd 4/5/07 11:43 AM Page 274

26
Binary Multiplication

Introduction

A key function in any hardware design that requires signal pro-
cessing is multiplication. In order to implement such a function it
is useful to introduce the basic methods for binary multiplication
from first principles so that the implemented approaches can be
understood. In this chapter we will describe these methods and
illustrate them with VHDL.

Basic binary multiplication

The simplest approach to binary multiplication is essentially
long multiplication applied to binary numbers. Consider a basic
example of a decimal long multiplication first to remind us of
the basic concept – take a multiplication of two numbers 23
and 17:

This can be implemented using binary numbers in exactly
the same way, except instead of decimal numbers, the arithmetic
is binary. Consider the multiplication of two unsigned binary
numbers for 6 (0110) and 4 (0100). Simply take each bit of
the multiplier (4 in this case) and if it is zero, add nothing,

23
17

1 6 1
2 3 0
3 9 1

�

Ch26-H6845.qxd 4/5/07 11:44 AM Page 275

Design Recipes for FPGAs

276

but if the bit is one, add the shifted multiplicand (6 in this
case).

The way we implement this in practice is to have a ‘partial prod-
uct’ and then add the shifted multiplicand (or zeros) at each stage
of the process until the multiplication is complete.

While this approach works for unsigned binary numbers, it does
not work for twos complement numbers. In the case of twos com-
plement, using a similar approach requires the addition of sign bits
to the left of the shifted multiplicand at each stage and then a final
step of negating the multiplicand and adding the final shifted value
to the partial product. A simpler approach that lends itself well to
hardware implementation is simply to test whether a number (or
both) are negative, invert to obtain the magnitude of each number
if necessary, carry out an unsigned multiplication, then depending
on how many of the arguments are negative – invert the output
(twos complement). The method of checking for negative numbers
is relatively simple, as an XOR function on the Most Significant
Bit (MSB) of the two input signed numbers will tag whether the
output needs to have a twos complement taken. This is shown
schematically in Figure 72.

VHDL unsigned multiplier

If we start with a simple unsigned multiplier, then this can be
implemented very simply using VHDL. The important aspect to
consider with this multiplier is how many bits will be on the inputs
and how many on the outputs. If the number of bits are the same
across all three, then we need to consider the possibility of over-
flow and how this can be handled by the multiplier. In this basic
model, we will define the output number of bits as being the sum
of the two input word lengths, and deal with overflow externally to
the multiplier.

0110
0100 4
0000

0000
0110
0000
011000 24

(6)
()

()

�

Ch26-H6845.qxd 4/5/07 11:44 AM Page 276

Binary Multiplication

277

If we use the basic accumulator and addition function of the sim-
ple binary addition method described previously, we can imple-
ment a basic VHDL multiplier as shown below:

library ieee;
use IEEE.std_logic_1164.all;

entity mult_beh is
generic(top : natural := 15);
port (

clk : in std_logic;
nrst : in std_logic;

a : in std_logic_vector (top downto 0);
b : in std_logic_vector (top downto 0);
product : out std_logic_vector (2*top+1
downto 0)

);
end entity mult_beh;

architecture behavior of mult_beh is
component add_beh
generic (

top : integer := 7
);
port (

signal a : in std_logic_vector(top downto 0);
signal b : in std_logic_vector(top downto 0);
signal cin : in std_logic;

Unsigned
Multiplier

A

B

�0?

Twos
Complement

No

Yes Select
Output

D D

D

D

Q

Negative Flag

�0?

Twos
Complement

No

Yes Select
Output

D

D

Q

Negative Flag

Asign

Bsign

|A*B|

Asign

Bsign

(A*B)sign

Figure 72

Basic Signed Multiplication

Ch26-H6845.qxd 4/5/07 11:44 AM Page 277

signal cout : out std_logic;
signal sum : out std_logic_vector
(top downto 0)

);
end component;
for all : add_beh use entity work.add_beh;

signal cin : std_logic := ‘0’;
signal cout : std_logic := ‘0’;
signal acc : std_logic_vector(2*top+1 downto 0);
signal sum : std_logic_vector(2*top+1 downto 0);
signal mand : std_logic_vector(2*top+1 downto 0);
signal index : integer := 0;
signal finished : std_logic := ‘0’;

begin

DUT :add_beh generic map (2*top+1) port map
(acc,mand,cin,cout,sum);

p1 : process (clk, nrst)
variable mandvar : std_logic_vector(2*top+1 downto 0);

begin
if (nrst = '0') then

acc <= (others => '0');
index <= 0;
finished <= '0';

else
if rising_edge(clk) then

if index <= top then
index <= index [Plus] 1;
mandvar := (others => '0');
if b(index) = '1' then
for i in 0 to top loop
mandvar(i+index) := a(i);

end loop;
end if;

end if;
mand <= mandvar;
acc <= sum;

end if;
if falling_edge(clk) then

if index > top-1 then
finished <= '1';

end if;
end if;

end if;
end process p1;
p2 : process (finished)
begin

if rising_edge(finished) then
product <= sum;

end if;
end process p2;

end architecture behavior;

Design Recipes for FPGAs

278

Ch26-H6845.qxd 4/5/07 11:44 AM Page 278

This model is perhaps more complex than it really needs to be,
but it does have some nice features from a learning point of view.

Firstly, rather than a ‘super efficient’ shifting model which is dif-
ficult to read, the shift and add function in process p1 is laid out in
detail so each stage of the multiplication can be followed through.
Also notice the use of the signal finished which is used to show
when the calculation is completed. This is useful when designing
a controller to show that the calculation has been completed.

Synthesis of the multiplication function

After completion, this model was run through a standard synthesis
software tool, targeted at a reasonable sized Virtex II Pro FPGA
with the following results:

Number of ports : 66
Number of nets : 1704
Number of instances : 1639
Number of references to this view : 0
Total accumulated area :
Number of BUFGP : 1
Number of Dffs or Latches : 164
Number of Function Generators : 1181
Number of IBUF : 33
Number of MUX CARRYs : 31
Number of MUXF5 : 221
Number of MUXF6 : 2
Number of OBUF : 32
Number of accumulated instances : 1701
Number of global buffers used: 1
**
Device Utilization for 2VP2fg256
**
Resource Used Avail Utilization
--
IOs 65 140 46.43%
Global Buffers 1 16 6.25%
Function Generators 1181 2816 41.94%
CLB Slices 591 1408 41.97%
Dffs or Latches 164 3236 5.07%
Block RAMs 0 12 0.00%
Block Multipliers 0 12 0.00%
--

Clock : Frequency

clk : 30.0 MHz
finished : 30.0 MHz

Binary Multiplication

279

Ch26-H6845.qxd 4/5/07 11:44 AM Page 279

Design Recipes for FPGAs

280

What is clear from this report is the fact that a significant amount of
resources were required to implement this multiplier on a standard
device. In this case, the optimization was for area and not speed, but
in spite of that, the design usage was nearly 50 per cent of the
whole FPGA (Field Programmable Gate Array), so clearly arith-
metic functions are not always easy on an FPGA, certainly not in
area terms, with the worst culprit being multipliers.

As a result, care must be taken in managing designs, taking advan-
tage of pipelining and using the available resources as effectively as
possible. The downside is that the design becomes more involved,
with a controller generally required, but ultimately the possibility of
higher performance than an equivalent DSP function.

‘Simple’ multiplication

As we have seen in the previous example, there is a method of
implementing multiplication operations using a ‘first principles’
approach and it is incredibly hungry in terms of both resources
and time (taking n shifts to complete a multiplication would lead
to a really slow device).

There is, however, an alternative approach with many modern
FPGAs that include multiplier blocks as part of the design. These
are custom multiplication blocks already in place on the FPGA
and this allows the specific multiply function to be implemented
directly in the VHDL.

We can therefore convert the std_logic_vector signals into signed
signals and then apply the product equation directly using the fol-
lowing VHDL (remember a and b are the two inputs, both of type
std_logic_vector, and product is the output, also of type
std_logic_vector).

Product <= std_logic_vector(signed(a) * signed(b));

Clearly this is much more efficient VHDL than the previous model,
but also remember to declare the IEEE numeric standard library:

Use ieee.numeric_std.all;

This allows the use of the signed variable types. The complete model
using this approach is much more compact and is shown below:

library ieee;
use IEEE.std_logic_1164.all;
use ieee.numeric_std.all;

Ch26-H6845.qxd 4/5/07 11:44 AM Page 280

Binary Multiplication

281

entity mult_sign is
generic(top : natural := 15);
port (

clk : in std_logic;
nrst : in std_logic;
a : in std_logic_vector (top downto 0);

b : in std_logic_vector (top downto 0);
product : out std_logic_vector
(2*top+1 downto 0)

);
end entity mult_sign;

architecture behavior of mult_sign is
begin

p1 : process (a,b)
begin

product <= std_logic_vector(signed(a) *
signed(b));

end process p1;
end architecture behavior;

The resulting synthesis output is much more compact. Clearly the
number of IO Blocks (IOBs) will remain the same, but the usage
internally on the FPGA will be much reduced:

Number of ports : 66
Number of nets : 128
Number of instances : 65
Number of references to this view : 0
Total accumulated area :
Number of Block Multipliers : 1
Number of gates : 0
Number of accumulated instances : 65
Number of global buffers used: 0
**
Device Utilization for 2VP2fg256
**
Resource Used Avail Utilization
--
IOs 66 140 47.14%
Global Buffers 0 16 0.00%
Function Generators 0 2816 0.00%
CLB Slices 0 1408 0.00%
Dffs or Latches 0 3236 0.00%
Block RAMs 0 12 0.00%
Block Multipliers 1 12 8.33%

Clearly, for this device, there are 12 multipliers available, and we
have used only one, so the utilization of the remainder of the
device is zero. This does lead to the ability to implement certain
lower order filters very effectively using devices such as these.

Ch26-H6845.qxd 4/5/07 11:44 AM Page 281

282

Design Recipes for FPGAs

Summary

This chapter has introduced some techniques for implementing
multiplication in VHDL for FPGAs and has highlighted the clear
difference between using a ‘first principles’ approach as opposed
to utilizing the available resources on the FPGA, both in terms of
area usage, and also in terms of model complexity.

There are, of course, other topologies of multiplier, including the
Booth multiplier to name but one, and these are commonly used in
hardware. The reader is encouraged to investigate different options
for implementing hardware such as multipliers and how best to
implement the function for their own application.

Ch26-H6845.qxd 4/5/07 11:44 AM Page 282

27
Bibliography

Introduction

It is normal in a book such as this to have a bibliography that
simply lists a series of books, however in this book I have decided
to not only list the book titles and details, but also give my
perspective on their applicability and context to help the reader
in deciding which would be a suitable book for them. Of course,
this is limited to my own viewpoint and others may well disagree
with my short synopses of the books, but hopefully it will help
the reader understand where I found each book useful in this
work.

Useful texts for VHDL

Digital Systems Design

Digital System Design with VHDL by Mark Zwolinski, published
by Pearson Education is a superb introduction to designing with
VHDL. It is used in many Universities worldwide for teaching
VHDL at an undergraduate level and has numerous basic exam-
ples to enable a student to get started. I would also recommend
this to an FPGA engineer getting started with VHDL.

Designers Guide to VHDL

The Designers Guide to VHDL by Peter Ashenden is perhaps the
most comprehensive book on VHDL from a variety of perspec-
tives. It covers the syntax and language rigorously, has plenty of
examples, and is a great desk top reference book. For non-begin-
ners in VHDL, this is the book I would recommend.

Ch27-H6845.qxd 4/5/07 11:44 AM Page 283

VHDL: Analysis and Modeling of Digital Systems

VHDL: Analysis and Modeling of Digital Systems (McGraw-Hill
Series in Electrical and Computer Engineering) by Zainalabedin
Navabi is a detailed look at not only how VHDL can be used to
model digital systems, but many of the detailed issues regarding
timing and analysis that are often skipped over by other texts on
VHDL. It is perhaps not a beginners book, but is especially useful
for those who require a deeper understanding of issues relating to
timing.

VHDL for Logic Synthesis

VHDL for Logic Synthesis by Andrew Rushton, published by
Wiley, is a useful background text for those who perhaps need to
understand how VHDL can be used for practical synthesis. The
book discusses what and what is not synthesizable and also
explains how some useful and somewhat arcane VHDL functions
operate.

Useful Texts for FPGAs

Design Warriors Guide to FPGAs

A Design Warriors Guide to FPGAs by Clive ‘Max’ Maxfield,
published by Elsevier, is an excellent introduction to the field of
FPGAs. It introduces the main concepts in designing with FPGAs
as the platform and does not get into low level details of VHDL or
Verilog, but does have a balance between high level design issues
and low level details. This is especially useful for the student who
needs to know how FPGAs work and also for engineers who need
a ‘heads up’ on how FPGAs can be used in practice.

General Digital Design Books

Digital Design

Digital Design, by M. Morris Mano, published by Prentice Hall, is
a good background text for digital design and computer design. A
particularly useful aspect for those designing embedded processors
is the section of the book that discusses the difference between high

Design Recipes for FPGAs

284

Ch27-H6845.qxd 4/5/07 11:44 AM Page 284

level languages, assembly language and machine code and then
develops that into a design methodology. For anyone starting out
with processor design this is a very useful text. Mano also has a
related book called Computer System Architecture that has more
detail in this area and is equally useful.

Bibliography

285

Ch27-H6845.qxd 4/5/07 11:44 AM Page 285

This page intentionally left blank

Index

A
Adder 251
ALU (Arithmetic Logic Unit) 71
ASIC 5

B
Bayer pattern 47

C
Complex Programmable Logic Devices

(CPLD) 6
Counter

basic 227
Binary Coded Decimal (BCD) 236
Johnson counter 234
parasitic 235

D
Decoders

3-8 decoder 258
Design

critical path 187
data flow diagram 186
Karnaugh Map 185
logic minimization 185
pipeline 187
redundancy 186

DRAM (Dynamic RAM) 48

E
EDA

hardware-software co-design 57
Leonardo Spectrum 223
place and route 232
Synopsys Design Compiler 187
synthesis 223

SystemC 11
Verilog 11
Xilinx Design Navigator 232

Encoding Schemes
Manchester encoding 83

F
Filters

bilinear transform 98
Finite Impulse Response (FIR) 108
Infinite Impulse Response (IIR) 109
Laplace filter equation 98
low pass cut-off frequency 99
low pass filter 83
pre-warping 99
resolution 100
second order filter 98
sequence expression 99

FPGA (Field Programmable Gate Array)
5, 6

CMOS 5
Complex Logic Block (CLB) 6
design optimization 184
lookup table (LUT) 6
resource allocation 232
Xilinx Virtex II Pro 232

L
Laplace 97
Logic functions

AND 248
NOT 248
OR 248
XOR 248

LVDS (Low Voltage Differential Swing) 46

Index-H6845 4/5/07 11:45 AM Page 287

M
Memory

DRAM (Dynamic RAM) 140
SDRAM (Synchronous Dynamic

Random Access Memory) 140
Microprocessors

accumulator 60
address bus 58
ALU 58, 71
assembler 59
control unit 58
data bus 58
DMA 79
fetch execute cycle 61
general purpose microprocessor 58
general purpose registers 62
generic microcontroller 57
Instruction Register 61, 69
Instruction Set 60, 65
IP processor core 57
machine code 59
Memory Address Register (MAR)

61, 72
Memory Data Register (MDR)

61, 72
Microblaze 78
NIOS 78
opcode 61
PIC ROM 58
Program Counter 58, 68
RAM 58
ROM 58

Multiple bit addition 251
Multiplexer

4 input multiplexer 262
basic multiplexer 260

P
Processor

ARM 6
Intel Pentium 6
PowerPC 6

Programmable 6
PS/2 keyboard

keyboard 157
keyboard handler VHDL 158

PS/2 Mouse
device ID 152
mouse 150
mouse handler VHDL 152
mouse with wheel 152
reset mode 151
stream mode 151

R
Resolution 46

S
Sampled Data Systems (SDS) 97
S-domain 97
SDRAM (Synchronous Dynamic Random

Access Memory) 48
Shift Register

basic 233
Static RAM (SRAM) 140
std_logic_vector 249, 255, 267, 269, 270,

271, 272
Storage Elements

8 bit register 243
asynchronous set and reset 241
D Latch 238
D type flip flop 240
Latch 238
Level Sensitive Latch 239
n-bit register 233
SR Latch 238
register 233

Synthesis
RTL Synthesis 172

V
VHDL

arithmetic operators 18
assertions 26
Boolean operators 18
case 21
comparison operators 19
components 24
constants 14
else 20
elsif 20
entity 12

Index

288

Index-H6845 4/5/07 11:45 AM Page 288

exit 22
explicit sensitivity list 241
for loop 22
functions 23
generics 13
if 20
implicit sensitivity list 241
incomplete if 239
local signal declaration 15
loop 22
next 22
packages 23
ports 13
procedures 25
rising_edge 243
sensitivity list 16
shifting functions 19
signals 17
variables 18
while 22

VHDL types
bit 26
boolean 27
character 27
data types 26
integer 27
natural 27
positive 27
real 28
std_logic_vector 249
time 28

VHDL-AMS
‘ABOVE 199

branch quantities 193
comparator 202
dc source 194
differential equations 196
digital modeling 197
‘DOT 196
electrical pins 192
extensions to VHDL 191
free quantities 193
IEEE 1076.1-1999 190
‘INTEG 196
MEMS 204
mixed Signal modeling 197
Newton–Raphson 198
quantities 193
‘RAMP 200
resistor 195
simple switch model 201
SLEW 200
source quantities 193
spice 198
standard packages 192
terminals 191

Z
Z-domain 98

difference 101
division 102
filter 105
gain block 100
sum 101
unit delay 104

Index

289

Index-H6845 4/5/07 11:45 AM Page 289

