
the essence of knowledge

Fn
T

E
D

A
 2:2

F
P

G
A

 A
rch

itectu
re:

S
u

rvey an
d

 C
h

allen
g

es
Ian

 K
u

o
n

,R
u

ssell Tessier,an
d

 Jo
n

ath
an

 R
o

se

FPGA Architecture: Survey and Challenges
Ian Kuon, Russell Tessier, and Jonathan Rose

Field-Programmable Gate Arrays (FPGAs) have become one of the key digital circuit
implementation media over the last decade. A crucial part of their creation lies in their
architecture, which governs the nature of their programmable logic functionality and their
programmable interconnect. FPGA architecture has a dramatic effect on the quality of the final
device’s speed performance, area efficiency, and power consumption. FPGA Architecture:
Survey and Challenges reviews the historical development of programmable logic devices, the
fundamental programming technologies that the programmability is built on, and then
describes the basic understandings gleaned from research on architectures.

FPGA Architecture: Survey and Challenges starts with a brief overview of programmable logic
to provide a context for the subsequent sections which review the history of programmable
logic, and the underlying programming technologies. The following sections define the
terminology of FPGA architecture, and then describe foundations and trends of logic block
architecture and routing architecture including a discussion of power management techniques
and related circuit design issues. A brief overview of the input/output structures and
architectural questions in FPGAs is then presented followed by an explicit comparison
between FPGAs and competing ASIC standard cell technology. It concludes with a review of
some of the design challenges facing FPGAs and a look at emerging architectures for FPGAs.

FPGA Architecture: Survey and Challenges is an invaluable reference for engineers and
computer scientists. It is also an excellent primer for senior or graduate-level students in
electrical engineering or computer science.

This book is originally published as
Foundations and Trends® in Electronic Design Automation,
Volume 2 Issue 2, ISSN: 1551-3939.

Foundations and Trends® in
Electronic Design Automation

2:2

FPGA Architecture: Survey
and Challenges

Ian Kuon, Russell Tessier, and Jonathan Rose

now

n
o
w

EDAv2n2.qxd 4/19/2008 9:14 AM Page 1

FPGA Architecture:

Survey and Challenges

FPGA Architecture:
Survey and Challenges

Ian Kuon

University of Toronto
Toronto, ON

Canada
ikuon@eecg.utoronto.ca

Russell Tessier

University of Massachusetts
Amherst, MA

USA
tessier@ecs.umass.edu

Jonathan Rose

University of Toronto
Toronto, ON

Canada
jayar@eecg.utoronto.ca

Boston – Delft

Foundations and Trends R© in
Electronic Design Automation

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is I. Kuon, R. Tessier and J. Rose,

FPGA Architecture: Survey and Challenges, Foundations and Trends R© in Elec-
tronic Design Automation, vol 2, no 2, pp 135–253, 2007

ISBN: 978-1-60198-126-4
c© 2008 I. Kuon, R. Tessier and J. Rose

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Foundations and Trends R© in
Electronic Design Automation

Volume 2 Issue 2, 2007

Editorial Board

Editor-in-Chief:
Sharad Malik
Department of Electrical Engineering
Princeton University
Princeton, NJ 08544

Editors
Robert K. Brayton (UC Berkeley)
Raul Camposano (Synopsys)
K.T. Tim Cheng (UC Santa Barbara)
Jason Cong (UCLA)
Masahiro Fujita (University of Tokyo)
Georges Gielen (KU Leuven)
Tom Henzinger (EPFL)
Andrew Kahng (UC San Diego)
Andreas Kuehlmann (Cadence Berkeley Labs)
Ralph Otten (TU Eindhoven)
Joel Phillips (Cadence Berkeley Labs)
Jonathan Rose (University of Toronto)
Rob Rutenbar (CMU)
Alberto Sangiovanni-Vincentelli (UC Berkeley)
Leon Stok (IBM Research)

Editorial Scope

Foundations and Trends R© in Electronic Design Automation
will publish survey and tutorial articles in the following topics:

• System Level Design

• Behavioral Synthesis

• Logic Design

• Verification

• Test

• Physical Design

• Circuit Level Design

• Reconfigurable Systems

• Analog Design

Information for Librarians
Foundations and Trends R© in Electronic Design Automation, 2007, Volume 2,
4 issues. ISSN paper version 1551-3939. ISSN online version 1551-3947. Also
available as a combined paper and online subscription.

Foundations and TrendsR© in
Electronic Design Automation

Vol. 2, No. 2 (2007) 135–253
c© 2008 I. Kuon, R. Tessier and J. Rose
DOI: 10.1561/1000000005

FPGA Architecture: Survey
and Challenges

Ian Kuon1, Russell Tessier2

and Jonathan Rose1

1 The Edward S. Rogers Sr. Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON, Canada,
{ikuon, jayar}@eecg.utoronto.ca

2 Department of Electrical and Computer Engineering, University of
Massachusetts, Amherst, MA, USA, tessier@ecs.umass.edu

Abstract

Field-Programmable Gate Arrays (FPGAs) have become one of the key
digital circuit implementation media over the last decade. A crucial part
of their creation lies in their architecture, which governs the nature of
their programmable logic functionality and their programmable inter-
connect. FPGA architecture has a dramatic effect on the quality of the
final device’s speed performance, area efficiency, and power consump-
tion. This survey reviews the historical development of programmable
logic devices, the fundamental programming technologies that the pro-
grammability is built on, and then describes the basic understandings
gleaned from research on architectures. We include a survey of the key
elements of modern commercial FPGA architecture, and look toward
future trends in the field.

Contents

1 Introduction 1

1.1 Overview 3

2 Early History of Programmable Logic 5

3 Programming Technologies 9

3.1 Static Memory Programming Technology 9
3.2 Flash/EEPROM Programming Technology 12
3.3 Anti-fuse Programming Technology 14
3.4 Summary 16

4 Logic Block Architecture 17

4.1 FPGA Logic Block Fundamentals and Trade-Offs 17
4.2 Methodology 19
4.3 Logic Block Trade-Offs with Area 21
4.4 Speed Trade-Offs 26
4.5 Logic Block Power Trade-Offs 28
4.6 PLA/PAL-Style Types of Logic Blocks 29
4.7 Heterogeneous Mixtures of Soft Logic Blocks 29
4.8 Heterogeneity 30
4.9 Commercial Logic Blocks 36
4.10 Challenges in Basic Logic Block Architecture 40

ix

5 Routing Architecture 43

5.1 FPGA Routing Architecture Overview 44
5.2 Unidirectional Single-Driver Routing Architectures 54
5.3 Additional Routing Structure Improvement

Approaches 57
5.4 Power Related Issues 65
5.5 Challenges in Basic Routing Architecture 70

6 Input/Output Architecture and Capabilities 73

6.1 Basic I/O Standards 74
6.2 I/O Architecture Issues 75
6.3 High-Speed I/O Support 77
6.4 Challenges in I/O Architecture and Design 78

7 Improving FPGAs 79

7.1 The Gap Between FPGA and ASICs 79
7.2 Alternatives to FPGAs 82

8 Emerging Challenges and Architectures 87

8.1 Technology Issues 87
8.2 Emerging Architectures 95
8.3 Conclusion 103

References 105

1

Introduction

Field-Programmable Gate Arrays (FPGAs) are pre-fabricated silicon
devices that can be electrically programmed to become almost any
kind of digital circuit or system. They provide a number of compelling
advantages over fixed-function Application Specific Integrated Circuit
(ASIC) technologies such as standard cells [62]: ASICs typically take
months to fabricate and cost hundreds of thousands to millions of dol-
lars to obtain the first device; FPGAs are configured in less than a
second (and can often be reconfigured if a mistake is made) and cost
anywhere from a few dollars to a few thousand dollars.

The flexible nature of an FPGA comes at a significant cost in area,
delay, and power consumption: an FPGA requires approximately 20 to
35 times more area than a standard cell ASIC, has a speed performance
roughly 3 to 4 times slower than an ASIC and consumes roughly 10
times as much dynamic power [120]. These disadvantages arise largely
from an FPGA’s programmable routing fabric which trades area, speed,
and power in return for “instant” fabrication.

Despite these disadvantages, FPGAs present a compelling alterna-
tive for digital system implementation based on their fast-turnaround
and low volume cost. For small enterprises or small entities within large

1

2 Introduction

corporations, FPGAs provide the only economical access to the scala-
bility and performance provided by Moore’s law. As Moore’s law pro-
gresses, the ensuing difficulties brought about by state-of-the-art deep
submicron processes make ASIC design more difficult and expensive.
The investment required to produce a useful ASIC consists of several
very large items in terms of time and money:

(1) State-of-the-art ASIC CAD tools for synthesis, placement,
routing, extraction, simulation, timing analysis, and power
analysis are extremely costly.

(2) The mask costs of a fully-fabricated device can be millions
of dollars. This cost can be reduced if prototyping costs are
shared among different, smaller ASICs, or if a “structured
ASIC” approach, which requires fewer masks, is used.

(3) The loaded cost of an engineering team required to develop
a large ASIC over multiple years is huge. (This cost would
be related, but smaller for an FPGA design team.)

These high costs, and the need for a proportionally higher return
on investment, drive most digital design starts toward FPGA
implementation.

The two essential technologies which distinguish FPGAs are archi-
tecture and the computer-aided design (CAD) tools that a user must
employ to create FPGA designs. The goal of this survey is to examine
the existing state of the art in FPGA architecture and to project future
trends; a companion paper on CAD for FPGAs appeared in a previous
edition of this journal [54].

The survey is organized as follows: we first give a brief overview
of programmable logic to provide a context for the subsequent sec-
tions which review the history of programmable logic, and the underly-
ing programming technologies. The following sections define the termi-
nology of FPGA architecture, and then describe the foundations and
trends in logic block architecture and routing architecture including a
discussion of power management techniques and related circuit design
issues. A brief overview of the input/output structures and architec-
tural questions is then presented followed by an explicit comparison
between FPGAs and competing ASIC standard cell technology. Finally,

1.1 Overview 3

the survey concludes with a review of some of the design challenges fac-
ing FPGAs and a look at emerging architectures for FPGAs.

1.1 Overview

FPGAs, as illustrated in Figure 1.1, consist of an array of pro-
grammable logic blocks of potentially different types, including general
logic, memory and multiplier blocks, surrounded by a programmable
routing fabric that allows blocks to be programmably interconnected.
The array is surrounded by programmable input/output blocks, labeled
I/O in the figure, that connect the chip to the outside world.

The “programmable” term in FPGA indicates an ability to program
a function into the chip after silicon fabrication is complete. This cus-
tomization is made possible by the programming technology, which is
a method that can cause a change in the behavior of the pre-fabricated
chip after fabrication, in the “field,” where system users create designs.

Fig. 1.1 Basic FPGA structure.

4 Introduction

The first programmable logic devices used very small fuses as the pro-
gramming technology. These devices are described briefly in the fol-
lowing section on the history of programmable logic. Section 3 goes
into more detail on the three principal programming technologies in
use today in modern FPGAs.

2

Early History of Programmable Logic

The origins of the contemporary Field-Programmable Gate Array
are tied to the development of the integrated circuit in the early
1960s. Early programmable devices employed architectural regularity
and functional flexibility. Cellular arrays [150] typically consisted of a
two-dimensional array of simple logic cells with fixed, point-to-point
communication. These first arrays, such as the Maitra cascade [143],
contained logic cells which could be programmed via metalization dur-
ing manufacturing to implement a range of two-input logic functions.
By the mid-1960s, field-programmability, the ability to change the logic
function of a chip after the fabrication process, was achieved via the
introduction of “cutpoint” cellular arrays [150]. Although the connec-
tions between the elements of the array were fixed, the functionality
of each logic cell in the array could be determined by setting pro-
grammable fuses. These fuses could be programmed in the field through
the use of programming currents or photo-conductive exposure [150].
As a result, field-customization allowed for simplified array manufac-
turing and wider applicability.

In the 1970s, a series of read-only memory (ROM)-based pro-
grammable devices were introduced and provided a new way to

5

6 Early History of Programmable Logic

implement logic functions. Although mask-programmable ROMs and
fuse-programmable ROMs (PROMs) with N address inputs can imple-
ment any N -input logic function, area efficiency quickly becomes an
issue for all but small values of N due to the exponential dependence
of area on N . The first programmable logic arrays (PLAs) improved on
this with two-level AND–OR logic planes (each plane in a wired-AND
or wired-OR structure along with inverters can build any AND or OR
logic term) that closely match the structure of common logic functions
and are significantly more area-efficient. An example PLA is shown in
Figure 2.1(a).

These architectures evolved further with the realization that suffi-
cient flexibility was provided by a programmable AND plane followed
by a fixed OR plane, in the programmable array logic (PAL) devices
that were introduced in 1977 by Monolithic Memories Incorporated
(MMI) [39]. As shown in Figure 2.1(b), it is notable that these devices
contained programmable combinational logic which fed fixed sequential
logic in the form of D-type flip–flop macrocells.

With these devices, logic functions must be implemented using
one or more levels of two-level logic structures. Device inputs and

Fig. 2.1 PLA and PAL architectures.

7

intermediate combinational sums are fed into the array via a pro-
grammable interconnect that is typically a full cross-bar, leading to
significant interconnect costs for this programmable architecture. For
datapath and multi-level circuits, the area costs of two-level implemen-
tation quickly become prohibitive.

The first static memory-based FPGA (commonly called an SRAM-
based FPGA) was proposed by Wahlstrom in 1967 [203]. This archi-
tecture allowed for both logic and interconnection configuration using
a stream of configuration bits. Unlike its contemporary cellular
array counterparts, both wide-input logic functions and storage ele-
ments could be implemented in each logic cell. Additionally, the pro-
grammable inter-cell connections could be easily changed (through
memory-configurability) to enable the implementation of a variety of
circuit topologies. Although static memory offers the most flexible
approach to device programmability, it requires a significant increase
in area per programmable switch compared to ROM implementations.
It is likely this issue delayed the introduction of commercial static
memory-based programmable devices until the mid-1980’s, when the
cost per transistor was sufficiently lowered.

The first modern-era FPGA was introduced by Xilinx in 1984 [49].
It contained the now classic array of Configurable Logic Blocks. From
that first FPGA which contained 64 logic blocks and 58 inputs and
outputs [49], FPGAs have grown enormously in complexity. Modern
FPGAs now can contain approximately 330,000 equivalent logic blocks
and around 1100 inputs and outputs [23, 231] in addition to a large
number of more specialized blocks that have greatly expanded the capa-
bilities of FPGAs. These massive increases in capabilities have been
accompanied by significant architectural changes that will be described
in the remainder of this survey.

3

Programming Technologies

Every FPGA relies on an underlying programming technology that
is used to control the programmable switches that give FPGAs their
programmability. There are a number of programming technologies
and their differences have a significant effect on programmable logic
architecture. The approaches that have been used historically include
EPROM [81], EEPROM [68, 174], flash [92], static memory [49], and
anti-fuses [38, 93]. Of these approaches, only the flash, static mem-
ory and anti-fuse approaches are widely used in modern FPGAs. This
survey focuses primarily on static memory-based FPGAs but, in this
section, all these modern programming technologies will be reviewed
to provide a more complete understanding of the advantages and dis-
advantages of static memory-based programming.

3.1 Static Memory Programming Technology

Static memory cells are the basis for SRAM programming technol-
ogy which is widely used and can be found in devices from Xilinx
[221, 224, 225, 227, 228, 229, 231], Lattice [124, 127], and Altera
[18, 21, 22, 23, 24, 25]. In these devices, static memory cells, such as the

9

10 Programming Technologies

Fig. 3.1 Use of static memory cells.

one shown in Figure 3.1(a), are distributed throughout the FPGA to
provide configurability. There are two primary uses for the SRAM cells.
Most are used to set the select lines to multiplexers that steer inter-
connect signals. The majority of the remaining SRAM cells are used
to store the data in the lookup-tables (LUTs) that are typically used
in SRAM-based FPGAs to implement logic functions. Figures 3.1(b)
and 3.1(c) illustrate these two different approaches. Historically, SRAM
cells were used to control the tri-state buffers and simple pass transis-
tors that were also used for programmable interconnect but, as will
be discussed in Section 5, such interconnect structures are no longer
commonly used.

SRAM programming technology has become the dominant approach
for FPGAs because of its two primary advantages: re-programmability
and the use of standard CMOS process technology. From a practical

3.1 Static Memory Programming Technology 11

standpoint, an SRAM cell can be programmed an indefinite number
of times. Dedicated circuitry on the FPGA initializes all the SRAM
bits on power up and configures the bits with a user-supplied configu-
ration. Unlike other programming technologies, the use of SRAM cells
requires no special integrated circuit processing steps beyond standard
CMOS. As a result, SRAM-based FPGAs can use the latest CMOS
technology available and, therefore, benefit from the increased integra-
tion, the higher speeds and the lower dynamic power consumption of
new processes with smaller minimum geometries.

There are however a number of drawbacks to SRAM-based pro-
gramming technologies:

(1) Size. The SRAM cell requires either 5 or 6 transistors and the
programmable element used to interconnect signals requires
at least a single transistor.

(2) Volatility. The volatility of the SRAM cell necessitates the
use of external devices to permanently store the configura-
tion data when the device is powered down. These external
flash or EEPROM devices add to the cost of an SRAM-based
FPGA. (We note that there have recently been a few devices
that use on-chip SRAM as the main programmability mech-
anism, but that also include on-chip banks of flash memory
to load this SRAM upon power-up [17, 234].)

(3) Security. Since the configuration information must be loaded
into the device at power up, there is the possibility that the
configuration information could be intercepted and stolen
for use in a competing system. (We note that several mod-
ern FPGA families provide encryption techniques for con-
figuration information that effectively eliminates this risk
[23, 231].)

(4) Electrical properties of pass transistors. SRAM-based FPGAs
typically rely on the use of pass transistors to implement
multiplexers. However, they are far from ideal switches as
they have significant on-resistances and present an appre-
ciable capacitive load. As FPGAs migrate to smaller device
geometries these issues may be exacerbated.

12 Programming Technologies

3.2 Flash/EEPROM Programming Technology

One alternative that addresses some of the shortcomings of SRAM-
based technology is the use of floating gate programming technolo-
gies that inject charge onto a gate that “floats” above the transistor.
This approach is used in flash or EEPROM memory cells. These cells
are non-volatile; they do not lose information when the device is pow-
ered down.

Historically, EEPROM memory cells were not used to directly
switch FPGA signals and, instead, the cells were commonly used to
implement wired-AND functions in PLD-style devices [45]. Except for
very low-capacity devices [11, 232], such approaches are no longer com-
monly used, in part because of the static power dissipation inherent
in such schemes. With modern IC fabrication processes, it has become
possible to use the floating gate cells directly as switches. Flash mem-
ory cells, in particular, are now used because of their improved area
efficiency. The widespread use of flash memory cells for non-volatile
memory chips ensures that flash manufacturing processes will benefit
from steady decreases in process geometries. Figure 3.2 illustrates the
flash-based approach used in Actel’s ProASIC devices [3, 186]. The
smaller programming transistor is used for programming the floating
gate (injecting charge that remains even while the power is off) while

Fig. 3.2 Floating gate transistor.

3.2 Flash/EEPROM Programming Technology 13

the larger switching transistor serves as the programmable switch.
It is also necessary to use the switching transistor when erasing the
device [3].

This flash-based programming technology offers several unique
advantages, most importantly non-volatility. This feature eliminates
the need for the external resources required to store and load configu-
ration data when SRAM-based programming technology is used. Addi-
tionally, a flash-based device can function immediately upon power-up
instead of having to wait for the loading of configuration data. The
flash approach is also more area efficient than SRAM-based technology
which requires up to six transistors to implement the programmable
storage. The programming circuitry, such as the high and low voltage
buffers needed to program the cell, contributes an area overhead not
present in SRAM-based devices. However, this cost is relatively modest
as it is amortized across numerous programmable elements. In compar-
ison to anti-fuses, an alternative non-volatile programming technology,
flash-based FPGAs are reconfigurable and can be programmed without
being removed from a printed circuit board. The use of a floating-gate
to control the switching transistor adds design complexity because care
must be taken to ensure the source–drain voltage remains sufficiently
low to prevent charge injection into the floating gate [142]. Since newer
processes require lower voltage levels, this issue may become less of a
concern in the future.

One disadvantage of flash-based devices is that they cannot be
reprogrammed an infinite number of times. Charge buildup in the oxide
eventually prevents a flash-based device from being properly erased and
programmed [156]. Current devices such as the Actel ProASIC3 are
only rated for 500 programming cycles [3]. For most uses of FPGAs,
this programming count is more than sufficient. In many cases FPGAs
are programmed for only one use. Another significant disadvantage of
flash devices is the need for a non-standard CMOS process. Also, like
the static memory-based technology, this programming technology suf-
fers from relatively high resistance and capacitance due to the use of
transistor-based switches.

One trend that has recently emerged is the use of flash storage
in combination with SRAM programming technology [17, 125, 126,

14 Programming Technologies

134, 234]. In these devices from Altera, Xilinx and Lattice, on-chip
flash memory is used to provide non-volatile storage while SRAM cells
are still used to control the programmable elements in the design. This
addresses the problems associated with the volatility of pure-SRAM
approaches, such as the cost of additional storage devices or the possi-
bility of configuration data interception, while maintaining the infinite
reconfigurability of SRAM-based devices. It is important to recognize
that, since the programming technology is still based on SRAM cells,
the devices are no different than pure-SRAM based devices from an
FPGA architecture standpoint. However, the incorporation of flash
memory generally means that the processing technology will not be as
advanced as pure-SRAM devices. Additionally, the devices incur more
area overhead than pure-SRAM devices since both flash and SRAM
bits are required for every programmable element.

3.3 Anti-fuse Programming Technology

An alternative to SRAM and floating gate-based technologies is anti-
fuse programming technology. This technology is based on structures
which exhibit very high-resistance under normal circumstances but can
be programmably “blown” (in reality, connected) to create a low resis-
tance link. Unlike SRAM or floating gate programming technologies,
this link is permanent. The programmable element, an anti-fuse, is
directly used for transmitting FPGA signals. Two approaches have
been used to implement anti-fuses. Dielectric anti-fuses are composed of
an oxide–nitride-oxide dielectric positioned between N+ diffusion and
polysilicon [93]. The application of a high voltage causes the dielectric
to break down and form a conductive link with a resistance of typically
between 100 and 600 ohms [55, 90]. This dielectric approach has been
largely replaced by metal-to-metal-based anti-fuses. These anti-fuses
are formed by sandwiching an insulating material such as amorphous
silicon [88] or silicon oxide [61, 242] between two metal layers. Again, a
high voltage breaks down the anti-fuse and causes the fuse to conduct.
The advantage of this metal-to-metal anti-fuse is that the on resistance
can be between 20 and 100 ohms [181] and the fuse itself requires no

3.3 Anti-fuse Programming Technology 15

silicon area. This metal-to-metal approach is used in recent FPGAs
from Actel [2, 5] and QuickLogic [161, 162].

The primary advantage of anti-fuse programming technology is its
low area. With metal-to-metal anti-fuses, no silicon area is required to
make connections, decreasing the area overhead of programmability.
However, this decrease is slightly offset by the need for large program-
ming transistors that supply the large currents needed to program the
anti-fuse. While this area can be amortized across a number of fuses
with clever programming architecture, it contributes significantly to the
total area. Anti-fuses have an additional advantage; they have lower on
resistances and parasitic capacitances than other programming tech-
nologies. The low area, resistance, and capacitance of the fuses means it
is possible to include more switches per device than is practical in other
technologies. Non-volatility also means that the device works instantly
once programmed. This lowers system costs since additional memory
for storing the programming information is not required and it also
allows the FPGA to be used in situations that require operation imme-
diately upon power up. Finally, since programming, and hence trans-
mitting the bitstream to the FPGA, need only be done once, this can
be done in a secure environment which improves the security of the
design on the FPGA. To further enable this security, current devices
offer security modes which disable accesses through the programming
interface once the device is programmed [2].

There are also significant disadvantages to this programming
technology. In particular, since anti-fuse-based FPGAs require a non-
standard CMOS process, they are typically well behind in the man-
ufacturing processes that they can adopt compared to SRAM-based
FPGAs. Furthermore, the fundamental mechanism of programming,
which involves significant changes to the properties of the materials in
the fuse, leads to scaling challenges when new IC fabrication processes
are considered. Indeed, there is some evidence that anti-fuses are no
longer scaling as the most advanced devices use 0.15µm technology [2]
which is many generations behind the technology used for new standard
CMOS devices.

The inability to reprogram anti-fuses also makes them unsuit-
able for applications where configuration changes are required. Unlike

16 Programming Technologies

alternative technologies, in-system programming is not possible with
these devices. Instead, special programmers must be used to program
a device before it is mounted on a final product. Finally, the one-time
programmability of anti-fuses makes it impossible for manufacturing
tests to detect all possible faults. Some faults will only be uncovered
after programming and, therefore, the yield after programming will be
less than the 100% yield of SRAM or floating-gate devices. Some cur-
rent devices are only expected to be programmed successfully with 90%
confidence [2].

3.4 Summary

While the three programming technologies reviewed in this section
are used in modern devices, SRAM-based programming technology
has become the most widely used. Table 3.1 summarizes the dif-
ferences between the different programming technologies. An ideal
technology would be non-volatile and reprogrammable using a stan-
dard CMOS process and offer low on resistances and low para-
sitic capacitances. Clearly, none of the technologies satisfies all these
requirements. One of the primary reasons SRAM technology has
dominated is its use of standard CMOS manufacturing processes. For
this same reason, the dominance of SRAM-based programming tech-
nology can be expected to continue for the foreseeable future of CMOS
technology.

Table 3.1 Programming technology properties summary.

SRAM Flash Anti-fuse

Volatile? Yes No No
Reprogrammable? Yes Yes No
Area (storage High Moderate Low

element size) (6 transistors) (1 transistor) (0 transistors)

Manufacturing Standard Flash Anti-fuse
process? CMOS Process needs special

development
In-system

Yes Yes No
programmable?

Switch resistance ∼500–1000Ω ∼500–1000Ω 20–100Ω

Switch capacitance ∼1–2 fF ∼1–2 fF <1 fF
Programming yield 100% 100% > 90%

4

Logic Block Architecture

FPGAs consist of programmable logic blocks which implement logic
functions, programmable routing to interconnect these functions and
I/O blocks to make off-chip connections. This section will review trends
in logic block architecture while programmable routing and I/O archi-
tecture will be considered in Sections 5 and 6.

Although many of the fundamental challenges and issues in FPGAs
involve programmable routing circuit design and architecture, the logic
block architecture of an FPGA is also extremely important because it
has a dramatic effect on how much programmable routing is required.
In this section, we discuss the basic trade-offs in logic block architec-
ture design and the nomenclature needed to describe it. Our analysis
includes a discussion of heterogeneous mixtures of different logic blocks.
To conclude the section, we survey a number of commercial architec-
tures and describe how these architectures fit into previously defined
models.

4.1 FPGA Logic Block Fundamentals and Trade-Offs

The purpose of a logic block in an FPGA is to provide the basic com-
putation and storage elements used in digital logic systems. As used

17

18 Logic Block Architecture

in the original gate arrays, the most simple and un-specific way of
providing this capability is to use a transistor as the basic logic ele-
ment, and build gates and storage elements from it. This approach was
indeed attempted in a commercial FPGA from the now-defunct com-
pany Crosspoint [144]. This kind of very fine-grained logic block, how-
ever, requires the use of large amounts of programmable interconnect
to create any typical logic function. It will result in an FPGA that is
bound to suffer from area-inefficiency (because programmable routing
is expensive in terms of area), low performance (each routing “hop” is
slow), and high power consumption (because of the higher capacitance
of programmable interconnect that must be charged and discharged).

At the other extreme, a logic block could be an entire processor.
This approach exists in the commercial space, although processors are
mixed with some more fine grained logic blocks in a device [13, 188,
189, 195, 196, 228, 231, 235]. Such a logic block on its own would not
have the performance gains that come from customizable hardware. In
addition, if such a block was used to implement a 2-input AND gate,
it would be incredibly inefficient, which illustrates the danger of using
logic blocks that are too coarse-grained.

In between these extremes is a spectrum of logic block choices rang-
ing from fine to coarse-grain logic blocks. FPGA architects over the last
two decades have selected basic logic blocks made of transistors (noted
above) [144], NAND gates [160], an interconnection of multiplexers [79],
lookup tables [49], and PAL-style wide-input gates [217]. These choices
were originally driven by intuitive insights on the part of architects,
typically with very little data or analysis, with a few exceptions [79].
In this survey, we discuss how the research foundations for choosing a
logic block were established, and then focus on the effect of logic block
functionality on the three key metrics: area, speed, and power. In this
discussion, we use silicon area as the proxy for cost, as is common. For
a more detailed survey on the specifics of the logic blocks mentioned
above, see [167] or [43].

In addition to a basic logic block, many modern FPGAs contain a
heterogeneous mixture of different blocks, some of which can only be
used for very specific functions, such as dedicated memory blocks or
multipliers. These structures are very efficient at implementing specific

4.2 Methodology 19

functions, yet go to waste if unused. A central issue in FPGA architec-
ture design is the selection of specific, hard circuits for inclusion in an
FPGA. Section 4.8 will discuss these hard, heterogeneous circuit blocks
in more detail.

4.2 Methodology

In general, we are interested in knowing the effect of an FPGA’s archi-
tecture on the area-efficiency, speed, and power of a set of application
circuits implemented in the FPGA. The set of applications represent
the “target market” of the FPGA. Ideally, this set would include all
digital hardware applications if just a single FPGA architecture could
serve all possible markets, maximizing its advantage as a single stan-
dard device. Modern commercial practise requires the use of several
architectural families to serve different market segments.

It is a common practise in FPGA architecture research to employ
an empirical approach to study and explore different architectures.
Here, application circuits are synthesized into different architectures
through a CAD flow that is able to vary the architectural elements
under study, as illustrated in Figure 4.1. This approach is similar to
the one employed in computer architecture research [98], in which a
number of software applications are compiled into different processor

Fig. 4.1 Architecture exploration empirical CAD flow.

20 Logic Block Architecture

architectures to determine the effect of processor architecture on per-
formance. The only alternative to this kind of empirical approach is
the use of a theoretical approach in which applications are modeled in
a statistical/graph-theoretical way, and the mapping of an application
onto an architecture is modeled through a probabilistic calculation or
through other theoretical machinery. While there have been a num-
ber of attempts to do this [44, 52, 78, 79, 91, 159, 244] these studies
have necessarily focused on a fairly narrow spectrum of architectures
and tools. They have typically been used to study routing architecture,
rather than logic block architecture. As an aside, the use of theory in
architecture research remains an open and possibly important question,
if some fundamental and usable theory can be created.

There are four aspects of an experimental flow used to study archi-
tecture that need to be described when presenting experimental results:

(1) The depth of the CAD flow. This depth represents how far
through synthesis, packing, placement, and routing the cir-
cuits are processed. (A survey of all these standard steps in
the FPGA CAD flow has been covered in a previous issue
[54].) The deeper the CAD flow, the more precise and believ-
able the results, but deeper flows require a great deal more
development effort and computation time.

(2) The quality of the CAD tools used. Low-quality tools can give
misleading architectural results. It is thus important to both
use the best tools available in CAD flows and to realize that a
breakthrough in CAD tool development could dramatically
impact conclusions from experimental studies and possibly
the body of FPGA architectural knowledge. Yan et al. stud-
ied this issue [237] and described several situations where spe-
cific tools could create misleading architectural conclusions.

(3) The set of benchmark circuits used. The quality of results
depends on how representative the benchmark circuits are
with respect to typical circuits created by target users of a
device.

(4) The quality of the models and tools used to determine area,
speed, and power. For example, full timing analysis with

4.3 Logic Block Trade-Offs with Area 21

proper RC delay models can be used to evaluate circuit
speed, or maximum logic block depth can be used as a proxy.
The latter, of course, is much less accurate than the former,
and does not account for significant routing effects.

We now explore some specific trade-offs in FPGA logic block
architecture.

4.3 Logic Block Trade-Offs with Area

FPGA area-efficiency is a key metric because the size of the FPGA
die dictates a significant portion of its cost, particularly for devices
with a large logic capacity. (For smaller devices, I/O and packaging
also become significant in the cost of the devices; we discuss I/O in
Section 6.)

To understand area-efficiency trade-offs we must have a clear def-
inition of it. Area-efficiency can only be defined given a set of target
benchmark circuits, Bi. If we are interested in comparing a set of FPGA
architectures, Fj , then each benchmark circuit Bi must be synthesized
into the architecture Fj and the resulting area required is measured
and labeled as Ai

j . Here it is important to note that in most such archi-
tectural exploration, the size of the FPGA array of logic blocks (and
typically the amount of routing supplied in that array) is allowed to
vary to meet the need of a particular circuit in a particular architec-
ture — that is, the size of the array and routing is varied until the
minimum needed is determined. This notion has been, at times, con-
troversial because most engineers think of an FPGA as a device which
is fixed in size and that does not vary in response to the needs of the
application circuit except in a very coarse way across the different sizes
in a commercial device family. FPGA architects have permitted this
more fine variation as a necessary way to determine the quality of an
architecture with more precision than a few fixed devices would allow.

Once the area Ai
j of every circuit implemented in a specific archi-

tecture is known, the areas are typically normalized to a base case
architecture (i.e., j = 1) and averaged across all Bi benchmarks, often
using the geometric average. Thus, for each architecture, a single

22 Logic Block Architecture

average area number represents its efficiency with respect to the base
architecture.

For a homogeneous FPGA array (one that employs just one type of
logic block) the fundamental area trade-offs of an architecture are as
follows:

• As the functionality of the logic block increases, fewer logic
blocks are needed to implement a given design. Up to a point,
fewer logic blocks reduce the total area required by a design.

• As the functionality of the logic block increases, its size (and
the amount of routing it needs per block) increases.

If we label the number of logic blocks required to implement circuit
Bi on architecture Fj as N i

j and the sum of the logic block area and
surrounding routing area required to implement each of those blocks as
LRi

j , then the area of a given benchmark circuit on an architecture is

Ai
j = N i

j × LRi
j . (4.1)

This relationship implies that an FPGA architect should increase logic
block functionality up to the point that the gain in area efficiency due
to a reduced number of blocks is offset by the growth in the size of the
logic and routing area of an individual block.

These fundamentals were first articulated in [168, 169] using a fairly
limited depth of CAD flow (only global routing) and simple area mod-
els. More recently, [7, 8, 9] employed the deep CAD flow and high-
quality area models of [37] to re-explore area trade-offs with much
higher quality synthesis, placement, and routing tools.

The more recent area models are worthy of note. To determine the
area of the logic and routing, all structures are designed at the transis-
tor level (both the logic and the programmable routing fabric) and each
transistor is sized with a proper circuit design approach, typically with
the goal of minimizing the area-delay product of basic circuit struc-
tures. The total area is measured in terms of minimum-width transistor
areas (MWTAs) wherein the relative silicon area of each transistor is
normalized to the area of a minimum sized transistor in the process.
This normalization allows for process-independent comparisons. With

4.3 Logic Block Trade-Offs with Area 23

this area model, each distinct transistor incurs a fixed area cost and
increasing the width of the transistor amortizes the fixed cost such that
a transistor with twice the minimum width requires less area than two
independent minimum width transistors. Further details of this area
model can be found in [37].

The work of [7, 8, 9] first explored the effect of lookup table (LUT)
size on area and speed performance. Figure 4.2 illustrates the basic
trade-off discussed above, for area. The X-axis of Figure 4.2 is the size
of the lookup table (or K, the number of inputs to the lookup table).
For this architecture, a “cluster” size of 1 was used, which means that
each logic block contained exactly one LUT and flip–flop. The left-
hand Y -axis (and dashed line) of Figure 4.2 gives the area of the logic
block and its surrounding routing while the right-hand Y -axis (and
solid line) of Figure 4.2 gives the geometric average of the number of
K-input LUT/flip–flop blocks needed to implement the 28 circuits used
in the experiment.

This experiment illustrates the fundamental trade-offs described
above — as the LUT size (K) increases, the number of LUTs required
to implement the circuits significantly decreases. However, the area cost

Fig. 4.2 Number of logic blocks and area/block vs. logic block functionality [7].

24 Logic Block Architecture

of implementing the logic and routing for each block increases signifi-
cantly with K due to the following reasons:

(1) The number of programming bits in a K-input lookup table
is 2K , indicating an exponential area increase with K, and

(2) The number of routing tracks surrounding the logic required
for successful routing increases as the number of pins con-
necting into the logic block increases (as determined by K).
It is fundamentally true that increasing the number of pins
connected to a logic block requires an increase in the number
of tracks per channel, as first modeled by El Gamal [78].

When the two curves of Figure 4.2 are multiplied to obtain the total
area, the curve of Figure 4.3 is obtained. This curve shows that, at first,
a reduction in block count reduces total area, but then an increase in
block size leads to an area increase as the LUT size increases. This
curve is typical of any area versus granularity experiment in FPGA
architecture.

Fig. 4.3 Total area of FPGA vs. LUT size [7].

4.3 Logic Block Trade-Offs with Area 25

Fig. 4.4 FPGA basic logic element and cluster [37].

An alternate way to change the granularity of an FPGA logic block
is to use clusters of LUTs and flip–flops. This hierarchical approach
is now commonly used in most industrial FPGAs. Here, several basic
logic elements are grouped together and programmably connected by a
local interconnect structure, as illustrated in Figure 4.4 from [37], which
uses a LUT/flip–flop basic logic element grouped into a cluster of size
N . By increasing logic block granularity in this manner (as opposed
to growing it by making the LUT size larger) the size of the logic and
internal routing to supply the complete crossbar connectivity within
the cluster only grows quadratically (vs. exponential growth for LUT
size increases).

In general, there are fewer inputs to the cluster from the external
inter-cluster routing than the total number of inputs to the basic logic
elements inside the cluster. This reduction is possible because cluster
input signals are often used as inputs to multiple logic elements in
clusters with a sufficient number of logic elements. This observation

26 Logic Block Architecture

was first captured in an equation for clusters of N 4-input lookup
tables by Betz and Rose [34]: I, the number of pins needed to fully
occupy a cluster of N 4-input lookup tables is 2N + 2, as opposed to
the total number of input pins on all basic logic elements, 4N . Ahmed
et al. [7, 8, 9] later generalized this relationship for N -sized clusters of
K-input lookup tables:

I =
K

2
(N + 1), (4.2)

which is significantly less than the maximum of KN .
Typically, intra-cluster routing in contemporary LUT-based FPGAs

does not exhibit full crossbar connectivity. One study [129] determined
that at least half of the connections between cluster inputs and logic
element inputs can be removed and between 50% and 75% of the feed-
back connections from logic element outputs to logic element inputs can
be removed with no impact on delay or the number of logic clusters
required. This switch depopulation results in about a 10% area reduc-
tion for FPGAs with cluster sizes similar to commercial offerings. The
reduction in intra-cluster routing flexibility requires an FPGA router
to extend the search for wiring paths into logic clusters. This extended
search can increase routing time by up to a factor of four [129].

4.4 Speed Trade-Offs

For a homogeneous FPGA array that employs just one type of logic
block, fundamental architectural effects on speed include:

• As the functionality of the logic block increases, fewer logic
blocks are used on the critical path of a given circuit, result-
ing in the need for fewer logic levels and higher overall speed
performance. A reduction in logic levels reduces the required
amount of inter-logic block routing, which contributes a sub-
stantial portion of the overall delay.

• As the functionality of the logic block increases, its internal
delay increases, possibly to the point where the delay increase
offsets the gain due to the reduced logic levels and reduced
inter-logic block routing.

4.4 Speed Trade-Offs 27

Fig. 4.5 Number of LUTs on critical path & LUT delay vs. LUT size [7].

Ahmed [7] explored this trade-off in a series of experiments, as
illustrated in Figure 4.5. The figure gives the average number of lev-
els of LUTs (called BLE for “basic logic element” in the figure) on
the critical path across a suite of 28 circuits, for different LUT sizes.
The figure also shows the intrinsic delay of circuits mapped to dif-
ferent LUT sizes. For these experiments the full CAD flow including
synthesis, technology mapping, packing, placement, and routing was
performed. Area and delay information for the placement and rout-
ing tools was determined through transistor-level sizing of the FPGAs
resources [7].

Total FPGA delay as a function of LUT size includes the routing
delay for each level of logic. This total critical path delay is plotted
versus LUT size in Figure 4.6 for cluster sizes ranging from 1 to 10.
The figure shows that as both LUT and cluster size increase, the critical
path delay monotonically decreases with diminishing returns. There are
significant returns to increasing LUT size up to six and cluster size up
to three or four. Recent trends in commercial architectures have indeed
moved toward larger LUT sizes to capture these gains [135, 231].

28 Logic Block Architecture

Fig. 4.6 Total critical path delay as a function of LUT and cluster size [7].

4.5 Logic Block Power Trade-Offs

Power consumption in FPGAs, as with all integrated circuits, is gen-
erally divided into two categories: dynamic power and static power.
Dynamic power is the power consumed by the transitioning of signals
on the device. Even in the absence of signal transitions, power contin-
ues to be consumed and that power consumption is known as static
or leakage power. For FPGAs, dynamic power consumption trade-offs
exist that are similar to those described above for area and speed.
Results from [138] suggest that the best logic block architectures for
area are also the best logic block architectures for power consumption.
This assessment is likely a result of the basic nature of power consump-
tion, capacitance tracks with area, so a reduction in area results in a
related reduction in power consumption. Li et al. [138] concludes that
the best LUT and cluster sizes in terms of area-efficiency from [7] are
also the best sizes for minimized dynamic power consumption.

More recently, Cheng et al. [56] showed how to optimize a logic
block architecture in concert with dynamic and static power reduction

4.6 PLA/PAL-Style Types of Logic Blocks 29

techniques. For a fixed, standard 4-LUT architecture, it was shown that
sleep transistors and threshold voltage settings can be used to achieve
significant power consumption reductions.

4.6 PLA/PAL-Style Types of Logic Blocks

Although lookup-table-based logic blocks dominate commercial FPGA
architectures, AND/OR-based programmable logic blocks have also
received consideration. A variable AND array, fixed OR-plane PAL
style of logic is the most common AND/OR configuration. Cong et al.
[65] showed that a fairly small PAL-like structure, with 7–10 inputs
and 10–13 product terms obtains performance gains of up to 33% for
a 27% increase in area. With a different routing architecture, it was
possible to improve performance by up to 27% while also reducing
area by 17%. Earlier, Kouloheris and El Gamal [116, 117, 118] showed
that K-input multiple-output PAL-style logic blocks were more area-
efficient than 4-input LUTs but PAL-based implementations typically
consumed excessive static power.

4.7 Heterogeneous Mixtures of Soft Logic Blocks

Our previous discussion on basic area, speed, and power trade-offs ver-
sus logic block and cluster size assumed a homogeneous array of logic
blocks. The trade-offs, with larger LUT and cluster sizes being advan-
tageous for speed but smaller sizes being best for area, however, suggest
that a mixture of two kinds of logic blocks may be better than a homo-
geneous approach. A choice of logic resources allows a CAD tool to
appropriately select which of the resources to use.

This idea was first explored in [97]. A mixture of two different sizes
of lookup tables was investigated to determine if the resulting FPGA
could be more area efficient than a homogeneous offering. The exper-
imental flow used to evaluate the architecture only went as deep as
logic synthesis, as the authors developed a new heterogeneous tech-
nology mapping tool that could synthesize logic circuits into fixed
ratios of two different sizes of lookup tables. To determine area, they
counted the total number of bits in the lookup tables, and the number

30 Logic Block Architecture

of pins connected via routes. They concluded that, compared to a
homogeneous 4-LUT logic architecture, a small (10%) reduction in
pin count could be obtained with a mixture of 5-input and 2-input
lookup tables, or 4-input and 2-input lookup tables. In addition, they
showed a reduction in pins for a 6-input/4-input LUT combination, but
a fairly significant increase in the total number of LUT bits. They sug-
gested, without showing experimental evidence, that this combination
would have good speed–area benefits due to the presence of the faster,
6-input LUT.

Similarly, in [66], it was found that a heterogeneous mixture of
3-LUTs, 4-LUTs, 5-LUTs, and 6-LUTs offered a performance improve-
ment of at least 25% over the homogeneous FPGA consisting of only
one type of those LUTs. Compared to the heterogeneous FPGA, the
homogeneous 3-LUT FPGA was 34% smaller while the homogeneous
6-LUT FPGA was 137% larger. Again, this study only considered the
CAD flow up to technology mapping.

Kaviani and Brown [112, 113] proposed employing a mixture of
PAL-like logic blocks and LUT-based logic blocks in a single archi-
tecture. The PAL blocks provide improved circuit speed and the LUT
blocks provide area efficiency. Their experiments, also performed at the
depth of technology mapping, suggested that there were significant area
gains possible with these heterogeneous mixtures.

4.8 Heterogeneity

Up to this point, we have discussed the architectural trade-offs of
a specific logic block choice or mixtures of different general purpose
logic blocks. By contrast, any function that is implemented directly in
specific-purpose logic on the FPGA will typically have superior area,
speed, and power consumption over its implementation in general-
purpose logic blocks. However, if the function is not used in a target
application, the silicon area devoted to the function will be wasted,
causing a net reduction in area efficiency. These observations imply
a rich field of architectural trade-offs for FPGAs with a heteroge-
neous mixture of general-purpose logic blocks and specific-purpose logic

4.8 Heterogeneity 31

blocks. The key questions in this domain are:

(1) Which kinds of specific logic functions should be imple-
mented?

(2) What should be the ratio of specific functions to general pur-
pose functions?

(3) What can be done about specific-purpose logic blocks that
are not used in a specific application?

To address these questions we provide some nomenclature. The
soft logic fabric of an FPGA is the array of combinational logic
elements, each consisting of a logic function implemented as a gate
or LUT, that is connected through a programmable routing fabric.
Any other circuitry employed in the device is a hard circuit struc-
ture which we define as a structure that allows the implementation
of a logic function that could also be implemented in the soft logic
fabric. By this definition, a dedicated flip–flop inside a logic block
is considered a hard circuit structure, since it is possible to build
flip–flops from an interconnection of programmable LUTs or gates.
Dedicated flip–flops are now universally used in commercial FPGAs,
although some early FPGAs were built without them [1, 144]. In addi-
tion, modern commercial FPGAs contain dedicated logic within each
general purpose block to support arithmetic carry and sum functions
[18, 21, 22, 23, 24, 25, 221, 224, 225, 227, 228, 229, 231] and some
memory functions [23, 231].

It is appropriate to distinguish between two kinds of heterogeneity:
one kind is exemplified by the flip–flop and dedicated carry logic which
appears alongside the combinational logic in every logic block that
makes up the soft logic fabric. This type of heterogeneity represents
soft fabric heterogeneity. An FPGA with only soft fabric heterogeneity
can be constructed from an array of identical tiles, each containing the
basic soft logic block and soft fabric heterogeneous elements.

A second type of FPGA heterogeneity involves independent blocks
of logic that are not paired with soft combinational logic elements. In
this case, distinct tiles containing dedicated hard circuit structures are
added to the array of tiles. For example, multi-bit block RAMs that

32 Logic Block Architecture

appear in modern FPGAs are common hard circuit structures. These
RAMs range in size from hundreds to tens or hundreds of thousands
of bits and are commonly found in contemporary devices such as the
Altera Flex 10K, Flex 20K, Stratix, Stratix II, and Stratix III families
[14, 15, 18, 22, 23], and the Xilinx Virtex, Virtex II, II Pro, Virtex 4 and
5 and Spartan II, and III families [221, 224, 227, 228, 229, 231, 235].
Block RAMs typically are aligned in vertical columns within the basic
tile array, as shown in Figure 4.7. Other common hard circuit struc-
tures found in contemporary commercial FPGAs include the multiply-
accumulate (MAC) blocks that appear in the Stratix I, Stratix II, and
Stratix III FPGAs and the multiplier blocks that appear in Xilinx Vir-
tex II, Virtex 4, and Virtex 5 FPGAs. Heterogeneity which includes
hard circuit structures can be referred to as tile-based heterogeneity
to reflect the inclusion of diverse tiles on the same FPGA substrate.
Figure 4.7 illustrates an FPGA with a mixture of different blocks with
tile-based heterogeneity.

We now discuss various types of hard structures that appear
in commercial FPGAs or that have been proposed by FPGA
researchers.

Fig. 4.7 Illustration of tile based heterogeneity.

4.8 Heterogeneity 33

4.8.1 Soft Fabric Heterogeneity

As mentioned earlier in this section, since their introduction nearly
all commercial FPGAs have included flip–flops in their basic logic
elements. Early research [168, 169] investigated the area efficiency
of FPGAs with and without dedicated flip–flops, and clearly estab-
lished the significant benefits of including flip–flop circuits within logic
elements. Modern FPGA flip–flops are typically edge-triggered and
include a variety of set, reset, load, enable and clocking capabilities. As
noted earlier, modern FPGAs typically group basic logic elements into
clusters. Individual FPGA families may be distinguished by the intra-
cluster connectivity of reset, enable, load, and clock signals applied to
flip–flops. Some architectures force these signals to be the same clus-
ter wide, while others allow the signals to be programmably selected
[23, 231].

Many modern FPGAs include explicit circuitry for addi-
tion/subtraction/carry logic to make adders and subtraction units
smaller and faster [23, 25, 227, 231]. Several modern FPGAs also
include more advanced carry lookahead and carry-skip logic [23, 231].
Woo [218] and Hauck [96] explored several versions of carry logic for-
mation and carry lookahead to achieve higher performance.

The Xilinx XC4000 series FPGAs [103], and all subsequent Xilinx
FPGAs provide the ability to turn LUTs in the soft fabric into small
memories. These memories can be connected together to form larger
memories. This ability to convert LUTs to memory has also been added
in Altera’s recent FPGAs [23]. As well, in all Xilinx FPGAs since the
original Virtex [224, 227, 228, 229, 231], the LUT can also be configured
to act as a shift register.

4.8.2 Memory

The first type of heterogeneous tile used in FPGAs was block mem-
ory [14, 152] which first appeared commercially in the Altera Flex
10K series FPGA [14]. This memory block consisted of 2K bits of
static RAM, which could be configured as either a 2048 × 1, 1024 × 2,
512 × 4 or 256 × 8 bit memory. This flexibility [152, 209] is a crucial
aspect of memory blocks in FPGAs and tile-based heterogeneity in

34 Logic Block Architecture

general. Since different applications will need memory configured in
many different aspect ratios, basic memory blocks must be flexible and
configurable. Furthermore, the software system should make it easy
to combine memory blocks, with the addition of a small amount of
soft logic, into large blocks of memory with an even wider range of
aspect ratios. All contemporary FPGAs include memory blocks. and
they have grown to cover a significant fraction of the FPGA die area.
This trend is likely to continue as memory becomes more important in
larger systems.

Most contemporary FPGAs employ memory blocks that have dual-
port functionality. Some dual port memories allow simultaneous read
and write operations, while others allow mixtures of read and write
operations [23, 231]. Recent FPGAs have special features such as the
ability to support FIFO configurations [231]. The cost of this added
flexibility requires additional memory ports and internal memory com-
plexity. Complex memory operation can be supported with control cir-
cuits implemented in soft logic. Often, it can be costly to combine
memory blocks to perform large, complicated memory functions due to
logic and routing overheads.

The demand for memory across an application set can vary quite
widely. Some applications requires almost no memory while others
require large amounts. A number of research projects have exam-
ined how to use memory blocks that are not required for memory
storage. Several projects have explored converting unused memory
blocks into large lookup tables which implement combinational func-
tions [67, 210, 211, 212, 213].

4.8.3 Computation-Oriented Tiles

An early example of a computation-oriented tile is the multiplier inte-
grated into the Xilinx Virtex II FPGA [229]. This tile consisted of an
18 × 18 2’s complement multiplier that sat alongside a block memory
tile. Since the introduction of the Virtex II, Xilinx and other manufac-
turers have introduced more sophisticated hard computational units
that include multiplier-accumulators, and some multiplexer functions
[228, 231]. The Altera Stratix series is notable for its ability to fracture

4.8 Heterogeneity 35

larger multipliers into groups of smaller multipliers. For example, the
Stratix I [22] contains a single 36 × 36 multiplier accumulator block
that can be broken into eight 9 × 9 multipliers and an adder to sum
results.

If multipliers are not needed by an application, the multiplier tiles
located inside a target FPGA provide little benefit. One way to deal
with this issue is to create multiple sub-families within a device fam-
ily that use different ratios of soft logic to hard-logic. A device family
typically consists of a set of FPGAs with the same basic architecture
that contain differing amounts of resources. For example, devices in the
Lattice EPC2 family are available in six sizes including devices with
between 6,000 LUTs and 68,000 LUTs [124]. A designer can select the
device with the most appropriate ratio, minimizing “wasted” compu-
tational tiles. The cost of this flexibility is incurred by the FPGA ven-
dor, who must support a larger number of devices. This concept works
against the fundamental economies of a single family serving many
applications. The ratio-based approach to resource allocation was first
introduced commercially by Xilinx for the Virtex 4 [228] family. This
family has three sub-families, one with a focus on soft logic and mem-
ory, one with a focus on arithmetic computational units, and one with a
processor and high-speed serial interface focus. Ratio-based subfamilies
are also available for the Xilinx Virtex 5 family [231] and the Altera
Stratix III family [23]. A similar approach was initially suggested by
Betz and Rose [33].

4.8.4 Microprocessors

Microprocessors are vital components in many digital systems. Since
they are often used in conjunction with FPGA logic, it makes sense
to consider their integration into an FPGA logic fabric. An initial
offering by Triscend Corporation interfaced an embedded processor
to an FPGA-like fabric via a bus [195, 196] (Triscend was later
acquired by Xilinx [226]). Later, Altera introduced Excalibur, an FPGA
which included a hard ARM core connected to an Altera Apex 20K
series FPGA [13]. Nearly simultaneously, Xilinx introduced Virtex II
Pro FPGAs which included one, two, or four IBM Power PC cores

36 Logic Block Architecture

integrated with a Virtex II logic fabric [235]. Several Xilinx Virtex
4 and Virtex 5 subfamilies also support Power PC cores [228, 231].
A challenging aspect of including a hard processor on an FPGA is the
development of the interfaces between the processor, memory system,
and the soft fabric. The alternative to a hard processor is a soft pro-
cessor, built out of the soft fabric and other hard logic. The latter is
generally slower in performance and larger in terms of area. However,
the soft processor can often be customized to exactly suit the needs of
the application to gain back some of the lost performance and area-
efficiency.

4.9 Commercial Logic Blocks

In general, published research on logic block architecture tends to
model and explore relatively simple basic logic elements, such as the
pure K-input lookup table or PLA style blocks. In contrast, commer-
cial logic blocks have undergone an evolution that typically has led to
the development of more complex blocks in an attempt to gain more
functionality.

For example, one of the earliest FPGAs, the Xilinx XC3000 FPGA
[222] employed a complex logic block, as illustrated in Figure 4.8. The
basic block is a 5-input lookup table (using an additional multiplexer
is not shown in the figure), but it is augmented to allow the creation of
two 4-input functions (labeled F and G in the figure) that share most
of the inputs. Unfortunately, the complexity of the logic block made it
difficult for synthesis tools to find efficient logic mappings for designs.
In addition, it was difficult to manually design functions that could
map to this architecture.

As result, numerous subsequent FPGAs (the Xilinx XC4000 fam-
ily [103], Virtex series up to and including the Virtex 4 family, and
Altera Flex, Apex, Cyclone, and Stratix I families) used basic clusters
of 4-input lookup tables to implement logic. The input signal fanout
leveraged in the Xilinx XC3000 architecture is achieved by distributing
cluster inputs to multiple LUT-based basic logic elements.

More recently, the basic logic elements in commercial FPGAs have
returned to being more complex. The Altera Stratix II [106, 135]

4.9 Commercial Logic Blocks 37

Fig. 4.8 One possible configuration of a Xilinx XC3000 logic block.

architecture employs a fracturable 6-input lookup table, called the
Adaptive Logic Module (ALM), as illustrated in Figure 4.9.

The ALM is an 8-input structure that can implement many combi-
nations of logic functions, including:

• One 6-input logic function
• Two 4-input logic functions
• One 5-input and one 3-input function
• Two 6-input functions that share the same logic function and

4 inputs

The Virtex 5 FPGA [231], employs a 6-input lookup table that
can also implement two 5-input functions that share five inputs, or
two 4-input functions that share fewer inputs. This level of logic
block complexity is now supported by enhanced synthesis algorithms
which can evaluate a range of possible combinational implementations.
To ensure mapping efficiency, the ALM was developed in concert with

38 Logic Block Architecture

F
ig

.
4
.9

T
h
e

A
lt
er

a
S
tr

a
ti
x

II
a
d
a
p
ti
v
e

lo
g
ic

m
o
d
u
le

[1
8
].

4.9 Commercial Logic Blocks 39

a supporting synthesis tool [135]. Currently, designers almost never
deal with the architecture of a logic element directly, but rather use
vendor-supplied synthesis tools. In rare cases, when very high logic den-
sity is desired for a highly replicated function, manual mapping may
be explored.

A notable anti-fuse-based logic block appeared in a series of devices
from Actel. These blocks used a multiplexer as a basic logic element
[79]. A configuration of three 2-to-1 multiplexers whose inputs were
connected to constants or input signals, was used to provide a wide
variety of logical functions. The most recent anti-fuse-based logic block
from Actel employs a form of heterogeneity by using a mixture of com-
binational logic-only modules (C-modules, shown in Figure 4.10) and
sequential modules that contain flip–flops.

Fig. 4.10 Actel axcelerator combinational logic block [2].

40 Logic Block Architecture

4.10 Challenges in Basic Logic Block Architecture

A crucial goal in the evolution of FPGAs is the reduction of the area,
performance, and power penalty of using the devices versus ASICs. One
possible approach to reaching this goal is to integrate more hard blocks
into FPGAs. Desirable blocks would be applicable to multiple applica-
tion domains and offer significant benefits in circuit area, speed, and
power consumption versus soft logic. Next generation FPGAs may well
include more sophisticated hard blocks that perform computation. For
example, hard floating point units [32] are a possibility. For practical
purposes, these types of blocks must be flexible. If, for example, fixed
integer arithmetic blocks could be integrated into a fixed floating point
block, the result would be a block of broad utility that meets the basic
general-applicability mandate of FPGAs.

A more radical way to provide flexibility would be to marry every
hard block to its own soft logic that could be used in the event the hard
logic is not needed. One potential approach is shown in Figure 4.11 from
[109]. Instead of only containing hard logic, a soft logic block, labeled as
a shadow cluster, is also available and an additional multiplexer allows
one to select from either the hard or soft logic. This approach ensures
that the routing into and out of the block can always be used even
when the hard logic is not required. These kinds of approaches, that

Fig. 4.11 Combined hard and soft logic block [109].

4.10 Challenges in Basic Logic Block Architecture 41

create flexibility in hard logic, are among the most important ways to
reduce the large area gap between FPGAs and ASICs.

Finally, as fabrication technology progresses, it is clear that power
consumption, both dynamic and static, has become a serious issue. It is
important for architects to continue to think of high-level architectural
methods to reduce power consumption.

5

Routing Architecture

The programmable routing in an FPGA provides connections among
logic blocks and I/O blocks to complete a user-designed circuit. It con-
sists of wires and programmable switches (configured by one of the pro-
gramming technologies described in Section 3) that form the desired
connections.

To accommodate a wide variety of circuits, the interconnect struc-
ture must be flexible enough to support widely varying local and distant
routing demands together with the design goals of speed performance
and power consumption.

Although the routing demand of logic circuits varies from design to
design, certain common characteristics of these designs exert a strong
influence on the architecture of FPGA routing. For example, most cir-
cuits exhibit locality, necessitating an abundance of short, fast, routing
wires, while simultaneously requiring at least some intermediate and
longer wires to support more distant connections.

Additionally, circuits also contain a number of signals such as clocks
and resets that must be widely distributed across the FPGA. Modern
FPGAs all contain dedicated interconnect networks that handle the
distribution of these signals. Typically, these networks are carefully
designed to be low skew for use in distributing clock signals. They

43

44 Routing Architecture

generally can be directly connected to flip–flops and the networks can
only be driven by a limited number of resources on the FPGA. There
are many interesting architectural questions that must be considered
when designing these networks and some of these details are discussed
in [122]. The remainder of this discussion will focus exclusively on the
FPGA’s general purpose routing.

5.1 FPGA Routing Architecture Overview

A basic issue in FPGA design is the organization of the global routing
architecture, which is the macroscopic allocation of wires with no focus
on the more microscopic switching between wires. The global routing
architecture defines the relative position of routing channels in relation
to the positioning of logic blocks, how each channel connects to other
channels, and the number of wires in each channel. The detailed routing
architecture specifies the lengths of the wires, and the specific switching
quantity and patterns between and among wires and logic block pins.
In recent years, the issue of single-driver versus multiple-driver wires,
which gives rise to wires that send signals in a specific direction, has also
arisen as an important part of detailed routing architecture. We begin
with an overview of the two main types of global routing architecture,
and then move to a discussion of various aspects of detailed routing
architecture.

FPGA global routing architectures can be characterized as either
hierarchical [6] or island-style [37, 45].

5.1.1 Hierarchical Routing Architectures

Hierarchical routing architectures separate FPGA logic blocks into dis-
tinct groups [6, 197]. Connections between logic blocks within a group
can be made using wire segments at the lowest level of the routing hier-
archy. Connections between logic blocks in distant groups require the
traversal of one or more levels (of the hierarchy) of routing segments.
As shown in Figure 5.1, only one level of routing (Level 1) directly con-
nects to the logic blocks. Programmable connections are represented
with crosses and circles. Generally, the width of routing channels is
widest at levels furthest from the logic blocks.

5.1 FPGA Routing Architecture Overview 45

Fig. 5.1 Example of hierarchical FPGA [197].

This hierarchical global routing architecture has been used in a
number of commercial FPGA families including Altera Flex10K [14],
Apex [15], and Apex II [12] architectures. Although the hierarchical
routing architecture offers somewhat more predictable inter-logic block
delay following design placement and superior performance for some
logic designs [6], design mapping can be an issue. If the distribution of
design wire lengths does not match the hierarchical routing architecture
distribution (or indeed the hierarchy of the design does not match the
hierarchy of the FPGA’s routing architecture), logic block use in each
hierarchical group may need to be reduced. In addition, each level of
the hierarchy presents a hard boundary that, once traversed, usually
incurs a significant delay penalty. This penalty will be present even if
two logic blocks are physically close together but apart with respect
to the hierarchy, which is counter-productive. Also, although any given
level of hierarchy typically purports to provide a constant delay between
the same members of the hierarchy, the physical distance and resulting

46 Routing Architecture

differences in capacitance and resistance in the interconnect, do actually
result in a fairly wide variation in inter-block delay. This effect is more
pronounced for modern IC fabrication processes.

It is possible to ignore this variation and model it as a constant by
choosing the worst case value, but this gives up important opportu-
nities for delay optimization. For these reasons, most recent commer-
cial FPGA routing architectures do not use this type of global routing
architecture and, instead, use only one level of hierarchy to create a
flat, island-style global routing architecture.

5.1.2 Island-Style Routing Architecture

As shown in Figure 5.2, island-style FPGAs logic blocks are arranged
in a two dimensional mesh with routing resources evenly distributed

Fig. 5.2 Island-style FPGA.

5.1 FPGA Routing Architecture Overview 47

throughout the mesh. An island-style global routing architecture typi-
cally has routing channels on all four sides of the logic blocks. The num-
ber of wires contained in a channel, W , is pre-set during fabrication,
and is one of the key choices made by the architect. Island-style rout-
ing architectures generally employ wire segments of different lengths in
each channel in an attempt to provide the most appropriate length for
each given connection. They also typically stagger the starting point of
the wire segments so that each logic block has a chance of connecting
at the beginning of a wire of the most appropriate length.

Currently, most commercial SRAM-based FPGA architectures [18,
23, 125, 228, 231] use island-style architectures. This routing structure
offers a number of desirable properties. Since routing wires of different
lengths are in close physical proximity to logic blocks, efficient connec-
tions for a variety of design net lengths can be formed. By staggering
the start and end points of channel segments of the same length, the
physical layout for each logic block and surrounding routing channels
can be optimized to form a single tile. This combined logic and routing
tile can be replicated in two dimensions to form the FPGA array. As
a result of this regularity, the minimum feasible routing delay between
logic blocks can quickly be estimated. For the remainder of this survey
we will exclusively examine island-style architectures, unless otherwise
noted.

5.1.3 Detailed Island-Style Routing Architecture

The detailed routing architecture of an island-style FPGA defines the
logical structure of interconnection between wire segments in routing
channels and between logic block I/O and routing channel wire seg-
ments. The pins of a logic block that the routing architecture connects
are divided into input pins (that drive data into the block) and the
block’s outputs. As shown in Figure 5.3, a logic block input pin con-
nects to channel wire segments through switches in an input connection
block [166]. The logic block output pins connect to channel wire seg-
ments via an output connection block. The fraction of wire segments
in a channel which connect to an input logic block pin is the input con-
nection block flexibility, Fc,in. Similarly, the fraction of wire segments

48 Routing Architecture

Fig. 5.3 Detailed routing architecture of an Island-style FPGA [37].

in a channel which connect to an output logic block pin is the output
connection block flexibility, Fc,out.

A switch block [166] forms connections between wire segments at
every intersection of a horizontal and vertical channel. Each switch
block contains a set of switches which allow input wire segments to
connect to wire segments in adjacent channels. The number of possible
connections a wire segment can make to other wire segments is the
switch block flexibility, Fs. In Figure 5.3, an example set of switch
connections is represented as dashed lines and Fs is 3. As described in
the next section, modern FPGA architectures often physically coalesce
switch block and connection block structures into a single structure
termed a routing driver block. Wire segments may start, end, or pass
through a switch block unbroken. Each short wire segment spans one
logic block while long wire segments span multiple logic blocks [37].

5.1 FPGA Routing Architecture Overview 49

The organization of segment-to-segment connections inside a switch
block has been a topic of significant study. Early switch block designers
[208, 220] typically assumed a simple FPGA routing structure which
only contained wire segments which span a single logic block through-
out while still supporting Fs = 3. The routability of common switch
block styles, such as the disjoint [220] and Wilton [208] switch blocks
shown in Figure 5.4 were validated through extensive experimenta-
tion. The disjoint switchbox has been used in a number of commercial
FPGAs including devices from the Xilinx XC4000 family. As seen in
Figure 5.4(a), a wire entering a disjoint switch block can only connect
to other wires with the same numerical designation via programmable
switches. As a result, potential source–destination routes in the FPGA
are isolated into distinct routing domains, limiting routing flexibility.
The Wilton switch block uses the same number of routing switches as
the disjoint switch block but overcomes the domain issue by allowing for
a change in domain assignment on connections that turn. For example,
in Figure 5.4(b), the connection from the track in domain 0 at the left
can connect to the track in domain 3 on the bottom or domain 0 on the
top. This ability to change domains in at least one direction facilitates
routing as a greater diversity of routing paths from a net source to a
destination is possible. In addition to the Wilton and disjoint switch
blocks, a number of alternative designs, such as the Universal switch
block, have also been suggested [52, 53, 80]. A full review of additional

Fig. 5.4 Disjoint and wilton switch blocks.

50 Routing Architecture

island-style switch blocks optimized for length 1 wire segments can be
found in [132].

Since contemporary FPGAs contain a variety of wire segment
lengths, more recent switch block design has focused on optimizing
connections in channels with segments that span both single and mul-
tiple logic blocks. Although switch blocks which rotate tracks are effec-
tive for length 1 segments, inefficiencies arise when they are used to
make connections to multi-block wire segments. Due to the requirement
for domain changes, a multi-block segment which passes through the
Wilton switch block requires two switches to connect to two multi-block
segments which are perpendicular to the segment. In contrast, for dis-
joint switch blocks, each multi-block wire segment only connects to one
perpendicular segment. These differences are illustrated in Figure 5.5.
For multi-block segments, the added routing flexibility offered by the
extra connections does not overcome the area overhead of the extra
switches [37, 132].

The majority of recent switch block designs only allow switch con-
nections between wire endpoints or between wire midpoints, but not
between endpoints and midpoints. Midpoint-to-midpoint connections
are made using single disjoint connections. Example switch blocks
in this style include the Imran [146] and shifty [130] switch blocks.
The Imran switch block uses a Wilton switch block to connect end-
points of wires and single-transistor disjoint connections to connect

Fig. 5.5 Switch boxes for multiple block length wires.

5.1 FPGA Routing Architecture Overview 51

midpoints. This switch block has been shown to be more area effi-
cient than disjoint, universal, or Wilton switch blocks [146]. The shifty
switch block similarly allows for domain changes on endpoint turns
and disjoint connections at midpoints. Experimentation has shown
that shifty and Imran switch blocks give similar area and delay results
[130]. Both switch blocks are superior to disjoint switch blocks in area
and delay performance due to their ability to allow for diverse routing
paths.

A number of studies have examined routing architectures that
include a variety of segment lengths in each routing channel. The frac-
tion of segments of a specific length in each channel defines the seg-
mentation distribution [37]. For example, in Figure 5.6, taken from [37],
40% of tracks are of length 1, 40% are of length 2, and 20% are of length
4. Several studies [91, 170] have examined segment length distribution
for antifuse-programmed row-based FPGAs. Roy and Mahendale [170]
determined row segmentation distributions using a tool which created
a Poisson distribution of segment lengths based on design statistics. It
was determined that a Poisson distribution of segment lengths was more
area efficient than a uniform distribution of length 4 wires. More recent
studies of segmentation for row-based architectures have used graph-
theoretic formulations to evaluate segmentation distribution. Chang
et al. [51] determined the wire distribution of a specific design using
a graph-matching approach to match design wires to specific segment
lengths. These segments were then packed into channels in a tree-like
fashion. Later work [243] extended this effort by using a maximum
spanning tree algorithm to perform the graph matching.

Fig. 5.6 Example channel segmentation distribution [37].

52 Routing Architecture

The need for a mix of segment lengths in island-style FPGA devices
is motivated by the characteristics of benchmark designs targeted to the
devices. The amount of interconnect required by a circuit has been
found to be related to Rent’s rule [123], a well-known relationship
between the size of a group of logic and the number of its external
connections. This relationship indicates that the amount of pins, P ,
needed for an amount of logic, G, grows as P = K × GB, where B is
a parameter known as Rent’s exponent and K is a scaling constant.
The range of segment lengths required by a design is related to the
Rent exponent B based on the equation fL = L2B−3, where fL is the
fraction of segments of length L [72]. The value of B varies between
0.5 and 0.75 for most circuits [30]. This wire length distribution has
been used to determine FPGA segment lengths for a series of target
designs [182]. Experiments determined that tuning the segment lengths
to match predicted wire lengths and net fanouts can reduce FPGA
area and delay on a per design basis. However, since designs target-
ing FPGAs often have widely varying wiring requirements it can be
difficult to design a single segmentation distribution using analytical
techniques that meets all the requirements. FPGA routing is generally
architected to support all designs, including those with the largest B

values. This choice allows almost all designs to fully use logic resources
and complete routing successfully. As a result, in many cases, a sizable
fraction of available routing resources is left unused. To confirm the
efficiency of a new routing architecture, a device routability evaluation
is usually performed via experimental methods (like those described in
Section 4) with a suite of test circuits [136] rather than through the
use of analytical techniques.

Several studies have attempted to determine FPGA segmentation
by routing a series of designs and examining wire lengths. Brown et al.
[42] used global routing followed by detailed routing to complete the
FPGA design. Although this study questioned the need for segment
lengths of greater than length 2 or 3, the two-step router increased the
difficulty of wire sharing and limited the use of longer segments [37].
Betz et al. used a contemporary FPGA router which combines global
and detailed routing into one step to evaluate segmentation [36]. This
study verified the importance of including significant medium length

5.1 FPGA Routing Architecture Overview 53

segments which span between 4 and 6 logic blocks in an island-style
routing architecture. This finding was validated during the development
of the Stratix architecture [136], which contains significant length 4 and
length 8 segments.

In addition to connection pattern and quantification parameters,
FPGA detailed routing architecture performance is governed by the
types of switches used to make connections, the size of transistors used
to build programmable switches and the metal width and spacing of
FPGA wires [36]. Routing switches are typically made from collec-
tions of basic transistor structures including pass transistors, buffers,
and multiplexers. As VLSI technology used to implement FPGAs has
evolved over the years, so has the design of switches used in the routing
fabric.

Many FPGA architectures have been developed that use pass tran-
sistors and tri-state buffers as routing switches [36, 131, 179]. Figure 5.7
(taken from [36]) illustrates a routing architecture which contains both
pass transistors and tri-state buffers. Both of these switch implemen-
tations support bidirectional wire segments since each segment can be
driven by switches in multiple switch blocks. The relative usage of each
type of switch dictates FPGA area and performance. Pass transistors
minimize area consumption and are faster than buffered connections

Fig. 5.7 Routing switches in an island-style FPGA routing architecture [36].

54 Routing Architecture

for short wiring paths that pass through a small number of switches.
Generally, tri-state buffers provide faster interconnect for connections
that pass through many switches. As a result, FPGA devices that
intersperse pass transistors and tri-state buffers in the routing fabric
provide better delay characteristics with the same area consumption
as those that provide only one type of switch. In [36], it was shown
that the fastest routing architecture that uses these switches contains
50% buffered routing tracks and 50% pass transistors. This experiment
restricted signal paths to wire segments that exclusively use one type
of switch. In [131], an attempt was made to modify this restriction
by alternating buffer and pass transistor connections along each net
path. Unfortunately, no delay improvements were achieved with this
approach.

5.2 Unidirectional Single-Driver Routing Architectures

All of the pass transistor and buffered routing architectures described
previously use bidirectional wire segments that can be driven by switch
blocks on both ends of the segment. As shown in Figure 5.8(a), bidirec-
tional wires are connected with bidirectional switches (e.g., two back-to-
back tri-state drivers). The use of bidirectional wire segments can leave

Fig. 5.8 Bidirectional and directional wires [128].

5.2 Unidirectional Single-Driver Routing Architectures 55

many routing switches unused [128]. Once programmed, each switch
will be enabled to only drive one wire segment leaving the remaining
switch resources unused. For example, in Figure 5.8(a), at least 50% of
the tri-state buffers will be inactive. Additionally, the extra sinks per
wire segment increase capacitance, impacting delay.

In contrast, a directional wire segment [239] is driven in a single
direction. As seen in Figure 5.8(b), this halves the required tri-state
buffers per switch [128].

Figure 5.9 shows two distinct choices that exist for the implementa-
tion of directional wire segment switches in a routing driver block. In
the first implementation, shown in Figure 5.9(a), each wire segment is
driven by adjacent wire segments from a single switch. These connec-
tions represent the logical switch block connections shown in Figure 5.3.
Additionally, each wire segment may be driven by one or more logic
block output pins via a pass transistor. In [128], this implementation
is referred to as a directional tri-state (dir-tri) implementation. An
alternate approach to implementing directional wires is shown in Fig-
ure 5.9(b). In this single-driver implementation, a switch multiplexer
selects inputs from both wire segment and logic block sources for each
output wire segment. As a result, each single-driver wire segment can
be driven by a non-tri-state buffer, improving drive strength.

This single-driver approach physically combines the logical switch
and output connection blocks to form the routing driver block shown in
Figure 5.10. All logic block outputs which source the switch must come
from physically adjacent blocks. This constraint can be limiting for wire
segments that span multiple logic blocks. Although not as prevalent,

Fig. 5.9 Directional routing connection blocks: (a) dir-tri (b) single-driver.

56 Routing Architecture

Fig. 5.10 Routing driver block implementation.

logic block outputs can also be integrated into routing switches for
bidirectional wire segments [131, 153].

An initial concern when using directional wire segments in place of
bidirectional segments is a possible increase in the number of required
wire segments per channel. As seen in Figure 5.8, twice as many wires
per channel are required for directional routing to include the same
number of drivers as their bidirectional counterparts. However, experi-
mentation indicates that roughly the same number of tracks per channel
is needed to achieve the same routability for dir-tri [128] and single-
driver switch implementations [128, 136]. As a result of this track count
finding, the overall area required to implement a dir-tri routing archi-
tecture was found to be about 20% less than the corresponding bidi-
rectional equivalent [128]. However, the directionality of wire segments
was found to negatively impact the flexibility and drive capability of
pass transistor connections from logic block outputs to wire segments,
causing a delay increase of 3% for the dir-tri case versus a corresponding
bi-directional architecture [128].

In contrast to the dir-tri results, experimental results generated
using a single-driver routing architecture show both area and delay
improvements over bidirectional routing architectures. In [136], an 18%

5.3 Additional Routing Structure Improvement Approaches 57

area improvement and 16% delay improvement was noted for a 100%
single-driver architecture versus a directional architecture that contains
a 50–50 mix of pass transistors and buffers. In calculating these results,
a spectrum of architectures containing a mix of bidirectional and single-
driver wire segments was considered, but the 100% single-driver case
always gave the best results for area and delay. In a similar experiment,
[128] showed that a single-driver routing architecture was superior to
an architecture with bidirectional buffers by 25% for area and 9% for
delay. Much of the area improvement was found to be due to the uni-
directional nature of the routing (20% improvement). Delay reduction
was primarily due to reduced driver capacitance on each wire and the
reduced overall routing area.

Experiments with single-driver routing architectures [128] have con-
firmed that low connectivity (Fs = 3) is appropriate for these architec-
tures. Since wire segments in these architectures can only be driven
from endpoints, switch block design does not require the assessment of
wire midpoint connections.

5.3 Additional Routing Structure Improvement
Approaches

In addition to the relatively recent introduction of single-driver archi-
tectures, several other efforts have attempted to improve FPGA routing
performance through the inclusion of less generally programmable or
“hard-wired” connections. Numerous commercial FPGAs [23, 125, 231]
allow for direct connections between logic blocks to avoid the need to
drive the interconnect fabric. The work in [165] showed that these con-
nections, which avoid delays in traversing connection blocks and switch
blocks for very near neighbor connections, can improve speed by 6.4%
at a small (3.8%) area cost. In [107], an architecture which drives wires
of length 5 directly between logic blocks is proposed although the spe-
cific benefits of the technique are not enumerated.

A technique to replace switch block connections with fixed
metal connections between horizontal and vertical wire segments was
described in [185]. A study was first performed to determine if wire seg-
ments are often programmably connected into specific patterns such as

58 Routing Architecture

Fig. 5.11 Hard wired switch blocks [185].

T’s or L’s. This motivates the removal of some programmable switches
to create fixed metal wiring that fit these patterns. For example, if the
switches in Figure 5.11(a) (represented as dashed lines), are frequently
programmed to create a + connection between Wires A, B, C, and D,
it may be advantageous to remove the switches and form one piece of
metal (as seen in Figure 5.11(b)). However, the removal of the switches
now precludes the ability to form separate horizontal and vertical con-
nections between wire segments if a + connection is unneeded. In [185],
the effect of removing a subset of pass transistor and buffered switches
to form L, +, and T shaped connections is evaluated with a full rout-
ing experiment. A 22% improvement in critical path delay and a 6%
area reduction is seen for a set of 10 benchmark designs. A form of this
approach has been included in the Xilinx Virtex 5 FPGA family, which
includes wires that connect diagonally [231].

5.3.1 Circuit-Level Techniques to Improve Routing

Several researchers have attempted to improve the performance of inter-
connect wires through increased wire spacing, because in modern IC
fabrication technologies, the proximity of two routing tracks gives rise
to a capacitive effect known as crosstalk. By spacing wires farther apart

5.3 Additional Routing Structure Improvement Approaches 59

this effect can be reduced, resulting in reduced capacitance on the wire
and increased speed. The work in [35] determined that a 13% circuit
speedup could be achieved by using 5 times minimum wire spacing
on 20% of the routing tracks in each island-style channel. Although
wire spacing improves performance for architectures which contain pass
transistors and buffered switches, increasing physical wire width does
not due to the need to increase driver size. Increased track spacing was
implemented in a commercial architecture [107] which assigns 20% of
routing wires to these fast routing resources.

Another circuit-level technique to improve performance involves
the use of routing multiplexers which contain fast paths, as shown in
Figure 5.12. The number of pass transistors required to traverse dif-
ferent paths in the multiplexer is imbalanced leading to fast paths for
critical inputs and slower paths for regular inputs. Lewis et al. [135]
report that this technique has been integrated into the routing archi-
tecture for Altera Stratix II devices. Like the spacing approach, critical
paths are assigned to fast routing resources by the FPGA router. It was
found that the availability of imbalanced multiplexers improved design
performance by 3% without impacting device area.

Fig. 5.12 Fast inputs to routing multiplexers [135].

60 Routing Architecture

Recent trends in single-driver wiring for FPGA routing have
been motivated by the implementation of novel transistor-level circuit
structures in building the routing switches. Three specific issues have
been investigated to support routing delay reduction: buffer construc-
tion, transistor sizing, and routing driver multiplexer sizing. As shown
in Figure 5.13, FPGA routing buffers are typically implemented as a
sequence of CMOS inverters. In [131], it was determined that a series
of three inverters, rather than two or four, is desirable since balanced
rise/fall characteristics are achieved at the buffer output due to its
inversion of the input signal. Two or four-stage buffers could be used
instead if a non-inverting buffer is preferred.

In [128], a series of experiments related to sizing of single-driver
architecture switches is described. In these experiments, 0.18µm tran-
sistors in a three-inverter buffer are evaluated to determine appropriate
transistor sizing for delay and area-delay optimization. The relative size
of the PMOS and NMOS transistors in each inverter for a given tech-
nology plays an important role in buffer performance. For example, for
the 0.18µm technology used in [128], it was determined that the rela-
tive sizing of PMOS and NMOS transistor width (Wp/Wn) for the three
stage buffer should be 1/3.5 for the sense stage, 1/1 for the intermediate
stage, and 1.4/1 for the drive stage. After determining various inverter

Fig. 5.13 Transistor-level implementation of routing driver multiplexer and routing

buffer [131].

5.3 Additional Routing Structure Improvement Approaches 61

ratios, [128] examined a range of possible input counts per single-driver
routing switch from delay and area-delay perspectives. For delay opti-
mization, it was determined that the fastest single-driver switch con-
tains a 4-to-1 routing driver multiplexer. A single-driver switch with an
8-to-1 multiplexer was determined to be optimal for area-delay product.

5.3.2 Bus-Based and Pipelined FPGA Routing Structures

As FPGAs have grown in size, the amount of datapath circuitry tar-
geted to the devices has grown. This has led several research projects
to consider both bus-based connections and pipelining the interconnect
signals.

5.3.2.1 Bus-Based Routing

A number of researchers have noted that if the signals on an FPGA
are grouped together as buses, then the control of the programmable
switches could be amortized across the entire bus. This notion was
first proposed in [58] and [59]. In addition, the regularity of the bus
connections can be employed to reduce the total number of switches
needed.

In [238], a series of routing architecture optimizations are considered
that take advantage of the bus structure of many datapath circuits.
The bit-sliced example shown in Figure 5.14 illustrates how switches in
the interconnect fabric can be removed to take advantage of datapath
regularity. Consider implementing the four-bit slice datapath shown in
Figure 5.14(a). This circuit could be implemented using conventional
logic block bit slices, as shown in Figure 5.14(b). A minimum of four
FPGA logic block and interconnect tiles are needed to implement the
needed logic and communicate the needed circuit inputs and outputs.

Using bus-based connections, the four logic blocks shown in
Figure 5.14(b) are combined to form a multi-bit logic block in
Figure 5.14(c) and individual wires in the original implementation are
grouped into four-bit routing buses. Although both implementations
require eight logic block input and output connections, the number
of switch block connections for the bussed implementation is reduced

62 Routing Architecture

Fig. 5.14 Bus-based routing FPGAs [238].

by half. This bus-based approach reduces the need for wiring flexi-
bility by taking advantage of per-bit bus regularity. Not only are the
number of storage bits needed to configure routing connections sig-
nificantly reduced due to smaller switch count, but configuration bits

5.3 Additional Routing Structure Improvement Approaches 63

can be shared across adjacent routing switches since they have the
same setting, leading to additional savings. Through experimentation
[238], it was determined that 14% routing area can be saved using this
approach for datapath oriented designs leading to an overall 10% FPGA
area reduction. Prior research anticipated a larger area saving that was
not realized in this detailed implementation, largely because a signif-
icant fraction of the wires have to be non-bussed to handle non-bus
signals. Approximately 50% of routing wires were needed for dedicated
four-bit buses while the switches for remaining wires were individually
programmed.

5.3.2.2 Pipelined (Registered) Routing

Although recent FPGA system clock speeds approach 200–400MHz,
they still lag far behind their microprocessor counterparts. In addi-
tion, while a specific microprocessor operates at the same frequency
for each application, FPGA operating frequencies vary from appli-
cation to application. In general, the long and variable interconnect
delays associated with FPGA routing are responsible for both of these
issues. Several FPGA research projects [183, 197, 204] have exam-
ined adding pipeline registers to FPGA interconnect to address these
concerns. The basic idea is to have a router insert registers as it
routes, increasing the clock frequency in exchange for added cycle
latency.

While registers allow for enhanced raw clock rates, they complicate
the FPGA routing problem since the number of flip–flops on paths
which converge on a logic block must be matched to allow for causal
behavior. In [197], flip–flops are added to all interconnect switches and
logic block inputs and outputs for a routing network organized in the
hierarchical topology shown in Figure 5.1. This approach of pipelining
segment-to-segment connections and logic block I/O allows all designs
mapped to the FPGA to run at the same system clock frequency. To
account for routing paths which traverse different counts of interconnect
flip–flops, an adjustable value of up to seven flip–flops is allocated per
logic block input. The inclusion of the routing flip–flops leads to a 50%
increase in overall routing area.

64 Routing Architecture

Two research projects have examined including flip–flops directly
into the segmented routing fabric of an island-style routing architec-
ture. In [204], all horizontal segment to vertical segment connections are
buffered by flip–flops. The authors account for the presence of the flip–
flops in their FPGA routing algorithm by attempting to minimize the
number of corner turns included in net routes and by re-timing nets to
equally distribute flip–flops along paths. Although this approach shows
promise, the area-normalized throughput of designs does not signifi-
cantly improve for the proposed architecture and tool flow. Addition-
ally, designs not suited to re-timing may suffer a latency penalty.

In [183], the interconnect fabric of a standard island-style archi-
tecture is enhanced with routing flip–flops. Unlike [197], only a small
fraction of switch block connections are pipelined, and only one addi-
tional flip–flop is needed amongst the logic block inputs. As seen in
Figure 5.15, in cases when the routing switch flip–flop is unneeded,
it can be avoided through the use of a programmable multiplexer.
Since both pipelined and unpipelined routing segments are available, re-
timing algorithms can selectively move the position of design flip–flops
from logic blocks to the interconnect fabric to achieve the fastest possi-
ble design clock frequency. Through experimentation it was determined
that about 12%–25% of routing switches should contain a flip–flop.

Fig. 5.15 Registered routing switch [183].

5.4 Power Related Issues 65

The inclusion of these flip–flops results in an average design speedup
of about 25% with a 10% overall FPGA area increase.

5.4 Power Related Issues

Although FPGA routing has traditionally been constructed to balance
area and delay, power consumption has recently become an important
issue. Several studies [84, 138, 178, 198] have indicated that between
60%–70% of FPGA dynamic and static power consumption is located
in the programmable interconnect. Leakage power is a particular con-
cern since much of the interconnect resources within the FPGA are
not actively used following device programming. Most transistor leak-
age in FPGAs is a result of source-to-drain subthreshold leakage and
gate-to-source gate oxide leakage. Subthreshold leakage increases expo-
nentially as transistor threshold voltage, Vt, is reduced to obtain high
performance. Gate oxide leakage is a result of electron tunneling as the
transistor gate oxide is thinned. The leakage current due to tunneling
increases exponentially with oxide thinning. If a transistor is not being
used, both components of leakage can be eliminated by removing the
supply voltage, VDD, from the transistor. In contrast, dynamic power
reduction techniques target the activity of interconnect transistors that
are used. Dynamic power can be saved by reducing the supply voltage
associated with circuits since this value is proportional to VDD

2.
A variety of techniques have been applied to reduce dynamic and

static power consumption in FPGA routing. For single-driver wiring,
these techniques have been applied to both routing multiplexers and
buffers. In [137], VDD for each routing buffer can be driven by two
separate sources, a full-rail VDD (VDDH) and a reduced VDD (VDDL).
As shown in Figure 5.16, two transistors provide three possible rout-
ing states, high-performance (transistor M1 active), reduced perfor-
mance (transistor M2 active), and sleep mode (both transistors shut
off). Through experimentation it was determined that a large fraction
(88%) of interconnect buffers could be placed into sleep mode and 85%
of active routing buffers could be driven with VDDL without increas-
ing circuit delay for a 100 nm process. This combination results in an
80% overall reduction in interconnect leakage and a 38% reduction in

66 Routing Architecture

Fig. 5.16 VDD programmability [137].

interconnect dynamic power for an overall interconnect power reduc-
tion of 56%. Later work by the same authors [141] explored techniques
to reduce SRAM bit count by combining the SRAM bits used to control
VDD selection. Both of these projects assumed a buffered tri-state inter-
connect although the same power-reducing techniques can be applied
to buffers in single-driver architectures.

A similar approach of using separate transistors and VDD levels was
described in [82]. A 22% reduction in interconnect dynamic power and
an 81% reduction in interconnect leakage power was achieved. Power
calculations were performed after timing-driven place and route.

Although the previous dual-VDD approaches show good power
reduction, they require the chip-wide distribution of multiple VDD val-
ues. A VDD-selection approach for routing buffers which does not have
this limitation [29] appears in Figure 5.17. This work proposes a new
switch architecture which adds two transistors, MNX and MPX, to
the buffer in the routing switch (this differs from [137] which used
two PMOS devices connected to two different power rails). The two
extra transistors allow the switch to operate in a variety of modes,
depending on their gate voltages. When both are turned on, the effec-
tive supply voltage, VV D, seen by the buffer is VDD (assuming minimal
voltage loss due to parasitics in the MNX/MPX transistors), and the
buffer operates in a traditional, high-performance mode. When MNX
is enabled and MPX is disabled (e.g., the buffer is not in either sleep or
low power mode), the switch’s effective supply voltage VV D is reduced

5.4 Power Related Issues 67

Fig. 5.17 Low power programmable routing buffer.

by Vt, since MNX is an NMOS transistor and can therefore pass only
a weak-1 signal. This configuration allows the buffer to operate in a
low-power mode.

With respect to the decreased performance, the authors note that
in their benchmark circuits, 75% of routing resources could tolerate
a slowdown of 50%, so most switches could withstand the lower per-
formance for a 70 nm process. With respect to passing a weak-1, the
authors found that most routing switches drive other routing switches.
Since level-restoration is built into the switch, weak-1 inputs are per-
missible. When both MNX and MPX are disabled, the transistors are
powered off, which greatly reduces leakage power by cutting off the sup-
ply voltage from the buffer, effectively turning it off. It was found that
leakage power (including effects of the new transistors) was reduced by
about 35% when operating in low-power mode (i.e., MPX off, MNX on)
and up to 61% when operating in sleep mode (i.e., MPX and MNX off)
for a single-driver routing architecture. The authors also found a 28%
reduction in dynamic switching power when operating in low-power
mode. Estimated area measurements predict a per-tile area increase of
about 10%.

68 Routing Architecture

In addition to VDD modulation to save routing power, several
researchers have examined the use of FPGA interconnect transistors
which have differing threshold voltages (Vt). The use of high Vt increases
transistor delay but reduces static power consumption. Several papers
[82, 137, 164] describe the use of high Vt transistors to implement con-
figuration SRAM bits. Since these bits are not subsequently read, per-
formance is not an issue. These techniques are likely used in commercial
devices in addition to the use of thicker oxides to further reduce the
leakage of these devices which are not performance critical [27, 233].

Other research projects have examined the use of routing resources
with a mix of standard and high Vt routing transistors. In [164], an
experiment is performed which replaces a fixed percentage of transistors
in routing multiplexers with high Vt equivalents. The authors claim that
since most connections are not timing critical, they can increase delay
in 50% of connections by 50% and not affect overall system performance
by using high-Vt multiplexer transistors. They also note that routing
utilization on the higher performance nets will be increased, since they
will be preferred by the router. Overall, the authors estimate that they
can reduce leakage power in the switch blocks by 40% if 50% of the
switch blocks use high Vt transistors.

One interesting approach to using high-Vt transistors to control
power consumption involves using redundant SRAM bits to control
unused paths in routing buffers [164]. Traditionally, when a multiplexer
has many inputs, it is implemented in multiple stages to help decrease
the parasitic capacitance on the output node of the multiplexer. In
these configurations, SRAM bits are minimized by having one bank of
SRAM cells feed all multiplexers in a given level. This is illustrated in
Figure 5.18(a).

While this approach minimizes the number of SRAM cells needed,
multiple pass transistors are activated on unused paths, leading to
unnecessary leakage power dissipation. For example, in Figure 5.18(b),
only one pass transistor in the first stage passes the output value and
the remaining transistors can be shut off. This goal requires additional
SRAM bits since each path in the first stage needs to be controllable.
The more SRAM bits used, the finer the granularity, which means
that more unused multiplexer transistors in a level can be disabled.

5.4 Power Related Issues 69

Fig. 5.18 Multiplexer with redundant memory. (a) Minimum memory usage. (b) Redundant

memory.

It is important to note that the extra SRAM bits may also contribute
leakage current, but since these bits are not timing critical, they can
be implemented with high-threshold, low-power transistors. Another
downside to this approach is that the extra SRAM bits require more
area. The authors find that for a 30-to-1 multiplexer implemented
in 2 levels, doubling the number of SRAM bits can decrease aver-
age leakage power by a factor of 2 but increases interconnect area
by 30%–50%.

Two other techniques to control FPGA interconnect power involve
gate and body biasing of unused interconnect transistors. By applying a
bias voltage to the body terminal of a transistor, it is possible to alter its
effective threshold voltage, and therefore reduce sub-threshold leakage
[164]. The fabrication of a transistor which will support body biasing is
complicated since a multi-well process is required which consumes area
due to minimum well-spacing requirements and other design rules. The
bias voltages can be controlled by circuitry that fixes threshold voltages
to a target level. In [164], a 2-stage, 30-to-1 multiplexer is investigated

70 Routing Architecture

for 2 well and 6 well processes. The experiments determined that for
an area increase of 1.6X to 2X, leakage current can be reduced by
1.7X to 2.5X. A further extension of this body-biasing is proposed in
[151] which adaptively adjusts the body-bias for all the blocks within
the FPGA. This scheme reduced leakage power by 3X with the added
benefit that within-die and die-to-die variation was also reduced.

5.5 Challenges in Basic Routing Architecture

Although much progress has been made in defining the routing architec-
ture of commercial FPGAs, the changing role of programmable devices
in embedded and desktop computing systems will necessitate changes in
the near future. Before FPGAs can be effectively used in portable elec-
tronics, issues related to the static power consumption of routing must
be addressed. One possibility may involve selectively shutting down
power to regions of the routing fabric based on resource demand. This
approach may potentially require FPGAs to have a more well-defined
routing hierarchy so that the interface between active and inactive rout-
ing is clearly defined. The isolation of FPGA routing into a distinct
hierarchy may also help provide clearly defined boundaries between
functional components built in FPGA logic, an important issue for
embedded security [105]. At the system level, the increased use of mul-
tiple microprocessors built from logic within an FPGA may necessitate
the inclusion of optimized inter-processor routing resources within the
FPGA routing fabric.

Recent trends in FPGA device and packaging also present new chal-
lenges for FPGA routing. Renewed interest in 3D device packaging
has direct applicability to FPGA logic [140] and routing structures
[139]. As transistor channel widths shrink deep into the submicron
realm, the manufacturability of reliable FPGA routing becomes an
issue. Although this issue has been examined for routing in non-silicon
based devices [71], effective run-time fault avoidance in contemporary
commercial FPGAs remains an active research area.

Despite years of research, several issues remain for existing island-
style commercial FPGA architectures. Since FPGA routing consumes
a significant amount of the FPGA die area [9, 37] and typically only a

5.5 Challenges in Basic Routing Architecture 71

fraction of routing switches and wires are actively used per design, addi-
tional research is needed to understand how to better minimize circuit
routing needs for FPGA routing architectures. Additional research is
also needed to define acceptable switch block patterns for single-driver
switches and connection block patterns for hard blocks, such as memory
blocks and multipliers.

6

Input/Output Architecture and Capabilities

The logic and routing structures described in the previous sections
serve as a general purpose platform that can be used in many different
applications. This platform must interface at many different speeds and
voltages with the wide range of external components that may connect
to an FPGA. This is done through dedicated input/output pads and
cells on FPGAs and, in this section, we discuss architecture-level issues
and features in the design of these cells.

We refer to the I/O pad and surrounding supporting logic and
circuitry as an input/output cell. These cells are important compo-
nents of an FPGA both because this interface sets the rate for external
communication and these cells along with their supporting peripher-
als consume a significant portion of an FPGA’s area. For example,
in the Altera Stratix 1S20 and the Altera Cyclone 1C20, I/O’s and
peripheral circuitry occupy 43% and 30% of the total silicon area,
respectively [133].

A crucial consideration in I/O cell design is the selection of which
interface standards to support. In this section, these challenges are
examined and current input/output architectures are reviewed.

73

74 Input/Output Architecture and Capabilities

6.1 Basic I/O Standards

The major challenge in input/output architecture design is the great
diversity in input/output standards. For example, different standards
may require different input voltage thresholds and output voltage lev-
els. To support these differences, different I/O supply voltages are often
needed for each standard. They may also require a reference voltage to
compare against the input voltages. Other standards require clamping
diodes which allow specific abnormally high or low voltages to be toler-
ated. Many standards also rely on differential signaling to improve noise
immunity and enable increased data transmission speeds. Proper ter-
mination is also essential for maintaining signal integrity but different
standards have different termination requirements.

Table 6.1 summarizes these requirements for common standards
supported by current FPGAs [23, 124, 231]. The table lists the I/O
standard, the required supply voltage, the reference voltage if neces-
sary, and the termination required. Besides these major differences,
there are a multitude of other options that may be desirable such as tri-
state drivers, programmable drive strengths and pull-up or pull-down
behavior.

Table 6.1 Commonly supported I/O standards (N/R = Not Required).

Output supply Reference Termination

I/O Standard voltage voltage voltage

LVTTL 3.3V N/R N/R

LVCMOS 3.3V N/R N/R
3.3V PCI 3.3V N/R N/R

3.3V PCI-X 3.3V N/R N/R

SSTL-2 Class I 2.5V 1.25V 1.25V
SSTL-18 Class I 1.8V 0.90V 0.90V

1.8V HSTL Class I 1.8V 0.90V 0.90V
1.5V HSTL Class I 1.5V 0.75V 0.75V

1.2V HSTL Class I 1.2V 0.60V 0.60V

Differential SSTL-2 Class II 2.5V N/R 1.25V
Differential SSTL-18 Class II 1.8V N/R 0.90V
1.8V differential HSTL Class II 1.8V N/R 0.90V

1.5V differential HSTL Class II 1.5V N/R 0.75V
1.2V differential HSTL Class II 1.2V N/R 0.60V

LVDS 2.5V N/R N/R

HyperTransport 2.5V N/R N/R

6.2 I/O Architecture Issues 75

6.2 I/O Architecture Issues

One of the most significant decisions in input/output architecture
design is the selection of the standards that will be supported. This
involves carefully made trade-offs because, unlike general-purpose logic
structures, such as the LUT, which can implement any digital func-
tion, an I/O cell can generally only implement the standards selected
by the I/O cell designer. However, the decision regarding which stan-
dards to support is far from straightforward. Supporting a greater
number of standards can increase the silicon area required for the I/O
cells significantly. Additionally, the pin capacitance may increase with
each additional supported standard, which can limit performance [200].
However, the usefulness of FPGAs depends on their flexibility, includ-
ing the ability to support different signaling standards. Given these
conflicting factors, the final selection of standards often depends heav-
ily on business factors as opposed to technical factors, and therefore the
choice of which standards to support is typically made by a marketing
research arm of an FPGA vendor.

Once the I/O standards to be supported are known, it is necessary
to determine which input/output pins will support each standard. At
one extreme every pin can support every standard and feature. This
approach is clearly the most expensive and may result in implemen-
tation difficulties as a large capacitance will be attached to each pin.
However, this generality gives the printed circuit board designer who
uses the chip the most flexibility. At the other extreme, different stan-
dards can be limited to different groups of I/O pins. This approach
may result in easier electrical design and lower-cost (to the FPGA ven-
dor) I/O cells, but it may limit flexibility for the printed circuit board
designer.

It is desirable to make all the input/output pins in an FPGA equiv-
alent. Until recently, this was generally the case for commercial FPGA
offerings. However, the increase in the number of input/output pins on
an FPGA and the number of standards for inter-chip communication
has made full equivalency impractical. Many standards have conflicting
requirements such as differing output voltages. Given such differences it
would be impractical for every pin to be able to independently support

76 Input/Output Architecture and Capabilities

every standard. Instead, most modern FPGAs have adopted an I/O
banking scheme in which input/output cells are grouped into prede-
fined banks [23, 60, 124, 231]. Each bank shares supply and reference
voltage supplies. A single bank therefore cannot support all the stan-
dards simultaneously, but different banks can have different supplies to
support otherwise incompatible standards.

The use of different I/O banks is now a standard practise. However,
there is less of a consensus regarding the number of pins in a bank
or the equivalency of the banks. In some FPGA families the number
of I/Os per bank is relatively constant for all device sizes at 64 pins
per bank [228] or 40 pins per bank [231]. At the other extreme, some
FPGA families adopt a fixed number of banks across all the devices of
the FPGA family [18]. This latter approach means that the number
of pins per bank will be significantly larger for the largest members of
a device family. This can be very restrictive when using these large
devices. A hybrid approach of having a variable number of banks with
a variable number of pins per bank has recently been used [23]. Devices
with more I/O pins have more banks but the number of pins per bank
is allowed to increase as well. This avoids limiting the flexibility as
extensively as the fixed number of banks approach, while also reducing
the costs required to provide a large number of I/O banks. Table 6.2
lists the number of I/O’s, the number of I/O banks and the resulting
number of I/Os per bank for a few commercial devices. With the wide
range in the number of I/Os available in an FPGA family, it is clear
that, unless the number of banks is increased, the number of I/Os per
bank can grow significantly.

Besides bank sizing, it is necessary to determine whether indepen-
dent banks will be functionally equivalent. Each bank could indepen-
dently support every I/O standard supported by the device. This is the
approach used for some FPGAs [231]. This does not imply all the pins

Table 6.2 Comparison of current I/O architectures.

Stratix II [18] Stratix III [23] Virtex 5 [231]

of I/Os 342–1170 296–1120 172–1200

of I/O Banks 10–12 12–24 7–33
of I/Os/Bank 6, 34–168 24–48 20, 40

6.3 High-Speed I/O Support 77

are completely flexible as the use of one standard within a bank may
preclude the use of other standards within that same bank because of
incompatible voltage requirements. Some FPGAs instead opt to limit
the standards supported by each I/O bank [23]. This reduced flexibil-
ity may save area. Flexibility and hence marketability suggests that all
banks should be equivalent with as few pins per bank as possible, but
this increases the area requirements for the I/O cells. These trade-offs
have not been studied extensively.

6.3 High-Speed I/O Support

Before the advent of high-speed signaling, an FPGA I/O cell only had
to detect/drive a logic zero or one from/to the outside of the device.
This functionality could be directly controlled by the FPGA’s logic
fabric. However, for high-speed differential inter-chip signaling or high-
bandwidth memory interfaces, additional circuitry is often necessary
because of the high speeds involved. At a minimum, standards that
make use of differential signaling require two I/O cells to be paired
together with differential transmitters/receivers. Additionally, inter-
chip signaling and memory interfacing each demand specialized cir-
cuitry to facilitate these high-speed links.

General high-speed inter-chip interfaces require special-purpose seri-
alization and deserialization (SERDES) blocks [23, 231] to support
multi-gigabit interfaces. This high speed signaling often necessitates
the use of source synchronous clocking in which a clock is transmitted
along with the data signals. For such approaches, proper signal sam-
pling is challenging and dedicated circuitry for performing dynamic
clock phase adjustment or per bit delays is often required [101]. Dedi-
cated circuitry to perform this phase adjustment [23] or individual bit
delay [231] is now standard in commercial FPGAs.

High-speed communication requires more than the high-speed sig-
naling that these analog features enable. Therefore, contemporary
FPGAs frequently include dedicated digital circuits to support higher-
level protocols [19, 228]. These features, such as Ethernet Media Access
Controllers (MAC) [228], represent another form of logic block hetero-
geneity, similar to the type described in Section 4.

78 Input/Output Architecture and Capabilities

High-speed memory interfaces also need special-purpose hardware
to accurately capture data flowing between memory chips and the
FPGA. Delay-locked loops (DLLs) and phase-locked loops (PLLs) are
used to adjust the phase of a transfer clock to ensure that data from
the external memory is sampled when the data is valid. To account
for potential timing variations due to process, voltage or temperature
differences, phase adjustment is performed dynamically [23, 231]. I/O
cells also generally contain circuitry to enable fine grained per bit delays
of each data bit [23, 231] so that system level timing requirements can
be met. The amount of soft logic required for the memory interface
is reduced by this additional circuitry while high-speed operation is
ensured.

Additional features, such as adjustable signal terminations (called
Digitally Controlled Impedance [231] or On-chip Termination [23]), fur-
ther simplify board design and ensure a proper signaling environment.

6.4 Challenges in I/O Architecture and Design

We have briefly discussed some of the many issues that must be con-
sidered in the design of an FPGA’s I/O architecture. While modern
commercial FPGAs provide some solutions to these design questions,
FPGA I/O architecture remains a relatively unexplored area. A better
understanding of the appropriate granularity for I/O banks is needed,
and the extent to which equivalent I/O banks are necessary should be
explored. Both issues require an understanding of the needs of state-
of-the-art printed circuit board design.

The electrical design of broadly programmable I/O cells is a difficult
and open problem. Are there clever ways to create a single cell that
will support many I/O standards efficiently while using minimal area
and ensuring that the support of one standard does not interfere with
another?

These questions are very important since additional high-speed
communication approaches for memory interfaces and inter-chip com-
munication will be needed in the near future. Emerging standards will
potentially necessitate even more dedicated circuitry on the FPGA.
Decisions regarding which standards to support and how to support
them will become ever more challenging.

7

Improving FPGAs

The FPGA architectural developments described previously have
improved the area efficiency, performance, and power consumption of
FPGAs. However, the overhead incurred to make FPGAs both gen-
eral purpose and field-programmable often prevents the use of FPGAs
for some applications. When the cost, performance and power con-
sumption specifications go beyond what is possible on an FPGA, other
alternatives must be considered. These alternatives include full-custom
design and fabrication, ASIC cell-based design or partially prefabri-
cated “structured” ASICs. Before reviewing these alternatives, it is
useful to first quantify the area, performance, and power gap between
FPGAs and ASICs since this will inform the search for customized
alternatives to FPGAs and improvements to FPGAs.

7.1 The Gap Between FPGA and ASICs

It is well understood that FPGAs suffer in terms of area, performance,
and power consumption relative to ASICs. The area penalty of using
an FPGA over an ASIC at high volume results in a significantly higher
unit price, for example.

79

80 Improving FPGAs

The extent of these differences is often not fully appreciated; yet, it
is what systems designers must gauge when determining whether their
system can be implemented using an FPGA or one of the alternatives.
This gap between FPGAs and ASICs is also what FPGA architects
fundamentally aim to narrow. There have been various comparisons
between FPGAs or similar devices and ASICs in the past [45, 214, 245].
Recently, a more thorough comparison has been performed [119, 120].
In the study, a 90 nm FPGA, the Altera Stratix II, was compared
to an ASIC created using an STMicroelectronics 90 nm process. The
approach used was an empirical one (much like the architectural explo-
rations described in Section 4.2) that compared the area, performance,
and power consumption of multiple benchmark circuits in both tech-
nologies. As discussed in Section 4.8, modern FPGAs contain tile-based
heterogeneous structures and the Altera Stratix II, in particular, has
multiplier/accumulator blocks (DSP blocks), and a number of different
memory blocks. Since not all benchmarks make use of these hetero-
geneous features, the benchmarks were categorized according to the
resources they used.

The results of this comparison are summarized in Table 7.1. The
table lists the geometric average of the ratio of the FPGA measurement
to the ASIC measurement across all benchmark circuits for specific
metrics. Each row indicates the particular metric being compared: area
consumed, critical path delay, and dynamic power. The results in each
row are broken down, in each column, into the results for each category
of benchmarks: pure soft logic (labeled “Soft Logic Only”), soft logic
with DSP arithmetic computations (Soft Logic & DSP), soft logic with
memory blocks (Soft Logic & Memory), and soft logic mixed with DSP
and memory blocks (Soft Logic, Memory & DSP). For example, the

Table 7.1 The FPGA:ASIC gap from [120].

Metric Soft logic Soft logic & Soft logic & Soft logic, DSP &
only DSP memory memory

Area 35 25 33 18

Delay 3.4 3.5 3.5 3.0
Dynamic power 14 12 14 7.1

7.1 The Gap Between FPGA and ASICs 81

“Soft Logic Only” column summarizes the averages for circuits that
only used LUTs and flip–flops.

7.1.1 Area Gap

As shown in Table 7.1, the average ratio of area consumed by a 90 nm
FPGA using just soft logic and a 90 nm ASIC is 35. This is clearly a
significant difference that severely limits the size of circuits that can
be handled on a modern FPGA. This large area gap is also one of the
primary contributors to the higher cost of FPGAs relative to ASICs
and directly affects the volumes at which FPGAs are no longer price
competitive. The high profit margins, typically higher than 60%, that
FPGA vendors are able to command also has a strong impact on the
relative price of FPGAs vs. ASICs.

Fortunately, the hard logic blocks that are now employed in FPGAs
reduce this area gap as shown in the last three columns of Table 7.1. The
benchmarks that make use of the DSP blocks and soft logic (column 3
of the table) are only 25 times larger on average when implemented in
an FPGA. When both memory and the DSP blocks were used (column
5 of the table), the average of 18 times is even lower than when just
DSP blocks are used.

It is important to recognize that these measurements are somewhat
optimistic because only the hard blocks that are used are included in
the FPGA area measurement, rather than some proportion of unused
blocks. As described in Section 4, real design implementations are
forced to tolerate a fixed ratio of soft logic to memory to DSP blocks. In
addition, the results generated using the heterogeneous blocks heavily
depend on the nature of the specific circuits used in the comparison
and, in particular, the number and size of the hard blocks that are
required by each circuit. As more hard blocks are used, the ratio of
FPGA to ASIC area will be reduced because the implementation area
of the hard blocks is similar to that of an ASIC implementation, assum-
ing that the logic dominates the area and not the routing. With full
utilization of all the hard blocks available on the Stratix II, the area
gap could potentially shrink to as low as 4.7 times, a lower bound
described in [120].

82 Improving FPGAs

7.1.2 Speed Gap

The average delay gap of 3.4 times for the soft logic case is not as
large as the area gap. It is noteworthy that the DSP blocks, which
dramatically improved the FPGA vs. ASIC area gap have little benefit
on the FPGA vs. ASIC delay gap. This observation goes against a
commonly held belief that the primary benefit of hard blocks is speed
improvement. The reasons cited for this effect are

(1) A hard block may only speed up a portion of the critical
path, with the remainder still relatively slow, so the net gain
is not as dramatic as expected.

(2) A hard block may speed up some number of critical paths in
the FPGA, but there may be other near-critical paths that
are not sped up, and so the gain is limited.

Similarly, the use of the memory blocks in the FPGA had a negligi-
ble impact on the delay gap between FPGAs and ASICs and their main
benefit also appears to be area savings. We note that [99] suggests that
larger gains from hard blocks can be obtained if a full re-timing pass
is done on the circuit with the hard embedded blocks in place, partic-
ularly for highly pipelined circuits. The tool flow used to generate the
data reported above did not use re-timing.

7.1.3 Power Gap

Finally, the dynamic power consumption of an FPGA implementation
relative to an ASIC implementation was found to be 14 times greater
on average. This is a significant issue as power, rather than area or per-
formance, is often the limiting factor for digital designs. Hard blocks
were shown to offer only a slight reduction in the FPGA’s power con-
sumption relative to an ASIC’s consumption.

7.2 Alternatives to FPGAs

The large area, performance, and power gap between FPGAs and
ASICs prevents the use of FPGAs for some applications. To address
this limitation, a range of alternatives to FPGAs exist.

7.2 Alternatives to FPGAs 83

7.2.1 Standard Cell ASICs

The primary alternative to FPGAs are standard-cell based ASICs [62].
The benefits of standard cell ASIC implementation relative to an FPGA
are well known and, as described in Section 7.1, they include a lower
price at higher volume, greater performance, and reduced power con-
sumption. Given the large area, performance, and power advantage of
ASICs it is not always necessary to use the most current, smallest-
geometry process for an ASIC and, instead, a more mature, larger-
geometry process can be used. However, the challenges of standard cell
ASIC versus FPGA implementation include significantly higher NRE
costs, a longer manufacturing time and an increasingly more compli-
cated design process. The process of converting FPGA designs to a
standard cell implementation is also not necessarily straightforward.
Techniques to improve the performance of FPGAs are often not appro-
priate for ASIC designs. An FPGA implementation may utilize some
features of a device simply because they are already available while
every additional feature or gate used in an ASIC incurs a cost. This
can alter the approach used for a design. Such issues potentially increase
the effort required to convert an FPGA design to a standard cell ASIC
design.

7.2.2 Structured ASICs

While an ASIC implementation can offer significant area, performance,
and power benefits, the many difficulties that must be overcome to cre-
ate an ASIC have led to the development of devices that lie in between
an FPGA and an ASIC. A structured ASIC [16, 76, 154, 155, 180, 219]
is a partially pre-fabricated die that is customized through additional
manufacturing.

The pre-fabricated portion of the die includes an array of gates
(similar to the older-generation mask-programmed gate arrays) as well
as pre-placed memory, I/O, hard processor and/or DSP blocks, pre-
planned power distribution and pre-routed interconnects [180]. The
customization of these devices is performed during manufacturing using
custom masks. A variety of different approaches for creating structured
ASICs have been developed [16, 76, 154, 155, 180, 219]. Most of the

84 Improving FPGAs

masks for these approaches are fixed for all designs. These masks define
the basic logic fabric. Some of these methods use one or more layers of
metal for customization, while others use as little as a one via layer for
customization in conjunction with SRAM programmability [76].

One factor that affects the density of the final implementation is the
number of masks that are design dependent. With more masks, greater
density is possible but costs and manufacturing time are increased. All
of these factors are very different than the issues that must be con-
sidered when using FPGAs and, as a result, the logic architecture of
structured ASICs is often very different from those found in FPGAs. It
is beyond the scope of this survey to review the different logic architec-
tures used for structured ASICs. However, it is noteworthy that some
approaches use a structure that is functionally equivalent to an FPGA
[16]. Such approaches simplify the process of converting FPGA designs
to structured ASIC implementations.

The primary advantage of structured ASICs over FPGAs is the
elimination of dedicated switches and the memory elements that config-
ure those switches. This switch removal reduces the area, increases the
performance, and reduces the power consumption of structured ASIC
implementations in comparison to FPGA implementations. Structured
ASICs achieve these gains without the high design costs of regular
ASICs. For fabrication in 0.13µm CMOS, a typical structured ASIC
may have design costs on the order of $500k, while a full standard cell-
based ASIC can easily cost $5.5M [219]. For newer processes in 90 nm
and 65 nm CMOS, this difference may become larger as mask costs
and design complexity increase. Since only a few layers are customized
in a structured ASIC, manufacturing time is reduced in comparison
to a cell-based ASIC. Unlike standard cell ASICs, there are many
approaches for structured ASICs that are specifically aimed at FPGA
design conversion [16, 28]. However, structured ASICs do not offer the
full performance, power, and area efficiency of ASICs and, therefore,
the additional costs of an ASIC implementation are not always pro-
hibitive. In addition, since fabrication is necessary to complete the
device, a structured ASIC suffers from many of the risks and delays
associated with ASICs.

7.2 Alternatives to FPGAs 85

7.2.3 Design-Specific Testing

An alternative to creating new custom device designs that address
FPGA inefficiencies is to leverage FPGA devices that are less than
fully functional. In general, only a fraction of an FPGA’s resources are
used by an end user’s circuit. Normally, FPGAs must be fully functional
because every design may use different FPGA resources. However, once
an end user’s design enters production, a part which is less than fully
functional may be sufficient as long as faulty resources are not used
by the design. The 20–35 times area gap between FPGAs and ASICs
increases FPGA costs both because greater silicon area is required ver-
sus ASICs and because this greater area leads to reduced yield [163].
Once the circuit to be implemented on an FPGA is fixed, most defects
that occur in unused portions of the FPGA will not affect the oper-
ation of the end-user’s circuit, except for catastrophic defects such as
power-ground shorts. By developing custom test vectors based on the
end user’s circuit, it is possible to test parts which failed the test for full
functionality but which may be sufficiently functional to implement a
specific end-user circuit. This is the approach used for Xilinx EasyPath
FPGAs and a potential methodology for this approach is described in
US Patent 6,891,395 [205].

In comparison to other approaches, this design-specific testing
improves manufacturing yield, and reduces the costs of FPGA testing.
Note that these are only two factors that contribute to the cost differ-
ence between FPGAs and their alternatives. The underlying implemen-
tation is not changed and, therefore, the area, performance, and power
will also remain unchanged. However, with the improved yield, the
price per FPGA can be reduced. In comparison to other FPGA alter-
natives, a benefit of this approach is significantly reduced NRE costs
(reportedly on the order of $75k [223]), a risk-free conversion process
and a faster time to production. The conversion of a design to a design-
specific FPGA involves no changes to the circuit structure and, instead,
only the process of selecting parts is changed. There are a few possi-
ble approaches for part selection. The most likely approach involves
testing parts for full functionality and then using partially functional
parts as candidates for design-specific testing [205]. However, it is also

86 Improving FPGAs

possible that only gross functionality and design-specific testing could
be performed which would reduce testing costs. Given the high gross
margins on FPGAs, another possible but unlikely approach would be
to perform only the testing for full functionality on the manufactured
parts. The fully functional parts could then be sold as design-specific
devices if the manufacturer was willing to accept reduced gross mar-
gins. In all cases, the end-user benefits from reduced per device costs
without making any changes to their design.

8

Emerging Challenges and Architectures

In this survey, we have reviewed the basic foundations of FPGA
logic, routing, and I/O architecture and assessed basic programming
technologies. FPGA architecture has many degrees of freedom which
have only been partially explored by vendors and researchers over the
past 20 years. The challenges going forward, as we have suggested in
previous sections, are still very great, and there is significant room for
innovation and improvement in all areas of FPGAs.

With the continued improvements to process technology, new chal-
lenges arise and FPGA architectures must adapt to address these chal-
lenges while also taking advantage of the increased integration that
improved process technology provides. In this section, some of these
challenges and the potential approaches to address them are reviewed.
We then examine new architectures that are being considered to either
take advantage of the increased levels of integration or to resolve the
issues that will be faced when improvements from traditional CMOS
process scaling become more limited.

8.1 Technology Issues

The continued scaling of CMOS processes has made a number of
transistor-level issues increasingly problematic to the point that FPGA

87

88 Emerging Challenges and Architectures

architects must consider these problems to reduce their impact on
FPGA users. Three of these issues, soft errors, process variability, and
manufacturing defects, will be reviewed in this section.

8.1.1 Soft Errors

With shrinking device sizes, one increasing problem is that of soft
errors or single event upsets. A soft error occurs when ionizing radi-
ation corrupts the data stored in a circuit [31]. The error persists
until new data is written. Soft errors have long been recognized as
a potential problem as radiation can come from a variety of sources.
Originally, radioactive impurities in the device packages were a domi-
nant cause but more recently cosmic radiation either through direct
interaction with silicon nuclei or through interaction with insula-
tor materials have become the primary causes of soft errors [31].
Technology scaling often worsens the soft error problem since volt-
age scaling, and reduced node capacitances lower the charge thresh-
old necessary to corrupt the data. As well, the greater level of inte-
gration increases the likelihood that soft errors will affect a given
device.

These soft errors are a significant concern for FPGAs because they
contain flip–flops in logic blocks and SRAM in heterogeneous mem-
ory tiles that can both be affected by soft errors. However, SRAM-
based FPGAs also rely on SRAM bits to store the configuration of
the FPGA. This latter source of soft errors is unique to FPGAs. We
will briefly review the issues and mitigation techniques for both types
of errors.

8.1.1.1 Configuration Memory

The SRAM cells that form the configuration memory of an SRAM-
based FPGA make such FPGAs particularly vulnerable to soft errors.
Any change to the configuration memory may alter the functionality of
a user’s circuit and such errors would persist until the FPGA is repro-
grammed. FPGAs built using the flash or antifuse programming tech-
nologies described in Section 3 do not suffer from these errors [4, 10].

8.1 Technology Issues 89

There are generally three classes of approaches to mitigating the impact
of soft errors:

• Circuit and technology-level approaches aim to reduce the
possibility of soft-errors through the selection of appropriate
processes combined with circuit-level changes that decrease
the soft error rate.

• System-level design techniques aim to ensure that the system
can detect and recover from soft errors.

• User design methodologies make the implementation of a
user’s design on the FPGA as insensitive to soft errors as
possible.

At the circuit-level a number of changes are possible that can reduce
the occurrence of soft errors. Careful selection of the memory supply
voltage is essential [64] but the conflicting demand for reduced leakage
and enhanced gate oxide reliability limit the voltage level that can be
used. Some approaches specific to configuration memories have been
suggested [199, 202]. These involve the addition of metal capacitors
to nodes in the memory which increases the amount of charge neces-
sary to cause a single event upset. With more charge required, the soft
error rate is reduced. Besides FPGA-specific techniques, any number
of circuit-level soft error reduction techniques may be used.

System-level techniques involve detecting and recovering from
errors. In recent FPGAs this can be done by configuring them to regu-
larly verify their configuration memory by comparing the current values
with the desired configuration state using cyclic redundancy checks [26].
An output from the FPGA signals when an error is detected which
alerts the system that the FPGA needs to be reprogrammed. More
recent approaches leverage the fact that, since resources like routing
are not fully used, many configuration bits do not affect the function-
ality of the FPGA and, therefore, if the configuration bit is a “don’t
care” the error is not flagged [23, 26]. Alternatively, the use of dupli-
cation and partial reprogramming has been suggested to offer more
fine-grained control of errors while also reducing the amount of time
required to recover from an error [40].

90 Emerging Challenges and Architectures

Instead of changing the device architecture, soft errors can also
be addressed by altering the user’s design. One of the simplest, but
also most expensive approaches, is to use triple modular redundancy
(TMR) [23, 230] which involves replicating a design three times and
using voting circuits to determine the correct output. An alternative to
the complete replication of a design is to reduce the sensitivity to soft
errors in the user’s design by careful selection of the resources used.
For example, in [87] an FPGA router that considers the number of
sensitive configuration bits (i.e., the number of bits that must be set
correctly for the circuit to function) was created. The router considers
these bit counts in addition to delay. A 14% reduction in the number
of necessary bits was achieved. Since routing is the cause of nearly 80%
of the soft errors in the FPGA configuration memory [89], reducing the
number of sensitive bits is clearly beneficial.

8.1.1.2 User-Visible Memory

The flip–flops and the heterogeneous memory blocks within a user’s
design are another potential source of soft errors. In practise, the flip–
flops which, unlike SRAM bits, are not made using minimum-sized
devices, are typically not as vulnerable to soft errors [26, 236]. The bits
in memory blocks, however, are vulnerable due to their size.

Fortunately, using error correction on the data stored within the
memory can significantly reduce the soft error rate. There is an area
cost associated with the use of error correction due to the need to store
additional data and the circuitry required to encode and decode the
data. This cost has been partially reduced in recent FPGAs through
the introduction of dedicated hard circuits to perform the memory
encoding [23, 231]; however, small memories in current FPGAs and all
memories in previous generations of FPGAs continue to require a soft-
logic implementation of error correction blocks [26, 236]. Given this
frequent need for error correction circuitry, this is another hard block
which may be appropriate to include as a heterogeneous block in future
FPGAs.

However, the inclusion of error correction does not eliminate soft
errors, as any code is limited in the number of errors it can correct.

8.1 Technology Issues 91

Some codes allow some number of errors to be detected but not cor-
rected and, therefore, it is up to the user’s circuit to handle such
events. It should also be recognized that, since the memory is directly
accessed by the user circuits, any error handling scheme could also be
implemented in the user’s design. Such schemes can be tailored to the
circuit’s environment and application such that mission critical appli-
cations in high radiation environments may have elaborate correction
schemes while an application that can tolerate errors operating in a
normal environment may be able to use only limited error correction
circuitry. While FPGA vendors will strive to offer memories with soft
error rates as low as possible, FPGA users will have to develop circuits
(or vendors will need to supply soft IP) that can handle the level of
errors that will occur in their environment.

8.1.2 IC Process Variation

Like soft errors, variability after manufacturing in transistor proper-
ties (such as Vt, oxide thickness and doping concentrations) is an issue
faced by all integrated circuit designers. This variation can have a sig-
nificant effect on performance and power consumption. Historically,
most of this variation has occurred between dies [41, 74] and FPGA
manufacturers have been able to take advantage of this variation by
testing the speed of each FPGA after manufacturing and then bin-
ning each device according to its speed. Parts from faster speed bins
could then be sold for greater prices. Leakage variation could partially
be managed by testing power consumption and discarding parts with
unacceptable leakage. However, with the continued shrinking of CMOS
transistors, within-die variation has increased in significance [41, 74]
and its significance will continue to increase for future technologies.
This within-die variation cannot be leveraged in the same manner as
the die-to-die variation; instead, operating speeds must be reduced to
maintain functionality. For FPGAs it has been estimated that within-
die variation in the speed of a logic element causes a speed reduction
of 5.7% in 90 nm technology and this may potentially grow to 22.4% in
22 nm technology [176].

92 Emerging Challenges and Architectures

Architectural changes to FPGAs to reduce the impact of process
variation have been suggested. The most straightforward is to select
the logic block architecture parameters to minimize this variation and
LUT size is found to be particularly important for reducing variation in
either timing or leakage [216]. An alternative approach is to adaptively
compensate for any variation through body-biasing [151]. The inherent
regularity and reconfigurability of FPGAs makes it possible to include
a characterization unit that can test each logic block in the FPGA and
store an appropriate body-bias setting. Slow blocks are set to a body
bias voltage that will decrease its threshold voltage thereby increasing
the block’s speed. Fast blocks will have their threshold voltage increased
to reduce leakage power. This scheme incurs an area penalty on the
order of 1%–2% while decreasing delay variability by 30% and leakage
variability by 78%. For a slightly higher area penalty, variability in
delay was reduced by 3.3X and in leakage by 18X [151]. This proposal
appears promising but architectural questions involving the size of the
adjustable blocks and the granularity of the body bias voltage levels
must be thoroughly examined.

Other approaches for handling process variability in FPGAs rely
on CAD-level changes. Proposals include introducing statistical static
timing analysis (SSTA) to FPGA CAD tools to improve delays by
avoiding the margins that are necessary for traditional static timing
analysis [177, 184], testing multiple logically equivalent configurations
of the FPGA to find one that is functional at the desired speed [177],
generating critical paths that will be more robust in the face of vari-
ation [147] or customizing the implementation on the FPGA for the
variations of each specific device [57, 111]. With the increased impact
of variability that is expected in future process generations, it is likely
a combination of architectural and circuit-level changes will be needed
in conjunction with a number of CAD tool innovations.

8.1.3 Manufacturing Defects

As described previously, process variation can lead to reduced perfor-
mance and widely varying leakage power consumption both of which
threaten to reduce the yield on devices after manufacturing. However,

8.1 Technology Issues 93

this is not the only source of yield loss as manufacturing defects, in
which a device is not functional, are in fact the main source of losses.
For this reason, devices are tested after fabrication and defective parts
are generally discarded. Minimizing the yield loss from defects is an
ongoing concern and it may be an even greater challenge in future
technologies. For FPGAs it has been predicted that the yield in 22 nm
CMOS may be 25% lower than in 90 nm CMOS for the same amount
of logic [48].

However, with FPGAs there is an opportunity to work around these
defects and improve yields by leveraging their regular structure. A num-
ber of approaches for improving yields have been proposed and some
are currently used in FPGAs [20, 50, 148]. One set of possibilities are
software-only approaches in which the CAD tools configure the FPGA
to avoid any detected faults [104, 121]. Such approaches have modest
increased area costs but make programming each device significantly
more complex. Another possibility is design-specific testing [205, 223]
which was described in Section 7. That approach allows parts that are
partially defective to be used by designs that do not make use of the
defective resources; however, this is only useful for high volume designs
for which development of a custom test program is cost effective.

The alternative to these two approaches is to add redundancy to
the FPGA architecture. With redundancy, a defective FPGA can be
“repaired,” and the yield improved, by storing defect information in
the device and using that information to adjust the programming of
the device to avoid any errors. This has commonly been done in mem-
ories [114] and was also proposed for PLAs [207]. These redundant
approaches can be classified as either coarse-grained or fine-grained
depending on the size of the redundant regions. We will now describe
these two approaches. In both cases, the approaches only aim to cor-
rect defects that are localized and there are many faults that are not
tolerable such as a short between power and ground.

Coarse-grained approaches add additional rows or columns of tiles
to the FPGA, with each tile containing a logic block and any adjacent
interconnect. This was first suggested in [94] and was more recently
evaluated in [241]. This coarse grain scheme is also used commercially
[50, 148]. In these schemes, spare rows and/or columns are added

94 Emerging Challenges and Architectures

to the FPGA and, in devices with defects, defective rows/columns
are bypassed and the spare rows/columns are used. The overhead of
this approach includes both the area for the spare rows/columns that
are unused in defect-free FPGAs and the additional logic that must
be added to enable the shifting. The latter factor was estimated to
cause a 2% area increase for an early FPGA architecture [94] while
the cost of the spare rows/columns depends on the number of spare
rows/columns which is determined by the desired level of defect toler-
ance. Performance and power consumption are also impacted by this
scheme because routing must be made longer to allow connections to
span a defective row or column. This has been estimated to only cause
a 5% increase to interconnect delays [94] but this has not been reeval-
uated for recent architectures. One new challenge for this defect toler-
ance scheme is the heterogeneous blocks that are commonly included in
modern FPGAs as they add complexity to these coarse-grained redun-
dancy approaches and, with few exceptions [172], such issues have yet
to be examined.

An alternative to the coarse-grained approach of adding complete
rows or columns of logic is a more fine-grained approach of adding
additional switches throughout the FPGA interconnect [73, 240]. With
another set of switches, connections can be shifted to avoid defec-
tive routing segments. The area and delay overheads of this approach
on a modern architecture have been estimated to be 25%–40% and
15%–25%, respectively [240]. This approach is particularly interest-
ing because in defect-free devices the additional switches can be used
to provide additional flexibility and potentially improved performance
which lowers the effective overheads of such schemes. However, the fine-
grained nature of this scheme also necessitates the storage of a detailed
defect map and the costs associated with storing that information have
not been completely evaluated.

Both the fine-grained and the coarse-grained defect tolerance
approaches have their advantages. Coarse-grained designs can han-
dle defects in logic and routing while, to date, none of the fine-
grained approaches can handle errors in the logic block. However,
the fine-grained approach offers increased interconnect defect toler-
ance. A detailed comparison of these schemes was performed in [241].

8.2 Emerging Architectures 95

Given these differing capabilities, it is likely that, as suggested in [241],
hybrid architectures using both fine-grained and coarse-grained tech-
niques may be advantageous in the future. The approaches that are
used will depend on a number of factors including the defect rate,
whether defects occur in clusters, the architecture to which the redun-
dant structures are added and FPGA vendors’ willingness to sacrifice
performance for yield.

8.2 Emerging Architectures

While the continued scaling of CMOS gives rise to problems described
previously, the increased integration both allows and forces architects
to consider new architectures for FPGAs. In this section, we examine
alternative architectures for FPGAs that are enabled by or necessitated
by the continued improvements in process technology, along with new
ideas and directions that have recently been proposed to simply achieve
better performance, computational density, and power consumption.

8.2.1 Coarse-Grained FPGAs

As FPGAs grow increasingly large and more functionality can be imple-
mented on a single chip, a move away from single bit operations, as are
common in current FPGAs, to architectures that operate on coarser
multi-bit data has been frequently proposed as one way to further
improve FPGA performance and efficiency. An early step in this direc-
tion was the bus-based routing and logic blocks [58, 59, 238] described
in Section 5.3.2. While that architecture operated at least partially
on multi-bit buses of data, the underlying LUT-based logic element
was left unchanged. Since then, a number of alternative architectures
have been developed that propose a shift away from such LUT-based
logic, which is inherently fine-grained, to logic units (including both
raw ALUs and more complex instruction-set processors) that operate
on coarse-grained data.

The rationale for this switch to coarse-grained blocks is that many
computing tasks operate on multi-bit data such as integers and floating-
point numbers. Using circuit structures dedicated to processing such

96 Emerging Challenges and Architectures

coarse data may make the implementations faster and more area effi-
cient. However, with the use of such alternative logic, a number of
architectural questions must be considered including the selection of
the logic block and the routing topology to complement that structure.
A full review of these architectural issues is beyond the scope of this
survey and, instead, we will only briefly review the core architectural
questions.

As described in Section 4, there is a wide spectrum of possible fine-
grained logic blocks. For coarse-grained blocks, the same architectural
questions must be considered including whether to use a homogeneous
or heterogeneous mixture of blocks and the specific functionality to
include in the logic block.

A number of possibilities have been suggested ranging from a het-
erogeneous mixture of logic blocks based on multi-bit functional units
including multipliers, memories, and arithmetic logic units (ALUs) [77]
to homogeneous mixtures of full processors [192, 206]. The original
developments in this area favored logic blocks with relatively simple
functional unit blocks. This included, PipeRench, an architecture based
on 8-bit 3-LUT logic blocks with additional circuitry to improve arith-
metic operations [86, 175], CHESS, which was based on a 4-bit ALU
[145], RaPiD, which contained a mixture of 16-bit ALUs, multipli-
ers and memories [77] and DAPDNA-2, which combined 32-bit ALUs,
delay elements, memories, and external memory access units [173].

In recent years, there have been a number of proposals for logic
blocks that are complete processors. Examples include the RAW archi-
tecture which consists of logic blocks which are a 32-bit RISC processor,
a floating point unit and instruction and data caches [192], the TILE
processor which uses a very long instruction word (VLIW) processor as
its logic block [206] and the Ambric architecture based on 32-bit RISC
processors [47]. It is interesting to note that this is similar to the direc-
tion of general purpose processors [201], but these new architectures
retain the flavor of FPGA-style interconnect. Currently, only hundreds
of processor blocks can be integrated on a single device unlike the tens
of thousands of logic blocks found on current FPGAs but with increased
integration this will expand quickly. These coarse-grained architectures

8.2 Emerging Architectures 97

also appear to be moving away from heterogeneity as many of the recent
designs are largely homogeneous [47, 175, 192, 206].

The diversity in the range of logic blocks has led to a wide range
of approaches for interconnecting these blocks. The initial ALU based
architectures [77, 145] used segmented routing interconnect that was
very similar to the standard FPGA interconnect described in Section 5
except a granularity that matches the logic block is used. Processor-
based devices have adopted interconnect networks based on dedicated
processors controlling the routing crossbars [192, 206], circuit switched
connections between flow-controlled channels [46] (which is somewhat
like FPGA bus-based routing) or dynamic (i.e., packet-based) switches
[102, 192, 206].

Clearly, coarse-grained architectures continue to develop and there
have been a number of proposals besides those described here. This
area is the focus of many commercial developments but it is not yet
clear which, if any, of these coarse-grained logic block and interconnect
architectures will achieve wide adoption because there have been only
limited performance analyses of these architectures. This lack of per-
formance comparisons may largely be due to the immaturity (and the
resulting limited availability) of CAD tools targeting these platforms.
Until high quality CAD tools (and instruction set compilers) that can
effectively map benchmarks to these different architectures are devel-
oped, direct comparisons may be limited.

It is also interesting to consider that these coarser grained struc-
tures key advantage may simply be in the programming model that
they present to the user, and that it is possible to map that same
model on to a more traditional FPGA, and thereby regain the eco-
nomic advantages of a “single” universal architecture. It could also be
true that if a particular model works well, then its more closely allied
architecture could well be the most efficient implementation.

8.2.2 Asynchronous FPGAs

Another alternative approach that has been proposed to enable fur-
ther performance improvements in FPGAs is the use of asynchronous
design elements. Conventionally, it has been a standard practise for

98 Emerging Challenges and Architectures

digital circuits to be designed for synchronous operation with global
clocks overseeing the circuit’s operation. Accordingly, FPGA architec-
ture, including the work described in this survey, has focused primarily
on implementing synchronous circuits. Asynchronous design has been
proposed to improve the energy efficiency of FPGAs since asynchronous
designs offer potentially lower energy as energy is only consumed when
necessary. They also have the potential to increase throughput since cir-
cuits operate based on their actual performance and not a theoretical
worst case (which is particularly important given the increased impact
of process variations described previously). Finally, asynchronous archi-
tectures may simplify the design process as complex clock distribution
networks become unnecessary. Given these potential benefits, a num-
ber of proposals to use FPGAs to implement asynchronous designs have
been suggested.

Architectural changes are generally necessary because modern
synchronous-focused FPGAs lack many features needed by asyn-
chronous circuits. In particular, FPGAs are not designed to avoid
glitches but any glitch can lead to incorrect operation of asynchronous
designs. As well, asynchronous circuits often rely on a specific order-
ing of signals to ensure that a data ready signal only occurs after
the data signals have been set. However, the significant and vari-
able routing delays of the signals within an FPGA can make it dif-
ficult to satisfy such constraints. Despite these issues, there have
been attempts to implement asynchronous designs on synchronous
FPGAs [100]; however, such approaches have been found to incur sig-
nificant area and performance penalties [193]. Therefore, to enable
more efficient asynchronous implementations, new FPGA architectures
that incorporate asynchronous elements directly have been proposed
[95, 110, 158, 193, 194, 215]. We will briefly review these architec-
tures and then summarize the architectural issues facing asynchronous
FPGA designs.

8.2.2.1 Asynchronous Architectures

The first asynchronous FPGA was developed by Hauck et al. [95]. It
consisted of a modified version of a previously developed synchronous

8.2 Emerging Architectures 99

FPGA architecture. The logic block resembled a conventional logic
block with two significant changes: first, that the logic block provides for
a fast feedback path to facilitate the implementation of asynchronous
state elements. Second, the latch within the logic block can be used
to initialize an asynchronous circuit. As in a regular (synchronous)
FPGA, the latch can also be connected to a clock signal. Besides the
regular logic block, [95] also introduces an arbiter block to resolve asyn-
chronous contention that is added as a heterogeneous element to the
array of tiles.

Teifel et al. [193, 194] proposed alternative asynchronous architec-
tures designed for dataflow applications. The basic logic block con-
sists of LUTs, similar to the synchronous FPGAs described previously,
along with units useful for asynchronous computation such as a split
unit which enables conditional forwarding of data and a merge unit
that allows for the conditional selection of data from different sources.
Unlike the other asynchronous architectures, all the data in the routing
is transferred using asynchronous techniques. Starting from that base
architecture, a higher performing architecture is developed by using
many of the same approaches used in synchronous designs including
increasing the LUT size, improving the carry logic and clustering groups
of functional units. This approach is in commercial development [63].

An alternative approach for asynchronous FPGAs was suggested
by Payne [157, 158]. This architecture is designed for a “bundled-data”
approach that splits the control path from the datapath [158]. Two
distinct types of cells, that are always paired, are used: a timing cell
that implements the control-path using asynchronous signaling and a
data cell that uses same structures as a synchronous FPGA. A similar
approach was also suggested in [115]; however, that design opted for a
more elaborate control path unit.

An alternative to fully asynchronous design is a globally asyn-
chronous, locally synchronous (GALS) approach. Such an approach
has been suggested for use in FPGAs by both Royal et al. [171] and
Jia et al. [110]. Both designs involve introducing a level of hierar-
chy into the FPGA fabric. Standard hard or soft synchronous logic
blocks are grouped together to form large synchronous blocks. Com-
munication between these blocks is done asynchronously. As described

100 Emerging Challenges and Architectures

in Section 5.1.1, the hard boundaries introduced by such hierarchy
can be problematic given the wide range of designs FPGAs must
accommodate. Jia and Vemuri [110] attempts to address this issue
by allowing for some flexibility in the use of these asynchronous
boundaries.

8.2.2.2 Asynchronous Architecture Issues

It is clear that, despite each architecture offering its own purported
benefits, a number of architectural questions remain unresolved for
asynchronous FPGAs. Many architectures rely on logic blocks similar
to those used for synchronous designs [95, 110, 158, 171] and, there-
fore, the same architectural issues such as LUT size, cluster size, and
routing topology must be investigated. In addition to those questions,
asynchronous FPGAs also add the challenge of determining the appro-
priate synchronization methodology such as a bundled data approach
[158] or an approach with only delay insensitive elements [193].

These questions remain unanswered in part because CAD software
remains comparatively immature. The current trend appears to be
toward developing software that hides the asynchronous design details
[63, 215]. As was noted in the discussion of coarse-grained architec-
tures, well-developed CAD tools will be necessary to enable the rigor-
ous experimental methodologies, as described in Section 4.2, that are
used to evaluate current FPGA architectures.

8.2.3 Nanotechnology Architectures

While the increased integration of CMOS devices, as described by
Moore’s Law, has greatly expanded the capabilities of FPGAs, sig-
nificant challenges must be addressed for this trend to continue [108]
and eventually fundamental physical limits will prevent further scal-
ing of standard CMOS devices. New alternative or complementary
approaches to CMOS may enable further increases in integration and
performance improvements for FPGAs. Such technologies, which fea-
ture devices with sizes on the order of 10 nm and lower, are generally
referred to as nanotechnology.

8.2 Emerging Architectures 101

Unlike the lithographic-based CMOS process currently used to cre-
ate integrated circuits, nanotechnology devices will likely be fabricated
with a completely different bottom-up approach that can only create
highly regular structures which will likely have high defect rates [85].
(Interestingly, this combination of a regular fabric that most be pro-
grammed to avoid defects may force more devices to adopt FPGA-like
approaches.) A review of the fabrication techniques that may be used
is beyond the scope of this survey. Interested readers are referred to
[149, 187]. Instead we will review the architectures that will be used to
leverage the strengths of these nanotechnologies.

A number of FPGA architectures based on nanoscale technologies
have been proposed. As the underlying nanotechnologies have some
limitations compared to lithographically designed CMOS, all the archi-
tectures are similar in that they assume a combination of CMOS and
nanodevices will be necessary. The architectures differ in the division
of capabilities between CMOS and the nanodevices.

One approach is to continue to use CMOS for implementing the
LUT-based logic blocks while using nanodevices for the interconnect
[75, 83]. This can enable increased integration because the routing
consumes a significant portion of the silicon area. With all the rout-
ing implemented using nanowires and the switches implemented using
molecular switches, it is found that a 30% reduction in area and a
32% improvement in average delay is possible compared to 22 nm
CMOS technology [83]. With a different style of nanotechnology to
implement the interconnect, smaller performance gains of 17.5% were
obtained [75]. These relatively modest improvements suggest more
aggressive use of the nanotechnology is necessary to achieve greater
density improvements.

An alternative architecture, called the CMOL FPGA, shifts more
of the functionality to the nanodevices [190, 191]. Implementing LUT-
based logic with these nanodevices is not efficient [190] and, therefore,
a PLA-based approach is used. (PLAs and some of their architectural
issues were described in Sections 2 and 4.6.) The architecture consists
of an array of CMOS tiles containing either inverters connected through
pass transistors to a grid of metal interconnects or a flip–flop for stor-
age. A grid of nanodevices lies above the CMOS fabric and is connected

102 Emerging Challenges and Architectures

at specific points. Each nanodevice can be programmed to be either on
(low resistance) or off (high resistance). When these programmable
switches are connected together with a pull-down implemented using
CMOS, a wired-OR is created. Connecting the wired-OR to the CMOS
inverter restores the voltage levels and also makes the design func-
tionally complete. This approach yielded improvements in density of
on average 110 times compared to 45 nm CMOS [191]. However, the
speed estimates indicate the design is considerably (5X) slower than
the CMOS implementation [191].

Finally, an architecture known as the nanoPLA that moves almost
all of the functionality to the nanodevices has been proposed [69, 70,
71]. Again logic is implemented using a NOR-based PLA; however,
nanoscale FET devices are used to restore signal voltages. This obviates
the need for CMOS logic after every logic stage. As well, it is possible
to implement registers without using lithographic CMOS gates. A large
device is created by replicating a single nanoPLA tile that contains the
PLA planes, internal signal feedback paths, and buffering with selec-
tive inversion. This closely resembles the island-style FPGAs described
earlier and therefore, the interconnection of these blocks faces many
of the same routing architecture questions described earlier. However,
with this nanoscale interconnect, those questions will need to be revis-
ited. CMOS logic is used for inputs and outputs to the nanoPLA fabric
as well as for programming the fabric. Compared to 22 nm CMOS, an
improvement in density of one to two orders of magnitude appears pos-
sible [70]; however, improving the delay performance appears to be an
unresolved challenge.

The diversity in the nanoscale architectures described is a result of
the relative immaturity of the underlying nanotechnologies. As these
nanoscale devices continue to evolve and it becomes more certain which
approaches are manufacturable, the architectures will change to take
advantage of the capabilities of these nanodevices. One significant chal-
lenge that requires further study is the handling of the defects that will
likely be present in these future nanodevices. While these architectures
[70, 83, 190] considered some of these issues, full solutions that incor-
porate both CAD and architecture will need to be developed.

8.3 Conclusion 103

8.3 Conclusion

This survey has explored many issues in the complex and rapidly evolv-
ing world of pre-fabricated FPGA architectures. While these devices
have changed dramatically in last two decades, it is clear that many
fundamental questions remain, driven by rapid changes in technology
and applications.

References

[1] Actel Corporation, “ACT 1 series FPGAs,” http://www.actel.com/
documents/ACT1 DS.pdf, April 1996.

[2] Actel Corporation, “Axcelerator family FPGAs,” http://www.actel.com/
documents/AX DS.pdf, May 2005.

[3] Actel Corporation, “ProASIC3 flash family FPGAs,” http://www.actel.
com/documents/PA3 DS.pdf, October 2005.

[4] Actel Corporation, “Single-event effects in FPGAs,” http://www.actel.
com/documents/FirmErrorPIB.pdf, 2007.

[5] Actel Corporation, “SX-A family FPGAs v5.3,” http://www.actel.com/
documents/SXA DS.pdf, February 2007.

[6] A. Aggarwal and D. Lewis, “Routing architectures for hierarchical field-
programmable gate arrays,” in IEEE International Conference on Computer
Design, pp. 475–478, October 1994.

[7] E. Ahmed, The Effect of Logic Block Granularity on Deep-Submicron FPGA
Performance and Density. Master’s thesis, University of Toronto, Department
of Electrical and Computer Engineering, 2001.

[8] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-submicron
FPGA performance and density,” in Proceedings of the 2000 ACM/SIGDA
Eighth International Symposium on Field Programmable Gate Arrays, pp. 3–
12, ACM Press, 2000.

[9] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-submicron
FPGA performance and density,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 12, no. 3, pp. 288–298, March 2004.

105

106 References

[10] G. R. Allen and G. M. Swift, “Single event effects test results for advanced field
programmable gate arrays,” in 2006 IEEE Radiation Effects Data Workshop,
pp. 115–120, 2006.

[11] Altera Corporation, “Classic EPLD family data sheet. A-DS-CLASSIC-05,”
http://www.altera.com/literature/ds/classic.pdf, May 1999.

[12] Altera Corporation, “APEX II programmable logic device family, DS-
APEXII-3.0,” http://www.altera.com/literature/ds/ds ap2.pdf, August 2002.

[13] Altera Corporation, “Excalibur device overview DS-EXCARM-2.0,” May
2002.

[14] Altera Corporation, “FLEX 10K embedded programmable logic device fam-
ily, DS-F10K-4.2,” http://www.altera.com/literature/ds/dsf10k.pdf, January
2003.

[15] Altera Corporation, “APEX 20K programmable logic device family data sheet,
DS-APEX20K-5.1,” http://www.altera.com/literature/ds/apex.pdf, March
2004.

[16] Altera Corporation, “HardCopy structured ASICs,” http://www.altera.com/
products/devices/hardcopy/hrd-index.html, 2005.

[17] Altera Corporation, “MAX II device handbook,” http://www.altera.com/
literature/hb/max2/max2 mii5v1.pdf, June 2005.

[18] Altera Corporation, “Stratix II device handbook SII5V1-3.1,” http://www.
altera.com/literature/hb/stx2/stratix2 handbook.pdf, July 2005.

[19] Altera Corporation, “Stratix II GX device handbook SIIGX5V1-1.1,”
http://www.altera.com/literature/hb/stx2gx/stxiigx handbook.pdf, October
2005.

[20] Altera Corporation, “Altera’s strategy for delivering the benefits of
the 65-nm semiconductor process WP-01002-1.1,” http://www.altera.com/
literature/wp/wp-01002.pdf, September 2006.

[21] Altera Corporation, “Cyclone II device handbook, ver. CII5V1-3.0,”
http://www.altera.com/literature/hb/cyc2/cyc2 cii5v1.pdf, June 2006.

[22] Altera Corporation, “Stratix device family data sheet, Volume 1, S5V1-3.4,”
http://www.altera.com/literature/hb/stx/stratix vol 1.pdf, January 2006.

[23] Altera Corporation, “Stratix III device handbook, ver 1.0,” http://www.
altera.com/literature/hb/stx3/stratix3 handbook.pdf, November 2006.

[24] Altera Corporation, “Cyclone device handbook. C5V1-2.1, ver. C5V1-2.1,”
http://www.altera.com/literature/hb/cyc/cyc c5v1.pdf, January 2007.

[25] Altera Corporation, “Cyclone III device handbook, ver. CIII5V1-1.2,”
http://www.altera.com/literature/hb/cyc3/cyclone3 handbook.pdf, Septem-
ber 2007.

[26] Altera Corporation, “Robust SEU mitigation with Stratix III FPGAs,
WP-01012-1.0,” http://www.altera.com/literature/wp/wp-01012.pdf, Octo-
ber 2007.

[27] Altera Corporation, “Stratix III FPGAs vs. Xilinx Virtex-5 devices: Archi-
tecture and performance comparison, Altera White Paper WP-01007-2.1,”
http://www.altera.com/literature/wp/wp-01007.pdf, October 2007.

[28] AMI Semiconductor, “Structured digital products,” http://www.amis.com/
pdf/structured digital brochure.pdf, September 2003.

References 107

[29] J. Anderson and F. Najm, “A novel low-power FPGA routing switch,” in
Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 719–722,
October 2004.

[30] H. B. Bakaglu, Circuits, Interconnection, and Packaging for VLSI. Reading,
MA: Addison Wesley, 1990.

[31] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design and
Test of Computers, vol. 22, no. 3, pp. 258–266, 2005.

[32] M. J. Beauchamp, S. Hauck, K. D. Underwood, and K. S. Hemmert, “Embed-
ded floating-point units in FPGAs,” in FPGA’06: Proceedings of the Interna-
tion Symposium on Field Programmable Gate Arrays, pp. 12–20, USA, New
York, NY: ACM Press, 2006.

[33] V. Betz and J. Rose, “Improving FPGA performance via the use of archi-
tecture families,” in 3rd ACM Intl. Symposium on Field-Programmable Gate
Arrays, pp. 10–16, 1995.

[34] V. Betz and J. Rose, “How much logic should go in an FPGA logic block?,”
IEEE Design and Test of Computers, vol. 15, no. 1, pp. 10–15, January–March
1998.

[35] V. Betz and J. Rose, “Circuit design, transistor sizing and wire layout of
FPGA interconnect,” in Proceedings of the IEEE Custom Integrated Circuits
Conference, pp. 171–174, 1999.

[36] V. Betz and J. Rose, “FPGA routing architecture: Segmentation and buffering
to optimize speed and density,” in Proceeding: ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pp. 140–149, February 1999.

[37] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, 1999.

[38] J. Birkner, A. Chan, H. T. Chua, A. Chao, K. Gordon, B. Kleinman, P. Kolze,
and R. Wong, “A very-high-speed field-programmable gate array using metal-
to-metal antifuse programmable elements,” Microelectronics Journal, vol. 23,
no. 7, pp. 561–568, November 1992.

[39] J. M. Birkner and H. T. Chua, “Programmable array logic circuit,” U.S.
Patent number 4124899, Filed May 23, 1977, November 1978.

[40] C. Bolchini, D. Quarta, and M. D. Santambrogio, “SEU mitigation for SRAM-
based FPGAs through dynamic partial reconfiguration,” in GLSVLSI ’07:
Proceedings of the 17th Great Lakes Symposium on VLSI, pp. 55–60, USA,
New York, NY: ACM Press, 2007.

[41] K. A. Bowman, S. G. Duvall, and J. D. Meindl, “Impact of die-to-die and
within-die parameter fluctuations on themaximum clock frequency distribu-
tion for gigascale integration,” IEEE Journal of Solid-State Circuits, vol. 37,
no. 2, pp. 183–190, 2002.

[42] S. Brown, M. Khellah, and Z. Vranesic, “Minimizing FPGA interconnect
delays,” IEEE Design and Test of Computers, vol. 13, no. 4, pp. 16–23, Winter
1996.

[43] S. Brown and J. Rose, “FPGA and CPLD architectures: A tutorial,” IEEE
Design and Test of Computers, vol. 12, no. 2, pp. 42–57, Summer 1996.

[44] S. Brown, J. Rose, and Z. Vranesic, “A stochastic model to predict
the routability of field-programmable gate arrays,” IEEE Transactions on

108 References

Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no. 12,
pp. 1827–1838, December 1993.

[45] S. D. Brown, R. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate
Arrays. Kluwer Academic Publishers, 1992.

[46] M. Butts, “Synchronization through communication in a massively parallel
processor array,” IEEE Micro, vol. 27, no. 5, pp. 32–40, September–October
2007.

[47] M. Butts, A. M. Jones, and P. Wasson, “A structural object programming
model, architecture, chip and tools for reconfigurable computing,” in Field-
Programmable Custom Computing Machines, 2007. 15th Annual IEEE Sym-
posium on. FCCM 2007, pp. 55–64, April 2007.

[48] N. Campregher, P. Y. K. Cheung, G. A. Constantinides, and M. Vasilko,
“Analysis of yield loss due to random photolithographic defects in the
interconnect structure of FPGAs,” in FPGA ’05: Proceedings of the 2005
ACM/SIGDA 13th International Symposium on Field-Programmable Gate
Arrays, pp. 138–148, USA, New York, NY: ACM Press, 2005.

[49] W. Carter, K. Duong, R. H. Freeman, H. Hsieh, J. Y. Ja, J. E. Mahoney,
L. T. Ngo, and S. L. Sze, “A user programmable reconfiguration gate array,”
in Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 233–
235, May 1986.

[50] M. Chan, P. Leventis, D. Lewis, K. Zaveri, H. M. Yi, and C. Lane, “Redun-
dancy structures and methods in a programmable logic device, US Patent
7,180,324,” February 2007.

[51] Y.-W. Chang, J.-M. Lin, and M. D. F. Wong, “Matching-based algorithm for
FPGA channel segmentation design,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 20, no. 6, pp. 784–791, June
2001.

[52] Y.-W. Chang, D. F. Wong, and C. K. Wong, “Universal switch-module design
for symmetric-array-based FPGAs,” in Proceedings of the 1996 ACM Fourth
International Symposium on Field-Programmable Gate Arrays, pp. 80–86,
February 1996.

[53] Y.-W. Chang, D. F. Wong, and C. K. Wong, “Universal switch modules for
FPGA design,” ACM Transactions Design Automation Electronic Systems,
vol. 1, no. 1, pp. 80–101, 1996.

[54] D. Chen, J. Cong, and P. Pan, “FPGA design automation: A survey,” Foun-
dations and Trends in Electronic Design Automation, vol. 1, no. 3, September
2006.

[55] J. Chen, S. Eltoukhy, S. Yen, R. Wang, F. Issaq, G. Bakker, J. L. Yeh,
E. Poon, D. Liu, and E. Hamdy, “A modular 0.8 um technology for high per-
formance dielectric antifuse field programmable gate arrays,” in Proceedings
of 1993 International Symposium on VLSI Technology, Systems and Applica-
tions, pp. 160–164, 1993.

[56] L. Cheng, F. Li, Y. Lin, P. Wong, and L. He, “Device and architecture coopti-
mization for FPGA power reduction,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 26, no. 7, pp. 1211–1221, July
2007.

References 109

[57] L. Cheng, J. Xiong, L. He, and M. Hutton, “FPGA performance optimiza-
tion via chipwise placement considering process variations,” in International
Conference on Field-Programmable Logic and Applications, vol. 6, pp. 44–49,
2006.

[58] D. Cherepacha and D. Lewis, “A datapath oriented architecture for FPGAs,”
in Proceedings of the ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, 1994.

[59] D. Cherepacha and D. Lewis, “DP-FPGA: An FPGA architecture optimized
for datapaths,” in VLSI Design, pp. 329–343, 1996.

[60] S. Cheung, K. K. Chua, B. J. Ang, T. P. Chong, W. L. Goay, W. Y. Koay,
S. W. Kuan, C. P. Lim, J. S. Oon, T. T. See, C. Sung, K. P. Tan, Y. F. Tan,
and C. K. Wong, “A million gate PLD with 622 MHz I/O interface, multiple
PLLs and high performance embedded CAM,” in Proceedings of the IEEE
Custom Integrated Circuits Conference, pp. 143–146, May 2000.

[61] S. Chiang, R. Forouhi, W. Chen, F. Hawley, D. McCollum, E. Hamdy, and
C. Hu, “Antifuse structure comparison for field programmable gate arrays,”
in International Electron Devices Meeting 1992 Technical Digest, pp. 611–614,
December 1992.

[62] D. Chinnery and K. Keutzer, Closing the Gap Between ASIC and Custom
Tools and Techniques for High-Performance ASIC Design. Kluwer Academic
Publishers, 2002.

[63] P. Clarke, “CEO Interview: John Lofton Hold of Achronix,” EE Times,
http://www.eetimes.com/news/semi/showArticle.jhtml?articleID=187002064,
May 2006.

[64] N. Cohen, T. S. Sriram, N. Leland, D. Moyer, S. Butler, and R. Flatley, “Soft
error considerations for deep-submicron CMOS circuit applications,” in Elec-
tron Devices Meeting, 1999. IEDM Technical Digest. International, pp. 315–
318, 1999.

[65] J. Cong, H. Huang, and X. Yuan, “Technology mapping and architecture
evaluation for k/m-macrocell-based FPGAs,” TODAES, vol. 10, pp. 3–23,
January 2005.

[66] J. Cong and S. Xu, “Delay-optimal technology mapping for FPGAs with
heterogeneous LUTs,” in Design Automation Conference, 1998. Proceedings,
pp. 704–707, 1998.

[67] J. Cong and S. Xu, “Technology mapping for FPGAs with embedded mem-
ory blocks,” in Proc. ACM International Symposium on FPGA, pp. 179–188,
Monterey, California, February 1998.

[68] R. Cuppens, C. D. Hartgring, J. F. Verwey, H. L. Peek, F. A. H. Vollebraft,
E. G. M. Devens, and I. A. Sens, “An EEPROM for microprocessors and
custom logic,” IEEE Journal of Solid-State Circuits, vol. 20, no. 2, pp. 603–
608, April 1985.

[69] A. DeHon, “Design of programmable interconnect for sublithographic pro-
grammable logic arrays,” in FPGA ’05: Proceedings of the 2005 ACM/SIGDA
13th International Symposium on Field-Programmable Gate Arrays, pp. 127–
137, USA, New York, NY: ACM Press, 2005.

[70] A. Dehon, “Nanowire-based programmable architectures,” Journal on Emerg-
ing Technologies in Computing Systems, vol. 1, no. 2, pp. 109–162, 2005.

110 References

[71] A. DeHon and M. J. Wilson, “Nanowire-based sublithographic programmable
logic arrays,” in FPGA ’04: Proceedings of the 2004 ACM/SIGDA 12th Inter-
national Symposium on Field Programmable Gate Arrays, pp. 123–132, USA,
New York, NY: ACM Press, 2004.

[72] W. E. Donath, “Wire length distribution for placements of computer logic,”
IBM Journal of Research and Development, vol. 25, no. 3, pp. 152–155, May
1981.

[73] A. Doumar and H. Ito, “Design of switching blocks tolerating defects/faults
in FPGA interconnection resources,” in IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems, 2000, pp. 134–142, 2000.

[74] S. Duvall, “Statistical circuit modeling and optimization,” in 2000 5th Inter-
national Workshop on Statistical Metrology, pp. 56–63, 2000.

[75] S. Eachempati, A. Nieuwoudt, A. Gayasen, N. Vijaykrishnan, and Y. Massoud,
“Assessing carbon nanotube bundle interconnect for future FPGA architec-
tures,” in DATE ’07: Proceedings of the Conference on Design, Automation
and Test in Europe, pp. 307–312, USA, San Jose, CA: EDA Consortium, 2007.

[76] eASIC Corporation, “nextreme Structured ASIC,” http://www.easic.com/
pdf/asic/nextreme asic structured asic.pdf.

[77] C. Ebeling, D. C. Cronquist, and P. Franklin, “RaPiD–reconfigurable
pipelined datapath,” in 6th International Workshop on Field-Programmable
Logic and Applications, pp. 126–135, Springer, 1996.

[78] A. El Gamal, “Two-dimensional stochastic model for interconnections in mas-
ter slice integrated circuits,” IEEE Transactions on Circuits and Systems,
vol. 28, no. 2, pp. 127–138, February 1981.

[79] A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. A. El-Ayat, and
A. Mohsen, “An architecture for electrically configurable gate arrays,” IEEE
Journal of Solid-State Circuits, vol. 24, no. 2, pp. 394–398, April 1989.

[80] H. Fan, J. Liu, Y.-L. Wu, and C.-C. Cheung, “On optimal hyperuniversal and
rearrangeable switch box designs,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 22, no. 12, pp. 1637–1649,
2003.

[81] D. Frohman-Dentchkowsky, “A fully-decoded 2048-bit electrically pro-
grammable MOS ROM,” in IEEE International Solid State Circuits Confer-
ence Digest of Technical Papers, pp. 80–81, February 1971.

[82] A. Gayasen, K. Lee, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and T. Tuan,
“A dual-VDD low power FPGA architecture,” in Proceedings of the Interna-
tional Conference on Field-Programmable Logic and Applications, pp. 145–
157, August 2004.

[83] A. Gayasen, N. Vijaykrishnan, and M. J. Irwin, “Exploring technology alter-
natives for nano-scale FPGA interconnects,” in DAC ’05: Proceedings of the
42nd Annual Conference on Design Automation, pp. 921–926, USA, New York,
NY: ACM Press, 2005.

[84] V. George, H. Zhang, and J. Rabaey, “The design of a low energy FPGA,” in
Proceedings: International Symposium on Low Power Electronics and Design,
pp. 188–193, August 1999.

[85] S. C. Goldstein, A. DeHon, and M. Butts, “Molecular electronics: Devices,
systems and tools for gigagate, gigabit chips,” in Computer Aided Design,

References 111

2002. IEEE/ACM International Conference on ICCAD 2002, vol. 00, pp. 433–
440, USA, Los Alamitos, CA: IEEE Computer Society, 2002.

[86] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. R. Taylor,
“PipeRench: A reconfigurable architecture and compiler,” Computer, vol. 33,
no. 4, pp. 70–77, 2000.

[87] S. Golshan and E. Bozorgzadeh, “Single-event-upset (SEU) awareness in
FPGA routing,” in DAC ’07: Proceedings of the 44th Annual Conference on
Design Automation, pp. 330–333, USA, New York, NY: ACM Press, 2007.

[88] K. E. Gordon and R. J. Wong, “Conducting filament of the programmed
metal electrode amorphous silicon antifuse,” in International Electron Devices
Meeting, 1993. Technical Digest., International, pp. 27–30, 1993.

[89] P. Graham, M. Caffrey, J. Zimmermann, E. Johnson, P. Sundararajan,
and C. Patterson, “Consequences and categories of SRAM FPGA con-
figuration SEUs,” in Military and Aerospace Programmable Logic Devices
International Conference, Vol. 11, pp. 1–9, 2003. http://www.xilinx.com/
esp/mil aero/collateral/RadiationEffects/consequences categories.pdf.

[90] J. Greene, E. Hamdy, and S. Beal, “Antifuse field programmable gate arrays,”
Proceedings of the IEEE, vol. 81, no. 7, pp. 1042–1056, July 1993.

[91] J. Greene, V. Roychowdhury, S. Kaptanoglu, and A. El Gamal, “Segmented
channel routing,” in Proceedings: ACM/IEEE Design Automation Conference,
pp. 567–572, June 1990.

[92] D. C. Guterman, L. H. Rimawi, T.-L. Chiu, R. D. Halvorson, and D. J. McEl-
roy, “An electrically alterable nonvolatile memory cell using a floating-gate
structure,” IEEE Transactions on Electron Devices, vol. 26, no. 4, pp. 576–
586, April 1979.

[93] E. Hamdy, J. McCollum, S.-O. Chen, S. Chiang, S. Eltoukhy, J. Chang,
T. Speers, and A. Mohsen, “Dielectric based antifuse for logic and memory
IC,” in International Electron Devices Meeting Technical Digest, pp. 786–789,
December 1988.

[94] F. Hatori, T. Sakurai, K. Nogami, K. Sawada, M. Takahashi, M. Ichida,
M. Uchida, I. Yoshii, Y. Kawahara, T. Hibi, Y. Saeki, H. Muroga, A. Tanaka,
and K. Kanzaki, “Introducing redundancy in field programmable gate arrays,”
in Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 7.1.1–
7.1.4, 1993.

[95] S. Hauck, S. Burns, G. Borriello, and C. Ebeling, “An FPGA for implementing
asynchronous circuits,” IEEE Design and Test of Computers, vol. 11, no. 3,
pp. 60–69, 1994.

[96] S. Hauck, M. M. Hosler, and T. W. Fry, “High-performance carry chains for
FPGAs,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 8, no. 2, pp. 138–147, April 2000.

[97] J. He and J. Rose, “Advantages of heterogeneous logic block architectures for
FPGAs,” in Proceedings of the IEEE Custom Integrated Circuits Conference,
pp. 7.4.1–7.4.5, May 1993.

[98] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, third ed., 2003.

112 References

[99] C. H. Ho, P. H. W. Leong, W. Luk, S. J. E. Wilton, and S. Lopez-Buedo,
“Virtual embedded blocks: A methodology for evaluating embedded elements
in FPGAs,” in Proc. IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), pp. 45–44, 2006.

[100] Q. T. Ho, J.-B. Rigaud, L. Fesquet, M. Renaudin, and R. Rolland, “Imple-
menting asynchronous circuits on LUT based FPGAs,” in Proceedings of the
Reconfigurable Computing Is Going Mainstream, 12th International Confer-
ence on Field-Programmable Logic and Applications, pp. 36–46, London, UK:
Springer-Verlag, 2002.

[101] M. Horowitz, C.-K. K. Yang, and S. Sidiropoulos, “High-speed electrical sig-
nalling: Overview and limitations,” IEEE Micro, vol. 18, no. 1, pp. 12–24,
January/February 1998.

[102] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz mesh
interconnect for a teraflops processor,” IEEE Micro, vol. 27, no. 5, pp. 51–61,
2007.

[103] H.-C. Hsieh, W. S. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Frei-
din, L. Tinkey, and R. Kanazawa, “Third-generation architecture boosts speed
and density of field-programmable gate arrays,” in Proceedings of the IEEE
Custom Integrated Circuits Conference, pp. 2/1–31.2/7, May 1990.

[104] W. J. Huang and E. J. McCluskey, “Column-based precompiled configuration
techniques for FPGA fault tolerance,” in The 9th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, 2001. FCCM’01, pp. 137–
146, 2001.

[105] T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner, T. Levin,
T. Nguyen, and C. Irvine, “Moats and drawbridges: An isolation primitive for
reconfigurable hardware based systems,” in Proceedings: IEEE Symposium on
Security and Privacy, pp. 281–295, May 2007.

[106] M. Hutton, D. Lewis, B. Pedersen, J. Schleicher, R. Yuan, G. Baeckler, A. Lee,
R. Saini, and H. Kim, “Fracturable FPGA logic elements,” CP-01006-1.0
http://www.altera.com/literature/cp/cp-01006.pdf.

[107] M. Hutton, S. Shumarayev, V. Chan, P. Kazarian, V. Maruri, T. Ngai, J. Park,
R. Patel, B. Pedersen, and J. Schleicher, “Interconnect enhancements for a
high-speed PLD architecture,” in Proceedings: ACM/SIGDA International
Symposium on Field-programmable Gate Arrays, pp. 3–10, February 2002.

[108] International Technology Roadmap for Semiconductors 2007 Edition
http://www.itrs.net/reports.html, December 2007.

[109] P. Jamieson and J. Rose, “Enhancing the area-efficiency of FPGAs with hard
circuits using shadow clusters,” in IEEE International Conference on Field
Programmable Technology (FPT06), pp. 1–8, Bangkok, Thailand, December
2006.

[110] X. Jia and R. Vemuri, “Studying a GALS FPGA architecture using a param-
eterized automatic design flow,” in ICCAD ’06: Proceedings of the 2006
IEEE/ACM International Conference on Computer-Aided Design, pp. 688–
693, USA, New York, NY: ACM Press, 2006.

[111] K. Katsuki, M. Kotani, K. Kobayashi, and H. Onodera, “A yield and speed
enhancement scheme under within-die variations on 90 nm LUT array,” in

References 113

Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 596–599,
2005.

[112] A. Kaviani and S. Brown, “Hybrid FPGA architecture,” in Proceedings:
ACM/SIGDA International Symposium on Field-programmable Gate Arrays
1996, FPGA ’96, pp. 1–7, Monterey, CA, February 1996.

[113] A. Kaviani and S. Brown, “The hybrid field-programmable architecture,”
IEEE Design and Test of Computers, vol. 16, no. 2, pp. 74–83, April–June
1999.

[114] K. Kokkonen, P. Sharp, R. Albers, J. Dishaw, F. Louie, and R. Smith, “Redun-
dancy techniques for fast static RAMs,” in IEEE International, Solid-State
Circuits Conference. Digest of Technical Papers 1981, vol. 24, 1981.

[115] R. Konishi, H. Ito, H. Nakada, A. Nagoya, K. Oguri, N. Imlig, T. Shiozawa,
M. Inamori, and K. Nagami, “PCA-1: A fully asynchronous, self-reconfigurable
LSI,” in Seventh International Symposium on Asynchronous Circuits and Sys-
tems, 2001. ASYNC 2001, pp. 54–61, 2001.

[116] J. Kouloheris and A. El Gamal, “FPGA performance vs. cell granularity,” in
Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 61.2.1–
6.2.4, May 1991.

[117] J. Kouloheris and A. El Gamal, “FPGA area versus cell granularity — lookup
tables and PLA cells,” in FPGA 92, ACM First International Workshop on
Field-Programmable Gate Arrays, pp. 9–14, February 1992.

[118] J. Kouloheris and A. El Gamal, “FPGA area versus cell granularity — PLA
cells,” in Proceedings of the IEEE Custom Integrated Circuits Conference, May
1992.

[119] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” in 2006
Fourteenth ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp. 21–30, USA, New York, NY: ACM Press, 2006.

[120] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 26, no. 2, pp. 203–215, 2007.

[121] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Efficiently support-
ing fault-tolerance in FPGAs,” in FPGA ’98: Proceedings of the 1998
ACM/SIGDA Sixth International Symposium on Field Programmable Gate
Arrays, pp. 105–115, USA, New York, NY: ACM Press, 1998.

[122] J. Lamoureux and S. J. E. Wilton, “FPGA clock network architecture: Flexi-
bility vs. area and power,” in FPGA ’06: Proceedings of the 2006 ACM/SIGDA
14th International Symposium on Field Programmable Gate Arrays, pp. 101–
108, USA, New York, NY: ACM Press, 2006.

[123] B. Landman and R. Russo, “On a pin versus block relationship for partitions
of a logic graph,” IEEE Transactions on Computers, vol. C-20, pp. 1469–1479,
December 1971.

[124] Lattice Semiconductor Corporation, “LatticeECP/EC family data sheet,
version 02.0,” http://www.latticesemi.com/lit/docs/datasheets/fpga/ecp ec
datasheet.pdf, September 2005.

114 References

[125] Lattice Semiconductor Corporation, “LatticeXP family data sheet, ver-
sion 03.1,” http://www.latticesemi.com/lit/docs/datasheets/fpga/xp data
sheet.pdf, September 2005.

[126] Lattice Semiconductor Corporation, “MachXO family data sheet, version
01.2,” http://www.latticesemi.com/lit/docs/datasheets/cpld/machxo.pdf,
November 2005.

[127] Lattice Semiconductor Corporation, “LatticeSC family data sheet DS1004
version 01.5,” http://www.latticesemi.com/dynamic/view document.cfm?
document id=19028, March 2007.

[128] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional and single-driver wires
in FPGA interconnect,” in Proceedings: International Conference on Field-
Programmable Technology, pp. 41–48, December 2004.

[129] G. Lemieux and D. Lewis, “Using sparse crossbars within LUT clusters,” in
Proceedings: ACM/SIGDA International Symposium on FPGAs, pp. 59–68,
February 2001.

[130] G. Lemieux and D. Lewis, “Analytical framework for switch block design,”
in Proceedings: International Symposium on Field Programmable Logic and
Applications, pp. 122–131, September 2002.

[131] G. Lemieux and D. Lewis, “Circuit design of routing switches,” in Proceedings:
ACM/SIGDA International Symposium on Field Programmable Gate Array,
pp. 19–28, February 2002.

[132] G. Lemieux and D. Lewis, Design and Interconnection Networks for Pro-
grammable Logic. Boston, MA: Kluwer Academic Publishers, 2004.

[133] P. Leventis, M. Chan, D. Lewis, B. Nouban, G. Powell, B. Vest, M. Wong,
R. Xia, and J. Costello, “Cyclone: A low-cost, high-performance FPGA,” in
Proceedings of the IEEE 2003 Custom Ingretated Circuits Conference, pp. 49–
52, 2003.

[134] P. Leventis, B. Vest, M. Hutton, and D. Lewis, “MAX II: A low-cost, high-
performance LUT-based CPLD,” in Proceedings of the IEEE Custom Inte-
grated Circuits Conference, pp. 443–446, October 2004.

[135] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman,
D. Galloway, M. Hutton, C. Lane, A. Lee, P. Leventis, S. Marquardt,
C. McClintock, K. Padalia, B. Pedersen, G. Powell, B. Ratchev, S. Reddy,
J. Schleicher, K. Stevens, R. Yuan, R. Cliff, and J. Rose, “The Stratix II logic
and routing architecture,” in FPGA ’05: Proceedings of the 2005 ACM/SIGDA
13th International Symposium on Field-Programmable Gate Arrays, pp. 14–
20, USA, New York, NY: ACM Press, 2005.

[136] D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S. Marquardt,
C. McClintock, B. Pedersen, G. Powell, S. Reddy, C. Wysocki, R. Cliff, and
J. Rose, “The StratixTM routing and logic architecture,” in Proceedings of the
2003 ACM/SIGDA Eleventh International Symposium on Field Programmable
Gate Arrays, pp. 12–20, ACM Press, 2003.

[137] F. Li, Y. Lin, and L. He, “Vdd programmability to reduce FPGA interconnect
power,” in IEEE/ACM International Conference on Computer Aided Design,
2004.

References 115

[138] F. Li, Y. Lin, L. He, D. Chen, and J. Cong, “Power modeling and
characteristics of field programmable gate arrays,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 11,
pp. 1712–1724, November 2005.

[139] M. Lin and A. El Gamal, “A routing fabric for monolithically stacked 3D-
FPGA,” in FPGA ’07: Proceedings of the 2007 ACM/SIGDA 15th Interna-
tional Symposium on Field Programmable Gate Arrays, pp. 3–12, USA, New
York, NY: ACM Press, 2007.

[140] M. Lin, A. El Gamal, Y.-C. Lu, and S. Wong, “Performance benefits of mono-
lithically stacked 3-D FPGA,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 26, no. 2, pp. 216–229, February 2007.

[141] Y. Lin, F. Li, and L. He, “Power modeling and architecture evaluation
for FPGA with novel circuits for Vdd programmability,” in Proceedings:
ACM/SIGDA International Symposium on Field-programmable Gate Arrays,
pp. 199–207, February 2005.

[142] R. Lipp, R. Freeman, and T. Saxe, “A high density flash memory FPGA
family,” in Proceedings of the IEEE Custom Integrated Circuits Conference,
pp. 239–242, May 1996.

[143] K. Maitra, “Cascading switching networks of two-input flexible cells,” IEEE
Transactions on Electronic Computing, vol. EC-11, pp. 136–143, April 1962.

[144] D. Marple and L. Cooke, “An MPGA compatible FPGA architecture,” in
Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 4.2.1–
4.2.4, 1992.

[145] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings, “A
reconfigurable arithmetic array for multimedia applications,” in FPGA ’99:
Proceedings of the 1999 ACM/SIGDA Seventh International Symposium on
Field Programmable Gate Arrays, pp. 135–143, USA, New York, NY: ACM
Press, 1999.

[146] M. I. Masud and S. Wilton, “A new switch block for segmented FPGAs,” in
Proceedings: International Workshop on Field Programmable Logic and Appli-
cations, pp. 274–281, August 1999.

[147] Y. Matsumoto, M. Hioki, T. Kawanami, T. Tsutsumi, T. Nakagawa, T. Seki-
gawa, and H. Koike, “Performance and yield enhancement of FPGAs with
within-die variation using multiple configurations,” in FPGA ’07: Proceed-
ings of the 2007 ACM/SIGDA 15th International Symposium on Field Pro-
grammable Gate Arrays, pp. 169–177, USA, New York, NY: ACM Press, 2007.

[148] C. McClintock, A. L. Lee, and R. G. Cliff, “Redundancy circuitry for logic
circuits,” US Patent 6034536, March 2000.

[149] P. L. McEuen, M. S. Fuhrer, and H. Park, “Single-walled carbon nanotube
electronics,” IEEE Transactions on Nanotechnology, vol. 1, no. 1, pp. 78–85,
March 2002.

[150] R. Minnick, “A survey of microcellular research,” Journal of the Association
of Computing Machinery, vol. 14, pp. 203–241, April 1967.

[151] G. Nabaa, N. Azizi, and F. N. Najm, “An adaptive FPGA architecture with
process variation compensation and reduced leakage,” in Proceedings of the

116 References

43rd Annual Conference on Design Automation, pp. 624–629, USA, New York,
NY: ACM Press, 2006.

[152] T. Ngai, J. Rose, and S. Wilton, “An SRAM-programmable field-configurable
memory,” in Proceedings of the IEEE Custom Integrated Circuits Conference,
pp. 499–502, Santa Clara, CA, May 1995.

[153] E. Ochetta, P. Crotty, C. Erickson, C.-T. Huang, R. Jayaraman, R. Li,
J. Linoff, L. Ngo, H. Nguyen, K. Pierce, D. Wieland, J. Zhuang, and S. Nance,
“A novel predictable segmented FPGA routing architectures,” in Proceeding:
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
pp. 3–11, February 1998.

[154] T. Okamoto, T. Kimoto, and N. Maeda, “Design methodology and tools for
NEC electronics’ structured ASIC ISSP,” in ISPD ’04: Proceedings of the 2004
International Symposium on Physical Design, pp. 90–96, USA, New York, NY:
ACM Press, 2004.

[155] C. Patel, A. Cozzie, H. Schmit, and L. Pileggi, “An architectural exploration of
via patterned gate arrays,” in ISPD ’03: Proceedings of the 2003 International
Symposium on Physical Design, pp. 184–189, USA, New York, NY: ACM
Press, 2003.

[156] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview,”
Proceedings of the IEEE, vol. 85, no. 8, pp. 1248–1271, 1997.

[157] R. Payne, “Self-timed FPGA systems,” in Field-Programmable Logic and
Applications, pp. 21–35, Springer, Berlin/Heidelberg, 1995.

[158] R. Payne, “Asynchronous FPGA architectures,” IEEE Proceedings Computers
and Digital Techniques, vol. 143, no. 5, pp. 282–286, 1996.

[159] M. Pedram, B. Nobandegani, and B. T. Preas, “Architecture and routability
analysis for row-based FPGAs,” in IEEE/ACM International Conference on
Computer-Aided Design, pp. 230–235, November 1993.

[160] Plessey Semiconductor, “ERA60100 preliminary data sheet,” 1989.
[161] QuickLogic Corporation, “Eclipse II family data sheet (Rev P),” http://

www.quicklogic.com/images/EclipseII Family DS.pdf, February 2007.
[162] QuickLogic Corporation, “QuickLogic PolarPro Data Sheet (Rev H),”

http://www.quicklogic.com/images/polarpro DS.pdf, February 2007.
[163] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective. Prentice Hall,

1996.
[164] A. Rahman and V. Polavarapuv, “Evaluation of low-leakage design techniques

for field programmable gate arrays,” in Proceedings: ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, pp. 23–30, February
2004.

[165] A. Roopchansingh and J. Rose, “Nearest neighbour interconnect architecture
in deep submicron FPGAs,” in Proceedings of the IEEE Custom Integrated
Circuits Conference, pp. 59–62, San Diego, CA, May 2002.

[166] J. Rose and S. Brown, “Flexibility of interconnection structures for field-
programmable gate arrays,” IEEE Journal of Solid-State Circuits, vol. 26,
no. 3, pp. 277–282, March 1991.

References 117

[167] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “Architecture of field-
programmable gate arrays,” Proceedings of the IEEE, vol. 81, no. 7, pp. 1013–
1029, July 1993.

[168] J. Rose, R. J. Francis, P. Chow, and D. Lewis, “The effect of logic block
complexity on area of programmable gate arrays,” in Proceedings of the IEEE
Custom Integrated Circuits Conference, pp. 5.3.1–5.3.5, San Diego, May 1989.

[169] J. Rose, R. J. Francis, D. Lewis, and P. Chow, “Architecture of field-
programmable gate arrays: The effect of logic block functionality on area effi-
ciency,” IEEE Journal of Solid-State Circuits, vol. 25, no. 5, pp. 1217–1225,
October 1990.

[170] K. Roy and M. Mehendale, “Optimization of channel segmentation for chan-
neled architecture FPGAs,” in Proceedings of the IEEE Custom Integrated
Circuits Conference, pp. 4.4.1–4.4.4, May 1992.

[171] A. Royal and P. Y. K. Cheung, “Globally asynchronous locally synchronous
FPGA architectures,” in Field-programmable Logic and Applications: 13th
International Conference, FPL 2003, Lisbon, Portugal, September 1–3, 2003:
Proceedings, Springer, 2003.

[172] R. Saini, A. Lee, and N. Ngo, “Programmable logic device having regions of
non-repairable circuitry within an array of repairable circuitry and associated
configuration hardware and method,” US Patent 7,215,140, May 2007.

[173] T. Sato, H. Watanabe, and K. Shiba, “Implementation of dynamically recon-
figurable processor DAPDNA-2,” in VLSI Design, Automation and Test,
2005.(VLSI-TSA-DAT). 2005 International Symposium on IEEE VLSI-TSA,
pp. 323–324, 2005.

[174] A. Scheibe and W. Krauss, “A two-transistor SIMOS EAROM cell,” IEEE
Journal of Solid-State Circuits, vol. 15, no. 3, pp. 353–357, June 1980.

[175] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R. Taylor,
“PipeRench: A virtualized programmable datapath in 0.18 micron technol-
ogy,” in Proceedings of the IEEE Custom Integrated Circuits Conference,
pp. 63–66, 2002.

[176] P. Sedcole and P. Y. K. Cheung, “Within-die delay variability in 90 nm FPGAs
and beyond,” in Field Programmable Technology, 2006. IEEE International
Conference on FPT 2006, pp. 97–104, 2006.

[177] P. Sedcole and P. Y. K. Cheung, “Parametric yield in FPGAs due to within-
die delay variations: A quantitative analysis,” in FPGA ’07: Proceedings of
the 2007 ACM/SIGDA 15th International Symposium on Field Programmable
Gate Arrays, pp. 178–187, USA, New York, NY: ACM Press, 2007.

[178] L. Shang, A. Kaviani, and K. Bathala, “Dynamic power consumption in
Virtex-II FPGA family,” in Proceedings: ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, pp. 157–164, February 2002.

[179] M. Sheng and J. Rose, “Mixing buffers and pass transistors in FPGA rout-
ing architectures,” in Proceedings: ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pp. 75–84, February 2001.

[180] D. D. Sherlekar, “Design considerations for regular fabrics,” in ISPD ’04:
Proceedings of the 2004 International Symposium on Physical Design, pp. 97–
102, USA, New York, NY: ACM Press, 2004.

118 References

[181] C.-C. Shih, R. Lambertson, F. Hawley, F. Issaq, J. McCollum, E. H. H. Saku-
rai, H. Yuasa, H. Honda, T. Yamaoka, T. Wada, and C. Hu, “Characterization
and modeling of a highly reliable metal- to-metal antifuse for high-performance
and high-density field-programmable gate arrays,” in Proceedings of the 1997
IEEE International Reliability Physics Symposium, pp. 25–33, 1997.

[182] A. Singh and M. Marek-Sadowska, “FPGA interconnect planning,” in Proceed-
ings: International Workshop on System-Level Interconnect Planning, pp. 23–
30, April 2002.

[183] D. Singh and S. Brown, “The case for registered routing switches in field
programmable gate arrays,” in Proceedings: ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, pp. 161–169, February 2001.

[184] S. Sivaswamy and K. Bazargan, “Variation-aware routing for FPGAs,” in
FPGA ’07: Proceedings of the 2007 ACM/SIGDA 15th International Sympo-
sium on Field Programmable Gate Arrays, pp. 71–79, USA, New York, NY:
ACM Press, 2007.

[185] S. Sivaswamy, G. Wang, C. Ababei, K. Bazargan, R. Kastner, and
E. Bozorgzadeh, “HARP: hard-wired routing pattern FPGAs,” in Proceedings:
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 21–29, February 2005.

[186] T. Speers, J. J. Wang, B. Cronquist, J. McCollum, H. Tseng, R. Katz, and
I. Kleyner, “0.25 um flash memory based FPGA for space applications,”
in MAPLD Conference, Baltimore MD, 1999. www.actel.com/documents/
FlashSpaceApps.pdf.

[187] M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach, and M. M. Ziegler,
“Molecular electronics: From devices and interconnect to circuits and archi-
tecture,” Proceedings of the IEEE, vol. 91, no. 11, pp. 1940–1957, 2003.

[188] Stretch Inc, “Stretch S5530 product brief, MK-5530C-0002-000,” http://www.
stretchinc.com/ files/Stretch S5530 Software Configurable Processor.pdf,
2005.

[189] Stretch Inc, “S6100/S6105 product brief, MK-6000C-0001-000,” http://www.
stretchinc.com/ files/S6000.pdf, 2007.

[190] D. B. Strukov and K. K. Likharev, “CMOL FPGA: A reconfigurable archi-
tecture for hybrid digital circuits with two-terminal nanodevices,” Nanotech-
nology, vol. 16, no. 6, pp. 888–900, 2005.

[191] D. B. Strukov and K. K. Likharev, “A reconfigurable architecture for
hybrid CMOS/Nanodevice circuits,” in FPGA ’06: Proceedings of the 2006
ACM/SIGDA 14th International Symposium on Field Programmable Gate
Arrays, pp. 131–140, USA, New York, NY: ACM Press, 2006.

[192] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “The
Raw microprocessor: A computational fabric for software circuits and general-
purpose programs,” IEEE Micro, vol. 22, no. 2, pp. 25–35, 2002.

[193] J. Teifel and R. Manohar, “An asynchronous dataflow FPGA architecture,”
IEEE Transactions on Computers, vol. 53, no. 11, pp. 1376–1392, 2004.

References 119

[194] J. Teifel and R. Manohar, “Highly pipelined asynchronous FPGAs,” in FPGA
’04: Proceedings of the 2004 ACM/SIGDA 12th International Symposium on
Field Programmable Gate Arrays, pp. 133–142, USA, New York, NY: ACM
Press, 2004.

[195] Triscend Corporation, “Triscend A7V MKT012-0001-001,” http://www.
zylogic.com.cn/download/pdf/products01 2/A7VProductBrief.pdf.

[196] Triscend Corporation, “Triscend E5 configurable system-on-chip plat-
form product description TCH300-0001-001,” http://www.keil.com/dd/
docs/datashts/triscend/te5xx.pdf, 2001.

[197] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani,
G. Varghese, J. Wawrzynek, and A. DeHon, “HSRA: High-speed, hierarchi-
cal synchronous reconfigurable array,” in Proceedings: ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, pp. 125–134, February
1999.

[198] T. Tuan and B. Lai, “Leakage power analysis of a 90 nm FPGA,” in Proceed-
ings of the IEEE Custom Integrated Circuits Conference, pp. 57–60, September
2003.

[199] J. E. Turner, “Programmable logic devices with stabilized configuration cells
for reduced soft error rates,” US Patent 6876572, April 2005.

[200] J. Tyhach, B. Wang, C. Sung, J. Huang, K. Nguyen, X. Wang, Y. Chong,
P. Pan, H. Kim, G. Rangan, T.-C. Chang, and J. Tan, “A 90-nm FPGA I/O
buffer design with 1.6-Gb/s data rate for source-synchronous system and 300-
MHz clock rate for external memory interface,” IEEE Journal of Solid-State
Circuits, vol. 40, no. 9, pp. 1829–1838, September 2005.

[201] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar,
and S. Borkar, “An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm
CMOS,” IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 29–41, 2008.

[202] M. L. Voogel and S. P. Young, “Memory cells utilizing metal-to-metal capac-
itors to reduce susceptibility to single event upsets,” US Patent 7110281,
September 2006.

[203] S. E. Wahlstrom, “Programmable logic arrays — cheaper by the millions,”
Electronics, vol. 40, pp. 90–95, December 1967.

[204] N. Weaver, J. Hauser, and J. Wawrzynek, “The SFRA: A corner-turn FPGA
architecture,” in Proceedings: ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 3–12, February 2004.

[205] R. W. Wells, Z.-M. Ling, R. D. Patrie, V. L. Tong, J. Cho, and S. Toutounchi,
“Application-specific testing methods for programmable logic devices,” US
Patent 6,891,395, May 2005.

[206] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mat-
tina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip interconnection
architecture of the Tile processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31,
2007.

[207] C. Wey, M. Vai, and F. Lombardi, “On the design of a redundant pro-
grammable logic array RPLA,” IEEE Journal of Solid-State Circuits, vol. 22,
no. 1, pp. 114–117, 1987.

120 References

[208] S. Wilton, Architectures and Algorithms for Field-Programmable Gate Arrays
with Embedded Memories. PhD thesis, University of Toronto, Department of
Electrical and Computer Engineering, 1997.

[209] S. Wilton, J. Rose, and Z. Vranesic, “Architecture of centralized field-
configurable memory,” in 3rd ACM International Symposium on Field-
Programmable Gate Arrays, FPGA, pp. 97–103, 1995.

[210] S. J. E. Wilton, “Implementing logic in FPGA embedded memory arrays:
Architectural implications,” in Proceedings of the IEEE Custom Integrated
Circuits Conference, May 1998.

[211] S. J. E. Wilton, “SMAP: Heterogeneous technology mapping for area reduc-
tion in FPGAs with embedded memory arrays,” in ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, pp. 171–178, February
1998.

[212] S. J. E. Wilton, “Heterogeneous technology mapping for area reduction in
FPGAs with embedded memory arrays,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 19, no. 1, pp. 56–68,
January 2000.

[213] S. J. E. Wilton, “Implementing logic in FPGA memory arrays: Heteroge-
neous memory architectures,” in IEEE International Conference on Field-
Programmable Technology, pp. 142–149, December 2002.

[214] S. J. E. Wilton, N. Kafafi, J. C. H. Wu, K. A. Bozman, V. Aken’Ova, and
R. Saleh, “Design considerations for soft embedded programmable logic cores,”
IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 485–497, February
2005.

[215] C. G. Wong, A. J. Martin, and P. Thomas, “An architecture for asynchronous
FPGAs,” in Field-Programmable Technology (FPT), 2003. IEEE Interna-
tional Conference on Proceedings 2003, pp. 170–177, 2003.

[216] H.-Y. Wong, L. Cheng, Y. Lin, and L. He, “FPGA device and architecture eval-
uation considering process variations,” in ICCAD ’05: Proceedings of the 2005
IEEE/ACM International Conference on Computer-Aided Design, pp. 19–24,
USA, Washington, DC: IEEE Computer Society, 2005.

[217] S. C. Wong, H. C. So, J. H. Ou, and J. Costello, “A 5000-gate CMOS EPLD
with multiple logic and interconnect arrays,” in Proceedings of the IEEE Cus-
tom Integrated Circuits Conference, pp. 5.8.1–5.8.4, May 1989.

[218] N.-S. Woo, “Revisiting the cascade circuit in logic cells of lookup table based
FPGAs,” in IEEE Symposium on FPGAs for Custom Computing Machines,
pp. 90–96, 1995.

[219] K.-C. Wu and Y.-W. Tsai, “Structured ASIC, evolution or revolution?,”
in ISPD ’04: Proceedings of the 2004 International Symposium on Physical
Design, pp. 103–106, USA, New York, NY: ACM Press, 2004.

[220] Y.-L. Wu and M. Marek-Sadowska, “Orthogonal greedy coupling — a new
optimization approach for 2-D field-programmable gate arrays,” in Proceed-
ings: ACM/IEEE Design Automation Conference, pp. 568–573, June 1995.

[221] Xilinx, “Spartan-II 2.5V FPGA family complete data sheet,” http://direct.
xilinx.com/bvdocs/ publications/ds001.pdf.

References 121

[222] Xilinx, “Xilinx 3000 series data sheet,” http://direct.xilinx.com/bvdocs/
publications/3000.pdf.

[223] Xilinx, “Xilinx: EasyPath series overview,” http://www.xilinx.com/
products/silicon solutions/fpgas/easypath/overview.htm.

[224] Xilinx, “Virtex 2.5V field programmable gate arrays, DS003-1(v2.5),”
http://direct.xilinx.com/bvdocs/publications/ds003-1.pdf, April 2001.

[225] Xilinx, “Spartan and Spartan-XL families field programmable gate arrays.
DS060 (v1.7),” http://direct.xilinx.com/bvdocs/publications/ds060.pdf, June
2002.

[226] Xilinx, “Xilinx announces acquisition of Triscend Corp.,” Xilinx Press Release
0435, http://www.xilinx.com/prs rls/xil corp/0435 triscend acquisition.htm,
March 2004.

[227] Xilinx, “Spartan-3 FPGA family: Complete data sheet,” DS099, http://
direct.xilinx.com/bvdocs/publications/ds099.pdf, August 2005.

[228] Xilinx, “Virtex-4 family overview,” DS112(v1.4), http://direct.xilinx.com/
bvdocs/publications/ds112.pdf, June 2005.

[229] Xilinx, “Virtex-II platform FPGAs: Complete data sheet. DS031(v3.4),”
http://direct.xilinx.com/bvdocs/publications/ds031.pdf, March 2005.

[230] Xilinx, “Triple module redundancy design techniques for Virtex FPGAs,”
Xilinx Application Note 197, www.xilinx.com/support/documentation/
application notes/xapp197.pdf, July 2006.

[231] Xilinx, “Virtex-5 user guide,” UG190 (v2.1), October 2006.
[232] Xilinx, “XC9500 in-system programmable CPLD family DS063(v5.4),”

http://direct.xilinx.com/bvdocs/publications/DS063.pdf, April 2006.
[233] Xilinx, “Power consumption in 65 nm FPGAs, Xilinx White Paper WP246

(v1.2),” http://www.xilinx.com/support/documentation/white papers/wp246.
pdf, February 2007.

[234] Xilinx, “Spartan-3AN FPGA family data sheet, DS557,” http://direct.
xilinx.com/bvdocs/publications/ds557.pdf, February 2007.

[235] Xilinx, “Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete
Data Sheet, DS083(v4.6),” http://direct.xilinx.com/bvdocs/publications/
ds083.pdf, March 2007.

[236] Xilinx, “Xilinx FPGAs overcome the side effects of sub-90 nm technology,
Xilinx White Paper WP256 v1.0.1,” http://www.xilinx.com/support/
documentation/white papers/wp256.pdf, March 2007.

[237] A. Yan, R. Cheng, and S. J. E. Wilton, “On the sensitivity of FPGA archi-
tectural conclusions to experimental assumptions, tools, and techniques,” in
FPGA ’02: Proceedings of the 2002 ACM/SIGDA Tenth International Sym-
posium on Field-Programmable Gate Arrays, pp. 147–156, USA, New York,
NY: ACM Press, 2002.

[238] A. Ye and J. Rose, “Using bus-based connections to improve field-
programmable gate array density for implementing datapath circuits,” in
Proceedings: ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pp. 3–13, February 2005.

[239] S. P. Young, T. J. Bauer, K. Chaudhary, and S. Krishnamurthy, “FPGA
repeatable interconnect structure with bidirectional and unidirectional inter-
connect lines,” US Patent 5,942,913, August 1999.

122 References

[240] A. J. Yu and G. G. Lemieux, “Defect-tolerant FPGA switch block and connec-
tion block with fine-grain redundancy for yield enhancement,” in International
Conference on Field Programmable Logic and Applications, 2005, pp. 255–262,
2005.

[241] A. J. Yu and G. G. Lemieux, “FPGA defect tolerance: Impact of granularity,”
in Field-Programmable Technology, 2005. IEEE International Conference on
Proceedings 2005, pp. 189–196, 2005.

[242] G. Zhang, E. Hu, Yu, S. Chiang, and E. Hamdy, “Metal-to-metal antifuses
with very thin silicon dioxide films,” IEEE Electron Device Letters, vol. 15,
no. 8, pp. 310–312, August 1994.

[243] C. Zhou and Y.-L. Wu, “Optimal MST-based graph algorithm on FPGA seg-
mentation design,” in Proceedings: International Conference on Communica-
tions, Circuits, and Systems, pp. 1290–1294, June 2004.

[244] K. Zhu, D. F. Wong, and Y.-W. Chang, “Switch module design with appli-
cation to two dimensional segmentation design,” in Proceedings of the 1993
IEEE/ACM International Conference on Computer-Aided Design, pp. 480–
485, November 1993.

[245] P. S. Zuchowski, C. B. Reynolds, R. J. Grupp, S. G. Davis, B. Cremen, and
B. Troxel, “A hybrid ASIC and FPGA architecture,” in ICCAD ’02, pp. 187–
194, November 2002.

	Contents
	Introduction
	Overview

	Early History of Programmable Logic
	Programming Technologies
	Static Memory Programming Technology
	Flash/EEPROM Programming Technology
	Anti-fuse Programming Technology
	Summary

	Logic Block Architecture
	FPGA Logic Block Fundamentals and Trade-Offs
	Methodology
	Logic Block Trade-Offs with Area
	Speed Trade-Offs
	Logic Block Power Trade-Offs
	PLA/PAL-Style Types of Logic Blocks
	Heterogeneous Mixtures of Soft Logic Blocks
	Heterogeneity
	Commercial Logic Blocks
	Challenges in Basic Logic Block Architecture

	Routing Architecture
	FPGA Routing Architecture Overview
	Unidirectional Single-Driver Routing Architectures
	Additional Routing Structure Improvement Approaches
	Power Related Issues
	Challenges in Basic Routing Architecture

	Input/Output Architecture and Capabilities
	Basic I/O Standards
	I/O Architecture Issues
	High-Speed I/O Support
	Challenges in I/O Architecture and Design

	Improving FPGAs
	The Gap Between FPGA and ASICs
	Alternatives to FPGAs

	Emerging Challenges and Architectures
	Technology Issues
	Emerging Architectures
	Conclusion

	References

