
FPGA Implementation of MIMO Wireless

Communications System

Ian Griffiths

Supervised by Assoc. Prof. Brett Ninness

November 1, 2005

A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor
of Engineering in Computer Engineering at The University of Newcastle, Australia.

Abstract

Wireless communications have grown tremendously over the last decade, wireless
LAN and mobile telephones have been the main reasons for the growth. There is a
demand for ever faster wireless communications as this will allow for new applications
such as widespread wireless broadband Internet access.

Multi-Antenna transmission schemes, using multiple antennas at the transmitter
and/or receiver, have been proposed as a way to fulfill the demand for increased capacity.
They are particularly attractive because they do not require any additional transmission
bandwidth, and unlike traditional systems use multi-path interference to their benefit.

The aim of this project is to implement a particular multi-antenna scheme, a 2×2
Alamouti code, on a PCI testbed card developed by the University. The testbed is very
flexible, most of the computing power is provided by a 600,000 gate Xilinx FPGA. There
are also 12 sockets that can be used for radio transceiver modules, or custom ASICs.

At the time of writing, designs have been created for all the major components of
a MIMO system except for a channel estimator. The designs have been verified by
simulation, both before mathematical simulation, and behavioural simulation of VHDL
code. The simulation results have been favourable with the MIMO scheme significantly
outperforming the equivalent SISO scheme.

i

Key Contributions

The key contributions I have made to this project are:

• Creation of Octave (MATLAB) simulation of a MIMO wireless communications
system using the Alamouti code.

• Implementation of the components of MIMO system using the C programming
language, allowing bit accurate simulation of final hardware design

• Design of hardware implementation of components of MIMO system and writing
VHDL code to implement these designs

Ian Griffiths Brett Ninness

Contents

1 Introduction 1

1.1 Motivation . 1

2 Theoretical Background 2

2.1 Capacity of Wireless Communication Systems 2
2.2 The Transmission Environment . 3
2.3 Modelling the Wireless Communications Channel 4
2.4 Multi-Antenna Systems . 5
2.5 The Alamouti Code . 6
2.6 Channel Estimation . 9

3 Newcastle University Wireless Testbed Project 10

3.1 Motivation for Testbed . 10
3.2 Testbed Hardware . 11
3.3 Related Final Year Projects . 12

4 Simulation 13

4.1 High-Level Simulation . 13
4.1.1 Alamouti Encoder . 14
4.1.2 Channel Estimator . 14
4.1.3 Alamouti Decoder . 14

4.2 Low-Level Simulation . 15
4.2.1 Alamouti Encoder . 15
4.2.2 Channel Estimator . 16
4.2.3 Alamouti Decoder . 17
4.2.4 Fixed Point . 18

4.3 Simulation Results . 19

ii

CONTENTS iii

4.4 Other Work Completed . 20

5 Hardware Design 22

5.1 BPSK Modulator . 22
5.2 Alamouti Encoder . 23
5.3 Alamouti Decoder . 23
5.4 Channel Estimator . 26

6 Conclusions and Further Work 27

6.1 Further Work . 27
6.2 Conclusion . 28

A High Level Simulation Source Code 29

A.1 Alamouti Encoder Code . 29
A.2 Channel Estimator Code . 30
A.3 Alamouti Decoder Code . 30

B Low-Level Simulation Source Code 32

B.1 BPSK Modulator . 32
B.2 Alamouti Encoder . 33
B.3 Channel Estimator . 33
B.4 Alamouti Decoder . 34
B.5 Fixed Point Functions . 36

C Hardware Design Source Code 39

C.1 BPSK Modulator . 39
C.2 BPSK Demodulator . 40
C.3 Alamouti Enoder . 40
C.4 Alamouti Decoder . 41

C.4.1 Control Unit . 46
C.4.2 Add/Subtract Unit . 52

Bibliography 53

Chapter 1

Introduction

1.1 Motivation

In recent years the telecommunications industry has experienced phenomenal growth,
particularly in the area of wireless communication. This growth has been fueled by the
widespread popularity of mobile telephones and wireless computer networking.

However, there are limits to growth, and the radio spectrum used for wireless commu-
nications is a finite resource. Therefore considerable effort has been invested in making
more efficient use of it. Using the spectrum more efficiently caters for the ever increasing
demand for faster communications since more bits per second can be transmitted using
the same bandwidth.

Recently a major research focus in this area has been the use of multiple antennas for
transmitting and receiving instead of the traditional single antenna systems [1]. It has
been proposed that using multiple transmit and receive antennas, and associated coding
techniques could increase the performance of wireless communication systems [3, 6, 7, 8].
So far there has been a lot of theoretical research but relatively few practical systems
have been demonstrated [4, 5].

The university has undertaken a research project to create a testbed for multi-
antenna wireless communications. The outcome of this project is a PCI card with a
programmable logic chip and sockets for multiple pluggable modules that can be used
for radio transceivers or custom signal processing hardware.

I will be implementing a particular scheme known as the “Alamouti scheme” (see
Section 2.5 for more detail). It is one of the simplest multi-antenna schemes, as it uses
only 2 transmit and 2 receive antennas.

1

Chapter 2

Theoretical Background

In this chapter the theory underlying this project and the MIMO system being imple-
mented will be examined. We will begin with a brief overview of the capacity of wireless
communication systems, and examine the environments in which they are used. Finally
the theory of multi-antenna communications is introduced. Particular attention is paid
to the Alamouti code, and associated techniques such as channel estimation.

2.1 Capacity of Wireless Communication Systems

In 1948 Claude Shannon discovered that there was an upper limit to the capacity of a
channel for error free transmission of information:

C = B log2(1 + SNR) (2.1)

where B is the transmission bandwidth, and SNR is the signal to noise ratio of the chan-
nel. This equation gives the absolute maximum capacity of the channel (in bits/second).
Thus it appears the only way to increase the capacity of the communications system is
to increase the bandwidth used in transmission, or to increase SNR.

Multi-Antenna systems use a rather novel approach to increase the overall capacity
of a wireless communications system; use more channels. Each of the individual trans-
mission channels is still limited according to Equation 2.1, however the overall capacity
of the system is now the sum of the capacities of the individual channels.

In the case of multi-antenna systems these individual channels are not totally sep-
arate transmission channels. Instead, these systems exploit multi-path propagation to
provide independent channels even though the radio signals are being sent across the

2

CHAPTER 2. THEORETICAL BACKGROUND 3

Tx Rx

intel

AMD

Sun
microsystems

Figure 2.1: Simplified example of multi-path propagation

same transmission environment.

2.2 The Transmission Environment

It is useful to understand a little about the transmission environment of a modern
wireless communication system before investigating how multi-antenna systems work.
As stated in the introduction, the major drivers of wireless communication are mobile
telephones and wireless LANs (e.g. IEEE 802.11b otherwise known as Wi-Fi), therefore
it is prudent to examine the typical transmission environments in which these systems
operate.

The wireless environment in which these technologies operate (urban settings) is
typically characterised by multi-path propagation. As the name suggests, multi-path
propagation occurs when there are multiple transmission paths between the transmitter
and the receiver. In an urban environment this is typically caused by the radio waves
reflecting off buildings and other obstacles. A simplified example of this effect can been
seen in Figure 2.1

CHAPTER 2. THEORETICAL BACKGROUND 4

In a traditional single antenna system (henceforth referred to as Single Input, Single
Output or SISO) multi-path propagation can be a problem as it causes Inter-Symbol
Interference. The traditional response to multi-path interference has been to lengthen
the symbol period so that most of the reflections have died out before the symbol is
sampled at the receiver. Obviously, unless other measures are taken, this will reduce the
data rate of the system.

Multi-Antenna systems (referred to as Multiple Input, Multiple Output or MIMO1)
however, use multi-path propagation to their benefit, and in fact rely on some amount
being present.

2.3 Modelling the Wireless Communications Channel

Under certain assumptions the complicated transmission environment can be mathemat-
ically modelled by using complex numbers to represent the magnitude and phase change
of the transmission channel. The assumption made by this model is that the channel is
a so called “flat fading” channel.

Flat fading refers to the frequency response of the channel being “flat”, meaning
that all frequencies are subjected to the same attenuation. One of the side effects of flat
fading is that there is no Inter-Symbol Interference (ISI).

Even if the actual transmission environment is not flat fading this model can still be
used provided the bandwidth of the transmitted signal is small enough. In particular
the bandwidth needs to be less than the inverse of the delay spread2 of the channel for
the flat-fading assumption to hold. This means that there should be negligible ISI.

The use of complex numbers in the model derives from the fact that it is possible to
represent a real-valued bandpass signal using complex numbers, see appendix A.1 in [2].
It is from this complex number representation that the “in-phase” and “quadrature”
components of a signal are derived. The in-phase component is the real part of the
complex representation, and the quadrature component is the imaginary part.

For a SISO system this model can reduce the entire transmission environment to a
single complex number. The system can then be represented using Equation 2.2, where
h is the complex number representing the channel, x is the input signal, and e is a

1I will generally refer to MIMO systems, which have multiple antennas at both transmitter and
receiver, however it is also possible to have Multiple Input, Single Output (MISO) or Single Input,
Multiple Output (SIMO) systems. Much of the theory applies to these systems also.

2The delay spread of a channel is the elapsed time between when the first and last of the multi-path
reflections arrive at the receiver.

CHAPTER 2. THEORETICAL BACKGROUND 5

complex number modelling the thermal noise at the receiver.

y = hx + e (2.2)

Similarly MIMO systems can be modelled with Equation 2.3. The variables have the
same meaning as for the SISO case, however instead of the scalar complex numbers in
Equation 2.2 the variables are matrices of complex numbers.

Y = HX + E (2.3)

2.4 Multi-Antenna Systems

One possible way to improve the reliability of wireless communications is to employ
diversity. Diversity is the technique of transmitting the same information across multiple
channels to achieve higher reliability. It operates on the principle that it is unlikely that
all of the channels used to transmit the redundant information will be experiencing deep
fading3 at the same time. Even if one particular channel is unusable the information may
still be recovered from the redundant transmission over the other channels. Therefore the
overall reliability of the communications system is improved, at the cost of transmitting
redundant information.

If multiple antennas are used at the transmitter or receiver there are potentially
multiple transmission channels between the transmitter and receiver. See Figure 2.2 for
an example of the potential channels in a 2×2 MIMO system. These multiple channels
can be used to exploit diversity.

In the 2×2 system in Figure 2.2 there is the potential for both transmit and re-
ceive diversity. Receive diversity is when the same information is received by different
antennas. For instance the information sent from Tx1 is transmitted across channels
h1,1 and h1,2, and received by both Rx1 and Rx2. Transmit diversity is when the same
information is sent from multiple transmit antennas. One possible way to achieve this
is to code across multiple symbols periods. For instance, at time t antenna Tx1 could
transmit the symbol s then at time t + 1 antenna Tx2 would transmit the same symbol,
s. The Alamouti scheme uses a method similar to this to obtain transmit diversity.

MIMO systems are able to achieve impressive improvements in reliability and capac-
ity by exploiting the diversity offered by the multiple channels between the transmit and

3Wireless channels are time varying, and occasionally the channel gain may drop to zero. This is
called deep fading, and makes the channel unable to transmit any useful information.

CHAPTER 2. THEORETICAL BACKGROUND 6

Tx1

Tx2 Rx2

Rx1h1,1

h2,2

h2,1

h1,2

Figure 2.2: Potential Communications Channels in a 2×2 MIMO system

receive antennas. Different coding schemes vary in their exact approaches, however all
seek to use the available channels to increase capacity and/or reliability.

2.5 The Alamouti Code

The coding scheme implemented in this project is an Alamouti code, therefore this code
will be examined in closer mathematical detail.

The Alamouti code, so called because it was proposed by S.M Alamouti in [7], belongs
to a class of codes called Space-Time Block Codes (STBC). The Space-Time refers to
coding across space and time. Coding across space by using multiple transmit and
receive antennas, and across time by using multiple symbol periods. Like normal block
codes the Alamouti code operates on blocks of input bits, however rather than having 1
dimensional code vectors it has 2 dimensional code matrices.

STBCs can be described by a code matrix, which defines what is to be sent from
the transmit antennas during transmission of a block. The code matrix is of dimension
Nt × tb where Nt is the number of transmit antennas and tb is the number of symbol
periods used to transmit a block. So the rows of the matrix represent the transmit

CHAPTER 2. THEORETICAL BACKGROUND 7

antennas, and the columns are the time (symbol) periods.
The code matrix for the Alamouti code is given in Equation 2.4.

X =

[
s1 −s∗2
s2 s∗1

]
(2.4)

The code belongs to a special subclass of STBCs known as Orthogonal Space Time
Block Codes (OSTBC). The code matrices of OSTBCs satisfy the following constraint.

XXH =
ns∑

n=1

|sn|2 · (αI) (2.5)

where ns is the number of symbols, sn is the nth complex symbol, α is an arbitrary
constant and (.)H denotes the Hermitian conjugate4.

There are a number of properties that make OSTBCs particularly interesting. Fore-
most is that Maximum Likelihood (ML) detection of different symbols is decoupled. In
the case of the Alamouti code this means that the two symbols which are coded together
can be detected independently at the receiver. In other words the same techniques used
to detect symbols one at a time in a SISO scheme can be used in the Alamouti scheme
as well.

Using Equations 2.3 and 2.4 the received matrix in a 2x2 system can be written as

Y =

[
h11 h12

h21 h22

] [
s1 −s∗2
s2 s∗1

]
+

[
e11 e12

e21 e22

]
(2.6)

now, let
r11 , h11s1 + h12s2 + e11 (2.7)

r12 , −h11s
∗
2 + h12s

∗
1 + e12 (2.8)

r21 , h21s1 + h22s2 + e21 (2.9)

r21 , −h21s
∗
2 + h22s

∗
1 + e22 (2.10)

These are the signals that are received by each of the antennas at the receiver across the
two time periods. The above expressions can be obtained by expanding Equation 2.6.
The first digit of the subscript denotes the receive antenna, and the second digit is the

4The Hermitian conjugate of a matrix is the complex conjugate, transpose, i.e. XH = (X∗)T

CHAPTER 2. THEORETICAL BACKGROUND 8

time period when the signal is received. Equation 2.6 can now be re-written as

Y =

[
r11 r12

r21 r22

]
(2.11)

In [7] Alamouti states that the transmitted symbols s1and s2 can be estimated in
a maximum likelihood fashion by first combining the received signals according to the
following equations

s̃1 = h∗11r11 + h12r
∗
12 + h∗21r21 + h22r

∗
22 (2.12)

s̃2 = h∗12r11 − h11r
∗
12 + h∗22r21 − h21r

∗
22 (2.13)

and then using a standard Maximum Likelihood detector to attempt to recover s1 and
s2 from s̃1 and s̃2. This is the decoupled ML detection that is common to all OSTBCs.

The validity of Alamouti’s proposed system can been seen by substituting the values
of r11, r12, r21 and r22 from Equations 2.7, 2.8, 2.9 and 2.10 into Equations 2.12 and
2.13 to obtain the following.

s̃1 = h∗11(h11s1 + h12s2 + e11)

+h12(−h∗11s2 + h∗12s1 + e∗12)

+h∗21(h21s1 + h22s2 + e21)

+h22(−h∗21s2 + h∗22s1 + e∗22)

= s1(|h11| + |h12| + |h21| + |h22|) (2.14)

+h∗11e11 + h12e
∗
12 + h∗21e21 + h22e

∗
22

similarly

s̃2 = s2(|h11| + |h12| + |h21| + |h22|) (2.15)

−h11e
∗
12 + h∗12e11 − h21e

∗
22 + h∗22e21

Equations 2.14 and 2.15 show that when the received signals are combined accord-
ing to Equations 2.12 and 2.13 the transmitted symbols are combined coherently and
weighted by a positive factor, i.e. |h11|+ |h12|+ |h21|+ |h22|. The noise samples however,
get combined in an incoherent manner. This is how the Alamouti scheme is able to
achieve an improvement in performance over SISO systems.

CHAPTER 2. THEORETICAL BACKGROUND 9

2.6 Channel Estimation

To use the equations in the above section to decode the received signal the receiver
needs to have so-called channel knowledge. This means the values of the hxy terms in
Equation 2.6 must be known. In practice it is not possible to obtain exact values for
these terms, however they can be estimated.

There are a number of methods for estimating the channel matrix, the simplest being
training based estimation. With training based channel estimation a data block known
to both the transmitter and receiver, called the training block, is transmitted before the
start of the actual data in each code block. The channel matrix can then be estimated
at the receiver using the following equation.

Ĥ = YtX
H
t (XtX

H
t)−1 (2.16)

where Xt is the known training block sent by the transmitter, Yt is the received training
block, and (.)H denotes the Hermitian conjugate.

Equation 2.16 relies on a the training block being designed to satisfy the following
equation

XtX
H
t = ρ2I (2.17)

fortunately, by design the Alamouti code matrix, and any other OSTBC, satisfies this
equation. So a possible training block is simply a known pre-amble prepended before
the actual data.

The validity of this method for channel estimation can be seen by substituting Equa-
tions 2.3, and 2.17 into Equation 2.16.

Ĥ = (HXt + E)XH
t (XtX

H
t)−1

= HXtX
H
t (XtX

H
t)−1 + EXH

t (XtX
H
t)−1

= H + EXH
t (ρ2I)−1

= H + error term

The channel estimate obtained via this method can then be used in the detector
described in Section 2.5. This method is not optimal in a maximum likelihood sense,
however it is fairly easy to understand and implement.

Chapter 3

Newcastle University Wireless

Testbed Project

This chapter will review the wireless testbed that is the target device for this project.
First the motivations for creating the testbed are explained, then there will be a brief
overview of the hardware present on the card. Finally some related final year projects
are mentioned.

3.1 Motivation for Testbed

The reasons for wanting a device to be able to conduct practical testing of MIMO
systems are obvious, however, there are many different approaches to building such a
device ranging in complexity, cost and flexibility.

In [5] the authors put forward a classification scheme for different types of testbeds.
The simplest approach they recognised is targeted towards burst mode transmissions,
and offline signal processing. This design minimises the cost, however it also severely
limits the scenarios in which the testbed can be used, because the signal processing is
not done in real-time. The testbed card used in this project is much more powerful and
provides for real-time operation, using a Field Programmable Gate Array (FPGA) chip
to perform the signal processing. Thus it lies towards the opposite end of the spectrum
presented by the authors.

Employing a more sophisticated approach allows the testbed card to more accurately
reflect the environments where the MIMO algorithms are likely to be implemented. Not
only is real-time transmission and decoding possible, but the hardware present is similar
to the final deployment environment. Typically the deployment environments will have

10

CHAPTER 3. NEWCASTLE UNIVERSITY WIRELESS TESTBED PROJECT 11

PCI
Bridge FPGA

Optional ASIC
Radio

Module

Radio
Module

Radio
Module

Radio
Module

Radio
Module

Radio
Module

Figure 3.1: Testbed Block Diagram

limited computing power, or use Application Specific Integrated Circuits (ASICs). The
testbed card has an FPGA for signal processing. Typically FPGAs are used as an
intermediate step in the development of ASICs so the testbed card will also be valuable
in the development of ASICs.

3.2 Testbed Hardware

The testbed that has been developed at the university has been designed for flexibility.
There are sockets for 12 expansion modules on the card. These sockets may be used for
radio transceiver modules, or a custom ASIC, or numerous other possibilities.

The main computing power of the board comes from a programmable logic device,
which can be easily reconfigured to implement any coding scheme, even SISO schemes.
In addition an ASIC may be added to the board to provide additional signal processing
capabilities.

A block diagram of the architecture of the testbed can be seen in Figure 3.1. This
shows only one possible configuration of the card, however, it gives an idea of the recon-

CHAPTER 3. NEWCASTLE UNIVERSITY WIRELESS TESTBED PROJECT 12

figurability of the testbed. The radio modules may be swapped for different units, or
even exchanged for a Digital Signal Processing (DSP) chip, or something else entirely.
The FPGA, which is central, can be reprogrammed to perform different tasks, or route
signals in different directions. The only function that is fixed is the PCI bridge, however
this is obviously not a drawback as the PCI standard is somewhat fixed.

The testbed also has provisions for using a custom ASIC, which will not be used
in this project. However, in the long term this expandability will greatly increase the
possible applications for the testbed. In addition to being used as a prototyping tool the
testbed could be used to easily verify ASIC designs in a realistic setting before they go
into large scale production.

The radio modules used in this project are based on a commercially available 2.4GHz
transceiver (Maxim MAX2822). These chips are compatible with the physical layer of
the IEEE 802.11b standard for wireless networking. However they are not being used
in this manner on the testbed, rather they are being used simply as radio transmitters
and receivers.

3.3 Related Final Year Projects

A number of other students have worked on the testbed at various stages of its devel-
opment. While my work stands alone to some degree, it also relies on the work of these
students. Therefore it is prudent to reference their work.

In 2004 Chris Shaw completed a final year project entitled “Linux Device Driver
for Wireless Testbed”. He worked on a Graphical User Interface (GUI) program to
ease the use of the testbed hardware, and extended a driver written by Alan Murray
in 2003/2004. However, at the time there was no hardware available to him, so he
implemented a simulation of the hardware in the driver.

This year in his project titled “Linux Device Driver and Graphical Interface Support
for Research Testbed” Nathan Tomkins is re-implementing much of Chris’ work. He is
porting Alan Murray’s driver to the 2.6 series Linux kernel1, and writing a new GUI
using the Python programming language.

In addition to these students John Dalton has been working on the testbed hardware.
He designed the testbed card and is also carrying out testing.

1The original driver was based on the 2.4 series Linux kernel, however since it was written nearly
every Linux distribution has switched to the newer 2.6 kernels. Thus it is becoming rather difficult to
use the driver, a situation which will only get worse with time.

Chapter 4

Simulation

I followed the general hardware design process in this project, the first stage of which is to
conduct a high-level simulation of the proposed design to work through any algorithmic
or mathematical issues. Typically this simulation is produced using MATLAB, or a
similar maths package.

After the simulation is completed and the algorithm is correct the next stage is to
move onto a low-level “bit accurate” C implementation. Bit accurate refers to the fact
that for a given set of input bits the C implementation will produce the correct output
bits. This step is used because typically C is much easier to write and debug than
Hardware Description Language (HDL) code such as VHDL.

The next stage is to implement the design using the chosen HDL, in this case VHDL.
The bit accurate C code is used to verify that the VHDL is correct by comparing the
outputs of the two implementations.

Once the VHDL is debugged in simulation and producing the correct output the
design can be uploaded to the FPGA for final testing.

In this chapter the simulations, both high- and low-level that were created during
the project will be examined, and the results obtained will be presented.

4.1 High-Level Simulation

The initial high-level simulation was implemented using Octave, an open source equiva-
lent of MATLAB. The code used for simulation can be found in Appendix A.

13

CHAPTER 4. SIMULATION 14

4.1.1 Alamouti Encoder

The first component in the system that was simulated was the encoder. This was chosen
first as it is a fairly simple component.

There are two distinct steps in the encoding process. First the input bits are mod-
ulated into symbols (represented by complex numbers), then the complex symbols are
encoded using the Alamouti code matrix given in Equation 2.4.

I have chosen to use a Binary Phase Shift Keying (BPSK) constellation for modu-
lation. The main reason for using BPSK is because it is a very simple scheme. A side
effect of the Alamouti scheme, which is a rate 1 code, is that the overall system has the
same data rate as the SISO system using BPSK.

Initially the encoder I implemented was designed as a combined BPSK modulator
and Alamouti encoder. The input bits were used to decide which of four matrices were
output. The matrices were manually constructed and hard-coded into the simulation.
This design made it fairly difficult to switch the modulation or coding scheme. It was
also fairly error prone as the code matrices were manually constructed, and it was fairly
easy to leave out a negative sign or make other simple mistakes. The main reason for
using the combined design at first was because it was very simple to implement.

I revised the design to simulate the modulator and encoder separately in a slightly
more modular fashion. This design allows for the modulation scheme to be easily
changed, say to QPSK, or QAM. This more modular design was used at the lower
level implementations also.

The source code for the simulated encoder can be found in Appendix A.1.

4.1.2 Channel Estimator

As stated in Section 2.6 the Alamouti decoder needs channel knowledge, so a channel
estimator is required.

In the high-level simulation the high level features of Octave were taken advantage of
and Equation 2.16 was simply converted to Octave code. This approach is not possible
for the low level implementations, instead the matrix operations must be implemented
manually.

The source code for the channel estimator can be found in Appendix A.2.

4.1.3 Alamouti Decoder

As with the encoder a simple, but fairly inflexible design was used initially for the
decoder. This was design was chosen for the same reasons as with the encoder, simplicity

CHAPTER 4. SIMULATION 15

and ease of simulation.
The initial decoder design used a brute force technique that was by no means optimal

in a computational complexity sense. It used the channel estimate, and the four 1 possible
code matrices to construct an estimate of the potential received matrices. These were
then compared to the actual received matrix and the one which was “closest” was deemed
to be the correct output. The “closeness” of the pairs of matrices was evaluated by taking
the Frobenius norm of the difference of the two.

The final decoder design uses the method presented in Section 2.5 with a combiner
and a separate symbol detector. In the case of BPSK the symbol detector can just be a
simple threshold detector. This decoder design is also used in the low level implementa-
tions.

The source code for the decoder can be found in Appendix A.3.

4.2 Low-Level Simulation

The low-level simulation was carried out using programs written in C, which output data
to, and read input data from plain text files. A number of supporting programs were
written to enable the results to be imported into Octave for analysis and graphing.

As mentioned above the high level constructs such as matrix operations, and complex
numbers had to be manually implemented for this simulation. The representation of
complex numbers in particular took a number of revisions before a final structure was
settled upon. The initial approach was to use the struct keyword of C to create a
complex number “structure”. This approach was discarded because this approach could
not be used in the VHDL hardware design. Instead the complex numbers were simply
represented as separate arrays or variables for the real and imaginary parts of each
number.

The source code for the low-level simulation can be found in Appendix B

4.2.1 Alamouti Encoder

The encoder used the same design as the high-level simulation, with a separate BPSK
modulator and Alamouti encoder.

The BPSK modulator took an 8-bit char input, and produced two arrays, represent-
ing the real and imaginary parts of the symbols, for output. It simply runs through the
input testing a bit at a time. If the bit in question is a 1 then the symbol for a 1 is

1When using BPSK modulation there are only 4 possible code matrices (X), corresponding to the
input bits 00, 01, 10, and 11.

CHAPTER 4. SIMULATION 16

placed into the output arrays, otherwise the symbol for a 0 is put into the output. The
actual symbols that are used to represent 1 and 0 are defined in a header file, so can be
easily changed.

The Alamouti encoder takes the two arrays output by the BPSK modulator as input
and produces two 2-dimensional arrays as output. These arrays represent the real and
imaginary parts of the symbols that are sent to the Radio Frequency (RF) “front-ends”
on each of the transmit antennas of the testbed card. It loops through the input arrays
operating on pairs of symbols at a time. In line with Equation 2.4 the symbols are
first copied straight through to the output arrays unmodified. Then the symbols are
swapped over to the opposite transmit antenna and complex conjugated, also one symbol
is negated. Complex conjugation is achieved by simply negating the imaginary part of
the input before placing it into the output. Also the complex conjugation, and extra
negation operations are combined into a single step for the relevant symbol by negating
the real part instead of the imaginary.

The source code for the low-level encoder can be found in Appendix B.2

4.2.2 Channel Estimator

When implementing the channel estimator it became obvious that if the training block
was a pre-defined fixed matrix then Equation 2.16 simplifies to multiplying a matrix by
another constant matrix. Equation 2.16, with the constant term highlighted, is repeated
below

Ĥ = Yt × XH
t (XtX

H
t)−1︸ ︷︷ ︸

constant term

(4.1)

This means that if the training block is fixed then the channel estimator is simply a
complex matrix multiplier.

This is the basis for the design of the low-level channel estimator simulation. The
training block, and the constant part of the channel estimation equation are stored in
header files and are used in the code by using the #include directive. A small Octave
script was written so that the training block could be defined in the script, then the
constant term would be automatically calculated, and both then output straight into a
header file ready for use. This script was then incorporated into the build process using
the Makefile.

No real attempt was made to optimise the matrix multiplication process, three nested
for loops were used, and one element of the output matrix was calculated at a time. It
was decided that trying to optimise the C code would not be overly useful as the main

CHAPTER 4. SIMULATION 17

purpose of the simulation was to be correct not optimal.
The source code for the low-level simulation of the Alamouti encoder can be found

in Appendix B.3

4.2.3 Alamouti Decoder

The Alamouti decoder uses the same design as the decoder in the high-level simulation,
with a separate “combiner” and demodulator.

The actual algorithm implemented by the combiner is fairly straightforward, however
for the low-level implementation the mathematical expressions for each symbol estimate
were expanded and simplified to remove the complex numbers and operations. The
resulting expressions are shown in Equations 4.2 – 4.5

s0re = Re{h0,0} × Re{y0,0} + Im{h0,0} × Im{y0,0}

+Re{h0,1} × Re{y0,1} + Im{h0,1} × Im{y0,1}

+Re{h1,0} × Re{y1,0} + Im{h1,0} × Im{y1,0}

+Re{h1,1} × Re{y1,1} + Im{h1,1} × Im{y1,1} (4.2)

s0im = Re{h0,0} × Im{y0,0} − Im{h0,0} × Re{y0,0}

−Re{h0,1} × Im{y0,1} + Im{h0,1} × Re{y0,1}

+Re{h1,0} × Im{y1,0} − Im{h1,0} × Re{y1,0}

−Re{h1,1} × Im{y1,1} + Im{h1,1} × Re{y1,1} (4.3)

s1re = Re{h0,1} × Re{y0,0} + Im{h0,1} × Im{y0,0}

−Re{h0,0} × Re{y0,1} − Im{h0,0} × Im{y0,1}

+Re{h1,1} × Re{y1,0} + Im{h1,1} × Im{y1,0}

−Re{h1,0} × Re{y1,1} − Im{h1,0} × Im{y1,1} (4.4)

s1im = Re{h0,1} × Im{y0,0} − Im{h0,1} × Re{y0,0}

+Re{h0,0} × Im{y0,1} − Im{h0,0} × Re{y0,1}

+Re{h1,1} × Im{y1,0} − Im{h1,1} × Re{y1,0}

+Re{h1,0} × Im{y1,1} − Im{h1,0} × Re{y1,1} (4.5)

So, after expansion and simplification, the expression for each component is essentially
a sum of products.

The combiner inputs are four 2×2 arrays, two for the real and imaginary parts of
the channel estimate, and two for the real and imaginary parts of the received samples.

CHAPTER 4. SIMULATION 18

The outputs are two 2×1 arrays, representing the real and imaginary parts of the two
symbol estimates.

The BPSK demodulator part of the decoder exploits the sign bit of the 2’s comple-
ment binary number format used in computers, and the fact that the BPSK constellation
in use is made up of only real numbers. Because the transmitted symbols are real num-
bers only, the imaginary part of the input to the demodulator is discarded. Thus the
demodulator simply outputs the inverse of the sign bit of the input. Therefore, any
symbol with a negative real part is demodulated as 0, and any with a positive real part
is demodulated as a 1.

The source code of the low-level implementation of the Alamouti decoder can be
found in Appendix B.4.

4.2.4 Fixed Point

In addition to implementing the complex numbers and matrix operations manually the
low-level simulation was also converted to run using fixed-point arithmetic. The reason
for this conversion is because the use of floating-point arithmetic in the final hardware
design is infeasible because of the associated complexity. Therefore to maintain the bit
accurate nature of the simulation it must also be converted to use fixed-point.

The conversion process involved first working out the dynamic range of the numbers
at each stage in the system, and trying to assess the required accuracy. This assessment
needed to be done so that a fixed point number format could be chosen. The choice
of number format constrains both the dynamic range, and accuracy of the numbers
represented, therefore care must be taking in choosing an appropriate number format.

A few formats were evaluated in the simulation, each with varying ranges and ac-
curacies. The aim was to find the format that used the least bits, but still provided
acceptable performance. The reason for wanting as few bits as possible is to try to make
the hardware implementation as simple as possible. It takes less time to multiply two 8
bit numbers than it does to multiply two 32 bit numbers, and it uses far less hardware
also. Thus it is easier to have an efficient hardware implementation if the number format
used has as few bits as possible. The final design uses a 16-bit format with 8 bits for
the integral part, and 8 bits for the fractional part, this is known as an 8.8 fixed point
format.

After the number format was chosen, all the mathematical operations needed to be
converted to fixed point also. This conversion process involves making sure that the
radix point is in the correct place after the operation. For addition and subtraction the

CHAPTER 4. SIMULATION 19

radix point does not move. However multiplication and division both move the radix
point, so they must be corrected. For multiplication the correction is achieved using an
arithmetic right shift, for division it is a left shift. Note, there are no divisions in the
algorithms being implemented, only multiplication’s.

The fixed-point conversion process was performed by first writing a header file that
defined the fixed point types and also some functions to convert fixed-point numbers to
floating-point and vice-versa. These functions were mostly used for debugging, however
the floating-to-fixed conversion functions were used to simulate the analogue to digital
converters at the receiver. Finally a function that performed fixed point multiplication
was written, and all the multiplication operators were replaced with calls to this function.

The fixed-point conversion was carried out on a copy of the source code of the
original floating-point simulation. This resulted in one fixed point simulation and one
floating point one, this was intentional. Having two copies allowed the comparison of the
fixed-point implementation to the floating-point one to make sure that the fixed-point
implementation performed acceptably.

The source code for the fixed point functions can be found in Appendix B.5

4.3 Simulation Results

The simulation produced the expected results, confirming that there is a considerable
performance gain from using the MIMO coding scheme. Figure 4.1 shows a comparison
of the simulated MIMO and SISO schemes. As can be seen from the plot the MIMO
scheme achieves a much lower Bit Error Rate at the same Signal to Noise Ratio than
the SISO scheme. This simulation is perhaps a little unfair on the SISO scheme as
the channel model in the simulation is very simplistic, and likely much “worse” than a
real channel would be. The MIMO scheme is not greatly affected by this harsh channel
because it is designed to work in this kind of environment.

Also, note that there is a curve for the fixed point implementation of the MIMO
system. As can be seen in Figure 4.1 the fixed point implementation performs nearly
as well as the floating point one, there is only a very minor difference in BER. This
difference only really becomes apparent at higher signal to noise ratios, up to roughly
15 dB the two MIMO implementations are virually indistinguishable.

This plot was created using the low-level simulation. Previously an attempt was
made to create a similar plot using the high-level simulation. This was not as successful
because the simulation ran too slowly to capture enough data to make the plot accurate.
It was calculated that using the high-level simulation it could take up to 70 hours to

CHAPTER 4. SIMULATION 20

Figure 4.1: Simulation Results - MIMO and SISO Comparison

obtain reliable data for a single point on the plot. However using the low-level simulation
made it possible to collect all the data used in Figure 4.1 within one day.

4.4 Other Work Completed

Before the low-level simulation was implemented the initial high-level simulation was
ported to C++ using the extension interface the Octave provides 2. The major reason
for doing this work was to speed up the simulation, and it was also thought that this
could provide the basis for the low-level, bit accurate, simulation.

As noted in Section 4.3 the initial Octave simulation ran fairly slowly. After porting
this simulation to C++ it was able to simulate around 450 bits/s on a PC with an AMD
Athlon 2000+ processor. However after writing the C++ version the initial Octave
implementation was revised and optimised. After optimisation the Octave simulation
was able to simulate 400 bits/s on the same PC.

In the meantime it was realised that it would be fairly difficult to make the C++ code
form the basis of the bit accurate implementation. The main reason for this difficulty is
because the interface to Octave requires that high-level C++ features, such as object-

2This is similar to the Mex interface that MATLAB provides to allow functions to be coded in C.

CHAPTER 4. SIMULATION 21

orientation, be used. These features do not map too well into hardware, so it was decided
to cease developing the C++ code, and begin the low-level simulation again from scratch
using C rather than C++.

Chapter 5

Hardware Design

After the simulations were completed and the expected results were verified the final step
in the hardware design process was to actually implement the designs in a Hardware
Description Language (HDL). For this project VHDL was chosen to implement the
designs as I have previous experience using it.

Implementing the designs in hardware poses some unique challenges. Considerations
such as how many clock cycles a given operation takes, or whether an operation can
be completed in parallel with another, rarely matter at earlier stages in the process.
However details like these are critically important when implementing hardware.

At the time of writing all the major components in the MIMO system have been
implemented as VHDL except for the channel estimator. The implemented components
have all been tested to verify correct operation. All components produce exactly the
same output as the bit accurate low-level simulation, so performance will be identical.
However, the individual components have not yet been joined together to form a complete
system. See Section 6.1 for more details.

This chapter will examine the individual components that have been implemented
in VHDL. The VHDL source code can be found in Appendix C

5.1 BPSK Modulator

The BPSK modulator is fairly straightforward, as it operates on a single bit at a time
there is no state machine for control, it is simply combinational logic. The modulator
takes a single bit as input and outputs two 8 bit numbers representing the real, and

22

CHAPTER 5. HARDWARE DESIGN 23

imaginary1 parts of the modulated symbol.
The BPSK constellation in use in this project is purely real, i.e. a 1 is represented

by the symbol 1 + 0i and a 0 is represented by −1 + 0i. This constellation hard coded
into the modulator rather than a “header file” like the low-level simulation. However the
modulator is less than 20 lines of code so it is fairly easy to change if needs be. Because
the constellation is purely real the modulator has the quadrature (imaginary) part of
it’s output constantly assigned to 0.

The source code for the BPSK modulator can be found in Appendix C.1

5.2 Alamouti Encoder

The Alamouti encoder is more complicated than the BPSK modulator, it contains se-
quential logic and thus requires some control logic, and a clock signal. The encoder has
four 8 bit inputs, the real and imaginary parts of the 2 symbols being encoded. The
inputs are not registered, and are assumed to be held constant for the duration of the
encoding process (2 clock cycles). There are also four 8 bit outputs for the real and
imaginary parts of the encoded symbols. These outputs are designed to be fed into the
radio modules on the testbed, which have 8 bit digital to analogue converters. It is
designed to operate at the same clock speed as the data rate of the system, so one clock
cycle is assumed to be one symbol period.

Since it takes 2 clock cycles to encode 2 symbols the modulator must maintain a state
to indicate if it is currently the first or second time period. This state is implemented
as a single bit signal that is toggled each clock cycle.

The source code for the encoder can be found in Appendix C.3

5.3 Alamouti Decoder

Like in the low-level simulation the hardware implementation of the Alamouti decoder
is based on Equations 4.2 – 4.5. However, unlike the low-level simulation they are not
simply converted into the programming language in use.

This straight conversion was tested initially, however it was quickly abandoned. The
equation to estimate s0re was converted into VHDL and synthesised. When converted in
this manner the single equation used over half the resources available on the FPGA chip

1At this level the real and imaginary parts of a symbol are also known as in-phase and quadrature
components.

CHAPTER 5. HARDWARE DESIGN 24

control

multiplier

multiplier

multiplier

multiplier add/sub

add/sub

add/sub

add/sub

A

B

C

Rx

Hest

D

Reg

Reg

Reg

Reg

Re{s0}

Im{s0}

Re{s1}

Im{s1}

Figure 5.1: Block Diagram of Hardware Implementation of Alamouti Decoder

on the testbed. Obviously this in unacceptable as not only are there 3 other equations,
but there are also other components that need to fit on the FPGA as well.

Instead a new design was created, Figure 5.1 shows a block diagram of this revised
design. The design consists of four multiplier functional units, and four associated
add/subtract units with registers to accumulate the totals. There is also control logic,
implemented as a state machine, to multiplex inputs through to the various functional
units, and also control whether the add/subtract units add or subtract (these control
lines are not shown in the diagram). The meaning of the A, B, C, and D signals is not
immediately obvious, however it is explained below how these signals are related to the
input signals.

From Figure 5.1 it can be seen that the design calculates all the equations for the
symbol estimates in parallel. There is one multiplier and one add/subtract unit for
each equation being implemented. The design is a multi-cycle implementation, it takes

CHAPTER 5. HARDWARE DESIGN 25

Pair First Usage Second Usage
A s0re operand 1 s0im operand 1
B s0re operand 2 s1re operand 2
C s0im operand 2 s1im operand 2
D s1re operand 1 s1im operand 1

Table 5.1: Pairs of Operands Output by the Control Logic in Alamouti Decoder.

multiple clock cycles to compute the results. The multipliers take one clock cycle to
calculate a product and the add/subtract units also take one clock cycle. Therefore
two symbol estimates (real and imaginary parts) are produced every 8 clock cycles.
When synthesised for the testbed the decoder can run at a maximum clock frequency of
62.135 MHz.

The meaning of the A, B, C and D signal can be found by careful examination of
Equations 4.2 – 4.5. In particular, note that there are four distinct sets of operands for
the multiplication operations. These four sets, which have been labelled A, B, C and D,
are shown in Table 5.1.

To further explain the meaning of Table 5.1 take pair A as an example. The first
usage of A is listed as “s0re operand 1” and the second is “s0im operand 1”. Now
examine Equations 4.2 and 4.3, the equations for s0re and s0im, reproduced in part
below as Equations 5.1 and 5.2.

s0re = Re{h0,0} × Re{y0,0} + Im{h0,0} × Im{y0,0}

+Re{h0,1} × Re{y0,1} + Im{h0,1} × Im{y0,1} . . . (5.1)

s0im = Re{h0,0} × Im{y0,0} − Im{h0,0} × Re{y0,0}

−Re{h0,1} × Im{y0,1} + Im{h0,1} × Re{y0,1} . . . (5.2)

Note, in particular, that the first (left hand) operand of any multiplication in Equa-
tion 5.1 is the same as the first operand of the corresponding multiplication in Equa-
tion 5.2. Because these operands are always the same they are grouped together as pair
A. Table 5.1 similarly specifies the members of the other pairs. These grouping can be
verified by checking them against Equations 4.2 – 4.5.

By exploiting these pairings the control logic is able to multiplex the required inputs
through to all of the multiplier functional units using only four multiplexers instead of
the eight that would otherwise be required.

The source code for the Alamouti decoder, along with the various functional units

CHAPTER 5. HARDWARE DESIGN 26

inside it, can be found in Appendix C.4.

5.4 Channel Estimator

As stated in Section 4.2.2 it is possible to implement the channel estimator as a single
complex matrix multiplication. After some investigation it was found that this task
would be more difficult than actually implementing the Alamouti decoder. So a ready
made multiplier was sought out.

In 2002 a student at the University of Newcastle, Geoff Knagge, completed a final
year project that implemented an efficient complex matrix multiplier. His design was
written using VHDL and should be suitable for use on the testbed. Geoff has been
contacted to see if it is possible to use his work in this project, however at the time of
writing this had not been finalised.

If it is possible to use his design then the channel estimator will be implemented as
the matrix multiplier, with one input coming from a Read Only Memory (ROM), and
the other input being the received training block.

Chapter 6

Conclusions and Further Work

6.1 Further Work

At the time of writing this report I have not yet completed all the goals I set out to achieve
with this project. The design has not been implemented on the testbed, however, most
of the work is completed. There is only one major component not yet implemented:
the channel estimator. The channel estimator is simply a complex matrix multiplier.
This is the kind of component that has likely already been designed by someone and
made available in a VHDL library. In fact the possibility of using a previous project
student’s design is being examined. Once a multiplier design is found it will be simple
to incorporate it into the overall design.

Also, the various components that have been implemented in VHDL are not con-
nected together as a system. Therefore the obvious work left to be done is to join these
components together for demonstration on open-day. However there may be problems
with this approach.

Currently the testbed hardware that is in Newcastle1 is not fully functional. Nathan
Tomkins has been working to get his driver talking to a hardware design that John
Dalton implemented on the card. At this stage I do not believe this work has been
entirely successful, however, my information is not up to date, so this may be no longer
be the case.

A different approach may be to change the design on the FPGA and use the testbed
as a simple radio modulator, then use the low-level simulation written in this project
to perform the signal processing tasks. This method should be simpler to get working
“across the air”, however it will not allow for real-time operation.

1There is other hardware in Sydney that John Dalton has been using for testing

27

CHAPTER 6. CONCLUSIONS AND FURTHER WORK 28

In addition to simply getting the system to function there is much room for optimi-
sation in the hardware designs created for this project. The Alamouti decoder design is
a “multi-cycle” design, after talking to more experienced hardware engineers it became
obvious that a “pipelined” design would be more efficient. Also all the multipliers were
implemented by simply using the * operator in VHDL, it should be possible to use a
more advanced multiplier instead.

Once the system is working correctly there are many other possible extensions of
this project that could be carried out. One interesting area is channel sounding. This is
the process of transmitting data that is known to the receiver to try to obtain accurate
estimates of the channel matrix. These estimates can then be analysed to see how the
channel behaves. Different transmission environments can be examined, and compared.
Other extensions include:

• Using a higher order constellation such as 16QAM

• Investigating the use of different modulation techniques, such as OFDM, when
used in conjunction with space-time coding.

• Evaluating the “real world” performance of MIMO systems under various circum-
stances to investigate how much diversity is available in different transmission
environments.

6.2 Conclusion

Chapter 2 showed the theoretical basis for the Alamouti code and other MIMO systems.
These theories were confirmed by the simulations carried out and documented in Chap-
ter 4. Even though the model used to simulate wireless transmission was “worse” than
reality the MIMO system still greatly outperformed the SISO system. Finally, Chapter 5
described the hardware designs created to actually implement the Alamouti code.

While these designs have not yet been implemented on the testbed, I am confident
that we will be able to build a working MIMO system once the VHDL code is finalised,
and the testbed is fully debugged. The system is not so complicated as to prohibit
its practical implementation. The most complicated component is the complex matrix
multiplier used in the channel estimator, and that problem has already been tackled by
others.

Therefore, this project has proved that it is quite feasible to implement an Alamouti
code using commercially available FPGAs. This puts the possibility of further testing
and research into MIMO systems within reach.

Appendix A

High Level Simulation Source

Code

This appendix contains the code that was used in the high level simulation. The code
is written for Octave, which is generally compatible with MATLAB, however I have not
tested this code in MATLAB.

A.1 Alamouti Encoder Code

1 function a mod out = alamouti mod(in, block sz, x t)

2 symb one = 1;

3 symb zero = -1;

4

5 %variable to keep track of the "current position" in the output

6 out i = 1;

7

8 %sanity checks...always needed when i’m around ;-)

9 if !(mod(length(in),block sz) == 0)

10 printf(’Whoops: the input stream length needs to be a multiple of the block size\n’);
11 return;

12 end

13

14 if !(mod(block sz,2) == 0)

15 printf(’Whoops: The block size needs to be a multiple of 2\n’);
16 return

17 end

18

19 % loop through the input a block at a time...

20 for in i=1:block sz:columns(in)

21 % put the training block at the start

22 for tr i=1:length(x t)

23 a mod out(:,[out i++])=x t(:,tr i);

29

APPENDIX A. HIGH LEVEL SIMULATION SOURCE CODE 30

24 end

25

26 % now loop through the rest of the block and encode the symbols

27 for block i=in i:2:(in i + block sz - 1)

28 bits = in([block i++ block i]);

29

30 % BPSK modulator

31 if bits(1) == 0

32 s1 = symb zero;

33 else

34 s1 = symb one;

35 end

36

37 if bits(2) == 0

38 s2 = symb zero;

39 else

40 s2 = symb one;

41 end

42

43 % Alamotui encoder

44 a mod out(:,[out i++ out i++]) = [s1 -conj(s2); s2 conj(s1)];

45 end % end symbols for loop

46 end % end block for loop

47 end % end function

A.2 Channel Estimator Code

1 function h est = chan est(y t, x t)

2

3 % stright implementation of channel estimation equation

4 h est = y t * x t’ * inv(x t * x t’) ;

5

6 end %end function

A.3 Alamouti Decoder Code

1 function [out, est h list] = alamouti demod(in,nb,x t)

2 symb zero = -1;

3 symb one = 1;

4

5 % position marker in the input stream

6 in i = 1;

7

8 % position marker in the output stream

9 out i = 1;

10

APPENDIX A. HIGH LEVEL SIMULATION SOURCE CODE 31

11 % Iterate through the input one block (including training data) at a time

12 for block i=1:(nb + length(x t)):columns(in)

13 % grab the training block

14 y t = in(:,[in i++ in i++ in i++ in i++]);

15

16 % now use the training block to make a channel estimate

17 %H est = chan est(y t,x t) % normal octave code version

18 H est = chan est f(y t, x t); % c++ octave extension version

19

20 % now iterate through the "data" block decoding symbols

21 for sym i=1:2:nb

22 y = in(:,[in i++ in i++]);

23

24 % soft decision decoder

25 s0 squig = conj(H est(1,1))*y(1,1) + H est(1,2)*conj(y(1,2)) + conj(H est(2,1))*y(2,1)

+ H est(2,2)*conj(y(2,2));

26 s1 squig = conj(H est(1,2))*y(1,1) - H est(1,1)*conj(y(1,2)) + conj(H est(2,2))*y(2,1)

- H est(2,1)*conj(y(2,2));

27

28 % hard decision decoder

29 if real(s0 squig) < 0

30 out(out i++) = 0;

31 else

32 out(out i++) = 1;

33 end % end s0 detector

34

35 if real(s1 squig) < 0

36 out(out i++) = 0;

37 else

38 out(out i++) = 1;

39 end % end s0 detector

40 end % end decoding for loop

41 end % end "block" for loop

42 end % end function

Appendix B

Low-Level Simulation Source

Code

Some of the source code used for the low-level simulation is presented in this appendix.
For the sake of the trees producing the paper this report is printed on, not all of the
header files and associated supporting code is included.

B.1 BPSK Modulator

1 #include "bpsk const.h"

2

3 void bpsk mod(unsigned char input, unsigned char output re[8], unsigned char output im[8])

4 {
5 unsigned short int i;

6

7 for(i=0; i<8; i++)

8 {
9 /* test a single bit at a time */

10 if((input>>i) & 0x01)

11 {
12 output re[i] = SYMBOL ONE RE;

13 output im[i] = SYMBOL ONE IM;

14 }
15 else

16 {
17 output re[i] = SYMBOL ZERO RE;

18 output im[i] = SYMBOL ZERO IM;

19 }
20 }
21 return;

22 }

32

APPENDIX B. LOW-LEVEL SIMULATION SOURCE CODE 33

B.2 Alamouti Encoder

1 #include <stdio.h>

2 #include "bpsk mod.h"

3

4 void alamouti enc(unsigned char input, char out re[2][8], char out im[2][8])

5 {
6 int i=0;

7 unsigned char bpsk mod re[8], bpsk mod im[8];

8

9 /* modulate the block using BPSK */

10 bpsk mod(input, bpsk mod re, bpsk mod im);

11

12 for(i=0; i<8; i+=2)

13 {
14 int i 1 = i + 1;

15

16 /* time t=T */

17 out re[0][i] = bpsk mod re[i];

18 out im[0][i] = bpsk mod im[i];

19

20 out re[1][i] = bpsk mod re[i 1];

21 out im[1][i] = bpsk mod im[i 1];

22

23 /* time t=T+1 */

24 out re[0][i 1] = -bpsk mod re[i 1];

25 out im[0][i 1] = bpsk mod im[i 1];

26

27 out re[1][i 1] = bpsk mod re[i];

28 out im[1][i 1] = -bpsk mod im[i];

29 }
30 }

B.3 Channel Estimator

1 #include "chan est const.h"

2 #include "chan est.h"

3 #include "matrix.h"

4 #include "matrix fix.h"

5 #include "fixed.h"

6

7 void chan est(float rec re[TR ROWS][TR COLS], float rec im[TR ROWS][TR COLS], float *est re, float

*est im)

8 {
9 /* I’m passing in the received training block, the transmitted training

10 * block, and the constant term are defined in "chan est.h"

APPENDIX B. LOW-LEVEL SIMULATION SOURCE CODE 34

11 */

12

13 comp matrix mult f((float *)rec re, (float *)rec im, TR ROWS, TR COLS, (float *)const term re,

(float *)const term im, CONST ROWS, CONST COLS, est re, est im);

14 }
15

16 void chan est fix16(fix16 t rec re[TR ROWS][TR COLS], fix16 t rec im[TR ROWS][TR COLS], fix16 t *est re,

fix16 t *est im)

17 {
18 fix16 t const term re 16[CONST ROWS][CONST COLS];

19 fix16 t const term im 16[CONST ROWS][CONST COLS];

20 int row,col;

21

22 /* make a fixed point version of the constant term */

23 for(row = 0; row < CONST ROWS; row++)

24 {
25 for(col=0; col < CONST COLS; col++)

26 {
27 const term re 16[row][col] = quantise 16bit l((const term re[row][col]));

28 const term im 16[row][col] = quantise 16bit l((const term im[row][col]));

29 }
30 }
31

32 comp matrix mult fix16((fix16 t *)rec re, (fix16 t *)rec im, TR ROWS, TR COLS, (fix16 t *)const term re 16,

(fix16 t *)const term im 16, CONST ROWS, CONST COLS, est re, est im);

33 }

B.4 Alamouti Decoder

1 #include "combiner.h"

2

3 #define COMB DEBUG 0

4

5 void combine(float recv re[2][2], float recv im[2][2],

6 float h re[2][2], float h im[2][2],

7 float symb re[2], float symb im[2])

8 {
9 symb re[0] = h re[0][0]*recv re[0][0] + h im[0][0]*recv im[0][0] +

10 h re[0][1]*recv re[0][1] + h im[0][1]*recv im[0][1] +

11 h re[1][0]*recv re[1][0] + h im[1][0]*recv im[1][0] +

12 h re[1][1]*recv re[1][1] + h im[1][1]*recv im[1][1] ;

13

14 symb im[0] = h re[0][0]*recv im[0][0] - h im[0][0]*recv re[0][0] -

15 h re[0][1]*recv im[0][1] + h im[0][1]*recv re[0][1] +

16 h re[1][0]*recv im[1][0] - h im[1][0]*recv re[1][0] -

17 h re[1][1]*recv im[1][1] + h im[1][1]*recv re[1][1] ;

18

19

APPENDIX B. LOW-LEVEL SIMULATION SOURCE CODE 35

20 symb re[1] = h re[0][1]*recv re[0][0] + h im[0][1]*recv im[0][0] -

21 h re[0][0]*recv re[0][1] - h im[0][0]*recv im[0][1] +

22 h re[1][1]*recv re[1][0] + h im[1][1]*recv im[1][0] -

23 h re[1][0]*recv re[1][1] - h im[1][0]*recv im[1][1] ;

24

25 symb im[1] = h re[0][1]*recv im[0][0] - h im[0][1]*recv re[0][0] +

26 h re[0][0]*recv im[0][1] - h im[0][0]*recv re[0][1] +

27 h re[1][1]*recv im[1][0] - h im[1][1]*recv re[1][0] +

28 h re[1][0]*recv im[1][1] - h im[1][0]*recv re[1][1] ;

29

30 return;

31 }
32

33

34 void combine fix16(fix16 t recv re[2][2], fix16 t recv im[2][2],

35 fix16 t h re[2][2], fix16 t h im[2][2],

36 fix16 t symb re[2], fix16 t symb im[2])

37 {
38 long int temp re 0, temp re 1, temp im 0, temp im 1;

39

40

41 temp re 0 = fix16 mult(h re[0][0],recv re[0][0]) + fix16 mult(h im[0][0],recv im[0][0]) +

42 fix16 mult(h re[0][1],recv re[0][1]) + fix16 mult(h im[0][1],recv im[0][1]) +

43 fix16 mult(h re[1][0],recv re[1][0]) + fix16 mult(h im[1][0],recv im[1][0]) +

44 fix16 mult(h re[1][1],recv re[1][1]) + fix16 mult(h im[1][1],recv im[1][1]) ;

45

46 temp im 0 = fix16 mult(h re[0][0],recv im[0][0]) - fix16 mult(h im[0][0],recv re[0][0])-

47 fix16 mult(h re[0][1],recv im[0][1]) + fix16 mult(h im[0][1],recv re[0][1]) +

48 fix16 mult(h re[1][0],recv im[1][0]) - fix16 mult(h im[1][0],recv re[1][0]) -

49 fix16 mult(h re[1][1],recv im[1][1]) + fix16 mult(h im[1][1],recv re[1][1]) ;

50

51 temp re 1 = fix16 mult(h re[0][1],recv re[0][0]) + fix16 mult(h im[0][1],recv im[0][0]) -

52 fix16 mult(h re[0][0],recv re[0][1]) - fix16 mult(h im[0][0],recv im[0][1]) +

53 fix16 mult(h re[1][1],recv re[1][0]) + fix16 mult(h im[1][1],recv im[1][0]) -

54 fix16 mult(h re[1][0],recv re[1][1]) - fix16 mult(h im[1][0],recv im[1][1]) ;

55

56 temp im 1 = fix16 mult(h re[0][1],recv im[0][0]) - fix16 mult(h im[0][1],recv re[0][0]) +

57 fix16 mult(h re[0][0],recv im[0][1]) - fix16 mult(h im[0][0],recv re[0][1]) +

58 fix16 mult(h re[1][1],recv im[1][0]) - fix16 mult(h im[1][1],recv re[1][0]) +

59 fix16 mult(h re[1][0],recv im[1][1]) - fix16 mult(h im[1][0],recv re[1][1]) ;

60

61 symb re[0] = (fix16 t) temp re 0;

62 symb re[1] = (fix16 t) temp re 1;

63 symb im[0] = (fix16 t) temp im 0;

64 symb im[1] = (fix16 t) temp im 1;

65

66 return;

67 }

APPENDIX B. LOW-LEVEL SIMULATION SOURCE CODE 36

B.5 Fixed Point Functions

1 #include "fixed.h"

2

3 inline long int quantise 8bit l(float input)

4 {
5 if (input >= (8))

6 return (long int) 127;

7 else if (input < (-8))

8 return (long int) -128;

9 else

10 return (long int) (input * (1 << RADIX 8));

11 }
12

13 inline long int quantise 10bit l(float input)

14 {
15 if (input >= (16))

16 return (long int) 255;

17 else if (input < (-16))

18 return (long int) -256;

19 return ((long int) (input * (1 << RADIX 10)));

20 }
21

22 inline long int quantise 12bit l(float input)

23 {
24 return ((long int) (input * (1 << RADIX 12)));

25 }
26 inline long int quantise 16bit l(float input)

27 {
28 return ((long int) (input * (1 << RADIX 16)));

29 }
30

31 inline long int quantise 24bit l(float input)

32 {
33 return ((long int) (input * (1 << RADIX 24)));

34 }
35

36 inline float fix8 to float(fix8 t in)

37 {
38 return (in / (float) (1<<RADIX 8));

39 }
40

41 inline float fix10 to float(fix10 t in)

42 {
43 return (in / (float) (1<<RADIX 10));

44 }
45

46 inline float fix12 to float(fix12 t in)

47 {
48 return (in / (float) (1<<RADIX 12));

49 }

APPENDIX B. LOW-LEVEL SIMULATION SOURCE CODE 37

50 inline float fix16 to float(fix16 t in)

51 {
52 return (in / (float) (1<<RADIX 16));

53 }
54

55 inline fix10 t fix8 to fix10(fix8 t in)

56 {
57 return (fix10 t) (in<<(RADIX 10 - RADIX 8));

58 }
59

60 inline fix12 t fix8 to fix12(fix8 t in)

61 {
62 return (fix12 t) (in<<(RADIX 12 - RADIX 8));

63 }
64

65 inline fix16 t fix8 to fix16(fix8 t in)

66 {
67 return (fix16 t) (in<<(RADIX 16 - RADIX 8));

68 }
69

70 inline fix12 t fix10 to fix12(fix10 t in)

71 {
72 return (fix12 t) (in<<(RADIX 12 - RADIX 10));

73 }
74

75 inline fix16 t fix10 to fix16(fix10 t in)

76 {
77 return (fix16 t) (in<<(RADIX 16 - RADIX 10));

78 }
79

80 inline fix16 t fix12 to fix16(fix12 t in)

81 {
82 return (fix16 t) (in<<(RADIX 16 - RADIX 12));

83 }
84

85 inline fix8 t fix8 mult(fix8 t a, fix8 t b)

86 {
87 long int ans = 0;

88

89 ans = ((long int) a * (long int)b)>>RADIX 8;

90 #if FIXED DEBUG > 1

91 printf("fix8 mult: Real - %f * %f = %f (%f => 0x%lx)\n",fix8 to float(a),

92 fix8 to float(b), fix8 to float(ans) , fix8 to float(a) * fix8 to float(b),

93 quantise 8bit l(fix8 to float(a) * fix8 to float(b)));

94

95 printf("fix8 mult: Int - %d * %d = %ld\n",a,b,ans);
96 printf("fix8 mult: Hex - 0x%x * 0x%x = 0x%lx\n",a,b,ans);
97 #endif

98

99 #if FIXED DEBUG > 0

100 if (ans > 0x7f)

APPENDIX B. LOW-LEVEL SIMULATION SOURCE CODE 38

101 {
102 printf("Overflow trying to do fix8 mult: 0x%x * 0x%x ?= 0x%lx\n",a,b,ans);
103 exit(-1);

104 }
105 #endif

106 return (fix8 t) ans;

107 }
108

109

110 inline fix16 t fix16 mult(fix16 t a, fix16 t b)

111 {
112 long int ans = 0;

113

114 ans = ((long int) a * (long int)b)>>RADIX 16;

115 #if FIXED DEBUG > 0

116 printf("[0x%x * 0x%x = 0x%x]",(unsigned short)a,(unsigned short)b,(unsigned short)ans);

117 #endif

118 return (fix16 t) ans;

119 }
120

121 inline fix10 t fix10 mult(fix10 t a, fix10 t b)

122 {
123 long int ans = 0;

124

125 ans = ((long int) a * (long int)b)>>RADIX 10;

126 return (fix10 t) ans;

127 }
128

129 inline fix12 t fix12 mult(fix12 t a, fix12 t b)

130 {
131 long int ans = 0;

132

133 ans = ((long int) a * (long int)b)>>RADIX 12;

134 return (fix12 t) ans;

135 }

Appendix C

Hardware Design Source Code

This Appendix contains the current1 source code used for the hardware designs. The
code is written in VHDL and has bee tested and synthesised using the no cost “Web-
Pack” tools available from Xilinx.

C.1 BPSK Modulator

1 library ieee;

2 use ieee.std logic 1164.all;

3 use ieee.std logic arith.all;

4

5 entity bpsk mod is port (

6 input : in std logic;

7 i out, q out : out signed(7 downto 0)

8);

9 end bpsk mod;

10

11 architecture a of bpsk mod is

12 begin

13 with input select i out <=

14 "01111111" when ’1’,

15 "10000000" when others;

16 q out <= "00000000";

17 end a;

18

1current at time of report writing

39

APPENDIX C. HARDWARE DESIGN SOURCE CODE 40

C.2 BPSK Demodulator

1 library ieee;

2 use ieee.std logic 1164.all;

3 use ieee.std logic arith.all;

4

5 entity bpsk demod is port (

6 i in,q in : in signed(7 downto 0);

7 output : out std logic

8);

9 end bpsk demod;

10

11 architecture a of bpsk demod is

12 begin

13 output <= not i in(7);

14 end a;

15

C.3 Alamouti Enoder

1 library ieee;

2 use ieee.std logic 1164.all;

3 use ieee.std logic arith.all;

4

5

6 entity alamouti mod is

7 port

8 (

9 clk : in std logic;

10 i1 in,i2 in : in signed(7 downto 0);

11 q1 in,q2 in : in signed(7 downto 0);

12 i1 out,q1 out : in signed(7 downto 0);

13 i2 out,q2 out : in signed(7 downto 0)

14);

15 end alamouti mod;

16

17 architecture a of alamouti mod is

18 signal tmp1 i, tmp1 q : signed(7 downto 0); -- antenna1 variables

19 signal tmp2 i, tmp2 q : signed(7 downto 0); -- antenna2 variables

20 signal state : std logic;

21 begin

22 process(clk)

23 begin

24 if (clk’event and clk = ’1’) then

25 if (state = ’0’) then-- first cycle

26 tmp1 i <= i1 in;

27 tmp1 q <= q1 in;

28

29 tmp2 i <= i2 in;

APPENDIX C. HARDWARE DESIGN SOURCE CODE 41

30 tmp2 q <= q2 in;

31 state <= ’1’;

32 else

33 tmp1 i <= -i2 in;

34 tmp1 q <= q2 in;

35

36 tmp2 i <= i1 in;

37 tmp2 q <= -q1 in;

38 state <= ’0’;

39 end if;

40 end if;

41 end process;

42

43

44 i1 out <= tmp1 i;

45 q1 out <= tmp1 q;

46

47 i2 out <= tmp2 i;

48 q2 out <= tmp2 q;

49 end a;

50

C.4 Alamouti Decoder

1 library IEEE;

2 use IEEE.STD LOGIC 1164.ALL;

3 use IEEE.STD LOGIC ARITH.ALL;

4 use IEEE.STD LOGIC SIGNED.ALL;

5

6

7 library work;

8 use work.my types.all;

9

10 entity combiner is port (

11 clock : in std logic;

12 reset : in std logic;

13

14 rx re in : in t 2x2 matrix 16;

15 rx im in : in t 2x2 matrix 16;

16 h re in : in t 2x2 matrix 16;

17 h im in : in t 2x2 matrix 16;

18

19 s0re est : out std logic vector(15 downto 0);

20 s0im est : out std logic vector(15 downto 0);

21 s1re est : out std logic vector(15 downto 0);

22 s1im est : out std logic vector(15 downto 0);

23

24 -- debug : out std logic vector(15 downto 0);

APPENDIX C. HARDWARE DESIGN SOURCE CODE 42

25

26 done : out std logic

27);

28 end combiner;

29

30 architecture Behavioral of combiner is

31 signal s0re op : std logic;

32 signal s0im op : std logic;

33 signal s1re op : std logic;

34 signal s1im op : std logic;

35

36 signal clear control : std logic;

37 signal clear units : std logic;

38 signal add clear : std logic;

39

40 signal op a : std logic vector(15 downto 0);

41 signal op b : std logic vector(15 downto 0);

42 signal op c : std logic vector(15 downto 0);

43 signal op d : std logic vector(15 downto 0);

44

45 signal s0re prod : std logic vector(15 downto 0);

46 signal s0im prod : std logic vector(15 downto 0);

47 signal s1re prod : std logic vector(15 downto 0);

48 signal s1im prod : std logic vector(15 downto 0);

49

50 signal s0re sum : std logic vector(15 downto 0);

51 signal s0im sum : std logic vector(15 downto 0);

52 signal s1re sum : std logic vector(15 downto 0);

53 signal s1im sum : std logic vector(15 downto 0);

54

55 signal s0re total : std logic vector(15 downto 0);

56 signal s0im total : std logic vector(15 downto 0);

57 signal s1re total : std logic vector(15 downto 0);

58 signal s1im total : std logic vector(15 downto 0);

59

60 signal s0re op regd : std logic;

61 signal s0im op regd : std logic;

62 signal s1re op regd : std logic;

63 signal s1im op regd : std logic;

64

65 signal add count : integer range 0 to 7;

66 signal done i : std logic;

67 ---

68 -- component declarations --

69 ---

70 component comb control

71 port(

72 clock : in std logic;

73 reset : in std logic;

74

75 rx re in : in t 2x2 matrix 16;

APPENDIX C. HARDWARE DESIGN SOURCE CODE 43

76 rx im in : in t 2x2 matrix 16;

77 h re in : in t 2x2 matrix 16;

78 h im in : in t 2x2 matrix 16;

79

80 operand a : out std logic vector(15 downto 0);

81 operand b : out std logic vector(15 downto 0);

82 operand c : out std logic vector(15 downto 0);

83 operand d : out std logic vector(15 downto 0);

84

85 s0re add, s0im add: out std logic;

86 s1re add, s1im add: out std logic;

87 done : out std logic;

88 clear : out std logic

89);

90 end component;

91

92 component add sub 16 is port (

93 a : in std logic vector(15 downto 0);

94 b : in std logic vector(15 downto 0);

95 add : in std logic;

96 ans : out std logic vector(15 downto 0)

97);end component;

98 ---------------- end component declarations ------------------

99 begin

100

101 clear units <= reset or clear control;

102

103 combiner control unit: comb control port map(

104 clock => clock,

105 reset => reset,

106 rx re in => rx re in,

107 rx im in => rx im in,

108 h re in => h re in,

109 h im in => h im in,

110

111 operand a => op a,

112 operand b => op b,

113 operand c => op c,

114 operand d => op d,

115

116 s0re add => s0re op,

117 s0im add => s0im op,

118 s1re add => s1re op,

119 s1im add => s1im op,

120 done => done i,

121 clear => clear control

122);

123 done <= done i;

124

125 -- need to register the add/subtract signals because

126 -- the product gets registered, need to keep them in

APPENDIX C. HARDWARE DESIGN SOURCE CODE 44

127 -- sync!

128 process (clock)

129 begin

130 if (clock’event and clock=’1’) then

131 s0re op regd <= s0re op;

132 s0im op regd <= s0im op;

133 s1re op regd <= s1re op;

134 s1im op regd <= s1im op;

135 end if;

136 end process;

137

138 ---

139 -- Multipliers and registers

140 ---

141 s0re mult: process (clock)

142 variable result : signed(31 downto 0);

143 begin

144 if(clock’event and clock = ’1’) then

145 result := conv signed(conv integer(op a) * conv integer(op b), 32);

146 s0re prod <= conv std logic vector(result(23 downto 8),16);

147 end if;

148 end process;

149

150 s0im mult: process (clock)

151 variable result : signed(31 downto 0);

152 begin

153 if(clock’event and clock = ’1’) then

154 result := conv signed(conv integer(op a) * conv integer(op c) ,32);

155 s0im prod <= conv std logic vector(result(23 downto 8),16);

156 end if;

157 end process;

158

159 s1re mult: process (clock)

160 variable result : signed(31 downto 0);

161 begin

162 if(clock’event and clock = ’1’) then

163 result := conv signed(conv integer(op d) * conv integer(op b), 32);

164 s1re prod <= conv std logic vector(result(23 downto 8),16);

165 end if;

166 end process;

167

168 s1im mult: process (clock)

169 variable result : signed(31 downto 0);

170 begin

171 if(clock’event and clock = ’1’) then

172 result := conv signed(conv integer(op d) * conv integer(op c), 32);

173 s1im prod <= conv std logic vector(result(23 downto 8),16);

174 end if;

175 end process;

176

177 ---

APPENDIX C. HARDWARE DESIGN SOURCE CODE 45

178 -- Adders / Subtracters

179 ---

180 s0re add: add sub 16 port map (

181 a => s0re total,

182 b => s0re prod,

183 add => s0re op regd,

184 ans => s0re sum

185);

186

187 s0im add: add sub 16 port map (

188 a => s0im total,

189 b => s0im prod,

190 add => s0im op regd,

191 ans => s0im sum

192);

193 s1re add: add sub 16 port map (

194 a => s1re total,

195 b => s1re prod,

196 add => s1re op regd,

197 ans => s1re sum

198);

199

200 s1im add: add sub 16 port map (

201 a => s1im total,

202 b => s1im prod,

203 add => s1im op regd,

204 ans => s1im sum

205);

206 ---

207 -- Registers

208 ---

209 s0re reg: process (clock)

210 begin

211 if(clock’event and clock = ’1’) then

212 if (clear units =’1’) then

213 s0re total <= x"0000";

214 else

215 s0re total <= s0re sum;

216 end if;

217 end if;

218 end process;

219

220 s0im reg: process (clock)

221 begin

222 if(clock’event and clock = ’1’) then

223 if (clear units =’1’) then

224 s0im total <= x"0000";

225 else

226 s0im total <= s0im sum;

227 end if;

228 end if;

APPENDIX C. HARDWARE DESIGN SOURCE CODE 46

229 end process;

230

231 s1re reg: process (clock)

232 begin

233 if(clock’event and clock = ’1’) then

234 if (clear units =’1’) then

235 s1re total <= x"0000";

236 else

237 s1re total <= s1re sum;

238 end if;

239 end if;

240 end process;

241

242 s1im reg: process (clock)

243 begin

244 if(clock’event and clock = ’1’) then

245 if (clear units =’1’) then

246 s1im total <= x"0000";

247 else

248 s1im total <= s1im sum;

249 end if;

250 end if;

251 end process;

252

253

254 --

255 -- output assignements

256 --

257

258 s0re est <= s0re sum;

259 s0im est <= s0im sum;

260 s1re est <= s1re sum;

261 s1im est <= s1im sum;

262

263 --debug <= x"000" & s0re op regd & s0im op regd & s1re op regd & s1im op regd;

264 --debug <= x"000" & ’0’ &’0’ &’0’ & clear control;

265 end Behavioral;

C.4.1 Control Unit

1 library IEEE;

2 use IEEE.STD LOGIC 1164.ALL;

3 use IEEE.STD LOGIC ARITH.ALL;

4 use IEEE.STD LOGIC UNSIGNED.ALL;

5

6 library work;

7 use work.my types.all;

8

9 entity comb control is Port (

APPENDIX C. HARDWARE DESIGN SOURCE CODE 47

10 clock : in std logic;

11 reset : in std logic;

12

13 rx re in : in t 2x2 matrix 16;

14 rx im in : in t 2x2 matrix 16;

15 h re in : in t 2x2 matrix 16;

16 h im in : in t 2x2 matrix 16;

17

18

19 -- Key:

20 -- A -> s0 re op1, s0 im op1

21 -- B -> s0 re op2, s1 re op2

22 -- C -> s0 im op2, s1 im op2

23 -- D -> s1 re op1, s1 im op1

24 operand a : out std logic vector(15 downto 0);

25 operand b : out std logic vector(15 downto 0);

26 operand c : out std logic vector(15 downto 0);

27 operand d : out std logic vector(15 downto 0);

28

29 s0re add, s0im add: out std logic;

30 s1re add, s1im add: out std logic;

31 done : out std logic;

32 clear : out std logic

33);

34 end comb control;

35

36 architecture Behavioral of comb control is

37 type state type is (st rst,st1, st2, st3, st4, st5, st6, st7, st8);

38 -- state machine internal signals

39 signal state, next state : state type;

40 signal op a i : std logic vector(15 downto 0);

41 signal op b i : std logic vector(15 downto 0);

42 signal op c i : std logic vector(15 downto 0);

43 signal op d i : std logic vector(15 downto 0);

44

45 signal s0re add i, s0im add i : std logic;

46 signal s1re add i, s1im add i : std logic;

47

48 signal rx re reg, rx im reg : t 2x2 matrix 16;

49 signal h re reg, h im reg : t 2x2 matrix 16;

50

51

52 -- temp output logic signals

53 signal done i : std logic;

54 signal clear i : std logic;

55 begin

56 input regs : process (clock,reset)

57 begin

58 if(clock’event and clock=’1’) then

59 if (reset = ’1’) then

60 rx re reg <= (others => x"0000");

APPENDIX C. HARDWARE DESIGN SOURCE CODE 48

61 rx im reg <= (others => x"0000");

62 h re reg <= (others => x"0000");

63 h im reg <= (others => x"0000");

64 elsif (state = st8) or (state = st rst) then

65 rx re reg <= rx re in;

66 rx im reg <= rx im in;

67 h re reg <= h re in;

68 h im reg <= h im in;

69 end if;

70 end if;

71 end process;

72

73

74 SYNC PROC: process (CLOCK, reset)

75 begin

76 if (clock’event and clock = ’1’) then

77 if (reset = ’1’) then

78 state <= st rst;

79 s0re add <= ’1’;

80 s0im add <= ’1’;

81 s1re add <= ’1’;

82 s1im add <= ’1’;

83

84 operand a <= x"0000";

85 operand b <= x"0000";

86 operand c <= x"0000";

87 operand d <= x"0000";

88

89 done <= ’0’;

90 clear <= ’1’;

91 else

92 state <= next state;

93

94 s0re add <= s0re add i;

95 s0im add <= s0im add i;

96 s1re add <= s1re add i;

97 s1im add <= s1im add i;

98

99 done <= done i;

100 clear <= clear i;

101

102 operand a <= op a i;

103 operand b <= op b i;

104 operand c <= op c i;

105 operand d <= op d i;

106 end if;

107 end if;

108 end process;

109

110

111 --MOORE State Machine - Outputs based on state only

APPENDIX C. HARDWARE DESIGN SOURCE CODE 49

112 OUTPUT DECODE: process (state,h re reg,h im reg,rx re reg,rx im reg)

113 begin

114

115 -- Operands Key:

116 -- A -> s0 re op1, s0 im op1

117 -- B -> s0 re op2, s1 re op2

118 -- C -> s0 im op2, s1 im op2

119 -- D -> s1 re op1, s1 im op1

120

121 case (state) is

122 when st rst =>

123 op a i <= x"0000";

124 op b i <= x"0000";

125 op c i <= x"0000";

126 op d i <= x"0000";

127

128 s0re add i <= ’1’;

129 s0im add i <= ’1’;

130 s1re add i <= ’1’;

131 s1im add i <= ’1’;

132

133 done i <= ’0’;

134 clear i <=’1’;

135

136 when st1 =>

137 op a i <= h re reg(0);

138 op b i <= rx re reg(0);

139 op c i <= rx im reg(0);

140 op d i <= h re reg(1);

141

142 s0re add i <= ’1’;

143 s0im add i <= ’1’;

144 s1re add i <= ’1’;

145 s1im add i <= ’1’;

146

147 done i <= ’1’;

148 clear i <= ’1’;

149 when st2 =>

150 op a i <= h im reg(0);

151 op b i <= rx im reg(0);

152 op c i <= rx re reg(0);

153 op d i <= h im reg(1);

154

155 s0re add i <= ’1’;

156 s0im add i <= ’0’;

157 s1re add i <= ’1’;

158 s1im add i <= ’0’;

159

160 done i <= ’0’;

161 clear i <= ’0’;

162 when st3 =>

APPENDIX C. HARDWARE DESIGN SOURCE CODE 50

163 op a i <= h re reg(1);

164 op b i <= rx re reg(1);

165 op c i <= rx im reg(1);

166 op d i <= h re reg(0);

167

168 s0re add i <= ’1’;

169 s0im add i <= ’0’;

170 s1re add i <= ’0’;

171 s1im add i <= ’1’;

172

173 done i <= ’0’;

174 clear i <= ’0’;

175 when st4 =>

176 op a i <= h im reg(1);

177 op b i <= rx im reg(1);

178 op c i <= rx re reg(1);

179 op d i <= h im reg(0);

180

181 s0re add i <= ’1’;

182 s0im add i <= ’1’;

183 s1re add i <= ’0’;

184 s1im add i <= ’0’;

185

186 done i <= ’0’;

187 clear i <= ’0’;

188 when st5 =>

189 op a i <= h re reg(2);

190 op b i <= rx re reg(2);

191 op c i <= rx im reg(2);

192 op d i <= h re reg(3);

193

194 s0re add i <= ’1’;

195 s0im add i <= ’1’;

196 s1re add i <= ’1’;

197 s1im add i <= ’1’;

198

199 done i <= ’0’;

200 clear i <= ’0’;

201 when st6 =>

202 op a i <= h im reg(2);

203 op b i <= rx im reg(2);

204 op c i <= rx re reg(2);

205 op d i <= h im reg(3);

206

207 s0re add i <= ’1’;

208 s0im add i <= ’0’;

209 s1re add i <= ’1’;

210 s1im add i <= ’0’;

211

212 done i <= ’0’;

213 clear i <= ’0’;

APPENDIX C. HARDWARE DESIGN SOURCE CODE 51

214 when st7 =>

215 op a i <= h re reg(3);

216 op b i <= rx re reg(3);

217 op c i <= rx im reg(3);

218 op d i <= h re reg(2);

219

220 s0re add i <= ’1’;

221 s0im add i <= ’0’;

222 s1re add i <= ’0’;

223 s1im add i <= ’1’;

224

225 done i <= ’0’;

226 clear i <= ’0’;

227 when st8 =>

228 op a i <= h im reg(3);

229 op b i <= rx im reg(3);

230 op c i <= rx re reg(3);

231 op d i <= h im reg(2);

232

233 s0re add i <= ’1’;

234 s0im add i <= ’1’;

235 s1re add i <= ’0’;

236 s1im add i <= ’0’;

237 clear i <= ’0’;

238 done i <= ’0’;

239 end case;

240 end process;

241

242 NEXT STATE DECODE: process (state)

243 begin

244 --declare default state for next state to avoid latches

245 next state <= state; --default is to stay in current state

246 case (state) is

247 when st rst => next state <= st1;

248 when st1 => next state <= st2;

249 when st2 => next state <= st3;

250 when st3 => next state <= st4;

251 when st4 => next state <= st5;

252 when st5 => next state <= st6;

253 when st6 => next state <= st7;

254 when st7 => next state <= st8;

255 when st8 => next state <= st1;

256 when others =>

257 next state <= st rst;

258 end case;

259 end process;

260

261 end Behavioral;

APPENDIX C. HARDWARE DESIGN SOURCE CODE 52

C.4.2 Add/Subtract Unit

1 library IEEE;

2 use IEEE.STD LOGIC 1164.ALL;

3 use IEEE.STD LOGIC ARITH.ALL;

4 use IEEE.STD LOGIC SIGNED.ALL;

5

6

7 entity add sub 16 is

8 Port (a : in std logic vector(15 downto 0);

9 b : in std logic vector(15 downto 0);

10 add : in std logic;

11 ans : out std logic vector(15 downto 0)

12);

13 end add sub 16;

14

15 architecture Behavioral of add sub 16 is

16 begin

17 process(a,b,add)

18 variable op b : std logic vector(15 downto 0);

19 variable carry in : std logic;

20 begin

21 -- This way uses 33 of 3072 slices, and has a delay of 13.425ns

22 -- if(add = ’1’) then

23 -- ans <= a + b;

24 -- else

25 -- ans <= a - b;

26 -- end if;

27

28 -- This way uses 17/3072 slices, and 31/6144 4in-LUTs, delay of 13ns

29 if (add = ’1’) then

30 op b := b;

31 carry in := ’0’;

32 else

33 op b := not b;

34 carry in := ’1’;

35 end if;

36 ans <= a + op b + carry in;

37 end process;

38 end Behavioral;

Bibliography

[1] David Gesbert, Mansoor Shafi, Da-shan Shiu, Peter J. Smith, and Ayman Naguib.
From theory to practice: An overview of mimo space-time coded wireless systems.
IEEE Journal on Selected Areas in Communications, 21(3):281–302, 2003.

[2] Erik G. Larsen and Petre Stoica. Space-Time Block Coding for Wireless Communi-
cations. Cambridge University Press, 2003.

[3] Hesham El Gamal and A. Roger Hammons, Jr. On the Design and Performance of
Algebraic Space-Time Codes for BPSK and QPSK Modulation. IEEE Transactions
on Communications, 50(8):907–913, June 2002.

[4] Markus Rupp, Andreas Burg, Eric Beck. Rapid Prototyping for Wireless Designs:
the Five-Ones Approach. Signal Processing, 83:1427–1444, 2003.

[5] Raghu Mysore Rao et. al. Multi-Antenna Testbeds for Research and Education in
Wireless Communications. IEEE Communications Magazine, pages 72–81, December
2004.

[6] Raleigh, G.G. and Cioffi, J.M. . Spatio-temporal coding for wireless communications.
IEEE Transactions on Communications, 46(3):357–366, 1998.

[7] Siavash M. Alamouti. A Simple Transmit Diversity Technique for Wireless Com-
munications. IEEE Journal on Select Areas in Communcations, 16(8):1451–1458,
October 1998.

[8] Vahid Tarokh, Hamid Jafarkhani, and A. Robert Calderbank. Space-time block
coding for wireless communications: Performance results. IEEE Journal on Selected
Areas in Communications, 17(3):451–460, March 1999.

53

	Introduction
	Motivation

	Theoretical Background
	Capacity of Wireless Communication Systems
	The Transmission Environment
	Modelling the Wireless Communications Channel
	Multi-Antenna Systems
	The Alamouti Code
	Channel Estimation

	Newcastle University Wireless Testbed Project
	Motivation for Testbed
	Testbed Hardware
	Related Final Year Projects

	Simulation
	High-Level Simulation
	Alamouti Encoder
	Channel Estimator
	Alamouti Decoder

	Low-Level Simulation
	Alamouti Encoder
	Channel Estimator
	Alamouti Decoder
	Fixed Point

	Simulation Results
	Other Work Completed

	Hardware Design
	BPSK Modulator
	Alamouti Encoder
	Alamouti Decoder
	Channel Estimator

	Conclusions and Further Work
	Further Work
	Conclusion

	High Level Simulation Source Code
	Alamouti Encoder Code
	Channel Estimator Code
	Alamouti Decoder Code

	Low-Level Simulation Source Code
	BPSK Modulator
	Alamouti Encoder
	Channel Estimator
	Alamouti Decoder
	Fixed Point Functions

	Hardware Design Source Code
	BPSK Modulator
	BPSK Demodulator
	Alamouti Enoder
	Alamouti Decoder
	Control Unit
	Add/Subtract Unit

	Bibliography

