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PREFACE 

This book provides the basic knowledge necessary to understand how to 
design and analyze basic digital logic systems and to know how to simulate 
these systems using hardware description languages. Systems here include 
digital logic circuits such as: adders, multiplexers, decoders, multipliers, flip-
flops, latches, counters, sequential state machines, cache memories, and basic 
computers, simplified biological mechanisms that describe the operation 
of organs such as kidney, mathematical models (e.g., factorial, greatest of N 
numbers, multiplication algorithms, polynomials), and artificial intelligence 
(e.g., artificial neural networks). The book covers, in detail, Very High Speed 
Integrated Circuit Hardware Description Language (VHDL) and Verilog 
HDL. The book also covers a very important tool in writing the HDL code, 
the  mixed language description where both VHDL and Verilog constructs are 
implemented in one HDL program. It also covers fundamentals of hardware 
synthesis. The book classifies the HDL styles of writing into six groups: data 
flow, behavioral, structural or gate-level, switch-level, mixed-type, and mixed 
language description.

Book Organization

The following is a brief description of the subjects that are covered in each 
chapter.

Chapter 1: Covers structure of the HDL module, operators including logical, 
arithmetic, relational and shift, data types such as scalar, composite and file, and 
a brief comparison between VHDL and Verilog. The chapter also covers how to 
simulate and test HDL code using test benches

Chapter 2: Covers: a) Analysis and design of combinational circuits such as 
adders, subtractors, decoders, multiplexers, comparators and simple multipliers, 
and sequential circuits such as latches; b) Simulation of the above combinational 
and sequential circuits using VHDL and Verilog data-flow description. The 
description includes covering of logical operators, concurrent signal-assignment 
statements, time delays, and vectors.

Chapter 3: Covers: a) Analysis and design of sequential circuits such as D flip-
flop, JK flip-flop, T flip-flop, binary counters, and shift register; b) Understand 
the concept of some basic genetic and renal systems; c) Implementation of 
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Booth algorithm; d) Simulation of the systems in (a), (b), and (c) using VHDL 
and Verilog behavioral description. The description includes covering of the 
sequential statements if, case, loop casex, casez, when, report, $display, 
wait, loop, exit, next, always, repeat, forever, and initial.

Chapter 4: Covers: a) Analysis and design of sequential state machines; b) 
Analysis and design of adders, multiplexers, decoders, comparators, encoders, 
latches, flip-flops, counters, shift registers, and memory cells; c) Simulation 
of the systems in (a) and (b) using VHDL and Verilog structural description 
including the statements: component, use, and, or, not, xor, nor, generate, 
generic, and parameter.

Chapter 5: Covers:
a) Analysis and design of primitive gates and simple logics using transistors 
(switches); b) Simulation of the above logics using HDL switch-level description. 
The description includes the Verilog statements nmos, pmos, cmos, supply1, 
supply0, tranif0, tran, and tranif0.

Chapter 6: Covers: a) Handling of real (fraction) data, Implementation of 
IEEE 754 Floating point representation and handling of signed numbers; b) 
Analysis and design of combinational array multiplier; c) Exploring the enzyme-
substrate mechanism; d) Simulation of (a) and (b) using VHDL and Verilog 
procedure, task, and function.

Chapter 7: Covers: a) Implementation of arrays, single and multidimensional; 
b) Design of a basic computer; c) Simulation of (a) and (b) using VHDL and 
Verilog mixed description. The description includes VHDL user-defined types 
and packages.

Chapter 8: Covers: a) Analysis and design of cache memories and simple artificial 
neural networks; b) Simulation of the above systems in (a); c) File processing, 
character and string implementation VHDL Assert and Block statements.

Chapter 9: Covers: Mixed language description where both VHDL and Verilog 
can be implemented in the same program.

Chapter 10: Covers the basics of hardware synthesis.

Who Should Use this Book? 

The book is appropriate as a textbook for first or second year electrical 
engineering, computer engineering, or computer science students; some of 
the advanced topics in the book can be omitted if desired by the instructor.  
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The book is also appropriate for short courses for digital design engineers. 
Suggested courses that could use this book are: digital logic design, computer 
architecture, HDL programming and synthesis, application-specific integrated 
circuits (ASICs) design, or digital design projects. 

About the Examples covered in this Book

The examples written in this book are comprehensive and numerous. The 
examples cover a wide span of topics such as digital design logic, artificial neural 
networks, and simple biological mechanisms. The examples cover the analysis 
and design of digital logic circuits and the basic microcomputer. The examples 
cover, in detail, how to write the HDL code to simulate the systems under 
consideration. Both VHDL and Verilog codes are explained and implemented 
in the examples. The rules of writing the HDL code are explained in the 
examples. 

There might not be enough time available to cover all the examples. In this 
case, the instructor can opt to cover only those examples that fit the student’s 
“background.”

How to Use this Book

The digital logic design part of the book is designed to cover the basic 
components in the early chapters (2–5) and then the more complex components 
in chapters 6–10. The HDL part of the book covers the two major hardware 
description languages, VHDL and Verilog. The book almost equally focuses 
on both languages. If readers want to learn one language at a time, they can 
read the sections with the title of the respective language. Almost all examples 
in the book are written into two parts, a and b; part a is written in VHDL and 
part b is written in Verilog. Some examples, however, are written in only one 
language, when the example is dealing with a very specific language construct 
that belongs only to one language and has no counterpart in the other language. 
An example of this exception is the VHDL Assert statement; this statement 
does not have a clear Verilog counterpart, so it is written only in VHDL.

If the reader wants to learn both languages at the same time; the book is 
organized to serve as learning tool for both languages. The two languages are 
not far apart from each other; they have several similarities. I have taught both 
languages in one course in one semester. I started with one language (VHDL); 
I covered the VHDL sections in Chapter 1, “Introduction,” and Chapter 2, 
“Data Flow Description.” After covering VHDL in Chapters 1 and 2, the 
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student became familiar with the basic rules of HDL language and is ready 
to learn the other language (Verilog). I covered Verilog material of Chapters 
1 and 2. After Chapter 2 until the end of the semester, I have covered both 
VHDL and Verilog at the same time in the same order as the Chapters of the 
book. The order of these Chapters after Chapter 2 is: 1) Chapter 3, “Behavioral 
description”; VHDL and Verilog have several similarities on behavioral 
statements such as if, case, and loop. 2) Chapter 4, “Structural Description,” 
again both languages have many similarities except the VHDL does not have 
built-in components as the Verilog does. By including packages, VHDL can 
use components very similar to that of Verilog. 3) Chapter 5, “Switch-Level 
Description,” -again VHDL does not have built-in constructs for switch-level 
descriptions, but we can include packages that allow us to write VHDL switch 
level statements very close to that of Verilog. 4) Chapter 6, “Procedures, Tasks, 
and Functions,” here VHDL and Verilog have many similarities. 5) Chapter 7,
“Mixed-Type Description.” 6) Chapter 8, “Advanced HDL Description.” 
7) Chapter 9, “Mixed Language Description”; the student now knows both 
VHDL and Verilog; in this chapter he will learn how to mix between VHDL 
and Verilog constructs. 8) Chapter 10, “Synthesis Basics.”

Companion Files

Companion files (figures and code listings) for this title are available by 
contacting info@merclearning.com.

Nazeih Botros
Carbondale, IL
February, 2015
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C H A P T E R1
INTRODUCTION

Chapter Objectives

 Understand the basics of hardware description language (HDL)
 Learn how the HDL module is structured
 Learn the use of operators in HDL modules
 Learn the different types of HDL objects
 Understand and analyze the half-adder circuit
 Understand the function of a simulator
 Understand the function of a synthesizer
 Understand the main differences between VHDL and Verilog HDL

1.1 Hardware Description Language 

Hardware Description Language (HDL) is an essential computer-
aided design (CAD) tool for the modern design and synthesis of digital 
systems. The recent steady advances in semiconductor technology continue 
to increase the power and complexity of digital systems. Due to their com-
plexity, such systems cannot be easily realized using discrete integrated cir-
cuits (ICs) or even the newer schematic-level simulation. These systems are 
usually realized using high-density programmable chips, such as appli-
cation-specific integrated circuits (ASICs) and field-programmable gate 
arrays (FPGAs), and require sophisticated CAD tools. HDL is an inte-
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gral part of such tools. HDL offers the designer a very efficient tool for 
implementing and synthesizing designs on chips.

The designer uses HDL to describe the system in a computer-language 
code that is similar to several commonly used software languages such as C. 
Debugging the design is easy because HDL packages implement simula-
tors and test benches. The two widely used hardware description languages 
are VHDL and Verilog. Because the two languages are implemented in 
both academia and industry, this book covers both languages.

After writing and testing the HDL code, the user can synthesize the 
code into digital logic components such as gates and flip-flops that can be 
downloaded into FPGAs or compatible electronic components. Usually, 
the CAD package that has HDL will also have a synthesizer. The HDL 
and synthesizer have made the task of designing complex systems much 
easier and faster than before. It is worth mentioning here that the currently 
available synthesizers have some limitations and cannot synthesize all HDL 
constructs; however, continuous improvement of the synthesizers is being 
undertaken by the electronic industry. 

HDL has gone through continuous improvement since its inception. 
Verilog was introduced in 1980s and has gone through several iterations 
and standardization by the Institute of Electrical and Electronic Engineers 
(IEEE), such as in December 1995 when Verilog HDL became IEEE 
Standard 1364-1995, in 2001 when IEEE Std. 1364-2001 was introduced, 
and in 2005 when IEEE 1800-2005 was introduced. VHDL, which stands 
for very-high-speed integrated circuit (VHSIC) hardware description lan-
guage, was developed in the early 1980s. In 1987, the IEEE Standard 1076-
1987 version of VHDL was introduced, and several upgrades followed. 
In 1993, VHDL was updated and more futures were added; the result of 
this update was IEEE Standard 1076-1993. Recently, in 2008, the VHDL 
IEEE 1076-2008 was introduced.

1.2 Structure of the HDL Module

HDL modules follow the general structure of software languages such 
as C. The module has a source code that is written in high-level language 
style. Text editors supplied by the HDL package vendor can be used to 
write the module, or the code can be written using external text editors 
and imported to the HDL package by copy and paste. The most recent-
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ly introduced feature in HDL packages allows automatic generation of 
HDL code from C-language code. VHDL has a somewhat different struc-
ture than Verilog HDL. In this book, Verilog HDL will be simply be re-
ferred to as Verilog. In Section 1.2.1, VHDL structure is discussed, and in 
Section 1.2.2, Verilog structure is discussed.

To illustrate the structure of the HDL module, let’s consider a half-ad-
der circuit. A half adder is a combinational circuit, which is a circuit whose 
output depends only on its input and which adds two input bits and outputs 
the result as two bits, one bit for the sum and one bit for the carry out. 
Examples of half addition include: 1 + 0 = 01, 1 + 1 = 10, and 0 + 0 = 00. 
Table 1.1 shows the truth table of the half adder. 

 TABLE 1.1 Truth Table for the Half Adder

Input Output
a b S C

0 0 0 0
1 0 1 0
0 1 1 0
1 1 0 1

The Boolean function of the output of the adder is obtained from the 
truth table.  The Boolean function of the output is generated using mint-
erms (where the output has a value of 1) or maxterms (where the output has 
a value of 0).  The Boolean function using minterms in the sum of products 
(SOP) form is 

S = a  b + a b = a  b  (1.1)

C = a b (1.2)

Using the maxterms in the product of sums (POS) forms 

S = (a + b)(a  + b) = a  b (1.3)

C = (a + b)(a  + b)(a + b) = ab (1.4)

After minimization (aa  = 0 and bb =0), the SOP and the POS yield 
identical Boolean functions.  Figure 1.1a shows the logic symbol of the half 
adder.  Figure 1.1b shows the logic diagram of the half adder.
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1.2.1 Structure of the VHDL Module
The VHDL module has two major constructs: entity and architecture. 

Entity declares the input and output signals of the system to be described 
and is given a name or identifier by the user. VHDL is case insensitive; 
for example, the two entity names Half_ADDER and half_adder are treated 
as the same name. The name should start with an alphabetical letter and 
can include the special character underscore (_). Declarations include the 
name and type of the inputs and outputs of the system. The inputs and 
outputs here are called input ports and output ports. The name of the port 
is user selected, and it has the same requirements as the entity’s name. The 
entity that may describe the information depicted in Figure 1.1a is:

entity Half_adder is
port(a: in bit; b : in bit; S : out bit;
 C: out bit);
end half_adder;

The word entity is a predefined word. The name of the entity is 
Half_adder. This name is user selected and does not convey any infor-
mation about the system; it is just an identifier. The entity could have 
been given any other name. VHDL does not know that the entity Half_adder 
describes a half adder simply by its name. The entity here has two input 
ports and two output ports. The term is is a predefined word and must 
be written after the name of the entity. The word port is predefined. The 
names of the input ports are a and b, and they must be followed by a colon 
(:). The predefined word in instantiates the mode of the port as an input 

C

S

Half
adder

b

a

C

S
b

a

 a)  b) 
FIGURE 1.1 Half adder. a) Logic symbol. b) Logic diagram.
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(see Section 1.4.1 for details on port modes). The type of these input signals 
is bit and determines the allowed values that signals a and b can take. Type 
bit allows the signal to take only either logic 0 or logic 1. There are several 
other types, such as std_logic, real, and integer (see Section 1.6.1). 
The entity also has two output ports, S and C; they are declared as outputs 
with the predefined word out, and their type is bit. The order in which the 
input and output ports are written inside the parentheses is irrelevant. The 
output ports could have been listed before the input ports.

The last line of the entity’s code uses the predefined word end, and 
it ends the entity. The name of the entity can follow the word end, as in 
end Half_adder, or the name of the entity can be omitted and only end 
is entered. 

The semicolon (;) is an important character in HDL. It is used as a 
separator similar to the carriage return character used in C language. For 
example, the port statement can be written as:

port( a: in bit; 
b : in bit; 
S : out bit;
C: out bit);

The carriage return between the statements does not convey any in-
formation; it is the semicolon that signals a new statement. Ports can be 
declared in, out, inout, buffer, or linkage (see Section 1.4.1).

The second construct of the VHDL module, the architecture, describes 
the relationship between the inputs and outputs of the system. Architecture 
has to be bound to an entity. This relationship can be described using sev-
eral sources; one of these sources is the Boolean function of the outputs. 
Other sources for describing the relationship between the output(s) and the 
input(s) are discussed in Section 1.3. Multiple architectures can be bound 
to the same entity, but each architecture can be bound to only one entity. 
Listing 1.1 shows an example of an architecture bound to the entity Half_
adder. The architecture is declared by the predefined word architecture, 
followed by a user-selected name; this name follows the same name-select-
ing guidelines as the entity. In Listing 1.1, the name of the architecture is 
dtfl _half. The name is followed by the predefined word of, followed 
by the name of the entity. The predefined word of binds the architecture 
dtfl _half to the entity Half_adder. Binding here means the information 
listed in the entity is visible to the architecture.
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Throughout this book, Listings may include both VHDL and 
Verilog descriptions. For the reader’s convenience, the Verilog 
versions have been highlighted with a shaded background. 

LISTING 1.1 Example of Entity Architecture

entity Half_adder is
  port(a: in bit; b : in bit; S : out bit;
             C: out bit);
  end half_adder;
architecture dtfl_half of Half_adder is
begin
S <= a xor b; -- statement 1
C <= a and b; -- statement 2
--Blank lines are allowed
end dtfl_half;

In Listing 1.1, the architecture dtfl _half recognizes the information 
declared in the entity, such as the name and type of ports a, b, S, and C. 
After entering the name of the entity, the predefined word is must be 
entered. The architecture’s body starts with the predefined word begin, 
followed by statements that detail the relationship between the outputs and 
inputs.

In Listing 1.1, the body of the architecture includes two statements. 
The two hyphens (--) signal that a comment follows. Statements 1 and 2 
constitute the body of the architecture; they are signal assignment state-
ments (see Chapter 2). The two statements describe the relationship be-
tween the output ports S and C and the input ports a and b. The xor and 
and are called logical operators (see Section 1.5.1.1); they simulate EXCLU-
SIVE-OR and AND logic, respectively. The architecture is concluded by the 
predefined word end. The name of the architecture can follow, if desired, 
the predefined word end. Leaving blank line(s) is allowed in the module; 
also, spaces between two words or at the beginning of the line are allowed.

1.2.2 Structure of the Verilog Module
Verilog module has declaration and body. In the declaration, the name, 

inputs, and outputs of the module are entered. The body shows the rela-
tionship between the inputs and the outputs. Listing 1.2 shows a Verilog 
description of a half adder based on the Boolean function of the outputs.

NOTE
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Listing 1.2 Example of a Verilog Module

module Half_adder(a,b,S,C);
     input a,b;
     output S, C;
     // Blank lines are allowed

     assign S = a ^ b; // statement 1
     assign C= a & b; // statement 2
endmodule

The name of the module in Listing 1.2 is a user-selected Half_adder. 
In contrast to VHDL, Verilog is case sensitive. Half_adder, half_adder, 
and half_addEr are all different names. The name of the module should 
start with an alphabetical letter and can include the special character under-
score (_). The declaration of the module starts with the predefined word 
module followed by the user-selected name. The names of the inputs and 
outputs (they are called input and output ports) follow the same guidelines 
as the module’s name. They are written inside parentheses separated by 
a comma. The parenthesis is followed by a semicolon. In Listing 1.2, a, b, 
S, and C are the names of the inputs and outputs. The order of writing the 
input and output ports inside the parentheses is irrelevant. We could have 
written the module statement as:

module half_adder (S, C, a, b);

The semicolon (;) plays the same rule as in VHDL module; it is a line 
separator. Carriage return here does not indicate a new statement, the 
semicolon does. Following the module statement, the input and output 
port modes are declared. For example, the statement input a; declares 
signal a as an input port. The modes of the ports are discussed in Section 
1.4.2. In contrast to VHDL, the type of the input and output port signals 
need not be declared. The order of writing the inputs and outputs and their 
declaration is irrelevant. For example, the inputs and outputs in Listing 1.2 
can be written as:

module half_adder (a,b, S, C);
  output S;
  output C;
  input a;
  input b;
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Also, more than one input or output could be entered on the same line 
by using a comma (,) to separate each input or output as:

module half_adder (a,b, S, C);
  output S, C;
  input a, b;

Statements 1 and 2 in Listing 1.2 are signal assignment statements (see 
Chapter 2). In statement 1, the symbol ^ represents an EXCULSIVE-OR 
operation; this symbol is called a logical operator (see Section 1.5.1.2). So, 
statement 1 describes the relationship between S, a, and b as S = a xor b. In 
statement 2, the symbol & represents an AND logic; the symbol is called a 
logical operator. So, statement 2 describes the relationship between C, a, 
and b as C = a and b. Accordingly, Listing 1.2 simulates a half adder. The 
double slash (//) is a comment command where a comment can be entered. 
If the comment takes more than one line, a double slash or pair (/……../) 
can be used. The module is concluded by the predefined word endmod-
ule. Leaving blank lines is allowed in the module; also, spaces between 
two words or at the beginning of the line are allowed.

1.3 Styles (Types) Of Description

Several styles of code writing can be used to describe the system. Selec-
tion of the styles depends on the available information on the system. For 
example, some systems may be easily described by the Boolean function of 
the output; for other systems, such as biological mechanisms, it will be hard 
to obtain the Boolean function of the output, but they can be described if 
the relationship between the changes of the output with the input is known. 
In the following section, six styles will be discussed: data flow, behavioral, 
structural, switch level, mixed type, and mixed language. 

1.3.1 Data Flow Description
Data flow describes how the system’s signals flow from the inputs to the 

outputs. Usually, the description is done by writing the Boolean function 
of the outputs. The data-flow statements are concurrent; their execution is 
controlled by events. The VHDL architecture or Verilog module data-flow 
description, as defined here, does not include any of the key words that 
identify behavioral, structural, or switch-level descriptions. Data-flow de-
scriptions are covered in Chapter 2. Data-flow style has been implemented 
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in Section 1.2 where the Boolean function of S and C have been imple-
mented to describe the half adder; see Listing 1.1 (VHDL) and Listing 1.2 
(Verilog).

1.3.2 Behavioral Description
A behavioral description models the system as to how the outputs be-

have with the inputs; usually, a flowchart is used to show this behavior. In 
the half adder, the S output can be described as “1” if the inputs a and b 
are not equal, otherwise S = “0,” (see Figure 1.2). The output C can be 
described as acquiring a value of “1” only if each input (a and b) is “1.” The 
HDL behavioral description is the one where the architecture (VHDL) or 
the module (Verilog) contains the predefined word process (VHDL) or 
always or initial (Verilog). Behavioral description is usually used when 
the Boolean function or the digital logic of the system is hard to obtain. Be-
havioral description is covered in Chapter 3. Listing 1.3 shows a behavioral 
description of the output S of the half adder. 

Read
a, b

S = 0
NO

YES

a ≠ b ?

S = 1

FIGURE 1.2 Behavior of output S with changes in inputs a and b.

LISTING 1.3 Example of Behavioral Description

VHDL1B Description
entity Half_adder is
port(a: in bit; b : in bit; S : out bit;
 C: out bit);
end half_adder;

architecture beh_half of Half_adder is
begin
process (a, b)
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begin
if (a /= b) then
S <= ‘1’;
else
S <= ‘0’;
--Blank lines are allowed
end if;
end process;
end beh_half;

Verilog Description
module Half_adder(a,b,S,C);
     input a,b;
     output S, C;
     reg S,C;
     // Blank lines are allowed
     always @ (a,b)
     begin
     if (a != b)
     S = 1’b1;
     else
     S = 1’b0;
     end
endmodule

1.3.3 Structural Description
Structural description models the system as components or gates. This 

description is identified by the presence of the keyword component in the 
architecture (VHDL) or gates construct such as and, or, and not in the 
module (Verilog). Structural description is covered in Chapter 4. For the 
half adder, Figure 1.1b is used to write the structural code. Listing 1.4 
shows a structural description for the half adder.

LISTING 1.4 Example of Structural Description 

VHDL Description
entity Half_adder is
     port(a: in bit; b : in bit; S : out bit;
          C: out bit);
end half_adder; 
architecture struct_exple of Half_adder is 
--ADDITIONAL BINDING IS NEEDED TO RUN THIS PROGRAM; 
--SEE CHAPTER 4 
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 component xor2
   --The above statement is a component statement 
       port(I1, I2 : in std_logic;
           O1 : out std_logic);
  end component;
  component and2
       port(I1, I2 : in std_logic; 
       O1 : out std_logic);
  end component;
     begin
  X1: xor2 port map (a,b, S);
  A1: and2 port map (a,b, C);
end struct_exple;

Verilog Description
module Half_adder1(a,b,S,C);
 input a, b;
 output S,C;
 and a1(C,a,b);
 //The above statement is AND gate
 xor x1(S,a,b);
 //The above statement is EXCLUSIVE-OR gate

endmodule

1.3.4 Switch-Level Description
The switch-level description is the lowest level of description. The sys-

tem is described using switches or transistors. Some of the Verilog pre-
defined words used in the switch level description are nmos, pmos, cmos, 
tranif0, tran, and tranif1. VHDL does not have built-in switch-level 
primitives, but a construct package can be built to include such primi-
tives. Details of the switch-level description can be found in Chapter 5. 
Listing 1.5 shows the switch-level description of an inverter.

LISTING 1.5 An Example of A Switch-Level Description

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Inverter is
 Port (y : out std_logic; a: in std_logic );
end Inverter;
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architecture Invert_switch of Inverter is
--additional binding is needed to run this program; 
--see chapter 5  
  component nmos
   --nmos is one of the key words for switch-level.
        port (O1: out std_logic; I1, I2 : in std_logic);
   end component;
   component pmos
   --pmos is one of the key words for switch-level.
        port (O1: out std_logic ;I1, I2 : in std_logic);
end component;
     for all: pmos use entity work. mos (pmos_behavioral);
     for all: nmos use entity work. mos (nmos_behavioral);
     --The above two statements are referring to a package mos
     --See details in Chapter 5
     constant vdd: std_logic := ‘1’;
     constant gnd : std_logic:= ‘0’;
     begin
     p1 : pmos port map (y, vdd, a);
     n1: nmos port map (y, gnd, a);
end Invert_switch;

Verilog Description
module invert(y,a);
     input a;
     output y;
     supply1 vdd; 
     supply0 gnd;
     pmos p1(y, vdd, a);
     nmos n1(y, gnd, a);
            /The above two statement are using the two primi-

tives pmos and nmos/
     endmodule

1.3.5 Mixed-Type Description
Mixed-type or mixed-style descriptions are those that use more than 

one type or style of the above-mentioned descriptions. In fact, most of the 
descriptions of moderate to large systems are mixed. Some parts of the 
system may be described using one type and others using other types of 
description. Mixed-type description is covered in Chapter 7. 
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1.3.6 Mixed-Language Description
The mixed-language description is a newly added tool to HDL de-

scription. The user now can write a module in one language (VHDL or 
Verilog) and invoke or import a construct (entity or module) written in 
the other language. Listing 1.6 illustrates the mixed-language description. 
In this Listing, inside Verilog module Full_Adder1, the VHDL entity 
HA is instantiated (imported). The information given in that entity is now 
visible to the Verilog module. Mixed-language description is covered in 
Chapter 9.

LISTING 1.6 Example of Mixed-Language Description

module Full_Adder1 ( x,y, cin, sum, carry);
     input x,y,cin;
     output sum, carry; 
     wire c0, c1, s0;
      HA H1 (y, cin, s0,c0);
     // Description of HA is written in VHDL in the 
     // entity HA
     ..................
     endmodule
 
library IEEE;
use ieee.std_logic_1164.all;
entity HA is
     --For correct binding between this VHDL code and the above
      --Verilog code, the entity has to be named here as HA
     port (a, b : in std_logic; s, c: out std_logic);
end HA;
architecture HA_Dtflw of HA is
     begin
         s <= a xor b;
         c <= a and b;
end HA_Dtflw;

1.4 Ports

A simple definition of ports can be stated as a communication means 
between the system to be described and the environment. 
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1.4.1 VHDL Ports
In VHDL, ports can take one of the following modes:

 in: The port is only an input port. In any assignment statement, the port 
should appear only on the right-hand side of the statement (i.e., the port 
is read).

 out: The port is only an output port. In any assignment statement, the 
port should appear only on the left-hand side of the statement (i.e., the 
port is updated).

 buffer: The port can be used as both an input and output but can have only 
one source (i.e., limited fan out). The port can appear on either the left- or 
right-hand side of an assignment statement. A buffer port can only be con-
nected to another buffer port or to a signal that also has only one source.

 inout: The port can be used as both an input and output.

 linkage: Same as inout but the port can only correspond to a signal.

1.4.2 Verilog Ports
Verilog ports can take one of the following three modes:

 input: The port is only an input port. In any assignment statement, the 
port should appear only on the right-hand side of the statement (i.e., the 
port is read).

 output: The port is an output port. In contrast to VHDL, the Verilog 
output port can appear in either side of the assignment statement.

 inout: The port can be used as both an input and output. The inout port 
represents a bidirectional bus.

1.5 Operators

HDL has an extensive list of operators. These operators are used ex-
tensively in every chapter of the book. Operators perform a wide variety of 
functions. These functions can be classified as:

 Logical (see Section 1.5.1), such as AND, OR, and XOR

 Relational (see Section 1.5.2) to express the relation between objects. 
These operators include equality, inequality, less than, less than or 
equal, greater than, and greater than or equal. 
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 Arithmetic (see Section 1.5.3) such as addition, subtraction, multiplication, 
and division

 Shift (see Section 1.5.4) to move the bits of an object in a certain direc-
tion, such as right or left

In the following section, HDL operators are discussed. The reader is 
advised to briefly study the operators presented here in order to understand 
their concept. These operators are implemented in almost every chapter of 
this book. When implemented, the reader can return to this section to read 
the details of operators used.

1.5.1 Logical Operators
These operators perform logical operations, such as AND, OR, NAND, 

NOR, NOT, and XOR. The operation can be on two operands or on a single 
operand. The operand can be single or multiple bits. In Section 1.5.1.1, 
VHDL logical operators are discussed, and Verilog logical operators are 
discussed in Section 1.5.1.2.

1.5.1.1 VHDL Logical Operators

Table 1.2 shows a list of VHDL logical operators. These operators 
should appear only on the right-hand side of statements. The operators are 
bitwise; they operate on corresponding bits of two signals. For example, 
consider the statement Z: = X XOR Y. If X is four-bit signal 1011 and Y is 
four-bit signal 1010, then Z = 0001.

TABLE 1.2 VHDL Logical Operators

Operator Equivalent Logic Operand Type Result Type

AND Bit Bit

OR Bit Bit

NAND Bit  Bit

NOR Bit  Bit
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Operator Equivalent Logic Operand Type Result Type

XOR Bit  Bit

XNOR Bit Bit

NOT Bit Bit

1.5.1.2 Verilog Logical Operators
Verilog has extensive logical operators. These operators perform logical 

operations such as AND, OR, and XOR. Verilog logical operators can be 
classified into three groups: bitwise, Boolean logical, and reduction. The 
bitwise operators operate on the corresponding bits of two operands. Con-
sider the statement: Z= X & Y, where the AND operator (&) “ANDs” the 
corresponding bits of X and Y and stores the result in Z. For example, if X 
is the four-bit signal 1011, and Y is the four-bit signal 1010, then Z = 1010. 
Table 1.3 shows bitwise logical operators. For example, the NAND opera-
tion on X and Y is written as: Z = ~(X & Y).

TABLE 1.3 Verilog Bitwise Logical Operators

Operator Equivalent Logic Operand Type Result Type

& Bit  Bit

 | Bit  Bit

~ ( & ) Bit Bit

~ ( | )  Bit Bit

 ^ Bit Bit
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Operator Equivalent Logic Operand Type Result Type

~^   Bit Bit

 ~  Bit Bit

Other types of logical operators include the Boolean logical operators. 
These operators operate on two operands, and the result is in Boolean: 0 
(false) or 1 (true). For example, consider the statement Z = X && Y where && 
is the Boolean logical AND operator. If X = 1011 and Y = 0001, then Z = 1. 
If X = 1010 and Y = 0101, then Z = 0. Table 1.4 shows the Boolean logical 
operators.

TABLE 1.4 Verilog Boolean Logical Operators

Operator Operation Number of Operands
&& AND Two
|| OR Two

The third type of logical operator is the reduction operator. Reduc-
tion operators operate on a single operand. The result is in Boolean. For 
example, in the statement Y = &X, where & is the reduction AND operator, 
and assuming X = 1010, then Y = (1 & 0 & 1 & 0) = 0. Table 1.5 shows the 
reduction logic operators. 

TABLE 1.5 Verilog Reduction Logical Operators

Operator Operation Number of Operands
& Reduction AND One
| Reduction OR One
~& Reduction NAND One
~ | Reduction NOR One
^ Reduction XOR One
~^ Reduction XNOR One
!  NEGATION  One

1.5.2 Relational Operators
Relational operators are implemented to compare the values of two ob-

jects. The result returned by these operators is in Boolean: false (0) or true (1). 
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In Section 1.5.2.1, the VHDL relational operators are covered, and in 
Section 1.5.2.2, the Verilog relational operators are covered.

1.5.2.1 VHDL Relational Operators

VHDL has extensive relational operators. Their main implementations 
are in the if and case statements (see Chapter 3). Table 1.6 shows VHDL 
relational operators.

TABLE 1.6 VHDL Relational Operators

Operator Description Operand 
Type 

Result Type

= Equality Any type Boolean
/= Inequality Any type Boolean
< Less than Scalar Boolean
<= Less than or equal Scalar Boolean
> Greater than Scalar Boolean
>= Greater than or equal Scalar Boolean

The following statements demonstrate the implementation of some of 
the above relational operators.

If (A = B) then .....

A is compared to B. If A is equal to B, the value of the expression (A = B) 
is true (1); otherwise, it is false (0). 

If (A < B) then .....

If A is less than B, the value of the expression (A < B) is true (1); 
otherwise, it is false (0).

1.5.2.2 Verilog Relational Operators

Verilog has a set of relational operators similar to VHDL. Table 1.7 
shows Verilog relational operators. As in VHDL, the relational operators 
return Boolean values: false (0) or true (1).

TABLE 1.7 Verilog Relational Operators

Operator Description Result Type
== Equality 0, 1, x
!= Inequality 0, 1, x
=== Equality inclusive 0, 1
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Operator Description Result Type
!== Inequality inclusive 0, 1
< Less than 0, 1, x
<= Less than or equal 0, 1, x
> Greater than 0, 1, x
>= Greater than or equal 0, 1, x
? Conditional operator 0, 1, x

For the equality operator (==) and inequality operator (!=), the result 
can be of type unknown (x) if any of the operands include “don’t care,” “un-
known (x),” or “high impedance z.” These types are covered in Section 1.6.

The following are examples of a Verilog relational operators:

if (A == B) .…….

If the value of A or B contains one or more “don’t care” or z bits, the 
value of the expression is unknown. Otherwise, if A is equal to B, the value 
of the expression is true (1). If A is not equal to B, the value of the expres-
sion is false (0).

if (A === B)…..

This is a bit-by-bit comparison. A or B can include x or high impedance 
Z; the result is true (1) if all bits of A match that of B. Otherwise, the result 
is false (0).

For the conditional operator “?” the format is:

Conditional-expression ? true-expression : false-expression ;

The conditional expression is evaluated; if true, true-expression is ex-
ecuted If false, false-expression is executed. If the result of the conditional-
expression is “x,” both false and true are executed, and their results are 
compared bit by bit; if two corresponding bits are the same, the common 
value of these bits is returned. If they are not equal, an “x” is returned. The 
conditional operator is discussed in Chapter 2.

1.5.3 Arithmetic Operators
Arithmetic operators can perform a wide variety of operations, such 

as addition, subtraction, multiplication, and division. In Section 1.5.3.1, 
VHDL arithmetic operators are covered, and in Section 1.5.3.2, Verilog 
arithmetic operators are covered.
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1.5.3.1 VHDL Arithmetic Operators

VHDL arithmetic operators operate on numeric and physical operand 
types (see Section 1.6). Physical data types are those that can be measured 
in units, such as time. An example of an arithmetic operator is the multi-
plication operator (); the statement Y: = (AB) calculates the value of Y as 
the product of A multiplied by B. Table 1.8 shows the VHDL arithmetic 
operators and the type of A, B, and Y. 

TABLE 1.8 VHDL Arithmetic Operators

Operator Description  A or B Type Y Type
+ Addition

A + B
A numeric
B numeric

Numeric

- Subtraction
A – B

A numeric
B numeric

 Numeric

 Multiplication
A × B

A integer or real
B integer or real

Same as A

 Multiplication
A × B

A physical
B integer or real

Same as A

 Multiplication 
A × B

A integer or real
B physical

Same as B

/ Division
A ÷ B

A integer or real
B integer or real

Same as A

/ Division
A ÷ B

A integer or real
B physical

Same as B

/ Division
A ÷ B

A physical
B integer or real

Same as A

mod Modulus
A mod B

A only integer
B only integer

Integer

rem Remainder
A rem B

A only integer
B only integer

Integer

abs absolute
abs (A)

A numeric Positive numeric

& Concatenation
(A & B)

A numeric or array
B numeric or array

Same as A

 Exponent
A  B

A real or integer
B only integer

Same as A
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1.5.3.2 Verilog Arithmetic Operators

Verilog, in contrast to VHDL, is not extensive type-oriented language. 
Accordingly, for most operations, only one type of operation is expected for 
each operator. An example of an arithmetic Verilog operator is the addition 
operator (+); the statement Y = (A + B) calculates the value of Y as the sum 
of A and B. Table 1.9 shows the Verilog arithmetic operators.

TABLE 1.9 Verilog Arithmetic Operators

Operator Description  A or B Type Y Type
+ Addition

A + B
A numeric
B numeric

Numeric

- Subtraction
A – B

A numeric
B numeric

Numeric

 Multiplication
A × B

A numeric
B numeric

Numeric

/ Division
A ÷ B

A numeric
B numeric

Numeric

% Modulus
A % B

A numeric, not real
B numeric, not real

Numeric, not real

 Exponent
A  B

A numeric
B numeric

Numeric

{,} Concatenation
{A , B}

A numeric or array
B numeric or array

Same as A

{N{A}} Repetition A numeric or array Same as A

1.5.3.3 Arithmetic Operator Precedence
The precedence of the arithmetic operators in VHDL or Verilog is the 

same as in C. The precedence of the major operators is listed below from 
highest to lowest:



 / mod (%)

+ - 

1.5.4 Shift and Rotate Operators
Shift and rotate operators are implemented in many applications, such 

as in multiplication and division. A shift left represents multiplication by 
two, and a shift right represents division by two. VHDL shift operators are 
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discussed in Section 1.5.4.1, and Verilog shift operators are discussed in 
Section 1.5.4.2.

1.5.4.1 VHDL Shift/Rotate Operators

Shift operators are unary operators; they operate on a single operand. 
To understand the function of these operators, assume that operand A is the 
four-bit vector 1110. Table 1.10 shows the VHDL shift operators as they 
apply to operand A.

TABLE 1.10 VHDL Shift Operators

Operation Description 
Before Shift

Operand A After 
Shift

Operand A

A sll 1 Shift A one position 
left logical

1110 1100

A sll 2 Shift A two positions 
left logical

1110 10xx

A srl 1 Shift A one position 
right logical

1110 x111

A srl 2 Shift A two positions 
right logical

1110 xx11

A sla 1 Shift A one position 
left arithmetic

1110 110x

A sra 1 Shift A one position 
right arithmetic

1110 1111

A rol 1 Rotate A one 
position left

1110 1101

A ror 1 Rotate A one posi-
tion right

1110 0111

Notice that rotate (ror or rol) keeps all bits of operand A. For exam-
ple, A ror 1 shifts A one position to the right and inserts the least significant 
bit (0) in the vacant, most significant position.

1.5.4.2 Verilog Shift Operators

Verilog has the basic shift operators. Shift operators are unary opera-
tors; they operate on a single operand. To understand the function of these 
operators, assume operand A is the four-bit vector 1110. Table 1.11 shows 
the Verilog shift operators as they apply to operand A.
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TABLE 1.11 Verilog Shift Operators

Operation Description 
Before Shift

Operand A 
After Shift

Operand A

A << 1 Shift A one position 
left logical

1110 1100

A << 2 Shift A two positions 
left logical

1110 1000

A >> 1 Shift A one position 
right logical

1110 0111

A >> 2 Shift A two positions 
right logical

1110 0011

A.>>> 2 Shift A two positions 
right arithmetic

1110 1111

A.<<< 2 Shift A two positions 
left arithmetic

1110 1000

1.6 Data Types

Because HDL is implemented to describe the hardware of a system, 
the data or operands used in the language must have several types to match 
the need for describing the hardware. For example, if we are describing a 
signal, we need to specify its type (i.e., the values that the signal can take), 
such as type bit, which means that the signal can assume only 0 or 1, or 
type std_logic, in which the signal can assume a value out of nine possible 
values that include 0, 1, and high impedance. Examples of types include 
integer, real, vector, bit, and array. In Section 1.6.1, data types 
for VHDL are discussed, and in Section 1.6.2, data types for Verilog are 
discussed. The reader is advised to briefly study the data types presented 
here in order to know their concepts. Data types are implemented in almost 
every chapter of this book; when implemented, the reader can come back 
to this section to read the details about a selected data type.

1.6.1 VHDL Data Types
As previously mentioned, VHDL is a type-oriented language; many op-

erations will not be executed if the right type for the operands has not been 
chosen. The type of any element or object in VHDL determines the al-
lowed values that element can assume. Objects in VHDL can be signal (see 
Chapter 2), variable (see Chapter 3), or constant (see Chapters 2 and 3). 
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These objects can assume different types; these types can be classified into 
five groups depending on the nature of the values the object can assume: 
scalar, composite, access, file, and other. 

1.6.1.1 Scalar Types

The values that a scalar can assume are numeric. Numeric values can be 
integer, real, physical (such as time), Boolean (0 or 1), or characters when 
stored as American Standard Code for Information Interchange (ASCII) or 
compatible code. The following types constitute the scalar types.

Bit Type

The only values allowed here are 0 or 1. It is used to describe a signal 
that takes only 1 (high) or 0 (low). The signal cannot take other values such 
as high impedance (open). An example of implementing this type is when 
the type of a port signal is described as:

port (I1, I2 : in bit; O1, O2 : out bit);

Signals I1, I2, O1, and O2 can assume only 0 or 1. If any of these sig-
nals must assume other levels or values, such as high impedance, bit type 
cannot be used.

Boolean Type

This type can assume two values: false (0) or true (1). Both true 
and false are predefined words. One of the most frequent applications 
of the Boolean type is in the if statement (see Chapter 3). Consider the 
statements:

If (y = B) then
    S := ‘1’; 
else
    S := ‘0’; 
end if;

The output of the first line, If (y =B), is Boolean: it is either true or 
false. If true, then S = 1; if false, S = 0. Boolean can also be specified as 
the port type:

port (I1, I2 : in bit; O1 : out bit; O2 : Boolean);

Integer Type

As the name indicates, this type covers all integer values; the values 
can be negative or positive. The default range is from –2,147,483,648 to 
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+2,147,483,647. The user can specify a shorter range by using the pre-
defined word range. The predefined word natural can be used instead 
of integer if the values of the object are always positive, including 0. An 
example of the integer type is in the implementation of the exponent op-
erator (see Section 1.5.3.1). The exponent has to be of type integer, such 
as X2 or Xy, where y is declared as integer. The port can also be 
declared as type integer:

port (I1 : in natural; I2 : in bit; O1 : out integer; O2 : Boolean);
Another predefined type positive restricts the values an object can 

take to be positive and higher than 0.

Real Type

This type accepts fractions, such as .4502, 12.5, and –5.2E–10 where 

E–10 = 10–10. An example of using real type is:

port (I1 : in natural; I2 : in real; O1 : out integer; O2 : 
      Boolean);

Character Type

This type includes characters that can be used to print a message using, 
for example, the predefined command report, such as:

report (“Variable x is greater than Y”);

Notice that each character in the above message is just printed; no value 
is assigned to them. The report statement is very similar to the print state-
ment in C language. Some format can be added to the characters printed 
by report:

report (“Variable x is greater than Y.”) & CR &
   (“Variable x is > 2.34.”);

where & is the concatenation operator (see Section 1.5.3.1), and CR is a 
predefined word for carriage return.

subtype and type, if used, assign numeric value to each character, as 
follows:

subtype wordChr is character;
type string_chr is array (N downto 0) of wordChr;

In addition, subtype, type, and array are predefined words (see 
arrays and user-defined types in this section and in Chapters 6–8). The two 
statements above declare an array of N + 1 elements, and each element is 
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a character. The characters are associated with ASCII values. For example, 
character A has the ASCII value of 41 in hex. More discussion on characters 
can be found in Chapter 8 and Chapter 3.

Physical Type

This type has values that can be measured in units, such as time (e.g., 
second, millisecond, microsecond) and voltage (e.g., volt, millivolt, micro-
volts). An example of type time is:

constant Delay_inv : time := 1 ns;

The above statement states that the constant Delay_inv is of type 
time, and its initial value is one nanosecond (1 ns). The word time is pre-
defined; the units of time are as follows:

 fs  femtosecond
 ps  = 1,000 fs
 ns  = 1,000 ps
 us  = 1,000 ns
 ms  = 1,000 us
 sec  = 1,000 ms
 min  = 60 sec
 hr  = 60 min

User-Defined Types

The user can define a type by using the predefined word type as shown 
below:

type op is (add, mul, divide, none);
variable opcode : op := mul;

Type op is user defined. The variable opcode is of type op and can 
therefore be instantiated to: add, mul, divide, or none. More discussion 
about user-defined types can be found in Chapter 7.

Severity Type

This type is used with the assert statement (see Chapter 8). An object 
with type severity can take one of four values: note, warning, error, or 
failure. An example of this type is as follows:

assert (Flag_full = false); 

report “The stack is full”;
severity failure;



INTRODUCTION • 27

The assert condition is Flag_full = false. If Flag_full is not 
false, a message is printed to indicate that the stack is full and simulation is 
halted.

1.6.1.2 Composite Types

The composite type is a collection of values. There are three composite 
types: bit vector, arrays (see Chapter 7), and records (see Chapter 8). An 
array is a collection of values all belonging to a single type; a record is a col-
lection of values with the same or different types.

Bit_vector Type

The bit_vector type represents an array of bits; each element of the 
array is a single bit. The following example illustrates the implementation 
of type bit_vector:

Port (I1 : in bit; I2 : in bit_vector (5 downto 0); Sum : out bit);
In the above statement, port I2 is declared as type bit_vector; it 

has six bits. Possible values of I2 include 110110, 011010, and 000000 or 
any other six-bit number. More details about bit_vector can be found in 
Chapter 2.

Array Type

This type is declared by using the predefined word array. For ex-
ample, the following statements declare the variable memory to be a single-
dimensional array of eight elements, and each element is an integer:

subtype wordN is integer;
type intg is array (7 downto 0) of wordN;
...........
variable memory : intg;

Arrays can be multidimensional. See Chapter 7 for more details on ar-
rays.

Record Type

An object of record type is composed of elements of the same or differ-
ent types. An example of record type is shown below:

Type forecast is
record 
Tempr : integer range -100 to 100;
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Day : real;
Cond : bit;
end record;

............

variable temp : forecast

Variable temp is of type forecast; type forecast includes record, and 
record has three different types: integer, real, and bit. More details 
about records can be found in Chapter 8.

1.6.1.3 Access Types

Values belonging to an access type are pointers to objects of other 
types. For example:

type ptr_weathr is access forecast; 

The type ptr_weathr is a pointer to the type forecast shown in last 
example of Section 1.6.1.2.

1.6.1.4 File Types

Objects of type fi le can be read from and written to using built-in func-
tions and procedures that are provided in the standard library. Some of 
these procedures and functions are fi le_open to open files, readline to 
read a line from the file, writeline to write a line into the file, and fi le_
close to close the file. More details about file types and operations can be 
found in Chapter 8.

1.6.1.5 Other Types

There are several other types provided by external libraries. For ex-
ample, the IEEE library contains a package by the name of std_logic_1164. 
This package contains an extremely important type: std_logic. Type bit 
has only two values: level 0 and level 1. If more values are needed to repre-
sent the signal, such as high impedance, bit type cannot be used. Instead, 
type std_logic, which can assume nine values including high impedance, 
can be used.
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Std_Logic Type

Std_Logic has nine values, including 1 and 0. Package std_logic_1164 
should be attached to the VHDL module. The nine values of std_logic 
type are shown in Table 1.12.

TABLE 1.12 Values of Std_Logic Type

Value Definition
U Uninitialized
X Unknown
0 Low
1 High
Z High imp edance
W Weak unknown
L  Weak low
H Weak  high
- Don ’t care

Std_logi c_vector Type
The type std_logic_vector represents an array. Each element of the 

array is a single bit of type std_logic. The following example illustrates 
the implementation of type std_logic_vector:

Port (I1 : in bit; I2 : in std_logic_vector (5 downto 0);
Sum : out bit);

In the above statement, port I2 is declared as type std_logic_vec-
tor; it has six bits. Possible values of I2 include 110110, 011010, or 0Z0Z00. 
More details about std_logic_vector can be found in Chapter 2.

Signed

Signed is a numeric type. It is declared in the external package 
numeric_std and represents signed integer data in the form of an array. The 
leftmost bit is the sign; objects of type signed are represented in 2’ comple-
ment form. Consider the statement:

Variable prod : signed (3 downto 0) := 1010;

The above statement declares the variable prod. It is of type signed, 
has four bits, and its initial value is 1010, or –6 (in decimal). Chapter 3 
shows implementations of type signed.
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Unsigned

The type unsigned represents unsigned integer data in the form of an 
array of std_logic and is a part of the package numeric_std. The following 
example illustrates type unsigned:

Variable Qout : unsigned (3 downto 0) := 1010;

The above statement declares variable Qout as of type unsigned, it has 
four bits, and its initial value is 1010, or 10 (in decimal).

1.6.2 Verilog Data Types
Verilog supports several data types including nets, registers, vectors, 

integer, real, parameters, and arrays. More details on these types can be 
found in almost all subsequent chapters.

1.6.2.1 Nets

Nets are declared by the predefined word wire. Nets have values that 
change continuously by the circuits that are driving them. Verilog supports 
four values for nets, as shown in Table 1.13.

TABLE 1.13 Verilog Net Values

Value Definition
0 Logic 0 (false)
1 Logic 1 (true)
X Unknown
Z High impedance

Examples of net types are as follows:

wire sum;
wire S1 = 1’b0;

The first statement declares a net by the name sum. The second state-
ment declares a net by the name of S1; its initial value is 1’b0, which rep-
resents 1 bit with value 0. 

1.6.2.2 Register

Register, in contrast to nets, stores values until they are updated. 
Register, as its name suggests, represents data-storage elements. Register 
is declared by the predefined word reg. Verilog supports four values for 
register, as shown in Table 1.14.
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TABLE 1.14 Verilog Register Values

Value Definition
0 Logic 0 (false)
1 Logic 1 (true)
X Unknown
Z High impedance

An example of register is:
reg Sum_total;

The above statement declares a register by the name Sum_total. 

1.6.2.3 Vectors

Vectors are multiple bits. A register or a net can be declared as a vector. 
Vectors are declared by brackets [ ]. Examples of vectors are:

wire [3:0] a = 4’b1010;
reg [7:0] total = 8’d12;

The first statement declares a net a. It has four bits, and its initial value 
is 1010 (b stands for bit). The second statement declares a register total. 
Its size is eight bits, and its value is decimal 12 (d stands for decimal). Vec-
tors are implemented in almost all subsequent chapters. 

1.6.2.4 Integers

Integers are declared by the predefined word integer. An example of 
integer declaration is:

integer no_bits;

The above statement declares no_bits as an integer.

1.6.2.4 Real

Real (floating-point) numbers are declared with the predefined word 
real. Examples of real values are 2.4, 56.3, and 5e12. The value 5e12 is 
equal to 5 × 1012. The following statement declares the register weight as 
real:

real weight;

1.6.2.5 Parameter

Parameter represents a global constant. It is declared by the pre-
defined word parameter. The following is an example of implementing 
parameters:



32 • HDL WITH DIGITAL DESIGN

module compr_genr (X, Y, xgty, xlty, xeqy);
parameter N = 3;
input [N:0] X, Y;
output xgty, xlty, xeqy;
wire [N:0] sum, Yb;

To change the size of the inputs x and y, the size of the nets sum, and 
the size of net Yb to eight bits, the value of N is changed to seven as:

parameter N = 7

1.6.2.6 Arrays

Verilog, in contrast to VHDL, does not have a predefined word for ar-
ray. Registers and integers can be written as arrays. Consider the following 
statements:

parameter N = 4;

parameter M = 3;

reg signed [M:0] carry [0:N];

The above statements declare an array by the name carry. The array 
carry has five elements, and each element is four bits. The four bits are in 
two’s complement form. For example, if the value of a certain element is 
1001, then it is equivalent to decimal –7. Arrays can be multidimensional. 
See Chapter 7 for more details on arrays.

1.7 Simulation and Synthesis

The ultimate goal for hardware description is to synthesize the system 
onto an electronic chip. To synthesize an HDL description, it needs to be 
simulated and tested. Synthesis basics are covered in Chapter 10. More 
information about simulators and synthesizers can be found in the manual 
of the HDL vendors. The steps of simulation and synthesis in general can 
be summarized as follows:

1. Choose the preferred language to describe the system. The language 
may be VHDL, Verilog, or mixed-language (both VHDL and Verilog). 
Mixed-language descriptions are covered in Chapter 9.

2. Choose the style or type of description. Refer to Section 1.6 for selecting 
a style.
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3. Write the code. If writing a VHDL module, be sure to attach all the nec-
essary packages and libraries. At this step, some HDL packages require 
the user to select the type of synthesis technology and chip type before 
compilation.

4. Compile the code using the compiler supplied by the HDL package. 
The compiler checks that the code satisfies the rules of the language and 
displays any errors. Some compilers suggest how to fix the errors.

5. After successful compilation, the code is tested to see that it correctly 
describes the system. This test is done by selecting the input and 
output signals to be tested. For example, if a 2 x 1 multiplexer is be-
ing described, the two inputs, the select line, and the output might be 
selected. The way these signals are selected differs from one simulator 
to the other; there might be different ways to select signals even within 
the same simulator. Some simulators are graphical. All signals in the 
system are displayed in graphical fashion; the user selects the signals and 
assigns initial values for them. The user then clicks a button to run the 
simulation, and a simulation screen appears showing the waveform of 
the selected signals. Some other simulators allow the user to write HDL 
code, called test bench, for testing the source code. 

6. After the simulation verifies that the signals behave as expected, the 
compiled code can be synthesized. The simulator CAD package usu-
ally has a synthesizer. The synthesizer converts the compiled code into 
a schematic and generates a net list. However, due to limitation in the 
available synthesizers, some statements may not be synthesized and the 
user may opt to change these statements if possible. The net list can be 
downloaded onto a chip, usually field-programmable gate arrays. Chap-
ter 10 illustrates how to convert the HDL code to gate level or RTL, the 
forms closest to the schematic original that the synthesizer can down-
load onto the chip.

Appendix A shows example of Steps 1–6 including a test bench.

1.8 Brief Comparison of VHDL and Verilog

As previously mentioned, VHDL and Verilog are hardware-description 
languages that are popular in both industry and academia. Each language, 
however, has some advantages and disadvantages over the other. These ad-
vantages and disadvantages may not be very clear to beginners. The two 



34 • HDL WITH DIGITAL DESIGN

languages are continuously upgraded, and newer versions are introduced. 
These newer versions bring the capability of the two languages closer. Ver-
ilog is considered better when describing a system at the gate or transistor 
level due to its use of predefined primitives at this level. VHDL is consid-
ered better at the system level; multiple entity/architecture pairs lead to 
flexibility and ease in writing code for complex systems. Recently, many 
simulators have acquired the capability to use mixed-language simulations. 
In mixed-language simulations, a construct of one language can be instanti-
ated into the other. This allows the user to utilize the advantages of both 
languages (see Chapter 9). In the following sections, the major differences 
between VHDL and Verilog, as seen by a beginner user, are listed.

Data Types

 VHDL: Definitely a type-oriented language, and VHDL types are built 
in or users can create and define them. User-defined types give the user 
a tool to write the code effectively; these types also support flexible 
coding. VHDL can handle objects with multidimensional array types. 
Another data type that VHDL supports is the physical type; the physi-
cal type supports more synthesizable or targeted design code.

 Verilog: Compared to VHDL, Verilog data types are very simple and 
easy to use. All types are defined by the language. 

Ease of Learning

 VHDL: For beginners, VHDL may seem hard to learn because of its 
rigid type requirements. Advanced users, however, may find these rigid 
type requirements easier to handle.

 Verilog: Easy to learn, Verilog users just write the module without 
worrying about what library or package should be attached. Many of 
the statements in the language are very similar to those in C language.

Libraries and Packages

 VHDL: Libraries and packages can be easily attached to the standard 
VHDL package. Packages can include procedures and functions, and 
the package can be made available to any module that needs to use it. 
Packages are used to target a certain design. For example, if the system 
modeled/designed includes arithmetic functions, a package can be used 
that includes those functions.
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 Verilog: Libraries are not as easily implemented as in VHDL, however 
the basic Verilog package includes several libraries as integer part of 
the package.

1.9 Summary

In this chapter, several introductory VHDL and Verilog topics have 
been covered. The structure of the HDL module was discussed. The 
VHDL module has two major constructs: an entity and architecture, 
which are bound to the entity. Verilog has a module construct.

Operators, which perform a wide variety of operations, have been cov-
ered. Arithmetic operators (see summary in Table 1.15) perform arithme-
tic operations such as multiplication and division. Relational operators (see 
summary in Table 1.16) perform comparisons such as greater than and 
equality. Shift operators (see summary in Table 1.17) perform bit shifts 
such as a logical shift (a specified number of bit positions) right. Logical 
operators (see summary in Table 1.18) perform logical operations such as 
AND.

Data types have also been covered, including bit, std_logic, std_log-
ic_vector, and array (for VHDL), and real, integer, reg, and wire (for 
Verilog). The following description styles have been briefly contrasted: data 
flow, behavioral, structural, switch level, mixed type, and mixed language. 
Finally, a brief comparison of VHDL and Verilog has been presented.

TABLE 1.15 Summary of Arithmetic Operators for VHDL and Verilog

Operation Operator VHDL Verilog

Addition + +

Subtraction  - -

Multiplication   
Division / /

Modulus mod %

Exponent  
Concatenation ( & ) { , }
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TABLE 1.16 Summary of Relational Operators for VHDL and Verilog

Operation Operator VHDL Verilog
Equality = ==

Inequality /= !=

Less than < <

Less than or equal <= <=

Greater than > >

Greater than or equal >= >=

Equality inclusive None ===

Inequality inclusive None !==

TABLE 1.17 Summary of Shift Operators for VHDL and Verilog

Operation Operator VHDL Verilog
Shift A logical left one position A sll 1 A << 1

Shift A logical right one position A srl 1 A >> 1

Shift A arithmetic left one position A sla 1 A <<< 1
Shift A arithmetic right one position A sra 1 A >>>1
Rotate A left one position A rol 1 None
Rotate A right one position A ror 1 None

TABLE 1.18 Summary of Logical Operators for VHDL and Verilog

Operation Operator VHDL Verilog
AND AND &

OR OR |

NAND NAND ~( & )

NOR NOR ~( | )

XOR XOR ^

XNOR XNOR ~^

NOT NOT ~

1.10 Exercises

1. Determine whether each of the following statements is VHDL, Verilog, 
or can be both. Justify your answer. 

 a. Parameter a; 
 b. assign m=0;
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 c. port (input1 : bit; output2 : bit; output3 : bit);
 d.  module vhdl1(I1, I2, O1, O3);
 e.  input D, E;
 f.  y = a >>> 3;
 g.  process Verlog(a, b, c)
 h.  always @ (a, b,c)
 i.  end
 j.  architecture exc of chapter1 is
 k.  endmodule

2. If A and B are two unsigned variables, with A = 1100 and B = 1001, find 
the value of the following expressions:

 a. (A AND B)
 b. (A ^ B)
 c. (A XNOR B)
 d. (A & B)
 e. (A && B)
 f. !(A)

 g. ~|(B)
 h. A sll 3
 i. A >> 1

 j. B ror 2

 k.  B >>> 2

3. Which style(s) would you chose to describe each of the following 
systems? Explain your answer. 

 a. A full adder
 b. A controller to control the traffic light in five-way intersection
 c.  A circuit controlling the release of insulin according to the concentra-

tion of glucose
 d. Two pmos transistors connected in parallel
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DATA-FLOW DESCRIPTION

2
Chapter Objectives

 Understand the concept of data-flow description in both VHDL and 
Verilog

 Understand events and concurrent statements
 Identify the basic statements and components of data-flow descrip-

tion such as logical operators, signal-assignment statements, the 
assign statement, time delays, and vectors

 Review and understand K-maps, Boolean function, and fundamen-
tals of some digital logic systems such as full adder, full subtractor, 
2x1 multiplexer, 2x2 combinational multiplier, two-bit comparator, 
delay latch, ripple-carry adder, and carry-lookahead adder 

2.1 Highlights Of Data-Flow Description

Data flow is one type (style) of hardware description. Other types in-
clude behavioral, structural, switch level, mixed type, and mixed language. 
Listed below are some facts about data-flow description:

 Data-flow description simulates the system to be described by showing 
how the signal flows from the system inputs to its outputs. For example, 
the Boolean function of the output or the logical structure of the sys-
tem shows such signal flow. A data-flow description of a half adder was 
covered in Section 1.3.1.
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 Signal-assignment statements are concurrent. At any simulation time, all 
signal-assignment statements that have an event are executed concur-
rently (see Section 2.2).

2.2 Signal Declaration And Assignment Statement

Figure 2.1 shows an AND-OR circuit. Signals a, b, c, and d are the 
inputs, signal y is the output, and signals s1 and s2 are intermediates. The 
Boolean function of the output y can be written as: 

a

b

c

y

d

AND-OR y

s1a

s2

b

c

d

FIGURE 2.1 AND-OR circuit. a) Symbol diagram. b) Logic diagram.

y = s1 + s2; where s1=ab and s2 =cd  (2.1)

The Boolean function of y could be written as:

Y = ab + cd (2.2)

Listing 2.1 shows the HDL code of the circuit.

LISTING 2.1 HDL code of Figure 2.1

VHDL Description 
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity andor is
    port (a,b,c,d: in std_logic; y : out std_logic);
end andor;
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architecture andor_dtfl of andor is
signal s1,s2 : std_logic;
begin
    s1 <= a and b; --statement 1.
    s2 <= c and d; --statement 2.
     y <= s1 or s2; --statement 3.
end andor_dtfl;

Verilog description 
module andor (a,b,c,d, y );
input a,b,c,d;
output y;
wire s1, s2; / wire statement here is not necessarily 
       needed since s1 and s2 are single bit/
    assign s1 = a & b; //statement 1.
    assign s2 = c & d; //statement 2.
    assign y = s1 | s2; //statement 3.

endmodule 

Using a CAD package with HDL simulator (see Appendix A), the code 
in Listing 2.1 can be simulated on the screen of the computer, and a wave-
form showing a graphical relationship between the input and the output 
can be obtained. Figure 2.2 shows such a waveform.

a

s1

c

s2

y

d

b

T0 T1 T2
FIGURE 2.2 Simulation waveform for the AND-OR circuit shown in Figure 2.1.

Referring to Listing 2.1, the input and output signals are declared in 
the entity (module) as ports. In HDL, a signal has to be declared before it 
can be used (although in Verilog, it is not necessarily needed if the signal is 



42 • HDL WITH DIGITAL DESIGN

a single bit). Accordingly, signals s1 and s2 have to be declared. In VHDL, 
s1 and s2 are declared as signals by using the predefined word signal in 
the architecture:

signal s1, s2 : bit;

In Verilog, s1 and s2 are declared as signals by using the predefined 
word wire:

wire s1, s2;

By default, all ports in Verilog are assumed to be wires. The value of 
the wire is continuously changing with changes in the device that is deriving 
it. For example, s1 is the output of the AND gate in Figure 2.1, and s1 is 
continuously updated as a or b changes.

A signal-assignment statement is used to assign a value to a signal. The 
left-hand side of the statement should be declared as a signal. The right-
hand side can be a signal, a variable, or a constant. The operator for signal 
assignment is <= in VHDL or the predefined word assign in Verilog. In 
Listing 2.1, statements 1, 2, and 3 are signal-assignment statements.

The execution of the signal-assignment statement in HDL is somehow 
different in concept from that of software languages such as C. Statements 
1–3 need an event to occur on its right-hand side to start execution. If no 
event occurred on any statement, this statement would not be executed. An 
event is a change in the value of a signal or variable such as a change from 
0 to 1 (from low to high) or from 1 to 0 (from high to low). The statement 
that receives an event first will be executed first regardless of the order of 
its placement in the HDL code. If more than one statement have an event 
at the same time, all of these statements will be executed concurrently (i.e., 
simultaneously). Accordingly, statement 3, for example, could have been 
written before statement 1 in Listing 2.1, and the order of execution would 
not be affected.

The signal-assignment statement is executed in two phases: calculation 
and assignment. If an event occurs on the right-hand side of a statement, 
then this side is calculated at the time of the event; after calculation, the 
value obtained from the calculation is assigned to the left-hand side, taking 
into consideration any timing information given in the statement (see Sec-
tion 2.4 for details of the timing information). Consider Listing 2.1 and Fig-
ure 2.2. At T0, an event has occurred in signal a and signal b (both signals 
changed their value from 0 to 1, which is an event). Accordingly, an event 
occurred in statement 1; the value of (a and b) is calculated as (1 and 1 = 1). 
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Because no delay time is specified, the value 1 is assigned immediately to 
s1, changing s1 from 0 to 1. Changing the value of s1 from 0 to 1 constitutes 
an event in s1 and in statement 3, which is executed as a result of the event 
in its right-hand side. The right-hand side of statement 3 is calculated at T0 
as (s1 [1] or s2 [0] = 1). The value of 1 is assigned to y; all at T0 because no 
delay time is specified. At T1, there is event on signals a (1 to 0), c (0 to 1), 
and d (0 to 1). Statements 1 and 2 will be executed concurrently because an 
event occurred on their right-hand side. The right-hand side of statement 
1 and 2 is calculated at T1 as (0 and 1 = 0) and (1 and 1 = 1); the value of 
0 is assigned to s1, and the value of 1 is assigned to s2 at T1. Changing the 
value of s1 and s2 constitutes an event on s1 and s2, which selects statement 
3 for execution at T1; statement 3 is executed (calculation, s1 or s2 = 0 or 1 
= 1), and accordingly, 1 is assigned to signal y. At T2, an event occurred on 
signal c, statement 2 is executed at T2, and the calculation results in 0 and 1 
= 0; the value 0 is assigned to s2, changing its value from 1 to 0 and generat-
ing an event in s2. Statement 3 is executed because an event (changing the 
value of s2 from 1 to 0) occurred on the right-hand side. The calculation 
results in 0 or 0 = 0; the value 0 is assigned to y at T2.

2.2.1 Constant Declaration and Constant Assignment Statements
A constant in HDL is treated as it is in C language; its value is constant 

within the segment of the program where it is visible. A constant in VHDL 
can be declared using the predefined word constant. In Verilog, a con-
stant can be declared by its type such as time or integer. For example, the 
following statements declare period as a constant of type time:

constant period : time; -- VHDL 
time period; // Verilog

To assign a value to a constant, use the assignment operator := in VHDL 
or = in Verilog. For example, to assign a value of 100 nanoseconds to the 
constant period described above:

period := 100 ns; -- VHDL
period = 100; // Verilog

In the above Verilog statement, there are no explicit units of time; 100 
means 100 simulation screen time units. If the simulation screen time units 
are defined as nanoseconds (ns), for example, then 100 will mean 100 nanosec-
onds. The declaration and assignment can be combined in one statement as:

Constant period : time := 100 ns; -- VHDL
time period = 100 //Verilog
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2.2.2 Assigning a Delay Time to the Signal-Assignment Statement
To assign a delay time to a signal-assignment statement, the predefined 

word after in VHDL or # in Verilog is used. For example, the following 
statement assigns a 10 ns delay time to signal S1:

S1 <= a and b after 10 ns -- VHDL 
assign #10 S1 = a & b // Verilog

In Verilog, the delay is in simulation screen unit time. Let us assume 
that there is a delay of 10 ns between the output of each statement 1–3 and 
its input in Listing 2.1. This is equivalent to saying that operation (and) or 
(or) takes 10 ns to be completed. Listing 2.2 shows the HDL code for Fig-
ure 2.1 with a 10 ns delay for the (and) and (or) operations.

LISTING 2.2 HDL code of Figure 2.1 with 10 ns delay

VHDL description 
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity andor_dly is
    port (a,b,c,d: in std_logic; y : out std_logic);
end andor_dly;
architecture andor_dtfl of andor_dly is
constant dly : time := 10 ns;
signal s1,s2 : std_logic;
begin
    s1 <= a and b after dly; --statement 1.
    s2 <= c and d after dly; --statement 2.
    y <= s1 or s2 after dly; --statement 3.
 end andor_dtfl;

Verilog description 
module and_orDlyVr( a,b,c,d, y );
input a,b,c,d;
output y;
time dly = 10;
wire s1, s2; 
/ wire above is not necessarily needed 
since s1 and s2 are single bit/
    assign # dly s1 = a & b; //statement 1.
    assign # dly s2 = c & d; //statement 2.
    assign # dly y = s1 | s2; //statement 3.
endmodule
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FIGURE 2.3 Simulation waveform of Listing 2.2.

Figure 2.3 shows the simulation waveform of Listing 2.2. Table 2.1 
shows analysis of the waveform according to Listing 2.2. At T0, an event oc-
curred on signal a and signal b (both changed from 0 to 1). This event will 
invoke execution of statement 1. The right-hand side (R.H.S) of statement 
1 is calculated at T0 as (1 and 1 = 1). However, this value of 1 will not as-
signed to s1 at T0; rather, it will be assigned at T0 + 10 ns = T1. The rest of 
Table 2.1 could be understood by following the same analysis that has been 
done above at T0.

TABLE 2.1 Analysis of Waveform of Figure 2.3

Event(s) on 
R.H.S

Time of 
Event

Statement(s) 
Affected by 

Event

R.H.S 
Calculations

Assignment 
Value

Time of 
Assignment 

the 
Calculated 

Value
a (0 to 1)
b (0 to 1)

T0 Statem ent 1 1 and 1 = 1 s1 = 1 T1 (T0 + 
10 ns)

s1 (0 to 1) T1 Statement 3 1 or 0 = 1 Y = 1 T2 (T1 + 
10 ns)

a (1 to 0)
c (0 to 1)
d (0 to 1)

T3 Statements 1 
and 2

1 and 0 = 0
1 and 1 = 1

s1 = 0
s2 = 1

T4 (T3 + 
10 ns)
T4 (T3 + 
10 ns)

(Contd.)
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Event(s) on 
R.H.S

Time of 
Event

Statement(s) 
Affected by 

Event

R.H.S 
Calculations

Assignment 
Value

Time of 
Assignment 

the 
Calculated 

Value
s1 (1 to 0)
s2 (0 to 1)

T4 Statement 3  0 or 1 = 1 y = 1 T5 (T4 + 
10 ns)

c (1 to 0) T6 Statement 2 0 and 1 = 0 s2 = 0 T7 (T6 + 
10 ns)

s2 (1 to 0) T7 Statement 3 0 or 0 = 0 y = 0 T8 (T7 = 
10 ns)

From Table 2.1, the worst total delay time between the input and the 
output of Figure 2.1, as expected, is 20 ns. It is to be noted that if a signal-
assignment statement did not specify a delay time, the assignment to its 
left-hand side would occur after the default infinitesimally small delay time 
of D (delta) seconds. This infinitesimally small time cannot be detected on 
the screen, and the delay time will look as if it is zero. In the following sev-
eral examples, data-flow descriptions are introduced.

EXAMPLE 2.1 DATA-FLOW DESCRIPTION OF A FULL ADDER

A full adder is a combinational circuit (output depends only on the in-
put) that adds three input bits (a + b + c) and outputs the result as two bits; 
one bit for the sum and one bit for the carryout. Examples of full addition 
are: 1 + 0 + 1 = 10 (in decimal 1 + 0 + 1 = 2) and 1 + 1 + 1 = 11 (in decimal 
1 + 1 + 1 = 3). Table 2.2 shows the truth table of the full adder.

TABLE 2.2 Truth Table For a Full Adder

Input Output
a b c Carryout Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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The Boolean function of the Sum and Carryout can be obtained from 
K-maps as shown in Figure 2.4.

bc

a

0 1 1

10110100

Sum = f(a,b,c) =  m(1,2,4,7)

1 1 1

bc

a

0

1

10110100

Carryout = f(a,b,c) =  m(3,5,6,7)

1 1 1

1

FIGURE 2.4 K-maps for the minterms (m) for the Sum and Carryout.

From Figure 2.4, the Boolean functions can be written as:

Sum = a bc + a b c  + ab c  + abc  (2.3)

Carryout = ab + ac + bc  (2.4)

The symbol diagram of the full adder is shown in Figure 2.5a. The 
logic diagram of a full adder based on Equations 2.3 and 2.4 is shown in 
Figure 2.5b.
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FIGURE 2.5 A full Adder. a) Logic symbol. b) Logic diagram. 

The full adder can be built from several existing logic components such 
as two half adders and multiplexers (see Exercise 2.1 at the end of this 
chapter). Building a full adder from two half adders is based on the follow-
ing analysis. 

The full adder adds a plus b plus c = carryout sum. If the addition is 
performed in two steps: a plus b = C

1 
S, and c plus S = C

2
 sum (sum is the 

sum of the three bits). C
1
 and C

2 
cannot have a value of 1 at the same time. 

If C
1
 has value of 1, then C

2
 has to be 0 and vice versa. For example, to 

add 1 plus 1 plus 1, divide the addition in two halves; the first half is 1 plus 
1 = 10, and the second half is 0 plus 1 = 1. The carryout will be (C

1
 or C

2
); 

in this example, it is 1 and the sum = 1. Figure 2.6 shows the logic diagram 
of the full adder built from two half adders.
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FIGURE 2.6 A full adder built from two half adders.

Listing 2.3 shows the HDL code for the full adder as shown in 
Figure 2.5. Review Section 1.5.1 to know the VHDL and Verilog logical 
operators. The code assumes no delay time. The parenthesis in the code, as 
in C language, gives the highest priority to the expression within the paren-
thesis and makes the code more readable.

LISTING 2.3 HDL Code of the Full Adder From Figure 2.5 

VHDL description 
 library IEEE;
 use IEEE.STD_LOGIC_1164.ALL;
 entity fulladder is
     Port ( a,b,c : in std_logic; 
          sum, Carryout : out std_logic); 
 end fulladder;
 architecture flad_dtfl of fulladder is
 begin
     Sum <= (not a and not b and c) or 
     (not a and b and not c) or 
     (a and not b and not c) or
     (a and b and c);
     Carryout <= (a and b) or (a and c) or (b and c);
 end flad_dtfl;

 Verilog description 
 module fulladder(a, b, c); 
 output Sum, Carryout; 
 input a, b, c; 
     assign Sum = (~ a & ~ b & c)|( ~ a & b & ~c)|
                  ( a & ~b & ~c)|( a & b & c) ;

     assign Carryout = (a & b) | (a & c) | (b & c);
 endmodule
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Figure 2.7 shows the waveform of a full adder with no delay time.

a

b

c

Sum

Carryout
FIGURE 2.7 Simulation waveform of a full adder with no delay time.

EXAMPLE 2.2 FULL SUBTRACTOR

A full subtractor performs the following operation: a - b - c = Borrow 
Diff. Borrow and Diff are each one-bit output. The Diff is the difference, 
and Borrow is the borrow. For example, 0 - 1 - 0 = 11. The subtraction is 
done as follows: 0 - 1 cannot subtract 1 from 0 because 1 is greater than 0, so 
borrow 1 from the higher-order bit. Accordingly, this 1 has a weight of 21, 
so its value is 2; subtract 2 - 1 = 1. Now, for bit c, 1 - 0 = 1, so the difference 
is 1, and the borrow is 1. Table 2.3 shows the truth table of a full subtractor.

TABLE 2.3 Truth Table for a Full Subtractor

Input Output
a b c Borrow Diff
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Compare the Diff in Table 2.3 and the Sum in Table 2.2; they are iden-
tical, so the Boolean function of the Diff is the same as the sum in Equation 
2.3. For the Borrow, draw the K-map as shown in Figure 2.8.
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1

FIGURE 2.8 K-map for the borrow of a full subtactor.

From Figure 2.8, the Boolean functions are:

Diff =  a bc + a b c  + ab c  + abc ………………………… (2.5)

Borrow = a c + a b + bc …………………………………… (2.6)

The HDL code of the full subtractor is given as an exercise at the end 
of this chapter.

EXAMPLE 2.3A 2x1 MULTIPLEXER WITH ACTIVE LOW ENABLE

A 2x1 multiplexer is a combinational circuit; it has two one-bit inputs, a 
one-bit select line, and a one-bit output. Additional control signals may be 
added, such as enable. The output of the basic multiplexer depends on the 
level of the select line. If the select is high (1), the output is equal to one of 
the two inputs. If the select is low (0), the output is equal to the other input. A 
truth table for a 2x1 multiplexer with active low enable is shown in Table 2.4.

TABLE 2.4 Truth Table for a 2x1 Multiplexer

Input Output
SEL Gbar Y

X H L
L L A
H L B

If the enable (Gbar) is high (1), the output is low (0) regardless of the 
input. When Gbar is low (0), the output is A if SEL is low (0), or the output is 
B if SEL is high (1). From Table 2.4, the Boolean function of the output Y is:

Y = (S1 and A and SEL) or (S1 and B and SEL); S1 is the invert of Gbar
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Figure 2.9a shows the logic symbol, and Figure 2.9b shows the gate-
level structure of the multiplexer. 

A

B

SEL

Gbar

Y2x1
Mux

   

Y

A

B

S4

S5S3

S1

S2
SEL

Gbar

 (a) (b)
FIGURE 2.9 2x1 Multiplexer. a) Logic symbol. b) Logic diagram.

Listing 2.4a shows the HDL code. To generate the code, follow Figure 
2.9b. Propagation delay time for all gates is assumed to be 7 ns. Because 
this is a data-flow description, the order in which the statements are written 
in the code is irrelevant. For example, statement st6 could have been writ-
ten at the very beginning instead of statement st1. The logical operators 
in VHDL and (Verilog) implemented in this Listing are: OR (|), AND (&), 
and NOT (~).

LISTING 2.4a  HDL Code of a 2x1 Multiplexer: VHDL and Verilog

VHDL description 
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity mux2x1 is
    port (A, B, SEL, Gbar : in std_logic; 
    Y : out std_logic); 
end mux2x1;
architecture MUX_DF of mux2x1 is
signal S1, S2, S3, S4, S5 : std_logic;
constant dly : time := 7ns;
Begin  

-- Assume 7 nanoseconds propagation delay
-- for all and, or, and not operation.
    st1: Y <= S4 or S5 after dly;
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    st2: S4 <= A and S2 and S1 after dly;
    st3: S5 <= B and S3 and S1 after dly;
    st4: S2 <= not SEL after dly;
    st5: S3 <= not S2 after dly; 
    st6: S1 <= not Gbar after dly;
 end MUX_DF;

Verilog Description
module mux2x1 (A, B, SEL, Gbar, Y);
input A, B, SEL, Gbar;
output Y;
wire S1, S2, S3, S4, S5;
time dly = 7;
/ Assume 7 time units delay for all and, or, not operations. The 
   delay here is expressedin simulation screen units. /

    assign # dly Y = S4 | S5; //st1
    assign #dly S4 = A & S2 & S1; //st2
    assign #dly S5 = B & S3 & S1; //st3
    assign #dly S2 = ~ SEL; //st4
    assign #dly S3 = ~ S2; //st5
    assign #dly S1 = ~ Gbar; //st6
 endmodule

Figure 2.10 shows the simulation waveform for the 2x1 multiplexer.
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FIGURE 2.10 Simulation waveform for a 2x1 multiplexer.
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Analysis of Listing 2.4a

Referring to Listing 2.4a, because the description is a data flow, the 
order of statements st1 to st6 is irrelevant; statement st5 could have been 
written before statement st1 without changing the outcome of the HDL 
program. In Figure 2.10, signal A changes from 1 to 0, and signal B changes 
from 0 to 1 at T0; these changes constitute an event in signal-assignment 
statements st2 and st3. Accordingly, statements st2 and st3 are executed 
simultaneously. As previously mentioned, execution is done in two phases: 
calculation and assignment. For statement st2, at T0, A = 0, S2 = 1 (the 
inversion of SEL), and S1 = 1 (the inversion of Gbar); hence, the calculated 
new value of S4 at T0 is (A AND S1 AND S2) = 0. This is a change in value 
for S4 from 1 to 0, which is assigned to S4 after 7 ns from time T0 (at 107 
ns). For statement st3, at T0, B = 1, S3 = 0, and S1 = 1. The calculated 
value of S5 is 0, as it was before T0. At T = 107 ns, an event occurs on S4, 
and this causes execution of statement st1. Y is calculated as (0 or 1) = 1, 
and this value is assigned to Y after 7 ns, that is, at T1 = 107 + 7 = 114 ns. 
Alternatively, statements st1 to st5 can be replaced by one statement:

-- VHDL:
Y <= not (Gbar) and ((sel and b) or (not sel and A)) after 21 ns;

// Verilog:
assign # 21 Y = ~ (Gbar) & ((SEL & B ) | (~ SEL & A));

The above delay time of 21 ns is an estimated average delay time. If 
either of the above two statements is used, individual delay times cannot be 
assigned, as was done in Listing 2.4a. 

EXAMPLE 2.3B  2x1 MULTIPLEXER WITH ACTIVE LOW ENABLE USING 
VERILOG CONDITIONAL OPERATOR (?)

The conditional operator ? (see Section 1.5.2.2) can be used to describe 
a multiplexer or any other similar system that utilizes a selector signal to 
select between two options. The format of this operator can be written as:

Assign Y = Conditional-expression ? true-expression : false-expression

If the conditional expression is true, the value of the true expression 
is assigned to Y; if the conditional expression is false, the value of the false 
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expression is assigned to Y. Listing 2.4b illustrates a Verilog code for a 2x1 
multiplexer using the conditional operator ? to select the value of the out-
put Y according to the level of the enable Gbar. If Gbar is high (1), that is 
to say the conditional expression is true, the output Y is assigned to low (0). 
Otherwise, the output Y is assigned the false expression (SEL & B ) | (~ 
SEL & A). Also, recall from Section 1.5.2.2 that both the true and the false 
expressions can contain high impedance and don’t care; this will allow for 
describing systems such as multiplexers with tri-state output (see the Exer-
cise section at the end of this chapter).

LISTING 2.4b HDL Code of a 2x1 Multiplexer Using Verilog Conditional (?)

module Mux2x1_conditional(input A,B,SEL,Gbar, output Y );
    assign Y = (Gbar) ? 1’b0 : (SEL & B ) | (~ SEL & A);
endmodule

EXAMPLE 2.4   A 2x4 DECODER 

A decoder is a combinational circuit. A 2x4 decoder has two inputs and 
four outputs. For any input, only one output is active; all others are inac-
tive. For active high output decoders, only one output is high. The output 
of n-bit input decoder is 2n bits. Table 2.5 shows the truth table of the 2x4 
decoder. 

TABLE 2.5 Truth Table for a 2x4 Decoder

Inputs Outputs

b a D3 D2 D1 D0
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

From Table 2.5, the Boolean function of the outputs can be written as:

 D0 = a b

 D1 = a b

 D2 = a  b

 D3 = a b

Figure 2.11 shows the logic symbol and logic diagram of the decoder.
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FIGURE 2.11 2x4 Decoder. a) Logic symbol. b) Logic diagram.

Listing 2.4 shows the HDL code of the decoder. Figure 2.12 shows the 
simulation waveform of the decoder.

LISTING 2.4 HDL Code of a 2x4 Decoder Without Time Delay 

VHDL description 
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity decoder2x4 is
    port ( a, b : in std_logic; 
          D : out std_logic_vector (3 downto 0));
end decoder2x4;
architecture decder_dtfl of decoder2x4 is
begin
    D(0) <= not a and not b;
    D(1) <= a and not b;
    D(2) <= not a and b;
    D(3) <= a and b;
end decder_dtfl;
      
Verilog description 
module decoder2x4( a, b, D);
input a,b;
output [3:0]D;
    assign D[0] = ~a & ~ b;
    assign D[1] = a & ~ b;
    assign D[2] = ~a & b;
    assign D[3] = a & b;
endmodule



DATA-FLOW DESCRIPTION • 57
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D[3:0] 0001 0010 0100 1000
FIGURE 2.12 Simulation Waveform of a 2x4 decoder with no time delay

2.3 Data Type: Vector 

The vector data type was briefly covered in Chapter 1. A vector is a 
data type that declares an array of similar elements, such as declaring an 
object that has a width of more than one bit. In the previous examples, all 
signals have been one-bit in width. If signal A has a four-bit width, it can be 
declared as four different signals, a0, a1, a2, a3, as shown:

signal a0, a1, a2, a3 : bit; -- VHDL
wire a0, a1, a2, a3;         // Verilog

Or, it can be declared using the vector declaration:

signal a : bit_vector (3 downto 0); -- VHDL
wire [3:0] a; // Verilog

In VHDL, downto ([3:0 ] in Verilog) is a predefined operator that 
describes the width of the vector. If the value of a is 14

d
, or (1110)

2
, then 

the elements of vector (array) a are:

a(3) = 1 
a(2) = 1 
a(1) = 1
a(0) = 0 

The following declaration can also be used:

signal a : bit_vector (0 to 3); -- VHDL
wire [0:3] a;                   // Verilog

where to is a predefined word. In the above declaration, the elements 
of the vector are:

a(0) = 1
a(1) = 1
a(2) = 1
a(3) = 0 

This means the value of a is considered to be 7
d
 rather than 14

d.
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EXAMPLE 2.5 2x2 UNSIGNED COMBINATIONAL MULTIPLIER

Consider the multiplication of a × b, where a and b are each two-bit 
numbers. The multiplication is illustrated as follows:

  a(1) a(0)
  b(1) b(0)
  __________________________ 
  b(0) × a(1) b(0) × a(0)
 b(1) × a(1) b(1) × a(0)
__________________________________________________
P(3) P(2) P(1) P(0)

Because it is only two-bit multiplication, the truth table and K-maps 
can be easily implemented to find the Boolean function of the product. 
When the number of bits is large and the K-maps are impractically large, 
another approach may be taken to design the multiplier (see Chapter 3). 
The truth table of the 2x2 multiplier is shown in Table 2.6, and Figure 2.13 
shows the K-maps of the table.

TABLE 2.6 2x2 Unsigned (Magnitude) Combinational Multiplier

a1 a0 b1 b0 P3 P2 P1 P0
0 0 x x 0 0 0 0
x x 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 1 0 0 `1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

x- indicates don’t care
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FIGURE 2.13 K-maps of 2x2 Combinational Multiplier.
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From the K-maps and Table 2.6, the product can be written as:

P0 = a0 b0

P1= a1a0 b1 + a0 b0  b1 + a1 b0 b1  + a0  a1 b0

P2= a0  a1 b1 + a1 b0  b1

P3= a0 a1 b0 b1

Figure 2.14a shows the logic symbol, and Figure 2.14b shows the logic 
diagram of the multiplier. The HDL code is shown in Listing 2.5, and the 
simulation waveform is shown in Figure 2.15.
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FIGURE 2.14 2x2 combinational multiplier. a) Logic symbol. b) Logic diagram.

LISTING 2.5 HDL Code for a 2x2 Unsigned Combinational Array Multiplier: 
VHDL and Verilog

VHDL Description 
--For simplicity, propagation delay times are not
-- considered here.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity mult_comb is
    port ( a,b: in std_logic_vector (1 downto 0);
         P : out std_logic_vector ( 3 downto 0));
end mult_comb;
architecture mult_dtfl of mult_comb is
begin
    P(0) <= a(0) and b(0);
    P(1) <= (not a(1) and a(0) and b(1)) or
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    (a(0) and not b(0) and b(1)) or 
    (a(1) and b(0) and not b(1))or 
    (not a(0) and a(1) and b(0));
    P(2) <= (not a(0) and a(1) and b(1)) or 
    ( a(1) and not b(0) and b(1));
    P(3) <= a(0) and a(1) and b(0) and b(1);
 end mult_dtfl;

Verilog Description
module mult_arry (a, b, P);
input [1:0] a, b;
output [3:0] P;
/For simplicity, propagation delay times are not 
considered in this example./
    assign P[0] = a[0] & b[0];
    assign P[1] = (~a[1] & a[0]& b [1]) | 
                  (a[0] & ~b[0]& b [1])|
                  (a[1] & b[0]& ~b [1]) | 
                  (~a[0] & a[1]& b [0]);
    assign P[2] = (~a[0] & a[1]& b [1]) | 
                  (a[1] & ~b[0]& b [1]);
    assign P[3] = (a[0] & a[1]& b[0] & b [1]);

The simulation output of the multiplier is shown in Figure 2.15.

a

b

0 1 2 3

0 11 122 2 333

P 0 21 342 6 963
FIGURE 2.15 Simulation output for a two-bit multiplier.

EXAMPLE 2.6 DELAY LATCH

Latches are sequential circuits. The output of a sequential circuit de-
pends on the current state and the input. Figure 2.16 shows the logic sym-
bol of a delay latch (D-latch). At any time (T) the present value of Q is 
called the current state. At any selected time (T + ts) the value of Q is called 
the next state Q+. The value of the next state depends on the value of the 
present state and the value of the input (D) (see Table 2.7). In Figure 2.16, 
the current and next states are the same signal (Q). The current state is the 
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value of Q (0 or 1) before the level of E becomes active. The next state is 
the value of Q after the enable (E) becomes active. To find the Boolean 
function of the latch, the excitation table is constructed. Table 2.7 shows 
the inputs and the corresponding next state. Notice that the current state 
is considered an input in addition to the input D. Assume an active high 
enable (E).

Q

Qbar

D-Latch

D

E

FIGURE 2.16 Logic symbol of D-latch.

TABLE 2.7 Excitation Table of D-Latch with Active High Enable

Inputs Next State
E D Q Q+
0 x 0 0
0 x 1 1
1 0 x 0
1 1 x 1

Qbar (Qbar+) is always the inverse of Q (Q+). To find the Boolean func-
tion, use K-maps to minimize the minterms. The K-map for Q is shown in 
Figure 2.17.
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DQ

E

0 0

0

0

10110100

Q = f(E,D,Q) = ∑(1,3,6,7)

1 0

1

1

1

FIGURE 2.17 K-map for Q.

From Figure 2.17, Q and Qbar are found:

  Q EQ ED
Qbar = Q

 

Figure 2.18 shows the logic diagram of D-latch; the diagram is drawn to 
be identical to that of the chip 74LS75.

Q

D
E

Qbar

FIGURE 2.18 Gate-level diagram of a D-latch.

Listing 2.6 shows the HDL description of the D-latch. A delay time of 
9 ns is assumed between the input and Qbar and 1 ns between Q and Qbar. 
Note the use of the port-mode buffer in VHDL for the signal Qbar (see 
section 1.4). The buffer mode is assigned to a port if the port signal appears 
as read (on the right-hand side of a signal-assignment statement) and as 
updated (on the left-hand side of a signal-assignment statement). In List-
ing 2.6, although Q can be declared as only output, it is written with Qbar 
as a buffer just to improve reading the code; if a signal can be declared as 
output, it can also be declared as a buffer. In Verilog, Qbar does not neces-
sarily have to be declared as inout because the Qbar is not a bidirectional 
external bus (see Section 1.4).
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LISTING 2.6 HDL Code for a D-Latch: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity D_Latch is
    port (D, E : in std_logic;
    Q, Qbar : buffer std_logic);

 --Q and Qbar are declared as buffer because they act
 --as both input and output, they appear on the
 --right and left hand side of a signal assignment.
 --inout or linkage could have been used instead of buffer.

end D_Latch;

architecture DL_DtFl of D_Latch is
constant Delay_EorD : Time := 9 ns;
constant Delay_inv : Time := 1 ns;
begin
--Assume 9-ns propagation delay time between 
--E or D and Qbar; and 1 ns between Qbar and Q.

    Qbar <= (D and E) nor (not E and Q) after Delay_EorD;
    Q <= not Qbar after Delay_inv;
 end DL_DtFl;

Verilog Description
module D_latch (D, E, Q, Qbar);
 input D, E;
 output Q, Qbar;

 / Verilog treats the ports as internal ports,
    so Q and Qbar are not considered here as
    both input and output. If the port is
    connected externally as bidirectional,
    then it should be declared as inout. /

time Delay_EorD = 9;
time Delay_inv = 1;
    assign #Delay_EorD Qbar = ~((E & D) | (~E & Q));
    assign #Delay_inv Q = ~ Qbar;
endmodule
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Figure 2.19 shows the simulation waveform of the D-latch.

Q

E

D

Qbar
1 ns

9 ns

FIGURE 2.19 Simulation waveform of a D-latch with active high enable.

EXAMPLE 2.7 TWO-BIT MAGNITUDE COMPARATOR

A two-bit comparator is a combinational circuit that compares two 
words (numbers); each word has two bits. Figure 2.20 shows the logic sym-
bol of the comparator. In Figure 2.20, the two words are X and Y. The 
output of the comparator indicates the result of the comparison: X > Y, X = 
Y, or X < Y. Because the number of input bits is small (a total of four input 
bits), a truth table of the comparator can be used to find the Boolean func-
tion. Table 2.8 shows the truth table of the 2x2 comparator.

X > Y

X = Y

X < Y

2x2
Comparator

X(0)

X(1)

Y(0)

Y(1)

FIGURE 2.20 Logic symbol of a 2x2 magnitude comparator.
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TABLE 2.8 Truth Table for a 2x2 Comparator

Input Output
X(1) X(0) Y(1) Y(0) X > Y X < Y X = Y

0 0 0 0 0 0 1
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0 
0 1 0 0 1 0 0
0 1 0 1 0 0 1
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 0 0 1
1 0 1 1 0 1 0
1 1 0 0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 0 0 1

If the number of bits increases, the table becomes huge, and other ap-
proaches should be used, such as implementation of n-full adders to con-
struct n×n comparators (see Chapter 4). After constructing the truth table, 
K-maps are used (see Figure 2.21) to obtain the minimized Boolean func-
tion of the output of the comparator. Listing 2.7 shows the HDL descrip-
tion. The simulation waveform is shown in Figure 2.22.

Y(1)Y(0)
X(1)X(0)

00

01

11

10

10110100

X>Y

1

1

1

1 1

1

Y(1)Y(0)
X(1)X(0)

00

01

11

10

10110100

X<Y

1 1 1

11

1

FIGURE 2.21 K-maps for Table 2.4.
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 (X Y) X(1)Y(1) X(0)Y(1) Y(0) X(0)X(1)Y(0)

(X Y) (1)Y(1) X(0) X(1)Y(0) X(0)Y(0)Y(1)

(X Y) (X Y) (X Y)

X

   

   

    
LISTING 2.7 HDL Code of a 2x2 Magnitude Comparator

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity COMPR_2 is
     port (x, y : in std_logic_vector(1 downto 0);
     xgty, xlty : buffer std_logic;
     xeqy : out std_logic);
 
end COMPR_2;

architecture COMPR_DFL of COMPR_2 is
begin
     xgty <= (x(1) and not y(1)) or (x(0) and not y(1)
              and not y(0)) or
              x(0) and x(1) and not y(0));

     xlty <= (y(1) and not x(1)) or ( not x(0) and y(0)
              and y(1)) or (not x(0) and not x(1) and y(0));
     xeqy <= xgty nor xlty;

end COMPR_DFL;

Verilog Description
module compr_2 (x, y, xgty, xlty, xeqy);
input [1:0] x, y;
output xgty, xlty, xeqy;
     assign xgty = (x[1] & ~ y[1]) | (x[0] & ~ y[1] 
            & ~ y[0]) | (x[0] &
                x[1] & ~ y[0]);
     assign xlty = (y[1] & ~ x[1] ) | (~ x[0] & 
                   y[0] & y[1]) |(~ x[0] & 
                   ~ x[1] & y[0]);
     assign xeqy = ~ (xgty | xlty);

 endmodule
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X > Y

X

Y

X < Y

X = Y

0 1

111

2

222

3

3330

FIGURE 2.22 Simulation waveform of a 2x2 comparator.

CASE STUDY 2.1

In this case study, a three-bit adder is described. The adder is designed 
using two approaches: ripple carry and carry lookahead. The description is 
simulated, and timing characteristics of the two adders are compared. Fig-
ure 2.23 shows a block diagram of a three-bit ripple-carry adder.

sum(2)

one-bit adder

y(2)x(2)

cout

sum(1)

one-bit adder

y(1)x(1)

c(1)

sum(0)

one-bit adder

y(0)

cin

x(0)

c(0)

FIGURE 2.23 Block diagram of a three-bit ripple-carry adder.

The Boolean functions of a three-bit ripple-carry adder can be written 
as (see Example 2.1):

sum(i) = x(i) XOR y(i) XOR c(i1), 0  i  2 (2.7)

c(i) = x(i)y(i) + x(i)c(i1) + y(i)c(i1), 0  i  2 (2.8)

cout = c(2), c(1) = cin (2.9)

Each one-bit adder in Figure 2.23 is described by Equations 2.7 and 
2.8. To produce the sum and the carryout, each one-bit adder has to wait 
until the preceding one-bit adder generates its carryout (c[0], c[1], or cout). 
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The maximum signal-propagation delay of the adder described above is 3d, 
where d is the delay of a one-bit adder; for an n-bit adder, this delay is n × d.

Figure 2.24 shows a block diagram of a three-bit carry-lookahead 
adder. The major difference between this adder and the ripple-carry adder 
is how the carryout of each one-bit full adder is generated and propagated. 
In ripple carry, each one-bit adder has to wait until the preceding adder unit 
generates its carryout; in carry lookahead, each one-bit adder generates its 
carryout at the same time. This simultaneous generation of carries leads to 
shorter signal-propagation delays. The maximum delay in lookahead adders 
is 4 × gd, where gd is the average gate delay. This delay is independent of 
the number of one-bit adders. 

sum(2)

p(2)

c(1)

x(2) y(2)

cout

g(2)

one-bit adder

sum(1)

p(1)

c(0)

x(1) y(1)

g(1)

one-bit adder

Carry Generator

sum(0)

p(0)

cin

x(0) y(0)

g(0)

one-bit adder

FIGURE 2.24 Block diagram of a three-bit carry-lookahead adder.

The Boolean functions of the carry-lookahead adder are:

sum(i) = x(i) XOR y(i) XOR c(i1), 0  i  2 (2.10)

g(i) = x(i) y(i) (2.11)

p(i) = x(i) + y(i) (2.12)

c(0) = g(0) + p(0)cin, c(1) = g(1) + p(1)g(0) + p(1)p(0)cin (2.13)

cout = c(2) = g(2) + p(2)g(1) + p(2)p(1)g(0) + p(2)p(1)p(0)cin (2.14)

www.ebook3000.com

http://www.ebook3000.org
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Listings 2.8 and 2.9 show the HDL code for the ripple-carry adder and 
the carry-lookahead adders, respectively. A 4.0-ns delay is assumed for all 
gate types. A constant of type time delay_gt is declared, and 4 ns is as-
signed to it:

constant delay_gt : time := 4 ns; -- VHDL
time delay_gt = 4;                // Verilog

LISTING 2.8 Three-Bit Ripple-Carry Adder Case Study

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity adders_RL is
    port (x, y : in std_logic_vector (2 downto 0);
    cin : in std_logic; 
    sum : out std_logic_vector (2 downto 0);
    cout : out std_logic); 
end adders_RL;

--I. RIPPLE-CARRY ADDER 

architecture RCarry_DtFl of adders_RL is
--Assume 4.0-ns propagation delay for all gates. 

signal c0, c1 : std_logic;
constant delay_gt : time := 4 ns;

begin
    sum(0) <= (x(0) xor y(0)) xor cin after 2delay_gt;

--Treat the above statement as two 2-input XOR. 

    sum(1) <= (x(1) xor y(1)) xor c0 after 2delay_gt; 

--Treat the above statement as two 2-input XOR. 
    sum(2) <= (x(2) xor y(2)) xor c1 after 2delay_gt;
--Treat the above statement as two 2-input XOR.
c0 <= (x(0) and y(0)) or (x(0) and cin) or 
      (y(0) and cin) after 2delay_gt;
c1 <= (x(1) and y(1)) or (x(1) and c0) or 
      (y(1) and c0) after 2delay_gt;
cout <= (x(2) and y(2)) or (x(2) and c1) or 
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      (y(2) and c1)after 2delay_gt;
end RCarry_DtFl;

Verilog Description
module adr_rcla (x, y, cin, sum, cout);
input [2:0] x, y;
input cin;
output [2:0] sum;
output cout;
// I. RIPPLE CARRY ADDER
wire c0, c1;
time delay_gt = 4;
//Assume 4.0-ns propagation delay for all gates. 

   assign #(2delay_gt) sum[0] = (x[0] ^ y[0]) ^ cin;
//Treat the above statement as two 2-input XOR.

  assign #(2delay_gt) sum[1] = (x[1] ^ y[1]) ^ c0;
//Treat the above statement as two 2-input XOR.

  assign #(2delay_gt) sum[2] = (x[2] ^ y[2]) ^ c1;
//Treat the above statement as two 2-input XOR.

  assign #(2delay_gt) c0 = (x[0] & y[0]) | 
          (x[0] & cin) | (y[0] & cin);
  assign #(2delay_gt) c1 = (x[1] & y[1]) | 
          (x[1] & c0) | (y[1] & c0);

  assign #(2delay_gt) cout = (x[2] & y[2]) | 
          (x[2] & c1) | (y[2] & c1);

endmodule

LISTING 2.9 Three-Bit Carry-Lookahead Adder Case Study

 VHDL Description
--II. CARRY-LOOKAHEAD ADDER 
architecture lkh_DtFl of adders_RL is
--Assume 4.0-ns propagation delay for all gates 
--including a 3-input xor. 

signal c0, c1 : std_logic;
signal p, g : std_logic_vector (2 downto 0);
constant delay_gt : time := 4 ns;
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begin

    g(0) <= x(0) and y(0) after delay_gt;
    g(1) <= x(1) and y(1) after delay_gt;
    g(2) <= x(2) and y(2) after delay_gt;
    p(0) <= x(0) or y(0) after delay_gt; 
    p(1) <= x(1) or y(1) after delay_gt;
    p(2) <= x(2) or y(2) after delay_gt;
    c0 <= g(0) or (p(0) and cin) after 2delay_gt; 

    c1 <= g(1) or (p(1) and g(0)) or (p(1) and p(0) 
          and cin) after 2delay_gt;
cout <= g(2) or (p(2) and g(1)) or (p(2) and p(1) 
     and g(0)) or(p(2) and p(1) and
     p(0) and cin) after 2delay_gt;

sum(0) <= (p(0) xor g(0)) xor cin after delay_gt; 
sum(1) <= (p(1) xor g(1)) xor c0 after delay_gt;
sum(2) <= (p(2) xor g(2)) xor c1 after delay_gt;
end lkh_DtFl;

Verilog Description
// II. CARRY-LOOKAHEAD ADDER 
module lkahd_adder (x, y, cin, sum, cout);
input [2:0] x, y;
input cin;
output [2:0] sum;
output cout;
/Assume 4.0-ns propagation delay for all gates 
including a 3-input xor./

wire c0, c1;
wire [2:0] p, g;
time delay_gt = 4;
    assign #delay_gt g[0] = x[0] & y[0];
    assign #delay_gt g[1] = x[1] & y[1];
    assign #delay_gt g[2] = x[2] & y[2];
    assign #delay_gt p[0] = x[0] | y[0];
    assign #delay_gt p[1] = x[1] | y[1];
    assign #delay_gt p[2] = x[2] | y[2];
    assign #(2delay_gt) c0 = g[0] | (p[0] & cin);
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    assign #(2delay_gt) c1 = g[1] | (p[1] & g[0]) |
             (p[1] & p[0] & cin);

    assign #(2delay_gt) cout = g[2] | (p[2] & g[1]) | 
            (p[2] & p[1] & g[0]) | (p[2] & p[1] & 
             p[0] & cin);

    assign #delay_gt sum[0] = (p[0] ^ g[0]) ^ cin;
    assign #delay_gt sum[1] = (p[1] ^ g[1]) ^ c0;

assign #delay_gt sum[2] = (p[2] ^ g[2]) ^ c1;

endmodule

Figure 2.25 shows the waveform for both ripple-carry and carry-looka-
head adders without taking gate delay into consideration. Because there is 
no delay, the two adders have identical waveforms. From the waveform, it 
can be concluded that both adders are functioning correctly. Figures 2.26a 
and 2.26b show the waveforms for ripple-carry and carry-lookahead after 
taking the gate delay into consideration, respectively.

y

cin

sum

cout

5 4

x 7 6 5 4 3 2 1 0 02 1

4 3 2 1 0 7 6 5 57 6

FIGURE 2.25 Simulation waveform for a three-bit adder with no gate delay.
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000 001

4x4 = 16 ns

sum

cin

cout

000 011y

(b)
FIGURE 2.26 Simulation waveforms for three-bit adders with a 4-ns gate delay. a) Ripple-carry adder. b) 
Carry-lookahead adder.

To calculate the worst delay, values are selected for the inputs x, y, and 
cin to obtain the maximum possible delay; this is done by selecting those 
values that cause a change in all the carryout signals. The values x = y = cin 
= 0 are selected to generate a zero signal on all the outputs, and then the 
values x = 5, y = 3, and cin = 1. In Figure 2.26a, the total worst delay is 24 
ns. Because there are three one-bit adders, and each has a worst delay of 8 
ns (two XOR gates), the total worst delay is 8 × 3 = 24 ns, which is equal to 
the number of one-bit adders times the delay of one one-bit adder.

In Figure 2.26b, the total worst delay is 16 ns, which is four times the 
delay of a single gate (4 ns). If the number of input bits of the lookahead 
adder is increased, the total worst delay is still the same 16 ns. More adders 
will be discussed in Chapter 4.

2.4 Common Programming Errors

This section discusses common programming errors. These errors are 
classified as either syntax or semantic errors. Syntax errors are those that 
result from not following the rules of the language. For example, consider 
the sentence: “Jim am a policeman.” The sentence has a syntax error. Ac-
cording to the rules of English language, the word “is” should replace “am.” 
The sentence, after correcting the syntax error, may still have a semantic 
error if Jim is not a policeman. A semantic error is an error in the meaning 
of the statement, rather than an error in the mechanics of the statement. 
The example above applies to HDL; there can be syntax and semantic er-
rors. Syntax errors terminate compilation of the program. Semantic errors 
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may not terminate the program, but the outcome of the program may not 
be as expected.

2.4.1 Common VHDL Programming Errors
This section briefly discusses some common syntax and semantic errors 

when writing VHDL programs. Table 2.9 shows a code written in VHDL 
for two entities and the errors (if any) in that code. 

TABLE 2.9 Errors in VHDL Code

Code Error
entity mult_comb The word is is missing
port (a; b : in std_logic_vector(1 downto 0)); Semicolon is inserted 

instead of comma (a, b)
P : std_logic_vector (3 downto 0) The direction of the port P 

is missing (out)
architecture MULT_DF of mult_cmb is The name of the entity is 

misspelled: it should be 
(mult_comb)

P(0) = a(0) and b(0); The signal-assignment 
statement operator is wrong 
(“<=” should replace “=”)

P(3) <= a(0) and a(1) b(0) and b(1); The “and” operator is 
missing in a(1)b(0);

P(0) <= a(0) and b(2); The index of “b” is out of 
range: it should be 0 or 1

end MUL_DF; The name of the architec-
ture is misspelled: it should 
be MULT_DF

P(0) <= a(0) and b0; b0 is not the same as b(0)
--No Library listed on first line of code 

entity errors is

port (t, t1: in std_logic ; 

b,c: out std_logic);

end errors;

architecture Behavioral of errors is

begin

b <= t;

c <=b; 

Behavioral;

IEEE.STD_LOGIC_1164.
ALL Library has to be 
entered to use std-logic

b should be declared as 
buffer since it is appearing 
on both right- and left-hand 
end
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2.4.2 Common Verilog Programming Errors
Here, some common syntax and semantic errors in writing Verilog pro-

grams are discussed. One of the most common errors for beginners is in 
not adhering to Verilog’s case-sensitive nature. Table 2.10 lists Verilog code 
and errors (if any).

TABLE 2.10 Possible Errors in Modified Listing 2.4 (Verilog)

Modified Code Error
module mult_comb (a, b, P) The semicolon (;) is missing at

the end of the statement
input [1:0] A, b; “A” is not defined: it should be lowercase

output (3:0) P; Brackets [3:0] should be used instead of 
parentheses

P[0] = a[0] and b[0]; The word “assign” is missing
assign P[0] = a[0] and b[0]; The word “and” cannot be used here: in 

Verilog, the logical operator “&” should be 
used

Assign p[0] = S[0] | a[0]; Because S[0] is vector, it has to be declared: 
if it is scalar (such as S0), it may not need to 
be declared 

endmodule; No semicolon at the end of “endmodule”

2.5 Summary

This chapter discussed data-flow descriptions based mainly on writing 
the Boolean function(s) of the system. The Boolean function is coded as sig-
nal-assignment statements. In VHDL, the signal-assignment operator <= is 
implemented to assign a value to a signal; in Verilog, the signal-assignment 
operator is assign. Logical operators such as and (&), or (|), and xor 
(^) have been implemented to describe the Boolean function in VHDL 
(Verilog) code. The following table summarizes the commands that have 
been used in this Chapter. Table 2.11 lists data-flow commands/compo-
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nents in VHDL and their counterparts (if any) in Verilog.

TABLE 2.11 VHDL Versus Verilog Data-Flow Components

VHDL Command/Components Verilog Counterpart
entity module

<= assign

and, or, xor, not &, |, ^, ~

signal wire

after #

in, out, inout input, output, inout

(2 downto 0) [2:0]
(0 to 2) [0:2]

2.6 Exercises

1. Construct a full adder from two 4x1 multiplexers. One multiplexer is to 
generate the sum, and the other generates the carryout. Write a data-
flow description (in both VHDL and Verilog) of the full adder. Use 
a 5-ns delay for any gate including XOR. Draw the truth table of this 
adder and derive the Boolean function after minimization. Simulate and 
verify the circuit.

2. Write a data-flow description (in both VHDL and Verilog) of a system 
that has three one-bit inputs, a(1), a(2), and a(3), and one one-bit output 
b. The least significant bit is a(1). The output b is 1 only when {a(1)a(2)
a(3)} = 1, 2, 4, or 7 (all in decimal); otherwise, b is 0. Derive a minimized 
Boolean function of the system and write the data-flow description. 
Simulate the system and verify that it works as designed. What is the 
function of this system?

3. Given the following Verilog description code, fill the values of s1 and s2 
into the table. T = time in nanoseconds. Do not use a computer to solve 
this problem.

  module problem (a, b, s1, s2);
  input a, b;
  output s1, s2;
      assign #10 s1 = a ^ b;
      assign #10 s2 = a | s1;
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 endmodule
 T=100 T=150 T=165 T=200 T=250 T=300
a 1 0 0 1 0 1
b 1 1 1 0 0 1
s1 0
s2 0

 Explain how you obtained the values for s1 and s2 at time T = 165 ns.
 Translate the Verilog code to VHDL.

4. Referring to Case Study 2.1, increase the number of bits from three 
to four. Derive the Boolean functions of both the ripple-carry and the 
carry-lookahead adders. Simulate the adders and calculate the worst 
delay between the input and output using Verilog description. Contrast 
your results with Figure 2.16 and explain.

5. The following VHDL code describes an SR-latch. Translate the code to 
Verilog.

  entity SR is
      port (S, R : in bit; Q : buffer bit; Qb : out bit);
  end SR;
  architecture SR_DtFL of SR is
  begin
      Q <= S or (not R and Q);
      Qb <= not Q;
end SR_DtFL; 

6. Describe a system that divides D/V to give a quotient, Q, and Remain-
der, R. The dividend, D, is three bits; the divisor, V, is two bits. If 
V = 0, set a flag Z to 1. Write the truth table of the system and obtain the 
Boolean functions of Q, R, and Z. Use VHDL and Verilog to describe 
the system.

7. Change the multiplier in Example 2.5 to multiply XY where X is three 
bits and Y is two bits. Find the Boolean function of the output and de-
scribe the system using VHDL and Verilog.

8. Write the VHDL and Verilog code describing the full subtractor shown 
in Example 2.2.

9. Use the conditional operator in Example 2.3b to describe a 2x1 multi-
plexer with active high enable. If the enable is inactive (low), the output 



C H A P T E R

BEHAVIORAL DESCRIPTION

3
Chapter Objectives

 Understand the concept of sequential statements and how they dif-
fer from concurrent statements

 Identify the basic statements and components of behavioral de-
scriptions such as process, variable-assignment statements if, 
case, casex, casez, when, report, $display, wait, loop, 

exit, next, always, repeat, forever, and initial
 Review and understand the basics of digital logic systems such as D 

flip-flop, JK flip-flop, T flip-flop, binary counters, and shift register
 Understand the concept of some basic genetic and renal systems
 Both VHDL and Verilog descriptions are discussed

3.1 Behavioral Description Highlights

In Chapter 2, data-flow simulations were implemented to describe dig-
ital systems with known digital structures such as adders, multiplexers, and 
latches. The behavioral description is a powerful tool to describe systems 
for which digital logic structures are not known or are hard to generate. 
Examples of such systems are complex arithmetic units, computer control 
units, and biological mechanisms that describe the physiological action of 
certain organs such as the kidney or heart.
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Facts

 The behavioral description describes the system by showing how out-
puts behave with the changes in inputs.

 In this description, details of the logic diagram of the system are not 
needed; what is needed is how the output behaves in response to a 
change in the input.

 In VHDL, the major behavioral-description statement is process. In 
Verilog, the major behavioral-description statements are always and 
initial.

 For VHDL, the statements inside the process are sequential. In Verilog, 
all statements are concurrent (see “Analysis of VHDL Code” in Ex-
ample 3.5).

3.2 Structure of the HDL Behavioral Description

Listing 3.1 shows a simple example of HDL code describing a system 
(half_add) using behavioral description. Usually sequential statements 
such as IF or Case are used to describe the change of the output; however, 
in this section, Boolean functions are used to describe the change. This is 
done here to explain how the HDL executes signal-assignment statements 
written inside process (VHDL) or inside always or initial (Verilog). The 
code in Listing 3.1 mainly consists of signal-assignment statements. 

Referring to the VHDL code, the entity half_add has two input ports, 
I1 and I2, and two output ports, O1 and O2. The ports are of type bit; 
this type is recognized by the VHDL package without the need to attach a 
library. If the type is std_logic, for example, the IEEE library must be at-
tached. The name of the architecture is behave_ex; it is bound to the entity 
half_add by the predefined word of. Process is the VHDL behavioral-
description keyword. Every VHDL behavioral description has to include a 
process. The statement process (I1, I2) is a concurrent statement, so its 
execution is determined by the occurrence of an event. I1 and I2 constitute 
a sensitivity list of the process. The process is executed (activated) only if 
an event occurs on any element of the sensitivity list; otherwise, the process 
remains inactive. If the process has no sensitivity list, the process is execut-
ed continuously. The process in Listing 3.1 includes two signal-assignment 
statements: statement 1 and statement 2. 
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All statements inside the body of a process are executed sequentially. 
Recall from Section 2.2 that the execution of a signal-assignment statement 
has two phases: calculation and assignment. The sequential execution here 
means sequential calculation, which means the calculation of a statement 
will not wait until the preceding statement is assigned; it will only wait until 
the calculation is done. To illustrate this sequential execution, refer to Fig-
ure 3.1. Assume that in Listing 3.1, at T = T0, 

I1 changes from 0 to 1, while 
I2 stays at 1. This change constitutes an event on I1, which in turn activates 
the process. Statement 1 is calculated as O1 = (I1 XOR I2) = (1 XOR 0) = 
1. Then, the value of O2 is calculated, still at T0, as (I1 and I2)= (1 and 0)= 
0. After calculation, the value of 1 is assigned to O1 after the delay of 10 ns 
at T0 +10 ns; the value of 0 is assigned to O2 after the delay of 10ns at T0 
+ 10ns. For the above example, both data-flow and behavioral descriptions 
yield the same output for the two signal-assignment statements. This is not 
the case when a signal appears on both the right-hand side of the statement 
and the left-hand side of another statement, which will be seen later.

Event on I1
activates the
process

1. Calculate for O1 (1 xor 0) = 1

2. Calculate for O2 (1 and 0) = 0

3. Assign O1 = 1 after 10 ns

4. Assign O2 = 0 after 10 ns

1. Calculate: O1 (1 xor 0) = 1, assign 1 to O1 after 10 ns

2. Calculate: O2 (1 and 0) = 0, assign 0 to O2 after 10 ns

I1

O1

O2

I2

10 ns

VHDL

Event on I1
activates
ALWAYS

I1

O1

O2

I2

10 ns

Verilog

FIGURE 3.1 Execution of signal-assignment statements inside process (VHDL) or inside always (Verilog).

Referring to the Verilog code in Listing 3.1, always is the Verilog behav-
ioral statement. In contrast to VHDL, all Verilog statements inside always 
are treated as concurrent, the same as in the data-flow description (see 
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Section 2.2). Also, here any signal that is declared as an output or appears 
at the left-hand side of a signal-assignment statement should be declared 
as a register (reg) if it appears inside always. In Listing 3.1, O1 and O2 are 
declared outputs, so they should also be declared as reg.

LISTING 3.1 Example of an HDL Behavioral Description

VHDL Description
entity half_add is
port (I1, I2 : in bit; O1, O2 : out bit);
-- Since we are using type bit, no need for attaching a
-- Library.
-- If we use std_logic, we should attach the IEEE
-- Library.

end half_add;
architecture behave_ex of half_add is
begin
process (I1, I2)
    begin
        O1 <= I1 xor I2 after 10 ns; -- statement 1
        O2 <= I1 and I2 after 10 ns; -- statement 2
-- The above two statements are signal-assignment
-- statements with 10 nanoseconds delays.
-- 
--Other behavioral (sequential) statements can be added
-- here
     end process;
end behave_ex;

Verilog Description
module half_add (I1, I2, O1, O2);
input I1, I2;
output O1, O2;
reg O1, O2;
/ Since O1 and O2 are outputs and they are
   written inside “always,” they should be
   declared as reg /

always @(I1, I2)
   begin
        #10 O1 = I1 ^ I2; // statement 1.
        #10 O2 = I1 & I2; // statement 2.



BEHAVIORAL DESCRIPTION • 83

/The above two statements are 
signal-assignment statements with 10 simulation screen units 
delay/
/Other behavioral (sequential) statements can be added here/
   end
endmodule

3.3 The VHDL Variable-Assignment Statement

The use of variables inside processes is a common practice in VHDL 
behavioral description. Consider the following two signal-assignment state-
ments inside a process, where S1, S2, and t1 are signals:

Signl : process(t1) 
begin
st1 : S1 <= t1;
st2 : S2 <= not S1;
end process;

In VHDL, a statement can be labeled, and the label should be followed 
by a colon. In the above code, Signl, st1, and st2 are labels. VHDL 
code in this example does not use these labels for compilation or simula-
tion; they are optional. Labels are used here to refer to a certain statement 
by its label. For example, to explain the statement S1 <= t1, it can be 
referred to by statement st1.

In the above code, signal S1 appears on both the left-hand side of state-
ment st1 and on the right-hand side of statement st2. Assume at simula-
tion time T

0, 
t1 = 0 and S1 = 0, and at simulation time T1, t1 changes 

from 0 to 1 (see Figure 3.2). This change constitutes an event, and the 
process labeled Signl is activated. For statement st1, S1 is calculated as 
1. S1 does not acquire this new value of 1 at T1, but rather at T1 + D. For 
statement st2, S2 at T1 is calculated using the old value of S1 (0). Alter-
nately, variable-assignment statements can be used instead of the above 
signal- assignment statement as follows:

Varb : process(t1)
variable temp1, temp2 : bit; -- This is a variable
                             -- declaration statement 
begin
  st3 : temp1 := t1; -- This is a variable assignment
                     -- statement
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st4 : temp2 := not temp1; -- This is a variable
                          -- assignment statement 
st5 : S1 <= temp1;
st6 : S2 <= temp2;
end process;

Signl: process(t1)
begin
st1: S1 <= t1;
st2: S2 <= not S1;
end process;

Varb: process(t1)
   variable temp1, temp2: bit;
   begin
   st3: temp1: = t1;
   st4: temp2: = not temp1;
   st5: S1 <= temp1;
   st6: S2 <= temp2;
   end process;

t1

T0 T1

S1

S2

t1

temp1

S1

S2

T0 T1

temp2

FIGURE 3.2 Signal versus variable in VHDL.

Variable-assignment statements, as in C language, are calculated and 
assigned immediately with no delay time between calculation and assign-
ment. The assignment operator is :=. If t1 acquires a new value of 1 at T

1, 

then momentarily temp1 = 1
 
and temp2 = 0. For statements st5 and 

st6, S1 acquires the value of temp1 (1) at T1 + D, and S2 acquires the 
value of temp2 (0) at T1 + D. Because D is infinitesimally small, S1 and 
S2 appear on the simulation screen as if they acquire their new values at T

1
.
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3.4 Sequential Statements

There are several statements associated with behavioral descriptions. 
These statements have to appear inside process in VHDL or inside always 
or initial in Verilog. The following sections discuss some of these state-
ments.

3.4.1 IF Statement
IF is a sequential statement that appears inside process in VHDL or 

inside always or initial in Verilog. It has several formats, some of which 
are as follows:

VHDL IF-Else Formats
if (Boolean Expression) then
statement 1;
statement 2; 
statement 3;
.......
   else
statement a;
statement b; 
statement c;
.......
end if;

Verilog IF-Else Formats
if (Boolean Expression)
begin
   statement 1; / if only one statement, begin and end
                   can be omitted /
   statement 2;
   statement 3; 
....... 
end
   else
begin
   statement a; / if only one statement, begin and end
                   can be omitted /
   statement b;
   statement c;
.......
end
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The execution of IF statement is controlled by the Boolean expression. 
If the Boolean expression is true, then statements 1, 2, and 3 are executed. 
If the expression is false, statements a, b, and c are executed.

EXAMPLE 3.1 BOOLEAN EXPRESSION AND EXECUTION OF IF 

VHDL
if (clk = ‘1’) then
temp := s1;
else
temp := s2;
end if;

Verilog
if (clk == 1’b1)
// 1’b1 means 1-bit binary number of value 1.
temp = s1;
else
temp = s2;

In Example 3.1, if clk is high (1), the value of s1 is assigned to the 
variable temp. Otherwise, s2 is assigned to the variable temp. The else 
statement can be eliminated, and in this case, the IF statement simulates a 
latch, as shown in Example 3.2.

EXAMPLE 3.2  EXECUTION OF IF AS A LATCH 

VHDL

if clk = ‘1’ then
    temp := s1;
end if;

Verilog

if (clk == 1)
begin
   temp = s1;
end

If clk is high, the value of s1 is assigned to temp. If clk is not high, 
temp retains its current value, thus simulating a latch. Another format for 
the IF statement is Else-IF.
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EXAMPLE 3.3 EXECUTION OF IF AS ELSE-IF 

VHDL

if (Boolean Expression1) then
statement1; statement2;...
elsif (Boolean expression2) then
statement i; statement ii;...
else
statement a; statement b;...
end if;

Verilog
if (Boolean Expression1)
begin
   statement1; statement 2;.....
end
else if (Boolean expression2)
begin
   statementi; statementii;.....
end
else
begin
   statementa; statement b;....
   end

EXAMPLE 3.4 IMPLEMENTING ELSE-IF

VHDL 

if signal1 =‘1’ then
temp := s1;   
elsif signal2 = ‘1’ then
temp := s2;
else
temp := s3;
end if;

Verilog
if (signal1 == 1’b1)
temp = s1;
else if (signal2 == 1’b1)
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temp = s2;
else
temp = s3;

After execution of the above IF statement, temp acquires the values 
shown in Table 3.1.

TABLE 3.1 Output Signals (temp) for Else-IF Statements in Example 3.4

signal1 signal2 temp =
0 0 s3
1 0 s1
0 1 s2
1 1 s1

The Boolean expression may specify other relational operations such 
as inequality or greater than or less than (see Chapter 1 for details on rela-
tional operators). 

To illustrate the difference between signal- and variable-assignment 
statements in VHDL code, the behavioral description of a D-latch is writ-
ten in Example 3.5. A process is written based on signal-assignment state-
ments, and another process is written based on variable-assignment state-
ments. A comparison of the simulation waveforms of the two processes will 
highlight the differences between the two assignment statements.

EXAMPLE 3.5  BEHAVIORAL DESCRIPTION OF A LATCH USING 
VARIABLE AND SIGNAL ASSIGNMENTS

The functionality of a D-latch can be explained as follows: if the enable 
(E) is active, the output of the latch (Q) follows the input (d); otherwise, 
the outputs remain unchanged. Also, Qb, the invert output, is always the 
invert of Q. Figure 3.3a shows the logic symbol of a D-latch. A flowchart 
that illustrates this functionality is shown in Figure 3.3b. Listing 3.2 shows 
the VHDL code of the D-latch using variable-assignment statements. 

LISTING 3.2 VHDL Code for Behavioral Description of D-Latch Using 
Variable-Assignment Statements

entity DLTCH_var is
     port (d, E : in bit; Q, Qb : out bit);
-- Since we are using type bit, no need for attaching a
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-- Library. If std_logic is used, IEEE library should be
--attached
end DLTCH_var;
architecture DLCH_VAR of DLTCH_var is
begin
VAR : process (d, E)
variable temp1, temp2 : bit;
begin
    if E = ‘1’ then
    temp1 := d; -- This is a variable assignment statement.
    temp2 := not temp1; -- This is a variable assignment
                        -- statement.
end if;
Qb <= temp2; -- Value of temp2 is passed to Qb
Q <= temp1; -- Value of temp1 is passed to Q
end process VAR;
end DLCH_VAR;

Figure 3.4 shows the waveform for Listing 3.2. Clearly, from the wave-
form, the code correctly describes a D-latch where Q follows d when E is 
high; otherwise, d retains its previous value. Also, Qb is the invert of Q at all 

Q

Qb

d

E

D-Latch

 

E = 1?

Read
input d,E

Q,Qb retain
previous values

Q = d
Qb = not Q

NO

YES

 (a) (b)
FIGURE 3.3 D-Latch. a) Logic symbol. b) Flowchart.
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times.

d

E

Q

Qb

0 50 100 150 200
Time ns

250 300 350

FIGURE 3.4 Simulation waveform of a D-Latch using variable-assignment statements. The waveform 
correctly describes a D-latch.

Next, the same VHDL code from Listing 3.2 is rewritten using signal-assign-
ment statements. Listing 3.3 shows the VHDL behavioral code for a D-Latch 
using signal-assignment statements.

LISTING 3.3 VHDL Code for Behavioral Description of a D-Latch Using 
Signal-Assignment Statements

entity Dltch_sig is
port (d, E : in bit; Q : buffer bit; Qb : out bit);
--Q is declared as a buffer because it is an
--input/output signal; it appears on both the left
-- and right hand sides of assignment statements.
end Dltch_sig;
architecture DL_sig of Dltch_sig is
begin
process (d, E)
    begin
    if E = ‘1’ then
       Q <= d; -- signal assignment
       Qb <= not Q; -- signal assignment
    end if;
end process;
end DL_sig;

Figure 3.5 shows the simulation waveform of Listing 3.3. The figure shows Q is 
following Qb, which is an error because Qb should be the invert of Q. This error 
is due to the sequential execution of the signal-assignment statements in the 
behavioral description (see details below).
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FIGURE 3.5 Simulation waveform of a D-Latch using signal-assignment statements. Qb is following Q
instead of being the invert of Q.

3.4.1.1 Analysis of VHDL Code in Listings 3.2 and 3.3

The variable-assignment statements in Listing 3.2 are temp1 := d and 
temp2 := not temp1. Referring to Figure 3.4, at simulation time T = 0 
ns, initial values are: E = 0, d = 0, Q = 0, and Qb = 0. At T = 50 ns, signal E 
changes from 0 to 1. Because temp1 and temp2 are variables, they instanta-
neously acquire their new values 1 and 0, respectively. These correct values 
are passed to Q and Qb.

Listing 3.3 shows two signal-assignment statements inside the body of 
the process, Q <= d and Qb <= not q. Initial values at T  50 ns are: E = 0, 
d = 0, Q = 0, and Qb = 0. Recall that execution of a signal-assignment state-
ment inside a process is done in two phases (calculation and assignment). 
At T = 50 ns, E changes from 0 to 1, and d is 1 at T = 50 ns. Q is calculated 
as Q = d = 1. Q does not acquire this new value of 1 at T = 50 ns but at T = 
50 + . At T = 50 ns, Qb is calculated as 1 (using the old value of Q because 
Q has not yet acquired its new value of 1). After calculation, a value of 1 is 
assigned to Q, and the same (wrong) value of 1 is assigned to Qb.

One of the major differences between VHDL and Verilog is that Ver-
ilog treats all signal-assignment statements as concurrent, whether they are 
written as data flow or inside the body of always. Listing 3.4 shows the 
Verilog code for a D-latch; the code generates the same waveform as in 
Figure 3.4.

LISTING 3.4 Verilog Code for Behavioral Description of a D-Latch

module D_latch (d, E, Q, Qb);
input  d, E;
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output Q, Qb;
reg Q, Qb;
always @ (d, E)
begin
    if (E == 1)
        begin
        Q = d;
        Qb = ~ Q; 
        end
end
endmodule

EXAMPLE 3.6  BEHAVIORAL DESCRIPTION OF A 2x1 MULTIPLEXER WITH 
TRI-STATE OUTPUT

To describe the behavior of the output of a multiplexer with the change 
in the input, a flowchart is developed. Figure 3.6a shows the logic symbol 
of the multiplexer, and Figure 3.6b shows diagram a flowchart describing 
the functionality of the multiplexer. The flowchart shows how the output 
behaves with the input. The output is high impedance if the enable (Gbar) 
is high. When the enable is low, the output is equal to input B if select is 
high; otherwise, the output is equal to A. The logic diagram of the multi-
plexer is not needed to write the HDL behavioral description. Although the 
flowchart here represents a 2x1 multiplexer, it can represent any other ap-
plications that have the same behavior; these applications may come from 
a variety of fields such as electrical engineering, computer engineering, 
science, business, biomedical engineering, and many other fields. In this 
example, for simplicity, the propagation delays between the input and the 
output are not considered.

Listing 3.5 shows the HDL description of the multiplexer using the 
IF-Else statement, and Listing 3.6 shows the HDL description with the 
Else-IF statement. The VHDL code uses variable-assignment statements 
to declare the variable temp; this variable is treated as if it is the output. 
After calculation of its value, the variable is assigned to the output Y. VHDL 
executes variable-assignment statements, as does C language; no delay time 
is involved in the execution. The signal-assignment statements Y <= ‘Z’; 
in VHDL and Y = 1’bz; in Verilog assign high impedance to the single-
bit Y. If Y is a three-bit signal, then the two statements in VHDL and Ver-
ilog are Y <= “ZZZ”; and Y = 3’bzzz;, respectively. Figure 3.7 shows 
the simulation waveform of the multiplexer.
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LISTING 3.5 HDL Description of a 2x1 Multiplexer Using IF-Else
VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity MUX_if is
port (A, B, SEL, Gbar : in std_logic; 
           Y : out std_logic); 
end MUX_if;
architecture MUX_bh of MUX_if is
begin
process (A, B, SEL, Gbar)
-- A, B, SEL, and Gbar are the sensitivity list of the process.
   variable temp : std_logic;   
-- Above statement is declaring temp as a variable; it
-- will be calculated as if it is the output of the

Y

A

B

2x1
Mux

SEL

Gbar

 

Gbar = 0?

Read
A, B, SEL, 

Gbar

Y = high
Impedance

Y = A

Y = B

SEL = 1?

NO

NO

YES

YES

 (a) (b)
FIGURE 3.6 2x1 Multiplexer. a) Logic symbol. b) Flow chart.
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-- multiplexer.
begin
    if Gbar = ‘0’ then
        if SEL = ‘1’ then
            temp := B;
            else
            temp := A;
        end if;
--Now assign the variable temp to the output
    Y <= temp;
    else
    Y <= ‘Z’;
    end if; 
end process;
end MUX_bh;

Verilog Description
module mux2x1 (A, B, SEL, Gbar, Y);
input A, B, SEL, Gbar;
output Y;
reg Y;
always @ (SEL, A, B, Gbar)
begin
    if (Gbar == 1)
    Y = 1’bz;
    else
    begin
        if (SEL)
        Y = B;

        else
        Y = A;
    end
end
endmodule

LISTING 3.6 HDL Description of a 2x1 Multiplexer Using Else-IF
VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity MUXBH is
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    port (A, B, SEL, Gbar : in std_logic; 
    Y : out std_logic);
end MUXBH;
architecture MUX_bh of MUXBH is
begin
process (SEL, A, B, Gbar) 
variable temp : std_logic; 
   begin
       if (Gbar = ‘0’) and (SEL = ‘1’) then
       temp := B;
       elsif (Gbar = ‘0’) and (SEL = ‘0’)then 
       temp := A; 
       else
       temp := ‘Z’; -- Z is high impedance. 
   end if;
   Y <= temp;
end process;
end MUX_bh;

Verilog Description
module MUXBH (A, B, SEL, Gbar, Y);
input A, B, SEL, Gbar;
output Y;
reg Y; / since Y is an output and appears inside
       always, Y has to be declared as reg( register) /

always @ (SEL, A, B, Gbar)
begin
    if (Gbar == 0 & SEL == 1)
    begin
        Y = B;
    end
    else if (Gbar == 0 & SEL == 0)
    Y = A;
    else
    Y = 1’bz; //Y is assigned to high impedance
end
endmodule
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FIGURE 3.7 Simulation waveform of a 2x1 multiplexer.

3.4.2 The case Statement
The case statement is a sequential control statement. It has the follow-

ing format:

VHDL Case Format
case (control-expression) is 
when test value or expression1 => statements1;
when test value or expression2 => statements2;
when test value or expression3 => statements3;
when others => statements4;
end case;

Verilog Case Format
case (control-expression)
test value1 : begin statements1; end
test value2 : begin statements2; end
test value3 : begin statements3; end
default : begin default statements end
endcase

If, for example, test value1 is true (i.e., it is equal to the value of the 
control expression), statements1 is executed. The case statement must 
include all possible conditions (values) of the control-expression. The 
statement when others (VHDL) or default (Verilog) can be used to 
guarantee that all conditions are covered. The case resembles IF except 
the correct condition in case is determined directly, not serially as in IF 
statements. The begin and end are not needed in Verilog if only a single 
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statement is specified for a certain test value. The case statement can be 
used to describe data listed into tables.

EXAMPLE 3.7 THE CASE STATEMENT

VHDL
case sel is
when “00” => temp := I1; 
when “01” => temp := I2;
when “10” => temp := I3;
when others => temp := I4; 
end case;

Verilog
case sel
2’b00 : temp = I1;
2’b01 : temp = I2;
2’b10 : temp = I3;
default : temp = I4;
endcase

In Example 3.7, the control is sel. If sel = 00, then temp = I1, if sel 
= 01, then temp = I2, if sel = 10, then temp = I3, if sel = 11 (others or de-
fault), then temp = I4. All four test values have the same priority; it means 
that if sel = 10, for example, then the third (VHDL) statement (temp := 
I3) is executed directly without checking the first and second expressions 
(00 and 01).

EXAMPLE 3.8  BEHAVIORAL DESCRIPTION OF A POSITIVE EDGE-TRIG-
GERED JK FLIP-FLOP USING THE CASE STATEMENT

Edge-triggered flip-flops are sequential circuits. Flip-flops are trig-
gered by the edge of the clock, in contrast to latches where the level of the 
clock (enable) is the trigger. Positive (negative) edge-triggered flip-flops 
sample the input only at the positive (negative) edges of the clock; any 
change in the input that does not occur at the edges is not sampled by the 
output. Figures 3.8a and 3.8b show the logic symbol and the state diagrams 
of a positive edge-triggered JK flip-flop, respectively.
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FIGURE 3.8 JK flip-flop. a) Logic symbol. b) State diagram.

Table 3.2 shows the excitation table of the JK flip-flop. It conveys the 
same information as the state diagram. The state diagram (Figure 3.8b) 
shows the possible states (two in this case: q can take 0 or 1), state 0 and 
state 1. The transition between these states has to occur only at the positive 
edges of the clock. If the current state is 0 (q = 0), then the next state is 0(1) 
if JK = 0x(1x), where x is “don’t care.” If the current state is 1 (q = 1), then 
the next state is 1(0) if JK = x0(x1). Table 3.2 shows the same results as the 
state diagram. For example, a transition from 0 to 1, according to the excita-
tion table, can occur if JK = 10 or JK = 11, which is JK = 1x.

TABLE 3.2 Excitation Table of a Positive Edge-Triggered JK Flip-Flop

J K clk q (next state)
0 0 � No change (hold), next = current
1 0 � 1
0 1 � 0
1 1 � Toggle (next state) = invert of (current state)
x x no +ve edge No change (hold), next = current

Listing 3.7 shows the HDL code for a positive edge-triggered JK flip-
flop using the case statement. In the Listing, rising_edge (VHDL) and 
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posedge (Verilog) are predefined words called attributes. They represent 
the positive edge of the clock (clk). If the positive edge is present, the at-
tribute yields to true. For VHDL, the clk has to be in std_logic to use 
this attribute. Other attributes are covered in Chapters 4, 6, and 7. Any of 
the four case statements can be replaced with others (VHDL) or default 
(Verilog). For example:

when “00” => temp1 := temp1; -- VHDL
2’d3 : q =~ q;               // Verilog

can be replaced by:
when others => temp1 := not temp1; -- VHDL
default : q =~ q;                  // Verilog

Because others here refers to 00, this replacement does not change 
the output of the simulation as long as J and K values are either 0 or 1. The 
waveform of the flip-flop is shown in Figure 3.9.

clk

JK 01 10 00 11

Q

Qb

FIGURE 3.9 Simulation waveform of a positive edge-triggered JK flip-flop.

LISTING 3.7 HDL Code for a Positive Edge-Triggered JK Flip-Flop Using the 
case Statement

VHDL Description
library ieee;
use ieee.std_logic_1164.all;
entity JK_FF is
port(JK : in bit_vector (1 downto 0);
clk : in std_logic; q, qb : out bit);
end JK_FF;
architecture JK_BEH of JK_FF is
begin 
P1 : process (clk) 
variable temp1, temp2 : bit;
begin
if rising_edge (clk) then
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case JK is 
when “01” => temp1 := ‘0’;
when “10” => temp1 := ‘1’;
when “00” => temp1 := temp1;
when “11” => temp1 := not temp1;
end case;
q <= temp1; 
temp2 := not temp1;
qb <= temp2;
end if; 
end process P1;
end JK_BEH;

Verilog Description
module JK_FF (JK, clk, q, qb);
input [1:0] JK;
input clk;
output q, qb;
reg q, qb;
always @ (posedge clk)
begin
    case (JK)
    2’d0 : q = q;
    2’d1 : q = 0;
    2’d2 : q = 1;
    2’d3 : q =~ q;
    endcase
 qb =~ q;
 end

 endmodule

EXAMPLE 3.9  BEHAVIORAL DESCRIPTION OF A THREE-BIT BINARY 
COUNTER WITH ACTIVE HIGH SYNCHRONOUS CLEAR

Counters are sequential circuits. For count-up counters (or simply up 
counters), the next state is the increment of the present state. For example, 
if the present state is 101, then the next state is 110. For down-count coun-
ters (or simply down counters), the next state is the decrement of the pres-
ent state. For example, if the present state is 101, then the next state is 100. 
A three-bit binary up counter counts from 0 to 7 (Mod 8). Decade counters 



BEHAVIORAL DESCRIPTION • 101

count from 0 to 9 (Mod10). Synchronous clear means that clear resets the 
counter when the clock is active; in contrast, asynchronous clear resets the 
counter instantaneously. The counter can be depicted by a flowchart show-
ing its function (see Figure 3.10). Although the flowchart here represents 
a counter, it could have represented any other system with the same be-
havior. The excitation table for the three-bit binary counter is as shown in 
Table 3.3. The logic symbol is shown in Figure 3.10a.

q0q1q2

clk
clr

Three-bit counter



+ve edge
(clk)?

Read
current state

Q = 0

Next state = (current + 1)Mod8

clear = 1?

NO

NO

YES

YES

 (a) (b)
FIGURE 3.10 a) Logic symbol of a three-bit counter with clear. b) Flowchart.

TABLE 3.3 Excitation Table of a Three-Bit Binary Counter with Synchronous Active High Clear

clk
Input
clr Current State

Output
Next State 

� H xxx 000
� L 000 001
� L 001 010
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clk
Input
clr Current State

Output
Next State 

� L 010 011
� L 011 100
� L 100 101
� L 101 110
� L 110 111
� L 111 000
L x hold

The most efficient approach to describe the above counter is to use the 
fact that the next state is the increment of the present for upward counting. 
The goal here, however, is to use the case statement. Table 3.3 is treated as 
a look-up table. Listing 3.8 shows the HDL code for the counter. To assign 
initial values, such as 101, to the count at the start of simulation in Verilog, 
the procedural initial is used as follows:

  initial
  begin
  q = 3’b101;
  end

The begin and end can be omitted if there is a single initial state-
ment. 

In VHDL, the initial value is assigned to the variable temp after the 
statement process, as shown:

  ctr : process (clk)
  variable temp : std_logic_vector (2 downto 0) := “101”;
  begin

Any value assigned to a variable written between process and its begin 
is acquired only once at the beginning of the simulation; subsequent execu-
tion of the process will not reassign that value to the variable unless a new 
simulation is executed. Figure 3.11 shows the simulation waveform of the 
counter.

LISTING 3.8 HDL Code for a Three-Bit Binary Counter Using the case 
Statement

  VHDL Description
  library IEEE;
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  use IEEE.STD_LOGIC_1164.ALL;
  entity CT_CASE is
  port (clk, clr : in std_logic; 
        q : buffer std_logic_vector (2 downto 0));
  end CT_CASE;
  architecture ctr_case of CT_CASE is
  begin
  ctr : process(clk)
  variable temp : std_logic_vector (2 downto 0) := “101”;
  --101 is the initial value, so the counter starts from
  -- 110
  begin
      if rising_edge (clk) then
      if clr = ‘0’ then
          case temp is
              when “000” => temp := “001”;
              when “001” => temp := “010”;
              when “010” => temp := “011”;
              when “011” => temp := “100”;
              when “100” => temp := “101”;
              when “101” => temp := “110”;
              when “110” => temp := “111”;
              when “111” => temp := “000”;
              when others => temp := “000”;
          end case;
      else
      temp := “000”;
  end if;
  end if;
  q <= temp;
  end process ctr;
 
  end ctr_case;
 
  Verilog Description
  module CT_CASE (clk, clr, q);
  input clk, clr;
 
  output [2:0] q;
  reg [2:0] q;
  initial 
  / The above initial statement is to force 
  the counter to start from initial count q=110 /
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  q = 3’b101;
  always @ (posedge clk)
  begin
  if (clr == 0)
  begin
      case (q)
          3’d0 : q = 3’d1;
          3’d1 : q = 3’d2;
          3’d2 : q = 3’d3;
          3’d3 : q = 3’d4;
          3’d4 : q = 3’d5;
          3’d5 : q = 3’d6;
          3’d6 : q = 3’d7;
          3’d7 : q = 3’d0;
      endcase
 end
 else
 q = 3’b000;
 end
 endmodule

clk

q

clr

5 6 7 0 1 2 3 4 510
FIGURE 3.11 Simulation waveform of a three-bit positive edge-triggered counter with active high 
synchronous clear.

EXAMPLE 3.10A  MODELING THE GENOTYPE AND PHENOTYPE OF 
HUMAN BLOOD USING BIT_VECTOR

In this example, some biomedical engineering applications are consid-
ered. The example is about determining the blood type of a child given the 
blood type of the parents. First, consider some biological definitions to help 
in understanding the example:

 Cells: The simplest basic structural units that make up all living things.

 Chromosomes: Rod-like structures that appear in the nucleus of the 
cell, they contain the genes responsible for heredity. Humans have a 
total 46 different chromosomes in most cells: 23 paternal (from the fa-
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ther) and 23 maternal (from the mother). Sex cells (sperm and ova) each 
contain half the total number of chromosomes (i.e., 23).

 Deoxyribonucleic acid (DNA): A polymer of deoxyribonucleotides 
in the form of a double helix. It is the genetic molecule of life and codes 
the sequence of amino acids in proteins. Only identical twins have iden-
tical DNA. Otherwise, DNA differs from one person to another.

 Gametes: Sex cells that contain half of the number of chromosomes. 
In humans, these cells comprise the genetic makeup of eggs and sperm. 
Each gamete cell contains 23 chromosomes. When a male mates with a 
female, the two sex cells (egg and sperm) combine to form a single cell 
called a zygote. Gametes for blood types have a single allele: A, B, or O.

 Gene: A heritable unit in a chromosome, it is a series of nucleotide 
bases on the DNA molecule that codes for polypeptides (chains of 
amino acids). Humans have about 30,000 genes.

• Allele: An alternate form of a gene.

• Codominant alleles: Both alleles are expressed equally. The alleles 
for blood types A and B are codominant. If combined from a male 
and a female, the children will be blood type AB.

• Dominant allele: An allele that, if combined with other recessive 
alleles, suppresses their expressions. In blood types, alleles A and B 
are dominant.

• Recessive allele: An allele that, if combined with other dominant 
alleles, is suppressed. For example, the brown-eye allele is dominant 
to the blue-eye allele. If a male with blue eyes mates with a female 
with brown eyes, their children (assuming complete dominance of 
the brown-eye allele) will have brown eyes. For blood types, the O 
allele is recessive to A and B.

 Genotype: The type of alleles in the cell. In the blood example, geneo-
type is the concatenation of the parental and maternal alleles such as 
AO, AB, OO.

 Heterozygous in a gene: Two different alleles are inherited. For 
blood types, heterozygous alleles can be AB, AO, or BO.

 Homozygous genes: These cells contain the same alleles of the gene. 
A person who is homozygous for the brown-eye gene has inherited two 
alleles for brown eyes, one from their mother and one from their father. 
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A person who is homozygous for blood type A has two A alleles, one 
parental and one maternal.

 Phenotype: The expression that results from allele combinations. For 
example, the phenotype of the genotype AO is blood type A because A 
is dominant and O is recessive. The phenotype of genotype AB is blood 
type AB because A and B are codominant.

To find all possible genotypes and phenotypes of human blood, a table 
is constructed to show all possible blood alleles (A, B, O) from male and 
female gametes. Then, determine the offspring’s genotype. From the geno-
type, the phenotype is determined according to the type of allele (recessive, 
dominant, or codominant). Table 3.4a shows all possible genotypes, and 
Table 3.4b shows all possible phenotypes for the offspring.

TABLE 3.4 Genotypes and Phenotypes of Human Blood

A. Genotypes 
♂ A B O
�♀
A AA AB AO
B AB BB BO
O AO BO OO

B. Phenotype 
 �♂ A B O
�♀
A A AB A
B AB B B
O A B O

Tables 3.4a and 3.4b are look-up tables, and the case statement can 
be used to describe the table. Listing 3.9 shows the code for describing the 
genotypes and phenotypes using case. As shown in the Listing, the alleles 
are decoded into two bits and entered in the entity as type bit_vector; the 
output it is decoded in three bits and entered in the entity as a three-bit 
vector. The two statements

 geno := allelm & allelf; -- VHDL
 geno = {allelm , allelf}; // Verilog

concatenate allelm and allelf into one vector, geno, using the concat-



BEHAVIORAL DESCRIPTION • 107

enation operator & for VHDL or { , } for Verilog (see Section 1.5.3). For ex-
ample, if allelm = 10, and allelf = 11, after concatenation, geno = 1011.

LISTING 3.9 HDL Code for Genotypes and Phenotypes Using the case State-
ment: VHDL and Verilog

This program takes the blood genotypes (alleles) of a male and a female 
and generates the  possible blood phenotypes of their offspring. The state-
ment report (VHDL) or display (Verilog) is used to print the phenotype 
on the screen of the simulator. The male allele is allelm, and allelf is the 
female allele. Both allelm and allelf are decoded as 00 for genotype A, 
01 for B, or 10 for O. Phenotype A is decoded as 000, B as 001, AB as 010, 
O as 011, and an illegal allele entry as 111. Figure 3.12 shows the simulation 
waveform for genotypes and phenotypes of human blood.

VHDL Description
library ieee;
use ieee.std_logic_1164.all;
entity Bld_type is
     port (allelm, allelf : in bit_vector (1 downto 0);
         pheno : out bit_vector (2 downto 0));
end Bld_type;
architecture GEN_BLOOD of Bld_type is
begin
Bld : process (allelm, allelf)
variable geno : bit_vector(3 downto 0);
begin
     geno := allelm & allelf;

-- The operator (&) concatenates the two 2-bit vectors 
-- allelf and allelm into one 4-bit vector geno.

     case geno is
     when “0000” => pheno <= “000”;
     report “phenotype is A “;
--report statement is close to printf in C language. 
--The statement here prints on the screen whatever 
--written between the quotations.
     when “0001” => pheno <= “010”;
     report “phenotype is AB “;
     when “0010” => pheno <= “000”;
     report “phenotype is A “;
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     when “0100” => pheno <= “010”;
     report “phenotype is AB “;
     when (“0101”) => pheno <= “001”;
     report “phenotype is B “;
     when (“0110”) => pheno <= “001”;
     report “phenotype is B “;
     when “1000” => pheno <= “000”;
     report “phenotype is A “;
     when (“1001”) => pheno <= “001”;
     report “phenotype is B “;
     when “1010” => pheno <= “011”;
     report “phenotype is O “;
     when others =>pheno <= “111”;
     report “illegal allele entry “;
end case;
end process;
end GEN_BLOOD;

Verilog Description
module bld_type (allelm, allelf, pheno);
input [1:0] allelm, allelf;
output [2:0] pheno;
reg [2:0] pheno;
reg [3:0] geno;
always @ (allelm, allelf)
begin

geno = {allelm , allelf};
/ { , } concatenates the two 2-bit vectors 
allelm and allelf into one 4-bit vector geno /
case (geno)
4’d0 : begin pheno = 3’d0;
$display (“phenotype is A “); end
4’d1 : begin pheno = 3’d2;
$display (“phenotype is AB “); end
/ $display statement is close to printf in C language. 
The statement here prints on the screen whatever 
written between the quotations./

4’d2 : begin pheno = 3’d0;
$display (“phenotype is A “); end



BEHAVIORAL DESCRIPTION • 109

4’d4 : begin pheno = 3’d2;
$display (“phenotype is AB “); end
4’d5 : begin pheno = 3’d1;
$display (“phenotype is B “); end
4’d6 : begin pheno = 3’d10;
$display (“phenotype is B “); end
4’d8 : begin pheno = 3’d0;
$display (“phenotype is A “); end
4’d9 : begin pheno = 3’d1;
$display (“phenotype is B “); end
4’d10 : begin pheno = 3’d3;
$display (“phenotype is O “); end
default: begin pheno = 3’d7;
$display (“illegal allele entry “); end
endcase
end
endmodule

allelm

allelf

11 10

10

01 00 00 11 10 01 00

00

01

01

11 10

geno 1110 1010 0110 0010 0001 1100 1000 0100 000001011101 1001

pheno 111 011 001 000 010 111 000 010 000001111 001
FIGURE 3.12 Simulation waveforms for genotypes and phenotypes of human blood. The phenotype is also 
printed (not shown here) on the main screen of the simulator.

EXAMPLE 3.10B  MODELING THE GENOTYPE AND PHENOTYPE OF 
HUMAN BLOOD USING CHARACTER TYPE

In Listing 3.9, the inputs allelm and allelf and the output pheno had 
to be decoded into bits so they can be entered as bit_vector. Reading the 
code in decoded bits is not easy because the reader has to memorize what 
code was given to each signal. Using charcter type (see Section 1.6.1.1) is 
more convenient in this case because reading the alleles as A, B, and O is 
more convenient than reading them as 00, 01, and 10.

For VHDL, the string type is used to declare a signal in characters; it 
resembles bit_vector, but the elements are ASCII characters rather than 
bits. If the signal is six charcters in length, for example, the string is de-
clared as string (1 to 6). The double quotaion mark is used to assign the 
value of the signal in ASCII such as “ABCDEF.”
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For Verilog, each ASCII character is represented by eight bits (two hex 
digits). In Listing 3.10, allelm is represented as one character (two hex 
digits); the output pheno is represented to two charcters (four hex digits of 
a total of sixteen bits). The character assignment, same as in VHDL, is done 
between double quotations. Figure 3.13 shows the simulation waveform of 
Listing 3.10.

LISTING 3.10 HDL Code for Genotypes and Phenotypes Using the case 
Statement and Character Type

VHDL Description

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity bld_charctr is
port ( allelem, allelef : in string(1 to 1) ; 
pheno : out string (1 to 2));
end bld_charctr;
architecture Bld_beh of bld_charctr is

begin

process (allelem, allelef)

variable geno: string (1 to 2);
begin
geno := (allelem & allelef);
case (geno ) is
when “AA” => pheno <= “A “;
when “AB” => pheno <= “AB”;
when “AO” => pheno <= “A “;

allelm

allelf

? O

O

B A A ? O B A

A

B

B

? O

geno ?? OO BO AO AB ?? OA BA AABB?? OB

pheno ? O B A AB ? A AB AB? B

FIGURE 3.13 Simulation waveforms for genotypes and phenotypes of human blood using character type. 
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when “BA” => pheno <= “AB”;
when “BB” => pheno <= “B “;
when “BO” => pheno <= “B “;

when “OA” => pheno <= “A “;
when “OB” => pheno <= “B “;
when “OO” => pheno <= “O “;

when others => pheno <= “??”;
end case;

end process;
end Bld_beh;

Verilog Description
module Bld_typeCharctr(allelm, allelf, pheno);

input [8:1] allelm, allelf;
output [28:1] pheno;

reg [28:1] pheno; /Since phenol is two characters; 
      two ASCII characters are allocated to it./
reg [28:1] geno;
always @ (allelm, allelf)
begin

geno = {allelm , allelf}; 

case (geno)
“AA”: pheno = “A “; 
“AB”: pheno = “AB”; 
“AO”: pheno = “A “; 
“BB”: pheno = “B “; 
“BA”: pheno = “AB”; 
“BO”: pheno = “B “; 
“OA”: pheno = “A “; 
“OB”: pheno = “B “; 
“OO”: pheno = “O “; 
default : pheno = “??”; //?? means invalid entry

endcase
end
endmodule
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3.4.2.1 Verilog casex and casez

Section 3.2.3 covered the case statement for both VHDL and Verilog. 
Verilog has another two variations of case: casex and casez. casex ig-
nores the “don’t care” values of the control expression, and casez ignores 
the high impedance in the control expression. For example, in the code

casex (a)
4’bxxx1: b = 4’d1; 
4’bxx10: b = 4’d2;
………………..
 endcase;

all occurrences of x are ignored; b = 1 if and only if the least significant 
bit of a (bit order 0) is 1, regardless of the value of the higher order bits of 
a, and b = 2 if the bits of order 0 and 1 are 10, regardless of the value of all 
other bits. For the Verilog variation casez, all high-impedance values (z) in 
control expressions are ignored. For example:

casez (a)
4’bzzz1 : b = 4’d1; 
4’bzz10 : b = 4’d2;
………………..
endcase;

b = 1 if and only if the least significant bit (bit of order 0) of a = 1, and 
b = 2 if bit 0 of a = 0 and bit 1 of a = 1.

EXAMPLE 3.11  VERILOG DESCRIPTION OF A PRIORITY ENCODER USING 
CASEX

A priority encoder encodes the inputs according to a priority set by 
the user, such as when the input represents interrupt requests. If two or 
more interrupt requests are issued at the same time by the devices needing 
service, and the central processing unit (CPU) can only serve one device at 
a time, then one of these requests should be given priority over the others 
and be served first. A priority encoder can handle this task. The input to 
the encoder is the interrupt requests, and the output of the encoder can be 
memory addresses where the service routine is located or an address lead-
ing to the actual address of the routines. Table 3.5 shows the truth table of a 
four-bit encoder; bit 0 of input a has the highest priority. Listing 3.11 shows 
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the Verilog description for a four-bit priority encoder. Figure 3.14 shows 
the simulation waveform of Listing 3.11.

TABLE 3.5 Truth Table for Four-Bit Encoder

Input Output
a b
xxx1 1
xx10 2
x100 4
1000 8
Others 0

LISTING 3.11 Verilog Description for a Four-Bit Priority Encoder Using 
casex

module Encoder_4 (Int_req, Rout_addrs);
input [3:0] Int_req;
output [3:0] Rout_addrs;
reg [3:0] Rout_addrs;

always @ (Int_req)
begin
casex (Int_req)
4’bxxx1 : Rout_addrs=4’d1; 
4’bxx10 : Rout_addrs=4’d2;
4’bx100 : Rout_addrs=4’d4;
4’b1000 : Rout_addrs= 4’d8;
default : Rout_addrs=4’d0;

endcase
end

endmodule

Int_req

Rout_addrs 0001 0010 1000 0001 0100 0001 0000 0010

1111 1110 1000 0011 1100 0101 0000 0110

FIGURE 3.14 Simulation waveform of a four-bit priority encoder.
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3.4.3 The wait-for Statement
The wait statement has several formats; in this section, only wait for a 

time period is discussed. For example:

VHDl : wait for 10 ns;

Verilog # 10;

The wait statement can be implemented to generate clocks, as it is 
usually common in bench marks. Listing 3.12 shows an example of using 
the wait-for statement to generate three different clocks: a with a period 
of 20 ns, b with a period of 40 ns, and c with a period of 80 ns. Note that if 
a process (VHDL) or always (Verilog) does not have a sensitivity list, this 
process or always will run indefinitely. Figure 3.15 shows the waveform 
of Listing 2.12.

LISTING 3.12 Implementation of the wait-for Statement to Generate 
Clocks

VHDL
Library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity waittestVHDL is
port ( a,b,c : out std_logic);
end waittestVHDL;

architecture Behavioral of waittestVHDL is

begin
  p1 :process
  variable a1: std_logic := ‘0’;
    begin
    a <= a1; 
    wait for 10 ns;
    a1 := not a1;
  
    end process;
p2 :process
variable b1: std_logic := ‘0’;
  begin
  b <= b1;
  wait for 20 ns;
  b1 := not b1;
end process;
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p3 :process
variable c1: std_logic := ‘0’;
  begin
  c <= c1;
  wait for 40 ns;
  c1 := not c1;
end process;
END;

Verilog
module waitstatement(a,b,c);
output a,b,c;
reg a,b,c;

initial 
begin
// Initialize Inputs
  a = 0;
  b = 0;
  c = 0;
     end
always 
   begin
   #10 ;
   a = ~ a; 
   end
    
always 
   begin
   #20 ;
   b = ~ b;
    end
always 
   begin
   #40 ;
   c = ~ c; 
 end

endmodule
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a

b

c
FIGURE 3.15 Simulation waveform of Listing 2.12.

3.4.4 The Loop Statement
Loop is a sequential statement that has to appear inside process in 

VHDL or inside always or initial in Verilog. Loop is used to repeat the 
execution of statements written inside its body. The number of repetitions 
is controlled by the range of an index parameter. The loop allows the code 
to be compressed; instead of writing a block of code as individual state-
ments, it can be written as one general statement that, if repeated, repro-
duces all statements in the block. There are several ways to construct a 
loop. Some of those ways are discussed here.

3.4.4.1 For-Loop

The HDL general format for a For-Loop is:

for <lower index value> <upper index value> <step>
statements1; statement2; statement3; ….
end loop

If the value of index is between lower and upper, all statements writ-
ten inside the body of the loop are executed. For each cycle, the index is 
modified at the end loop according to the step. If the value of index is not 
between the lower and upper values, the loop is terminated. 

EXAMPLE 3.12 FOR-LOOP: VHDL AND VERILOG

VHDL For-Loop
for i in 0 to 2 loop
if temp(i) = ‘1’ then
result := result + 2i;
end if; 
end loop;
statement1; statement2; ....

Verilog For-Loop
for (i = 0; i <= 2; i = i + 1)
begin
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  if (temp[i] == 1’b1)
        begin
            result = result + 2i;
        end
    end
statement1; statement2; ....

The index is i, the lower value is 0, the upper value is 2, and the step 
is 1. All statements between the for statement and end loop (VHDL) or 
end (Verilog) are executed until the index i goes out of range. At the very 
beginning of the loop, i takes the value of 0, and the statements if and re-
sult are executed as:

if temp(0) = ‘1’ then
result := result + 20;

When the program encounters the end of the loop, it increments i by 1. 
If i is less than or equal to 2, the loop is repeated; otherwise, the program 
exits the loop and executes statement1, statement2, and so on. In VHDL, 
index i does not have to be declared, but in Verilog, it has to be declared. 
If the loop statement is stated without range, the loop will run indefinitely. 

3.4.4.2 While-Loop

The general format of the While-Loop is:

 while (condition) 
 Statement1;
 Statement2;
 …………
 end

As long as the condition is true, all statements written before the end of 
the loop are executed. Otherwise, the program exits the loop.

EXAMPLE 3.13 WHILE-LOOP: VHDL AND VERILOG

VHDL While-Loop
while (i < x)loop
    i := i + 1;
    z := i  z;
end loop;
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Verilog While-Loop
while (i < x)
    begin
        i = i + 1;
        z = i  z;
   end

In the above example, the condition is (i < x). As long as i is less than 
x, i is incremented, and the product i  z (i multiplied by z) is calculated 
and assigned to z.

3.4.4.3 Verilog repeat

In Verilog, the sequential statement repeat causes the execution of 
statements between its begin and end to be repeated a fixed number of 
times; no condition is allowed in repeat.

EXAMPLE 3.14 VERILOG REPEAT

repeat (32)
begin
  #100 i = i + 1;
end

In the above example, i is incremented 32 times with a delay of 100 
screen time units. This describes a five-bit binary counter with a clock pe-
riod of 100 screen time units.

3.4.4.4 Verilog forever

The statement forever in Verilog repeats the loop endlessly. One com-
mon use for forever is to generate clocks in code-oriented test benches. 
The following code describes a clock with a period of 20 screen time units:

initial
begin
    Clk = 1’b0;
    forever #20 clk = ~clk;
 end

3.4.4.5 VHDL next and exit

In VHDL, next and exit are two sequential statements associated 
with loop; exit causes the program to exit the loop, and next causes the 
program to jump to the end of the loop, skipping all statements written 
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between next and end loop. The index is incremented, and if its value is 
still within the loop’s range, the loop is repeated. Otherwise, the program 
exits the loop.

EXAMPLE 3.15 VHDL NEXT-EXIT

for i in 0 to 2 loop
......
.....
next When z = ’1’;
statements1; 
end loop;
statements2;

In the above example, at the very beginning of the loop’s execution, 
i takes the value 0; at the statement next When z = ’1’, the program 
checks the value of z. If z = 1, then statements1 is skipped and i is incre-
mented to 1. The loop is then repeated with i = 1. If z is not equal to 1, then 
statements1 is executed, i is incremented to 1, and the loop is repeated.

EXAMPLE 3.16  BEHAVIORAL DESCRIPTION OF A FOUR-BIT POSITIVE 
EDGE-TRIGGERED SYNCHRONOUS UP COUNTER

In this example, the Loop statement is used to convert values between 
binary and integer and use this conversion to describe a binary up counter. 
The HDL package is assumed to not contain predefined functions that will 
increment a binary input or convert values between binary and integer. In 
addition, the current and next state are expressed in binary rather than in-
teger. Describing a counter using the above binary-to-integer conversion is 
not the most efficient way; the main goal here is to demonstrate the imple-
mentation of the Loop statement.

The next state of a binary counter is generated by incrementing the 
current state. Because, in this example, a binary value cannot be increment-
ed directly by the HDL code (as was assumed), it is first converted to an 
integer. HDL packages can easily increment integers. We increment the 
integer and convert it back to binary. To convert an integer to binary, the 
predefined operator MOD in VHDL or % in Verilog (see Section 1.5.3.1.) is 
used. For example: (X MOD 2) equals 1 if X is 1 (odd) or equals 0 if X is 0 



120 • HDL WITH DIGITAL DESIGN

(even, divisible by 2). By successively dividing the integer by 2 and record-
ing the remainder from the outcome of the MOD2, the integer is converted 
to binary. To convert a binary to integer, multiply each bit by its weight and 
accumulate the products: 1011

2 
= (1 × 1) + (1 × 2) + (0 × 4) + (1 × 8) = 11

10. 

If the bit is equal to 0, it can be ignored.

Listing 3.13 shows the HDL code of the counter. The simulation wave-
form is the same as that shown in Figure 3.11, except the count here is from 
0 to 15 rather than from 0 to 7 as in the figure.

LISTING 3.13 HDL Code for a Four-Bit Counter With Synchronous Clear: 
VHDL and Verilog

VHDL Description
library ieee;
use ieee.std_logic_1164.all;
entity CNTR_LOP is
port (clk, clr : in std_logic; q :
    buffer std_logic_vector (3 downto 0));
end CNTR_LOP;
architecture CTR_LOP of CNTR_LOP is
begin
ct : process(clk)
variable temp : 
                std_logic_vector (3 downto 0) := “0000”;
variable result : integer := 0;
begin 
if rising_edge (clk) then
     if (clr = ‘0’) then
         result := 0;
-- change binary to integer 
        lop1 : for i in 0 to 3 loop
             if temp(i) = ‘1’ then
             result := result + 2i;
             end if;
        end loop;
-- increment result to describe a counter
        result := result + 1;
-- change integer to binary 
        for j in 0 to 3 loop
        if (result MOD 2 = 1) then
            temp (j) := ‘1’;
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            else temp (j) := ‘0’;
        end if;
-- integer division by 2
        result := result/2;
        end loop;
   else temp := “0000”;
   end if;
q <= temp;
end if;
end process ct;
end CTR_LOP;

Verilog Description
module CNTR_LOP (clk, clr, q);
input clk, clr;
output [3:0] q;
reg [3:0] q;
integer i, j, result;
initial
begin
q = 4’b0000; //initialize the count to 0
end
always @ (posedge clk)
begin
    if (clr == 0)
    begin
        result = 0;
        //change binary to integer
        for (i = 0; i < 4; i = i + 1)
            begin
                if (q[i] == 1)
                result = result + 2i;
            end
            result = result + 1;
            for (j = 0; j < 4; j = j + 1)
            begin
                 if (result %2 == 1)
                 q[j] = 1;
                 else
                 q[j] = 0;
                 result = result/2;
            end
        end
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        else q = 4’b0000;
end
endmodule

A more efficient approach to describe a binary counter is to directly 
increment the current state. As mentioned before, the approach imple-
mented in Listing 3.13 is not the most efficient way to describe a counter. 
To write an efficient code for a four-bit counter, direct increment of the 
current state is used. The following Verilog code describes a four-bit binary 
counter using direct increment of the current state:

module countr_direct (clk, Z);
input clk;
output [3:0] Z;
reg [3:0] Z;
initial
Z = 4’b0000;

/This initialization is needed if we want to start counting
from 0000 /

always @ (posedge clk)
Z = Z + 1;
endmodule

EXAMPLE 3.17  BEHAVIORAL DESCRIPTION OF A FOUR-BIT COUNTER 
WITH SYNCHRONOUS HOLD USING THE LOOP 
STATEMENT

To write the code for the counter, binary-integer conversion is used. As 
mentioned in Example 3.16, this approach is not the most efficient way to 
describe a counter, but it will be implemented here to demonstrate the use 
of Loop and the Exit statements. The hold signal in a counter, when active, 
retains the value of the output and keeps it unchanged until the hold is in-
activated. The flowchart of the counter is shown in Figure 3.16. In VHDL, 
an exit statement is used to exit the loop when the hold is active. Verilog, 
however, does not have an explicit exit statement, but the loop can be ex-
ited by assigning the index a value higher than its upper value. Listing 3.14 
shows the HDL code for the counter. Figure 3.17 shows the simulation 
waveform of the counter.



BEHAVIORAL DESCRIPTION • 123

+ve edge
(clk)?

Read
current state

Q = current state

Next state = (current + 1)Mod16

Hold = 1?

NO

NO

YES

YES

FIGURE 3.16 Flowchart of a four-bit counter with active high hold.

LISTING 3.14 HDL Code for a Four-Bit Counter with Synchronous Hold: 
VHDL and Verilog

VHDL Description
library ieee;
use ieee.std_logic_1164.all; 
entity CNTR_Hold is
port (clk, hold : in std_logic; 
q : buffer std_logic_vector (3 downto 0));

end CNTR_Hold;
architecture CNTR_Hld of CNTR_Hold is
begin
ct : process (clk)
variable temp : std_logic_vector
          (3 downto 0) := “0000”;
-- temp is initialized to 0 so count starts at 0
variable result : integer := 0;
begin 
if rising_edge (clk) then
    result := 0;
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-- change binary to integer 
    lop1 : for i in 0 to 3 loop
    if temp(i) = ‘1’ then
        result := result + 2i;
        end if;
   end loop;
-- increment result to describe a counter
   result := result + 1;
   -- change integer to binary
   lop2 : for i in 0 to 3 loop
-- exit the loop if hold = 1
   exit when hold = ‘1’;
-- “when” is a predefined word 
   if (result MOD 2 = 1) then
       temp (i) := ‘1’;
   else
       temp (i) := ‘0’;
   end if;
--Successive division by 2
   result := result/2;
   end loop;
   q <= temp;
end if;
end process ct;
end CNTR_Hld;

Verilog 4-Bit Counter with Synchronous Hold Description
module CT_HOLD (clk, hold, q);
input clk, hold;
output [3:0] q;
reg [3:0] q;
integer i, result;
initial
begin
q = 4’b0000; //initialize the count to 0
end
always @ (posedge clk)
begin
result = 0;

//change binary to integer
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for (i = 0; i <= 3; i = i + 1)
begin
if (q[i] == 1)
result = result + 2i;
end
result = result + 1;
for (i = 0; i <= 3; i = i + 1)
begin
if (hold == 1)
i = 4; //4 is out of range, exit.
else
    begin
        if (result %2 == 1)
        q[i] = 1;
        else
        q[i] = 0;
        result = result/2;
    end
end
end
endmodule

clk

q

hold

0 1 2 3 4 6 7 8 954
FIGURE 3.17 Simulation waveform of a four-bit binary counter with synchronous hold.

EXAMPLE 3.18  SHIFT REGISTERS DESCRIPTION USING THE LOOP 
STATEMENT

The main function of a general-purpose register is to store data. The 
data can be retrieved, or it can be stored indefinitely. The data in the reg-
ister can be manuplated by several actions such as shift. The data can be 
shifted right or left logically (Figure 3.18), where zeros are used to fill the 
vacant bits after shifting; in this shift, some data can be lost. The data can 
also be shifted arithmatically (Figure 3.18), where if shifted right, the sign 
of the data (the most significant bit) is preserved. The data in the register 
can also be rotated left or right (Figure 3.18); here no data are lost. Shift 
operation is widely used in many areas of digital design such as arithmetic 
units and serial communications. Shift registers may have an external input 
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bit that replaces the vacant bit after shift. Other registers may have load and 
bidirectional shifts; these registers are called universal shift registers and 
are covered in Chapter 4.

10111101

Register A

0 1
01011110

Right-shift logical of A

Left-shift logical of A
1 0

01111010

1 1
11011110

Right-shift arithmetic of A

Left-shift arithmetic of A
1 0

01111010

1 1
11011110

Right-rotate of A

Left-rotate of A
1 1

01111011

FIGURE 3.18 Single-register shift and rotation. 

Listing 3.15 shows a HDL code for describing a logical shift, as shown 
in Figure 3.18, using the Loop statement. The code shifts register q n bits 
right or left logically. The number of bits to be shifted is determined by 
user-selected parameter N. The code resembles the preserved statement 
sll and slr in VHDL and ( << and >>) in Verilog. See Section 1.5.4. 

$display statement in Listing 3.15 is one of Verilog’s system tasks that 
displays values of objects on the console of the simulator. The statement

     $display (“ i= %d”, i);

will display a printout of the text between the quotation marks ( i = ) 
excluding the %d, which determines that the object should be displayed in 
decimal. The i after the comma is the object to be displayed. The $display 
is a tool that can be used to display objects that are not listed as an output. 
Several other formats can be selected for display such as:

%b for binary

%o for octal

$d for decimal

%h for hexadecimal

%t for time

%e or %f or %g for real 
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%c for character 

%s for string 

%v for binary and strength

LISTING 3.15 HDL Code for Logical Shifting of a Register Using the Loop   
Statement

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity shift_register is
     port(start : in std_logic; shft: in std_logic; 
         N: in natural;
     q : out std_logic_vector(7 downto 0))
end shift_register;
--N is number of shifts selected by the user
architecture shift_righLift of shift_register is

begin
st: process (start)
variable vq : std_logic_vector (7 downto 0) 
                 := “11001110”;
--initial values for the vector is selected to be
  -- 1100110
begin
if (start =’1’) then
lop2: for j in 1 to N loop
lop1: for i in 0 to 6 loop
if shft =’0’ then  
--shft = 0 is logical right shift; =1 logical left
-- shift

 vq(i) := vq(i+1);
 vq(7) :=’0’;
 else
 vq(7-i ) := vq(6-i);
 vq(0) := ‘0’;
 end if;
end loop lop1;
end loop lop2;
end if;
q <= vq;
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end process st;

end shift_righLift;

Verilog Description 
module shft_regVerilog(start,shft, N,q);
input start,shft;
input [7:1] N;
//N is number of requested shifts
output [7:0]q;
reg [7:0]q;
integer i,j;

initial
q = 8’b01100110;
/initial values for the vector is selected to be
1100110 /

always @ (posedge start)
begin
lop2: for (j= 1; j <= N; j = j +1)
begin
lop1: for (i= 0; i <= 6; i = i +1)
begin
if (shft == 1’b0 )   
/shft = 0 is logical right shift; =1 logical left
Shift /
begin
$display (“ shft = %d”, shft);/This is a system task
         to display The value of shift on the console’s
         screen of the simulator/
$display (“ i= %d”, i);
$display (“q[i] = %b”, q[i]);
$display (“q[i+1] = %b”, q[i+1]);
  q[i] = q[i+1];
  q[7] =1’b0; $display (“ q = %b”, q);end

else
begin q[7-i] = q[6-i];
q[0] = 1’b0; end
$display (“ shft = %d”, shft);
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end
end
end

endmodule

EXAMPLE 3.19  CALCULATING THE FACTORIAL USING BEHAVIORAL 
DESCRIPTION WITH WHILE-LOOP

In this example, a HDL behavioral description is written to find the 
factorial of a positive number N. The factorial of N is (N!) = Nx(N-1)x(N-
2)x(N-3)x ….x1. For example, 4!=4×34×24×1=24. In VHDL, N and the 
output z are declared as natural; this restricts the values that N and z can 
assume to positive integers. If N and z are declared as std_logic, the mul-
tiplication operator () cannot be used directly; they must be converted 
to integers before multiplication or an external library should be attached. 
In VHDL, be sure to include all the necessary libraries. If the appropriate 
libraries are not included in the code, the simulator will not accept the dec-
laration and will report it as undefined. 

In Verilog, the default declaration of inputs and outputs allows for the 
direct use of arithmetic operators such as multiplication. Listing 3.16 shows 
the HDL code for calculating the factorial.

LISTING 3.16 HDL Code for Calculating the Factorial of Positive Integers: 
VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
--The above library statements can be omitted; 
--however no error if it is not omitted. 
--The basic VHDL has type “natural.” 
entity factr is
port(N : in natural; z : out natural); 
end factr;
architecture factorl of factr is
begin
process (N)
variable y, i : natural;
begin
    y := 1;
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    i := 0;
    while (i < N) loop
    i := i + 1;
    y := y  i;
    end loop;
    z <= y;
end process;
end factorl;

Verilog Description
module factr (N, z);
input [5:0] N;
output [15:0] z;
reg [15:0] z;
/ Since z is an output, and it will appear inside
“always,” then Z has to be declared “reg” /

integer i;
always @ (N)
begin
    z = 16’d1;
    i = 0;
    while (i < N)
    begin
        i = i + 1;
        z = i  z;
    end
end
endmodule

CASE STUDY 3.1 BOOTH ALGORITHM

The Booth algorithm is used to multiply two signed numbers. The 
signed numbers are in twos-complement format. The function of the al-
gorithm is to determine the beginning and end of a string of 1s in the mul-
tiplier and perform multiplicand addition-accumulation at the end of the 
string or perform subtraction-accumulation at the beginning of the string. 
A string consists of one or more consecutive 1s. For example, 01110 has one 
string, 1011 has two strings (1 and 11). Any signed number can be written 
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in terms of its bit order at the beginning and end of the string. For example, 
the number 0111011 has the following bit order:

Bit order 6 5 4 3 2 1 0

 0 1 1 1 0 1 1

The number above has two strings. One string has two 1s, begins at 
bit 0, and ends at bit 1. The other string has three 1s, begins at bit 3, and 
ends at bit 5. The value of any binary number is equal to (2end1+1  2begin1) 
+ (2end2+1  2begin2)+ ….., where begin1 and begin2 are the bit orders of 
the beginning of string1 and string2, respectively, and end1 and end2 are 
the bit orders of the end of string1 and string2, respectively. So, 0111011 = 
(22  20) +(26  23) = 3 + 56 = 59. For the multiplication Z = multiplier (X) 
× multiplicand (Y), we can write:

 Z = {(2end1+1  2begin1) + (2end2+1  2begin2)+...}Y

 Y = {(2end1+1Y  2begin1Y) + (2end2+1Y  2begin2Y)+...} (3.1)

Multiplication of 
Y by positive power(s) 
of 2 is a shift left of 
Y. For example, Y × 
23 is a three-left shift 
of Y. From Equation 
3.1, it can be seen that 
the calculation of the 
product Z consists of 
addition at the end of 
the string, subtraction 
at the beginning of the 
string, and a number 
of shifts equal to the 
number of the bits of 
the multiplicand or 
the multiplier; here we 
assume multiplier and 
multiplicand have the 
same number of bits). 
To guarantee no over-
flow, Z is selected to 

Read
X(n), Y(n)

Initialize
E = 0, Z = 0, I = 0

Z = Z + Y
01 10

00 or 11

Arithm shift right 
of Z

E = X(i)

I = i + 1

I = n?

Z = Z +(- Y)

Product = Z

E X(i)

FIGURE 3.19 Flowchart of the Booth multiplication algorithm.
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be double the width of X or Y. For example, if X is four bits, then Z is eight 
bits. The beginning of a string is the transition from 0 to 1, while the end is 
the transition from 1 to 0. To detect the transition, the one-bit register (E) 
is used to hold 0 initially. By comparing E with the bits of X, the beginning 
and end of the string can be detected. The flowchart of the algorithm is 
shown in Figure 3.19.

To illustrate the algorithm, consider multiplication of two four-bit num-
bers: –5 (1011) multiplied by 7 (0111). To avoid any possibility of overflow 
in the product, we assign eight bits to the product. The steps of the Booth 
algorithm are shown in Table 3.6.

TABLE 3.6 Example of the Booth Algorithm

X = 1011, Y = 0111, –Y = 1001

Step X(i)E Action E Z
Initial 0 00000000
1, i = 0 10 subtract Y 1001

10010000
arithm. shift Z, E = x(i) 1 11001000

2, i = 1 11 arithm. shift Z, E = x(i) 1 11100100
3, i = 2 01 add Y 0111

01010100
arithm shift Z, E = x(i) 0 00101010

4, i = 3 10 subtract Y 1001
last step 10111010

arithm shift Z, E = x(i) 1 11011101

The answer is Z = 11011101 = –35. Note that Z – Y = Z + (–Y), so sub-
traction of Y from Z is an addition of the twos-complement of Y to Z.

The HDL code for a 4x4-bit Booth algorithm is shown in Listing 3.17. 
The multiplier (X) and the multiplicand (Y) have to be declared as signed 
numbers. To do this declaration, the predefined word signed is used. In 
VHDL, be sure that the appropriate libraries are attached to the code. The 
statement sum (7 downto 4) represents four bits of sum starting from bit 
order seven and ending at bit order four. For example, if sum is the eight-bit 
number 11001010, then sum (7 downto 4) is 1100.

The statement Y := -Y in VHDL (Y = -Y in Verilog) changes Y to its 
twos complement. If Y = 1101, then –Y = 0011. The statement sum := sum 
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srl in VHDL (Z = Z >> 1 in Verilog) is the logical shift right of sum(Z) 
one position. For example, if sum or Z = 11010100, then after right shift, 
sum(Z) = 01101010. In Listing 3.17, sum and Z are signed numbers; this 
means that the most significant bit is the sign bit. If this bit is 0, the number 
is positive, and if it is 1, the number is negative. Notice that after the logical 
shift, the sign may change, as in our example where sum(Z) changes from 
11010100 (a negative number) to 01101010 (a positive number) after a one-
position right shift. Another type of shift is arithmetic, where the sign is 
preserved. An arithmetic right shift of 11010100 yields 11101010. The shift 
in the Booth algorithm is arithmetic; the following two statements perform 
arithmetic shift:
VHDL Verilog
sum := sum srl 1; Z = Z >>> 1; 
sum (7):= sum(6);

The first statement performs logical shift, and the second performs sign 
preservation. VHDL code has a predefined arithmetic shift operator, sra;. 
For example, sum := sum sra 2 executes a right shift of two positions and 
preserves the sign. To use this shift, be sure that the appropriate libraries 
and simulator are used. The simulation waveform of the Booth algorithm is 
shown in Figure 3.20.

LISTING 3.17 4x4-Bit Booth Algorithm: VHDL and Verilog

VHDL Description
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all; 
entity booth is
  port (X, Y : in signed (3 downto 0); 
  Z : buffer signed (7 downto 0)); 
end booth;
architecture booth_4 of booth is
begin

X 0111 1100 1011

Y 0101 0111 0011

Z 00100011 11100100 11110001

FIGURE 3.20 Simulation waveform of a Booth multiplication algorithm.
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process (X, Y)
variable temp : signed (1 downto 0);
variable sum : signed (7 downto 0);
variable E1 : unsigned (0 downto 0);
variable Y1 : signed (3 downto 0);
begin
sum := “00000000”; E1 := “0”;
for i in 0 to 3 loop 
temp := X(i) & E1(0);
Y1 := - Y;
case temp is
    when “10” => sum (7 downto 4) :=
    sum (7 downto 4) + Y1;
    when “01” => sum (7 downto 4) := 
    sum (7 downto 4) + Y;
    when others => null;
end case; 
sum := sum srl 1; --This is a logical 
--shift of one position to the right
sum (7) := sum(6);

--The above two statements perform arithmetic 
--shift where the sign of the
--number is preserved after the shift.

E1(0) := x(i);
end loop;
    if (y = “1000”) then 

--If Y = 1000; then according to our code,
--Y1 = 1000 (-8 not 8 because Y1 is 4 bits only).
--The statement sum = -sum adjusts the answer.

      sum := - sum;
    end if;
z <= sum; 
end process;
end booth_4;

Verilog Description
module booth (X, Y, Z);
input signed [3:0] X, Y;
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output signed [7:0] Z;
reg signed [7:0] Z;
reg [1:0] temp;
integer i;
reg E1;
reg [3:0] Y1;
always @ (X, Y)
begin
Z = 8’d0;
E1 = 1’d0;
for (i = 0; i < 4; i = i + 1)
begin
temp = {X[i], E1};

//The above statement is catenation

Y1 = - Y;

//Y1 is the 2’ complement of Y

case (temp)
2’d2 : Z [7 : 4] = Z [7 : 4] + Y1;
2’d1 : Z [7 : 4] = Z [7 : 4] + Y;
default : begin end
endcase
Z = Z >>> 1;
/The above statement is arithmetic shift of one position to
the right/

E1 = X[i];
   end
if (Y == 4’d8) 

/If Y = 1000; then according to our code,
Y1 = 1000 (-8 not 8, because Y1 is 4 bits only).
The statement sum = - sum adjusts the answer./
   begin
       Z = - Z;
   end
 end
endmodule
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CASE STUDY 3.2 BEHAVIORAL DESCRIPTION OF A SIMPLIFIED RENAL 
ANTIDIURETIC HORMONE MECHANISM

In this case study, the action 
of antidiuretic hormone (ADH) 
on water excreted by the kidney 
is discussed. One function of the 
kidney is to regulate the amount 
of water excreted by the body as 
urine. Human blood is 70% wa-
ter by volume. Regulation of the 
water volume is directly related 
to blood pressure regulation. An 
excessive amount of water in the 
body raises blood pressure, and 
if the body excretes more water 
than it needs to maintain proper 
functions, blood pressure will 
drop. Kidney failure has a direct 
effect on blood pressure. The 
main functional unit in the kid-
ney is the nephron. Figure 3.21 
illustrates a schematic of nephron 
functions.

Nephrons are tiny tubules through which blood flows. In nephrons, 
some components in the blood, such as sodium and potassium, are reab-
sorbed by the body, and other components, such as urea, are excreted be-
cause they are toxic to the body. Any extra water that the body does not 
need is also excreted as urine. Several hormones control the amount of 
water excreted. One of those hormones is ADH. The function of ADH is 
summarized as follows:

 The biological action of ADH is to conserve body water and regulate 
tonicity of body fluids.

 ADH is released by the hypothalamic cells in the brain.
 Water deprivation (and subsequent low blood pressure) stimulates 

ADH release. Conversely, excess water (and subsequent high blood 
pressure) decreases ADH release.
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FIGURE 3.21 Nephron function in the human body.
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 The major target of ADH is the renal cells, specifically, the collecting 
ducts of the nephrons.

 ADH causes the kidney to reabsorb (conserve) water. Absence of ADH 
causes the kidney to excrete water as urine.

 Alcohol and caffeine inhibit ADH release and promote more urine.

Figure 3.22 describes a simplified possible representation of the re-
lationship between the concentration of ADH and blood pressure (BP). 
Assume that the relationship is linear, and BP takes only positive integer 
values.

The HDL code is shown in Listing 3.18. It is assumed that the body 
samples its blood pressure at intervals; each interval is represented in the 
code by the period of the clock. The major sequential statement in the code 
is Else-IF. For simplification, the blood pressure and ADH are allowed to 
take only integer-positive values. In VHDL, this means that BP and ADH 
are declared as natural, allowing the application of the equation ADH = BP 
 (-4) + 180.0. If BP and ADH are declared as std_logic_vectors, 
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FIGURE 3.22 Concentration of ADH versus blood pressure (units are arbitrary).



138 • HDL WITH DIGITAL DESIGN

VHDL cannot directly multiply or add. In contrast, Verilog allows for di-
rect addition and multiplication if BP and ADH are declared as bit vectors. 
Figure 3.23 shows the simulation waveform of an ADH-BP relationship.

LISTING 3.18 Antidiuretic Hormone Mechanism: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity ADH_BEH is
    port (clk : in std_logic; BP : in natural; 
ADH : out natural);
-- Assume BP takes only positive integer values
end;
architecture ADH_XT of ADH_BEH is
begin
ADHP : process (clk)
variable resADH : natural := 0;
begin
if (clk = ‘1’) then 
if Bp <= 20 then resADH := 100;
elsif Bp > 45 then resADH := 0;
else
    resADH := Bp  (-4) + 180;
end if; 
end if;
ADH <= resADH;
end process ADHP;
end ADH_XT;

Verilog Description
module ADH_BEH (clk, BP, ADH);
input clk;
input [8:0] BP;
// Assume BP takes only positive integer values
output [8:0] ADH;
reg [8:0] ADH;
always @ (clk)
begin
if (clk == 1)
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begin
     if (BP <= 20) ADH = 100;
     else if (BP > 45.0) ADH = 0;
     else
     ADH = BP  (-4) + 180.0;
end
end
endmodule

clk

BP 30 7 20 40 45

ADH 60 100 100 20 0
FIGURE 3.23 Simulation waveform of ADH versus blood pressure.

3.5 Common Programming Errors

This section discusses some common programming errors. Additional 
common errors are discussed in Chapter 2.

3.5.1 Common VHDL Programming Errors
The following is a brief discussion of some common syntax and se-

mantic errors in writing VHDL programs. Table 3.7 considers Listing 3.16 
(VHDL) and some possible errors if the code is modified.

TABLE 3.7 Possible Errors in Modified VHDL Listing 3.13

Modified Code Error
process (Z) Sensitivity list cannot include output ports
process (N) 
begin
variable y, i : natural; 
port (N : in integer; z : 
out natural);

Variable declaration should be before begin
The syntax is correct, but if N is forced to a 
negative value, the loop will not
terminate, causing the program to hang up

y <= y  i; y has been declared as variable; the variable-
assignment operator := should be used instead 
of the signal-assignment operator <=

(contd.)
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Modified Code Error
Z := y  i; Z has been declared as signal; the variable-

assignment operator := cannot be used
while (i < N) loop
i := i + 1; 
y := y  i;
end;

end; should be written as
end loop;

3.5.2 Common Verilog Programming Errors
Here, some common Verilog syntax and semantic errors are briefly dis-

cussed. One of the most common errors for beginners is not adhering to 
Verilog’s case-sensitive nature. Table 3.8 considers Listing 3.16 (Verilog) 
and discusses some possible errors if the code is modified.

TABLE 3.8 Possible Errors in Modified Verilog Listing 3.16

Modified Code Error
module factr (N, z);
input [15:0] N;
output [15:0] z;
integer i;
   always @(N)

Because z is an output, it has to be
declared as reg

always @ (N) To end always, write only end.
Begin
z = 1;
.........
end always;

without semicolon

while (i <= N) There is no syntax error, but the result of the
program are not correct: try N = 2 and find z

3.6 Summary

In this chapter, the basics of behavioral description have been covered, 
including the statements process (VHDL) and always (Verilog). Some se-
quential statements have also been discussed such as IF, wait, case, 
and Loop. These sequential statements have to appear inside process in 
VHDL or inside always or initial in Verilog. In VHDL, all signal-assign-
ment statements inside process are executed sequentially. Here, sequen-
tially means calculating the values of the left-hand side of the statements 
in the order in which they are written. After calculation, the values are as-
signed taking into consideration any delay times. In Verilog, all statements 
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inside always are executed concurrently, based on events. Execution of 
variable-assignment statements inside process in VHDL, in contrast to 
signal-assignment statements, does not involve any timing delays; execution 
here is the same as in C language. Table 3.9 shows a list of the VHDL state-
ments covered in this chapter along with their Verilog counterparts (if any).

TABLE 3.9 Summary of VHDL Behavioral Statements and Their Verilog Counterparts

VHDL Verilog
process always

variable ------

------- reg

if;else;endif if;else;begin end

if;elsif;else;endif if;else if;else;begin end

case endcase case begin end

for loop for

while loop while

next, exit -----

------- repeat, forever

MOD %

signed signed

srl 1 >> 1

integer integer

wait for 10 ns #10

3.7 Exercises

1. Add asynchronous clear signal to the JK flip-flop discussed in Example 
3.8. Write both VHDL and Verilog to describe the flip-flop and simulate 
the code.

2.  Write VHDL and Verilog code for a T flip-flop and simulate.

3. Modify Listing 3.15 to include rotate and arithmetic shift.

4. In Example 3.8, a JK flip-flop was described by using a case statement 
on JK. Change the code to describe the flip-flop by using case on Q. 
Simulate and verify your description.

5. Use binary-to-integer conversion to describe a four-bit even counter 
with active low clear and synchronous load (load from external P to Q). 
Use Verilog, simulate, and verify.
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6. Using the Booth algorithm (see Case Study 3.1), modify the code to 
satisfy all the following requirements:

• The multiplier and the multiplicand are five bits each.

• If the multiplier or the multiplicand is 0, the product should be 0 
without going through the multiplication steps.

• If the multiplier or the multiplicand is 1 (decimal), the product 
should be equal to the multiplicand or the multiplier, respectively, 
without going through the multiplication steps.

7. In Case Study 3.2, it was assumed that the relationship between ADH 
and BP is linear: Bp  (-4) + 180 (VHDL). Change this relationship 
to be exponential: ADH = a exp (b  BP). The value of ADH is 100 for 
BP  20 and stays at 10 for BP  45. Write the VHDL code using the 
case statement to describe this relationship. You can approximate the 
values of ADH to be integers but be as accurate as possible.

8. Design an arithmetic and logical unit (ALU) that performs addition, 
subtraction, multiplication, and integer division. The input to the ALU 
is two signals, A and B, of integer type. The output is signal Z of integer 
type. The ALU performs the operations according to a signal called op_
code. This op_code is of character type, and Table 3.10 shows the value 
of the op_code (in character) and the selected operation.

TABLE 3.10 op_code and the selected operation

op_code Operation
add Add A to B and store the result in Z
sub Subtract B from A and store the result in Z
multply Multiply A x B and store the result in Z
dvdInt Divide A by B and store the result in Z



C H A P T E R

STRUCTURAL DESCRIPTION

4
Chapter Objectives

 Understand the concept of structural description, including the 
binding of modules

 Identify the basic statements of structural description, such as com-
ponent, use, and, or, not, xor, nor, generate, generic, and 
parameter

 Review and understand the fundamentals of digital logic design 
for digital systems, such as adders, multiplexers, decoders, com-
parators, encoders, latches, flip-flops, counters, shift registers, and 
memory cells

 Understand the concept of sequential finite-state machines

4.1 Highlights of Structural Description

Structural description is best implemented when the digital logic of 
the details of hardware components of the system are known. An example 
of such a system is a 2x1 multiplexer. The components of the system are 
known: AND, OR, and NOT gates. Structural description can easily de-
scribe these components. On the other hand, it is hard (if not impossible) 
to describe the digital logic of, say, hormone secretion in the blood; there-
fore, another description such as behavioral or mixed may be implemented. 
Structural description is very close to schematic simulation.
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In this chapter, structural description is covered. Both gate-level and 
register-level description are discussed for VHDL and Verilog. Highlights 
of the structural description can be summerized in the following facts.

Facts

 Structural description simulates the system by describing its logical 
components. The components can be gate level (such as AND gates, 
OR gates, or NOT gates), or components can be in a higher logical level, 
such as register-transfer level (RTL) or processor level.

 It is more convenient to use structural description than behavioral 
description for systems that require specific design constraints. Con-
sider, for example, a system performing the operation A + B = C. In 
behavioral description, the addition can be written as C = A + B with no 
choice in selecting the type of adders used to perform this addition. In 
structural description, the type of adder, such as look-ahead adders, can 
be selected.

 All statements in structural description are concurrent. At any simula-
tion time, all statements that have an event are executed concurrently.

 A major difference between VHDL and Verilog structural description 
is the availability of components (especially primitive gates) to the user. 
Verilog recognizes all the primitive gates such as AND, OR, XOR, NOT, 
and XNOR gates. Basic VHDL packages do not recognize any gates un-
less the package is linked to one or more libraries, packages, or modules 
that have the gate description. Usually, the user develops these links, as 
will be done in this chapter.

 Although structural description is implemented in this chapter to simu-
late digital systems, this does not mean that only one type of description 
(structural) can be used in a module. In fact, in most descriptions of 
complex systems, mixed-type descriptions (e.g., data flow, behavioral, 
structural, or switch-level) are used in the same module (see Chapter 7).

4.2 Organization of Structural Description

Listing 4.1 shows an example of HDL code that describes a half adder 
under the name of system using structural description. The entity (VHDL) 
or module (Verilog) name is system; there are two inputs, a and b, and two 
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outputs, sum and cout. The entity or module declaration is the same as in 
other description styles previously covered (data flow and behavioral).

In the VHDL description, the structural code (inside the architecture) 
has two parts: declaration and instantiation. In declaration, all of the differ-
ent types of components are declared. For example, the statements

component xor2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;

declare a generic component by the name of xor2; the component has 
two inputs (I1, I2) and one output (O1). The name (identifier) xor2 is 
not a reserved or predefined word in VHDL; it is a user-selected name. To 
specify the type of the component (e.g., AND, OR, XOR, etc.), additional 
information should be given to the simulator (see Listing 4.2). If the system 
has two or more identical components, only one declaration is needed. The 
instantiation part of the code maps the generic inputs/outputs to the actual 
inputs/outputs of the system. For example, the statement

X1 : xor2 port map (a, b, sum);

maps input a to input I1 of xor2, input b to input I2 of xor2, and output 
sum to output O1 of xor2. This mapping means that the logic relationship 
between a, b, and sum is the same as between I1, I2, and O1. If xor2 
is specified through additional statements to be a XOR gate, for example, 
then sum = a xor b. A particular order of mapping can be specified as:

X1 : xor2 port map (O1 => S, I1 => b , I2 => a);

S is mapped to O1, b is mapped to I1, and a is mapped to I2. Note that the 
mapping of S is written before writing the mapping of the inputs; we could 
have used any other order of mapping. As previously mentioned, structural-
description statements are concurrent and are driven by events. This means 
that their execution depends on events, not on the order in which the state-
ments are placed in the module. So, placing statement A1 before statement 
X1 in Listing 4.1 does not change the outcome of the VHDL program.

Verilog has a large number of built-in gates. For example, the statement:

xor X1 (sum, a, b);

describes a two-input XOR gate. The inputs are a and b, and the output is 
sum. X1 is an optional identifier for the gate; the identifier can be omitted as:

xor (sum, a, b);
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Verilog has a complete list of built-in primitive gates. The output of 
the gate sum has to be listed before the inputs a and b. Accordingly, the 
Verilog code in Listing 4.1 is a complete structural description of a half 
adder. Figure 4.1 shows a list of gates and their code in Verilog. As in struc-
tural VHDL, Verilog statements are concurrent; the order of appearance of 
statements in the module is irrelevant.

buf not

and nand

or nor

xor xnor
FIGURE 4.1 Verilog built-in gates.

LISTING 4.1 HDL Structural Description

VHDL Description 
--This code is not complete; binding statements should
--be aaded to recognize components
-- xor2 and and2 as 2-input
-- xor and and gate respectively.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity system is
port (a, b : in std_logic; 
       sum, cout : out std_logic);
  end system;
  architecture struct_exple of system is 
  --start declaring all different types of components
  component xor2
  port (I1, I2 : in std_logic;
      O1 : out std_logic);
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  end component;
  component and2
  port (I1, I2 : in std_logic;
      O1 : out std_logic);
  end component;
  begin
  --Start of instantiation statements
  X1 : xor2 port map (a, b, sum);
  A1 : and2 port map (a, b, cout);
  end struct_exple;

Verilog Description
module system (a, b, sum, cout);
input a, b;
output sum, cout;
xor X1 (sum, a, b);
/ X1 is an optional identifier; it can be omitted./
and a1 (cout, a, b);
/ a1 is optional identifier; it can be omitted./
endmodule

EXAMPLE 4.1 HDL STRUCTURAL DESCRIPTION OF A HALF ADDER

The logic and symbol diagrams of the half adder have been shown be-
fore (see Figure 1.1). Listing 4.2 shows the HDL structural code for the 
half adder. As mentioned before, VHDL does not have built-in gates. To 
specify xor2 as an EXCLUSIVE-OR gate, bind (link) the component xor2 
with an entity bearing the same name. By having the same name, all in-
formation in the entity is visible to the component. The entity specifies the 
relationship between I1, I2, and O1 as EXCLUSIVE-OR; accordingly, the 
inputs and output of xor2 behave as EXCLUSIVE-OR. The same is done 
for component and2; it is bound to the entity and2.

LISTING 4.2 HDL Code of Half Adder: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity xor2 is
port(I1, I2 : in std_logic; O1 : out std_logic);
end xor2;
architecture Xor2_0 of xor2 is
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begin
    O1 <= I1 xor I2;
end Xor2_0;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity and2 is
    port (I1, I2 : in std_logic; O1 : out std_logic);
end and2;
architecture and2_0 of and2 is
begin
    O1 <= I1 and I2;
end and2_0;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity half_add is
    port (a, b : in std_logic; S, C : out std_logic);
end half_add;

architecture HA_str of half_add is
component xor2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
component and2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
begin
    X1 : xor2 port map (a, b, S);
    A1 : and2 port map (a, b, C);
end HA_str;

Verilog Description
Module system (a, b, sum, cout);
input a, b;
output sum, cout;
xor X1 (sum, a, b);
/ X1 is an optional identifier; it can be omitted./
and a1 (cout, a, b);
/ a1 is optional identifier; it can be omitted./
endmodule



STRUCTURAL DESCRIPTION • 149

The VHDL code looks much longer than the Verilog code. This is due 
to the assumption that the basic VHDL packages do not have built-in li-
braries or packages for logical gates. The binding method above becomes 
impractical when the number of gates becomes large. Every time a new 
description is written, the entities of all gates used must also be written. In 
the following sections, more efficient ways of binding are discussed.

4.3 Binding

Binding in HDL is common practice. Binding (linking) segment1 in 
HDL code to segment2 makes all information in segment2 visible to seg-
ment1. Consider the VHDL code in Listing 4.3.

LISTING 4.3 Binding Between Entity and Architecture in VHDL

entity one is
port (I1, I2 : in std_logic; O1 : out std_logic);
end one;
architecture A of one is
signal s : std_logic;
..........
end A;
architecture B of one is
signal x : std_logic;
.......
end B;

Architecture A is bound to entity one through the predefined word of. 
Also, architecture B is bound to entity one through the predefined word 
of. Accordingly, I1, I2, and O1 can be used in both architecture A and 
architecture B. Architecture A is not bound to architecture B, so signal s 
is not recognized in architecture B. Likewise, signal x is not recognized in 
architecture A.

Now consider Listing 4.4, where an entity is bound to a component.

LISTING 4.4 Binding Between Entity and Component in VHDL

entity orgate is
    port (I1, I2 : in std_logic; O1 : out std_logic);
end orgate;

architecture Or_dataflow of orgate is
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begin
    O1 <= I1 or I2;
end Or_dataflow;

entity system is
    port (x, y, z : in std_logic; 
    out r : std_logic_vector (3 downto 0);
end system;

architecture system_str of system is
component orgate
port (I1, I2 : in std_logic; O1 : std_logic);
end component;
begin
orgate port map (x, y, r(0));
.......
end system_str;

The component orgate is bound to the entity orgate because it has 
the same name. Architecture Or_datafl ow is bound to entity orgate by the 
word of. All information in the entity is now visible to the component. 
Accordingly, the relationship between I1, I2, and O1 defined in the archi-
tecture or_datafl ow is visible to the component orgate; hence, the compo-
nent orgate is an OR gate.

Now consider another way of VHDL binding where a library or a pack-
age is bound to a module. Listing 4.5 shows how a library can be bound to 
a module.

LISTING 4.5 Binding Between Library and Module in VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity system is
port (I1, I2 : in std_logic; 
O1 : out std_logic_vector (3 downto 0));

end system;
architecture lib_bound of system is
signal s : std_logic;
.............
end lib_bound;
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IEEE is the name of the library, library and use are a predefined words, 
and IEEE.STD_LOGIC_1164.ALL refers to the part of the library to be linked. 
Library IEEE provides the definition for the standard_logic type. By 
entering the name of the library and the statement use, all information in 
the library is visible to the whole module. If the first two statements are 
not written in Listing 4.5, the standard_logic type cannot be recognized. 
Libraries can also be generated by the user. The HDL simulator generates 
a library named work every time it compiles HDL code. This library can be 
bound to another module by using the statement use, as follows:

use entity work.gates (or_gates);

The entity to be bound to the module is gates; gates has an architec-
ture by the name of or_gates, and all information in this architecture is 
visible to the module wherever the use statement is written. Listing 4.6 
shows an example of binding architecture in one module to a component 
written in another module.

LISTING 4.6 Binding Between a Library and Component in VHDL

--First, write the code that will be bound to another
-- module
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bind2 is
    port (I1, I2 : in std_logic; O1 : out std_logic);
end bind2;

architecture xor2_0 of bind2 is
begin
O1 <= I1 xor I2;
end xor2_0;

architecture and2_0 of bind2 is
begin
    O1 <= I1 and I2;
end and2_0;

architecture and2_4 of bind2 is
begin
    O1 <= I1 and I2 after 4 ns;
end and2_4;
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--After writing the above code; compile it and store it
-- in a known location. Now, open another module
--where the above information is to be used.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity half_add is
port (a, b : in std_logic; S, C : out std_logic);
end half_add;
architecture HA_str of half_add is
component xor2
    port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
component and2
    port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
for all : xor2 use entity work.bind2 (xor2_0);
for all : and2 use entity work.bind2 (and2_4);
begin
X1 : xor2 port map (a, b, S);
A1 : and2 port map (a, b, C);
end HA_str;

The statement for all : xor2 use entity work.bind2 (xor2_0) binds 
the architecture xor2_0 of the entity bind2 to the component xor2. By this 
binding, component xor2 behaves as a two-input XOR gate with zero propaga-
tion delay. The statement for all : and2 use entity work.bind2 (and2_4) 
binds the architecture and2_4 of the entity bind2 to the component and2. By 
this binding, component and2 behaves as a two-input AND gate with a 4-ns 
propagation delay. In Listing 4.6, it is assumed that both entities bind2 and 
half_add have the same path (stored in the same directory). Otherwise, the 
path of the library work has to be specified.

Throughout this chapter, the binding shown in Listing 4.6 is adopted. The 
codes for all the gates expected are written, and the module is compiled and 
stored. Whenever we want to use any component from the stored module, we 
bind it to the current module. Listing 4.31 shows the VHDL binding code used 
in all examples in this chapter. As previously mentioned, Verilog has all primi-
tive gates built in and ready to use. Verilog modules can be bound by just writ-
ing the name of the module to be bound. Listing 4.7 shows such binding.
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LISTING 4.7 Binding Between Two Modules in Verilog

module one (O1, O2, a, b);
input [1:0] a;
input [1:0] b;
output [1:0] O1, O2;
two M0 (O1[0], O2[0], a[0], b[0]);
two M1 (O1[1], O2[1], a[1], b[1]);
endmodule

module two (s1, s2, a1, b1);
input a1;
input b1;
output s1, s2;
xor (s1, a1, b1);
and (s2, a1, b1);
endmodule

The statement: two M0 (O1[0], O2[0], a[0], b[0]); written in 
module one binds module two to module one. Accordingly, the relation-
ship between O1, O2, a, and b is as follows:

O1[0] is the output of a two-input XOR gate with a[0] and b[0] as the 
inputs

O2[1] is the output of a two-input AND gate with a[1] and b[1] as the 
inputs

Other methods of binding are discussed in Chapters 6 and 8. The fol-
lowing examples cover binding and structural descriptions.

EXAMPLE 4.2  STRUCTURAL DESCRIPTION OF A 2x1 MULTIPLEXER 
WITH ACTIVE LOW ENABLE

The truth table and logic diagram of this multiplexer have been cov-
ered in Chapter 2. The logic diagram is redrawn here for convenience (see 
Figure 4.2).

From Figure 4.2, the components of the multiplexer are: two three-
input AND gates, three inverters, and one two-input OR gate. Each gate, 
including the inverter, is assumed to have a 7-ns propagation delay time. 

For VHDL, the binding method shown in Listing 4.6 is used. The code 
to describe these gates is written, compiled, and then stored. Some other 
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gates are included here that might be used for other examples. Listing 4.8 
shows the code for several gates.

LISTING 4.8 VHDL Code for Several Gates

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity bind1 is
    port (I1 : in std_logic; O1 : out std_logic);
end bind1;
architecture inv_0 of bind1 is
begin
O1 <= not I1; --This is an inverter with zero delay
end inv_0;

architecture inv_7 of bind1 is
begin
O1 <= not I1 after 7 ns; --This is an inverter with a
                         -- 7-ns delay
end inv_7;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

A

B

SEL

Gbar

Y2x1
Mux



S4

S5

Y

S3S2

S1

A

B

SEL

Gbar

FIGURE 4.2 Multiplexer. a) Logic diagram. b) Logic symbol.
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entity bind2 is
    port (I1, I2 : in std_logic; O1 : out std_logic);
end bind2;

architecture xor2_0 of bind2 is
begin
O1 <= I1 xor I2; --This is exclusive-or with zero
                 -- delay.
end xor2_0;

architecture and2_0 of bind2 is
begin
O1 <= I1 and I2; --This is a two input and gate with
                 -- zero delay.
end and2_0;

architecture and2_7 of bind2 is
begin
O1 <= I1 and I2 after 7 ns; -- This is a two input and
                            -- gate with 7-ns delay.
end and2_7;

architecture or2_0 of bind2 is
begin
O1 <= I1 or I2; -- This is a two input or gate with
                -- zero delay.
end or2_0;

architecture or2_7 of bind2 is
begin
O1 <= I1 or I2 after 7 ns; -- This is a two input or
                           -- gate with 7-ns delay.
end or2_7;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity bind3 is
port (I1, I2, I3 : in std_logic; O1 : out std_logic);
end bind3;

architecture and3_0 of bind3 is
begin
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O1 <= I1 and I2 and I3; -- This is a three input and
                        -- gate with zero delay.
end and3_0;

architecture and3_7 of bind3 is
begin
O1 <= I1 and I2 and I3 after 7 ns; --This is a three
                  -- input and gate with 7-ns delay.
                  --
end and3_7;

architecture or3_0 of bind3 is
begin
O1 <= I1 or I2 or I3; --This is a three input OR gate
                      --with zero delay.
end or3_0;

architecture or3_7 of bind3 is
begin
O1 <= I1 or I2 or I3 after 7 ns; --This is a three 
                     --input or gate with 7-ns delay.
end or3_7;

After compilation of the above code, it is stored in a known directory 
(path). Listing 4.9 shows the HDL code for a 2x1 multiplexer with active 
low enable. The Verilog description is straightforward using the predefined 
gates.

LISTING 4.9 HDL Description of a 2x1 Multiplexer with Active Low Enable: 
VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity mux2x1 is
    port (A, B, SEL, Gbar : in std_logic;
        Y : out std_logic);
end mux2x1;

architecture mux_str of mux2x1 is
--Start components Declaration
component and3
port (I1, I2, I3 : in std_logic; O1 : out std_logic);
end component;
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--Only different types of components need be declared.
--Since the multiplexer has two identical AND gates,
--only one is declared.

component or2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
component Inv
port (I1 : in std_logic; O1 : out std_logic);
end component;

signal S1, S2, S3, S4, S5 : std_logic;
for all : and3 use entity work.bind3 (and3_7);
for all : Inv use entity work.bind1 (inv_7);
for Or1 : or2 use entity work.bind2 (or2_7);
begin
--Start instantiation
A1 : and3 port map (A,S2, S1, S4);
A2 : and3 port map (B,S3, S1, S5);
IV1 : Inv port map (SEL, S2);
IV2 : Inv port map (Gbar, S1);
IV3 : Inv port map (S2, S3);
or1 : or2 port map (S4, S5, Y);
end mux_str;

Verilog Description
module mux2x1 (A, B, SEL, Gbar, Y);
input A, B, SEL, Gbar;
output Y;
and #7 (S4, A, S2, S1);
or #7 (Y, S4, S5);
and #7 (S5, B, S3, S1);
not #7 (S2, SEL);
not #7 (S3, S2);
not #7 (S1, Gbar);
endmodule

Referring to Listing 4.9, because the multiplexer has two identical 
AND gates (both three-input AND gates), only one of them is declared in 
the VHDL description by the statements:

component and3
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port (I1, I2, I3 : in std_logic; O1 : out std_logic);
end component;

Similarly, only one inverter is declared. If the two AND gates do not 
have the same delay time (say, A1 has 0 ns and A2 has 7 ns) then instead of 
all in the use statement, write:

for A1 : and3 use entity work.bind3 (and3_0);
for A2 : and3 use entity work.bind3 (and3_7);

For the Verilog description, the statement

and #7 (S4, A, S2, S1);

declares a three-input (A, s2, s1) AND gate with propagation delay 
of seven simulation screen units. Note that s2 or s1 do not need to be de-
clared as wire; Verilog assumes that they are of the same type as A. If a 
four-input AND gate is needed, the code will be:

and (o1, in1, in2, in3, in4)

where O1 is the output, and in1, in2, in3, and in4 are the inputs. The 
gate in Verilog can have an optional name as:

or #7 orgate1 (O1, in1, in2)

The statement above describes an OR gate by the name orgate1; it has 
two inputs (in1, in2) and an output (O1). The name is optional and can 
be omitted. The simulation waveform of the multiplexer is identical to that 
of Figure 2.10.

EXAMPLE 4.3  STRUCTURAL DESCRIPTION OF A 2x4 DECODER WITH 
TRI-STATE OUTPUT

A decoder is a combinational circuit. The output is a function of the 
input only. A 2x4 decoder has two inputs and four outputs. For any input 
only one output is active; all other outputs are inactive. For an active high 
output decoder, only one output is high. The output can be deactivated or 
put in high impedance if the decoder has an enable. For a tri-state output, 
if the enable is inactive, then all the outputs are in high impedance. The 
output of an n-bit input decoder is 2n bits. Table 4.1 shows the truth table 
of 2x4 decoder.
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TABLE 4.1 Truth Table for a 2x4 Decoder with Tri-State Outputs

Inputs Outputs
Enable I1 I2 D3 D2 D1 D0

0 x x Z Z Z Z
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

Tri-state buffers are used at the output. If the enable is low, then all 
outputs are in high impedance (Z). From Table 4.1, we can write the Bool-
ean function of the outputs:

D0 = I0  I1

D1 = I0 I1
D2 = I0  I1
D3 = I0 I1

Figure 4.3 shows the logic diagram of the decoder.

s0

s1

s2

s3 D3

D2

D1
I0

I1

D0

Enable
FIGURE 4.3 Logic diagram of a 2x4 decoder with tri-state output.
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To write the VHDL code, we first need to write a description of the 
tri-state buffer gate. The easiest description type that can be written for 
the tri-state buffer is behavioral, using the if statement. This description is 
attached to the entity bind2 (see Listing 4.8). Listing 4.10 shows a behav-
ioral description of a tri-state buffer. The Verilog has built-in buffers (see 
Figure 4.4).

in out

bufif1

Enable

in out

notif1

Enable

in out

bufif0

Enable

in out

notif0

Enable

FIGURE 4.4 Verilog built-in buffers.

LISTING 4.10 VHDL Behavioral Description of a Tri-State Buffer

entity bind2 is
port (I1, I2 : in std_logic; O1 : out std_logic);
end bind2;
...........
--Add the following architecture to
--the entity bind2 of Listing 4.8
architecture bufif1 of bind2 is
begin
buf : process (I1, I2)
variable tem : std_logic;
begin
if (I2 =’1’) then
tem := I1;
else
tem := ‘Z’;
end if;
O1 <= tem;
end process buf;
end bufif1;
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Now, write the HDL structural description of the decoder as shown 
in Listing 4.11. Figure 4.5 shows the simulation waveform of the decoder.

LISTING 4.11 HDL Description of a 2x4 Decoder with Tri-State Output

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity decoder2x4 is
    port (I : in std_logic_vector(1 downto 0); 
          Enable : in std_logic; 
          D : out std_logic_vector (3 downto 0));
end decoder2x4;

architecture decoder of decoder2x4 is
component bufif1
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
component inv
port (I1 : in std_logic; O1 : out std_logic);
end component;
component and2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
for all : bufif1 use entity work.bind2 (bufif1);
for all : inv use entity work.bind1 (inv_0);
for all : and2 use entity work.bind2 (and2_0);
signal s0, s1, s2, s3 : std_logic;
signal Ibar : std_logic_vector (1 downto 0);
-- The above signals have to be declared before they
-- can be used
begin
    B0 : bufif1 port map (s0, Enable, D(0));
    B1 : bufif1 port map (s1, Enable, D(1));
    B2 : bufif1 port map (s2, Enable, D(2));
    B3 : bufif1 port map (s3, Enable, D(3));
    iv0 : inv port map (I(0), Ibar(0));
    iv1 : inv port map (I(1), Ibar(1));
    a0 : and2 port map (Ibar(0), Ibar(1), s0);
    a1 : and2 port map (I(0), Ibar(1), s1);
    a2 : and2 port map (Ibar(0), I(1), s2);
    a3 : and2 port map (I(0), I(1), s3);
end decoder;
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Verilog Description
module decoder2x4 (I, Enable, D);
input [1:0] I;
input Enable;
output [3:0] D;
wire [1:0] Ibar;
    bufif1 (D[0], s0, Enable);
    bufif1 (D[1], s1, Enable);
    bufif1 (D[2], s2, Enable);
    bufif1 (D[3], s3, Enable);
    not (Ibar[0], I[0]);
    not (Ibar[1], I[1]);
    and (s0, Ibar[0], Ibar[1]);
    and (s1, I[0], Ibar[1]);
    and (s2, Ibar[0], I[1]);
    and (s3, I[0], I[1]);
endmodule

Enable

I 11 10 01 00 11 10 01 00 11 10

D 1000 0100 0010 0001 1000 0100
FIGURE 4.5 Simulation waveform of a 2x1 decoder with tri-state output.

EXAMPLE 4.4 STRUCTURAL DESCRIPTION OF A FULL ADDER

In this example, a full adder (Listing 4.13) is built from two half adders 
(Listing 4.12). The full adder adds (a + b + cin) to generate sum and car-
ry. A half adder is used to add (a + b) to generate sum1 and carry1. An-
other half adder is used to add (sum1 + cin) to generate sum and carry2. 
The carry of the summation (a + b + cin) is the logical OR of carry1 
and carry2. Figures 4.6a and 4.6b show the logical symbol and diagram of 
this full adder, respectively.

For the VHDL code, write the code for half adder. Then, include this 
code in Listing 4.8. Listing 4.12 shows the code of the half adder as part of 
Listing 4.8. Now, write the structural description of the full adder as two 
half adders. Listing 4.13 shows the HDL code for a full adder.
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x

y
cin

sum

carry

(a)

carry

sum
y

cin
Half adder

Half adder

x

(b)
FIGURE 4.6 Full adder as two half adders. a) Logic symbol. b) Logic diagram.

LISTING 4.12 VHDL Description

--This code is to be appended to Listing 4.8
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bind22 is
    Port (I1, I2 : in std_logic; 
           O1, O2 : out std_logic);
end bind22;

architecture HA of bind22 is
component xor2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
component and2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
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for A1 : and2 use entity work.bind2 (and2_0);
for X1 : xor2 use entity work.bind2 (xor2_0);
begin
    X1 : xor2 port map (I1, I2, O1);
    A1 : and2 port map (I1, I2, O2);
end HA;

LISTING 4.13 HDL Description of a Full Adder (Figures 4.6a and 4.6b)

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity FULL_ADDER is
    Port (x, y, cin : in std_logic; 
          sum, carry : out std_logic);
end FULL_ADDER;
architecture full_add of FULL_ADDER is
component HA
Port (I1, I2 : in std_logic; O1, O2 : out std_logic);
end component;
component or2
Port (I1, I2 : in std_logic; O1 : out std_logic);
end component;

for all : HA use entity work.bind22 (HA);
for all : or2 use entity work.bind2 (or2_0);
signal s0, c0, c1 : std_logic;

begin
    HA1 : HA port map (y, cin, s0, c0);
    HA2 : HA port map (x, s0, sum, c1);
    r1 : or2 port map (c0, c1, carry);
end full_add;

Verilog Description
module FULL_ADDER (x, y, cin, sum, carry);
input x, y, cin;
output sum, carry;
HA H1 (y, cin, s0, c0);
HA H2 (x, s0, sum, c1);
//The above two statements bind module HA
//to the present module FULL_ADDER
    or (carry, c0, c1);
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endmodule
module HA (a, b, s, c);
input a, b;
output s, c;
xor (s, a, b);
and (c, a, b);
endmodule

To use the above VHDL code in future examples, it is added to entity 
bind32 in Listing 4.31.

EXAMPLE 4.5  STRUCTURAL DESCRIPTION OF A THREE-BIT 
RIPPLE-CARRY ADDER

In this example, a three-bit ripple-carry adder is described. Then, in 
Example 4.7, this adder is implemented to build a magnitude comparator. 
The logic diagram of the adder is as shown in Figure 2.23 of Chapter 2. 
Listing 4.14 shows the structural description of the three-bit ripple-carry 
adder.

LISTING 4.14 HDL Description of a Three-Bit Ripple-Carry Adder: VHDL 
and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity three_bit_adder is
    port(x, y : in std_logic_vector (2 downto 0);
          cin : in std_logic; 
          sum : out std_logic_vector (2 downto 0);
          cout : out std_logic);
end three_bit_adder;

architecture three_bitadd of three_bit_adder is
component FULL_ADDER
port (I1, I2, I3 : in std_logic; 
    O1, O2 : out std_logic);
end component;
for all : FULL_ADDER 
          use entity work.bind32 (full_add);
signal carry : std_logic_vector (1 downto 0);
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begin
M0 : FULL_ADDER port map (x(0), y(0), cin, sum(0), carry(0));
M1 : FULL_ADDER port map (x(1), y(1), carry(0), sum(1),
                          carry(1));
M2 : FULL_ADDER port map (x(2), y(2), carry(1), sum(2), cout);
end three_bitadd;

Verilog Description
module three_bit_adder (x, y, cin, sum, cout);
input [2:0] x, y;
input cin;
output [2:0] sum;
output cout;
wire [1:0] carry;
FULL_ADDER M0 (x[0], y[0], cin, sum[0], carry[0]);
FULL_ADDER M1 (x[1], y[1], carry[0], sum[1], carry[1]);
FULL_ADDER M2 (x[2], y[2], carry[1], sum[2], cout);

/ It is assumed that the module FULL_ADDER
(Listing 4.13) is attached by the simulator to
the module three_bit_adder so, no need to
rewrite the module FULL_ADDER./

endmodule

Inspection of the code in Listing 4.14 shows that there may be lag time 
between the steady state of each of the adders and the carryout (cout). 
This lag time produces transient states before the values of the sum and 
carryout settle. For example, if the inputs to the adder are 101 and 001, and 
the previous output of the adder is 1001, some transient states can be 0100 
and 1010 before the output settles at 0110. The appearance of these tran-
sient states is called hazards. These transient states, however, have short 
duration and may not be noticed.

EXAMPLE 4.6  STRUCTURAL DESCRIPTION OF A THREE-BIT 
TWO-STAGE CARRY-SAVE ADDER 

The ripple-carry adder in Example 4.5 has a delay that is proportional 
to the number of bits added. This is because each full adder has to wait for 
the generation of the carry out of the preceeding full adder to start adding 
its input bits to this carry out. If each full adder can add its inputs indepen-
dently from other full adders, the addition will be proportional to just a de-
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lay of a single adder because all full adders would be capable of adding their 
inputs simultanously. Carry-save adders utilize the concept of independent 
addition; several of the full adders in the carry-save system, but not all, can 
add their inputs simultanously. Figure 4.7 shows the logic diagram of a 
three-bit four-word carry-save adder. The adder adds four words (a + b + 
c + d) where each word is three bits. FA1, FA2, and FA3 add a + b + c and 
generate sum and partial (not final) carryout at the same time. The same 
is true for FA4, FA5, and FA6; however, these three adders have to wait 
on the upper-stage adders (FA1, FA2, and FA3) to complete their addition 
and generate their carryouts (cr0 and cr1). The adders FA7, FA8, and FA9 
are connected as ripple-carry adders; each adder of this stage has to wait 
for carryout from upper-stage and preceeding full adders. These riple-carry 
adders can be replaced by lookahead adders to decrease the delay associ-
ated with them. If each full adder has a delay of d ns, then the first stage 
takes 1d to finish its task, the second stage takes 1d to finsh its task, and 
the last stage takes 3d to finsh its task. The total delay to add four three-bit 
words is (1 + 1 + 3)d = 5d ns, which is faster than using ripple-carry adders.
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FIGURE 4.7 Two-stage carry-save adder.
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Listing 4.15 shows the Verilog code for the adder of Figure 4.7. The 
Listing contains a main module carry_saveadder and another module 
full_adder. The module full_adder is bound to the main module by a 
statement such as:

full_adder FA1(a1[0],b1[0],c1[0], sm0,cr0);

where a, b, and c in the full_adder module is linked (replaced) by 
a1[0], b1[0], and c1[0]. The result of addition sum and carryout is linked 
(uploaded) to sm0 and cr0, respectively.

LISTING 4.15 Verilog Description of Carry-Save Adder (Figure 4.7)

module carry_saveadder(a1,b1,c1,d1,sum_total,final_carryout);
input[2:0] a1, b1,c1,d1;
output [3:0]sum_total;
output final_carryout;

full_adder FA1(a1[0],b1[0],c1[0], sm0,cr0);
//FA1 is a user-selected label
full_adder FA2(a1[1],b1[1],c1[1], sm1,cr1);
full_adder FA3(a1[2],b1[2],c1[2], sm2,cr2);

full_adder FA4(sm0,d1[0],1’b0, smm0,crr0);
full_adder FA5(sm1,d1[1],cr0, smm1,crr1);
full_adder FA6(sm2,d1[2],cr1, smm2,crr2);
assign sum_total[0] =smm0;

full_adder FA7(crr0,smm1,1’b0, sum_total[1],crrr0);
full_adder FA8(crr1,smm2,crrr0, sum_total[2],crrr1);
full_adder FA9(crr2,crrr1,cr2, sum_total[3],cc);
assign final_carryout = cc;

endmodule
module full_adder (a,b,c,Sum,Carryout);
input a,b,c;
output Sum, Carryout;
not (a_bar,a); // this is an inverter
not (b_bar,b);
not (c_bar,c);
and a1 (s0,a_bar,b_bar, c);/This is And gate with
                           optional name a1/
and a2 (s1,a_bar,b, c_bar);
and a3 (s2,a,b_bar, c_bar);
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and a4 (s3,a,b,c);
or o1(Sum, s0,s1,s2,s3);
and a5 ( s5,a,b);
and a6 ( s6,a,c);
and a7 ( s7,b,c);
or o2( Carryout,s5,s6,s7);
endmodule

EXAMPLE 4.7  STRUCTURAL DESCRIPTION OF A THREE-BIT 
MAGNITUDE COMPARATOR USING A THREE-BIT ADDER

Chapter 2 covered a 2x2-bit comparator using truth tables. If the num-
ber of bits to be compared is more than two bits, the truth tables become 
so huge that is too difficult to handle. In this example, a different approach 
is taken. Consider two numbers X and Y, each of n bits; if X is greater than 
Y, then:

 X  Y > 0 (4.2)

–Y is the twos complement of Y = Y + 1; substituting in Equation 4.2, 
the condition of X > Y is rewritten as:

 X + Y  + 1 > 0 (4.3)

Or, Equation 4.3 can be rewritten as:

 X + Y  > 1 (4.4)

For n bits, –1 is a string of n bits; each bit is 1. If n = 5, for example 1d= 
(11111)2, so Equation 4.4 can be rewritten as:

 X + Y  > 1……1111  (4.5)

Equation 4.5 states that if X is greater than Y, the sum of X and Y
should be greater than 1…1111. If n adders are used to add X plus Y , then 
for X to be greater than Y, the n-bit sum should be greater than n ones. 
This can only happen if the n-bit adders have a final carryout of 1. So, if X 
is added to Y  using n-bit adders, and the final carryout is 1, then it can be 
concluded that X > Y. If there is no final carryout, then X  Y. To check for 
equality, it is noticed that if X = Y then:

 X + Y  = 1……1111 (4.6)
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In this example, n = 3 is being considered. Figure 4.8 shows the logic 
diagram of the comparator.

Full
adder

Y2 X2

Full
adder

Y1 X1

Full
adder

carry0carry1carry2

sum0sum1sum2

xlty xeqyxgty

Y0 X0

0

FIGURE 4.8 A full-adder-based comparator.

Listing 4.16 shows the HDL code for the comparator. The HDL code 
for a full adder has already been written (see Listing 4.13). The full-adder 
components (macros) are used in Listing 4.16. Because they are identical, 
only one generic full adder is declared as:

component full_adder
port(I1, I2, I3 : in std_logic; 
      O1, O2 : out std_logic);
end component;

To use these components, link their work library from Listing 4.13 as:

for all : full_adder use entity work.bind32 (full_add); --VHDL

or, in Verilog, link the module built in Listing 4.13 as:

FULL_ADDER M0 (X[0], Yb[0], 1’b0, sum[0], carry[0]); //Verilog
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LISTING 4.16 HDL Description of a Three-Bit Comparator Using Adders

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity three_bit_cmpare is
port (X, Y : in std_logic_vector (2 downto 0);
    xgty, xlty, xeqy : buffer std_logic);
end three_bit_cmpare;

architecture cmpare of three_bit_cmpare is

--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer.

component full_adder
port (I1, I2, I3 : in std_logic; 
      O1, O2 : out std_logic);
end component;
component Inv
port (I1 : in std_logic; O1 : out std_logic);
end component;
component nor2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
component and3
port (I1, I2, I3 : in std_logic; O1 : out std_logic);
end component;
for all : full_adder use entity work.bind32 (full_add);
for all : Inv use entity work.bind1 (inv_0);
for all : nor2 use entity work.bind2 (nor2_0);
for all : and3 use entity work.bind3 (and3_7);
--To reduce hazards, an AND gate is
--implemented with a 7-ns delay.
signal sum, Yb : std_logic_vector (2 downto 0);
signal carry : std_logic_vector (1 downto 0);
begin
    in1 : inv port map (Y(0), Yb(0));
    in2 : inv port map (Y(1), Yb(1));
    in3 : inv port map (Y(2), Yb(2));
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    F0 : full_adder port map (X(0), Yb(0), 
                              ‘0’, sum(0), carry(0));
    F1 : full_adder port map (X(1), Yb(1), carry(0), 
                        sum(1), carry(1));
    F2 : full_adder port map (X(2), Yb(2), carry(1), 
                           sum(2), xgty);
    a1 : and3 port map (sum(0), sum(1), sum(2), xeqy);
    n1 : nor2 port map (xeqy, xgty, xlty);
end cmpare;

Verilog Description
module three_bit_cmpare (X, Y, xgty, xlty, xeqy);
input [2:0] X, Y;
output xgty, xlty, xeqy;
wire [1:0] carry;
wire [2:0] sum, Yb;
    not (Yb[0], Y[0]);
    not (Yb[1], Y[1]);
    not (Yb[2], Y[2]);
    FULL_ADDER M0 (X[0], Yb[0], 1’b0, sum[0],
                     carry[0]);
FULL_ADDER M1 (X[1], Yb[1], carry[0], sum[1],
                     carry[1]);
FULL_ADDER M2 (X[2], Yb[2], carry[1], sum[2],
                     xgty);
and #7 (xeqy, sum[0], sum[1], sum[2]); 
/ To reduce hazard use an AND gate with a delay of 7 units/
nor (xlty, xeqy, xgty);
endmodule

EXAMPLE 4.8 STRUCTURAL DESCRIPTION OF AN SET-RESET LATCH

A set-reset (SR) latch is a sequential circuit. The output and the next 
state depends on the input(s) and the current state. It memorizes, as is the 
case for sequential circuits, one of its states when S = R = 0. Memorization 
is achieved through feedback between the output Q, its complement Q , 
and the inputs. The inputs receive the values of the current output through 
the feedback lines. The state where S = R = 1 is prohibited because it may 
lead to unstable output (both Q and Q  acquire the same logic level). The 
latch is implemented in digital systems as a switch or memory cell for static 
random-access memory (SRAM). The excitation table of the latch is shown 
in Table 4.2.
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TABLE 4.2 Excitation Table of an SR-Latch

S R Current State Next State
1 0  x 1
0 1  x 0
0 0  q  q
1 1  x prohibited

Figures 4.9a and 4.9b show the logic symbol and diagram, respectively, of 
an SR-latch using NOR gates. Notice the connection (feedback) between the 
output Q and the input of the NOR gate in Figure 4.9b. Listing 4.17 shows the 
HDL structural description of an SR-latch based on NOR gates.

S Q

R Q
 

Q
R

Qbar
S

 (a) (b)
FIGURE 4.9 SR-Latch. a) Logic symbol. b) Logic diagram.

LISTING 4.17 HDL Description of an SR-Latch with NOR Gates

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity SR_latch is
    port (R, S : in std_logic;
        Q, Qbar : buffer std_logic);
--Q, Qbar are declared buffer because
--they behave as input and output.

end SR_latch;

architecture SR_strc of SR_latch is
--Some simulators would not allow mapping between
--buffer and out. In this
--case, change all out to buffer.
component nor2
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port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
for all : nor2 use entity work.bind2 (nor2_0);
begin
    n1 : nor2 port map (S, Q, Qbar);
    n2 : nor2 port map (R, Qbar, Q);
end SR_strc;

Verilog Description
module SR_Latch (R, S, Q, Qbar);
input R, S;
output Q, Qbar;
nor (Qbar, S,Q);
nor (Q, R, Qbar);
endmodule

To use the above code in future VHDL examples, it is appended to 
Listing 4.31. Figure 4.10 shows the simulation waveform of the SR-latch.

R

Qbar

Q

S

FIGURE 4.10 Simulation waveform of an SR-latch.

EXAMPLE 4.9  STRUCTURAL DESCRIPTION OF A D-LATCH WITH 
ACTIVE LOW CLEAR

A D-latch is a sequential circuit. The output of the latch (Q) follows 
the input (D) as long as the enable (E) is high. Q  is the complement of Q. 
The clear signal is chosen here to be asynchronous active low, which means 
if the clear signal is low, the output is cleared (Q = 0) momentarily. The 
latch has been discussed in Chapter 2. The logic symbol and diagram are as 
shown in Figure 4.11. Listing 4.18 shows the HDL structural description 
of a D-latch.
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Q

Qbar

D-Latch

D

E

clrbar 

Q

Qbar

D
E

clrbar

 (a) (b)
FIGURE 4.11  D-Latch with clear. a) Logic symbol. b) Logic diagram.

LISTING 4.18 HDL Description of a D-Latch with Active Low Clear

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity D_LatchWclr is
    port (D, E,clrbar : in std_logic; 
            Q, Qbar : buffer std_logic);
end;
architecture D_latch_str of D_LatchWclr is

--be sure to use buffer rather than output in all
-- components; some simulators will not map output
--to buffer.

component and3
port (I1, I2, I3 : in std_logic; 
      O1 : buffer std_logic);
end component;
component nor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
for all : and3 use entity work.bind3 (and3_4);
for all : nor2 use entity work.bind2 (nor2_4);
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for all : inv use entity work.bind1 (inv_1);
signal Eb, s1, s2 : std_logic;
begin
    a1 : and3 port map (D, E, clrbar, s1);
    a2 : and3 port map (Eb, D,clrbar, s2);
    in1 : inv port map (E, Eb);
    in2 : inv port map (Qbar, Q);
    n2 : nor2 port map (s1, s2, Qbar);
end D_latch_str;

To use the above code in future examples, it is appended to 
Listing 4.31.

Verilog Description
module D_latchWclr(D, E,clrbar, Q, Qbar);
input D, E, clrbar;
output Q, Qbar;
/ assume 4 ns delay for and gate and nor gate,
and 1 ns for inverter /
//The clear is active low; if clrbar = 0, Q=0

and #4 gate1 (s1, D, E, clrbar);

/ the name “gate1” is optional; we could have
   written and #4 (s1, D, E) /
    and #4 gate2 (s2, Eb, Q, clrbar);
    not #1 (Eb, E);
    nor #4 (Qbar, s1, s2);
    not #1 (Q, Qbar);
endmodule

The simulation waveform is the same as in Figure 2.19 except for the 
addition of signal clrbar; if the clrbar signal is low, Q should go low.

EXAMPLE 4.10  STRUCTURAL DESCRIPTION OF A PULSE-TRIGGERED, 
MASTER-SLAVE D FLIP-FLOP WITH ACTIVE LOW CLEAR

The D-latch discussed in Listing 4.18 has a characteristic that may not 
be desirable in digital circuits such as counters. The D-latch output follows 
its input as long as the enable is high. In counters, for example, the output is 
desired to change only once during the active phase of the clock. To achieve 
this, flip-flops are needed. A master-slave D flip-flop is a sequential circuit 
where the output follows the input only once at the transition of the clock 
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from inactive to active. Figure 4.12 shows the logic symbol of the master-
slave D flip-flop. Table 4.3 shows the excitation table of the flip-flop.

TABLE 4.3 Excitation Table for the Master-Slave D Flip-Flop

Input Current State Clock Next State
Clrbar D Q  clk Q+

0 x x 0
1 0 0  0

1 0 1  0

1 1 0  1

1 1 1  1

The logic diagram of the master-slave flip-flop is shown in Figure 4.12. 
The flip-flop consists of two active high enable D-latches; the first latch is 
called the master, and the second is called the slave. The master latch drives 
the slave. The clock of the master is the invert of the clock of the slave. 
Because the clock of one of the latches is the invert of the other, at any 
time one latch will be active while the other is inactive. At the high level of 
the clock, the slave is active; its output Q follows its input QM (QM is the 
output of the master). Because the master is inactive at the high level of the 
clock, any change in D (the input of the slave) is not transmitted to QM, 
so QM and Q stay the same during the high level of the clock, unaffected 
by any change in D. Thus, the flip-flop is sensitive to the clock pulse rather 
than the level, as in a D-latch.

D

clrbar

d dQ

D-Latch

Q0

clk2clkb
clk

C Qb

Q

Qbar

Q

D-Latch

C Qb

FIGURE 4.12 Logic diagram of a master-slave D flip-flop with active low clear.

Listing 4.19 shows the HDL code of the master-slave D flip-flop. In the 
VHDL code, there is already code for the D_latchWclrbar (see Listing 4.18); 
this code is attached to the flip-flop code by the statement
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for all : D_latchWclrbar use entity work. 
            bind32(D_latch_Wclr);

which links the architecture D_latch_Wclr to the current module. In 
Verilog, we link the module D_latchWclr to the module D_FFMasterWclr 
by the statement

D_latchWclr D0 (D, clkb,clrbar, Q0, Qb0);

Note that the order of the linked parameters (D, clkb, clrbar, Q0, 
and Qb0) to match D, E, clrbar, Q, and Qbar of the D_latchWclr mod-
ule, respectively, for proper mapping.

LISTING 4.19 HDL Description of a Master-Slave D Flip-Flop with Active 
Low Clear

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity D_FFMasterWclr is
    Port (D, clk, clrbar : in std_logic; 
           Q, Qbar : buffer std_logic);
end D_FFMasterWclr ;

architecture D_FF_str of D_FFMasterWclr is

component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
component D_latchWclrbar
port (I1, I2, I3 : in std_logic; 
       O1, O2 : buffer std_logic);
end component;
for all : D_latchWclrbar use 
    entity work. bind32(D_latch_Wclr);
for all : inv use entity work.bind1 (inv_1);
signal clkb, clk2, Q0, Qb0 : std_logic;
begin
    D0 : D_latchWclrbar port map (D, clkb,clrbar, Q0, Qb0);
    D1 : D_latchWclrbar port map (Q0, clk2, clrbar, Q, Qbar);
    in1 : inv port map (clk, clkb);
    in2 : inv port map (clkb, clk2);
end D_FF_str;



STRUCTURAL DESCRIPTION • 179

Verilog Description
module D_FFMasterWclr(D, clk,clrbar, Q, Qbar);
input D, clk, clrbar;
output Q, Qbar;
not #1 (clkb, clk);
not #1 (clk2, clkb);
D_latchWclr D0 (D, clkb,clrbar, Q0, Qb0);
D_latchWclr D1 (Q0, clk2,clrbar, Q, Qbar);
endmodule

To use the above VHDL code in future examples, it is appended to 
entity bind32 in Listing 4.31. 

Figure 4.13 shows the simulation waveform of the master-slave D flip-
flop. It is clear from the figure that signal D is sampled only at the transition 
of the clock from low to high. If D changes during the high level (or the 
low level) of the clock, the output Q remains the same; it does not respond 
to this change. Compare Figure 4.13 with Figure 2.19 and notice the dif-
ference between a latch and a flip-flop. During the high level of the clock 
(called enable in the latch), Q follows D for the latch. In the flip-flop, Q 
follows D only at the clock transitions from low to high.

D

clk

Q

clrbar

FIGURE 4.13 Simulation waveform of a master-slave D flip-flop.

EXAMPLE 4.11  STRUCTURAL DESCRIPTION OF A PULSE-TRIGGERED 
MASTER-SLAVE JK FLIP-FLOP WITH ACTIVE LOW CLEAR

A JK flip-flop can be viewed as an extension of the SR-latch. The 
flip-flop has all the allowed states of the SR. The prohibited state in the 
SR-latch is replaced by a toggle state where the output of the flip-flop is 
complemented every time J = K = 1. Table 4.4 shows the excitation table 
of a pulse-triggered JK flip-flop. Another type of flip-flop is the T flip-flop, 
where a JK flip-flop with terminal J is connected to terminal K to form ter-
minal T, is shown in Figure 4.14.
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Q

Qb

J

K

T

clk

T
Flip-
Flop

FIGURE 4.14 Logic diagram of a T flip-flop.

TABLE 4.4 Excitation Table for a Pulse-Triggered JK Flip-Flop

J K Q clk Q+

0 0 Q0 Q0

0 1 x 0

1 0 x 1

1 1 Q0 Q0

The Boolean function of a JK fl ip-fl op can be derived from a D fl ip-fl op. 
Table 4.5 shows the J and K values and the corresponding D values. The D 
values are obtained by fi nding the value of D that can produce the transition 
from Q to Q+. For example, if Q = 0, and Q+ is 1, then D should be 1. In fact, 
the value of D will be equal to Q+ for all transitions.

TABLE 4.5 Relationship Between JK Flip-Flop and D Flip-Flop

J K Q clk Q+ D
0 0 0 0 0

0 0 1 1 1

0 1 0 0 0

0 1 1 0 0

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 0
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To find the Boolean function of D, form K-maps as shown in 
Figure 4.15.

KQ
J

00

1

10110100

D

01 11

1

0

0 00

FIGURE 4.15 K-maps of Table 4.5.

From Figure 4.15, the Boolean functions are:

 D=KQ+JQ  (4.7)

Equation 4.7 is used to build a master-slave JK flip-flop from a master-
slave D flip-flop. Figure 4.16 shows a master-slave JK flip-flop generated 
from a master-slave D flip-flop. 

D
Master-Slave

d
DD

S1
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Kb

K

J

clk

Q

QQ

Q

 FIGURE 4.16 Pulse-triggered master-slave JK flip-flop.

Listing 4.20 shows the HDL code for the master-slave JK flip-flop 
illustrated in Figure 4.16.
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LISTING 4.20 HDL Description of a Master-Slave JK Flip-Flop: VHDL and 
Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity JK_FLFL is
    port (J, K, clk, clrbar : in std_logic; 
          Q, Qbar : buffer std_logic);

-- Q and Qbar are declared buffer so they can be input
-- or output

end JK_FLFL;

architecture JK_Master of JK_FLFL is

component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component or2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
component D_FFMasterWclr
port (D, clk, clrbar : in std_logic; 
      Q, Qbar : buffer std_logic);
end component;
for all : and2 use entity work.bind2 (and2_4);
for all : or2 use entity work.bind2 (or2_4);
for all : inv use entity work.bind1 (inv_1);
for all : D_FFMasterWclr use 
          entity work. D_FFMasterWclr (D_FF_str); 
signal s1, s2, Kb, DD : std_logic;
begin
    a1 : and2 port map (J, Qbar, s1);
    a2 : and2 port map (Kb, Q, s2);
    in1 : inv port map (K, Kb);
    or1 : or2 port map (s1, s2, DD);
    DFF : D_FFMasterWclr port map (DD, clk,clrbar, Q, Qbar);
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end JK_Master;

Verilog Description
module JK_FF (J, K, clk,clrbar, Q, Qbar);
input J, K, clk, clrbar;
output Q, Qbar;
wire s1, s2;
    and #4 (s1, J, Qbar);
    and #4 (s2, Kb, Q);
    not #1 (Kb, K);
    or #4 (DD, s1, s2);
D_FFMasterWclr D0 (DD, clk,clrbar, Q, Qbar);
endmodule
module D_FFMasterWclr(D, clk,clrbar, Q, Qbar);

/ no need to rewrite this module here if it has 
been already attached to the above module (JK_FF). /

input D, clk, clrbar;
output Q, Qbar;

    not #1 (clkb, clk);
    not #1 (clk2, clkb);
    D_latchWclr D0 (D, clkb,clrbar, Q0, Qb0);
    D_latchWclr D1 (Q0, clk2,clrbar, Q, Qbar);

endmodule

module D_latchWclr(D, E,clrbar, Q, Qbar);
/ no need to rewrite this module here if it has 
been already attached to the above module (JK_FF). /

input D, E, clrbar;
output Q, Qbar;
/ assume 4 ns delay for and gate and nor gate,
and 1 ns for inverter /
//The clear is active low; if clrbar = 0, Q=0

and #4 gate1 (s1, D, E, clrbar);

/ the name “gate1” is optional; we could have
    written and #4 (s1, D, E) /
    and #4 gate2 (s2, Eb, Q, clrbar);
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    not #1 (Eb, E);
    nor #4 (Qbar, s1, s2);
    not #1 (Q, Qbar);
endmodule

Notice here that the VHDL code in Listing 4.20 is getting shorter (the 
VHDL code is not shorter but getting shorter) compared to the Verilog 
code. This is due to the fact that VHDL user-built components are being 
linked, such as and2, or2, and inv. Their codes do not need to be rewrit-
ten because they are linked to the current module.

EXAMPLE 4.12 STRUCTURAL DESCRIPTION OF AN SRAM CELL

A simple memory cell has been designed using an SR-latch; Figure 
4.17a shows the symbol diagram of the cell. The cell has tri-state output. 
If the select line (Sel) is low, the output of the cell is in high impedance. A 
read/write (R/W) input signal controls the cell’s cycle type. If R/W is high, 
the cell is in read cycle; if it is low, the cell is in write cycle. Table 4.6 shows 
the excitation table of the cell with inputs (select, R/W, data in, current 
state) and the corresponding outputs (next state, output). From the current 
state and next state, S and R of the latch are determined according to Table 
4.2. For example, if the current state is 0 and next state 0, then two combi-
nations of SR can generate this transition: S = 0, R = 0, and S = 0, R = 1, so 
SR = 0x when x is “don’t care.”

CELL

SEL

R/W

Din

O1



S

R O1

Din
RW
Sel

Q

Q

 (a) (b)
FIGURE 4.17 SRAM memory cell. a) Logic symbol. b) Logic diagram.
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TABLE 4.6 Excitation Table of an SRAM Memory Cell 

Select R/W Data In Current 
State

Next 
State

 Output Latch

Sel RW Din Q Q+ O1 S R
0 x x Q Q Z 0 0
1 0 0 0 0 0 0 x
1 0 0 1 0 0 0 1
1 0 1 0 1 1 1 0
1 0 1 1 1 1 x 0
1 1 0 0 0 0 0 x
1 1 0 1 1 1 x 0
1 1 1 0 0 0 0 x
1 1 1 1 1 1 x 0

From Table 4.6, K-maps are constructed (see Figure 4.18). 
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FIGURE 4.18 K-maps for Table 4.6.
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From the K-maps:

S = Sel RW Din

R = Sel RW Din

O1 = Sel Din + SelRWQ = R + SelRW Q (for Sel = 1)

O1 = Z (for Sel = 0)

The logic diagram of the cell is shown in Figure 4.17b.

The code for the memory cell is shown in Listing 4.21. The VHDL code 
uses the SR-latch that was designed in Listing 4.17 as a component (macro), 
using the statement

component SR_Latch
port (I1, I2 : in std_logic; 
O1, O2 : buffer std_logic);
end component;

which declares a generic SR-latch. This latch is 
linked to the memory-cell code by the  s t a t e m e n t

for all : SR_Latch use entity work.bind22 (SR_Latch);

The VHDL statement

SR1 : SR_Latch port map (R, S, Q, open);

assigns R and S as the inputs of the SR-latch SR1. The noninverted 
output of the latch is assigned to Q, and the inverted output is left open; 
open is a VHDL predefined word. For Verilog, link the module of the SR-
latch that has been designed in Listing 4.17 to the memory cell code by the 
statement:

SR_Latch RS1 (R, S, Q, Qbar);

which links the module SR_Latch to the current module memory.

LISTING 4.21 HDL Description of an SRAM Memory Cell: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity memory is
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    port (Sel, RW, Din : in std_logic; 
           O1: buffer std_logic );

end memory;

architecture memory_str of memory is
--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer.

component and3
port (I1, I2, I3 : in std_logic; O1 : out std_logic);
end component;

component inv
port (I1 : in std_logic; O1 : out std_logic);
end component;

component or2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;

component bufif1
port (I1, I2 : in std_logic; O1 : out std_logic); 
end component;

component SR_Latch
port (I1, I2 : in std_logic; 
    O1, O2 : buffer std_logic);
end component;
for all : and3 use entity work.bind3 (and3_0);
for all : inv use entity work.bind1 (inv_0);
for all : or2 use entity work.bind2 (or2_0);
for all : bufif1 use entity work.bind2 (bufif1);
for all : SR_Latch use entity work.bind22 (SR_Latch);
signal RWb, Dinb, S, S1, R, O11, Q : std_logic;
begin
    in1 : inv port map (RW, RWb);
    in2 : inv port map (Din, Dinb);
    a1 : and3 port map (Sel, RWb, Din, S);
    a2 : and3 port map (Sel, RWb, Dinb, R);
    SR1 : SR_Latch port map (S, R, Q, open);
--open is a predefined word;
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--it indicates that the port is left open.
    a3 : and3 port map (Sel, RW, Q, S1);
    or1 : or2 port map (S1, S, O11);
    buf1 : bufif1 port map (O11, Sel, O1);
end memory_str;

Verilog Description
module memory (Sel, RW, Din, O1);
input Sel, RW, Din;
output O1;
    not (RWb, RW);
    not (Dinb, Din);
    and (S, Sel, RWb, Din);
    and (R, Sel, RWb, Dinb);
    SR_Latch RS1 (R, S, Q, Qbar);
    and (S1, Sel, RW, Q);
    or (O11, S1, S);
    bufif1 (O1, O11, Sel);
endmodule

EXAMPLE 4.13  STRUCTURAL DESCRIPTION OF A THREE-BIT UNIVERSAL 
SHIFT REGISTER

Figure 4.19 shows the symbol and logic diagram of a three-bit universal 
shift register. The register can be loaded externally from a three-bit data 
P on the positive edge of the clock. The data stored in the register can be 
right shifted with one-bit DSR replacing the most significant bit of Q every 
shift. The data stored in the register can also be left shifted with one-bit 
DSL replacing the least significant bit of Q every shift. The truth table of 
the register is shown in Table 4.7. Listing 4.22 shows the Verilog code for 
the shift register. To test the shift function of the register, load external data 
(P) using the load function and then shift left or right.

TABLE 4.7 Truth Table for the Shift Register

Clrbar s1 s0 Action
0 x x Clear (Q = 0)
1 1 1 Load P into Q (Q = P) at the positive edge of the clock
1 0 1 Shift right, DSR replaces Q2 at the positive edge of the clock
1 0 1 Shift left, DSL replaces Q0 at the positive edge of the clock
1 0 0 Hold (Q retains its current value with the clock)
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LISTING 4.22 Verilog Description of a Three-Bit Universal Shift Register

module shft_regsterUniv(clk, clrbar,
s0,s1,P,DSR,DSL,Q,Qb);
input clk, clrbar,s0,s1,DSR,DSL;
output [2:0] Q,Qb,P;
not (s0bar, s0);
not (s0t,s0bar);
not (s1bar, s1);
not (s1t, s1bar);

and #4 a0(aa0, DSR, s1bar,s0t);
and #4 a1(aa1, s0t, s1t,P[2]);
and #4 a2(aa2, s0bar, s1t,Q[1]);
and #4 a3(aa3, s0bar, s1bar,Q[2]);
or #4 or2 (D2,aa0,aa1,aa2,aa3);
D_FFMasterWclr DFM0(D2,clk,clrbar,Q[2],Qb[2]);

and #4 a4(aa4, Q[2], s1bar,s0t);
and #4 a5(aa5, s0t, s1t,P[1]);
and #4 a6(aa6, s0bar, s1t,Q[0]);
and #4 a7(aa7, s0bar, s1bar,Q[1]);
or #4 or1 (D1,aa4,aa5,aa6,aa7);
D_FFMasterWclr DFM1(D1,clk, clrbar,Q[1],Qb[1]);
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FIGURE 4.19 Universal shift register with clear. a) Symbol diagram. b) Logic diagram.
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and #4 a8(aa8, Q[1], s1bar,s0t);
and #4 a9(aa9, s0t, s1t,P[0]);
and #4 a10(aa10, s0bar, s1t,DSL);
and #4 a11(aa11, s0bar, s1bar,Q[0]);
or #4 or0 (D0,aa8,aa9,aa10,aa11);
D_FFMasterWclr DFM2(D0,clk,clrbar,Q[0], Qb[0]);
endmodule

4.4 State Machines

Synchronous sequential circuits are called state machines. The main 
components of the state machine are latches and flip-flops; additional com-
binational components may also be present. Synchronous clock pulses are 
fed to all flip-flops and latches of the machine. There are two types of syn-
chronous sequential circuits: Mealy and Moore circuits. The output or next 
state of Mealy circuits depends on the inputs and the present (current) 
state of the flip-flops/latches. The output or next state of the Moore circuit 
depends only on the present states. The present state and next state for a 
particular flip-flop are the same pin (output Q). The current state is the 
value of Q just before the present clock pulse or edge; the next state is the 
value of Q after the clock pulse or the edge. To build a state machine, the 
following steps are performed:

1. Determine the number of states. If the system is n-bit, then the number 
of flip-flops is n, and the number of states is 2n. The number of flip-flops 
here is calculated according to the classical method, where the number 
of flip-flops is the minimum possible. Another method in which each 
state is represented by one flip-flop is frequently used when the num-
ber of bits is getting too large to handle by the classical method. For 
example, if the system is three bits, then the classical method requires 
three flip-flops, while the one flip-flop per state method requires eight 
flip-flops. In this chapter, the classical method is implemented.

2. Construct a state diagram that shows the transition between states. At 
each state, consider it as the current state; after the clock is active (edge 
or pulse), the system moves from current state to next state. Determine 
the next state according to the input if the system is Mealy or accord-
ing to the current state only if the system is Moore. Also, determine the 
output (if any) of the system at this current state.

3. From the state diagram, construct the excitation table that tabulates the in-
puts and the outputs. The inputs always include the current states, and the 
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outputs always include the next states. The table also includes the inputs of 
the flip-flops or latches that constitute the state machine. For example, if 
the flip-flops implemented in a certain machine are JK flip-flops, then the 
inputs J and K of the flip-flop are determined according to the transition 
from current to next state. If, for example, the current state is 0 and the 
next is 0, then J = 0 and K = x (don’t care). If the flip-flops are D flip-flops, 
then the Ds of the flip-flops are the same as the corresponding next states.

4. Find J and K in terms of the inputs and minimize using K-maps or any 
other appropriate method.

5. If using structural description to simulate the system, draw a logic dia-
gram of the system using appropriate available macros such as latches, 
adders, and flip-flops.

The following examples are state machines. More examples of state ma-
chines and counters will be discussed in Chapters 6 and 7.

EXAMPLE 4.14  STRUCTURAL DESCRIPTION OF A THREE-BIT 
SYNCHRONOUS COUNTER WITH ACTIVE LOW CLEAR

A synchronous counter can be viewed as a simple finite state machine. 
The logic symbol of the counter is shown in Figure 4.20. The counter is 
constructed from JK flip-flops.

q2q1q0 q2q1q0

clr

clrbar clk

Three-bit Counter

FIGURE 4.20 Logic symbol of a three-bit counter with active low clear.

The state diagram of the counter is shown in Figure 4.21. Because the 
counter counts from 0 to 7, three flip-flops are needed to cover that count. 
The transition depends on the current state and the input (clrbar). Usually 
D flip flops are used; however, we will use JK flip flops just to practice with 
their implementation in the state machine. The next step is to construct the 
excitation table.
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Table 4.8a shows the excitation table of a JK flip-flop, and Table 4.8b 
shows the excitation table of the counter.

TABLE 4.8A Excitation Table for a JK Flip-Flop

Inputs Outputs
Current State J K Next State

0 1 x 1
0 0 x 0
1 x 1 0
1 x 0 1

TABLE 4.8B Excitation Table for a Three-Bit Synchronous Counter with Active Low Clear

Inputs          Outputs

Input Current State Next State Flip-Flops
clrbar q2 q1  q0 q2+ q1+ q0+ J2K2 J1K1 J0K0

0 x x x 0 0 0 xx xx xx
1 0 0 0 0 0 1 0x 0x 1x
1 0 0 1 0 1 0 0x 1x x1
1 0 1 0 0 1 1 0x x0 1x
1 0 1 1 1 0 0 1x x1 x1
1 1 0 0 1 0 1 x0 0x 1x
1 1 0 1 1 1 0 x0 1x x1

S0S7

S6

S5

S4 S3

S2

S1

1

1

1

1

1

1

1
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0

0

0

0

0
0

0

FIGURE 4.21 State diagram of a three-bit 
counter with active low clear.
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Inputs          Outputs

Input Current State Next State Flip-Flops
clrbar q2 q1  q0 q2+ q1+ q0+ J2K2 J1K1 J0K0

1 1 1 0 1 1 1 x0 x0 1x
1 1 1 1 0 0 0 x1 x1 x1

Now, construct the K-maps of the Table 4.8b. The J-K flip-flops with 
active low clear previously constructed in Example 4.11 are used here. Ac-
cordingly, the clear action will be done by just activating the clear function 
of the JK flip-flops. Figure 4.22 shows the K-maps of Table 4.8b.

q1q0

q2

0

X

10110100

J2 = K2

1 XX X

1

FIGURE 4.22 K-maps of Table 4.8b.

From Table 4.b and the K-maps: 

J0 = K0=1

J1 = K1 = q0

J2 = K2= q0 q1

Next, draw the logic diagram of the counter (see Figure 4.23).
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clrbar
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clk
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JK2
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Q K

q1 J1

K1

clrbar
J

q1

JK1

Q

Q K

q0 J0

K0

clrbar

clrbar

J

1

q0

JK0

FIGURE 4.23 Logic diagram of a three-bit synchronous counter with active low clear using master-slave JK 
flip-flops.
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Now, write the structural description of the counter. The previously 
built macros and modules are used, as is the JK flip-flop designed in Listing 
4.20. In VHDL, declare it as component:

component JK_FLFL 
port (J, K, clk, clrbar : in std_logic; 
      Q, Qbar : buffer std_logic);
end component;
for all : JK_FLFL 
    use entity work. JK_FLFL (JK_Master);

Be sure to attach all the entities needed, such as entity JK_
FLFL, and be sure to compile all of those entities to generate the 
work library before using them in the entity CTStatemachine. 
In Verilog, link the current module to the JK_FF module written in List-

ing 4.20b. As an example of this linking, when J = K = 1:

JK_FF FF0(1’b1, 1’b1, clk, clrbar, q[0], qb[0]);

Listing 4.23 shows the HDL code of the counter. The basic VHDL 
package does not include definitions of the components JK_FLFL and 

and2. Several CAD vendors can provide packages that contain these defi-
nitions; if these packages are included in Listing 4.23, there is no need for 
component declaration statements for them.

LISTING 4.23 HDL Description of a Three-Bit Synchronous Counter Using 
Master-Slave JK Flip-Flops: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity CTStatemachine is
    port( clk, clrbar : in std_logic; 
        Q, Qbar: buffer std_logic_vector (2 downto 0));
end CTStateMachine;

architecture ct_3 of CTStateMachine is
component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component JK_FLFL 
port (J, K, clk, clrbar : in std_logic; 
       Q, Qbar : buffer std_logic);
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end component;
for all : and2 use entity work.bind2 (and2_4);
for all : JK_FLFL use entity work. 
          JK_FLFL (JK_Master );

--Be sure to attach the entity-architectures
-- shown above
signal J2,K2 : std_logic;

begin
JK0 : JK_FLFL port map (‘1’, ‘1’, clk, clrbar, Q(0), Qbar(0));
JK1 : JK_FLFL port map (q(0), q(0), clk, clrbar, Q(1), Qbar(1));
A1: and2 port map (q(0), q(1), J2);
A2: and2 port map (q(0), q(1), K2);
JK2 : JK_FLFL port map (J2, K2, clk, clrbar, Q(2), Qbar(2));
end ct_3;

Verilog Description
module CTstatemachine(clk, clrbar, q, qb);
input clk, clrbar;
output [2:0] q, qb;

JK_FF FF0(1’b1, 1’b1, clk, clrbar, q[0], qb[0]);

assign J1 = q[0]; / a buffer could have been used here
        and in all assign statement in this module/

assign K1 = q[0];
JK_FF FF1 (J1, K1, clk, clrbar, q[1], qb[1]);

and A1 (J2, q[0], q[1]);
assign K2 = J2;
JK_FF FF2(J2, K2, clk, clrbar, q[2], qb[2]);
endmodule

The simulation waveform of the counter is shown in Figure 4.24. 

q 0 1 2 1 23 4 5 6 7 0 0

clrbar

clk

FIGURE 4.24 Simulation waveform of a three-bit synchronous counter with active low clear.
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EXAMPLE 4.15  STRUCTURAL DESCRIPTION OF A THREE-BIT 
SYNCHRONOUS EVEN COUNTER WITH ACTIVE HIGH HOLD

Assume the counter here is 
counting up. The number of flip-
flops is three. First, draw the state 
diagram of the counter as shown in 
Figure 4.25. For all even current 
states, the next state is the next 
even. For example, if the current 
state is 010 (2), then the next state 
is 100 (4). For any odd state (in-
valid state), the next state can be 
selected to be any state that en-
sures the continuity of the count. 
For example, if the current state is 
the invalid state 001, the next state 
can be 000. In the case of invalid 
states, choose the next state that 
yields the minimum number of 

components or minterms; this is done by assigning “don’t cares” to the next 
state of invalid state and selecting 1 or 0 instead of the “don’t care” that 
yields to more minimizations. This will be explained when the excitation 
table is formed.

From the state diagram, generate the excitation table. Table 4.9 shows 
the excitation table of the counter using D flip-flops. The Ds of the flip-flop 
are the same as the next state.

TABLE 4.9 Excitation Table for a Three-Bit Even Counter

Inputs          Outputs
Current state Next State Flip-Flops

H Q2 Q1 Q0 Q2+ Q1+ Q0+ D2 D1 D0
0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 1 0 0
0 0 1 1 1 0 0 0 0 0
0 1 0 0 1 1 0 1 1 0
0 1 0 1 0 1 0 0 0 0

S7
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S0

S5

S4

S3

S2

S1

1

1

1

1

0

0

0 0

FIGURE 4.25 State diagram of an even three-bit 
counter. The Hold is shown in the diagram as only input.
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Inputs          Outputs
Current state Next State Flip-Flops

H Q2 Q1 Q0 Q2+ Q1+ Q0+ D2 D1 D0
0 1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0 1 0
1 0 1 1 0 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0
1 1 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0
1 1 1 1 0 0 0 0 0 0

From the excitation table, generate the K-maps. Figure 4.26 shows the 
K-maps of the counter. Referring to the K-maps, for odd states any next 
state can be assigned because odd states are not valid. The only restriction 
is that the next state should yield a valid state. Select the next state that 
yields elimination of more terms. For example, if the current state is 101, 
select the next state 100; this yields less minterms.
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0
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10
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0 0 1 1

1 0
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1

0

0 0

0

1

0

FIGURE 4.26 K-maps of an even three-bit counter.

From the K-maps, find the Boolean functions:

D0 = 0

D1 = Q1 H  + HQ1 Q0

D2 = Q2 Q1 Q0  + Q0 HQ2 + H Q2 Q1
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Using the above Boolean functions, draw the logic diagram of the coun-
ter. Figure 4.27 shows the logic symbol and logic diagram of the counter.

Q2Q1Q0 Q2Q1Q0

H

Hold clk

Three-bit Counter

Q

Q

Q2 Q1 Q0

d

Q2

D-Latch

Q

Q

d

Q1

D-Latch

Q 0

clk

H

Q

d

Q0

D-Latch

FIGURE 4.27 Three-bit even counter. a) Logic symbol. b) Logic diagram.

Next, write the HDL code for the counter. The macros for the D mas-
ter-slave flip-flops developed in Listing 4.19 are used. In VHDL code:

component D_FFMasterWclr
port (D, clk, clrbar : in std_logic; 
         Q, Qbar : buffer std_logic);
end component;
for all : D_FFMasterWclr use 
          entity work. D_FFMasterWclr (D_FF_str);

In Verilog, write the code that links the D_FFMaster designed in Listing 
4.19 to the new module:

D_FFMasterWclr DFF0 (1’b0, clk, clrbar, Q[0], Qbar[0]);

Listing 4.24 shows the HDL code of the counter.
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LISTING 4.24 HDL Description of a Three-Bit Synchronous Even Counter 
with Hold: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity CTR_EVEN is
port (H, clk, clrbar : in std_logic;
Q, Qbar : buffer std_logic_vector (2 downto 0));

-- Input clrbar is added to help in testing; 
-- set clrbar to low initially when testing
--to clear the output and then set it back to high

end CTR_EVEN;

architecture Counter_even of CTR_EVEN is
--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer.

component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;

component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;

component or2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;

component and3
port (I1, I2, I3 : in std_logic; 
O1 : buffer std_logic);
end component;

component or3
port (I1, I2, I3 : in std_logic; 
O1 : buffer std_logic);
end component;
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component D_FFMasterWclr
port (D, clk, clrbar : in std_logic; 
        Q, Qbar : buffer std_logic);
end component;

for all : D_FFMasterWclr use 
          entity work. D_FFMasterWclr (D_FF_str);
for all : inv use entity work.bind1 (inv_0);
for all : and2 use entity work.bind2 (and2_0);
for all : and3 use entity work.bind3 (and3_0);
for all : or2 use entity work.bind2 (or2_0);
for all : or3 use entity work.bind3 (or3_0);
signal Hbar, a1, a2, a3, a4, 
             a5, OR11, OR22 : std_logic;
begin
DFF0 : D_FFMasterWclr port map (‘0’, clk, clrbar, Q(0),Qbar(0));
inv1 : inv port map (H, Hbar);
an1 : and2 port map (Hbar, Qbar(1), a1);
an2 : and3 port map (H, Q(1), Qbar(0), a2);
r1 : or2 port map (a2, a1, OR11);

DFF1 : D_FFMasterWclr port map (OR11, clk, clrbar,
                                 Q(1), Qbar(1));
an3 : and3 port map (Q(2), Qbar(1), Qbar(0), a3);
an4 : and3 port map (Qbar(0), H, Q(2), a4);
an5 : and3 port map (Hbar, Qbar(2), Q(1), a5);
r2 : or3 port map (a3, a4, a5, OR22);

DFF2 : D_FFMasterWclr port map (OR22, clk, clrbar,
                                 Q(2), Qbar(2));
end Counter_even;

Verilog Description
module CTR_EVEN(H, clk, clrbar, Q, Qbar);
// Input clrbar is added to help in testing; 
//set clrbar to low initially when testing
//to clear the output and then set it back to high

input H, clk, clrbar;
output [2:0] Q, Qbar;

D_FFMasterWclr DFF0 (1’b0, clk, clrbar, Q[0], Qbar[0]);
not (Hbar, H);
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and (a1, Qbar[1], Hbar);
and (a2, H, Q[1], Qbar[0]);
or (OR1, a1, a2);

D_FFMasterWclr DFF1 (OR1, clk, clrbar, Q[1], Qbar[1]);
and (a3, Q[2], Qbar[1], Qbar[0]);
and (a4, Qbar[0], H, Q[2]);
and (a5, Hbar, Qbar[2], Q[1]);
or (OR2, a3, a4, a5);

D_FFMasterWclr DFF2 (OR2, clk, clrbar, Q[2], Qbar[2]);
endmodule

The simulation waveform of the counter is shown in Figure 4.28. As 
shown in the figure, the Hold is active high. If it is high and the clock pulse 
is present, the counter holds its output Q to the present value. Some tran-
sient states may appear in the simulation due to hazards.

Q 0 2 4 4 66 0 2 4 4 4 0

H

clk

FIGURE 4.28 Simulation waveform of an even counter with Hold.

EXAMPLE 4.16  STRUCTURAL DESCRIPTION OF A THREE-BIT SYNCHRO-
NOUS UP/DOWN COUNTER WITH ACTIVE HIGH CLEAR

The logic symbol of the three-bit synchronous up/down counter is shown 
in Figure 4.29. The number of flip-flops is three. TC is a terminal count; 
it is active when the counter 
completes its count. In this 
example, TC is high when 
the count is up to seven or 
down to zero. The clear here 
is active high; if it is high, the 
output of the counter is set 
to zero. Again just to prac-
tice with JK flip-flops we will 
use them here rather than 
using D flip-flops.

Q2Q1Q0 Q2Q1Q0

clr clk Dir (Up/Down)

TC

Three-bit Counter

FIGURE 4.29 Symbol logic diagram of an up/down three-bit 
counter.
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The state diagram of the counter is shown in Figure 4.30. The input 
signal, Dir, determines whether the counter counts up or down. If Dir = 0, 
the counter counts down, if Dir = 1, the counter counts up. From the state 
diagram, generate the excitation table of the counter (see Table 4.10).
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FIGURE 4.30 State diagram of three-bit synchronous up/down counter.

TABLE 4.10 Excitation Table for a Three-Bit Up/Down Counter with a 
Terminal Count Using Master-Slave JK Flip-Flops

Inputs Outputs
Input Current State Next State Output Flip-Flop

Clr Dir Q2 Q1 Q0 Q2+ Q1+ Q0+ TC J2K2 J1K1 J0K0
1 x x x x 0 0 0 0 xx xx xx
0 0 0 0 0 1 1 1 1 1x 1x 1x
0 0 0 0 1 0 0 0 0 0x 0x x1
0 0 0 1 0 0 0 1 0 0x x1 1x
0 0 0 1 1 0 1 0 0 0x 1x x1
0 0 1 0 0 0 1 1 0 x1 1x 1x
0 0 1 0 1 1 0 0 0 x0 0x x1
0 0 1 1 0 1 0 1 0 x0 x1 1x
0 0 1 1 1 1 1 0 0 x0 x0 x1
0 1 0 0 0 0 0 1 0 0x 0x 1x
0 1 0 0 1 0 1 0 0 0x 1x x1
0 1 0 1 0 0 1 1 0 0x x0 1x
0 1 0 1 1 1 0 0 0 1x x1 x1
0 1 1 0 0 1 0 1 0 x0 0x 1x
0 1 1 0 1 1 1 0 0 x0 1x x1
0 1 1 1 0 1 1 1 0 x0 x0 1x
0 1 1 1 1 0 0 0 1 x1 x1 x1
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Next, use K-maps to find the Boolean function of the outputs. The clear 
function will be provided by activating the clear of the JK flip-flop that was 
covered in Example 4.11. Accordingly, the clear input (clr) in Table 4.10 is 
not included in the Boolean function of the outputs. Figure 4.31 shows the 
K-maps from which the following Boolean functions are obtained.
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FIGURE 4.31 K-maps of a three-bit synchronous up/down counter.

 J0 =K0=1
J1 = Dir Q0+ Q1 + DirQ0, K1 = Dir Q0+DirQ

 J2 = Q0Q1Dir + Dir Q0 Q1 , K2 = J2 
 TC = Dir Q0 Q1 Q2 + QoQ1A2Dir
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From the above Boolean functions, draw the logic diagram of the coun-
ter, as shown in Figure 4.32.
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FIGURE 4.32 Logic diagram of a three-bit synchronous up/down counter (for only J0, J1, K0, and K1).

Listing 4.25 shows the HDL code for the counter. To reduce the haz-
ards use gates with a propagation delay. Four nanoseconds are assigned for 
all primitive gates except for the inverter which is assigned 1 ns.

LISTING 4.25 HDL Description of a 3-Bit Synchronous Up/Down Counter  
with Clear and Terminal Count—VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity up_down is
    port (clr, Dir, clk : in std_logic; 
          TC : buffer std_logic;
    Q, Qbar : buffer std_logic_vector (2 downto 0));
end up_down;
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architecture Ctr_updown of up_down is
--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer.

component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;

component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component or2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component or3
port (I1, I2,I3 : in std_logic; O1 : buffer std_logic);
end component;
component and3
port (I1, I2, I3 : in std_logic; 
        O1 : buffer std_logic);
end component;

component and4
port (I1, I2, I3, I4 : in std_logic; 
      O1 : buffer std_logic);
end component;

component JK_FLFL 
port (J, K, clk, clrbar : in std_logic; 
      Q, Qbar : buffer std_logic);
end component;

for all : JK_FLFL use entity work. 
          JK_FLFL (JK_Master );
for all : inv use entity work.bind1 (inv_1);
for all : and2 use entity work.bind2 (and2_4);
for all : and3 use entity work.bind3 (and3_4);
for all : and4 use entity work.bind4 (and4_4);
for all : or2 use entity work.bind2 (or2_4);
for all : or3 use entity work.bind3 (or3_4);
--Be sure that all the reference entities 
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--above such as JK_FLFL
--are attached in the project.
signal clrbar, Dirbar, J1, K1, J2, K2 : std_logic;
signal s : std_logic_vector (5 downto 0);
begin
    in1 : inv port map (clr, clrbar);
    in2 : inv port map (Dir, Dirbar);
    an1 : and2 port map (Dirbar, Qbar(0), s(0));
    an2 : and2 port map (Dir, Q(0), s(1));
    an3 : and3 port map (Dirbar, Qbar(1), Qbar(0), s(2));
    an4 : and3 port map (Dir, Q(1), Q(0), s(3));
  an5 : and4 port map (Dir, Q(1), Q(0), Q(2), s(4));
  an6 : and4 port map (Dirbar, Qbar(1),
                          Qbar(0), Qbar(2), s(5));

  r0 : or3 port map (s(0), s(1), Q(1), J1);
  r1 : or2 port map (s(0), s(1), K1); 
  r2 : or2 port map (s(2), s(3), J2);
  K2 <= J2;
  r3 : or2 port map (s(4), s(5), TC);

      JKFF0 : JK_FLFL port map 
               (‘1’, ‘1’, clk, clrbar, Q(0), Qbar(0));
     JKFF1 : JK_FLFL port map 
               (J1, K1, clk, clrbar, Q(1), Qbar(1));
     JKFF2 : JK_FLFL port map 
               (J2, K2, clk, clrbar, Q(2), Qbar(2));
end Ctr_updown;

Verilog Description
module up_down(clr, Dir, clk, Q, Qbar, TC);

input clr, Dir, clk;
output [2:0] Q, Qbar;
output TC;
not #1 (clrbar, clr);
not #1 (Dirbar, Dir);
and #4 a1(s0, Dirbar, Qbar[0]);
and #4 a2(s1, Dir, Q[0]);
and #4 a3(s2, Dirbar, Qbar[0], Qbar[1]);
and #4 a4(s3, Q[0], Q[1], Dir);
and #4 a5(s4, Dirbar, Qbar[0], Qbar[1], Qbar[2]);
and #4 a6(s5, Q[0], Q[1], Q[2],Dir);
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or #4 r1(J1, s0, Q[1], s1);
or #4 r2(K1, s0, s1);
or #4 r3(J2, s2, s3);
assign K2 = J2;// a buffer can be
//used to generate the above statement
or #4 r4(TC, s4, s5);
  
JK_FF JKFF0 (1’b1, 1’b1, clk, clrbar, Q[0], Qbar[0]);
JK_FF JKFF1 (J1, K1, clk, clrbar, Q[1], Qbar[1]);
JK_FF JKFF2 (J2, K2, clk,clrbar, Q[2], Qbar[2]);
/Be sure that all the reference entities above 
such as JK_FLFL are attached in the project./
endmodule

The simulation waveform of the counter is shown in Figure 4.33. When 
the count is three, the Dir (up/down) is changed from down to up count. Due 
to the synchronous nature of the Dir signal, the counter continues counting 
down to two, then starts counting up to three, four, fi ve, and so forth.

Q 0 7 6 5 65 4 3 2 3 4 7

H Down
Up

clk

FIGURE 4.33 The simulation waveform of an up/down counter. 

EXAMPLE 4.17  STRUCTURAL DESCRIPTION OF A THREE-BIT 
SYNCHRONOUS DECADE COUNTER

A cecade up counter counts 
from zero to nine, and the num-
ber of flip-flops to cover all 
counts is four. The state dia-
gram of the counter is shown in 
Figure 4.34a. There are invalid 
states from 10 to 14. If any one 
of these invalid states is a cur-
rent state, the next state can be 
any state that restores continuity 
of the count. As before, the next 
state selected should be the ones 
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FIGURE 4.34 State diagram (final) of a decade counter.
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that yields more minimization. This is determined when the K-maps are 
generated. Figure 4.34 shows the final state diagram after taking into con-
sideration the K-maps.

Next, construct the excitation table. Table 4.11 shows the excitation 
table of the decade counter.

TABLE 4.11 Excitation Table for a Decade Counter with a Terminal Count Using D Master-Slave Flip-Flops

Inputs Outputs
Current State Next State Output

Q3 Q2 Q1 Q0 Q3+ Q2+ Q1+ Q0+ TC
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 1 0
0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 0 1 0
0 1 0 1 0 1 1 0 0
0 1 1 0 0 1 1 1 0
0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 1 0
1 0 0 1 0 0 0 0 1
1 0 1 0 1 0 1 1 0
1 0 1 1 0 1 0 0 0
1 1 0 0 1 1 0 1 0
1 1 0 1 0 1 0 0 0
1 1 1 0 1 1 1 1 0
1 1 1 1 0 0 0 0 0

K-maps of the outputs are shown in Figure 4.35.

All Ds of the D flip-flops are equal to the corresponding next state. For 
example, when the current state is 0101 (5), the next state is 0110 (6), and 
D0 = 0, D1 = 1, D2 = 1, and D3 = 0. Applying K-maps (Figure 4.35) to 
Table 4.11 gives:

 D0 = Q0

 D1 = Q3 Q1 Q0 + Q1 Q0

D2 = Q2 Q1  + Q2 Q0  + Q1Q0 Q2

 D3 = Q3 Q0  + Q0Q1Q2 Q3

 TC = Q0 Q1 Q2  Q3 



STRUCTURAL DESCRIPTION • 209

From the Boolean functions, draw the logic diagram of the counter. 
Figure 4.36 shows the logic diagram of the counter. Listing 4.26 shows the 
HDL code for the counter.
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FIGURE 4.36 Logic diagram of a decade counter.
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to minimum components.
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LISTING 4.26 HDL Description of a Three-Bit Synchronous Decade Counter 
with Terminal Count: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity decade_ctr is
    port (clk, clr : in std_logic;
    Q, Qbar : buffer std_logic_vector (3 downto 0);
    TC : buffer std_logic);
end decade_ctr;

architecture decade_str of decade_ctr is
--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer.
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
component buf
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component and3
port (I1, I2, I3 : in std_logic; 
      O1 : buffer std_logic);
end component;
component and4
port (I1, I2, I3, I4 : in std_logic; 
        O1 : buffer std_logic);
end component;
component or2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component or3
port (I1, I2, I3 : in std_logic; 
      O1 : buffer std_logic);
end component;

component D_FFMasterWclr
port (D, clk, clrbar : in std_logic; 
       Q, Qbar : buffer std_logic);
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end component;

for all : D_FFMasterWclr use entity
          work. D_FFMasterWclr (D_FF_str);
for all : inv use entity work.bind1 (inv_1);
for all : buf use entity work.bind1 (buf_1);
for all : and2 use entity work.bind2 (and2_4);
for all : and3 use entity work.bind3 (and3_4);
for all : and4 use entity work.bind4 (and4_4);
for all : or2 use entity work.bind2 (or2_4);
for all : or3 use entity work.bind3 (or3_4);
signal s : std_logic_vector (6 downto 0);
signal D : std_logic_vector (3 downto 0);
signal clrbar : std_logic;
begin
i1 : inv port map( clr, clrbar);
b1 : buf port map (Qbar(0), D(0));
DFF0 : D_FFMasterWclr port map (D(0), clk, clrbar,
                                Q(0), Qbar(0));

--Assume AND gates and OR gates have 4 ns propagation
--delay and invert has 1 ns.
a1 : and3 port map (Qbar(3), Qbar(1), Q(0), s(0));
a2 : and2 port map (Q(1), Qbar(0), s(1));
r1 : or2 port map (s(0), s(1), D(1));
DFF1 : D_FFMasterWclr port map (D(1), clk, clrbar,
                                Q(1), Qbar(1));

a3 : and2 port map (Q(2), Qbar(1), s(2));
a4 : and2 port map (Q(2), Qbar(0), s(3));
a5 : and3 port map (Q(1), Q(0), Qbar(2), s(4));
r2 : or3 port map (s(2), s(3), s(4), D(2));
DFF2 : D_FFMasterWclr port map (D(2), clk, clrbar,
                                Q(2), Qbar(2));

a6 : and2 port map (Q(3), Qbar(0), s(5));
a7 : and4 port map (Q(0), Q(1), Q(2), Qbar(3), s(6));
r3 : or2 port map (s(5), s(6), D(3));
DFF3 : D_FFMasterWclr port map (D(3), clk, clrbar,
                                Q(3), Qbar(3));
a8 : and4 port map (Q(0), Qbar(1), Qbar(2), Q(3), TC);

end decade_str;
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Verilog Description
module decade_ctr(clk, clrbar,Q, Qbar, TC );
input clk,clrbar;
//use clrbar input to clear the counter when simulting
output [3:0] Q, Qbar;
output TC;
wire [3:0] D;
wire [6:0] s;
buf #1 (D[0], Qbar[0]);

D_FFMasterWclr DFF0 (D[0], clk, clrbar, Q[0], Qbar[0]);
/Assume and gates and or gates have 4 ns propagation
delay and invert has 1 ns./

and #4 (s[0], Qbar[3], Qbar[1], Q[0]);
and #4 (s[1], Q[1], Qbar[0]);

or #4 (D[1], s[0], s[1]);
D_FFMasterWclr FF1 (D[1], clk, clrbar, Q[1], Qbar[1]);

and #4 (s[2],Q[2], Qbar[1]);
and #4 (s[3],Q[2], Qbar[0]);
and #4 (s[4],Q[1], Q[0], Qbar[2]);
or #4 (D[2], s[2], s[3], s[4]);
D_FFMasterWclr FF2 (D[2], clk,clrbar, Q[2], Qbar[2]);
and #4 (s[5], Q[3], Qbar[0]);
and #4 (s[6], Q[0], Q[1], Q[2], Qbar[3]);
or #4 (D[3], s[5], s[6]);
D_FFMasterWclr FF3 (D[3], clk,clrbar, Q[3], Qbar[3]);
and #4 (TC, Q[0], Qbar[1], Qbar[2], Q[3]);

endmodule

Figure 4.37 shows the simulation waveform of the decade counter.

TC
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clk

FIGURE 4.37 Simulation waveform of the decade counter.
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4.5 generate (HDL), generic (VHDL), and parameter (Verilog)

The predefined word generate is mainly used for repetition of concur-
rent statements. Its counterpart in behavioral description is the For-Loop, 
and it can be used to replicate structural or gate-level description state-
ments. generate has several formats, one of which is covered here. See 
Chapter 7 for more formats.

In VHDL, the format for the generate statement is:

L1 : for i in 0 to N generate
v1 : inv port map (Y(i), Yb(i));
--other concurrent statements can be entered here
end generate;

The above statement describes N + 1 inverters (assuming inv was de-
clared as an inverter component with input Y and output Yb). The input 
to inverter is Y(i), and the output is Yb(i). L1 is a required label for the 
generate statement.

An equivalent generate statement in Verilog is:

generate
genvar i;
for (i = 0; i <= N; i = i + 1)
begin : u
not (Yb[i], Y[i]);
end
endgenerate

The statement genvar i declares the index i of the generate state-
ment; genvar is a predefined word. U is a label for the predefined word 
begin; and begin must have a label.

The words generic (in VHDL) and parameter (in Verilog) are used to 
define global constants. The generic statement can be placed within en-
tity, component, or instantiation statements. The following generic VHDL 
statement inside the entity declares N as a global constant of value 3:

entity compr_genr is
generic (N : integer := 3);
port (X, Y : in std_logic_vector (N downto 0); 
  xgty, xlty, xeqy : buffer std_logic);

The following Verilog statement declares N as a global constant with a 
value of 3:
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parameter N = 3;
input [N:0] X, Y;

The following examples cover generate, generic, and parameter.

EXAMPLE 4.18  STRUCTURAL DESCRIPTION OF (N+1)-BIT MAGNITUDE 
COMPARATOR USING THE GENERATE STATEMENT

In Listing 4.16, a three-bit comparator has been described. In this sec-
tion, an (N+1)-bit comparator using the generate statement is introduced. 
Listing 4.28 shows the HDL code for the (N+1)-bit comparator. Referring 
to Listing 4.28, the following statements generate N+1 inverters, N+1 full 
adders, and N+1 two-input and gates:

G1 : for i in 0 to N generate
v1 : inv port map (Y(i), Yb(i));
FA : full_adder port map (X(i), Yb(i), 
carry(i), sum(i), carry(i+1));
a1 : and2 port map (eq(i), sum(i), eq(i+1));
end generate G1;

The following Verilog statements also generate N+1 inverters, N+1 full 
adders, and N+1 two-input and gates:

generate
genvar i;
for (i = 0; i <= N; i = i + 1)
begin : u
not (Yb[i], Y[i]);
FULL_ADDER FA (X[i], Yb[i], carry [i], sum [i], carry[i+1]);
and (eq[i+1], sum[i], eq[i]);
end

LISTING 4.28 HDL Description of N-Bit Magnitude Comparator Using the 
generate Statement: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity compr_genr is
generic (N : integer := 3);
    port (X, Y : in std_logic_vector (N downto 0);
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    xgty, xlty, xeqy : buffer std_logic);
end compr_genr;

architecture cmpare_str of compr_genr is
--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer.

component full_adder
port (I1, I2, I3 : in std_logic; 
      O1, O2 : buffer std_logic);
end component;
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
component nor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
signal sum, Yb : std_logic_vector (N downto 0);
signal carry, eq : std_logic_vector (N + 1 downto 0);

for all : full_adder use entity work.bind32 (full_add);
for all : inv use entity work.bind1 (inv_1);
for all : nor2 use entity work.bind2 (nor2_7);
for all : and2 use entity work.bind2 (and2_7);
begin
     carry(0) <= ‘0’;
    eq(0) <= ‘1’;
  
    G1 : for i in 0 to N generate
    v1 : inv port map (Y(i), Yb(i));
    FA : full_adder port map (X(i), Yb(i), carry(i),
    sum(i), carry(i+1));
    a1 : and2 port map (eq(i), sum(i), eq(i+1));
end generate G1;
xgty <= carry(N+1);
xeqy <= eq(N+1);
n1 : nor2 port map (xeqy, xgty, xlty);

end cmpare_str;
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Verilog Description
module Compr_genr(X, Y, xgty, xlty, xeqy);
parameter N = 3;
input [N:0] X, Y;
output xgty, xlty, xeqy;
wire [N:0] sum, Yb;
wire [N+1 : 0] carry, eq;
assign carry[0] = 1’b0;
assign eq[0] = 1’b1;

generate

genvar i;
for (i = 0; i <= N; i = i + 1)
    begin : u
    not (Yb[i], Y[i]);
/ The above statement is equivalent to assign Yb = ~Y if outside 
the generate loop /

    FULL_ADDER FA(X[i], Yb[i], carry [i], sum [i], carry[i+1]);
         /be sure that the module FULL_ADDER
          is entered (attached) in the project/
    and (eq[i+1], sum[i], eq[i]);
    end
endgenerate
assign xgty = carry[N+1];
assign xeqy = eq[N+1];
nor (xlty, xeqy, xgty);

endmodule

EXAMPLE 4.19  STRUCTURAL DESCRIPTION OF AN N-BIT ASYNCHRONOUS 
DOWN COUNTER USING THE GENERATE STATEMENT

Asynchronous counters differ from synchronous counters in the way 
the clock is connected to each flip-flop. In synchronous counters, all flip-
flops are driven by the same clock. In asynchronous counters, each flip-flop 
may be driven by a different clock. Figure 4.38 shows an n-bit asynchro-
nous counter using JK flip-flops. The clock of the first flip-flop is the main 
clock. The clock of the second flip-flop is the output of the first JK flip-flop. 
This pattern is repeated where the clock of the ith flip-flop is driven by the 
output of (i–1)th flip-flop. 
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FIGURE 4.38 Logic diagram of n-bit asynchronous down counter.

Asynchronous counters suffer more from hazards than synchronous 
counters. This is due to the way the clock of each flip-flop is connected. 
Each flip-flop has to wait until the output of the preceding flip-flop settles. 
During the period before the flip-flop settles, there will be transient states. 
Listing 4.29 shows the HDL code for an n-bit asynchronous counter. To 
use generate effectively, the n flip-flops should be described by a general 
statement that will be replicated. All flip-flops, except the first, have a re-
peated pattern: the clock of the ith flip-flop is the output of the (i–1)th. To 
bring the first flip-flop into this pattern, concatenate the clock and the Qs 
of all flip-flops in one vector, S, that represents all the clocks:

s <= (Q & clk); --VHDL
assign s = {Q, clk}; //Verilog

LISTING 4.29 HDL Description of an N-Bit Asynchronous Down Counter Us-
ing generate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity asynch_ctr is
Generic (N : integer := 3);

-- This is a 3-bit counter. If a different number of
-- bits is needed, simply change the
-- value of N here only.
    port (clk, clrbar : in std_logic;
    Q, Qbar : buffer std_logic_vector (N-1 downto 0)); 

end asynch_ctr;

architecture CT_strgnt of asynch_ctr is
--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer.
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component JK_FLFL 
port (J, K, clk, clrbar : in std_logic; 
      Q, Qbar : buffer std_logic);
end component;

for all : JK_FLFL use entity work. 
                  JK_FLFL (JK_Master );

-- For bind32, see Listing 4.17a

signal h, l : std_logic;
signal s : std_logic_vector (N downto 0);
begin
h <= ‘1’;
l <= ‘0’; 
s <= (Q & clk);

-- s is the concatenation of Q and clk. We need
-- this concatenation to
-- describe the clock of each JK flip-flop.
Gnlop : for i in (N-1) downto 0 generate

G1 : JK_FLFL port map (h, h, s(i), clrbar, 
                       Q(i), Qbar(i));
end generate GnLop;
end CT_strgnt;

Verilog Description
module asynch_ctr(clk,clrbar, Q, Qbar);

parameter N = 3;
/ This is a 3-bit counter. If a different number of
bits is needed, simply change the value 
of N here only./

input clk, clrbar;
output [N-1:0] Q, Qbar;
wire [N:0] s;
assign s = {Q, clk};
/ s is the concatenation of Q and clk.
   This concatenation is needed to describe the clock
   of each JK flip-flop. /
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      generate
      genvar i;
      for (i = 0; i < N; i = i + 1)

      begin : u

      JK_FF JKFF0 (1’b1, 1’b1, s[i],clrbar, Q[i],
                      Qbar[i]);
      // JK_FF is as shown in Listing 4.17b
      end
      endgenerate

endmodule

Figure 4.39 shows the simulation waveform of the counter with N = 3. 
The waveform may contain several transient states.
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FIGURE 4.39 Simulation waveform of n-bit asynchronous down counter (n = 3).

EXAMPLE 4.20  STRUCTURAL DESCRIPTION OF AN N-BIT MEMORY WORD 
USING GENERATE

In Listing 4.21, a single memory cell is described. The cell here is ex-
panded to n bits using the generate statement. Listing 4.30 shows the HDL 
code for the n-bit memory word. Referring to Listing 4.30, the VHDL 
statements

G1 : for i in 0 to N generate
M : memory_cell port map (sel, R_W, Data_in(i),
Data_out(i));
end generate;

and the Verilog statements

generate
genvar i;
for (i = 0; i <= N; i = i + 1)
begin : u
memory M1 (sel, R_W, Data_in [i], Data_out[i]);
end
endgenerate
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replicate the memory cell designed in Listing 4.29 n times.

LISTING 4.30 HDL Description of N-Bit Memory Word Using generate: 
VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Memory_word is
Generic (N : integer := 7);
    port (Data_in : in std_logic_vector (N downto 0); 
          sel, R_W : in std_logic; Data_out : out
          std_logic_vector (N downto 0));
end Memory_word;

architecture Word_generate of Memory_word is
component memory_cell
Port (Sel, RW, Din : in std_logic; 
       O1 : buffer std_logic );
end component;

for all : memory_cell use entity 
          work.memory (memory_str);
begin
G1 : for i in 0 to N generate
M : memory_cell port map (sel, R_W, Data_in(i),
                          Data_out(i));
end generate;
end Word_generate;

Verilog Description
module Memory_Word (Data_in, sel, R_W, Data_out);

parameter N = 7;
input [N:0] Data_in;
input sel, R_W;
output [N:0] Data_out;

generate
genvar i;
for (i = 0; i <= N; i = i + 1)
begin : u
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memory M1 (sel, R_W, Data_in [i], Data_out[i]);

end

endgenerate
endmodule

LISTING 4.31 VHDL Code for Components Used for Binding in Chapter 4

--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer as it is done here.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bind1 is
port (O1 : buffer std_logic; I1 : in std_logic);
end bind1;
architecture inv_0 of bind1 is
begin
O1 <= not I1;
end inv_0;
architecture inv_1 of bind1 is
begin
O1 <= not I1 after 1 ns; 
end inv_1;

architecture inv_7 of bind1 is
begin
O1 <= not I1 after 7 ns;
end inv_7;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity bind2 is
port (O1 : buffer std_logic; I1, I2 : in std_logic);
end bind2;

architecture xor2_0 of bind2 is
begin
O1 <= I1 xor I2;
end xor2_0;
architecture and2_0 of bind2 is
begin
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O1 <= I1 and I2;
end and2_0;
architecture and2_4 of bind2 is
begin
O1 <= I1 and I2 after 4 ns;
end and2_4;

architecture and2_7 of bind2 is
begin
O1 <= I1 and I2 after 7 ns;
end and2_7;

architecture or2_0 of bind2 is
begin
O1 <= I1 or I2;
end or2_0;

architecture or2_7 of bind2 is
begin
O1 <= I1 or I2 after 7 ns;
end or2_7;

architecture nor2_0 of bind2 is
begin
O1 <= I1 nor I2;
end nor2_0; 

architecture nor2_7 of bind2 is
begin
O1 <= I1 nor I2 after 7 ns;
end nor2_7;

architecture nor2_4 of bind2 is
begin
O1 <= I1 nor I2 after 4 ns;
end nor2_4;

architecture bufif1 of bind2 is
begin
buf : process (I1, I2)
variable tem : std_logic;
begin
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if (I2 =’1’)then
tem := I1;
else
tem := ‘Z’;
end if;
O1 <= tem;
end process buf;
end bufif1;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bind3 is
port (O1 : buffer std_logic; 
I1, I2, I3 : in std_logic);
end bind3;

architecture and3_0 of bind3 is
begin
O1 <= I1 and I2 and I3;
end and3_0;

architecture and3_4 of bind3 is
begin
O1 <= I1 and I2 and I3 after 4 ns;
end and3_4;

architecture and3_7 of bind3 is
begin
O1 <= I1 and I2 and I3 after 7 ns;
end and3_7;

architecture or3_0 of bind3 is
begin
O1 <= I1 or I2 or I3;
end or3_0;

architecture or3_7 of bind3 is
begin
O1 <= I1 or I2 or I3 after 7 ns;
end or3_7;

library IEEE;
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use IEEE.STD_LOGIC_1164.ALL;
entity bind22 is
Port (O1, O2 : buffer std_logic; 
I1, I2 : in std_logic);
end bind22;

architecture HA of bind22 is
component xor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
for A1 : and2 use entity work.bind2 (and2_0);
for X1 : xor2 use entity work.bind2 (xor2_0);
      begin
      X1 : xor2 port map (I1, I2, O1);
      A1 : and2 port map (I1, I2, O2);
      end HA;

architecture SR_Latch of bind22 is 
component nor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
for all : nor2 use entity work.bind2 (nor2_0);

begin
n1 : nor2 port map (I1, O1, O2);
n2 : nor2 port map (I2, O2, O1);
end SR_Latch;

architecture D_latch of bind22 is
component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component nor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
for all : and2 use entity work.bind2 (and2_4);
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for all : nor2 use entity work.bind2 (nor2_4);
for all : inv use entity work.bind1 (inv_1);
signal I2b, s1, s2 : std_logic;
begin
a1 : and2 port map (I1, I2, s1);
a2 : and2 port map (I2b, O1, s2);
in1 : inv port map (I2, I2b);
in2 : inv port map (O2, O1);
n2 : nor2 port map (s1, s2, O2);
end D_latch;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL; 
entity bind32 is
port (I1, I2, I3 : in std_logic; 
O1, O2 : buffer std_logic);

end bind32;

architecture full_add of bind32 is
component HA
port (I1, I2 : in std_logic; 
      O1, O2 : buffer std_logic);
end component;
component or2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
for all : HA use entity work.bind22 (HA);
for all : or2 use entity work.bind2 (or2_0);
signal s0, c0, c1 : std_logic;

begin
HA1 : HA port map (I2, I3, s0, c0);
HA2 : HA port map (I1, s0, O1, c1);
r1 : or2 port map (c0, c1, O2);
end full_add;

architecture D_latch_Wclr of bind32 is
component and3
port (I1, I2, I3 : in std_logic; 
      O1 : buffer std_logic);
end component;
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component nor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
for all : and3 use entity work.bind3 (and3_4);
for all : nor2 use entity work.bind2 (nor2_4);
for all : inv use entity work.bind1 (inv_1);
signal I2b, s1, s2 : std_logic;
begin
a1 : and3 port map (I1, I2, I3, s1);
a2 : and3 port map (I2b, O1,I3, s2);
in1 : inv port map (I2, I2b);
in2 : inv port map (O2, O1);
n2 : nor2 port map (s1, s2, O2);
end D_latch_Wclr;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity D_LatchWclr is
port (D, E,clrbar : in std_logic; 
      Q, Qbar : buffer std_logic);
end;

architecture D_latch_str of D_LatchWclr is
component and3
port (I1, I2, I3 : in std_logic; 
      O1 : buffer std_logic);
end component;
component nor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
for all : and3 use entity work.bind3 (and3_4);
for all : nor2 use entity work.bind2 (nor2_4);
for all : inv use entity work.bind1 (inv_1);
signal Eb, s1, s2 : std_logic;
begin
a1 : and3 port map (D, E, clrbar, s1);



STRUCTURAL DESCRIPTION • 227

a2 : and3 port map (Eb, D,clrbar, s2);
in1 : inv port map (E, Eb);
in2 : inv port map (Qbar, Q);
n2 : nor2 port map (s1, s2, Qbar);
end D_latch_str;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity D_FFMasterWclr is
Port (D, clk, clrbar : in std_logic; 
      Q, Qbar : buffer std_logic);
end D_FFMasterWclr ;

architecture D_FF_str of D_FFMasterWclr is
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
component D_latchWclrbar
port (I1, I2, I3 : in std_logic; 
      O1, O2 : buffer std_logic);
end component;
for all : D_latchWclrbar use entity 
          work. bind32(D_latch_Wclr);
for all : inv use entity work.bind1 (inv_1);
signal clkb, clk2, Q0, Qb0 : std_logic;
begin
D0 : D_latchWclrbar port map (D, clkb,clrbar, Q0, Qb0);
D1 : D_latchWclrbar port map (Q0, clk2, clrbar, Q,
Qbar);
in1 : inv port map (clk, clkb);
in2 : inv port map (clkb, clk2);
end D_FF_str;

4.6 Summary

In this chapter, the fundamentals of structural description have been 
covered. Gate-level description was discussed and implemented to build 
more complex structures (macros). Verilog has built-in gates such as and, 
or, nand, nor, and buf. Basic VHDL does not have built-in gates, but 
these gates can be built by using the predefined word component and 
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binding it to written behavioral descriptions. Both VHDL and Verilog have 
the predefined command generate for replicating structural macros. Table 
4.11 shows a list of the VHDL statements covered in this chapter, along 
with their Verilog counterparts (if any). 

TABLE 4.11 Summary of VHDL Statements and Their Verilog Counterparts

VHDL Verilog
generate generate

port map Built in
and2, or2, xor2, nor2, and, or, xor, nor,

xnor2, inv xnor, not

(The above VHDL gates are user-built)
use library Built in

4.7 Exercises

1. Design a four-bit parity generator. The output is 0 for even parity and 1 
for odd parity. Write both the VHDL and Verilog codes.

2. Design a counter that counts 0, 1, 3, 6, 7, 0, 1… using the state-machine 
approach. Show all details of your answer. Write both the VHDL and 
Verilog codes.

3. Referring to Listing 4.26 (Verilog), change the count from down to up 
and rewrite the code.

4. Translate the VHDL code shown in Listing 4.32 to Verilog. What is the 
logic function of the system?

LISTING 4.32 Code for Exercise 4.4

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity system is
Port (a, b, c : in std_logic; 
      d, e : buffer std_logic );
end system;

architecture prob_6 of system is
component xor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
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component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;

component or3
port (I1, I2, I3 : in std_logic; 
O1 : buffer std_logic);

end component;

component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;

for all : xor2 use entity work.bind2 (xor2_0);
for all : and2 use entity work.bind2 (and2_0);
for all : inv use entity work.bind1 (inv_0);
for all : or3 use entity work.bind3 (or3_0);
signal s1, s2, s3, s4, abar, bbar, cbar : std_logic;
begin
x1 : xor2 port map (a, b, s1);
x2 : xor2 port map (s1, c, d);
c1 : inv port map (a, abar);
c2 : inv port map (b, bbar);
c3 : inv port map (a, cbar);
a1 : and2 port map (abar, b, s2);
a2 : and2 port map (abar, c, s3);
a3 : and2 port map (b, c, s4);
r1 : or3 port map (s2, s3, s4, e);
end prob_6;

5. Construct a two-digit decade counter that counts from 0 to 99. Use the 
module of the decade counter in Listing 4.26. Write both the VHDL 
and Verilog codes. (Hint: use the terminal count, TC, to cascade the 
decade counters.)

6. Write VHDL description for the universal shift register discussed in 
Example 4.13.

7. Repeat Example 4.14 using D flip-flops.

8. Repeat Example 4.16 using D flip-flops.

9. Use generate and parameter to write a Verilog code for an n-bit 
subtractor.



C H A P T E R

SWITCH-LEVEL DESCRIPTION

5
Chapter Objectives

 Understand the concept of describing and simulating digital 
systems using transistors

 Identify the basic statements of switch-level description in Verilog, 
such as nmos, pmos, cmos, supply1, supply0, tranif0, tran, 
and tranif0

 Develop a counterpart VHDL switch-level package that matches the 
switch-level functions of the Verilog description

 Review and understand the fundamentals of transistors and how 
they can be implemented as switches

 Review Boolean functions for combinational circuits

5.1 Highlights of Switch-Level Description

Highlights of the switch-level description can be summarized in the 
following facts.

Facts

 Switch-level description implements switches (transistors) to describe 
relatively small-scale digital systems.

 Switch-level description is usually implemented in very-large-scale inte-
grated (VLSI) circuit layouts.
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 Switch-level description is the lowest HDL logic level that can be used 
to simulate digital systems.

 Only small-scale systems can be simulated using pure switch-level 
description. If the system is not small, a huge number of switches are 
needed, which may render the simulation impractical.

 Switch-level description is routinely used along with other types of mod-
eling to describe digital systems.

 The switches used in this chapter are assumed to be perfect; they are 
either open (high impedance) or closed (zero impedance).

 In contrast to Verilog, basic VHDL does not have built-in statements 
such as nmos, pmos, and cmos. To use these statements in VHDL, user-
built packages must be developed or supplied by the vendor.

Before discussing the HDL code for transistor-level description, let’s 
review some facts

5.2 Useful Definitions

 MOS: Metal oxide semiconductor.

 N-type semiconductor: The free carriers are negatively charged 
electrons.

 P-type semiconductor: The free carriers are positively charged holes.

 Valence electrons: Electrons in the outer shell of an atom that can 
interact with the valence electrons of another atom.

5.3 Single NMOS and PMOS Switches

Figure 5.1a shows a single N-Channel MOS (NMOS) switch, and 
Figure 5.1b shows a single P-Channel MOS (PMOS) switch. The switch 
has three signals: drain, gate, and source. If the gate is at logic 1, then the 
NMOS is closed (ON), and the PMOS is open (OFF). If the gate is at logic 
0, then the NMOS is open (OFF), and the PMOS is closed (ON).
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Gate

Drain

Source

 

Gate

Drain

Source

 (a) (b)
FIGURE 5.1 MOS switch. a) NMOS. b) PMOS.

5.3.1 Verilog Description of NMOS and PMOS Switches
Verilog has built-in code for NMOS and PMOS switches. In Verilog, 

there are four logical levels: 1, 0, X (“don’t care”), and Z (high impedance). 
Table 5.1a shows the relationship between the drain, source, and gate of a 
NMOS switch, and Table 5.1b shows the same for a PMOS switch.

TABLE 5.1A Relationship Between Source, Drain, and Gate in NMOS Switches

Gate

Drain

0 1 X Z
0 Z 0 L L
1 Z 1 H H
X Z X X X
Z Z Z Z Z

TABLE 5.1B Relationship Between Source, Drain, and Gate in PMOS Switches

Gate

Drain

0 1 X Z
0 0 Z L L
1 1 Z H H
X X Z X X
Z Z Z Z Z

For an NMOS switch, the Verilog code is:

nmos n1 (drain, source, gate) //The switch name “n1” is optional.
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The code can be written as:

nmos n1 (O1, I1, I2);

For the PMOS switch, the Verilog code is:

pmos p1 (drain, source, gate) //The switch name “p1” is optional.

or the code can be written as:

pmos p1 (O1, I1, I2);

5.3.2 VHDL Description of NMOS and PMOS Switches

Basic VHDL does not have built-in descriptions for NMOS or NMOS 
switches. Switches are built using behavioral description. Listing 5.1 shows 
the code, which does not include any consideration of delay times.

LISTING 5.1 VHDL Behavioral Code for NMOS and PMOS Switches

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity mos is
    Port (O1 : out std_logic; I1, I2 : in std_logic);
end mos;

architecture nmos_behavioral of mos is

-- All switches presented here do not include any
-- time parameters, such as rise time and fall time.
-- They only mimic the logical functions of their
-- Verilog counterparts.

begin
switch : process (I1, I2)
variable temp : std_logic;
begin
case I2 is
when ‘0’=> temp := ‘Z’;
when ‘1’ => temp := I1;
when others => case I1 is
    when ‘0’ => temp := ‘L’;
   when ‘1’ => temp := ‘H’;
   when others => temp := I1;
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   end case;
end case;
O1 <= temp;
end process switch;
end nmos_behavioral;
architecture pmos_behavioral of mos is

begin
switch : process (I1, I2)
variable temp : std_logic;
begin

case I2 is
when ‘1’=> temp := ‘Z’;
when ‘0’ => temp := I1;
when others => case I1 is
   when ‘0’ => temp := ‘L’;
   when ‘1’ => temp := ‘H’;
   when others => temp := I1;
   end case;
end case;
O1 <= temp;
end process switch;
end pmos_behavioral;

To write the NMOS and PMOS codes as components, bind the entity 
of Listing 5.1 to a component statement. Listing 5.2 shows such binding.

LISTING 5.2 VHDL Code for NMOS and PMOS Switches as Components

architecture nmos of mos is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral);
for all : nmos use entity work.mos (nmos_behavioral);
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5.3.3 Serial and Parallel Combinations of Switches
Consider two NMOS switches connected in serial as shown in 

Figure 5.2a. Assume the gates g1 and g2 can only take logic 0 or logic 1. If 
g1 or g2 is at 0, then the path between y and d is open (OFF). If g1 and g2 
are at 1, then the path between y and d is closed (ON), and y = d.

g1

d

y

g2

 

g1

d

y

g2

 

g1g2

d

y

 

g1g2

d

y

 (a)  (b) (c) (d)
FIGURE 5.2 Combination of switches. a) Two NMOS switches in serial. 
b) Two PMOS switches in serial. c) Two NMOS switches in parallel. 
d) Two PMOS switches in parallel.

Table 5.2a summarizes the relationship between y, d, g1, and g2.

TABLE 5.2A Two NMOS Switches Connected in Serial (Figure 5.2a)

g1 g2 y
1 1 d
0 1 Z
1 0 Z
0 0 Z

Now, consider two PMOS switches connected in serial (Figure 5.2b). 
The path between y and d is closed (ON) only when both g1 and g2 are at 
0; at this instant, y = d. The path is open (OFF) if g1 or g2 is at 1. Table 5.2b 
summarizes the relationship between y and d.

TABLE 5.2B Two PMOS Switches Connected in Serial (Figure 5.2b)

g1 g2 y
1 1 Z
0 1 Z
1 0 Z
0 0 d
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When two NMOS switches are connected in parallel (Figure 5.2c), the 
path between y and d is open only when both g1 and g2 are 0. Otherwise, it 
is closed, and y = d, as shown in Table 5.2c

TABLE 5.2C Two NMOS Switches Connected in Parallel (Figure 5.2c)

g1 g2 y
1 1 d
0 1 d
1 0 d
0 0 Z

For two PMOS switches connected in parallel (Figure 5.2d), the path 
between y and d is open only when both g1 and g2 are at 1. Otherwise, it is 
closed, and y = d, as shown in Table 5.2d.

TABLE 5.2D Two PMOS Switches Connected in Parallel (Figure 5.2d)

g1 g2 y
1 1 Z
0 1 d
1 0 d
0 0 d

5.4 Switch-Level Description of Primitive Gates

This section describes the design of primitive gates from switches (tran-
sistors). The approach here is a simple one, but it may yield a greater num-
ber of transistors. Tables 5.2a–d are used to build the gate from a combina-
tion of switches. After constructing the switches, the code is written using 
Listings 5.1 and 5.2.

EXAMPLE 5.1 SWITCH-LEVEL DESCRIPTION OF AN INVERTER

The truth table of the inverter is shown in Table 5.3.

TABLE 5.3 Truth Table for an Inverter

Input Output
a y
0 1
1 0
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For any switch circuit, level 1 is represented by the power 
supply voltage (vdd), and level 0 is represented by the ground 
(gnd). To design the inverter, two complementary switches 
are needed: one to pull y down to 0 (gnd) and the other to pull 
y up to 1 (vdd). Figure 5.3 shows this connection.

The HDL code is shown in Listing 5.3, and the state-
ment

pmos port map (y, vdd, a);

represents a PMOS switch with source y, drain vdd, and gate 
a. In the Verilog statements

supply1 vdd;
supply0 gnd; 

supply1 and supply0 are predefined words that represent high voltage 
and ground, respectively. In VHDL, these two voltage levels are created by 
using constant declaration statements:

constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;

LISTING 5.3 HDL Code for an Inverter: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Inverter is
    port (y : out std_logic; a : in std_logic);
end Inverter;

architecture Invert_switch of Inverter is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral); 
for all : nmos use entity work.mos (nmos_behavioral); 
constant vdd : std_logic := ‘1’;

a

gnd

vdd

y

FIGURE 5.3 An inverter.
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constant gnd : std_logic := ‘0’;
begin
p1 : pmos port map (y, vdd, a);
n1 : nmos port map (y, gnd, a);
end Invert_switch;

Verilog Description
module invert (y, a);
input a;
output y;
supply1 vdd; /supply1 is a predefined word for the
               high voltage./
supply0 gnd; /supply0 is a predefined word for the
               ground./
pmos p1 (y, vdd, a); /the name “p1” is optional; it
                       can be omitted./
nmos n1 (y, gnd, a); /the name “n1” is optional; it can
                       be omitted. /
endmodule

EXAMPLE 5.2 SWITCH-LEVEL DESCRIPTION OF A TWO-INPUT AND GATE

In this example, a two-input AND gate is described. The truth table of 
the two-input AND gate is shown in Table 5.4.

TABLE 5.4 Truth Table for a Two-Input AND Gate

Input Output
a b y
0 0 0
1 0 0
0 1 0
1 1 1

From Table 5.4, two switch combinations are 
needed: one to pull y up to vdd only when both gates 
of the combination are at level 1 (Table 5.2a satisfies 
this requirement), and another combination to pull y 
to ground whenever one of the gates is at level 0 (Ta-
ble 5.2b satisfies this requirement). The final design is 
composed of two serial NMOS switches and two paral-
lel PMOS switches. Figure 5.4 shows the switch-level 

a

b

gnd

vdd

y

FIGURE 5.4 Switch-level 
logic diagram of an AND 
gate with week output.
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diagram of the AND gate. The design here will yield to week output, see 
Example 5.6 for details.

From Figure 5.4, write the HDL code. Listing 5.4 shows the HDL 
code of a two-input AND gate.

LISTING 5.4 HDL Code for a Two-Input AND Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity and2gate is
    port (y : out std_logic; a, b : in std_logic);
end and2gate;

architecture and_switch of and2gate is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral); 
for all : nmos use entity work.mos (nmos_behavioral); 
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1 : std_logic;
begin

n1 : nmos port map (s1, vdd, a);
n2 : nmos port map (y, s1, b);
p1 : pmos port map (y, gnd, a);
p2 : pmos port map (y, gnd, b);
end and_switch;

Verilog Description
module and2gate (y, a, b);
input a, b;
output y;
supply1 vdd;
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supply0 gnd;

nmos (s1, vdd, a);
nmos (y, s1, b);
pmos (y, gnd, a);
pmos (y, gnd, b);
endmodule

As shown in Figure 5.4, the PMOS switches pull y down to ground 
level, and the NMOS switches pull y up to vdd level. This arrangement re-
sults in degraded output and should be avoided. When cascaded, degraded 
outputs can deteriorate the final outputs and render them unrecognizable. 
To generate strong outputs, the NMOS switches should pull the output 
down to ground, and the PMOS switches should pull the output up to vdd. 
To design a switch-level AND gate with strong output, a different approach 
should be followed (see Section 5.5).

EXAMPLE 5.3 SWITCH-LEVEL DESCRIPTION OF A TWO-INPUT OR GATE

In this example, a two-input OR gate is designed. The truth table of a 
two-input OR gate is shown in Table 5.5.

TABLE 5.5 Truth Table for a Two-Input OR Gate

Input Output
a b y
0 0 0
1 0 1
0 1 1
1 1 1

From the table, notice that to design switch-level circuits for the OR 
gate, two complementary combinations are needed (see Table 5.2). The 
first combination pulls y down to ground level only when both gates are 
at level 0 (Table 5.2b satisfies this requirement). The second combination 
pulls y up to vdd when either g1 or g2 is at level 1 (Table 5.2c satisfies this 
requirement). The switch-level OR gate consists of two complementary 
combinations: two serial PMOS switches and two parallel NMOS switches. 
Figure 5.5 shows the switch-level diagram of a two-input OR gate.
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a

b

gnd

vdd

y

FIGURE 5.5 Switch-level logic diagram of an OR gate.

From Figure 5.5, the HDL code is written using the macros pmos and 
nmos. Listing 5.5 shows the HDL code of the switch-level two-input OR 
gate.

LISTING 5.5 HDL Code of a Two-Input OR Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity or2gate is
    port (y : out std_logic; a, b : in std_logic);
end or2gate;

architecture or_switch of or2gate is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral); 
for all : nmos use entity work.mos (nmos_behavioral); 
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1 : std_logic;
begin
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n1 : nmos port map (y, vdd, a);
n2 : nmos port map (y, vdd, b);
p1 : pmos port map (y, s1, a);
p2 : pmos port map (s1, gnd, b);
end or_switch;

Verilog Description
module OR2gate (a, b, y);

input a, b;
output y;

supply1 vdd;
supply0 gnd;

nmos (y, vdd, a);
nmos (y, vdd, b);
pmos (y, s1, a);
pmos (s1, gnd, b);
endmodule

As shown in Figure 5.5, the PMOS switches pull y down to ground lev-
el, and the NMOS switches pull y up to vdd level. This arrangement results 
in degraded outputs and should be avoided. Degraded outputs, when cas-
caded, can deteriorate the final outputs and render them unrecognizable. 
To generate strong outputs, the NMOS switches should pull the output 
down to ground, and the PMOS switches should pull the output up to vdd. 
If we want to design a switch-level OR gate with strong output, we should 
follow a different approach (see Section 5.5).

EXAMPLE 5.4  SWITCH-LEVEL DESCRIPTION OF A TWO-INPUT NAND GATE

In this example, a switch-level NAND two-input gate is designed. The 
truth table of the two-input NAND gate is shown in Table 5.6.

TABLE 5.6 Truth Table for a Two-Input NAND Gate

Input Output

a b y
0 0 1
1 0 1
0 1 1
1 1 0
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Referring to Table 5.6, the gate can be designed using 
two complementary switch combinations (see Table 5.2). 
The first combination pulls y up to vdd when either of 
the two switch gates is at level 0 (Table 5.2d satisfies this 
requirement). The second combination pulls y down to 
ground level only when both gates are at level 1 (Table 5.2a 
satisfies this requirement). The final design consists of 
two complementary combinations: two parallel PMOS 
switches and two serial NMOS switches. Figure 5.6 shows 
the switch-level logic diagram of an NAND gate.

From Figure 5.6, write the HDL code. Listing 5.6 
shows the HDL code of the NAND gate using the two 
macros pmos and nmos.

LISTING 5.6 HDL Code for a Two-Input NAND Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity nand2gate is
    port (y : out std_logic; a, b : in std_logic);
end nand2gate;

architecture nand_switch of nand2gate is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral); 
for all : nmos use entity work.mos (nmos_behavioral); 
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1 : std_logic;
begin
n1 : nmos port map (s1, gnd, b);
n2 : nmos port map (y, s1, a);

a

b

gnd

vdd

y

FIGURE 5.6 Switch-level 
logic diagram of an NAND 
gate.
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p1 : pmos port map (y, vdd, a);
p2 : pmos port map (y, vdd, b);
end nand_switch;

Verilog Description
module NAND2gate (a, b, y);
input a, b;
output y;
supply1 vdd;
supply0 gnd;
nmos (s1, gnd, b);
nmos (y, s1, a);
pmos (y, vdd, a);
pmos (y, vdd, b);
endmodule

EXAMPLE 5.5 SWITCH-LEVEL DESCRIPTION OF A TWO-INPUT NOR GATE

Here, a switch-level two-input NOR gate is designed. The truth table of 
the two-input NOR gate is shown in Table 5.7.

TABLE 5.7 Truth Table for a Two-Input NOR Gate

Input Output
a b y
0 0 1
1 0 0
0 1 0
1 1 0

Referring to Table 5.7, we can design the gate us-
ing two complementary switch combinations (see Ta-
ble 5.2). The first combination pulls y up to vdd when 
the gate levels of both switches are at 0 (Table 5.2b 
satisfies this requirement). The second combination 
pulls y down to ground level when either switch gate 
is at level 1 (Table 5.2c satisfies this requirement). 
The final design consists of two complementary com-
binations: two serial PMOS switches and two parallel 
NMOS switches. Figure 5.7 shows the switch-level 
logic diagram of the NOR gate.

a

b

gnd

vdd

y

FIGURE 5.7 Switch-level 
logic diagram of an NOR 
gate.
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From Figure 5.7, write the HDL code. Listing 5.7 shows the HDL 
code of the NOR gate using the two macros pmos and nmos.

LISTING 5.7 HDL Code for a Two-Input NOR Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity nor2gate is
    port (y : out std_logic; a, b : in std_logic );
end nor2gate;

architecture nor_switch of nor2gate is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral); 

for all : nmos use entity work.mos (nmos_behavioral); 
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1 : std_logic;
begin

n1 : nmos port map (y, gnd, a);
n2 : nmos port map (y, gnd, b);
p1 : pmos port map (s1, vdd, a);
p2 : pmos port map (y, s1, b);
end nor_switch;

Verilog Description
module nor2gate (a, b, y);
input a, b;
output y;
supply1 vdd;
supply0 gnd;
nmos (y, gnd, a);
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nmos (y, gnd, b);
pmos (s1, vdd, a);
pmos (y, s1, b);
endmodule

5.5 Switch-Level Description of Simple Combinational Logics

In this section, simple combinational circuits will be designed using 
single PMOS and NMOS switches. The same logic is implemented as in 
Section 5.4, where Table 5.2 was used to come up with switch-level logics. 
Unless otherwise mentioned, all switch-level circuits here are designed to 
produce strong outputs (i.e., the output is either the ground or the vdd).

EXAMPLE 5.6  SWITCH-LEVEL DESCRIPTION OF A TWO-INPUT AND GATE 
WITH STRONG OUTPUT

As mentioned in Section 5.4, to 
produce strong output, the NMOS 
switches should pull the output 
down to ground, and the PMOS 
should pull the output up to vdd. 
The design of NAND, invert, and 
NOR systems discussed in Section 
5.4 satisfy this requirement. One ap-
proach is to convert the AND gate 
to a NAND and inverter. Figure 5.8 
shows a switch-level logic diagram 
of an AND gate constructed from a 
NAND gate and an inverter.

Listing 5.8 shows the HDL 
code for the AND gate. The code is 
longer than that of Listing 5.4, but it 
should produce strong outputs.

LISTING 5.8 HDL Code for a Two-Input AND Gate with Strong Output: 
VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

a

b

gnd

y
y1

vdd

FIGURE 5.8 Switch-level logic diagram of an AND 
gate constructed from an NAND gate and 
an inverter.
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entity and2Sgate is
    port (y : out std_logic; a, b : in std_logic);
end and2Sgate;
architecture and_strong of and2Sgate is

component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;
for all : pmos use entity work.mos (pmos_behavioral); 
for all : nmos use entity work.mos (nmos_behavioral); 
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1, y1 : std_logic;
begin

-- NAND
n1 : nmos port map (s1, gnd, b);
n2 : nmos port map (y1, s1, a);
p1 : pmos port map (y1, vdd, a);
p2 : pmos port map (y1, vdd, b);

-- Invert
n3 : nmos port map (y, gnd, y1);
p3 : pmos port map (y, vdd, y1);

end and_strong;

Verilog Description
module and2Sgate (a, b, y);

input a, b;
output y;
supply1 vdd;
supply0 gnd;
//NAND
nmos (s1, gnd, a);
nmos (y1, s1, b);
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pmos (y1, vdd, a);
pmos (y1, vdd, b);

//inverter
nmos (y, gnd, y1);
pmos (y, vdd, y1);
endmodule

EXAMPLE 5.7  SWITCH-LEVEL DESCRIPTION OF A TWO-INPUT OR GATE 
WITH STRONG OUTPUT

As was done in Listing 5.8, to produce 
a strong output, the OR gate is changed 
to a NOR and inverter. The switch-lev-
el logic of both NOR and inverter use 
NMOS switches to pull the output down 
to ground level, and NMOS switches to 
pull the output up to vdd. This generates 
strong outputs that are not degraded. 
Figure 5.9 shows the switch-level logic 
diagram of an OR gate constructed from 
the NOR gate and inverter.

Listing 5.9 shows the HDL code for 
an OR gate constructed from the NOR 
gate and inverter. The code is longer 
than that of Listing 5.5, but it should pro-
duce strong outputs.

LISTING 5.9 HDL Code of a Two-Input OR Gate with Strong Output: VHDL 
and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity OR2Sgate is
    port (y : out std_logic; a, b : in std_logic);
end OR2Sgate;

architecture orgate_strong of OR2Sgate is

a

b

gnd

y
y1

vdd

FIGURE 5.9 Switch-level logic diagram of an 
OR gate constructed from the NOR gate and 
inverter.
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component nmos
    port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral); 
for all : nmos use entity work.mos (nmos_behavioral); 
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1, y1 : std_logic;
begin

--NOR
n1 : nmos port map (y1, gnd, a);
n2 : nmos port map (y1, gnd, b);
p1 : pmos port map (s1, vdd, a);
p2 : pmos port map (y1, s1, b);

--Invert
n3 : nmos port map (y, gnd, y1);
p3 : pmos port map (y, vdd, y1);

end orgate_strong;

Verilog Description
module OR2Sgate (a, b, y);

input a, b;
output y;
supply1 vdd;
supply0 gnd;

//NOR
nmos (y1, gnd, a);
nmos (y1, gnd, b);
pmos (s1, vdd, a);
pmos (y1, s1, b);
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//inverter
nmos (y, gnd, y1);
pmos (y, vdd, y1);
endmodule

EXAMPLE 5.8  SWITCH-LEVEL DESCRIPTION OF A THREE-INPUT NAND 
GATE

Here, a three-input NAND gate is described. Table 5.8 shows the truth 
table of the three-input NAND gate.

TABLE 5.8 Truth Table for a Three-Input NAND Gate

Input Output
a b c y
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 1
1 0 1 1
1 0 1 1
1 1 0 1
1 1 1 0

As shown in Table 5.8, the output is 
0 only when a, b, and c are 1. Table 5.2a, 
when extended to three switches, indi-
cates the use of three NMOS switches 
connected in serial as the pull-down 
combination. For the pull-up combi-
nation, Table 5.2d, extended to three 
switches, needs three PMOS switch-
es connected in parallel. Figure 5.10 
shows the switch-level logic diagram for 
a three-input NAND gate.

Listing 5.10 shows the HDL code 
for the three-input NAND gate using 
pmos and nmos switches.

a
b
c

gnd

vdd

y

FIGURE 5.10 Switch-level logic diagram of a 
three-input NAND gate.
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LISTING 5.10 HDL Code for a Three-Input NAND Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity nand3gate is
    port (y : out std_logic; a, b, c : in std_logic);
end nand3gate;

architecture nand3_switch of nand3gate is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral); 
for all : nmos use entity work.mos (nmos_behavioral); 
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1, s2 : std_logic;
begin

n1 : nmos port map (s1, gnd, a);
n2 : nmos port map (s2, s1, b);
n3 : nmos port map (y, s2, c);
p1 : pmos port map (y, vdd, a);
p2 : pmos port map (y, vdd, b);
p3 : pmos port map (y, vdd, c);
end nand3_switch;

Verilog Description
module nand3gate (a, b, c, y);
input a, b, c;
output y;
supply1 vdd;
supply0 gnd;

nmos (s1, gnd, a);
nmos (s2, s1, b);
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nmos (y, s2, c);
pmos (y, vdd, a);
pmos (y, vdd, b);
pmos (y, vdd, c);
endmodule

EXAMPLE 5.9  SWITCH-LEVEL DESCRIPTION OF A THREE-INPUT NOR 
GATE

In this example, a three-input NOR gate is described using switch-level 
description. Table 5.9 shows the truth table of the NOR gate.

TABLE 5.9 Truth Table for a Three-Input NOR Gate

Input Output
a b c y
0 0 0 1
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
0 1 0 0
1 1 1 0

Referring to Table 5.9, the NOR gate has 
an output of 1 only when a, b, and c are zeros. 
This is the opposite logic of NAND, so the seri-
al combination of NMOS switches for the pull-
down combination for the NAND is converted 
to a parallel combination of NMOS switches for 
the NOR gate. Similarly, the parallel combina-
tion of PMOS switches for the pull-up in the 
NAND gate is converted to a serial combina-
tion of PMOS switches in the NOR gate. Figure 
5.11 shows the switch-level logic diagram of a 
three-input NOR gate.

Listing 5.11 shows the HDL code for the 
three-input NOR gate using pmos and nmos 
switches.

b

c

gnd

vdd

y

a

FIGURE 5.11 Switch-level logic 
diagram of a NOR gate.
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LISTING 5.11 HDL Code for a Three-Input NOR Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity nor3gate is
    port (y : out std_logic; a, b, c : in std_logic);
end nor3gate;

architecture nor3_switch of nor3gate is

component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral); 
for all : nmos use entity work.mos (nmos_behavioral); 
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1, s2 : std_logic;

begin
n1 : nmos port map (y, gnd, a);
n2 : nmos port map (y, gnd, b);
n3 : nmos port map (y, gnd, c);

p1: pmos port map (s1, vdd, a);
p2: pmos port map (s2, s1, b);
p3: pmos port map (y, s2, c);
end nor3_switch;

Verilog Description
module nor3gate (a, b, c, y);
input a, b, c;
output y;
supply1 vdd;
supply0 gnd;
nmos (y, gnd, a);
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nmos (y, gnd, b);
nmos (y, gnd, c);
pmos (s1, vdd, a);
pmos (s2, s1, b);
pmos (y, s2, c);
endmodule

EXAMPLE 5.10  SWITCH-LEVEL DESCRIPTION OF SIMPLE COMBINATIONAL 
LOGIC

This example discusses the switch-level description of the logic pre-
sented by the Boolean function y =abc+de . A straightforward approach 
would be to treat the logic as a three-input NAND gate: two two-input 
NAND gates and an inverter (see Figure 5.12). The number of switches 
(transistors) for this combination is 6 + (2 × 4) + 2 = 16. 

y

a
b
c

d
e

y

a
b
c

d
e

y

a
b
c

d
e

FIGURE 5.12 Gate-level logic diagram for abc+dey = .

The number of transistors can be reduced by investigating the Bool-
ean function. Note that y is pulled to zero only if abc = 1 or if de = 1. This 
means that the pull-down combination for 
abc is three NMOS switches driven by a, 
b, and c. The three switches are connected 
in serial. For de, two serial NMOS switch-
es are driven by d and e; the two switches 
are connected in parallel with the three 
NMOS switches. The pull-up combina-
tion is three PMOS switches driven by a, 
b, and c connected in parallel; the combi-
nation is connected in serial with another 
two PMOS switches driven by d and e, 
accounting for the ORing of abc with de. 
The total number of transistors is 10, in 
contrast to 16 for the straightforward ap-
proach. Figure 5.13 shows the switch-level 
logic diagram.

a

b
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s3

c

gnd

vdd

y

d

e

FIGURE 5.13 Switch-level logic diagram 
for abc+dey = .
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Listing 5.12 shows the HDL code for the logic using pmos and nmos 
switches.

LISTING 5.12 HDL Code for the Logic abc+dey = : VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

    entity simple_logic is
port (y : out std_logic; a, b, c, d : in std_logic);
end simple_logic;

architecture ABC of simple_logic is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral); 
for all : nmos use entity work.mos (nmos_behavioral); 
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1, s2, s3 : std_logic;

begin
n1 : nmos port map (s1, gnd, c);
n2 : nmos port map (s2, s1, b);
n3 : nmos port map (y, s2, a);
n4 : nmos port map (y, gnd, d);
p1 : pmos port map (y, s3, a);
p2 : pmos port map (y, s3, b);
p3 : pmos port map (y, s3, c);
p4 : pmos port map (s3, vdd, d);
end ABC;

Verilog Description
module simple_logic (a, b, c, d, e, y);
input a, b, c, d, e;
output y;
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supply1 vdd;
supply0 gnd;
nmos (s1, gnd, c);
nmos (s2, s1, b);
nmos (y, s2, a);
nmos (s3, gnd, e);
nmos (y, s3, d);

pmos (y, s4, a);
pmos (y, s4, b);
pmos (y, s4, c);

pmos (s4, vdd, d);
pmos (s4, vdd, e);
endmodule

EXAMPLE 5.11 SWITCH-LEVEL DESCRIPTION OF A XNOR GATE

To satisfy the requirement that NMOS switches pull down to ground 
(pass 0) and PMOS switches pull up (pass 1) to vdd, the XNOR gate is treat-
ed as the inverse of an XOR gate, so the Boolean function of the XNOR 
gate can be written as:

 y = ab+ab=(ba +ab)  (5.1)

According to the relationship in Ta-
ble 5.1, the pull-down combination 
is active when b a  or a b  is equal to 
1. For b a , this is accomplished with 
two NMOS transistors (switches) con-
nected in serial and driven by b and a  
(see Table 5.2a). The same is true for a
b ; two transistors connected in serial 
are needed. For the OR, the two serial 
transistors are connected in parallel 
(see Table 5.2c). For the pull-up com-
bination, the serial and parallel combi-
nations in the pull-down are converted 
to parallel and serial, respectively. Fig-
ure 5.14 shows the transistor switch-
level logic diagram of the XNOR gate.

s3

s1s2

vdd

gnd

y

a

a
b

b

FIGURE 5.14 Switch-level logic diagram for a 
XNOR gate. Assume both input signal and its 
complement are available.



258 • HDL WITH DIGITAL DESIGN

Listing 5.13 shows the HDL code for the XNOR gate. Two inverters 
are used to generate the inverse of a and b. If the true and complement 
logic of a and b are available, there is no need for the inverters.

LISTING 5.13 HDL Code for a XNOR Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity XOR_XNOR is
    port (y : out std_logic; a, b : in std_logic);
end XOR_XNOR;

architecture XNORgate of XOR_XNOR is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral
for all : nmos use entity work.mos (nmos_behavioral); 
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal abar, bbar, s1, s2, s3 : std_logic;
begin

-- Invert a and b. If the complement of a and b 
--are available, then there is no need for the
--following two pair (nmos and pmos) switches.
--

p1 : pmos port map (abar, vdd, a);
n1 : nmos port map (abar, gnd, a);
p2 : pmos port map (bbar, vdd, b);
n2 : nmos port map (bbar, gnd, b);

--Write the pull-down combination
n3 : nmos port map (s1, gnd, a);
n4 : nmos port map (y, s1, bbar);
n5 : nmos port map (s2, gnd, abar);
n6 : nmos port map (y, s2, b);
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--Write the pull-up combination
p3 : pmos port map (y, s3, a);
p4 : pmos port map (y, s3, bbar);
p5 : pmos port map (s3, vdd, abar);
p6 : pmos port map (s3, vdd, b);

end XNORgate;

Verilog Description
module XOR_XNOR (a, b, y);

input a, b;
output y;

supply1 vdd;
supply0 gnd;

/ Invert a and b. If the complement of a and b
   are available, then there is no need for the
   following two pair (nmos and pmos) switches /

pmos (abar, vdd, a);
nmos (abar, gnd, a);
pmos (bbar, vdd, b);
nmos (bbar, gnd, b);

// Write the pull-down combination
nmos (s1, gnd, a);
nmos (y, s1, bbar);
nmos (s2, gnd, abar);
nmos (y, s2, b);

// Write the pull-up combination
pmos (y, s3, a);
pmos (y, s3, bbar);
pmos (s3, vdd, abar);
pmos (s3, vdd, b);
endmodule

XOR/XNOR gates are very important because they are the basic com-
ponents in full adders. They have also been implemented in comparison 
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circuits. Several publications can provide 
more information on reducing the num-
ber of transistors used in XOR or XNOR 
gates (Wang 1995, Weste 2003). Figure 
5.15 shows an XNOR gate with four tran-
sistors (Wang 1995). Figure 5.15 is based 
on the fact that the output of the XNOR 

gate is equal to b  if a = 0 or is equal to b 

if a = 1. Listing 5.14 shows the code for 
such an XNOR gate.

LISTING 5.14 HDL Code for a XNOR Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity XNOR_degrade is
    Port (y : out std_logic; a, b : in std_logic);
end XNOR_degrade;

architecture XNORgate of XNOR_degrade is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral
for all : nmos use entity work.mos (nmos_behavioral); 
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s0 : std_logic;

begin
p1 : pmos port map (s0, vdd, b);
p2 : pmos port map (y, s0, a);
n1 : nmos port map (s0, gnd, b);
n2 : nmos port map (y, b, a);
end XNORgate;

p1
p2

n2

n1

gnd
y

vdd

a

b

FIGURE 5.15 Switch-level logic diagram for a 
XNOR gate.
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Verilog Description
module gate (a, b, y);

input a, b;
output y;

supply1 vdd;
supply0 gnd;

pmos p1 (s0, vdd, b);  
pmos p2 (y, s0, a);

nmos n1 (s0, gnd, b);
nmos n2 (y, b, a);
endmodule

EXAMPLE 5.12  SWITCH-LEVEL DESCRIPTION OF A 2x1 MULTIPLEXER 
WITH ACTIVE HIGH ENABLE

The Boolean function of such a multiplexer is as shown in Equation 5.2:

 y = E(a Sel + b Sel )  (5.2)
E is the enable, a and b are the inputs, Sel is the select, and y is the output. 
If E = 0, the multiplexer is disabled, and the output y is 0. If E = 1 and 
Sel = 1, the output y is a; if E = 1 and Sel = 0, the output y = b.

As in Listing 5.14, the output is inversed to satisfy the requirement that 
the NMOS switches pull down the output to ground level while the PMOS 
switches pull up y to vdd level. Accordingly, the truth table of the multi-
plexer is as shown in Table 5.10.

TABLE 5.10 Truth Table for the Complement-Output Multiplexer

Input Output
a b Sel E y

x x x 0 1
0 0 0 1 1
1 0 0 1 1
0 1 0 1 0
1 1 0 1 0
0 0 1 1 1
1 0 1 1 0

(Contd.)
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Input Output
a b Sel E y

0 1 1 1 1
1 1 1 1 0

From Table 5.10, note that y  is 0 when Sel = 1 and a = 1 or when Sel = 
0 and b = 1, so the pull-down combination is two NMOS switches in serial 
driven by a and Sel connected in parallel, with two serial switches driven by 
b and Sel . When E = 0, y  = 1; this is a PMOS (pull-up) switch. The switch 
level of the multiplexer is shown in Figure 5.16.

vdd

y

Sel

Sel

b

E

a

n1

s0

s2
n4

n5 n3

p2

p4p5

p3

s3 p1

n2

s1

gnd
FIGURE 5.16 Switch-level logic diagram for a 2x1 multiplexer with active high enable and complement out-
put. Assume Sel signal is available.

Listing 5.15 shows the HDL code for the multiplexer.
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LISTING 5.15 HDL Code for a 2x1 Multiplexer with Active High Enable and 
Complement Output: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity mux2x1 is
port (a, b, Sel, E : in std_logic; 
      ybar : out std_logic);
end mux2x1;
architecture mux2x1switch of mux2x1 is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral); 
for all : nmos use entity work.mos (nmos_behavioral); 
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal Selbar, s0, s1, s2, s3 : std_logic;

begin
--Invert signal Sel. If the complement of Sel is
--available then, there is no need for
--the following pair of transistors.

v1 : pmos port map (Selbar, vdd, Sel);
--All instantiation statements should be
--labeled
v2 : nmos port map (Selbar, gnd, Sel);
--Write the pull-down combination
n1 : nmos port map (s0, gnd, E);
n2 : nmos port map (s1, s0, Sel);
n3 : nmos port map (ybar, s1, a);
n4 : nmos port map (s2, s0, Selbar);
n5 : nmos port map (ybar, s2, b);
--Write the pull-up combination
p1 : pmos port map (ybar, vdd, E);
p2 : pmos port map (ybar, s3, Sel);
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p3 : pmos port map (ybar, s3, a);
p4 : pmos port map (s3, vdd, Selbar);
p5 : pmos port map (s3, vdd, b);

end mux2x1switch;

Verilog Description
module mux2x1 (a, b, Sel, E, ybar);
input a, b, Sel, E;
output ybar;
supply1 vdd;
supply0 gnd;

/ Invert signal Sel. If the complement of Sel
   is available then, there is no need for
   the following pair of transistors /

pmos (Selbar, vdd, Sel);
nmos (Selbar, gnd, Sel);

//Write the pull-down combination
nmos n1 (s0, gnd, E);
nmos n2 (s1, s0, Sel);
nmos n3 (ybar, s1, a);
nmos n4 (s2, s0, Selbar);
nmos n5 (ybar, s2, b);

//Write the pull-up combination
pmos p1 (ybar, vdd, E);
pmos p2 (ybar, s3, Sel);
pmos p3 (ybar, s3, a);
pmos p4 (s3, vdd, Selbar);
pmos p5 (s3, vdd, b);

endmodule

5.6 Switch-Level Description of Simple Sequential Circuits

In Section 5.5, the switch-level description of combinational circuits 
was discussed. This chapter will cover description of some simple sequen-
tial circuits.
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EXAMPLE 5.13 SWITCH-LEVEL DESCRIPTION OF AN SR-LATCH

The SR-latch was discussed in Chapter 4, 
and the gate-level logic diagram of the latch 
was shown in Figure 4.9. It is redrawn here for 
convenience in Figure 5.17.

As shown in Figure 5.17, the latch consists 
of two NOR gates. The switch-level logic dia-
gram is designed directly from the gate-level 
diagram. A switch-level NOR gate was 
previously built in Listing 5.11. PMOS 
and NMOS switches are used to build the 
switch-level logic diagram of the latch (see 
Figure 5.18).

Listing 5.16 shows the HDL code of 
the latch. Because there are several tran-
sistors (switches), it is preferable to label 
the Verilog code for each transistor. For 
example, the Verilog code for switch n1 
in Figure 5.18 is nmos n1 (Qbar, gnd, 
S). The label n1 in Verilog is optional, but 
because there are several transistors, each 
transistor has been labeled. In VHDL, the 
labeling of each instantiation statement is 
required. For example, the instantiation 
statement of transistor n1 is n1: nmos 

port map (Qbar, gnd, S). Label n1 is 
required. Figure 5.19 shows the simula-
tion waveform of the multiplexer.

QR

QbarS
FIGURE 5.17 SR-latch.
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FIGURE 5.18 Switch-level logic diagram 
of an SR-latch.

S

R

Q

Qbar
FIGURE 5.19 Simulation waveform of an SR-Latch.
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LISTING 5.16 HDL Code for an SR-Latch: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity SR_Latch is
port (S, R : in std_logic; Q, Qbar : inout std_logic);
end SR_Latch;
architecture SR of SR_Latch is

component nmos
port (O1 : inout std_logic; I1, I2 : in std_logic);
--port O1 is selected here to be inout to match
--its use in the latch circuit
end component;

component pmos
port (O1 : inout std_logic; I1, I2 : in std_logic);
--port O1 is selected here to be inout
--to match its use in the latch circuit
end component;

for all : pmos use entity work.mos (pmos_behavioral); 
for all : nmos use entity work.mos (nmos_behavioral); 
--In this example only, the mode of Output port O1
--in the entity “mos” should
--be declared as inout instead of out.
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s0, s1, s2 : std_logic;

begin
n1 : nmos port map (Qbar, gnd, S);
n2 : nmos port map (Qbar, gnd, Q);
p1 : pmos port map (s0, vdd, Q);
p2 : pmos port map (Qbar, s0, S);

n3 : nmos port map (Q, gnd, Qbar);
n4 : nmos port map (Q, gnd, R);
p3 : pmos port map (s1, vdd, R);
p4 : pmos port map (Q, s1, Qbar);
end SR;
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Verilog Description
module SR_latch (S, R, Q, Qbar);
input S, R;
output Q, Qbar;
supply1 vdd;
supply0 gnd;

nmos n1 (Qbar, gnd, S);
nmos n2 (Qbar, gnd, Q);
pmos p1 (s0, vdd, Q);
pmos p2 (Qbar, s0, S);

nmos n3 (Q, gnd, Qbar);
nmos n4 (Q, gnd, R);
pmos p3 (s1, vdd, R);
pmos p4 (Q, s1, Qbar);
endmodule

5.6.1 CMOS Switches
In the previous sections, single switches (NMOS or PMOS) were dis-

cussed. It has been seen that for a strong signal, the NMOS switch should 
pass 0, and the PMOS should pass 1. Another family of MOS switches is 
CMOS. As shown in Figure 5.20, the CMOS switch consists of two switch-
es connected in parallel; one of the switches is NMOS, and the other is 
PMOS. The gate controls of the two switches, gn and gp, are usually the 
true and complement of the same signal. In this chapter, gn and gp are al-
ways the true and complement of the same signal, respectively. If gn is high 
(gp is low), the switch becomes conductive (output = input). If gn is low (gp 
is high), the switch becomes open. The main characteristic of the switch is 
that it can pass both strong 1 and strong 0.

Verilog has a built-in function to 
describe a CMOS switch. The fol-
lowing Verilog statement describes a 
CMOS switch with input and output 
and gates gn for the NMOS switch 
and gp for the PMOS switch (see 
Figure 20):

cmos (output, input, gn, gp)

Output

gp

gn

Input

FIGURE 5.20 CMOS switch.
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The basic VHDL package does not have a built-in code for CMOS 
switches, but it can be built as a macro consisting of the NMOS switch and 
PMOS switch described in Section 5.3.2. Listing 5.17 shows VHDL code 
for the CMOS switch shown in Figure 5.20.

LISTING 5.17 VHDL Code for the CMOS Switch in Figure 5.19.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity CMOS is
port (output : out std_logic; 
      input, gn, gp : in std_logic);
end CMOS;

architecture macro of CMOS is

--All switches presented here do not include any
--time parameters, such as
--rise time and fall times. They only mimic the
--logical functions of their
--Verilog counterparts.

component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral); 
for all : nmos use entity work.mos (nmos_behavioral); 

begin
n1 : nmos port map (output, input, gn);
p1 : pmos port map (output, input, gp);
end macro;

EXAMPLE 5.14 SWITCH-LEVEL DESCRIPTION OF A D-LATCH

The D-latch was covered in Chapter 2. Here, no clear signal is consid-
ered; adding clear signal is covered in Exercise 5.9. Table 5.11 shows the 
excitation table the D-latch.
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TABLE 5.11 Excitation Table for a D-Latch

Inputs Next State
E D Q Q+

0 x 0 0
0 x 1 1
1 0 x 0
1 1 x 1

The output follows D when the enable is high. When the enable is low, 
the output retains its previous value. The Boolean function of the output Q is:

 Q = E Q + ED  (5.3)
Two approaches are taken to find the switch-level logic diagram of the latch. 
The first approach used is the Boolean function and NMOS and PMOS 
switches. The second approach uses CMOS switches.

5.6.1.1 Switch-Level Logic Diagram of a D-Latch Using PMOS and 
NMOS Switches

Equation 5.3 can be rewritten as:

 (QE+ED)Q  and Q is the inverse of Q
Tables 5.2a–d are used to find the switch-level logic diagram. Figure 5.21 

shows the switch-level logic diagram of the D-latch. Listing 5.18 shows the 
Verilog code for the latch.

p3

p1

n2 n4

n3n1

s1s0

p4

E

E

D

gnd

vdd

p2

s2

Q

Q

FIGURE 5.21 Switch-level logic diagram of a D-latch using PMOS and NMOS 
switches. Inverters between Q  and Q and between E  and E are not shown.



270 • HDL WITH DIGITAL DESIGN

LISTING 5.18 Verilog Code for a D-Latch Using NMOS and PMOS Switches

module D_latch (D, E, Q, Qbar);
input D, E;
output Q, Qbar;
supply1 vdd;
supply0 gnd;

pmos (Ebar, vdd, E);
nmos (Ebar, gnd, E);
nmos n1 (s0, gnd, D);
nmos n2 (Qbar, s0, E);
nmos n3 (s1, gnd, Q);
nmos n4 (Qbar, s1, Ebar);

pmos p1 (Qbar, s2, D);
pmos p2 (Qbar, s2, E);
pmos p3 (s2, vdd, Q);
pmos p4 (s2, vdd, Ebar);

endmodule

5.6.1.2 Switch-Level Logic Diagram of a D-Latch Using CMOS Switches

Figure 5.22 shows the switch-level logic diagram of the D-latch. When 
enable (E) is high, CMOS switch c1 is closed, CMOS switch c2 is opened, 
and Q follows D. When E is low, CMOS switch c1 is opened, CMOS switch 
c2 is closed, and Q retains its previous value.

gnd

vdd

Q
C2

C1
D

E

gnd

vdd

E

E

Q

FIGURE 5.22 Switch-level logic diagram of a D-latch using CMOS switches.
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Listing 5.19 shows the HDL code for the D-latch. Due to the nature of 
signal Q, where it is an input and output with more than one source (one 
CMOS switch and an inverter), Q is declared as inout. Because there are 
three inverters, the inverter module discussed in Listing 5.3 is bound to the 
current module D-Latch, rather than writing three individual inverters. In 
VHDL, use the statement:

for all : invert use entity work.
          inverter (Invert_switch);

to bind inverter to the current module D_Latch. In Verilog, we use 
the statement:

invert inv1 (Ebar, E);

which binds the module invert to the current module D_Latch.

LISTING 5.19 HDL Code for a D-Latch Using CMOS Switches: VHDL and 
Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity D_Latch is
port (D, E : in std_logic; Q, Qbar : inout std_logic);
-- Referring to Figure 5.22, signal Q is
--input and output and has multiple
--sources (the inverter and the CMOS switches,
--so Q has to be declared as
--inout. All other ports are also adjusted in
--the following components to be inout.
end D_Latch;

architecture DlatchCmos of D_Latch is
component CMOS
port (output : out std_logic; 
      input, gn, gp : in std_logic);
end component;
component invert
port (y : out std_logic; a : in std_logic );
end component;
for all : CMOS use entity work.CMOS (macro); 
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for all : invert use entity work.
          inverter( Invert_switch);
signal Ebar, s1 : std_logic;
begin
c1 : cmos port map (Q, D, E, Ebar);
c2 : cmos port map (Q, s1, Ebar, E);
inv1 : invert port map (Ebar, E);
inv2 : invert port map (Qbar, Q);
inv3 : invert port map (s1, Qbar);

end DlatchCmos;

Verilog Description
module D_latch (D, E, Q, Qbar);
input D, E;
output Q, Qbar;
cmos (Q, D, E, Ebar);
cmos (Q, s1, Ebar, E);
invert inv1 (Ebar, E);
invert inv2 (Qbar, Q);
invert inv3 (s1, Qbar);
endmodule

module invert (y, a);
input a;
output y;
supply1 vdd;
supply0 gnd;
pmos p1 (y, vdd, a);
nmos n1 (y, gnd, a);
endmodule

5.7 Bidirectional Switches

Bidirectional switches conduct in both ways, from drain to source and 
from source to drain. Their main use is as bidirectional buffers (busses). 
Three types of bidirectional switches are available in Verilog: tran, tra-
nif0, and tranif1. Switch tran has no control; it conducts all the time. 
Switch tranif1 conducts if control is 1. Otherwise, the nondriving signal 
(output) is put on high impedance. Switch tranif0 conducts if control is 
0. Otherwise, the nonconducting signal (output) is put on high impedance. 
The Verilog code for the three switches is as follows:
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tran (dataio1, dataio2);
trannif0 (dataio1, dataio2, control);
tranif1 (dataio1, dataio2, control);

VHDL does not have built-in switches, but these switches can be built 
as in Section 5.3.2.

Listing 5.20 shows the same Verilog code in Listing 5.12, but tranif1 
and tranif0 are used instead of NMOS and PMOS switches.

LISTING 5.20 HDL Code for the Logic abc+dey = : VHDL and Verilog

module simple_logic (a, b, c, d, e, y);
input a, b, c, d, e;
output y;

supply1 vdd;
supply0 gnd;

tranif1 (s1, gnd, c);
tranif1 (s2, s1, b);
tranif1 (y, s2, a);
tranif1 (s3, gnd, e);
tranif1 (y, s3, d);

tranif0 (y, s4, a);
tranif0 (y, s4, b);
tranif0 (y, s4, c);

tranif0 (s4, vdd, d);
tranif0 (s4, vdd, e);

endmodule

5.8 Summary

In this chapter, HDL descriptions based on switches have been pre-
sented. The switches are built from perfect transistors. The transistor is 
either conducting to saturation or not conducting; this corresponds to two 
switch states, closed and open, respectively. Switch-level is the lowest lev-
el of HDL description. Verilog has an extensive switch-level description 
library. Standard VHDL does not have switch-level; if we use VHDL for 
switch-level description, packages have to built or imported from vendors.
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VHDL switches have also been built as components (see Chapter 4). 
The power supply (vdd) and ground (gnd) in all systems covered in this 
chapter are the sources of the strongest 1s and 0s; nmos switches pass strong 
0, and pmos switches pass strong 1. To produce strong output signals, nmos 
switches are employed as pull-down to ground networks, and pmos switches 
are employed as pull-up to vdd networks. Parallel and serial combinations 
of pmos and nmos switches have been implemented to describe combina-
tional and sequential circuits. Other switches such as cmos, tran, tra-
nif0, and tranif1, constructed from parallel combinations of NMOS and 
PMOS switches, have been also been discussed.

Many publications are available on the examples covered in this chap-
ter. These publications may use innovative ways to reduce the number of 
transistors. The reader is encouraged to consult them (see References) if 
the main goal is to find a design with the minimum number of transistors. 

5.9 Exercises

In all the following questions, unless otherwise mentioned, choose the 
design that yields strong outputs.

1. Derive the switch-level (transistor) logic of an XOR gate using a mini-
mum number of transistors. Write and verify by simulation the VHDL 
code using PMOS and NMOS switches.

2. Without using the computer, inspect the Verilog code shown in Listing 
5.21 and find the Boolean function of the output y. Translate the code 
to VHDL and verify your code by simulating it.

LISTING 5.21 Verilog Code for Exercise 5.2

module Problem_2 (a, b, c, y);
input a, b, c;
output y;

supply1 vdd;
supply0 gnd;

pmos (d, vdd, c);
nmos (d, gnd, c);
cmos (y, a, c, d);
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cmos (y, b, d, c);

endmodule

3. For the XNOR gate discussed in Listing 5.13, use NAND gates and 
inverters to design the XNOR gate. Write the switch-level Verilog code 
and verify your design. Contrast this approach with that of Listing 5.13 
in terms of the total number of transistors needed.

4. Referring to Listing 5.15, construct the gate level of the multiplexer 
using NOR gates and inverters. Write the switch-level VHDL code and 
verify your design. What is the total number of transistors used in this 
gate-level design?

5. Design the switch level for an SR-latch from the Boolean function using 
the minimum number of switches. Compare the number of switches 
used with that of Listing 5.15. Write the VHDL code and verify your 
design by simulation.

6. Write the VHDL code for Listing 5.18. Verify your code by simulation.

7. In Figure 5.22, the control E is active high. Modify the figure to show an 
active low enable.

8. Repeat Listing 5.15 using tranif0 and tranif1 instead of PMOS and 
NMOS switches.

9. Add active low clear signal to the D-Latch in Example 5.14 and rewrite 
the VHDL and Verilog codes.
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C H A P T E R

PROCEDURES, TASKS, AND 
FUNCTIONS

6
Chapter Objectives

 Understand the concept of procedures (VHDL), tasks (Verilog), and 
functions (both VHDL and Verilog)

 Review and understand how to convert between different types of 
data

 Review signed vector multiplication
 Understand combinational arrays multiplier
 Review IEEE 754 representation of floating point
 Understand a simple enzyme mechanism

6.1 Highlights of Procedures, Tasks, and Functions

Facts
 Procedures, tasks, and functions are HDL tools to optimize the writ-

ing style of HDL code. They are implemented to instantiate a seg-
ment or a construct of code. Instead of writing the segment/construct 
every time it is needed, a single call statement to a function, task, or 
procedure that references the segment/construct is all that is needed.

 Procedures and tasks can have more than one input and more than 
one output. Functions have a single output, but they can have more 
than one input.
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 Procedures and functions in VHDL can be called only from within 
process. Tasks and functions in Verilog can be called only from 
within always or initial.

6.2 Procedures and Tasks

Procedures (VHDL) and tasks (Verilog) are similar to subroutines in 
other software languages such as C. In many modules, a routine is repeat-
edly used, such as a multiplication algorithm, addition algorithm, or a con-
version between two numbering systems. Instead of writing these routines 
every time they are needed, the routines’ codes can be stored as the body 
of a procedure (VHDL) or as the body of a task (Verilog). Whenever the 
routine needs to be executed, the procedure (task) is called by writing just 
one call statement. Section 6.2.1 discusses procedures, and Section 6.2.2 
discusses tasks.

6.2.1 Procedure (VHDL)
Procedure is a behavioral statement (see Chapter 3). A procedure has 

two parts: the declaration and the body. The declaration includes the name 
of the procedure, the inputs to the procedure and their types, and the out-
puts of the procedure and their types. For example, the declaration:

procedure Booth (X, Y : in signed (3 downto 0); 
                 Z: out signed (7 downto 0)) is

declares a procedure by the name (identifier) Booth. The inputs are 
variables X and Y, each is four bits, and the type of the inputs is signed. 
The output is a four-bit variable Z, and its type is signed. In the declaration 
statement, procedure and is are predefined words and have to be inserted 
in the order shown. If the inputs or outputs are signals, they should be ex-
plicitly specified as follows:

procedure exmple (signal a : in std_logic ; 
                  signal y: out std_logic) is

The body of the procedure contains the behavioral statements that de-
scribe the details of the procedure, mainly the relationship between the 
input(s) and the output(s). The body of the procedure cannot include the 
behavioral statement process. An example of a procedure is:

procedure exmple (signal a : in std_logic;
                  signal y : out std_logic) is
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variable x : std_logic;
begin
x := a;
case x is
…………………
end case;
y <= x;
end exmple;

The procedure is called by a sequential statement that appears inside 
process. For example, the above procedure exmple is called as follows:

process (d, clk)
begin
......
exmple (d, z);
.........
end process

The input of the procedure a is linked to d, and accordingly, d assumes 
the value of a. The type of a should match the type of d. After execution 
of the procedure, the output of the procedure, y, is passed to z. The type 
of z should match the type of y. If a vector is an output or input of a pro-
cedure, it should not be constrained in length. Consider the declaration of 
procedure Vect_constr: 

procedure Vect_constr (X : in std_logic_vector; 
                       Y : out std_logic_vector) is

The length of vectors X and Y should not be constrained (i.e., they 
should not be specified). VHDL has a large number of built-in procedures 
in its standard package. Other procedures can be imported from external 
packages. An example of a built-in procedure is open fi le (see Chapter 8).

6.2.2 Task (Verilog)
Task is a Verilog subprogram. It can be implemented to execute speci-

fied routines repeatedly. The format in which the task is written can be 
divided into two parts: the declaration and the body of the task. In the 
declaration, the name of the task is specified, and the outputs and inputs of 
the task are listed. An example of a task declaration is:

task addr;
output cc, dd;
input aa, bb;
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addr is the name (identifier) of the task. The outputs are cc and dd, 
and the inputs are aa and bb. task is a predefined word. The body of the 
task shows the relationship between the outputs and inputs. An example of 
the body of a task is:

begin
cc = aa ^ bb;
.............
end
endtask

The body of the task cannot include always or initial. A task must be 
called within the behavioral statement always or initial (see Chapter 3). 
An example of calling the task addr is:

............
always @ (a, b)
begin
addr (c, d, a, b);
end

addr is the name of the task. Inputs a and b are passed to aa and bb. 
The outputs of the task cc and dd are passed, after execution, to c and 
d, respectively. Verilog has a large number of built-in tasks included in its 
package.

6.2.3 Examples: Procedures and Tasks
The following examples discuss procedures and tasks. Some of the ex-

amples have been covered in the previous chapters (2–4). Here, they are 
rewritten using procedure and task.

EXAMPLE 6.1  HDL BEHAVIORAL DESCRIPTION OF A FULL ADDER USING 
PROCEDURE AND TASK

In Chapter 4, a full adder was constructed from two half adders. Here, 
the same concept is used to design a full adder from two half adders using 
behavioral description. The code for a half adder is written using procedure 
in VHDL or task in Verilog to construct the full adder. Figure 6.1 shows a 
block diagram of the full adder.
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carry

sum
y

cin

Half adder

Half adder

x

 
FIGURE 6.1 Block diagram of a full adder as two half adders.

Listing 6.1 shows the HDL code for the full adder using procedure 
(VHDL) and task (Verilog). Referring to the VHDL Listing, the code for 
the half adder is written as a procedure:

procedure Haddr(sh, ch : out std_logic; 
ah, bh : in std_logic) is
begin
sh := ah xor bh;
ch := ah and bh;
end Haddr;

The name of the above procedure is Haddr; the inputs are sh and 
ch, and the outputs are ah and bh. The type of the outputs and inputs is 
std_logic. The code of the procedure is based on the Boolean functions 
of the half adder. To call the procedure, the call statement has to be inside 
process. To call the procedure Haddr:

Haddr (sum1, c1, y, cin);

where Haddr is the name of the procedure, and the values y and cin 
are passed to the inputs of the procedure ah and bh, respectively. After 
calculating the outputs (sh and ch), the procedure passes the value of those 
outputs to sum1 and c1, respectively.

For the Verilog code, the task is:

task Haddr;
output sh, ch;
input ah, bh;
begin
    sh = ah ^ bh;
    ch = ah & bh;
end
endtask
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The name of the task is Haddr; the inputs are ah and bh, and the outputs 
are sh and ch. The task code is based on the Boolean functions of the half 
adder. To call task, it has to be inside always or initial because task is 
a behavioral (sequential) statement. Therefore, to call the task Haddr:

Haddr (sum1, c1, y, cin);

where haddr is the name of the task. The values y and cin are passed 
to the inputs of the task ah and bh, respectively. After calculating the out-
puts (sh and ch), the task passes the value of the outputs to sum1 and c1, 
respectively.

LISTING 6.1 HDL Description of a Full Adder Using procedure and task: 
VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity full_add is
port (x, y, cin : in std_logic; sum, cout : out std_logic);
end full_add;

architecture two_halfs of full_add is

-- The full adder is built from two half adders
procedure Haddr (sh, ch : out std_logic; 
ah, bh : in std_logic) is
--This procedure describes a half adder
begin
sh := ah xor bh;
ch := ah and bh;
end Haddr;

begin

addfull : process (x, y, cin)
variable sum1, c1, c2, tem1, tem2 : std_logic;
begin
    Haddr (sum1, c1, y, cin);
    Haddr (tem1, c2, sum1, x);
    --The above two statements are calls to 
    --the procedure Haddr
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    tem2 := c1 or c2;
    sum <= tem1;
    cout <= tem2;
end process;

end two_halfs;

Verilog Description
module Full_add (x, y, cin, sum, cout);
//The full adder is built from two half adders
input x, y, cin;
output sum, cout;
reg sum, sum1, c1, c2, cout;
always @ (x, y, cin)
begin

Haddr (sum1, c1, y, cin);
Haddr (sum, c2, sum1, x);
//The above two statements are calls to the task Haddr.
cout = c1 | c2; 
end

task Haddr;
//This task describes the half adder
output sh, ch;
input ah, bh;
begin
    sh = ah ^ bh;
    ch = ah & bh;
end
endtask
endmodule

Notice that the half adder procedure (task) was executed twice, but 
the body of the procedure (task) was only written once.

EXAMPLE 6.2  HDL DESCRIPTION OF AN N-BIT RIPPLE-CARRY ADDER 
USING PROCEDURE AND TASK

In Listing 4.14 of Chapter 4, the HDL structural description of a three-
bit ripple-carry adder was introduced. Here, the behavioral code for an 
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N-bit ripple-carry adder is written using procedure (VHDL) and task 
(Verilog). Listing 6.2 shows the HDL code of the adder. The procedure 
(task) Faddr describes a one-bit full adder. To describe an N-bit adder, the 
procedure (task) is called N times.

LISTING 6.2 HDL Description of an N-Bit Ripple-Carry Adder Using 
procedure and task: VHDL and Verilog

VHDL N-Bit Ripple-Carry Adder Using procedure
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity adder_ripple is
generic (N : integer := 3);
    port (x, y : in std_logic_vector (N downto 0); 
          cin : in std_logic;

          sum : out std_logic_vector (N downto 0);
          cout : out std_logic);
end adder_ripple;

architecture adder of adder_ripple is
procedure Faddr (sf, cof : out std_logic; 
                 af, bf, cinf : in std_logic) is
--This procedure describes a full adder
begin
sf := af xor bf xor cinf;
cof := (af and bf) or (af and cinf) or (bf and cinf);
end Faddr;

begin
addrpl : process (x, y, cin)
variable c1, c2, tem1, tem2 : std_logic;
variable cint : std_logic_vector (N+1 downto 0); 
variable sum1 : std_logic_vector (N downto 0);
begin
cint(0) := cin;
for i in 0 to N loop
    Faddr (sum1(i), cint(i+1), x(i), y(i), cint(i));
    --The above statement is a call to the procedure Faddr
end loop;
sum <= sum1;
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cout <= cint(N+1);
end process;
end adder;

Verilog N-Bit Ripple-Carry Adder Using task
module adder_ripple (x, y, cin, sum, cout);
parameter N = 3;
input [N:0] x, y;
input cin;
output [N:0] sum;
output cout;

reg [N+1:0] cint;
reg [N:0] sum;
reg cout;
integer i;
always @ (x, y, cin)
begin
    cint[0] = cin;
    for (i = 0; i <= N; i = i + 1)
    begin
        Faddr (sum[i], cint[i+1], x[i], y[i], cint[i]);
        //The above statement is a call to task Faddr
end
cout = cint[N+1];
end
task Faddr;
//The task describes a full adder
output sf, cof;
input af, bf, cinf;
begin
    sf = af ^ bf ^ cinf;
    cof = (af & bf) | (af & cinf) | (bf & cinf);
end
endtask
endmodule

EXAMPLE 6.3  UNSIGNED BINARY-VECTOR-TO-INTEGER CONVERSION 
USING PROCEDURE AND TASK

Because VHDL is known to be a strict data-type-oriented language, 
conversion between data types, such as integer and binary, is important. 
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Verilog, however, is flexible when dealing with data types and allows com-
putational operations between different types without any conversion. 
However, to understand task, Verilog code will be used to describe con-
version examples.

In Chapter 3, behavioral code was written for conversions between bi-
nary and integer data. Here, procedure (task) is used to perform the 
conversion.

Listing 6.3 shows the HDL code for converting an unsigned binary vec-
tor to an integer. The conversion is based on accumulating the weighted 
sum of the binary bits. The code

result := result + 2i; --VHDL
int = int + 2i         //Verilog

performs the accumulation. To create a global constant N that repre-
sents the number of binary bits to be converted write the following code:

generic (N : integer := 3); --VHDL
parameter N = 3;            //Verilog

In Listing 6.3, N = 3 is used as an example; the number of bits can be 
changed just by changing the value of N. The statement

for i in bin’Range loop

has an index i with a range equal to that of bin. Range is a predefined 
attribute.

In addition to conversion, the procedure (task) outputs a flag (Z): Z = 1 
if the value of the binary vector is zero. Otherwise, Z = 0.

LISTING 6.3 HDL Code for Converting an Unsigned Binary to an Integer Us-
ing procedure and task: VHDL and Verilog

VHDL: Converting an Unsigned Binary to an Integer Using proce-
dure
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all; --This Library is for 
-- type “unsigned”

entity Bin_Int is
generic (N : natural := 3);
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    port (X_bin : unsigned (N downto 0);
        Y_int : out natural; Z : out std_logic);
        --Y is always positive
end Bin_Int;

architecture convert of Bin_Int is

procedure bti (bin : in unsigned; int : out natural; 
               signal Z : out std_logic) is

-- the procedure bti is to change binary to integer
-- Flag Z is chosen to be a signal rather than a variable
-- Since the binary vector is always positive,
-- use type natural for the output of the procedure.
variable result : natural;
begin

result := 0;
for i in bin’Range loop

--bin’Range represents the range of the unsigned vector bin
--Range is a predefined attribute
    if bin(i) = ‘1’ then
    result := result + 2i;
    end if;
end loop;
int := result;
if (result = 0) then
    Z <= ‘1’;
    else
    Z <= ‘0’;
    end if;
end bti;

begin
process (X_bin)
variable tem : natural;

begin
bti (X_bin, tem, Z);
Y_int <= tem;
end process;
end convert;
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Verilog: Converting an Unsigned Binary to an Integer Using task
module Bin_Int (X_bin, Y_int, Z);
parameter N = 3;
input [N:0] X_bin;
output integer Y_int;
output Z;
reg Z;
always @ (X_bin)
begin
    bti (Y_int, Z, N, X_bin);
end

task  bti;
parameter P = N;
output integer int;
output Z;
input N;
input [P:0] bin;
integer i, result;
begin
    int = 0;
//change binary to integer
    for (i = 0; i <= P; i = i + 1)
    begin
        if (bin[i] == 1)
    int = int + 2i;
    end
    if (int == 0)
    Z = 1’b1;
else
Z = 1’b0;
end
endtask
endmodule

The simulation output for Listing 6.3 is shown in Figure 6.2
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X_bin

Y_int

Z

14 13 3 0 9 5 1

1110 1101 0011 0000 1001 0101 0001

FIGURE 6.2 Simulation output for binary-to-integer conversion.

EXAMPLE 6.4  FRACTION-TO-REAL CONVERSION USING PROCEDURE 
AND TASK

Here, a fraction is represented as a fixed-point number where the bi-
nary point is at the left of the most significant bit. Examples of such binary 
numbers are 0.11 (equivalent to 2–1 + 2–2 = 0.5 + 0.25 = 0.75) and 0.001 
(equivalent to 2–3 = 0.125). Listing 6.4 shows the HDL code for converting 
the binary using procedure and task by multiplying each bit by its weight. 
The first leftmost bit has a weight of 2–1; the next bit to the right has a 
weight of 2–2, and so on.

LISTING 6.4 HDL Code for Converting a Fraction Binary to Real Using pro-
cedure and task: VHDL and Verilog

VHDL: Converting a Fraction Binary to Real Using procedure
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Bin_real is
generic (N : integer := 3);
port (X_bin : in std_logic_vector (0 to N); Y : out real);
end Bin_real;
architecture Bin_real of Bin_real is
procedure binfloat (a : in std_logic_vector (0 to 3); 
float : out real) is

--This procedure converts fraction expressed 
--in fixed-point binary to real
variable tem,j : real;
begin
    tem := 0.0;
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      j := 1.0;
    for i in 0 to N loop
      j := j/ 2.0;

        if (a(i) = ‘1’) then

        tem := tem + j;
        end if;
    end loop;
float := tem;
end binfloat;
begin

rel : process (X_bin)
variable temp : real;
begin
    binfloat (X_bin, temp);
    Y <= temp;
end process rel;
end Bin_real;

Verilog: Converting a Fraction Binary to Real Using task
module Bin_real (X_bin);
parameter N = 3;
input [N:0] X_bin;
real Z;

always @ (X_bin)
begin
    binfloat (X_bin, Z);
end

task binfloat;
parameter P = N;
input [0:P] a;
output real float;
integer i;
begin
    float = 0.0;
    for (i = 0; i <= P; i = i + 1)
    begin
        if (a[i] == 1)
        float = float + 1.0 / 2(i+1);
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// The above statement multiplies each bit by its weight.
        //
    end
end
endtask
endmodule

The simulation output is shown in Figure 6.3.

X_bin 1000 0100 0010 0001 0101 0001

Z 0.5 0.25 0.125 0.0625 0.3125 0.75

FIGURE 6.3 Simulation output for fraction binary conversion to real.

EXAMPLE 6.5  UNSIGNED INTEGER CONVERSION TO BINARY USING 
PROCEDURE AND TASK

In this example, integer-type data is converted to binary-type data. As 
was done in Chapter 3, the integer is successively divided by two to find the 
equivalent binary. The mod function is used to find the remainder of the di-
vision by two. Listing 6.5 shows the HDL code for converting an integer to 
binary using procedure and task. The code also checks to see if the integer 
is even or odd. The even_fl ag in Listing 6.5 equals one when the integer is 
even; if even _fl ag is zero, then the integer is odd.

LISTING 6.5 HDL Code for Converting an Unsigned Integer to Binary Using 
procedure and task: VHDL and Verilog

VHDL: Converting an Unsigned Integer to Binary Using procedure
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Int_Bin is
generic (N : integer := 3);
port (X_bin : out std_logic_vector (N downto 0); 
       Y_int : in integer;
    flag_even : out std_logic);
end Int_Bin;

architecture convert of Int_Bin is
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procedure itb (bin : out std_logic_vector; 
               signal flag : out std_logic;
               N : in integer; int : inout integer) is

-- The procedure itb is to convert the integer to binary
-- The dimension of bin does not have to be specified
-- at the above declaration statement; the procedure
-- can determine the dimension of bin later in its body.

begin
if (int MOD 2 = 0) then
--The above statement checks int to see if it is even.
    flag <= ‘1’;
    else
    flag <= ‘0’;
end if;
for i in 0 to N loop

    if (int MOD 2 = 1) then
        bin (i) := ‘1’;
        else
        bin (i) := ‘0’;
   end if;

-- perform integer division by 2
int := int/2;
end loop;
end itb;

begin
process (Y_int)
variable tem : std_logic_vector (N downto 0);
variable tem_int : integer ;
begin
    tem_int := Y_int;
    itb (tem, flag_even, N, tem_int);
    X_bin <= tem;
end process;
end convert;
Verilog: Converting an Unsigned Integer to Binary Using task
module Int_Bin (X_bin, flag_even, Y_int );
/In general Verilog, in contrast to VHDL, does not
  strictly differentiate between integers and binaries;
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  for example, if bin is declared as a binary of width 4,
  bin = bin/2 can be written, and the Verilog, but not
  VHDL, performs this division as if bin is integer.
  In the following, the corresponding VHDL program in
  Listing 6.5a is just translated to practice with
  the command task /
parameter N = 3;
output [N:0] X_bin;
output flag_even;
input [N:0] Y_int;
reg [N:0] X_bin;
reg flag_even;
always @ (Y_int)
begin
itb (Y_int, N, X_bin, flag_even);
end
task itb;
parameter P = N;
input integer int;
input N;
output [P:0] bin;
output flag;
integer j;
begin

if (int %2 == 0)
//The above statement checks int to see if it is even.
    flag = 1’b1;
    else
    flag = 1’b0;

for (j = 0; j <= P; j = j + 1)
    begin
        if (int %2 == 1)
        bin[j] = 1;
        else
        bin[j] = 0;
        int = int/2;
    end
end
endtask

endmodule
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The simulation output of this conversion is shown in Figure 6.4.

Y_int 12 0 15 7 8 9

X_bin

Flag_even

1100 0000 1111 0111 1000 1001

FIGURE 6.4 Simulation output for integer conversion to binary.

EXAMPLE 6.6  SIGNED BINARY-TO-INTEGER CONVERSION USING 
PROCEDURE AND TASK

Here, a signed binary is considered. The value of the binary data can be 
negative or positive. As is common, the negative data is represented by its 
2s complement. The most significant bit of the data is the sign bit: if it is 0, 
the number is positive; otherwise, it is negative.

If the data is positive (the most significant bit is 0), then it is identical 
to unsigned data. For example, for four-bit data, 0101 is a positive number 
because its most significant bit is 0; the value of the number is +5. The 
data 1011 is a negative number; the value is –5. The decimal value of any 
negative number Y in the 2s-complement format can be written as Y’ – 2N, 
where N is the number of bits of Y, and Y’ is equal to the decimal value of 
unsigned Y. For example, if Y = 1011, then N = 4. Y’ = 1011, unsigned = 
11d. So, Y = 11 – 16 = –5.

Listing 6.5 shows the HDL code for converting from signed binary to 
integer using procedure (task). In addition to conversion, the procedure 
determines the parity (even or odd) of the input binary. Because a code has 
previously been written for conversion from binary to integer (Listing 6.3), 
it is used here. If the binary data is positive, it is the same code as in List-
ing 6.3. If the binary data is negative, its integer value is calculated as if it is 
unsigned, and this integer value is corrected by subtracting sixteen. Refer-
ring to the HDL code in Listing 6.6, the sign of the input date is tested for 
its most significant bit; if it is 1, the integer value (result) is corrected as 
follows:

VHDL
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if (binsg(M) = ‘1’) then
result := result - 2(M+1);
end if;

Verilog
if (bin [P] == 1) 
int = int - 2(P+1);

To know whether the parity is odd or even, the 1s in the input data 
are counted and stored in the variable parity. Then, parity is divided 
by two: if there is a remainder, the parity is odd. Otherwise, it is even. The 
built-in function modulus, mod (VHDL) or % (Verilog), is used to determine 
whether parity is odd or even as follows:

VHDL
if (parity mod 2 = 1) then
--if parity is divisible by 2, then it is even,
--otherwise it is odd.
    even <= ‘0’;
    else
    even <= ‘1’;
end if;

Verilog
if ((parity % 2) == 1)
//if parity is divisible by 2, then it is even,
otherwise it is odd.

even = 0;
else
even = 1;

The signal even_parity in Listing 6.6 identifies the parity of the input 
data. If the parity is even, then even_parity is one, otherwise, it is zero.

LISTING 6.6 HDL Code for Converting a Signed Binary to an Integer Using 
procedure and task: VHDL and Verilog.

VHDL: Converting a Signed Binary to an Integer Using procedure
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all; 

entity signed_btoIn is
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generic (N : integer := 3);
port (X_bin : in signed (N downto 0); Y_int : out integer;
    even_parity : out std_logic );
end signed_btoIn;

architecture convert of signed_btoIn is

procedure sbti (binsg : in signed; M : in integer;
    int : out integer; signal even : out std_logic) is

--The procedure sbti is to change signed binary to integer
-- and also to find whether the parity of the binary
--is odd or even.
--The dimension of “sbin” does not have to be specified
--at the declaration statement; it can be declared later
--in the body of the procedure.

variable result, parity : integer;
begin

result := 0;
for i in 0 to M loop
if binsg(i) = ‘1’ then
result := result + 2i;
parity := parity + 1;
end if;
end loop;

if (binsg(M) = ‘1’) then
result := result - 2(M+1);
end if;
int := result;

if (parity mod 2 = 1) then
    even <= ‘0’;
    else
    even <= ‘1’;
end if;

end sbti;

begin
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process (X_bin)
variable tem : integer;
begin
    sbti (X_bin, N, tem, even_parity);
    Y_int <= tem;
end process;
end convert;

Verilog: Converting a Signed Binary to an Integer Using task
module signed_btoIn(X_bin, Y_int, even_parity);
/In general, Verilog (in contrast to VHDL) does not
  strictly differentiate between integers and binaries;
  for example if bin is declared as binary of width 4,
  write bin = bin/2, and the Verilog (but not VHDL) will
  perform this division. In the following, just translate
  the corresponding VHDL counterpart program. /

parameter N = 3;
input signed [N:0] X_bin;
output integer Y_int;
output even_parity;
reg even_parity;

always @ (X_bin)
begin
    sbti (Y_int, even_parity, N, X_bin);
end
task sbti;
parameter P = N;
output integer int;
output even;
input N;
input [P:0] bin;
integer i;
reg parity;

begin

int = 0;
parity = 0;
//change binary to integer
for (i = 0; i <= P; i = i + 1)
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    begin
        if (bin[i] == 1)
        begin
            int = int + 2i;
            parity = parity + 1;
        end
    end    
    if ((parity % 2) == 1)
    even = 0;
    else
    even = 1;

    if (bin [P] == 1) 
    int = int - 2(P+1);
end
endtask

endmodule

The simulation output of the conversion is shown in Figure 6.5.

X_bin 0111 1011 1110 1101 0011 1100

Y_int

even_parity

7 –5 –2 –3 3 –4

FIGURE 6.5 Simulation output for converting a signed binary to an integer.

EXAMPLE 6.7  INTEGER-TO-SIGNED-BINARY CONVERSION USING 
PROCEDURE

In this example, an integer is converted to signed binary (see Listing 6.7). 
The sign of the integer is tested and negated only if it is negative. The same code 
from Listing 6.3 is applied. The outcome of the sign test is stored in the variable 
flag. After calculating the equivalent binary, its value is adjusted according to 
the flag. If the flag is one, this means that the integer has been negated, so the 
binary is negated. If the flag is zero, no action is taken. The conversion is written 
in procedure sitb and declared as:

procedure sitb (sbin : out signed; M, int : in integer) is



PROCEDURES, TASKS, AND FUNCTIONS • 299

In the declaration statement above, the dimension of sbin does not 
have to be specified. The procedure can determine the dimension later in 
its body.

LISTING 6.7 VHDL Code for Converting an Integer to a Signed Binary Using 
procedure

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;
entity signed_IntToBin is
generic (N : integer := 3);
port (X_bin : out signed (N downto 0); Y_int : in integer);
end signed_IntToBin;

architecture convert of signed_IntToBin is
procedure sitb (sbin : out signed; M, int : in integer) is

-- The procedure sitb is to convert integer into signed
-- binary. The dimension of “sbin” does not have to be
-- specified at the declaration statement; it can be
--declared later in the body of the procedure.

variable temp_int : integer;
variable flag : std_logic;
variable bin : signed (M downto 0);
begin

if (int < 0) then
    temp_int := - int;
    flag := ‘1’;
    --if flag = 1, the number is negative
    else
temp_int := int;
end if;
for i in 0 to M loop
if (temp_int MOD 2 = 1) then
bin (i) := ‘1’;
else
bin (i) := ‘0’;
end if;
--integer division by 2
temp_int := temp_int/2;
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end loop;
if (flag = ‘1’) then
sbin := - bin;
else sbin := bin;
end if;
end sitb;
begin
process (Y_int)
variable tem : signed (N downto 0);
begin
sitb(tem, N, Y_int);
X_bin <= tem;
end process;
end convert;

EXAMPLE 6.8  SIGNED VECTOR MULTIPLICATION USING PROCEDURE 
AND TASK

In this example, vector multiplication is performed. Equation 6.1 shows 
vector multiplication

 d = a × b (6.1)

where a is a row vector with three elements, and b is a column vector 
with three elements. Accordingly, d is a row vector with three elements. 
Equation 6.1 can be written as:

 d =  a0   a1    a2  × 

b0
b1
b2

 
 
 
 
  

 (6.2)

From Equation 6.2,

 d = a0 b0 + a1 b1 + a2 b2 (6.3)

In this example, all elements of Equation 6.3 are signed binary. To mul-
tiply two signed numbers, Booth algorithm (as discussed in Chapter 3) is 
implemented. Listing 6.8 shows the HDL code for signed vector multipli-
cation using procedure (task). The inputs to the multiplication algorithm 
are written as:

port (a0, a1, a2, b0, b1, b2 : in signed (N downto 0);
d : out signed (3N downto 0)); 

If a large number of elements are being multiplied, the above code may 
not be practical because a large number of ports must be listed. In Chapter 7, 
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the ports are listed as an array; this will shorten the code. The Booth algo-
rithm is written as a procedure or task with the declaration:

VHDL
procedure booth (X, Y : in signed (3 downto 0);
Z : out signed (7 downto 0)); 

Verilog
task booth;
input signed [3:0] X, Y;
output signed [7:0] Z;

where the inputs are X and Y, and the output is Z. The procedure (task) is 
restricted to 4x4 bits. The procedure (task) can be generalized to multiply 
any NxN bits (see Exercise 6.2). The three procedure (task) callings calcu-
late the partial products a0b0, a1b1, and a2b2 as:

booth (a0, b0, tem0);
booth (a1, b1, tem1);
booth (a2, b2, tem2);

The partial products are stored in the eight-bit registers tem0, tem1, and 
tem2, respectively. To find the product d, add tem0 + tem1 + tem2, and, 
according to Listing 6.8, the product is stored in ten-bit register d. By 
choosing ten bits, any overflow is avoided that might occur after accumulat-
ing the partial products in register d. To calculate d in Verilog, simply write:

d = tem0 + tem1 + tem2;

In VHDL, the language is strictly type and size oriented, so the VHDL 
simulator may not perform the above operation because d has a different 
size than tem0, tem1, and tem2. Several approaches can be taken to adjust 
the size. The approach here is to convert tem0, tem1, and tem2 to integers 
by using the procedure sbti and add all integers and convert back to bi-
nary by using the procedure sitb. Another approach is to extend the sizes 
of tem0, tem1, and tem2 to ten bits and then add tem0+tem1+tem2 (see 
Exercise 6.1).

LISTING 6.8 HDL Code for Signed-Vector Multiplication Using procedure 
and task: VHDL and Verilog

VHDL: Signed-Vector Multiplication Using procedure
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;
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entity Vector_Booth is
generic (N : integer := 3);
port (a0, a1, a2, b0, b1, b2 : in signed (N downto 0);
    d : out signed (3N downto 0)); 
end Vector_Booth;

architecture multiply of Vector_Booth is
procedure booth (X, Y : in signed (3 downto 0);
    Z : out signed (7 downto 0)) is
--Booth algorithm here is restricted to 4x4 bits.
--It can be adjusted to multiply any NxN bits.
variable temp : signed (1 downto 0);
    variable sum : signed (7 downto 0);
    variable E1 : unsigned (0 downto 0);
    variable Y1 : signed (3 downto 0);
begin

sum := “00000000”; E1 := “0”;
    for i in 0 to 3 loop
    temp := X(i) & E1(0);
    Y1 := -Y;
    case temp is
        when “10” => sum (7 downto 4) :=
        sum (7 downto 4) + Y1;
        when “01” => sum (7 downto 4) := 
        sum (7 downto 4) + Y;
        when others => null;
    end case; 
    sum := sum srl 1; 
    sum (7) := sum(6); 
    E1(0) := x(i);
    end loop;
    if (y = “1000”) then

--If Y = 1000; then according to the code,
--Y1 = 1000 (-8 not 8 because Y1 is 4 bits only).
--The statement sum = -sum adjusts the answer.

    sum := -sum;
    end if;
    Z := sum;
    end booth;
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procedure sitb (sbin : out signed; M, int : in integer) is
-- The procedure sitb is to convert integer into signed
-- binary. The dimension of “sbin” does not have to be
-- specified at the declaration statement; it can be
--declared later in the body of the procedure.
variable temp_int : integer;
variable flag : std_logic;
variable bin : signed (M downto 0);
begin

if (int < 0) then
temp_int := -int;
flag := ‘1’;
else
temp_int := int;
end if;

for i in 0 to M loop
if (temp_int MOD 2 = 1) then
bin (i) := ‘1’;
else
bin (i) := ‘0’;
end if;
temp_int := temp_int/2;
end loop;
if (flag = ‘1’) then
sbin := -bin;
else
sbin := bin;
end if;
end sitb;

procedure sbti (binsg : in signed; M : in integer; 
                int : out integer) is

-- The procedure sbti is to change signed binary to
-- integer.No need to specify the dimension of “sbin”
-- at the declaration statement; it can be declared
-- later in the body of the procedure.

variable result : integer;

begin
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result := 0;
for i in 0 to M loop
if binsg(i) = ‘1’ then
result := result + 2i;
end if;
end loop;

if (binsg(M) = ‘1’) then
result := result - 2(M+1);
end if;
int := result;
end sbti;

begin
process (a0, b0, a1, b1, a2, b2)
variable tem0, tem1, tem2 : signed ((2N + 1) downto 0);
variable d_temp : signed (3N downto 0);
variable temi0, temi1, temi2, temtotal : integer;

begin
--Find the partial products a0b0, a1b1, a2b2
booth (a0, b0, tem0);
booth (a1, b1, tem1);
booth (a2, b2, tem2);

-- Change the partial products to integers
sbti (tem0, (2N+1), temi0); 
sbti (tem1, (2N+1), temi1); 
sbti (tem2, (2N+1), temi2); 

-- Find the total integer sum of partial products
temtotal := temi0 + temi1 + temi2;

-- Change the integer to binary
sitb (d_temp, 3N, temtotal);

d <= d_temp;
end process;
end multiply;

Verilog: Signed-Vector Multiplication Using task
module Vector_Booth (a0, a1, a2, b0, b1, b2, d);
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parameter N = 3;
input signed [N:0] a0, a1, a2, b0, b1, b2;
output signed [3N : 0] d;
reg signed [2N+1 : 0] tem0, tem1, tem2; 

reg signed [3N : 0] d;

always @ (a0, b0, a1, b1, a2, b2)
begin
booth (a0, b0, tem0);
//booth is a task to multiply a0 x b0 = tem0

booth (a1, b1, tem1);
booth (a2, b2, tem2);
d = tem0 + tem1 + tem2;
end
task booth;
input signed [3:0] X, Y;
output signed [7:0] Z;
reg signed [7:0] Z;
reg [1:0] temp;
integer i;
reg E1;
reg [3:0] Y1;

begin
Z = 8’d0;
E1 = 1’d0;

for (i = 0; i < 4; i = i + 1)
begin
temp = {X[i], E1}; //This is catenation
Y1 = -Y; //Y1 is the 2’ complement of Y
case (temp)
    2’d2 : Z [7:4] = Z [7:4] + Y1;
    2’d1 : Z [7:4] = Z [7:4] + Y;
    default : begin end
endcase
Z = Z >> 1; /This is a logical shift of one position to
              the right/
Z[7] = Z[6];
    /The above two statements perform arithmetic shift
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      where the sign of the number is preserved after
      the shift./
E1 = X[i];

end

if (Y == 4’b1000) Z = -Z;

/ If Y = 1000, then Y1 = 1000 (should be 8 not -8).
   This error is because Y1 is 4 bits only.
   The statement Z = -Z adjusts the value of Z. /

   end

endtask
endmodule

Figure 6.6 shows the output simulation of the vector multiplication.

a0 1001 1000 1000 1011

a1 0010 1000 1000 1111

a2 1011 1000 1000 0101

b0 0111 0111 1000 1110

d 1111000100 1101011000 0011000000 1111101001

b2 0011 0111 1000 1000

b1 0010 0111 1000 1001

FIGURE 6.6 Simulation output of vector multiplication.
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EXAMPLE 6.9  SIGNED 3x3-BIT MULTIPLICATION USING 
COMBINATIONAL ARRAY

The Booth algorithm was introduced in Chapter 3. The algorithm com-
pares two consecutive bits of the multiplicand (ai ai-1) and performs addi-
tion if ai ai-1 = 01, subtraction if ai ai-1 = 10, or nothing if ai ai-1 = 00 or ai 
ai-1= 11. After the comparison, a single arithmetic right shift is performed. 
The algorithm repeats the comparison-shift N times where N is the num-
ber of bits of the multiplicand. A clock is used to count the iterations and 
load the intermediate values. The multiplication algorithm, instead of us-
ing sequential approach, can be implemented using combinational circuits. 
Comparison, addition, and subtraction can be implemented by combina-
tional circuits; the shift can be accomplished physically by shifting (plac-
ing) the combinational-circuit elements according to their placement in the 
partial products. For example, if the product is four bits (P3 P2 P1 P0), then 
the circuit that generated P1 is placed on the left-hand side of the circuit 
generating P0. Figure 6.7 shows a combinational circuit that multiplies x 
× b = p. Each x and b is three-bit signed number. Figure 6.7a shows two 
types of cells: comp, which compares two bits, and FAS, which can add or 
subtract. In comp cells, the comparison between two consecutive bits x(i) 
and x(i-1) is done as follows:

C1 = x(i) xor x(i-1)  C2 = x(i) and  x(i 1)

C1C2 indicates whether x(i) x(i-1) are equal to 11, 00, 01, or 10. Cell 
FAS is mainly a combinational adder/subtractor circuit. According to the 
output of the comp cell, the FAS cell will add if C1C2 = 10, will subtract 
if C1C2 = 11, and will be transparent (output = input) if C1 = 0. Table 6.1 
shows the relationship between x(i) x(i-1) and the operation executed by 
the FAS cell.

TABLE 6.1 FAS Cell

x(i) x(i-1) C2C1 FAS operation
00 00 Transparent: S = a
01 01 Addition: S1 S = a + b + c
10 11 Subtraction: S1 S = a - b - c
11 00 Transparent: S = a

From Table 6.1:
C1 = x(i) xor x(i-1) 

C2 = x(i) and x(i 1)



308 • HDL WITH DIGITAL DESIGN

Figure 6.7b shows the multiplication of -3 × 2 where x = 2 and b = 3; 
initially, a is set to 0.

Listing 6.9 shows the HDL code for the multiplier. In Listing 6.9, pro-
cedure COMPR is generating C1 and C2. Procedure Fulladdr performs the 
addition if C2C1 = 01 and generates sum and carryout. Procedure Fullsub 
performs subtraction when C2C1 = 11 and generates difference (Diff) and 
Borrow. More details about the logic design of the array can be found in 
Hayes, 1998 [1].

LISTING 6.9 HDL Code for Signed 3x3-Bit Multiplication Using 
Combinational Array: VHDL and Verilog

VHDL 
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity boothArrayProc is
port ( start: in std_logic; 
         x : in std_logic_vector (2 downto 0); 
y: in std_logic_vector (4 downto 0); 
p:out std_logic_vector(4 downto 0));
--Input y is 3-bit plus two additional sign extension
-- bits.
end boothArrayProc;

architecture boothar of boothArrayProc is
procedure COMPR (n1 : in std_logic_vector; 
i : in integer range 0 to 3; c1, c2: out std_logic) is
begin
c1 := n1(i+1) xor n1(i);
c2 := n1(i+1) and not n1(i);
end procedure COMPR;

procedure Fulladdr (a, b,c : in std_logic; 
sum, Carryout : out std_logic) is 
begin
Sum := (not a and not b and c) or 
       (not a and b and not c) or 
       (a and not b and not c) or
       (a and b and c);
Carryout := (a and b) or (a and c) or (b and c);
end procedure Fulladdr;
procedure Fullsub (a, b,c : in std_logic; Diff, 



PROCEDURES, TASKS, AND FUNCTIONS • 309

Borrow : out std_logic) is 
begin
Diff := (not a and not b and c) or 
        (not a and b and not c) or 
        (a and not b and not c) or
        (a and b and c);
Borrow := ((not a) and c) or ((not a) and b) or (b and c);

end procedure Fullsub;

begin
B1: process (start,x,y)
variable s1, s2: std_logic;
variable T : std_logic_vector(3 downto 0);

variable f, E, z: std_logic_vector(4 downto 0):= “00000”;
variable carry_temp: std_logic_vector(5 downto 0);
variable i,j,layer, j1 :integer range 0 to 6 ;

S1

b S
c

c2FSA

a b

c1 X(i–1)
X(i)

(a)

FSA

0

0

0

1 1 1

1 1

FSA

0

0

0 FSA

0

0 0

0 FSA

0 0

0 1
1

1

1
1

0 FSA comp

0

0

00
0

1

comp

comp

FSA 1

0
1 0

FSA

0

1 FSA

1 1

1 FSA
0

FSA
0

1 1 10 0
P4 P3 P2 P1 P0

1

FSA FSA
0 00

0

(b)
FIGURE 6.7 A combinational array multiplier a) Cells comp and FAS. b) A multiplier circuit 
that multiplies -3 × 2 where x = 2 and b = -3.
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begin
if (start = ‘1’) then
f := “00000”; E := “00000”;z := “00000”;
carry_temp := “000000”;
T := (x & ‘0’);-- T now represents all the inputs to 
               --cells COMP including the initial 
               --zero on the first COMP cell.
for layer in 0 to 2 loop

carry_temp(0) := ‘0’;

COMPR (T,layer,s1,s2);

if (s1 = ‘0’) then
for j in 0 to (4-layer) loop
z(j + layer) := f(j + layer);
end loop;

elsif (s2 = ‘0’) then
for j in 0 to (4-layer) loop

Fulladdr (f(j+layer), y(j), carry_temp(j),
 z(j+ layer), carry_temp(j+1));
end loop;
else
for j in 0 to (4-layer) loop

Fullsub (f(j+layer), y(j), 
carry_temp(j), z(j+layer), carry_temp(j+1));
end loop;
end if;
for j1 in 0 to (4-layer) loop

f(j1 + layer) := z(j1 + layer);end loop;

end loop;
end if;
p <= z;
end process B1;
end boothar;

Verilog 
module bootharrayTask(start, x, y, p);
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input start;
input [2:0] x;
input [4:0]y;
output [4:0] p;
/input y is 3-bit with additional 2 bits as sign extension/

reg [4:0] f,E,p;
reg [3:0] T;
integer layer,i, j,j1;
reg [5:0] carry_temp;
reg s1, s2;
always @ (start,x,y)
begin 

if (start == 1’b1)
begin 
T = {x,1’b0};/ T now represents all the inputs to 
                cells COMP including the initial 
                zero on the first COMP cell./
f = 5’d0; E = 5’d0; p = 5’d0; carry_temp = 6’d0;
for (layer = 0; layer <= 2; layer = layer + 1)

begin 
carry_temp [0] = 1’b0;

COMPR (T,layer,s1,s2);

if (s1 == 1’b0) 
begin 
for (j = 0; j <= (4-layer); j = j+1)
begin 

p[j + layer] = f[j + layer];

end 
end 

else if (s2 == 1’b0)
begin 
for (j = 0; j <= (4-layer); j = j+1)
begin 
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Fulladdr (f[j+layer], y[j], carry_temp[j],
 p[j+ layer], carry_temp[j+1]);
end 
end 
else
begin 
for (j = 0; j <= (4-layer); j = j+1)
begin 

Fullsub (f[j+layer], y[j], carry_temp[j],
 p[j+ layer], carry_temp[j+1]);
end 
end 

for (j1 = 0; j1 <= (4-layer); j1 = j1+1)
begin 

f[j1 + layer] = p[j1 + layer];
end 

end 
end 
end 
task COMPR;
input [3:0]n1;
input integer i;
output c1, c2;
begin
c1 = n1[i+1] ^ n1[i];
c2 = n1[i+1] & ( ~ n1[i]);
end
endtask 
task Fulladdr; 
input a, b,c;
output sum, Carryout;
reg sum, Carryout; 
begin
sum = (~a & ~b & c) | 
      (~a & b & ~ c) | 
      (a & ~ b & ~ c) |
      (a & b & c);
Carryout = (a & b) | (a & c) | (b & c);
end 
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endtask
task Fullsub; 
input a, b,c;
output Diff, Borrow; 
begin
Diff = (~a & ~b & c) | 
       (~a & b & ~ c) | 
       (a & ~ b & ~ c) |
       (a & b & c);
Borrow = ((~ a) & c) | ((~ a) & b) | (b & c);
end
endtask

endmodule

EXAMPLE 6.10  DESCRIPTION OF ENZYME-SUBSTRATE ACTIVITY USING 
PROCEDURE AND TASK

Enzymes are molecules (generally proteins) that increase the speed 
of a chemical reaction. The human body uses a large number of different 
enzymes to speed up various types of chemical reactions such as those in-
volved in metabolism. Each enzyme is specific for a certain reactant, called 
a substrate. For the substrate-enzyme complex to work, the enzyme must 
be capable of binding to the substrate; if the enzyme cannot bind to the 
substrate, the enzyme will not be active. The activity of the enzyme increas-
es with the strength of binding. There are several theories that explain this 
binding such as the key-lock mechanism. In this mechanism, the physical 
shape of the enzyme matches a groove on the substrate where it can bind. 
Figure 6.8a illustrates a potentially strong bond between the enzyme and 
substrate. Figure 6.8b illustrates a case where binding is almost impossible 
between the substrate and enzyme.

Substrate

E
n
z
y
m
e

Substrate

E
n
z
y
m
e

(a) (b)
FIGURE 6.8 Binding between substrate and enzyme. (a) Strong. (b) Week.
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The binding strength between the substrate and the enzyme is mea-
sured by a parameter called the dissociation constant (M). If M is large, the 
binding or affinity between substrate and enzyme is weak and vice versa. 
The rate of reaction between an enzyme with dissociation constant, M, and 
a substrate with concentration, S, is represented by Equation 6.4

 max 
S

V = V
S + M

 (6.4)

where S is the concentration of the substance and Vmax is the maximum pos-
sible rate of reaction when S >> M. Usually, Vmax is assigned the value of 
1 (100%), and accordingly, V is measured as a fraction or percentage. 
Figure 6.9 shows a graphical representation of Equation 6.4 for a dissociation 
constant of three units. Notice that if S = M, then V = 0.5Vmax, so M can be 
viewed as the concentration of substrate at which the rate of reaction is 50% 
of Vmax. Figure 6.9 shows the relationship between the substrate concentra-
tion, S, and rate of reaction, V.

0.8
V

0.5

0.3

0.0
1 5 10 15 20

S

1.0

FIGURE 6.9 Relationship between the substrate concentration, S, and rate of reaction, V.

Listing 6.10 shows the HDL code describing the enzyme-substrate ac-
tivity. The challenge here is to write HDL code that can operate on real 
numbers. Recall that V is a fraction if Vmax is taken as 1. 
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Several basic VHDL simulators, in contrast to Verilog, will not accept a 
mix of integer and real numbers in the same assignment statement. Here, 
we assume that the user does not have an external library or packages that 
convert between integer and real. Also, in Listing 6.10, the VHDL code as-
sumes that S and M are fractions; if not, the user can scale down both S and 
M to be fractions. In VHDL code, S and M are represented by fractions in 
the Q4 (four bits) format. The four bits are converted to real fraction by the 
procedure flt. The procedure multiplies bit, i, with its weight, 2-i, and ac-
cumulates the product into a real number fl oat. The rate of reaction (V) is 
calculated using Equation 6.4. To display the rate of reaction in binary, the 
real number is converted to an integer by the procedure rltointg. 

On the other hand, Verilog code is very easy to write because Verilog 
allows for the mixing of integer and real. 

Listing 6.10 simulates Equation 6.4 (the relationship between the rate 
of reaction and concentrate of substrate). This same approach can be used 
to simulate other equations similar to Equation 6.4 such as the output of 
certain filters as a function of frequency or a transistor collector’s voltage as 
a function of collector current.

LISTING 6.10 HDL Description for Enzyme Activity Using procedure and 
task: VHDL and Verilog

VHDL: Enzyme Activity Using procedure
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_arith.all;
-- A description of enzyme-substrate binding mechanism.
-- S= (Vmax S)/(S + M) where S is the substrate
-- concentration, M is the dissociation constant, and Vmax
-- is the maximum rate of reaction. In this example,
-- Vmax = 1. The inputs are S and M in binary (fraction);
-- the output v is in Q4 format. This means that v is
-- always less than one, with the binary point placed to
-- the left of the most significant bit. For example,
-- if v = 1010, the decimal equivalent is .5 + .125 =
-- 0.625. To calculate v, convert S and M to real fraction,
-- find the real value of (S/(S + M)), convert this real
-- value to Q4 by multiplying it with 24 = 16, and
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-- convert the integer to binary.
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_arith.all;

entity enzyme_beh is
port (S : in std_logic_vector (0 to 3); 
      M : in std_logic_vector(0 to 3); 
          v : out real ; intg_bin : out integer;
          start: in bit);
end enzyme_beh;

architecture enzyme of enzyme_beh is
procedure flt (a : in std_logic_vector (0 to 3); 
                  float : out real) is

--This procedure converts fraction expressed 
--in fixed-point binary (Q4) to real
variable tem,j : real;
begin
    tem := 0.0;
      j := 1.0;

    for i in 0 to 3 loop
    j := j/ 2.0;
        if (a(i) = ‘1’) then
        
        tem := tem + j;
        end if;   
    end loop;
float := tem;
end flt;
procedure rltointg (a1 : in real ; Bin1 : out integer ) is

--This procedure converts real to integer
--The procedure does not round off
variable tem,j : real := 0.0;
variable tmp : integer := 0;
begin

while (tmp <= 256) loop
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--Assume the maximum integer value is 256; if not, 
--adjust accordingly
if (a1 > j) then
tmp := tmp + 1;
     j := j + 1.0;
     else
     exit;
        end if;
     end loop;
        Bin1 := tmp;
end rltointg;

begin
P1 : process(S, M, start)
variable temp1, temp11, vmax : real;
variable temp2: integer := 0;

begin
if (start = ‘1’) then
vmax := 1.0;
flt( S,temp1);
flt( M,temp11);
temp1 := Vmax  ( temp1/(temp1 + temp11));
v <= temp1;
temp1 := temp1 16.0;
rltointg (temp1, temp2);
intg_bin <= temp2;
end if;
end process P1;
end enzyme;

Verilog: Enzyme Activity Using task
/ A description of enzyme-substrate binding mechanism.
   S= (Vmax S)/(S + M), where S is the substrate
   concentration, M is the dissociation constant,
   and Vmax is the maximum rate of reaction. In this
   example, Vmax =1. The inputs are S and M in binary
   (integer);
   the output v is in Q4 format. This means that v is
   always less than 1, with the binary point placed to the
   left of the most significant bit. For example, if
   v = 1010, the
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   decimal equivalent is .5 + .125 = 0.625. To calculate V,
   find the real value of (S /(S + M)), convert this real
   value to Q4 by multiplying it with 24 =16, and convert
   the integer to binary. /
module enzyme_beh (S, M, V);
input [3:0] S, M;
output [3:0] V;
integer vmax;
reg [3:0] V;
real vr;
always @ (S, M)
begin
vmax = 1;
vr = vmax  (1.0  S) / (S  1.0 + M  1.0);
vr = vr  24;
rti (vr, V);
end
task rti;
/ This task can be replaced by just one statement, v1= r.
   Verilog, in contrast to VHDL, can handle different
   types of the assignment statement. Verilog finds the
   equivalent integer value v1 for the real r. The task has
   been designed here only to match the same steps done in
   VHDL. /

input real r;
output [3:0] v1;
real temp;
begin
temp = r;
v1 = 4’b0000;
while (temp >= 0.5)
begin
    v1 = v1 + 1;
    temp = r - 1.0  v1;
end
end
endtask
endmodule

Figure 6.10 shows the simulation output of the relationship between 
substrate concentration, S, and rate of reaction, V, for M = 3 units. 
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M 0011 0011 0011 0011 00110011

Vr 0.2500 0.500 0.700 0.785714 0.83330.75

V 0100 1000 1011 1101 11011100

S 0001 0011 0111 1011 11111001

FIGURE 6.10 Simulation output of the relationship between substrate concentration, S, and rate of reac-
tion, V, for M = 3 units.

6.3 Functions

Functions are behavioral statements. As is the case when calling proce-
dure or task, functions must be called within process (VHDL) or always 
or initial (Verilog). Functions take one or more inputs, and, in contrast 
to procedure or task, they return only a single output value.

6.3.1 VHDL Functions
As in procedure, functions have a declaration and a body. An example 

of a function declaration is:

function exp (a, b : in std_logic) return std_logic is

where function is a predefined word, exp is the user-selected name 
of the function, and a and b are the inputs. Only inputs are allowed in the 
function declaration. The function returns a single output by the use of 
the predefined word return. The function exp returns a variable of type 
std_logic, and is is a predefined word that has to be at the end of the dec-
laration statement. The name of the output is not listed in the declaration; 
it is listed in the body of the function. The body of the function lists the re-
lationship between the inputs and the output to be returned. All statements 
in the body of the function should be behavioral (sequential) statements, 
and return is used to point to the output of the function. An example of a 
function’s declaration and body (VHDL) is shown in Listing 6.11.

LISTING 6.11 Example of a VHDL Function

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
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entity Func_exm is
port (a1, b1 : in std_logic; d1 : out std_logic);
end Func_exm;

architecture Behavioral of Func_exm is
function exp (a, b : in std_logic) return std_logic is
variable d : std_logic;
begin
d := a xor b;
return d;
end function exp;

begin
process (a1, b1)
begin
d1 <= exp (a1, b1);
--The above statement is a function call
end process;
end Behavioral;

In Listing 6.11, the name of the function is exp; it has two inputs, a and 
b, of type std_logic. The type of the output to be returned is std_logic. 
The output to be returned is d. The function, as seen from its body, is 
performing a xor function on the inputs a and b. To call the function, it 
should be written inside a process. The function is called by the following 
statement:

d1 <= exp (a1, b1);

The function call passes a1 and b1 to a and b, respectively, then calcu-
lates a1 XOR b1 and passes the output of the XOR to d1.

The standard VHDL package has many built-in functions; other func-
tions can be imported from packages attached to the VHDL module. Some 
examples of built-in functions are:

mod: finds the modulo of x mod y 

abs: finds the absolute value of a signed number 

To_INTEGER: returns an integer value of a signed input 

TO_SIGNED: takes an integer and returns its signed binary equivalent 
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The package ieee.numeric_std.all has a large number of built-in 
functions.

6.3.2 Verilog Functions
Functions in Verilog have a declaration statement and a body. In the 

declaration, the size (dimension), type, and name of the output are speci-
fied, as well as the names and sizes (dimensions) of the inputs. For example, 
the declaration statement

function exp;
input a, b;

declares a function with the name (identifier) exp. The function has two 
inputs, a and b, and one output, exp. All inputs are one-bit data, and the 
output is also one-bit data. The inputs and output can take 0, 1, x (“don’t 
care”), or Z (high impedance). The body of the function follows the declara-
tion in which the relationship between the output and the inputs is stated. 
An example of a function and its call is shown in Listing 6.12. The function 
calculates exp = a XOR b.

LISTING 6.12 Verilog Function That Calculates exp = a XOR b
module Func_exm (a1, b1, d1);
input a1, b1;
output d1;
reg d1;

always @ (a1, b1)
begin

/The following statement calls the function exp
and stores the output in d1./

d1 = exp (a1, b1);
end

function exp ;
input a, b;
begin

exp = a ^ b;
end
endfunction
endmodule
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In addition to user-defined functions, the standard Verilog package in-
cludes a large number of built-in functions such as modulus %.

6.3.3 Function Examples

EXAMPLE 6.11  FUNCTION TO FIND THE GREATER OF TWO SIGNED 
NUMBERS

In this example, the greater of two signed numbers, x and y, is deter-
mined. Each number is a signed binary of four bits, and function is called 
in the main module to find the greater of the two input numbers. The result 
is stored in z. Listing 6.13 shows the HDL code of this example.

LISTING 6.13 HDL Function to Find the Greater of Two Signed Numbers: 
VHDL and Verilog

VHDL Function to Find the Greater of Two Signed Numbers
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;

entity greater_2 is
port (x, y : in signed (3 downto 0); 
      z : out signed (3 downto 0));
end greater_2;

architecture greater_2 of greater_2 is
function grt (a, b : signed (3 downto 0)) return signed is
-- The above statement declares a function by the name grt.
-- The inputs are 4-bit signed numbers.

variable temp : signed (3 downto 0);
begin
    if (a >= b) then
        temp := a;
        else
        temp := b;
    end if;
return temp;
end grt;

begin
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process (x, y)
begin
    z <= grt (x, y); --This is a function call.
end process;
end greater_2;

Verilog Function to Find the Greater of Two Signed Numbers
module greater_2 (x, y, z);
input signed [3:0] x;
input signed [3:0] y;
output signed [3:0] z;
reg signed [3:0] z;
always @ (x, y)
begin
z = grt (x, y); //This is a function call.
end

function [3:0] grt;

/The above statement declares a function by the name grt;
grt is also the output of the function/

input signed [3:0] a, b;
/The above statement declares two inputs to the function;
both are 4-bit signed numbers./

begin
if (a >= b)
grt = a;
else
grt = b;
end
endfunction

endmodule

EXAMPLE 6.12  FUNCTION TO FIND THE FLOATING SUM Y = ,
3

i i

i=0
(-1) (x)

0 < X < 1

In this example, a function is written that accumulates the polynomial 
summation of x. The polynomial in this example is of the third degree. The 
input number x is a positive fraction, and it is represented as a fixed-point 
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Q4 format. This means that the binary point is at the left of the most sig-
nificant bit of x, and the total number of bits is four. For example, if the 
number is 1010, then its decimal value is 2–1 + 0 + 2–3 + 0 = 0.5 + 0.125 = 
0.625. The output y in this example is assigned a Q8 format. To calculate y, 

first convert x to real, then calculate the real sum of 
3

i i

i=0
(-1) (x)  = 1 – x + 

x2 – x3. To convert the sum to Q8, multiply the real sum by 28; this generates 
a real number. This real number is converted to an integer, and finally, the 
integer is converted to binary. For example, if x = 1011, the following steps 
are executed:

1. Convert x to real: 1011 is converted to 0.5 + 0.125 + 0.0625 = 0.6875

2. Multiply the real number in Step 1 by 28: 0.6875 × 28 = 176.0

3. Convert the real number in Step 2 to an integer: 176.0 is converted to 
176

4.  Convert the integer in Step 3 to an eight-bit binary: 
176 is converted to B0 (hex)

Listing 6.14 shows the HDL code for calculating y. Referring to the 
VHDL, three procedures are built: flt, rltointg, and itb. The procedure 
flt converts std_logic to real. We need this procedure to convert the in-
put x. The procedure rltointg converts the real value to an integer, and itb 
converts the integer to std_logic. The function exp implements the three 
procedures to calculate y. In VHDL, procedures are allowed to be written 
in the body of the function.

The Verilog code in Listing 6.14 consists of three functions: float, rti, 
and exp. In contrast to VHDL, Verilog does not allow tasks to be written in 
the body of the function. The function float converts binary numbers that 
represent fractions (Q4) to real numbers. The function rti converts real 
numbers to integers.

Because Verilog is not a very strict type-oriented language, we can re-
write function rti as:

function [15:0] rti;
input real r;

begin
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    rti = r;
end
endfunction

The statement rti = r; has a left-hand rti of type integer and a right-
hand side of r (real). Verilog allows this mixing of two types; it calculates the 
right-hand side as real, and when assigned to the left-hand side, the type is 
converted from real to integer.

LISTING 6.14 HDL Code for y = ,
3

i i

i=0
(-1) (x)  0 < x < 1: VHDL and Verilog

VHDL Floating Sum Description 
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity segma is
port (x : in std_logic_vector (0 to 3); 
      y: out std_logic_vector (7 downto 0));
end segma;

architecture segm_beh of segma is

procedure flt (a : in std_logic_vector (0 to 3); 
  float : out real) is

--This procedure converts fraction expressed
-- in fixed-point binary to real
variable tem,j : real;
begin
    tem := 0.0;
      j := 1.0;

    for i in 0 to 3 loop
      j := j/ 2.0;

        if (a(i) = ‘1’) then

       tem := tem + j;
       end if;
    end loop;
float := tem;
end flt;
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procedure rltointg (a1 : in real ; Bin1 : out integer ) is

--This procedure converts real to integer
--The procedure does not round off
variable tem,j : real := 0.0;
variable tmp : integer := 0;
begin

while (tmp <= 256) loop
--Assume the maximum integer value is 256; 
--if not, adjust accordingly
if (a1 > j) then
tmp := tmp + 1;
     j := j + 1.0;
     else
     exit;
        end if;
     end loop;
        Bin1 := tmp;
end rltointg;

procedure itb (bin : out std_logic_vector; 
N : in integer; int : in integer) is
--This procedure is to convert integer to binary
variable temp_int : integer := int;
begin

    for i in 0 to N loop
        if (temp_int MOD 2 = 1) then
            bin(i) := ‘1’;
            else bin(i) := ‘0’;
        end if;      
        temp_int := temp_int/2;
        end loop;
    end itb;
function exp (a : in std_logic_vector (0 to 3)) 
    return std_logic_vector is

variable z1 : real;
variable intgr : integer;
variable tem : std_logic_vector (7 downto 0);
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begin
    flt (a, z1);
       z1 := 1.0 - z1 + z1  z1 - z1  z1  z1; 
       z1 := z1  256.0; -- 256 is for 8 bits
       rltointg (z1, intgr);
       itb (tem, 7, intgr);
       return tem;
   
    end exp;
begin
sg1 : process (x)
variable tem1 : std_logic_vector (7 downto 0);
variable tem2: integer;
begin

tem1 := exp(x);
y <= tem1;

end process sg1;

end segm_beh;

Verilog Floating Sum Description
module segma1(x,y);
input [0:3] x;
// x is a fraction in Q4 format, 0 < x < 1.
output [7:0] y;
reg [7:0] y;
always @ (x)
begin
    y = exp (x);
end
function [7:0] rti;
//This function convers real to integer with rounding off
input real r;

begin
    rti = r;
end
endfunction
function [7:0] exp;
input [0:3] a;
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real z1;

integer i;
begin

    z1 = 0.0;
    for (i = 0; i <= 3; i = i + 1)
    begin
        if (a[i] == 1)

        z1 = z1 + 1.0 / 2(i+1);
/The above statement multiplies 
each bit by its weight/
end 
  
    z1 = 1.0 - z1 + z12 - z13;
    z1 = z1  28;
    exp = rti(z1);
 
end
endfunction
endmodule

The simulation output of Listing 6.14 is shown in Figure 6.11.

x 1000 1111 0100

y 10100000 00011110 11001100

FIGURE 6.11 Simulation output of Listing 6.14.

EXAMPLE 6.13  IMPLEMENTATION OF IEEE 754 FLOATING-POINT 
REPRESENTATION

In Example 6.12, the real number was represented by four bits in Q4 
format (fixed-point representation); the binary point is located just to the 
left of the most signifact bit of the number. For example, if the number is 
10002, the binary point is located to the left of the most significant bit, in 
this case, the bit with value 1, and the value of the number is 8/16 = 0.5. 
Fixed-point representation is not used in computers due to its limited ac-
cuaracy. For four bits, the lowest number that can be represented with full 
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accuracy is 1/16; any number less than 1/16 will not be represented with 
100% accuracy and may be considered (depending on the rounding systems 
used) as zero. On the other hand, floating-point representation, which rep-
resents the number using exponent and mantessa fields, are more accurate 
and is the common representation for real numbers in computers. Because 
any number can be represented with unlimited variations of exponent and 
mantessa, the Institute of Electrical and Eleconics Engineers (IEEE) has 
established a standard format (IEEE 754) for the representation of float-
ing-point numbers. According to this format, any floating-point number is 
represented by 32 bits for single precision and 64 bits for double precision, 
as shown in Figure 6.12. The value of the number N is: 

N=(-1)s x (1 + Fraction) x 2(Exponent – Bias) 

The fraction is less than one and is represented by 23 bits for 
single precision and 53 for double precision. The “1” that is 
added to the fraction is hidden and does not appear in the for-
mat (see Figure 6.12). The bias is 127 for single precision and 
1023 for double precision. For example, the number 0.5 × 2-10 is 
represented in single precision as
00111010110000000000000000000000
where the sign is positive (0); the exponent is 127 + (-10) = 
117

10
 = 011101012; the fraction is

100000000000000000000002

0 1 8  9 31

Exponent
8 bitsS

Fraction
23 bits

0 1 10  11 63

Exponent
11 bitsS

Fraction
52 bits

(b)

(a)

FIGURE 6.12 IEEE 754 floating-point representation. a) Single precision. b) Double precision.

Listing 6.15 shows a Verilog code for the conversion of any positive 
number to the IEEE 754 single-precision floating-point representation. 
For example, if the number is x = 24.0, it is converted first to (1 + fraction) 
2(Exponent – Bias) by dividing x by 24 which yields to x = 1.5 × 24; the fraction is 
0.5, and the exponent is 127 + 4 = 131. The output IEEE_fl t for x = 24.0 is:

01000001110000000000000000000000
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LISTING 6.15 Verilog Code for Conversion to Single-Precision IEEE 754 
Floating-Point Representation 

module IEEEflt( start, IEEE_flt);
input start;
output [0:31] IEEE_flt;//This is the 32-bit IEEE
reg [7:0] j;
reg [0:31] IEEE_flt;
real x = 24.0; / x is the iput number in decimal
  format; assume all numbers entered here are 
  positive; see Exercise at the end of the Chapter/

real Mant;integer i;
always @ (start,x,j)
begin
if (start == 1’b1)
begin

j =8’d127;//The exponent is in excess 127
if (x != 0.0)
begin
while (x >= 2.0)
begin
x = x/ 2.0;
j = j +1;
end

while (x < 1.0)
begin
x = x 2.0;
j = j -1;
end

end

end
Mant = x-1.0;

for (i =0 ; i <= 22; i = i + 1)
begin
IEEE_flt [9+i] = 1’b0;
Mant = Mant  2.0;
if ( Mant >= 1.0)
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begin
IEEE_flt [9+i] = 1’b1;
Mant = Mant-1.0;
end
end
IEEE_flt [0] = 1’b0;
IEEE_flt [1:8] = j[7:0];
end

endmodule

6.4 Summary

In this chapter, procedure (VHDL), task (Verilog), and function 
(both VHDL and Verilog) have been covered. Procedures, tasks, and func-
tions can optimize the style of writing HDL code; they shorten the code. 
The procedure/task has a declaration statement and a body, and it can have 
more than one input and more than one output. On the other hand, a func-
tion can have more than one input but only one output. VHDL allows pro-
cedure calls to be written inside functions; Verilog does not allow such calls. 

6.5 Exercises

1. In Listing 6.6, negative binary numbers were converted to integers by 
reverse-negating them. Another approach is to find the integer value 
of any twoscomplement number by detecting the beginning and end of 
strings of ones in the number (see Case Study 3.1). Apply this approach 
and write both the VHDL and Verilog codes for such a conversion. 
Verify your code by simulation and compare the two approaches.

2. In Listing 6.8, a VHDL Booth procedure was written that multiplies 4x4 
bits. Modify the VHDL procedure so it can multiply any NxN. Verify 
your answer by simulation.

3. In Listing 6.8 (VHDL), temtotal = tem0 + tem1 + tem2 was added 
by converting to integer, adding, and then changing back to binary. An 
alternate approach is to adjust the width of all partial products (after 
they are calculated) to be the same as temtotal and then add. Perform 
this alternate approach and verify your results by simulation.
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4. Derive the HDL code (both VHDL and Verilog) for the function y = Ln 
x; 0 < x < 1. Express y in Q15 format. Hint: use polynomial representa-
tion for Ln (x).

5. Write a function to calculate the area of a sphere, given the radius.

6.  Rewrite the code for the Booth array (Listing 6.9) to simulate an NxN 
array multiplier. Hint: For N layers, the bottom layer contains N cells, 
and the number of cells increases by one.

7. In Listings 6.10 and 6.14, the VHDL code for the procedure rlto-
intg does not round off. For example, if the real value is 215.3175, the 
procedure will output 216 for the integer equivalent. On the other hand, 
the Verilog code of the procedure is rounding off. Rewrite the VHDL 
procedure so it will round off. Adjust the VHDL code to output the 
same value as the Verilog. 

8. Repeat Listing 6.15 but for positive or negative numbers and use 
double precision.

6.6 Reference

Hayes, J., Computer Architecture and Organization, 3rd ed. McGraw Hill, Boston, 
Massachusetts, USA, 1998.
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MIXED-TYPE DESCRIPTION

7
Chapter Objectives

 Learn how to use different types (styles) of descriptions to write 
HDL modules

 Learn which type or style of description to use for optimal writing 
style

 Understand the concept of packages in VHDL and how to use them
 Practice with single and multidimensional arrays
 Practice with real (floating) numbering systems
 Practice user-defined types
 Practice using finite sequential-state machines
 Review and understand the steps needed to design and describe a 

basic computer

7.1 Why Mixed-Type Description?

Our definition of mixed-type description is an HDL code that mixes 
different types (styles) of descriptions within the same module. In previous 
chapters, description codes consisted mainly of one type such as data flow 
(see Chapter 2), behavioral (see Chapter 3), structural (see Chapter 4), or 
switch level (see Chapter 5). Here, the code is written using more than one 
type of description in the same module.

In fact, it is very common to write mixed descriptions because each 
part of the selected system may be written best by a certain type of descrip-
tion. For example, consider a system that performs two operations: addition 
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(Z = x + y) and division (Z = x / y). The code can be written using a few 
styles. The first style is to use behavioral statements to model the addition 
and the division. This style is somewhat easy to write because HDL has 
built-in addition and division functions. The behavioral statements are writ-
ten inside process (VHDL) or always (Verilog) as:

Z := a + b; --VHDL or Z := x / y; --VHDL 
Z = a + b; //Verilog or Z = x / y; //Verilog

The ultimate goal of VHDL or Verilog description is to synthesize the 
description on electronic chips (see Chapter 10). If the behavioral descrip-
tion is used, the author has no control over selecting the components or 
the methods used to implement the addition and division. The HDL pack-
age may contain addition or division algorithms not suitable for the current 
needs of the user. For example, the addition algorithm might need to be as 
fast as possible; to achieve this fast addition, adders such as carry lookahead 
or carry-save should be used. There is no guarantee, however, that behav-
ioral description will implement those adders in its addition function. A sec-
ond option is to use data-flow or structural description. These descriptions 
can be implemented to describe the specific adder. It is, however, hard to 
implement these descriptions in complex algorithms such as division. The 
third option is to use a mixture of two types (styles) of descriptions: struc-
tural or data-flow for addition and behavioral for division. This description 
is referred to here as a mixed type.

Before considering examples of mixed-type description, some tools 
and commands that could be used to write more complex codes are dis-
cussed. Section 7.2 discusses user-defined types, and Section 7.3 discusses 
packages and arrays.

7.2 VHDL User-Defined Types

VHDL has an extensive set of predefined data types such as bit, std_
logic, array, and natural (see Chapter 1). In some applications, other 
data types that are not included in the basic HDL package are needed. 
Examples of such types are weekdays, weather, or grades. These are user-
defined types. To instantiate a user-defined type, the predefined word type 
is used. An example of instantiating a user-defined type is:

type week_days is (mon, tues, wed, th, fr, sat, sun);

This statement declares a user-defined type by the name of week_days, 
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and type is a predefined word; the elements or members of week_days are 
mon, tues, wed, th, fr, sat, and sun. Another example of a user-defined 
type is:

type states is (S0, S1, S2, S3);

This statement declares a user-defined type by the name of states. 
The elements (members) of states are s0, s1, s2, and s3. Another ex-
ample of a user-defined type is:
type weather is (sunny, cloudy, rain, snow);

This statement declares a user-defined type by the name of weather, 
and the elements (members) of weather are sunny, cloudy, rain, and 
snow. Another example of a user-defined type is:

type decimal_numbers is (‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’);

This statement declares a user-defined type by the name of decimal_
numbers; the elements (members) of decimal_numbers are the integers: 
‘0’, ‘1’, ‘2’, ‘3’, ‘4’, and ‘5’. If the members of a type are digits, 
they should be written between two apostrophes, such as ‘5.’ Another ex-
ample of a user-defined type is:

type grades is (A, B, C, D, F, I);

This statement declares a user-defined type by the name of grades; the 
elements (members) of grades are A, B, C, D, F, and I. The statement:

signal scores : grades;

declares scores as the of type grades. This means that scores can be 
assigned a value of A, B, C, D, F, or I. 

A subtype of a type can be declared by using the predefined word sub-
type, as shown below:

subtype failed is grades range D to I;
signal scores : failed;

where failed is a subtype of grades and has a range from D to I, range 
is a predefined attribute, so scores can be assigned a value of D, F, or I. 
Another example is:

subtype values is integer range 10 to 100;
signal x : values;

Signal x can be assigned an integer value from 10 to 100. Remember 
from Chapter 1 that integer is a predefined type.
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7.3 VHDL Packages

Packages constitute an essential part of VHDL description. Packages 
allow the user to access built-in constructs. Packages may include type and 
subtype declarations, constant definitions, function and procedure, and 
component declarations. VHDL has default built-in packages that include 
predefined words such as bit, bit_vector, and integer. In addition to 
the defaults, the user can attach a variety of packages to the VHDL module.

Several packages have been implemented in previous chapters; exam-
ples include packages authored by IEEE: IEEE.STD_LOGIC_1164, IEEE.
STD_LOGIC_ARITH, IEEE.NUMERIC_STD, IEEE.STD_LOGIC_UNSIGNED, and 
IEEE.STD_LOGIC_SIGNED. In addition to such built-in packages, the user 
can attach other packages to the VHDL module. A package consists of a 
declaration and a body. The declaration states the name (identifier) of the 
package and the names (identifiers) of types, procedures, functions, and 
components. The body of the package contains the code for all the identifi-
ers listed in the declaration. Listing 7.1 shows an example of a user-defined 
package.

LISTING 7.1 An Example of a VHDL Package

package conversions is
    type wkdays is (mon, tue, wed, th, fr);
    procedure convert (a : in bit; b : out integer);
    function incr (b : std_logic_vector) return std_logic_vec-
tor;
    end conversions;

package body of conversions is written as:

procedure convert (a : in bit; b : out integer) is
begin
.......
end convert;
function incr (b : std_logic_vector) return std_logic_vector is 
begin
...
end incr;
end conversions;

As shown in Listing 7.1, the name of the package is conversions; the 
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package contains Type wkdays, Procedure convert, and function incr. 
The package body lists the code of the procedure convert and function 
incr. Listing 7.2 shows another package example. The name of the package 
is codes; the members are add, mul, divide, and none.

LISTING 7.2 An Example of a VHDL Package

library ieee;
use ieee.std_logic_1164.all;
package codes is
type op is (add, mul, divide, none);
end;
use work.codes; 

entity ALUS2 is
    port (a, b : in std_logic_vector (3 downto 0);
        cin : in std_logic; opc : in op;
        z : out std_logic_vector (7 downto 0);
        cout : buffer std_logic);
end ALUS2;

To use this package in a VHDL module, the statement use work. 
Codes; is entered. Notice that in the entity ALUS2, opc is declared as a 
of type op; this means opc can be assigned a value of add, mul, divide, or 
none.

7.3.1 Implementations of Arrays
As discussed in Chapter 1, arrays are a data type; all elements of the ar-

ray should  have the same type. The array can be single-dimensional or 
multidimensional. HDL  allows for multidimensional arrays. Arrays can be 
composed of signals, constants, or variables. This section covers arrays in 
detail, as well as several implementations.

7.3.1.1 Single-Dimensional Arrays

Single-dimensional arrays have single index. They are declared as follows:

VHDL Single-Dimensional Array

The two statements 

type datavector is array (3 downto 0) of wordarray;
subtype wordarray is std_logic_vector (1 downto 0);
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declare an array by the name of datavector; it has four elements, and 
each element is two bits. An example of this array is:

(“11”, “10”, “10”, “01”)

The value of each element of the array in decimal is:

datavector(0) = 1, datavector(1) = 2, datavector(2) = 2, 
datavector(3) = 3.

Verilog Single-Dimensional Array

In Verilog, arrays are declared using the predefined word reg. An ex-
ample of array declaration in Verilog is:

reg [1:0] datavector[0:3];

This declares an array by the name of datavector; it has four elements, 
and each element is two bits. An example of this array is:

datavector[0] = 2’b01;
datavector[1] = 2’b10;
datavector[2] = 2’b10;
datavector[3] = 2’b11;

The following examples cover array implementations.

EXAMPLE 7.1 FIND THE GREATEST AMONG N ELEMENTS OF AN ARRAY

Listing 7.3 shows the HDL code for finding the greatest element 
(grtst) of array a. First, initialize grtst with 0. Then, grtst is compared 
with the first element of array a. If the first element is greater than grtst, 
then set grtst to be equal to the first element; otherwise, grtst is left 
unchanged. The same is done with the other elements.

LISTING 7.3 HDL Code for Finding the Greatest Element of an Array: VHDL 
and Verilog

VHDL: Finding the Greatest Element of an Array
library IEEE;
use IEEE.STD_LOGIC_1164.all;

--Build a package for an array
package array_pkg is
constant N : integer := 4;
--N+1 is the number of elements in the array.

constant M : integer := 3;



MIXED-TYPE DESCRIPTION • 339

--M+1 is the number of bits of each element
--of the array.
subtype wordN is std_logic_vector (M downto 0);
type strng is array (N downto 0) of wordN;

end array_pkg;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use work.array_pkg.all;
-- The above statement makes the package array_pkg visible
-- in this module.

entity array1 is
    generic (N : integer :=4; M : integer := 3);

--N + 1 is the number of elements in the array; M = 1 is
-- the number of bits of each element.
    Port (a : inout strng; 
          z : out std_logic_vector (M downto 0));
end array1;

architecture max of array1 is

begin
com: process (a)
variable grtst : wordN;
begin

--enter the data of the array.
    a <= (“0110”, “0111”, “0010”, “0011”, “0001”);

    grtst := “0000”;

    lop1 : for i in 0 to N loop

    if (grtst <= a(i)) then
        grtst := a(i);
        report “ grtst is less or equal than a”; 
    -- use the above report statement if you want to
    -- monitor the progress of the program.
        else
        report “grtst is greater than a”;
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        -- Use the above report statement to monitor the
        -- progress of the program
          end if;
          end loop lop1;
    z <= grtst;

end process com;

end max;

Verilog: Finding the Greatest Element of an Array
module array1 (start, grtst);
parameter N = 4;
parameter M = 3;
input start;
output [3:0] grtst;
reg [M:0] a[0:N];

/The above statement is declaring an array of N + 1 elements; 
each element is M bits. /

reg [3:0] grtst;
integer i;
always @ (start)
begin
a[0] = 4’b0110;
a[1] = 4’b0111;
a[2] = 4’b0010;
a[3] = 4’b0011;
a[4] = 4’b0001;
grtst = 4’b0000;
for (i = 0; i <= N; i= i +1)
    begin
        if (grtst <= a[i])
        begin
            grtst = a[i];
            $display (“ grtst is less or equal than a”); 
// use the above statement to monitor the program
            end
        else
        $display (“ grtst is greater than a”); 
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// use the above statement to monitor the program
    end
end
endmodule

EXAMPLE 7.2  MULTIPLICATION OF TWO SIGNED N-ELEMENT VECTORS 
USING ARRAYS

This example describes the multiplication of two signed vectors. The 
two vectors have the dimension of 1×(N+1) and (N+1)×1. Chapter 6 cov-
ered the multiplication of two three-element vectors; here, arrays are used 
to expand the multiplication to N elements. Listing 7.4 shows the descrip-
tion of two signed vectors of N elements. A Booth algorithm is implement-
ed, (see Chapter 3), and code from Chapter 6 is used to multiply signed 
numbers in twos-complement format. The algorithm is written as proce-
dure in VHDL or task in Verilog.

In VHDL, the procedure booth is included in a package. The package 
booth_pkg is declared as:

package booth_pkg is
constant N : integer := 4;

constant M : integer := 3;

subtype wordN is signed (M downto 0);
type strng is array (N downto 0) of wordN;
procedure booth (X, Y : in signed (3 downto 0);
    Z : out signed (7 downto 0));
end booth_pkg;

The package booth_pkg includes the procedure booth and an array 
declaration. The array is declared as a user-defined type, strng, and a user-
defined subtype, wordN. It has N + 1 elements; each element is M + 1 bits. 
In our example, N is selected as 4, and M = 3, so the array has five elements, 
and each element is four bits in signed (twos complement) format.

In Verilog, the array is declared as:

reg signed [M:0] b[0:N];

which is an array of N + 1 elements. Each element is M + 1 bits.
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LISTING 7.4 Multiplication of Two Signed N-Element Vectors: VHDL and 
Verilog

VHDL: Multiplication of Two Signed N-Element Vectors
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use ieee.numeric_std.all;

package booth_pkg is
constant N : integer := 4;
--N + 1 is the number of elements in the array.

constant M: integer := 3;
--M + 1 is the number of bits of each element
--of the array.

subtype wordN is signed (M downto 0);
type strng is array (N downto 0) of wordN;
procedure booth (X, Y : in signed (3 downto 0);
    Z : out signed (7 downto 0));

end booth_pkg;

package body booth_pkg is
procedure booth (X, Y : in signed (3 downto 0);
    Z : out signed (7 downto 0)) is
--Booth algorithm here is restricted to 4x4 bits.
--It can be adjusted to multiply any NxN bits.
variable temp : signed (1 downto 0);
    variable sum : signed (7 downto 0);
    variable E1 : unsigned (0 downto 0);
    variable Y1 : signed (3 downto 0);
begin

sum := “00000000”; E1 := “0”;
    for i in 0 to 3 loop 
    temp := X(i) & E1(0);   
    Y1 := -Y;
    case temp is
        when “10” => sum (7 downto 4) :=
        sum (7 downto 4) + Y1;
        when “01” => sum (7 downto 4) := 
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        sum (7 downto 4) + Y;
        when others => null;
    end case; 
    sum := sum srl 1; 
    sum(7) := sum(6); 
    E1(0) := x(i);
    end loop; 
    if (y = “1000”) then 

        sum := -sum;
        --If Y = 1000; then Y1 is calculated as 1000;
        --that is -8, not 8 as expected. This is because Y1 is
        --4 bits only. The statement sum = -sum corrects
        --this error.
        end if;
    Z := sum; 
    end booth;
end booth_pkg;
-- We start writing the multiplication algorithm using
-- the package booth_pkg
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all; 
use work.booth_pkg.all;

entity vecor_multply is
generic (N : integer := 4; M : integer := 3);
--N + 1 is the number of elements in the array; M + 1 is
-- the number of bits of each element.

    Port (a, b : in strng; d : out signed (3N downto 0));
end vecor_multply;
architecture multply of vecor_multply is

begin
process (a, b)
variable temp : signed (7 downto 0);
variable temp5 : signed (3N downto 0) := “0000000000000”;

begin
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for i in 0 to 4 loop
booth(a(i), b(i), temp);

--accumulate the partial products in the product temp5
temp5 := temp5 + temp;
end loop;
d <= temp5;
end process;

end multply;

Verilog: Multiplication of Two Signed N-Element Vectors
module vecor_multply (start, d);
parameter N = 4;
parameter M = 3;
input start;
output signed [3N:0] d;
reg signed [M:0] a[0:N];
reg signed [M:0] b[0:N];
reg signed [3N:0] d;
reg signed [3N:0] temp;
integer i;

always @ (start)
begin
    a[0] = 4’b1100;
    a[1] = 4’b0000;
    a[2] = 4’b1001;
    a[3] = 4’b0011;
    a[4] = 4’b1111;

    b[0] = 4’b1010;
    b[1] = 4’b0011;
    b[2] = 4’b0111;
    b[3] = 4’b1000;
    b[4] = 4’b1000;
    d = 0;
    for (i = 0; i <= N; i = i + 1)
        begin
            booth (a[i], b[i], temp);
            d = d + temp;
        end
end
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task booth;
input signed [3:0] X, Y;
output signed [7:0] Z;
reg signed [7:0] Z;
reg [1:0] temp;
integer i;
reg E1;
reg [3:0] Y1;

begin
Z = 8’d0;
E1 = 1’d0;

for (i = 0; i < 4; i = i + 1)
    begin
        temp = {X[i], E1}; //This is catenation
        Y1 = -Y; //Y1 is the 2’complement of Y
            case (temp)
            2’d2 : Z[7:4] = Z[7:4] + Y1;
            2’d1 : Z[7:4] = Z[7:4] + Y;
            default : begin end

            endcase
        Z = Z >> 1;
        /The above statement is a logical shift of
        one position to the right/

        Z[7] = Z[6];
/The above two statements perform arithmetic shift where the 
sign of the number is preserved after the shift. /
    E1 = X[i];

    end
if (Y == 4’b1000)

/ If Y = 1000, then Y1 = 1000 (should be 8 not -8).
This error is because Y1 is 4 bits only.
The statement Z = -Z adjusts the value of Z. /

Z = -Z;
end
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endtask
endmodule

Figure 7.1 shows the simulation output of the vector multiplication. Ar-
ray a is written here in integer format for convenience:

 a = {–1 3  –7 0 –4}

 b = {–8 –8 7 3 –6}

multiplying a × b = 8 – 24 – 49 + 0 + 24 = –41 =d

As shown in Figure 7.1, d has the correct value of –41.

1111  0011  1001  0000  1100

1000  1000  0111  0011  1010

1111111010111

a

b

d
FIGURE 7.1 Simulation output of vector multiplication.

7.3.1.2 Two-Dimensional Arrays

VHDL and Verilog (after 2003) allow for multidimensional arrays. In 
VHDL, two-dimensional arrays are described by using type statements. 
For example, the statements

subtype wordg is integer;
type singl is array (2 downto 0) of wordg;
type doubl is array (1 downto 0) of singl;

describe a two-dimensional array. Each single-dimensional array has 
three elements, and each element is an integer. An example of a two-di-
mensional array is the array y:

y = ((10 5 6), (3 –2 7))

The elements of the array y are:

y(0)(0) = 7 refers to element 0 of array 0

y(1)(1) = 5 refers to element 1 of array 1

y(2)(0) = 3 refers to element 2 of array 0

y(2)(1) = 10 refers to element 2 of array 0
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In Verilog, the statement

reg [5:0] Y [0:4] [0:4];

represents a two-dimensional array (a matrix) with five rows 
and five columns; each element of the matrix is six bits. For 
example, such an array can be:

[25,24,23,22,21], [20,19,18,17,16], [15,14,13,12,11],

[10,9,8,7,6], [5,4,3,2,1] 

with Y[0][0]=1,Y[0][1]=2, Y[4]4]=25

Another two-dimensional array statement

reg [3:0] Y [0:5] [0:3];

represents a two-dimensional array (a matrix) with six rows and four 
columns; each element of the matrix is four bits.

EXAMPLE 7.3 TWO-DIMENSIONAL ARRAYS

This example considers a two-dimensional array. Listing 7.5 shows 
the HDL description of a two-dimensional array. In VHDL, the package 
twodm_array is used to declare a two- dimensional array with five single ar-
rays; each single array has five elements. The elements are of type integer.

In Verilog, five single arrays of five elements where each element is six 
bits has been created. The loop assigns a value (K) to each elemt Y[i][j]; K 
is incremented by one starting from Y[0][0] and continuing until Y[4][4]. 
To find the value of any element, the user enters N (row) and M(column).

LISTING 7.5 HDL Code for a Two-Dimensional Array

VHDL Two-Dimensional Array
library IEEE;
use IEEE.STD_LOGIC_1164.all;

--Build a package to declare the array
package twodm_array is

constant N : integer := 4;
-- N+1 is the number of elements in the array.
-- this is [N+1,N+1] matrix with N+1 rows and N+1 columns
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subtype wordg is integer;
type strng1 is array (N downto 0) of wordg;
type strng2 is array (N downto 0) of strng1;
end twodm_array;
--use the package to describe a two-dimensional array

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use work.twodm_array.all;

-- The above statement instantiates the package twodm_array

entity two_array is
    Port (N, M : integer; z : out integer);
end two_array;

architecture Behavioral of two_array is

begin
com : process (N, M)
variable t : integer;
constant y : strng2 := ((7, 6, 5, 4, 3), (6, 7, 8, 9, 10), 
              (30, 31, 32, 33, 34), (40, 41, 42, 43, 44), 
              (50, 51, 52, 53, 54));
begin

t := y (N)(M);

--Look at the simulation output to identify the elements of the 
--array
z <= t;
end process com;
end Behavioral;

Verilog Two-Dimensional Array
module twodmarrays(start,N,M,Z );
parameter N1 = 4;
parameter M1 = 4;
input start;
input [2:0] N,M;
output integer Z;
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reg [5:0] Y [0:4] [0:4];
//The following statements generate the array as
//[25,24,23,22,21], [20,19,18,17,16], [15,14,13,12,11],
// [10,9,8,7,6], [5,4,3,2,1] with Y[0][0]=1,Y[0][1]=2

integer i,j,K = 0;
always @ ((start == 1’b1),N,M)
begin
K = 0;
for (i = 0; i <= N1; i= i +1)
begin
for (j = 0; j <= M1; j= j +1)

    begin
K= K +1;
    Y[i][j]= K;
  
end
    end
Z = Y[N][M]; 
end
endmodule

Figure 7.2 shows the VHDL simulation output of Listing 7.5. From the 
simulation:

y[0][0], the first element in the first array = 54

y[0][3], the fourth element of the first array = 51

y[2][4], the fifth element of the third array = 30

N

M

0 0 0 2 4 4

0 3 4 4 4 3

Z 54 51 50 30 7 6
FIGURE 7.2 VHDL simulation output of the array in Listing 7.5.
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EXAMPLE 7.4 MATRIX ADDITION

Here, an HDL code is written to add two matrices. The matrices must 
have the same dimensions. The addition of the two matrices yields a matrix 
with the same dimension as the two matrices. Consider the addition of the 
two matrices:

3 4 5 4 5 6 7 8
6 7 8 9 10 9 10 11 12 13

11 12 13 14 15 14 15 16 17 18
19 20 21 22 2316 17 18 19 20
24 25 26 27 2821 22 23 24 25

   
   
   
   
      
   
   
     

1 2

 

The addition is done by adding row by row. Listing 7.6 shows the HDL 
description of the addition of two [5×5] matrices. In VHDL, the two ma-
trices are entered as inputs. In Verilog, the two matrices are generated by 
two loops.

LISTING 7.6 VHDL Description: Addition of Two [5×5] Matrices

-- First, write a package to declare a two-dimensional
--array with five elements
library IEEE;
use IEEE.STD_LOGIC_1164.all;

package twodm_array is

constant N : integer := 4;
-- N+1 is the number of elements in the array.
-- This is an NxN matrix with N rows and N columns.
subtype wordg is integer;
type strng1 is array (N downto 0) of wordg;
type strng2 is array (N downto 0) of strng1;
end twodm_array;

--Second, write the code for addition
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use work.twodm_array.all;
entity matrices is
    Port (x, y : strng2; z : out strng2);
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--strng2 type is 5x5 matrix
end matrices;

architecture sum of matrices is

begin
com : process (x, y)
variable t : integer := 0;
begin

for i in 0 to 4 loop
for j in 0 to 4 loop
t := x(i)(j) + y(i)(j);
z(i)(j) <= t;

end loop;

end loop;
end process com;
end sum;

Verilog Description: Addition of Two [5×5] Matrices
module sumMatrices(start,N,M,Z );
//The program generates two matrices 
//X,Y (two dimensional arrays) 
//and add them up and store the sum 
//in matrix sum
parameter N1 = 4;
parameter M1 = 4;
input start;
input [2:0] N,M;
output integer Z;
reg [6:0] sum [0:4] [0:4];
reg [5:0] Y [0:4] [0:4];
reg [5:0] X [0:4] [0:4];
//initial values in the array are generated by the loop 
//statements as:
//[25,24,23,22,21], [20,19,18,17,16], [15,14,13,12,11], 
//[10,9,8,7,6], [5,4,3,2,1}with Y[0][0]=1,Y[0][1]=2
integer i,j,K = 0;
always @ ((start == 1’b1),N,M)
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begin
K =0;
for (i = 0; i <= N1; i= i +1)
begin
for (j = 0; j <= M1; j= j +1)
     begin
K= K +1;
   Y[i][j]= K;
  X[i][j] = K + 3;
  
end
    end
Z = Y[N][M]; 

for (i = 0; i <= N1; i= i +1)
begin
for (j = 0; j <= M1; j= j +1)
    begin
sum[i][j]= X[i][j] + Y[i][j];
  
end
end
end
endmodule

After simulation of the above code, the sum matrix is displayed as:

7 9 11 13
15 17 19 21 23
25 27 29 31 33
35 37 39 41 43
45 47 49 51 53

 
 
 
 
 
 
 
 
  

5

7.4 Mixed-Type Description Examples

This section presents some examples of mixed-type descriptions. The 
strategy is to use the type or style of description that best fits the needs of 
the system (or parts of the system) to be described. Structural or data-flow 
description may be the best fit for any part of the system that needs specific 
hardware architecture. Behavioral description is best used when describing, 
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for example, a complex arithmetic operation with no specific hardware ar-
chitecture is desired. If the system to be described consists of transistors or 
transistor-based circuits, then switch-level description may be the best fit.

EXAMPLE 7.5 HDL DESCRIPTION OF AN ARITHMETIC-LOGIC UNIT

The arithmetic-logic unit 
(ALU) is one of the major units 
in a computer. The unit per-
forms arithmetic operations 
such as addition, subtraction, 
and division, and logical oper-
ations such as AND, OR, and 
INVERT. The ALU in this 
example has three inputs (see 
Figure 7.3) a, b, and cin. In-
puts a and b are four bits, and 
cin is one bit. The output z is 
six bits. The unit can perform 
addition, multiplication, inte-
ger division, or no operation. 
To select one operation out 
of the available four, a two-bit 
signal opc is implemented to select the desired operation. The selection is 
shown in Table 7.1.

TABLE 7.1 Operation Selection of the ALU

Operation Code (opc) Operation
00 Addition
01 Multiplication
10 Integer division
11 No operation

In this example, the implementation of carry-lookahead adders is 
desired. Because the adders are specified, the most convenient style of de-
scription is structural or data flow. Chapter 2 described these adders using 
data-flow description, so it is repeated here. Recall that data-flow descrip-
tion is usually implemented by writing the Boolean functions of the sys-
tem. Because no specific hardware structure is specified, multiplication and 

Inputs

Arithmetic logic unit (ALU)

b cin

3

a

3

6

2

Operation
(opc)

z

Outputs
FIGURE 7.3 Block diagram of the arithmetic-logical unit.
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division can be described by behavioral statements within a process. The 
multiplication operator () and the division operator (/) are used to per-
form the multiplication and division.

Listing 7.7 shows the VHDL code for the ALU. The package codes_
Arithm declares a user-defined type op; the elements of op are the opera-
tion codes for addition (add), multiplication (mul), division (divide), and 
no operation (none). The package also includes a user-defined function, 
TO_UNSIGN. This function converts from integer to unsigned. This function 
(or a similar one) may be built in to some vendors’ packages. Converting 
between integer and unsigned is needed because many VHDL simulators 
cannot perform the unsigned division z = a / b. VHDL can perform integer 
division.

Listing 7.7 also shows the Verilog code for the ALU. In Verilog, it is easy 
to perform addition, multiplication, and division on unsigned numbers; no 
conversion to integer is needed. On the other hand, Verilog does not have 
as extensive user-defined type statements as does VHDL. The parameter 
statement is used to assign values to ALU operations. For example, to as-
sign 00 to the addition operation code add, write:

parameter add = 0;

LISTING 7.7 HDL Description of an ALU: VHDL and Verilog

VHDL ALU Description
--Here the code for a package for user-defined
--type and function is written.
library ieee;
use ieee.std_logic_1164.all;
use IEEE.STD_LOGIC_1164.ALL,IEEE.NUMERIC_STD.ALL;
package codes_Arithm is
type op is (add, mul, divide, none);
-- type op is for the operation codes for the ALU. 
--The operations are: addition, multiplication, 
--division, and no operation

function TO_UNSIGN (b : integer) return unsigned;
end;

package body codes_Arithm is
function TO_UNSIGN (b : integer) return unsigned is
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--The function converts integers to unsigned. This function
--can be omitted if it is included in the vendor’s package; 
--the vendor’s package, if available, should be attached.

variable temp : integer;
variable bin : unsigned (5 downto 0);
begin
temp := b;
for j in 0 to 5 loop

    if (temp MOD 2 = 1) then
    bin (j) := ‘1’;
    else bin (j) := ‘0’;
    end if;
    temp := temp/2;
    end loop;
    return bin;

end TO_UNSIGN;
end codes_Arithm;

--Now we write the code for the ALU
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;
use work.codes_arithm.all;

--The above use statement is to set the user-
--defined package “codes_arithm.all” visible to this
-- module.

entity ALU_mixed is

port (a, b : in unsigned (2 downto 0); 
      cin : in std_logic;
     opc : in op; z : out unsigned (5 downto 0));
--opc is of type “op”; type op is defined in the
--user-defined package “codes_arithm”
end ALU_mixed;
architecture ALU_mixed of ALU_mixed is
    signal c0, c1 : std_logic;
    signal p, g : unsigned (2 downto 0);
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    signal temp1 : unsigned (5 downto 0);

begin

--The following is a data flow-description of a 3-bit
-- lookahead adder. The sum is stored in the three least
-- significant bits of temp1.
adder. 
-- The carry out is stored in temp1(3).

g(0) <= a(0) and b(0);
g(1) <= a(1) and b(1);
g(2) <= a(2) and b(2);
p(0) <= a(0) or b(0);
p(1) <= a(1) or b(1);
p(2) <= a(2) or b(2);
c0 <= g(0) or (p(0) and cin);
c1 <= g(1) or (p(1) and g(0)) or 
    (p(1) and p(0) and cin);
temp1(3) <= g(2) or (p(2) and g(1)) or (p(2) and p(1)
    and g(0)) or (p(2) and p(1) and p(0) and cin);

--temp1(3) is the final carryout of the adders
    temp1(0) <= (p(0) xor g(0)) xor cin;
    temp1(1) <= (p(1) xor g(1)) xor c0;
    temp1(2) <= (p(2) xor g(2)) xor c1;
    temp1 (5 downto 4) <= «00»;

process (a, b, cin, opc, temp1)
--The following is a behavioral description for the
-- multiplication and division functions of the ALU.
    variable temp : unsigned (5 downto 0);
    variable a1, a2, a3 : integer;
begin
    a1 := TO_INTEGER (a);
    a2 := TO_INTEGER (b);
--The predefined function «TO_INTEGER»
--converts unsigned to integer.
--The function is a member of the VHDL package
-- IEEE.numeric.
    case opc is
        when mul =>



MIXED-TYPE DESCRIPTION • 357

            a3 := a1  a2;
            temp := TO_UNSIGN(a3);
--The function «TO_UNSIGN» is a user-defined function
--written in the user-defined package «codes_arithm.»
        when divide =>
            a3 := a1 / a2;
            temp := TO_UNSIGN(a3);

        when add =>
            temp := temp1;
        when none =>
            null;

end case;

z <= temp;
end process;

end ALU_mixed;

Verilog ALU Description
module ALU_mixed (a, b, cin, opc, z);
parameter add = 0;
parameter mul = 1;
parameter divide = 2;
parameter nop = 3;
input [2:0] a, b;
input cin;
input [1:0] opc;
output [5:0] z;
reg [5:0] z;
wire [5:0] temp1;
wire [2:0] g, p;
wire c0, c1;

// The following is data-flow description
// for 3-bit lookahead adder
    assign g[0] = a[0] & b[0];
    assign g[1] = a[1] & b[1];
    assign g[2] = a[2] & b[2];
    assign p[0] = a[0] | b[0];
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    assign p[1] = a[1] | b[1];
    assign p[2] = a[2] | b[2];
    assign c0 = g[0] | (p[0] & cin);
    assign c1 = g[1] | (p[1] & g[0]) | (p[1] & p[0] & cin);
    assign temp1[3] = g[2] | (p[2] & g[1]) | (p[2] & p[1]
        & g[0]) | (p[2] & p[1] & p[0] & cin);
    // temp1[3] is the final carryout of the adders
    assign temp1[0] = (p[0] ^ g[0]) ^ cin;
    assign temp1[1] = (p[1] ^ g[1]) ^ c0;
    assign temp1[2] = (p[2] ^ g[2]) ^ c1;
    assign temp1[5:4] = 2’b00;

    //The following is behavioral description

always @ (a, b, cin, opc, temp1)
begin
    case (opc)
        mul : z = a  b;
        add : z = temp1;
        divide : z = a / b;
        nop : z = z;
    endcase
end
endmodule

Figure 7.4 shows the simulation output of the ALU. Notice the integer 
division of 5 / 7 = 0.

101a 101 101 101 101 101

111b 111 111 011 011 011

addopc

cin

mul divide divide mul add

001101z 100011 000000 000001 001111 001000
FIGURE 7.4 Simulation output of the ALU.
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EXAMPLE 7.6 HDL DESCRIPTION OF A 16×8 SRAM

In Chapter 4, a static memory cell using structural description was de-
scribed. In this example, a 16×8 SRAM is described. Because the descrip-
tion of this memory in structural style would be huge, and no specific logic 
is required, behavioral statements to describe the memory will be imple-
mented. Figure 7.5 shows a block diagram of the memory. The memory has 
eight-bit input data (Data_in), eight-bit output data (Data_out), four-bit 
address bus (ABUS), a chip select (CS), and read/write signal (R_ WR ).

16x8
RAM

Chip select (CS)

Address bus (ABUS) 4

Data in (Data_in)

Read/write (R_wr)

8 Data out (Data_out)8

FIGURE 7.5 A block diagram of 16×8 static memory.

The function table of the memory is shown in Table 7.2. Listing 7.8 
shows the HDL code for the RAM.

TABLE 7.2 Function Table of SRAM

CS R_ WR Data_out Memory Function
0  x Z (high impedance) The memory is deselected
1 1 M (ABUS) This is a read; M refers to memory loca-

tions, and contents of a memory location 
pointed to by ABUS are placed in the 
output data

1 0 This is a write cycle; data in the Data_in 
are stored in M (ABUS) 

Referring to Listing 7.8 VHDL, an array to represent the memory is 
implemented. Because the memory is 16×8 bits, an array of sixteen ele-
ments is used, and each element is eight bits. The array is written in a 
package array_pkg. Because the index of the array should be an integer, 
and the ABUS in the entity memory16x8 is declared unsigned, the ABUS is 
converted from unsigned to integer using the predefined function TO_IN-
TEGER.
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In the Verilog version of Listing 7.8, an array is used to represent the 
memory. The array is instantiated by the statement:

reg [7:0] Memory [0:15];

that describes an array by the name Memory; it has sixteen words, and 
each word is eight bits.

LISTING 7.8 HDL Description of 16×8 SRAM: VHDL and Verilog

VHDL 16×8 SRAM Description
library IEEE;
use IEEE.STD_LOGIC_1164.all;

--Build a package for an array
package array_pkg is
constant N : integer := 15;
--N+1 is the number of elements in the array.

constant M : integer := 7;
--M+1 is the number of bits of each element
--of the array.
subtype wordN is std_logic_vector (M downto 0);
type strng is array (N downto 0) of wordN;

end array_pkg;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;
use work.array_pkg.all;
entity memory16x8 is
generic (N : integer := 15; M : integer := 7);
--N+1 is the number of words in the memory; M+1 is the
--number of bits of each word.
    Port (Memory : inout strng; CS : in std_logic; 
           ABUS: in unsigned (3 downto 0);
        Data_in : in std_logic_vector (7 downto 0);
        R_WRbar : in std_logic;
        Data_out : out std_logic_vector (7 downto 0));
end memory16x8;

architecture SRAM of memory16x8 is
begin
com : process (CS, ABUS, Data_in, R_WRbar)
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variable A : integer range 0 to 15;
begin

if (CS = ‘1’) then

A := TO_INTEGER (ABUS);
-- TO_INTEGER is a built-in function

if (R_WRbar = ‘0’) then

Memory (A) <= Data_in;
else

Data_out <= Memory(A);

end if;
else
Data_out <= “ZZZZZZZZ”;
--The above statement describes high impedance.
end if;
end process com;
end SRAM;

Verilog 16×8 SRAM Description
module memory16x8 (CS, ABUS, Data_in, R_WRbar, Data_out);
input CS, R_WRbar;
input [3:0] ABUS;
input [7:0] Data_in;
output [7:0] Data_out;
reg [7:0] Data_out;
reg [7:0] Memory [0:15];

always @ (CS, ABUS, Data_in, R_WRbar)
begin

if (CS == 1’b1)
    begin
        if (R_WRbar == 1’b0)
        begin
            Memory [ABUS] = Data_in;
            end
            else
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            Data_out = Memory [ABUS];
        end
    else
    Data_out = 8’bZZZZZZZZ;

//The above statement describes high impedance
end
endmodule

The simulation output of Listing 7.8 is shown in Figure 7.6. Data are 
written in memory locations 0, 14, 15, and 8, and the contents of two mem-
ory locations, 0 and 15, are read; the read data match the written. The 
memory is deselected by setting CS to zero, and consequently, the memory 
Data_out, as expected, goes on high impedance.

0ABUS

R_WRbar

CS

014 15 15 148 8

170Data_in 255 3 7

170 3Data_in 7 255
FIGURE 7.6 Simulation output of 16×8 static memory.

EXAMPLE 7.7 DESCRIPTION OF A FINITE SEQUENTIAL-STATE MACHINE

State machines are very useful tools for designing systems because their 
operation can be described in time events or steps. The control unit of a 
computer is an example of such a system. (See Case Study 7.1, which will 
include information from this example to write a mixed-type description of a 
basic computer.) The control unit generates different signals at certain time 
events. For example, when it boots up, a reset signal is needed to initialize  
components or registers in the computer. The control unit should generate 
this reset signal at the right time, that is, when the operation starts. 

In this example, the control unit will be designed as a finite state ma-
chine. In Chapter 4, finite state machines were designed using structural 
description. Here, the machine is designed by using behavioral descrip-
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tion. The state diagram of the 
machine shows the signals that 
need to be generated at each 
step, and it also shows the next 
step to which the machine has 
to go. The term states will be 
used here to refer to steps. 
Consider the state diagram 
shown in Figure 7.7.

The state machine in Fig-
ure 7.7 shows that, for exam-
ple, if the machine is in state0 
and the input is 0, the machine 
stays in state0 and generates a 
signal of 1 at the output. If the 
input is 1, the machine gener-
ates a signal of 0 at the output, and transits to state1. Listing 7.9 lists the 
HDL code for the finite sequential-state machine shown in Figure 7.7.

LISTING 7.9 HDL Code for the State Machine in Figure 7.7: VHDL and 
Verilog

VHDL State-Machine Description
library IEEE;
use IEEE.STD_LOGIC_1164.all;

--First we write a package that includes type “states.”
package types is
type op is (add, mul, divide, none);
type states is (state0, state1, state2, state3);
end;
    -- Now we use the package to write the code for the
    -- state machine.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use work.types.all;
entity state_machine is
    port (A, clk : in std_logic; pres_st : buffer states; 
           Z : out std_logic);
end state_machine;

state0

state2

state1state3

1/0
1/0

1/0
1/1

0/0
0/0

0/0

0/1

FIGURE 7.7 State diagram of a finite sequential-state 
machine.
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architecture st_behavioral of state_machine is

begin

FM : process (clk, pres_st, A)
variable present : states := state0;
begin
if (clk = ‘1’ and clk’event) then
case pres_st is
    when state0 =>
        if A =’1’ then
        present := state1;
        Z <= ‘0’;
        else
        present := state0;
        Z <= ‘1’;
        end if;
when state1 =>
if A =’1’ then
        present := state2;
        Z <= ‘0’;
        else
        present := state3;
        Z <= ‘0’;
        end if;

when state2 =>
    if A =’1’ then
    present := state3;
    Z <= ‘1’;
    else
    present := state0;
    Z <= ‘0’;
end if;

when state3 =>
    if A =’1’ then
    present := state0;
    Z <= ‘0’;
    else
    present := state2;
    Z <= ‘0’;
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    end if;
end case;
pres_st <= present;
end if;
end process FM;
end st_behavioral;

Verilog State-Machine Description
`define state0 2’b00
`define state1 2’b01
`define state2 2’b10
`define state3 2’b11
// We could have declared these states as parameters.
// See Listing 7.7.

module state_machine (A, clk, pres_st, Z);

input A, clk;
output [1:0] pres_st;
output Z;
reg Z;

reg [1:0] present;
reg [1:0] pres_st;

initial
begin
    pres_st = 2’b00;
end
always @ (posedge clk)
begin
        case (pres_st)
        `state0 :
            begin
                if (A == 1)
                    begin
                        present = `state1;
                        Z = 1’b0;
                    end
                    else
                    begin
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                        present = `state0;
                        Z = 1’b1;
                     end
        end
    `state1 :
        begin
            if (A == 1)
            begin
                present = `state2;
                Z = 1’b0;
                end
            else
            begin
                present = `state3;
                Z = 1’b0;
            end
        end
        `state2 :
            begin
                if (A == 1)
                begin
                    present = `state3;
                    Z = 1’b1;
                    end
                else
                begin
                    present = `state0;
                    Z = 1’b0;
                    end
            end
            `state3 :
                begin
                    if (A == 1)
                    begin
                        present = `state0;
                        Z = 1’b0;
                        end
                    else
                    begin
                        present = `state2;
                        Z = 1’b0;
                        end
                    end
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endcase
pres_st = present;
end
endmodule

The simulation waveform is shown in Figure 7.8.

state0Pres_st

z

a

clk

state1 state2 state3 state1

FIGURE 7.8 Simulation waveform of the state machine shown in Figure 7.7.

CASE STUDY 7.1 HDL DESCRIPTION OF A BASIC COMPUTER

In this case study, the HDL description for a basic computer will be 
written. In this computer, the CPU consists of ALU, registers, and a control 
unit. The ALU performs all arithmetic and logic operations (see Table 7.3). 
The registers inside the CPU store data, and communicate with the ALU 
and the memory. The memory here is 16×8 bits. Figure 7.9 shows the dif-
ferent computer registers.

Listed below are definitions of the components shown in Figure 7.9:

 Program Counter (PC): Stores the address of the instruction to be 
executed. It is four bits wide because the memory has sixteen words.

 Address Register (AR): Connected to the address bus of the memory, 
it supplies addresses to the memory. It is four bits wide because the 
memory has sixteen words. In this computer, AR is the only register that 
can provide addresses to the memory.

 Data Register (DR): Connected to the data bus of the memory, it 
receives and stores data from the memory. It is eight bits wide because 
the width of the memory word is eight bits. In our computer, DR is the 
only register that can communicate with memory data bus.
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 Accumulator (AC): A general register that stores data. This register 
has two equal halves, low (ACL) and high (ACH), and each is eight bits. 
The AC is sixteen bits wide.

 Instruction Register (IR): Stores three-bit operation code (op code).

The control unit supervises all other units in the computer, providing 
timing and control signals. In our basic computer, all programs are stored in 
the memory. A program is a group of instructions and the data it is process-
ing. The instruction is eight bits wide (see Figure 7.10) and has two fields: 
operation code (op code) and address.

OP Code Address

01234567Bit

FIGURE 7.10 Basic computer instruction format.

The op code field determines the type of operation the computer 
should perform. The address determines the location of the operand in 
memory, and the operand is the data on which the operation is performed. 
The computer has eight different instructions, so three bits are needed to 
decode the instruction operations. Table 7.3 shows a possible decoding for 
these operations.

Inputs

Decoder

.....

.........

ACH 8 bits  ACL 8 bits

Arithmetic logic unit (ALU)

IR
3

bits

PC
4

bits

AR
4

bits

Memory
16x8 bits

DR 8 bits

Control unit
Finite state machine

Start

OP Code

FIGURE 7.9 Registers in the basic computer.
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TABLE 7.3 Operation Codes

Operation in Mnemonic OP Code
HALT 000
ADD 001

MULT 010
DIVID 011
XOR 100

PRITY 101
NAND 110

CLA 111

The memory used here is 16×8 bits. To access this memory, a four-bit ad-
dress is needed. We will use five bits for the address; the extra bit is for any 
future expansion of the memory. Therefore, the instruction is eight bits wide 
with three bits for the op code and five bits for the address. The following is a 
description of the instructions shown in Table 7.3: 

 HALT: Halts the computer by deactivating the master clock; all regis-
ters retain their current data.

 ADD: This is an addition operation. The contents of the lower half of 
the accumulator register (ACL) are added to the contents of a memory 
location; the result is stored in ACL.

 MULT: Multiplies the contents of the lower half of the AC with an 
operand in the memory and stores the result in AC (both halves).

 DIVID: This is integer division. It divides the contents of the lower 
half of the AC by the contents of the memory location; the result is 
stored in ACL.

 XOR: Performs the logical operation EXCLUSIVE-OR between the 
contents of ACL and a memory location; the result is stored in ACL.

 PRITY: This is an even parity generator. The parity bit for the least 
significant seven bits of ACL is calculated, and the parity bit is inserted 
in the most significant bit of ACL.

 NAND: Performs the logical operation NAND between the contents of 
ACL and a memory location; the result is stored in ACL.

 CLA: Clears the contents of the ACL.
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The memory location in all of the above instructions is determined by 
the address provided by the instruction and is stored in the address register 
(AR). A couple of detailed instruction explanations are:

 ADD 7: This instruction adds the contents of the lower half of the ac-
cumulator to the contents of memory location 7; the result is stored in 
ACL.

 DIVID 5: This instruction divides the contents of the lower half of the 
accumulator by the contents of memory location 5; the result is stored in 
ACL.

The computer executes the instructions in two cycles: fetch and execute 
(see Figure 7.11). The control unit supplies all required signals necessary 
for operation of the two cycles. In the fetch cycle, the instruction is moved 
from the memory to the DR. The lower four bits (0 to 3) of DR are stored 
in AR; bits 5–7 of the DR are stored in IR. The PC is incremented to point 
at the next instruction to be fetched. The three bits of the IR are decoded 
into eight outputs by a 3×8 decoder. The output of the decoder determines 
the type of operation requested by the instruction. For example, if the least 
significant output of the decoder is active, then the operation requested 
belongs to the op code 000, which is HALT.

In the execute cycle, the computer executes the instruction that has 
been fetched. For example, if the instruction is ADD, the execute cycle is-
sues a memory read, DR � M [AR], to move the operand from the memory 
to the DR. M stands for memory. This movement is necessary because the 
ALU can operate only on DR and AC, but not on data stored in memory. 
After moving the operand to DR, an ADD operation in the ALU is se-
lected. Different ALU operations are selected according to control signals 
supplied by the control unit. Accordingly, the ALU executes the micro-
operation AC � AC + DR. For the instruction PRITY, the execute cycle 
calculates the parity bit (bit 7 of the accumulator) as:

Parity (ACL(7)) = ACL(6) XOR ACL(5) XOR ACL(4) XOR ACL(3) 

XOR ACL(2) XOR ACL(1) XOR ACL(0)

The control unit oversees the fetch-and-execute cycle. The control unit 
here is designed as a finite sequential-state machine. Figure 7.12 shows the 
state diagram of the machine. The figure only shows transitions between 
states; it does not show outputs. The states state0, state1, and state2 are 
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performing the three steps of the fetch cycle, while state3 performs the 
execute cycle (see Figure 7.11).

To define the basic computer’s operation, we store a program in the 
memory. Table 7.4 shows the instructions of the program with the op code 
written in mnemonic and the instructions written in hexadecimal. For 
example, the instruction:

1 ADD 9 

is stored in memory location 1, the op code is ADD, and the address is 9. 
The instruction adds the contents of the accumulator (AC) to the contents 

CPU on?

ResetStart

No

MULTADDHALT

AR ← PC

PC ← PC+1
IR ← DR(5–7)
AR ← DR(0–3)

Fetch
cycle

Yes

DR ← M[AR]

CLA DIVID XOR PRITY NAND

ACL ← 0

TURN CPU OFF

DR ← M[AR]

ACL ← ACL/DR

DR ← M[AR]

ACL ← ACL + DR

ACL(7) ← 

ACL(6) XOR ACL(5)

DR ← M[AR]

AC ← ACL * DR

DR ← M[AR]

ACL ← ACL XOR  DR

DR ← M[AR]

ACL ← ACL NAND DR

Execute
cycle

Decode IR

FIGURE 7.11 Fetch-and-execute cycles of the basic computer.
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of memory location 9; the result of addition is stored in the accumulator. 
The accumulator in our computer is always the default register. The binary 
value of the op code ADD is 001 (see Table 7.3). The instruction is eight 
bits wide, so the binary representation of the instruction is 00101001, which 
is 29 in hexadecimal.

CPU is on?

Start

No

Yes

state0

Reset

state1

state2

state3
Halt

All Other OP
codes

FIGURE 7.12 State diagram of the finite sequential-state machine.
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TABLE 7.4 Contents of Memory of the Basic Computer

 Instruction in Mnemonic or Memory Contents (Eight Bits)

Location Instruction Data in Hex
0 CLA E0
1 ADD    9 29
2 XOR     A 8A
3 MULT B 4B
4 DIVID C 6C
5 XOR     D 8D
6 NAND E CE
7 PRITY A0
8 HALT 00
9 C 0C
A 5 05
B 4 04
C 9 09
D 3 03
E 9 09
F 7 07

Listing 7.10 shows the HDL code for the basic computer program 
shown in Table 7.4. Referring to the VHDL Listing, the package Comp_Pkg 
declares a one-dimensional array with sixteen elements; each element is 
eight bits. This array represents the memory of the computer. In the entity 
computer_basic, the signal clk_master simulates the master clock of 
the computer. The signal ON_OFF simulates an on/off switch. The data-flow 
statement

clk <= clk_master and ON_OFF;

simulates an AND gate. The signal clk simulates the clock signal of 
the CPU; if the switch is off, the clock signal to the CPU is inactive, and 
accordingly, the CPU is inactive. The statement

z(0) <= ACL(6) xor ACL (5) xor ACL (4)xor
ACL (3)xor ACL (2)xor ACL (1)xor ACL (0);

generates an even-parity bit. We selected to write this statement as data 
flow (outside always), because it is easier to write the Boolean as data-flow 
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description, rather than the behavioral of this parity generator circuit. The 
statements

ARI := TO_INTEGER(AR);
DR := Memory (ARI);

convert AR from unsigned to integer by the built-in function TO_INTEGER. 
This function is part of the package ieee.numeric_std. We convert to in-
teger because the index of the array ARI has to be of type integer in VHDL.

Referring to the Verilog description, the memory is simulated by the 
statement:

reg [7:0] Memory [0:15];

which describes an array of fifteen elements (words); each element is 
eight bits. In contrast to VHDL, Verilog can accept an index of an array 
declared as bit_vector. For example, we can write

DR = Memory [AR];

without specifying AR to be of type integer.

LISTING 7.10 HDL Code for the Basic-Computer Memory Program 
(Table 7.4): VHDL and Verilog

VHDL Basic-Computer Memory Program
--Write the code for Package Comp_Pkg
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use ieee.numeric_std.all;

package Comp_Pkg is
constant N: integer := 15;
--N+1 is the number of elements in the array.
constant M : integer := 7;
--M+1 is the number of bits of each element
--of the array. 

subtype wordN is unsigned (M downto 0);
type strng is array (N downto 0) of wordN;
type states is (state0, state1, state2, state3);

end Comp_Pkg;
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--Now write the code for the control unit
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use ieee.numeric_std.all;
use work.Comp_Pkg. all;

entity computer_basic is

generic (N : integer := 15; M : integer := 7);
--N+1 is the number of words in the memory; M+1 is the
--number of bits of each word.

Port (Memory : inout strng; 
    PC : buffer unsigned (3 downto 0);
   clk_master : std_logic;
   ACH : buffer unsigned (7 downto 0);
   ACL : buffer unsigned (7 downto 0);
   Reset : buffer std_logic; ON_OFF : in std_logic);

end computer_basic;

architecture Behavioral_comp of computer_basic is
signal z : unsigned (0 downto 0);
signal clk : std_logic;

begin

z(0) <= ACL(6) xor ACL(5) xor ACL(4) xor
   ACL(3) xor ACL(2) xor ACL(1) xor ACL(0);
--Z has to be in vector form to match ACL

clk <= clk_master and ON_OFF;

--The above two statements are data-flow description.
--The following is behavioral description.

cpu : process (Reset, PC, ACL, ACH, clk, Memory, z(0))
variable AR : unsigned (3 downto 0);
variable DR : unsigned (7 downto 0);
variable pres_st, next_st : states;
variable ARI : integer range 0 to 16;
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variable IR : unsigned (2 downto 0);
variable PR : unsigned (15 downto 0);

begin

if rising_edge (clk) then
if Reset = ‘1’ then
pres_st := state0;
Reset <= ‘0’;
PC <= «0000»;
end if;

case pres_st is
when state0 =>
next_st := state1;
--This is fetch cycle
AR := PC;

when state1 =>
next_st := state2;
ARI := TO_INTEGER(AR);
--This is fetch cycle
DR := Memory (ARI);
when state2 =>
next_st := state3;
--This is fetch cycle
PC <= PC + 1;
IR := DR (7 downto 5);
AR := DR (3 downto 0);
when state3 =>
--This is execute cycle

case IR is
    when «111» =>
    --The op code is CLA
    ACL <= «00000000»;
    next_st := state0;

    when «001» =>
    --The op code is ADD
    ARI := TO_INTEGER(AR);
    DR := memory (ARI);
    ACL <= ACL + DR;
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    next_st := state0;

    when «010» =>
    --The op code is MULT
    ARI := TO_INTEGER(AR);
    DR := memory (ARI);
    PR := ACL  DR;
    ACL <= PR (7 downto 0);
    ACH <= PR (15 downto 8);
    next_st := state0;

    when «011» =>
    --The op code is DIVID
    ARI := TO_INTEGER(AR);
    DR := memory (ARI);
    ACL <= ACL / DR;
    next_st := state0;

    when «100» =>
    --The op code is XOR
    ARI := TO_INTEGER(AR);
    DR := memory (ARI);
    ACL <= ACL XOR DR;
    next_st := state0;

    when «110» =>
    --The op code is NAND
    ARI := TO_INTEGER(AR);
    DR := memory (ARI);
    ACL <= ACL NAND DR;
    next_st := state0;

    when «101» =>
    --The op code is PRITY
    ACL(7) <= z(0);
    next_st := state0;

    when «000» => null;
    -- The op code is HALT
    next_st := state3;

    when others => null;
    end case;
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when others => null;
end case;
pres_st := next_st;
end if;
end process cpu;
end Behavioral_comp;

Verilog Basic-Computer Memory Program
module computer_basic (PC, clk_master, ACH, ACL, 
                       Reset, ON_OFF);
parameter state0 = 2’b00;
parameter state1 = 2’b01;
parameter state2 = 2’b10;
parameter state3 = 2’b11;

output [3:0] PC;
input clk_master;
output Reset;
input ON_OFF;
output [7:0] ACH;
output [7:0] ACL;
reg [1:0] pres_st;
reg [1:0] next_st;
reg Reset;
reg [3:0] PC;
reg [3:0] AR;
reg [7:0] DR;
reg [2:0] IR;
reg [7:0] ACH;
reg [7:0] ACL;
reg [15:0] PR;
reg [7:0] Memory [0:15];

assign z = ACL[6] ^ ACL[5] ^ ACL[4]^
    ACL[3]^ ACL[2]^ ACL[1]^ ACL[0];

/The above statement can be written using the reduction
    XOR as: assign z = ^ ACL[6:0];/
//

assign clk = clk_master & ON_OFF;
always @ (Reset, PC, ACL, ACH, posedge(clk), z, pres_st)
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begin

    if (Reset == 1’b1)
        begin
        pres_st = state0;
        Reset = 1’b0;
        PC = 4’d0;
        Memory [0] = 8’hE0; Memory [1] = 8’h29; 
        Memory [2] = 8’h8A; Memory [3] = 8’h4B;
        Memory [4] = 8’h6C; Memory [5] = 8’h8D;
        Memory [6] = 8’hCE; Memory [7] = 8’hA0; 
        Memory [8] = 8’h00; Memory [9] = 8’h0C;
        Memory [10] = 8’h05; Memory [11] = 8’h04;
        Memory [12] = 8’h09; Memory [13] = 8’h03; 
        Memory [14] = 8’h09;
        Memory [15] = 8’h07;
        end

    case (pres_st)

    state0 :
    begin
        next_st = state1;
        AR = PC;
        end
    state1 :
    //This is fetch cycle
    begin
        next_st = state2;
        DR = Memory [AR];
        end

    state2 :
    //This is fetch cycle
    begin
        next_st = state3;
        PC = PC + 1;
        IR = DR [7:5];
        AR = DR [3:0];
        end

    state3 :
    //This is execute cycle
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    begin
        case (IR)
            3’d7 :
            //The op code is CLA
            begin
                ACL = 8’d0;
                next_st = state0;
                end
            3’d1 :
            //The op code is ADD
            begin
                DR = Memory [AR];
                ACL = ACL + DR;
                next_st = state0;
                end
            3’d2 :
            //The op code is MULT
            begin
                DR = Memory [AR]; 
                PR = ACL  DR;
                ACL = PR [7:0];
                ACH = PR [15:8];
                next_st = state0;
                end
            3’d3 :
            //The op code is DIVID
            begin
                DR = Memory [AR];
                ACL = ACL / DR;
                next_st = state0;
            end

            3’d4 :
            //The op code is XOR
            begin
                DR = Memory [AR];
                ACL = ACL ^ DR;
                next_st = state0;
                end
            3’d6 :
            //The op code is NAND
            begin
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                DR = Memory [AR];
                ACL = ~(ACL & DR); 
                next_st = state0;
                end
            3’d5 :
            //The op code is PRITY
            begin
                ACL[7] = z;
                next_st = state0;
                end
            3’d0 :
            //The op code is HALT
            begin
                next_st = state3;
                end
            default :
            begin
            end
            endcase
    end
    default :
    begin
    end
    endcase
    pres_st = next_st;
end
endmodule

Figure 7.13 shows the simulation output of the accumulator register. 
To start simulation, reset is forced high and then unforced.

0000 0001 0010 0011 0100 0101PC

111 001 100 010 011IR

0

0

12 9 36 4
ACL

(In decimal)

ACH
(In decimal)

FIGURE 7.13 Simulation output of the accumulator register.
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7.5 Summary

This chapter covered mixed-type descriptions (HDL code that includes 
more than one style of description in the same module). An example of 
mixed description is when we write a module using behavioral and data-
flow statements. In some systems, one part can be best described by be-
havioral statements, and other parts of the system can be best described 
by data-flow description. Instead of writing a module with only behavioral 
or only data flow, we write the module using both behavioral and data-flow 
descriptions; that is what is defined as mixed-type description.

An example to illustrate the mixed-type description is the ALU of a 
computer. Some operations of the ALU, such as division, are usually de-
scribed by behavioral statements because it is not easy to find the Boolean 
function or the hardware logic for division. Other operations, such as addi-
tion, may be described by data-flow or structural description because it is 
usually easy to find the logic diagram of adders. In addition to mixed-type 
descriptions, packages and single/multidimensional arrays were covered. 
Packages are an essential construct in VHDL code. User-defined types, 
components, functions, and procedures can be written in a package and 
made visible to a VHDL module by attaching (including) the package with 
the module. 

7.6 Exercises

1. Write the HDL code to find the value and the order of the smallest ele-
ment in an array. The elements are four-bit signed numbers. Simulate 
and verify your code.

2. Given an array of N elements, write the HDL code to organize the ele-
ments of the array in ascending order. All elements are integers.

3. Consider the code shown in Listing 7.11.

LISTING 7.11 Exercise 7.3

library IEEE;
use IEEE.STD_LOGIC_1164.all;

package arrypack is
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constant N : integer := 2;
constant M : integer := 1;

subtype wordg is integer;
type singl1 is array (N downto 0) of wordg;
type singl2 is array (N downto 0) of singl1;
type arry3 is array (M downto 0) of singl2;
end arrypack;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use work.arrypack.all;

entity exercise is
    Port(N, M, P : integer; z : out integer);
end exercise;

architecture exercise of exercise is

begin
com : process (N, M, P)
variable t : integer;
constant y : arry3 := (((5, 4, 3), (8, 9, 10), (32, 33, 34)), 
               ((42, 43, 44), (52, 53, 54), (-10, -7, -5)));

begin

t := y (N)(M)(P);
z <= t;
end process com;

end exercise;

 a)  What is the value of the following elements of y?

  y (0,0,0), y (0,0,1), y (0,0,2), y (0,1,2), y (1,1,2), y (1,2,2)

 b)  If we change all (N downto 0) and (M downto 0) in package ar-
rypack to (0 to N) and (0 to M), what will be the values of the 
elements in part a?
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4. Repeat Listing 7.8 but for a memory of 128×16. Store the following data 
in the corresponding memory locations:
Memory Location in Decimal Contents in Decimal
 0 123
 127 1025
 55 35
 105 801
 99 0

Verify your storage by reading the data from the above locations.

5. For the state diagram shown in Figure 7.14, write a behavioral HDL 
program to simulate the state machine. Verify your answer by simula-
tion.

state0

state2

state1state3

1/0
1/1

1/0
1/1

0/1 0/0

0/0

0/1

FIGURE 7.14 State-machine instruction format for Exercise 7.5.

6. Write a Verilog code to perform the following: 
[C] = [A] – [B]

All matrices are 6x6. Matrix [A] has the following elements: a(i+1,j) = 
a(i,j)+ 4 with a(0,0) = 0.

Matrix [B] has the following elements: b(i+1,j) = b(i,j)  2 with b(0,0) = 1. 

In your code, first generate the matrices and then perform the subtrac-
tion.
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7. For Case Study 7.1, increase the memory size to 32×16. Also, change all 
instructions so the result of each instruction is stored in a memory loca-
tion rather than the accumulator. The address of this memory location 
is the same as the address provided in the instruction. For example, the 
instruction ADD 9 would mean the addition of the contents of AC to 
the contents of memory location 9 with storage of the result in memory 
location 9. Keep the size of all registers at eight bits. Rewrite the VHDL 
code shown in Listing 7.10 and verify by simulation.



C H A P T E R

ADVANCED HDL DESCRIPTION

8
Chapter Objectives

 Explore several advanced topics in HDL Description, such as file 
processing, character and string implementation, and the type re-
cord

 Understand VHDL Assert and Block statements
 Understand Verilog user-defined primitives 
 Acquire a basic knowledge of cache memories
 Acquire a basic knowledge of artificial neural networks

8.1 File Processing

Files are implemented when dealing with a large amount of data that 
need to be stored and accessed. Also, files can be used to display format-
ted output, such as reports. Files can be read or written. To read from or 
write to a file, it must be opened, and after reading or writing is finished, 
the file must be closed. A closed file cannot be accessed unless it is opened. 
In Section 8.1.1, the VHDL file description is explored, and Section 8.1.2 
discusses Verilog file descriptions.



388 • HDL WITH DIGITAL DESIGN

8.1.1 VHDL File Processing
File processing can be slightly different from one HDL simulator to 

another. Appropriate packages have to be attached to the VHDL module. 
The reader is advised to consult his or her VHDL package and simulator 
for files-handling capability. This section will present complete examples of 
file description with the names of the appropriate packages. Files have to 
be declared by the predefined object type fi le. File declaration includes 
the predefined word fi le followed by (in this order) the port direction or 
mode of the file (infi le or outfi le), a colon, and the subtype of the file. 
An example of file declaration is:

file infile : text;

The above statement declares a file with mode infi le, and the subtype of 
the file is text. The IEEE package textio should be attached (see exam-
ples in the following sections). VHDL has built-in procedures for file han-
dling. These procedures include fi le_open, readline, writeline, read, 
write, and fi le_close. In the following sections, each of these procedures 
is briefly discussed.

8.1.1.1 File_open

The fi le_open procedure opens the file; files cannot be accessed if not 
opened. This procedure has the following declaration:

Procedure file_open (status : file_open_status, infile : file 
type, external_name : in string,
open_kind : file_open_kind) is

The statement status enables the VHDL to keep track of the activities of 
the file (e.g., open, close, read, etc.); infi le is the type (mode) of the file. 
The infi le is used for input files (their contents will be read), and outfi le is 
used for output files (they will be written into). The external_name is the 
name of the file to be opened; the name has to be in string form such as 
“rprt.txt” or “testfi le.txt.” The open_kind is the mode of opening the 
read_mode or write_mode. An example of implementing fi le_open is:

file_open (fstatus, infile, “testfile.txt”, read_mode);

The above procedure opens a file by the name of testfi le.txt for 
reading. The file is an input file (infi le) with type txt. It is located in 
the same path as the procedure. For example, if the procedure is written 
in a module stored in directory C under a subdirectory VHDL_files, then 
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testfi le should be stored in the subdirectory VHDL_files; otherwise, the 
path of testfi le should be explicitly stated in the declaration of fi le_open. 
The file is then opened for reading.

The following procedure opens a text outfi le by the name of store.
txt for writing:

file_open (fstatus, outfile, “store.txt”, write_mode);

8.1.1.2 File_close

The procedure fi le_close is used to close an open file. For example:

file_close (infile);

closes the open file infi le. The name and path of infi le are specified in 
the procedure fi le_open. The following statement closes outfi le:

file_close (outfile);

8.1.1.3 Readline

The predefined procedure readline reads a line from the file opened 
in read mode. An example of implementing this procedure is:

readline (infile, temp);

The above statement reads a line from infi le and stores the line in variable 
temp. Variable temp has to be of predefined type line. The name and type 
of infi le should have been stated in the procedure fi le_open. Inside the file 
specified by infi le, a carriage return is the separator between the lines. If 
readline is repeated before closing the file, another line is read. A carriage 
return indicates a new line.

8.1.1.4 Writeline

The predefined procedure writeline writes a line into an outfi le that 
is open for write mode. An example of implementing this procedure is:

writeline (outfile, temp);

The above statement writes a line stored in the variable temp into the 
file outfi le. Variable temp has to be of type line. The name and path of 
outfi le should be specified in the procedure fi le_open. Only integers, real 
values, or characters can be written into outfi le. If writeline is repeated 
before closing outfi le, a new line is stored in outfi le.
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8.1.1.5 Read

To read an integer, a character, or a real value from a line in an infi le 
that is open for read mode, the procedure read is used. For example, if 
intg1 has been declared as of type integer, the statement

read (temp, intg1);

performs a single read of an integer from line temp of the open file (for read 
mode) and stores the value of this integer in intg1. If a character or a real 
value is to be read, the variable intg1 should be of type character or real, 
respectively. If intg1 is a single value (not an array), each time the read op-
eration is executed, a single word of the line is read and stored in intg1. If 
the read statement is repeated before closing the file, the next word in the 
line is read and stored in intg1.

8.1.1.6 Write

The procedure write stores an integer, a character, or a real value from 
a line to an outfi le that is open for write_mode. For example, if intg1 has 
been declared as type integer, the statement

write (temp, intg1);

stores the integer intg1 in the line temp of the open outfi le, which is in 
write mode. If a character or a real value is to be written, the variable intg1 
should be of type character or real, respectively. Each time the write 
operation is executed, a single word is stored in the line. If the write state-
ment is repeated before closing the file, a new value of intg1 is stored in 
the line.

8.1.2 Verilog File Processing
Standard Verilog can handle several file operations. As in VHDL, be-

fore accessing a file, it must be opened. If the file is not open, it cannot be 
read from or written to. Accessing a file is accomplished through built-in 
tasks such as $fopen, $fdisplay, $fmonitor, and $fclose. More tasks are 
being introduced in newer Verilog packages. Let us briefly investigate each 
of these tasks.

8.1.2.1 $fopen

The task $fopen is used to open files. It is the counterpart of the 
VHDL procedure fi le_open. The format for opening a file is:
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Channel = $fopen (“name of the fi le”);

where Channel is a variable of type integer; it indicates the channel num-
ber. Verilog uses this channel number to track and identify which files are 
open. Verilog automatically assigns an integer value to each channel. For 
example, to open a text file named testfi le:

ch1 = $fopen (“testfile.txt”);

and ch1 becomes the indicator (identifier) of file testfi le.txt.

8.1.2.2 $fclose 

The task $fclose closes a file indicated by the channel number. For 
example the task

$fclose (ch1);

closes the file testfi le.txt.

8.1.2.3 $fdisplay

The task $fdisplay is the counterpart of write in VHDL. It can write 
variables, signals, or quoted strings. The format of $fdisplay is as follows:

$fdisplay (channel, V1, V2, V3, ....);

where V1, V2, V3, and so on are variables, signals, or quoted strings. For 
example, consider the following $fdisplay task:

$fdisplay (ch1, “item  description  quantity”);

After executing the task, the file testfi le.txt displays:

item  description  quantity

The number of spaces displayed in the file between each string is the 
same number of spaces inside the quotations.

8.1.2.4 $fmonitor

The task $fmonitor has the following format:

$fmonitor (channel, V1, V2, V3,…..)

The task monitors and records the values of V1, V2, V3, and so on. For 
example, consider the following $fmonitor task:

$fmonitor (ch1, “    %b”, quantity);

The above task monitors the variable quantity and records its value in 
binary in the file testfi le.txt indicated by ch1, and %b indicates binary 
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format. If quantity = 7 in decimal, after execution of the above task, the 
file testfi le.txt displays:

item description quantity
   111

Different formats can be selected such as:

%d Display in decimal
%s Display strings
%h Display in hex
%o  Display in octal
%c Display in ASCII character 
%f Display real numbers in decimal format

Escape characters may also used; some of these characters are:

\n Insert a blank line
\t Insert tab
\\ Insert the character \
\” Insert the character “
\ Insert the character %

8.2 Examples of File Processing

The following sections present and discuss some examples of file pro-
cessing. Because VHDL and Verilog file processing are not very similar, 
their examples are discussed separately.

8.2.1 Examples of VHDL File Processing
The following examples cover file processing in VHDL.

EXAMPLE 8.1 READING A FILE CONTAINING INTEGER NUMBERS

Consider a text file (written by a Notepad, for example) by the name of 
fi le_int.txt in the same path as the VHDL module that accesses it (see 
Listing 8.1). The contents of the file are integers written in two lines (see 
Figure 8.1). The two lines are separated by a carriage return, and the inte-
gers are separated by a space band (the number of space bands can be one 

or more than one).

In this example, the first integer is to be mul-
tiplied by two, the second by five, the third by 

12
20

–3 5

FIGURE 8.1 File file_int.txt.
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three, and the fourth by four. The products are stored in the integer vari-
ables z, z1, z2, and z3, respectively.

To calculate the products, open the file, read its contents, perform the 
multiplication, and close the file. Referring to Listing 8.1, the statement

file_open (fstatus, infile, “file_int.txt”, read_mode);

opens the infi le fi le_int.txt for reading. The statement

readline (infile, temp);

reads a line from the file fi le_int.txt and stores this line in the vari-
able temp of type line. If the statement is repeated, temp acquires the 
next line. The statement

read (temp, count);

reads a single integer from the line temp and stores the integer in the 
variable count. If the statement is repeated, count will acquire the next 
integer from the same line. The statement

file_close (infile);

closes the file. No operation can be performed on the file as long as it is 
closed. If the file is opened again, readline reads the first line of the file. 
To repeat the code for another file, be sure to create an event in the process 
by turning off (START = 0) and turning on (START = 1).

LISTING 8.1 VHDL Code for Reading and Processing a Text File Containing 
Integers

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;

entity FREAD_INTG is
port (START : in std_logic;
z, z1, z2, z3 : out integer);
end FREAD_INTG;

architecture FILE_BEHAVIOR of FREAD_INTG is
begin

process (START)
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-- declare the infile as a text file
file infile : text;

--declare the variable fstatus (or any other variable name)
--as of type file_open_status
variable fstatus : file_open_status;
variable count : integer;

--declare variable temp as of type line
variable temp : line;

begin
if (START = ‘1’) then
--open the file file_int.txt in read mode
file_open (fstatus, infile, “file_int.txt”, read_mode);

--Read the first line of the file and store the line in temp
readline (infile, temp);
-- temp now has the data: 12 -3 5

-- Read the first integer (12) from the 
--line temp and store it in the integer variable count.

    read (temp, count);

--count has the value of 12. Multiply by 2 and store in z
    z <= 2  count;

-- Read the second integer from the line temp and
-- store it in count
    read (temp, count);
--count now has the value of -3

--Multiply by 5 and store in z1
    z1 <= 5  count;

-- read the third integer in line temp 
--and store it in count.
    read (temp, count);

--Multiply by 3 and store in z2
    z2 <= 3  count;
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--Read the second line and store it in temp
    readline (infile, temp);
--temp has only the second line

--Read the first integer of the second line 
--and store it in count.
    read (temp, count);

--Multiply by 4 and store in z3
    z3 <= 4  count;

--Close the infile
file_close (infile);
end if;
end process;
end FILE_BEHAVIOR;

After the code in Listing 8.1 executes, z, z1, z2, and z3 take the fol-
lowing values:

z = 24, z1 = –15, z2 = 15, z3 = 80

EXAMPLE 8.2 READING A FILE CONTAINING REAL NUMBERS

In this example, a file by the name of fi le_real.txt is read. The con-
tents of this file are real numbers (containing fractions) written in decimal 
format such as 50.3 (see Figure 8.2). The contents are written in two lines 
separated by a carriage return. The numbers are separated by one or more 
spaces. Listing 8.2 shows the code for reading the file; it is very similar to 
Listing 8.1. Open the file with fi le_open and read a line from the file us-
ing the procedure readline. Af-
ter reading a line, one word is read 
at a time by invoking the procedure 
read. Each word is a real number; 
spaces are not read but are recog-
nized as separators between words.

LISTING 8.2 VHDL Code for Reading a Text File Containing Real Numbers

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;

–13.4
–55.32

–5.654 .023

FIGURE 8.2 File file_real.txt.
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entity FREAD_REAL is
port (START : in std_logic;
z, z1, z2, z3 : out real);
end FREAD_REAL;

architecture FILE_BEHAVIOR of FREAD_REAL is
begin

process (START)
file infile : text;
variable fstatus : file_open_status;
variable count : real;
--Variable count has to be of type real
variable temp : line;

begin
if (START = ‘1’) then
--Open the file
    file_open (fstatus, infile,
          “file_real.txt”, read_mode);

-- Read a line
    readline (infile, temp);

--Read one number and store it in real variable count
    read (temp, count);
--multiply by 2
z <= 2.0  count;

--read another number
    read (temp, count);
--multiply by 5
   z1 <= 5.0  count;
  --read another number
      read (temp, count);
  --multiply by 3
      z2 <= 3.0  count;

  --read another line
      readline (infile, temp);
      read (temp, count);
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  --multiply by 4
       z3 <= 4.0  count;
       file_close (infile);
           end if;
end process;
end FILE_BEHAVIOR;

After executing Listing 8.2, z, z1, z2, and z3 take the following values:
z = –26.8, z1 = –28.27, z2 = 0.069, z3 = –221.28

EXAMPLE 8.3 READING A FILE CONTAINING ASCII CHARACTERS

Figure 8.3 shows the file to be read, 
named fi le_chr.txt. The contents of this file 
are ASCII characters. ASCII characters can 
be digits (e.g., 0, 1, 2), letters of the alphabet 
(e.g., A, B, C), or special characters (e.g., ;  
& #). The space band is an ASCII character and is read as a character. List-
ing 8.3 shows the code for reading the file fi le_chr.txt. The file has two 
lines (see Figure 8.3) separated by a carriage return. The first line has three 
characters, A5B, and the second line has one character, M. If the first line 
contains A B instead of A5B, it is still read as three characters: A, space 
band, and B.

Listing 8.3 shows the VHDL code for reading an ASCII file. The file 
is opened with fi le_open. A line from the file is read using the procedure 
readline. After reading a line, one word at a time is read by invoking the 
procedure read; each word is a character, including spaces. The character 
is then stored in the variable count; this variable has to be of type char-
acter.

LISTING 8.3 VHDL Code for Reading an ASCII File

use ieee.std_logic_1164.all;
use std.textio.all;

entity FREAD_character is
port (START : in std_logic;
       z, z1, z2, z3 : out character); 
end FREAD_character;

A5B
M

FIGURE 8.3 File file_chr.txt.
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architecture FILE_BEHAVIOR of FREAD_character is
begin

process (START)
file infile : text;
variable fstatus : file_open_status;
variable count : character;
-- Variable count has to be of type character
variable temp : line;

begin

if(START = ‘1’) then
    file_open (fstatus, infile, “file_chr.txt”, read_mode);

--read a line from the file
    readline (infile, temp);
--read a character from the line into count. 
--Count has to be of type character.
--

    read (temp, count);

--store the character in z
    z <= count;
    read (temp, count);
    z1 <= count;
    read (temp, count);
    z2 <= count;
    readline (infile, temp);
    read (temp, count);
    z3 <= count;
    file_close (infile);
      end if;
end process;
end FILE_BEHAVIOR;

After the code in Listing 8.3 executes, z, z1, z2, and z3 take the fol-
lowing values:

z = A, z1 = 5, z2 = B, z3 = M

Reading files has been covered in the previous examples. The follow-
ing examples cover writing into files. As mentioned, VHDL files can store 
integers, real values, and characters.
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EXAMPLE 8.4 WRITING INTEGERS TO A FILE

In this example, writing into the text file Wfi le_int.txt is considered. 
Assume that the file is located in the same path as the VHDL module that 
accesses it (see Listing 8.4). Integers will be written into the file. Start by 
opening the file using the procedure fi le_open. Assemble the line to be 
stored using the procedure write, as follows:

write (temp, z);

The above statement stores the integer z into the line temp. Quoted char-
acters can be stored in temp as follows:

write (temp, “This is an integer file”);

Executing this statement results in storing the message “This is an in-
teger fi le” in temp. If the statement is repeated, another integer or char-
acter is stored into temp. A space is to be stored between each two integers. 
After all integers and characters have been stored in the line, the line is 
written to the file using the procedure:

writeline (outfile, temp);

The above procedure, writeline, writes the line temp into the outfi le, 
Wfi le_int.txt.

LISTING 8.4 VHDL Code for Writing Integers to a File

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;

entity FWRITE_INT is
port (START : in std_logic);

end FWRITE_INT;

architecture FILE_BEHAVIOR of FWRITE_INT is
begin

process (START)
file outfile : text;
variable fstatus : file_open_status;
--declare temp as of type line
variable temp : line;
variable z,z1,z2,z3 : integer := 6; 



400 • HDL WITH DIGITAL DESIGN

begin
    if(START = ‘1’ ) then
      z := 12; z1 := 23; z2 := -56; z3 := -45;
     file_open (fstatus, outfile, 
                “Wfile_int.txt”, write_mode);
    --The generated file “Wfile_int.txt” is in
    --the same directory as this VHDL module
    --Insert the title of the file Wfile_int.txt.
    --Your simulator should support formatted text;
    --if not, remove all formatted statements “ “.

    write (temp, “This is an integer file”);

    --Write the line temp into the file
    writeline (outfile, temp);
    --store the first integer in line temp
    write (temp, z);

     -- leave space between the integer numbers.
    write (temp, “ “);
    write (temp, z1);

    -- leave another space between the integer numbers. 
    write (temp, “ “);
    write (temp, z2);
    write (temp, “ “);

    writeline (outfile, temp);
    --Insert the fourth integer value on a new line
    write (temp, z3);
    writeline (outfile, temp);
file_close(outfile);
  end if; 
end process;
end FILE_BEHAVIOR;

After executing the code above, the outfi le Wfi le_int.txt appears as 
shown in Figure 8.4.

This is an integer file
12       23       –56
–45

FIGURE 8.4 File Wfile_int.txt.
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In the same way as was done in Listing 8.4, characters or real numbers 
can be written into an outfi le.

EXAMPLE 8.5  READING A STRING OF CHARACTERS AND STORING 
THEM INTO AN ARRAY

In previous examples, a single character from the file was read and 
stored in a single variable count. Here, a string of characters are read and 
stored in an array. To handle arrays, a package is built that contains an ar-
ray of characters. The package array_pkg is shown in Listing 8.5. Subtype 
wordchr of type character is used. The array is written as type string_
chr, which is an array of the subtype wordchr. The array consists of N + 1 
elements, and each element is type character.

LISTING 8.5 VHDL Code for Writing a Package Containing a String of Five 
Characters

library IEEE;
use IEEE.STD_LOGIC_1164.all;

package array_pkg is
constant N : integer := 4;
--N+1 is the number of elements in the array.
subtype wordChr is character;
type string_chr is array (N downto 0) of wordChr;

end array_pkg;

Now, a string of characters need to be read from the file string_chr 
and stored in an array. Listing 8.6 shows the code for reading a string from 
the file. A single word composed of five characters, “STORE,” is stored in 
the file. The package written in Listing 8.5 is used here to instantiate the ar-
ray. In Listing 8.6, z is declared as type string_chr. This means that z is an 
array of five elements, (N down to 0) where N = 4; each element is a single 
character. The file is opened, the string is read and then stored in array z.

LISTING 8.6 VHDL Code for Reading a String of Characters into an Array

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;



402 • HDL WITH DIGITAL DESIGN

--include the package with this module
use work.array_pkg.all;

entity FILE_CHARCTR is
port (START : in std_logic; z : out string_chr);

--string_char is included in the package array_pkg;
--z is a 5-character array

end FILE_CHARCTR;

architecture FILE_BEHAVIOR of FILE_CHARCTR is
begin

process (START)
file infile : text;
variable fstatus : file_open_status;
variable count : string_chr;
variable temp : line;

begin
file_open (fstatus, infile, “myfile1.txt”, read_mode);
readline (infile, temp);

read (temp, count);
--Variable count has been declared as an array of five
-- elements, each element is a single character.
--
z <= count;

file_close (infile); 
end process;

end FILE_BEHAVIOR;

After the code in Listing 8.6 is executed, the signal z contains “S” “T” 
“O” “R” “E.”

EXAMPLE 8.6  FINDING THE WORD IN A FILE WITH THE SMALLEST 
ASCII VALUE

When an ASCII character is read, the VHDL package assigns the 
unique hexadecimal (hex) value for that character. Table 8.1 shows the 
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hexadecimal values for several characters. Notice that A has the lowest hex 
value among the letters, while Z has the highest. In this example, we want 
to find the word that has the lowest ASCII hex value.

TABLE 8.1 ASCII Character Hexadecimal Values

Character Hex Value Character Hex Value
A 41 U 55
B 42 V 56
C 43 W 57
D 44 X 58
E 45 Y 59
F 46 Z 5A
G 47 0 30
H 48 1 31
I 49 2 32
J 4A 3 33
K 4B 4 34
L 4C 5 35
M 4D 6 36
N 4E 7 37
O 4F 8 38
P 50 9 39
Q 51 CARRIAGE RET 0D
R 52 SPACE 20
S 53 ) 29
T 54 = 3D

The file that contains the word to be found, the word with the smallest 
ASCII value (f_smallest), is shown in Figure 
8.5. The file consists of eleven words; each word 
has a maximum of five characters and is followed 
by a carriage return. The file can have any number 
of words, but the last word must be “END.”

Listing 8.7 shows the VHDL code for finding 
the word with the lowest ASCII value. The small-
est value will be stored in a character-type variable, 
smallest, and the variable is initialized with the 
highest possible ASCIII value (in our example, 
“ZZZZZ”). Compare the value of smallest with 

STORE
STOP
ADD
ADA
SUB
MTPLY
LOAD
JUMP
HLT
COMPR
END

FIGURE 8.5 File f_smallest.
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each word. If the value of the word is less than the value of smallest, then 
smallest assumes the value of this word. Otherwise, smallest retains its 
value. Continue this comparison until the last word in the file is encoun-
tered. The code tests each word to see if it is “END.” If it is, then the pro-
gram stops; if not, the program continues. The statement that checks for 
the word “END” in Listing 8.7 is a while-loop:

while (count /= (‘E’, ‘N’, ‘D’, ‘ ‘, ‘ ‘)) loop 

The operator /= is the logic NOT EQUAL. The variable count has to be 
declared as type character. The above loop will continue running until the 
variable count is equal to END. The statement

read (temp, count);

reads a character word from the line temp. Because count is declared as an 
array of characters (string_chr), each time a word is read, the ASCII value 
corresponding to the characters of the word (see Table 8.1) is computed 
and stored in the variable count. This is how the VHDL determines that 
“ADD” is less than “AND.”

Listing 8.7 VHDL Code for Finding the Smallest ASCII Value

--The following package needs to be attached 
--to the main module.

library IEEE;
use IEEE.STD_LOGIC_1164.all;

package array_pkg is
constant N : integer := 4;
--N+1 is the number of elements in the array.
subtype wordChr is character;
type string_chr is array (N downto 0) of wordChr;

end array_pkg;

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.array_pkg.all;

--Now start writing the code to find the smallest
entity SMALLEST_CHRCTR is
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    port (START : in std_logic; z : out string_chr);

end SMALLEST_CHRCTR;

architecture BEHAVIOR_SMALLEST of SMALLEST_CHRCTR is

begin
process (START)
file infile : text;
variable fstatus : file_open_status;
variable count, smallest :
    string_chr := (‘z ‘, ‘z ‘, ‘z ‘, ‘z ‘, ‘z ‘);

-- The above statement assigns initial values (Z’s) to
-- count and smallest.

variable temp : line;

begin
    file_open (fstatus, infile, 
                “f_smallest.txt”, read_mode);
    while (count /= (‘E’, ‘N’, ‘D’, ‘ ‘, ‘ ‘)) loop
    readline (infile, temp);
    read (temp, count);
        if (count < smallest) then
            smallest := count;
        end if;
    end loop;
z <= smallest;
file_close (infile); 
end process;
end BEHAVIOR_SMALLEST;

After execution, the output z is equal to “ADA.”

EXAMPLE 8.7  IDENTIFYING A MNEMONIC CODE AND ITS INTEGER 
EQUIVALENT FROM A FILE

In many programming applications, the user writes the source code in 
mnemonic. The computer, if not equipped with the appropriate assembler 
or compiler, understands only machine language, which consists of zeroes 
and ones. Assemblers and compilers translate from mnemonic to machine 
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language. In this example, the 
code is written for a simple as-
sembler. An integer code is as-
signed to each mnemonic code. 
This assignment is user selected. 
The mnemonic code and its in-
teger value are stored in the file 
cods.txt (see Figure 8.6).

Listing 8.8 is the VHDL 
code to find the integer code for 

each mnemonic. Referring to, the statement

if (temp = assmbly_code) then

The statement tests whether temp is equal to assmbly_code. This com-
parison can be done because temp and assmbly_code have been declared 
with the same type of arrays of characters.

LISTING 8.8 VHDL Code for Finding the Integer Code for a Mnemonic Code

--The following package needs to be 
--attached to the main module

library IEEE;
use IEEE.STD_LOGIC_1164.all;
package array_pkg is
constant N : integer := 4;
--N+1 is the number of elements in the array.
subtype wordChr is character;
type string_chr is array (N downto 0) of wordChr;

end array_pkg;

--Start writing the code to find the assigned integer value
library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.array_pkg.all;

entity OPCODES is
    port (assmbly_code : in string_chr; z : out string_chr;
        z1 : out integer);

HALT
ADD
XOR
MULT
DIVID
NAND
PRITY
CLA

User-assigned integer code
0
1
4
2
3
6
5
7

Mnemonic code

FIGURE 8.6 File cods.txt.
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end OPCODES;

architecture BEHAVIOR of OPCODES is

begin

process (assmbly_code)
file infile : text;

variable fstatus : file_open_status;
variable temp : string_chr := (‘ ‘, ‘ ‘, ‘ ‘, ‘ ‘, ‘ ‘);
variable tem_bin : integer;
variable regstr : line;

begin
file_open (fstatus, infile, “cods.txt”, read_mode);
   for i in 0 to 8 loop
    -– while loop could have been used instead
    -- of for loop. See Exercise 8.3.

    readline (infile, regstr);

    read (regstr, temp);
         if (temp = assmbly_code) then
         z <= temp;

         read (regstr, tem_bin);
         z1 <= tem_bin;
    exit;
         else if (i > 7)then
         report (“ERROR: CODE COULD NOT BE FOUND”);
         z <= (‘E’, ‘R’, ‘R’, ‘O’, ‘R’);

         -- assign -1 to z1 if an error occurs
            z1 <= -1;
            end if;
    end if;
end loop;

file_close(infile);

end process;
end BEHAVIOR;
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EXAMPLE 8.8 VHDL CODE OF AN ASSEMBLER

An assembly program is a group of instructions written in mnemonic 
code. The instructions usually contain four fields: label, operation code (op-
code), address, and comments. In this example, the instruction will have 
only two fields: opcode and address. The opcode determines the type of 
operation, such as addition, subtraction, or data movement.

Because the opcode in an assembly program is written in mnemonics, 
the operation for addition could be written, for example, as ADD. The ad-
dress field determines the memory address of the operand. For example, 
the assembly code ADD 9 means the operation is addition, and the addi-
tion operation is adding the data (operand) in memory location address 9 
to the contents of a CPU register (usually the accumulator). The result of 
the addition is stored in the accumulator. For the CPU to understand the 
assembly instruction, the contents of the instruction have to be translated 
into machine language code, which consists of zeroes and ones. The pro-
gram that translates assembly code to machine code is called an assembler 
(see Figure 8.7).

Codes in decimal
Assembler

Codes in mnemonic

FIGURE 8.7 The input and output of an assembler.

Listing 8.9 shows the code for an assembler. The assembly program to 
be translated is written in the file asm.txt (see Figure 8.8). Integer op-
codes are assigned to the mnemonic codes, as shown in Table 8.2. This as-
signment is arbitrary; the programmer can assign any pattern of code to the 

mnemonic code as long as each code has a unique 
integer value. In this example, the same code pat-
tern is followed as in Figure 8.6. The mnemonic 
codes ORIG and END have no integer codes; they 
are called pseudo codes. ORIG tells the assembler 
the starting memory location where the output of 
the assembler is stored. END tells the assembler 
where the last line of the assembly program is. 
Figure 8.9 shows the flowchart of our assembler. 

ORG
CLA
ADD
XOR
MULT
DIVID
XOR
NAND
PRITY
HALT
HLT
END

200
0
9
10
11
12
13
14
0
0
5

FIGURE 8.8 File asm.txt.
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TABLE 8.2  Integer Codes Assigned to Mnemonic Codes

Mnemonic Code Assigned Integer Code in Decimal
CLA 7
ADD 1
XOR 4

MULT 2
DIVID 3
NAND 6
PRITY 5
HALT 0

Start

Read a line from
the assembly file

Ctr = Starting 
          address

Is the code
END?

Is the code
ORIG ?

No

No

Finish

Search for the
decimal

equivalent of the
code

Yes

Yes

Increment Ctr

Write onto the
output file the code
and the address in

decimal

FIGURE 8.9 Flowchart of the assembler.
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The assembler first reads a line from the assembly file asm.txt. In 
Listing 8.9, the line is read by the read procedure readline:

readline (infile, regstr);

The infile is the file asm.txt. If the first line is read, the contents of reg-
str would be:

ORIG  200

and regstr is read using the procedure read:

read (regstr, temp);

The read procedure above stores one word (an array of five charac-
ters) in temp. If this is the first line of asm.txt, then temp = “ORIG.” As 
shown in Figure 8.9, the assembler tests the code to see what type it is. In 
the case of ORIG, the if statement is used as follows:

if (temp = (‘O’,’R’,’I’,’G ‘,’ ‘)) then
read (regstr, ctr);

If the code is “ORIG,” the same line is read again, which results in storing 
the value 200 in ctr. If the code of the first line is not “ORIG,” an error 
is reported. After the first line is finished (see Figure 8.9), the subsequent 
lines are read, and the case statement is used to determine the codes and 
the addresses. For example, the statements

when (‘M’,’U’,’L’,’T’,’ ‘) => code := 2;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);

test the code to see if it is “MULT.” If the code is “MULT,” an integer of 
value 2 is assigned to MULT (see Table 8.2), and the address part of the 
code is written into the outfi le. In Listing 8.9, a for-loop is implemented to 
test all lines of the infi le. Using the for-loop means that the exact number 
of lines in the infi le is known; if the exact number is not known, while-loop 
could have been implemented to test all the lines, regardless of the number 
of lines. This can be done by specifying an end-of-file word, such as “END,” 
as the condition for terminating the while-loop (see Listing 8.7). 
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LISTING 8.9 VHDL Assembler Code

--The following package needs to be attached 
--to the main module
library IEEE;
use IEEE.STD_LOGIC_1164.all;

package array_pkg is
constant N : integer := 4;
--N+1 is the number of elements in the array.

subtype wordChr is character;
type string_chr is array (N downto 0) of wordChr;

end array_pkg;

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.array_pkg.all;

--Now start the code for the assembly
entity ASSMBLR is

    port (START : in bit);

end ASSMBLR;

architecture BEHAVIOR_ASSM of ASSMBLR is
begin

process (START)
file infile : text;
file outfile : text;

variable fstatus, fstatus1 : file_open_status;
variable temp : string_chr := (‘ ‘, ‘ ‘, ‘ ‘, ‘ ‘, ‘ ‘);
variable code, addr : integer;
variable regstr, regstw : line;
variable ctr : integer := -1;

    begin
file_open (fstatus, infile, “asm.txt”, read_mode); 
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file_open (fstatus1, outfile, “outf.txt”, write_mode);

-- Prepare the outfile where the results of the assembler
-- are stored.

write (regstw, “Location Code Address”);
writeline (outfile, regstw);

for i in 0 to 11 loop
--while-loop could have been used instead of for-loop.

readline (infile, regstr);

read (regstr, temp);
if (temp = (‘O’, ‘R’, ‘I’, ‘G’, ‘ ‘)) then
read (regstr, ctr);

elsif (ctr = -1)then
-- If the code of the first line in the file is not ORIG
-- report an error

write (regstw, “ ERROR: FIRST OPCODE SHOULD BE ORIG”);
writeline (outfile, regstw);
exit;

else
read (regstr, addr);
write (regstw, ctr);
write (regstw, “ “);
ctr := ctr + 1;

case temp is

when (‘H’, ‘A’, ‘L’, ‘T’, ‘ ‘) =>
code := 0;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);

when (‘A’, ‘D’, ‘D’, ‘ ‘, ‘ ‘) =>
code := 1;



ADVANCED HDL DESCRIPTION • 413

write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);
when (‘M’, ‘U’, ‘L’, ‘T’, ‘ ‘) =>
code := 2;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);
when (‘D’, ‘I’, ‘V’, ‘I’, ‘D’) =>
code := 3;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);
when (‘X’, ‘O’, ‘R’, ‘ ‘, ‘ ‘) =>
code := 4;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);

when (‘P’, ‘R’, ‘I’, ‘T’, ‘Y’) =>
code := 5;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);
when (‘N’, ‘A’, ‘N’, ‘D’, ‘ ‘) =>
code := 6;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);
when (‘C’, ‘L’, ‘A’, ‘ ‘, ‘ ‘) =>
code := 7;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);
when (‘E’, ‘N’, ‘D’, ‘ ‘, ‘ ‘) =>
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write (regstw, “END OF FILE “);
writeline (outfile, regstw);
exit;

when others =>
code := -20;
write (regstw, “ERROR “);
write (regstw, code);
writeline (outfile, regstw);
end case;

end if;

end loop;
file_close(infile);
file_close (outfile);

end process;
end BEHAVIOR_ASSM;

Figure 8.10 shows the outfi le “outf.txt” after translating Figure 8.8. 
Notice that in Figure 8.8, the code “HALT” was intentionally miswritten 
as “HLT.” Listing 8.9 spotted this error and reported it in outf.txt (see 
Figure 8.10).

Location
200
201
202
203
204
205
206
207
208
209
210

7
1
4
2
3
4
6
5
0
ERROR
END OF FILE

Address
0
9
10
11
12
13
14
0
0
–20

Code

FIGURE 8.10 Contents of the file outf.txt.

Figure 8.11 shows the rewritten assembly program (Figure 8.8) and 
intentionally omits “ORIG” from the first line of code. According to Listing 
8.9, this is an error.
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CLA
ADD
XOR
MULT
DIVID
XOR
NAND
PRITY
HALT
HLT
END

0
9
10
11
12
13
14
0
0
5

FIGURE 8.11 Variation of the infile asm.txt. ORIG is omitted.

Figure 8.12 shows the contents of the outfi le according to the infi le 
of Figure 8.11.

Code  AddressLocation

ERROR: FIRST OPCODE SHOULD BE ORIG

FIGURE 8.12 Outfile outf.text for translating Figure 8.11.

8.2.2 Examples of Verilog File Processing
Verilog file processing is based on several built-in tasks such as $fopen, 

$fdisplay, $fmonitor, and $fclose. The following example discusses 
file processing in Verilog.

EXAMPLE 8.9 MANIPULATING AND DISPLAYING DATA IN A VERILOG FILE

In this example, consider a system with one two-bit input, a, and one 
three-bit output, b. Output b is related to input a as shown in Equation 8.1:

 b = 2a (8.1)

It is desired to record the value of the outputs as the inputs from a file 
named fi le4.txt change. This file is located in the same path as the Verilog 
module that accesses it. Listing 8.10 shows the Verilog code. The file fi le4.
txt is opened using the task $fopen:

ch1 = $fopen(“file4.txt”);

where fi le4.txt is the name of the file, and ch1 is the indicator of the 
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channel that keeps track of the opened file. To write headings to the file, 
the task $fdisplay is used. For example, the following statement leaves 
two spaces, one blank line, one tab(t), and writes the heading “This is 
fi le4.txt,” and then leaves a blank line:

$fdisplay (ch1, “ \n\tThis is file4.txt\n”);

To monitor any signals, the task $fmonitor is used. This task monitors the 
value of the signal and prints this value into the file. For example, the state-
ment:

$fmonitor (ch1,” %d\t\t%d%b\n”,a,b,
b);

monitors the value of signals a and b. These values are printed in fi le4.txt 
as follows: leave two spaces, print a in decimal, insert two tabs, print the 
value of b in decimal, leave thirty spaces, print the same value of b in binary. 

LISTING 8.10 Verilog Code for Storing b = 2a in file4.txt
module file_test (a, b);
input [1:0] a;
output [2:0] b;
reg [2:0] b;
integer ch1;

initial
    begin
        ch1 = $fopen(“file4.txt”); 
    $fdisplay (ch1, “\n\t\t\t This is file4.txt \n”);
    $fdisplay (ch1, “ Input a in Decimal\t
       \t Output b in Decimal\t\t Output b in Binary\n “);
/The above statement when entered in the Verilog module 
should be entered in one line without carriage return /

    end
always @ (a)
    begin
        b = 2  a; 
           $fmonitor (ch1,”\t%d\t\t\t\t%d\t\t\t\t%b \n”, a,b, b); 
    end
endmodule

Figure 8.13 shows fi le4.txt after execution of Listing 8.10.
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This is file4.txt

Input a in decimal Output b in binaryOutput b in decimal

000

010

100

110

0

2

4

6

0

1

2

3

FIGURE 8.13 File4.txt of Listing 8.10.

8.3 VHDL Record Type

Record type is a collection of elements; the elements can be of the same 
type or of different types. An example of record is shown in Listing 8.11. 
The record in Listing 8.11 includes elements of type integer, weekdays, 
and weather.

LISTING 8.11 Example of Record Type

Type weather is (rain, sunny, snow, cloudy);
Type weekdays is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday);

Type forecast is
Record
Tempr : integer range -100 to 100;
Day : weekdays;
Cond : weather;
end record;

Another example of implementing record is shown in Listing 8.12. The 
user provides a certain day and a desired unit of temperature (Centigrade 
or Fahrenheit), and the VHDL program outputs the current temperature 
and the forecast condition (e.g., rain, cloudy, snowy, or sunny). Let’s exam-
ine the following code from Listing 8.12:

process (Day_in)
variable temp : forecast;

begin

case Day_in is
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when Monday =>
temp.cond := sunny;
if (unit_in = “CEN”) then
temp.tempr := 35.6;
else
temp.tempr := 1.2  35.6 + 32.0;
end if;

The signal Day_in is declared as type weekdays, so possible values for 
this signal are Monday, Tuesday, Wednesday, Thursday, Friday, Satur-
day, or Sunday. The variable temp is declared as type forecast. This type 
is a record, so possible types for this variable are real, string, weekdays, 
or cast. To select one type out of these four types, we write, for example, 
temp.cond. Now temp is of type cast and can assume one of the values of 
this type (i.e., rain, sunny, snow, or cloudy).

LISTING 8.12 VHDL Code for an Example of Record

The following is the code of the package weather_fcst

package weather_fcst is
Type cast is (rain, sunny, snow, cloudy);
Type weekdays is (Monday, Tuesday, Wednesday,
    Thursday, Friday, Saturday, Sunday);
Type forecast is
Record
Tempr : real range -100.0 to 100.0;
unit : string (1 to 3);
Day : weekdays;
Cond : cast;

end record;
end package weather_fcst;

-- Now write the program
library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.weather_fcst.all;
entity WEATHER_FRCST is
    port (Day_in : in weekdays; 
            unit_in : in string (1 to 3);
          out_temperature : out real; 
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          out_unit : out string (1 to 3);

          out_day : out weekdays; out_cond : out cast);
-- Type string is a predefined

end WEATHER_FRCST;

--Now we write the code
architecture behavoir_record of WEATHER_FRCST is
begin
process (Day_in, unit_in)
variable temp : forecast ;

begin

case Day_in is

when Monday =>
temp.cond := sunny;
if (unit_in = “CEN”) then
temp.tempr := 35.6;
elsif (unit_in = “FEH”) then
temp.tempr := 1.2  35.6 + 32.0; 
else
report (“invalid units”); 
end if;

when Tuesday =>
temp.cond := rain;

if (unit_in = “CEN”) then
temp.tempr := 30.2;
elsif (unit_in = “FEH”) then
temp.tempr := 1.2  30.2 + 32.0;
else
report (“invalid units”); 
end if;

when Wednesday =>
temp.cond := sunny;
if (unit_in = “CEN”) then
temp.tempr := 37.2;
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elsif (unit_in = “FEH”) then
temp.tempr := 1.2  37.2 + 32.0;
else
report (“invalid units”); 
end if;

when Thursday =>
temp.cond := cloudy;
if (unit_in = “CEN”) then
temp.tempr := 30.2;
elsif (unit_in = “FEH”) then
temp.tempr := 1.2  30.2 + 32.0;
else
report (“invalid units”); end if;

when Friday =>
temp.cond := cloudy;
if (unit_in = “FEH”) then
temp.tempr := 33.9;
elsif (unit_in = “FEH”) then

temp.tempr := 1.2  33.9 + 32.0;
else
report (“invalid units”); 
end if;

when Saturday =>
temp.cond := rain;
if (unit_in = “CEN”) then
temp.tempr := 25.1;
elsif (unit_in = “FEH”) then
temp.tempr := 1.2  25.1 + 32.0;
else
report (“invalid units”); 
end if;

when Sunday =>
temp.cond := rain;
if (unit_in = “FEH”) then
temp.tempr := 27.1;
elsif (unit_in = “FEH”) then
temp.tempr := 1.2  27.1 + 32.0;
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else
report (“invalid units”); 
end if;

when others =>
temp.tempr := 99.99;
report (“ERROR-NOT VALID DAY”);
end case;

out_temperature <= temp.tempr;
out_unit <= unit_in;
out_day <= Day_in;
out_cond <= temp.cond;
end process;
end behavoir_record;

The simulation output is shown in Figure 8.14.

FEH CEN FEH

76.64

FEH

37.2

sunny

74.7235.6

CEN

out_day

out_cond

out_unit FEH

sunny

CEN

out_temperature

unit_in CEN

WednesdayMondayday_in

WednesdayMonday

FIGURE 8.14 Simulation output of Listing 8.12.
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EXAMPLE 8.10  MEMORY STACK USING ASSERT AND REPORT 
STATEMENTS

In Chapter 1, the statement assert was briefly discussed. The format 
of this statement is:

assert (Boolean condition) 
report “ optional message display”
severity failure;

The severity level can be note, warning, error, or failure. The 
severity level failure is the highest priority; it causes the simulation to 
halt. Here in this example, the assert statement is implemented to design 
a memory stack.

The memory stack consists of a group of memory locations. A special 
register called the stack pointer operates as an address pointer for the stack. 
The contents of the stack pointer are pointed at the top of the stack. The 
top of the stack does not necessarily coincide with the physical top of the 
stack. The lowest address the stack pointer can assume is referred to as the 
bottom of the stack (see Figure 8.15). The stack has two major operations: 
push and pop. Push stores data on top of the stack, and the stack pointer 
is incremented to point to the new top. Pop retrieves data from the top of 
the stack, and the stack pointer is decremented to point at the new top of 
the stack.

Usually the stack has two one-bit flags to indicate whether the stack 
is full or empty. If the stack is full (i.e., the stack pointer is pointing at the 
highest possible address of the stack), a push operation cannot be executed. 
If the stack is empty (i.e., the stack pointer is pointing at the lowest possible 
address of the stack), a pop operation cannot be executed. If the stack is 
full and the CPU tries to execute a push operation, the full flag is set. If the 
stack is empty and the CPU tries to execute a pop operation, the empty flag 
is set. Listing 8.13 shows the VHDL code for stack operation. 

LISTING 8.13 VHDL Code for Stack Operation

library IEEE;
use IEEE.STD_LOGIC_1164.all;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
package stack_pkg is
constant N : integer := 15;
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constant M : integer := 3;
--N+1 is the number of elements in the array.
subtype Memoryword is std_logic_vector (M downto 0);

type Memory is array (N downto 0) of Memoryword;
--The above array represents a 16x4 bits memory
type stack is (push, pop, none);
--The above statement defines three members (push, pop, and
-- none) of the user-defined type stack.
end stack_pkg;

Data_in

Data_in

Data_in

Data_in

Data_in

Data_in

Data_in

Memory

Stack
Stack_pointer

1111

0000 Stack Empty

Stack Full

FIGURE 8.15 A block diagram of memory and the memory stack.
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library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all; 
use work.stack_pkg.all;

entity stck_asrt is
generic (N : integer := 15; M : integer := 3);
    Port (action : in stack; Data_in : in std_logic_vector 
         (M downto 0); clk : in std_logic);
end stck_asrt;

architecture Behavioral of stck_asrt is

begin
stk : process (action, data_in, clk)
variable stack_pointer : integer := 0;
variable Mem_comp : Memory;
begin
if (rising_edge (clk)) then

case action is
when push =>
Mem_comp (stack_pointer) := data_in;
stack_pointer := stack_pointer + 1;
--if the operation is push, the stack pointer is
-- incremented as shown above.
--
assert (stack_pointer < 5)
report “ stack is full-program halts”
severity Failure;

--The above three statements state that if the stack
-- pointer is not less than 5, the program halts
--and the message “stack is full-program halts” is
-- displayed.
“
when pop =>
stack_pointer := stack_pointer - 1;
--If pop, the stack pointer is decremented

when others => null;
end case;
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end if;
end process;
end Behavioral;

Figure 8.16 shows the simulation waveform for Listing 8.13. The figure 
shows the operation push where the stack pointer is incremented every 
time a data is pushed. In the figure, the data has a single value = 1011. 

Simulator halts

1011

pushAction

data_in

clk

FIGURE 8.16 Simulation waveform of the stack in Listing 8.13.

EXAMPLE 8.11 D-LATCH VHDL DESCRIPTION USING BLOCK STATEMENT

D-latch has been described before using data flow, behavioral, and 
structural descriptions. Here, the Block statement is implemented. The 
Block statement refers to a block of concurrent statements within the ar-
chitecture. All local declared signals and variables inside the block are vis-
ible only inside the block. The Block statement has to be labeled. The block 
can be guarded (accessed on a condition), and signals inside the block can 
be guarded. A simplified format for the Block statement is:

label: block (guard_condition)
-- guard_condition can be ommitted
         declarations
begin
         concurrent statements
--above statement can be guarded
end block label;

Listing 8.14 shows the VHDL code for describing a four-bit D latch. The 
block is guarded by the condition E = 1 where E is the enable of the latch; 
the four output signals Q are guarded by following the input signal D. Be sure 
that your simulator can handle the block and the block-guarded statements.
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Listing 8.14 VHDL Code for a Four-Bit D-Latch Using Block Statement

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity BLCKstatement is
port(E: in std_logic; D: in std_logic_vector (3 downto 0);
     Q: out  std_logic_vector ( 3 downto 0));
end BLCKstatement;

architecture blck of BLCKstatement is
begin
Dlatch: block ( E = ‘1’)
begin
Q(0) <= guarded D(0);
Q(1) <= guarded D(1);
Q(2) <= guarded D(2);
Q(3) <= guarded D(3);
end block;

8.4  Verilog User-Defined Primitives

Verilog has several built-in primitives such as and, or, and xor gates 
that have been implemented in Chapter 4. In addition to the built-in, the 
user can build his or her own primitives to describe combinational and se-
quential logic. A very simplified format for the user-defined primitive by 
the name of “sample” is:

module identifier(inputs, outputs)
input……
output…..
/this is the main module where the user defined primitive
is called/

Sample S1(out, in1, in2, in3)
…..
endmodule

Primitive Sample(outp, inp1, inp2, inp3)
//This is the body of the primitive
Output outp;
Input inp1,inp2, inp3;
table



ADVANCED HDL DESCRIPTION • 427

//table is a predefined word
Valu1 valu2 valu3 : value4
……………………………
endtable
endprimitive

The body of the primitive is entered after the end of the module; the 
primitive is called from within the module. All entries in the table of the 
primitive can have only a single bit. The primitive is allowed to have one 
output only; primitive Sample has an output outp. The primitive Sample 
has three inputs inp1, inp2, and inp3. The predefined word table allows 
the user to enter a table that consists of values of the inputs and the out-
put. Value4 is the value of the output giving the input as value1, value2, 
value3 corresponding to inp1, inp2, and inp3. Valu1, valu2, valu3, and 
valu4 can include 0, 1, or x (don’t care). Two types of primitives are dis-
cussed here: combinational and sequential. In combinational, the output in 
the table depends on the inputs only; the table resembles the truth table 
of combinational circuits. In sequential, the output depends on the current 
state and the input; the table resembles the transition table of sequential 
circuits. The following examples will clarify the implementation of user-
defined primitives. 

EXAMPLE 8.12  DESCRIPTION OF A 2x1 MULTIPLEXER WITH ACTIVE LOW 
ENABLE USING USER-DEFINED PRIMITIVES

A description of a 2x1 multiplexer has been written using data-flow de-
scription (see Example 2.3a and Figure 2.9), behavioral description (see 
Example 3.6), and structural description (see Example 4.2). Here, the mul-
tiplexer is described using combinational user-defined primitive (UDP). 
The function of the multiplexer has been shown in Table 2.4 and copied 
here in Table 8.3.

TABLE 8.3 Truth Table for a 2x1 Multiplexer

Input Output
SEL Gbar Y

X H L
L L A
H L B
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The Verilog code for the description of the muliplexer using UDP is 
shown in Listing 8.15. Notice that the entered values can be 0, 1, x, or ?. 
The operator x is the “don’t care;” the operator ? can assume the values 0, 
1, or x. 

LISTING 8.15 Verilog Code 2x1 Multiplexer with Active Low Enable Using 
Combinational User-Defined Primitive

module Mux2x1Prmtv(A, B, SEL, Gbar,Y);
    input A,B,SEL,Gbar;

    output Y;

multiplexer MUX1 (Y, Gbar, SEL,A,B) ;

endmodule
primitive multiplexer (mux, enable, control, dataA, dataB) ;
output mux;
input enable, control, dataA, dataB;
table
// enable control dataA dataB mux
 1 ? ? ? : 0;
 0 0 1 ?  : 1;
 0 0  0  ?  : 0;
 0 1  ?  1  : 1;
 0 1  ?  0  : 0; 
 0 x  0  0  : 0;
 0 x  1  1  : 1;
endtable
endprimitive

The simulation waveform is the same as in Figure 2.10 but without 
any delay.

EXAMPLE 8.13  DESCRIPTION OF A ONE-BIT D-LATCH WITH ACTIVE 
HIGH CLEAR USING SEQUENTIAL USER-DEFINED 
PRIMITIVE

Example 2.4 covered a one-bit latch; data-flow style was implemented 
to describe the latch. Table 2.7 showed the transition table for the latch. 
Table 8.4 shows a transition table for D-latch with active high clear. In the 
table, Q is the current state, and Q+ is the next state.
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TABLE 8.4 Excitation Table of D-Latch with Active High Enable

Inputs Next State
E Clr D Q Q+

x 1 x x 0
0 0 x 0 0
0 0 x 1 1
1 0 0 x 0
1 0 1 x 1

Listing 8.16 shows the Verilog code for the latch using sequential user-
defined primitive D_latch. The primitive D_latch shows the current state 
O1 and the next state O1+. Notice that O1 is declared as an output and a 
register because the primitive needs to know the stored value of the current 
state.

LISTING 8.16 Verilog Code for a D-Latch with Active High Clear Using
Sequential User-Defined Primitive

module latchprimitive(E, clr,D, Q, Qbar);
    input E, clr,D;

    output Q,Qbar;

D_latch D1 (Q, E,clr, D) ;
assign Qbar = ~ Q;

endmodule

primitive D_latch(O1, inp1, inp2, inp3) ;
output O1; 
reg O1 ;
input inp1,inp2,inp3;
table
// inp1 inp2 inp3 O1 O1+
1 0  1  : ? : 1 ; 
1  0 0  : ? : 0 ;
0  0 ?  : ? : - ; // no change
? 1 ? : ? : 0; //if clear signal is=1, Q=0
endtable
endprimitive
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Figure 8.17 shows the simulation waveform of the latch.

Clr

Q

Qbar

Don’t care

Don’t care

D

E

FIGURE 8.17 Simulation waveform of Listing 8.16.

8.5 Cache Memory

Cache memory is a very fast random-access memory (RAM). A typical 
storage media in a microcomputer consists of a hard disk (the longest access 
time and the largest size, usually > 100 gigabytes), the main memory (the 
intermediate access time between the hard disk and the cache with an aver-
age size of 1/100 of the hard-disk size), and the cache memory (the short-
est access time and the smallest size, usually 1/100 of the size of the main 
memory). The hard desk is usually the least expensive in terms of the cost 
per storage byte, followed by the main memory and followed by the cache, 
so the cache is the most expensive in terms of cost per byte of storage. 
The cache can be built inside the CPU, usually called L1 cache (level 1), 
or outside the cache, usually called L2 cache. A computer system may have 
more than one level of cache. Because the cache is the fastest access mem-
ory in the computer, data written into or read from the cache will take a 
short time, and accordingly, the computer system would be faster than the 
same system if it did not have cache memory. However, because the size of 
the cache is the smallest among the storage media, cache memories cannot 
store all the data available in the memory. The communication protocol 
between the CPU, main memory, and cache memory assumes that the data 
requested by the CPU is located in the cache, and the CPU communicates 
directly with the cache first; if the requested data is not found in the cache, 
this data has to be moved from the main memory to the cache. Moving 
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the data from the main memory to the cache takes a relatively long time 
because the main memory is relatively slow compared to the cache. So, to 
speed up the microcomputer, the requested data by the CPU should be 
made available in the cache. If the requested data is found in the cache, it 
is called a hit; otherwise, it is a miss. A parameter called the hit ratio calcu-
lates the ratio of the number of hits divided by the total number of requests 
or references. Obviously, to improve the performance of the computer, the 
hit ratio has to be as high as possible. For the CPU to identify the data in 
the cache to determine whether a hit or a miss has occurred, a mapping 
between the data in the main memory and the cache should be established. 
This mapping is to assure that the data that have moved from the main 
to the cache can be identified. Several mapping schemes such associative, 
random, direct, and set-associative mapping are implemented in the cache 
system. Direct mapping is also known as one-way set-associative mapping. 
Here, direct and set-associative mapping are discussed; for more informa-
tion on the cache system, refer to Hayes, 1998 [1] and Patterson, 2011 [2]. 
To illustrate the mapping schemes, consider a main memory of 16x4 bits 
and a four-word cache. The width of the cache will be determined accord-
ing to the mapping scheme. Let’s assume that the data in the main memory 
are as shown in Table 8.5.

TABLE 8.5 Contents of Main Memory in Decimal

Locationd Datad Locationd Datad

0 3 8 2
1 4 9 1
2  9 10 14
3 10 11 8
4 7 12 6
5 0 13 5
6 13 14 12
7 15 15 11

8.5.1 Direct Mapping 
Let’s start with an empty cache and assume that the first four words in 

the main memory are to be moved into the cache. The four words will be 
moved one word at a time; other applications may move the four words as 
a block, but here, only a single word movement is considered. To access 
any word in the main memory, a four-bit address is needed; for the first 
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word, for example, this address is 00002. To move the data of this location 
to the cache using direct mapping, the address is partitioned into two fields, 
tag and cache address, which is called an index. Because the cache is four 
words, the index is two bits. Because the index is two bits, the tag is what-
ever is left from the four-bit memory address, which will be two bits; the 
memory address is divided into the index of two bits (the least significant 
two bits) and the tag of two bits (the most significant two bits). For the first 
memory word, the index is 00 and the tag is 00. For the memory address 
0001, the index is 01 and the tag is 00. The data of value 3 will be stored in 
the cache address of 00; for the same data word, the tag (00) is inserted at 
the left of the data. In binary, the data is stored in location 00 of the cache, 
000011, a total of six bits. The contents of the cache memory after filling 
the cache with the first four main memory words are shown in Table 8.6. 
The information in the index and the tag can retrace the data to its memory 
location. For example, the index 11 (cache memory location 11) and the 
corresponding tag 00 are pointing at main memory location (0011), and the 
data in this location is 1010. 

TABLE 8.6 Contents of Cache Memory in Binary

Location (index)2 Data2 Location (index)2 Data2

00 000011 10 001001
01 000100 11 001010

Figure 8.18a illustrates the direct-mapping scheme. Listing 8.17 illustrates 
the direct-mapping Verilog description. The main memory is represented 
by an array M:

reg [3:0] M [0:15];

The array M consists of sixteen four-bit words (elements). The data in the 
main memory are entered for each element of the array; for example, M[12] 
= 4’d6 means that location 12d of the main memory is assigned the data 6. 
The cache memory is represented by the array cache:

reg [N:0] cache [0:3];

The array cache consists of four words, and each word is four bits.

The CPU requests data from the cache by issuing a memory address 
where the data is stored. The Listing allows the user to select a one-way 
or two-way by entering 0 or 1, respectively, for the case-control expression 
cachemapping. The statement
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cache[cpuaddress1 [1:0]] =
{cpuaddress1[3:2],M[cpuaddress1]};

concatenates ({) bits 2-3 of the issued CPU address with the main-memory 
data in the address issued by the CPU. For example, if the CPU issues a 
main-memory address of 0100 (4), then location 00 (index) of the cache will 
have 01 (tag) concatenated with M (4), which is 7, so location 00 of the cache 
will have 010111. 

8.5.2 Two-Way Set-Associative Mapping
Figure 8.18 illustrates one- and two-way associative mapping. Figure 

8.18a illustrates the filling (writing) of the first three main-memory loca-
tions (from 0 to 2) in the cache. For this one-way mapping, if another data 
other than the first four data that have been stored needed to be stored 
in the cache, one of the cache data has to be deleted. For example, if the 
data of the main memory location 11112 needed to be stored (written) in 
the cache, the cache data in index 11 has to be deleted because the new 
tag is 11 while the old tag is 00. In two-way set-associative mapping, each 
word of the cache is double the width of that of one-way mapping; this al-
lows for storing two memory data with the same index but with different 
tags in a single word of the cache. Figure 8.18b illustrates two-way map-
ping. The two main memory words in locations 0010 and 1110 cannot be 
stored in a single word for one-way mapping because they have the same 
index (10) but two different tags (00 and 11). However, in two-way map-
ping, these two data can be stored in location (index) 10 of the cache. The 
content of this location is 001001111100, which is the first tag (00), the first 
data (1001), the second tag (11), and the second data (1100). The following 
statement from Listing 8.17 illustrates the filling of a selected cache loca-
tion with two-way set-associative mapping:

cache2[cpuaddress1 [1:0]] = {({cpuaddress1[3:2],
  M[cpuaddress1]}), 
        ({cpuaddress2[3:2],M[cpuaddress2]})}; 

where cpuaddress1[1:0] is the index, cpuaddress1[3:2]is the first 
tag,

M[cpuaddress1] is the first data, cpuaddress2[3:2]is the second tag, 
and M[cpuaddress2]is the second data. Concatenation is used to concat-
enate all twelve bits into a single cache word.
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FIGURE 8.18 Mapping schemes. a) One-way set-associative mapping. b) Two-way set-associative mapping.

LISTING 8.17 Verilog Code for One- and Two-Way Set-Associative Mapping

//single word mapping, one and two-way
module casheMem(start, cachemapping, cpuaddress1,
                 cpuaddress2 );

parameter N= 5;
parameter N1=11;
input start;
input cachemapping;
input [3:0] cpuaddress1, cpuaddress2;

reg [3:0] M [0:15];
reg [N:0] cache [0:3];
reg [N1:0] cache2 [0:3];



ADVANCED HDL DESCRIPTION • 435

always @(start, cachemapping,cpuaddress1, cpuaddress2)
begin
M[0] = 4’d3; M[1] = 4’d4; M[2] = 4’d9;
M[3] = 4’d10; M[4] = 4’d7; M[5] = 4’d0;
M[6] = 4’d13; M[7] = 4’d15; M[8] = 4’d2;

M[9] = 4’d1; M[10] = 4’d14; M[11] = 4’d8;
M[12] = 4’d6; M[13] = 4’d5; M[14] = 4’d12;
M[15] = 4’d11; 

  case (cachemapping)

  1’b0: begin //one-way set-associative (direct mapping)//
cache[cpuaddress1 [1:0]] =
  {cpuaddress1[3:2],M[cpuaddress1]};
  end
1’b1 : begin //two-way associative//
if (cpuaddress1 [1:0] == cpuaddress2 [1:0])
cache2[cpuaddress1 [1:0]] = {({cpuaddress1[3:2],
  M[cpuaddress1]}), 
       ({cpuaddress2[3:2],M[cpuaddress2]})};

begin

cache2[cpuaddress1 [1:0]]
={cpuaddress1[3:2],M[cpuaddress1]};
cache2[cpuaddress2 [1:0]]
={cpuaddress2[3:2],M[cpuaddress2]};
end
end
endcase;

end
endmodule

Listing 8.18 shows a Verilog code for determining whether a hit or a 
miss has occurred after the CPU issued a request of data. The request is 
done by issuing a main-memory address where the required data is located. 
This address is presented to the cache to see if the data is in its contents. If 
it is in the cache, a hit has occurred. Otherwise, a miss has occurred. The 
cache is filled using two-way set-associative mapping. The statement
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if ((cpuaddress [3:2] == data [11:10]) 
| (cpuaddress [3:2] == data [5:4])) 

checks to see if a hit or a miss has occurred for a given index. If the tag 
cpuaddress[3:2] matches either one of the two tags stored in the cache 
at the given index, a hit has occurred. The two tags are data [11:10] and 
data [5:4]. 

LISTING 8.18 Verilog Code for Determining a Hit or Miss

//Determining Hit or Miss without replacement
module hitmiss(cpuaddress, hitORmiss);
parameter N1=11;
input [3:0] cpuaddress;
output [48:1] hitORmiss ;
reg [48:1] hitORmiss;
reg [N1:0] cache [0:3];
reg [3:0] M [0:15];
reg [N1:0] data;

always @(cpuaddress)
begin
/fill two-way the cache in order starting from 
memory location 0; s0  locations 0000 and 0100 
will occupy the first cache location/

M[0] = 4’d3; M[1] = 4’d4; M[2] = 4’d9;
M[3] = 4’d10; M[4] = 4’d7; M[5] = 4’d0;
M[6] = 4’d13; M[7] = 4’d15; M[8] = 4’d2;

M[9] = 4’d1; M[10] = 4’d14; M[11] = 4’d8;
M[12] = 4’d6; M[13] = 4’d5; M[14] = 4’d12;
M[15] = 4’d11; 

cache[0] = 12’b000011010111; cache[1] =12’b000100010000; 
cache[2] = 12’b001001011101; cache[3] = 12’b001010011111;
hitORmiss = “miss”;
data = cache[cpuaddress[1:0]];

if ((cpuaddress [3:2] == data [11:10]) 
| (cpuaddress [3:2] == data [5:4])) 
hitORmiss = “hit “;
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end
endmodule

When a miss occurs in two-way set-associative mapping, new data from 
the main memory is moved into the cache according to its index and tag. 
However, if the location in the cache where the new data should be stored 
is occupied, then one of the cache memory words has to be replaced by 
the new data. If the cache allows a selection of where to store the new data 
(such as in two-way mapping, where there are two locations to choose from 
at each index), then a replacement strategy should be in place. Replace-
ment of old data with new data is not an easy task. If old data is replaced 
and the computer requests this data again, the data has to be moved again 
from the main memory to the cache, and this slows the computer. If the 
replacement strategy is not efficient, the computer with a cache would be 
slower than the same computer without cache. In Listing 8.18, a simple 
replacement algorithm is implemented. The replacement is based on the 
first-in first-out (FIFO) strategy. The new data will replace the oldest data. 
Here, a bit is added as the least significant bit of the cache word. This bit 
(if 0) indicates that the least significant four-bit data in the first set of the 
cache word is the older and should be replaced if needed. If the added bit is 
1, it indicates that the most significant four-bit data in the second set of the 
cache word is older and should be replaced if needed. Figure 8.19 shows 
the output of Listing 8.19.

LISTING 8.19 Verilog Code for Two-Way Set-Associative Cache System with 
Replacement

module FIFOreplace(cpuaddress, hitORmiss);
parameter N1=11;
input [3:0] cpuaddress;
output [48:1] hitORmiss ;
reg [48:1] hitORmiss;
reg [N1+1:0] cache [0:3];
reg [3:0] M [0:15];
reg [N1+2:0] data;
initial
begin
/fill the cache in two-way set associative mapping 
in order starting from memory 
location 0; so locations 0000 and 0100 
will occupy the first cache word/
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M[0] = 4’d3; M[1] = 4’d4; M[2] = 4’d9;
M[3] = 4’d10; M[4] = 4’d7; M[5] = 4’d0;
M[6] = 4’d13; M[7] = 4’d15; M[8] = 4’d2;

M[9] = 4’d1; M[10] = 4’d14; M[11] = 4’d8;
M[12] = 4’d6; M[13] = 4’d5; M[14] = 4’d12;
M[15] = 4’d11; 

/bit0 (the least significant bit) of the word in the
cache indicates the age of the data in the first and the
second set. If bit0=0 then the least significant
data (set) is the older and should be replaced; otherwise
if bit0 =1; the most significant data(set) is the older
and should be replaced. /

cache[0] = 13’b0000110101110; cache[1] =13’b0001000100000; 
cache[2] = 13’b0010010111010; cache[3] =13’b0010100111110;
end

always @(cpuaddress)
begin
hitORmiss = “miss”;
data = cache[cpuaddress[1:0]];

if ((cpuaddress [3:2] == data [12:11]) 
| (cpuaddress [3:2] == data [6:5])) 
hitORmiss = “hit “;
  else
  begin
  if (data[0] == 1’b0)
  begin
  data[0] = 1’b1;
  data[6:5] = cpuaddress [3:2];
data[4:1] = M[cpuaddress];
cache[cpuaddress[1:0]] = data; 
end
else
data[0] = 1’b0;
data[12:11] = cpuaddress [3:2];
data[10:7] = M[cpuaddress];
cache[cpuaddress[1:0]] = data; 
end 
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end
endmodule

Initial cache contents

cpuaddress[1:0] or Index

New cache contents

cpuaddress[1:0] or Index

New cache contents

cpuaddress[1:0] or Index

New cache contents

cpuaddress[1:0] or Index

New cache contents

01AE 0220 04ba

0000

01AE

1111

1111

0220 04ba

01AE

053E

0220 04ba 1DF7
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04ba

04ba

01AE

01AE 0576

hitORmiss = miss

hitORmiss = hit

hitORmiss = miss

hitORmiss = hit

0011

0220

0220

FIGURE 8.19 Replacement algorithm based on the FIFO strategy.

CASE STUDY 8.1 SIMULATION OF ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) are simulated networks that mimic 
a simplified biological nervous system. To understand how ANNs operate, 
let us review the operation of an extremely simplified nervous system. The 
main cells in the nervous system are neurons. A neuron is composed of 
three major parts: a soma (or body), an axon, and a dendrite (see Figure 
8.20). The neuron receives signals from other neurons through its den-
drites, so dendrites are the inputs.

The neuron sends signals to other neurons through its axons, so axons 
are the outputs of the neuron. The connection between the axons of one 
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neuron to the dendrites or soma of another neuron is called a synapse. The 
signals that a neuron sends to its neighbors can activate or excite the receiv-
ing neurons, or they can deactivate or inhibit them. The signal that the neu-
ron sends can be viewed as a spike. When the neuron sends this signal, the 
neuron is said to be firing. The neuron sends this signal if it receives enough 
excitation signals from other neurons. A threshold electric level determines 
whether or not the excitation signals are high enough for firing. The neuron 
fires only when the weighted sum of these excitation signals is higher than 
the threshold. Each neuron asserts different weights on its neighbors.

In the artificial neural network, a node simulates the neuron. Each 
node has inputs and outputs, and the node is connected to a group of oth-
er nodes. The assertion of each node on other nodes is measured by the 
weight of the connection. The networks are implemented in many applica-
tions such as pattern recognition and complex-function generation. In this 
case study, the network is implemented to generate a simple XOR function. 
Figure 8.21 shows a simple artificial neural network. The network consists 
of three layers: input, hidden, and output.

The input layer consists of two nodes, node1 and node2. The hidden 
layer consists of one node, node3, and the output layer consists of one node, 

Dendrites
(input)

Soma (body)
and cell
nucleus

Axons
(output)

FIGURE 8.20 A biological neuron.
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FIGURE 8.21 A simple XOR artificial neural network.
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node4. Wij represents the weight between node j and node i. Because the 
network, shown in Figure 8.21, functions as a XOR gate, the inputs and the 
output of the network should satisfy Table 8.7. 

TABLE 8.7 Values of the Inputs and the Desired Outputs for an XOR Artificial Neural Network

I1 I2 Desired Output (O4)
0 0 0
1 0 1
0 1 1
1 1 0

By adjusting the weights, the network can be programmed to behave as 
a XOR gate. Weight adjustment is called training the network. Network 
training is done in the following steps:

Step 1:  Initialize the weights and assign random small values to the 
weights.

Step 2:  Select an input with the desired output from Table 8.7.

Step 3:  Calculate the output of each node including the output node. 

Step 4:  Calculate the error of node 4.

Step 5:  Select another input and repeat Steps 3–4 and average the four �4 
errors and the four 3 obtained from the four input sets.

Step 6:  Update the weights with the new errors calculated in Step 5.

Step 7:  Repeat Steps 2–6 until the error �4 is lower than the user-defined 
threshold.

In Step 3, for the input layer (nodes 1 and 2), the output is equal to the 
input (O1 = I1 and O2 = I2). For other nodes, the output is calculated as:

 Oi = f (weighted sum)  (8.2)

where the weighted sum is the sum of each output of all nodes connected to 
the node, i, multiplied by the weight. For example, for node 3, the weighted 
sum is determined as:

weighted sum of node 3 = O1W31 + O2W32 + Theta3 × 1

Theta is called the bias or the offset. The weight of all biases theta is equal 
to 1. The function f (see Equation 8.2) is called the firing function. In our 
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example, f is assumed to be a straight line with saturation values in both pos-
itive and negative directions (see Figure 8.22). Many other firing functions 
are implemented in training of artificial neural networks. Some examples of 
these functions are sigmoid, linear, and relay (zero level or saturation level). 
More details on artificial neural networks can be found in Haykin, 1999 [3].

0.5

1.0

wt
–3 –2 –1 1 2 3

f(wt)

FIGURE 8.22 The firing function.

For Step 4, the outputs of the network (node 4) calculated in Step 2 
most likely are not equal to the desired output (see Table 8.3). This error, 
which resulted from the weights selected in Step 1, is calculated as:

 Error of node 4 =�4 = (d – O4) O4 (1 – O4) (8.3)

Because node 3 is not an output node, its error is calculated with a dif-
ferent formula than Equation 8.3 [3]: 

 �3 = O3 (1 – O3) (�4 W43) (8.4)

In Step 5, select another input and repeat Steps 3–4. Average the four 
�4 errors and the four �3 obtained from the four input sets. You can take the 
root mean square of the errors instead of the simple average.

In Step 6, use the following equations to update the weights with the 
new errors calculated in Step 5:

 W4i (new) = W4i (old) + 0.54Oi i = 1, 3 (8.5)

 W3i (new) = W2i (old) + 0.53Oi  i = 1, 2 (8.6)

 Thetai (new) = Thetai (old) + 0.5 �i (8.7)

Step 7 repeats Steps 2–6 until the error �4 is lower than the user-
defined threshold.
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Listing 8.20 shows the HDL code for the artificial neural network of 
Figure 8.21. For simplicity, the network is trained only for input I1 = 0 and 
I2 = 1. The desired output for this set of inputs, as shown in Table 8.7, is 1. 
The training is done with the help of a finite-state machine. A flow chart 
of this machine is shown in Figure 8.23. As shown, the machine has four 
states: state0, state1, state2, and state3. State0 corresponds to Step 3, state1 
corresponds to Step 4, state2 corresponds to Step 6, and state3 corresponds 
to Step 7. 

LISTING 8.20 HDL Description of a Simple Artificial Neural Network

library IEEE;
use IEEE.STD_LOGIC_1164.all;
-- Write a package to include user-selected type
package types is

Calculate
outputs

Equation 2
State0

State1Calculate errors
Equations 3-4

Error<
threshold

Record the
number of
iterations

Output weights
finish

Yes

No

State3

State2

Update weights
Equations 5-7

FIGURE 8.23 Flow chart of the state machine.



444 • HDL WITH DIGITAL DESIGN

type state_machine is (state0, state1, state2, state3);
end;

-- Write the code for the state machine
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use ieee.numeric_std.all;
use work.types.all;

entity neural is

    port (clk : in std_logic; I1, I2, Target4, 
      threshld : in real;
        W31_O, W32_O, W41_O, W42_O, W43_O, Theta3_O,
        Theta4_O : out real;
        output4 : out real; count_O : out natural);

--The weights could have been entered as an array

end neural;

architecture Behavioral of neural is
-- write the firing function
function firing (wt : in real) return real is
variable wt_rl : real;

begin
--The firing function here is a straight line with
--saturation levels at both the positive and negative ends
if (wt <= -2.2) then
wt_rl := 0.06;
elsif (wt > 2.5) then
wt_rl := 1.0;
else
wt_rl := 0.20  wt + 0.5;
end if;
return wt_rl;
end firing;

begin
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--Write the code for the state machine
train : process (I1, I2, Target4, threshld, clk)
variable O1, O2, O3, O4, wtsum, delta3, delta4 : real;
variable eita : real := 0.5;
variable pres_st : state_machine := state0;

--Assign initial values for the weights and theta
variable W31 : real := -1.5;
variable W32 : real := -1.5;
variable W41 : real := -1.0;
variable W42 : real := -1.0;
variable W43 : real := -2.0;
variable Theta3 : real := 1.0;
variable Theta4 : real := 1.0;
variable count : natural := 0;
begin

if (clk = ‘1’ and clk’event) then

case pres_st is
    when state0 =>

--Calculate outputs from Equation 2
    O1 := I1;
    O2 := I2;

--Calculate the weighted sum
    wtsum := W31  O1 + W32O2 + Theta3;
--Apply the firing function
    O3 := firing (wtsum);

wtsum := W41  O1 + W42  O2 + W43  O3 + Theta4;

O4 := firing (wtsum);

pres_st := state1;

when state1 =>
-- Calculate errors
    delta4 := (Target4 - O4) O4  (1.0 - O4);

    delta3 := O3  (1.0 - O3)  (delta4  W43);
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if (delta4 < threshld) then
--The threshold is a user-selected value
    pres_st := state3;
    else
    pres_st := state2;
--Record the number of iteration
    count := count + 1;
    count_O <= count;
    end if;

when state2 =>
--Update weights
    W41 := W41 + eita  delta4  O1;
    W42 := W42 + eita  delta4  O2;
    W43 := W43 + eita  delta4  O3;
    Theta4 := Theta4 + eita  O4;
    W31 := W31 + eita  delta3  O1;
    W32 := W32 + eita  delta3  O2;
    Theta3 := Theta3 + eita  O3;

    pres_st := state0;
when state3 =>
--Finish; report results
    W41_O <= W41;
    W42_O <= W42;
    W43_O <= W43;
    W32_O <= W32;
    W31_O <= W31;
    Theta3_O <= Theta3;
    Theta4_O <= Theta4;
    output4 <= O4;
end case;
end if;
end process train;

end Behavioral;

8.6 Summary

In this chapter, some advanced descriptions were covered. File pro-
cessing in both VHDL and Verilog were discussed. To access any file, the 
file has to be opened before it is accessed. VHDL has several file-process-
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ing procedures such as fi le_open to open files, readline to read a line 
from the file, writeline to write a line into the file, and fi le_close to 
close the file. 

Verilog has file-processing functions such as $fopen to open a file, 
$fdisplay to write data into the file, and $fmonitor to monitor an object 
in the file. The VHDL record type was covered; record is a collection of 
different types. Also, Verilog user-defined primitives were covered. Cache 
memories were briefly discussed and described using Verilog arrays. Fi-
nally, artificial neural networks were discussed, as was the complete VHDL 
code for their training.

8.7 Exercises

1. Write the following data in the VHDL text file exercise_ch8. In the 
file, keep the format and type of the data as it is shown below:
THIS IS THE FILE OF THE EXERCISE OF CHAPTER 8

Training data is 5 3.1 -1.5
Nodes A, B, C, D
Test data 23 12 -5
END

2. Write the VHDL code to store the following words in a file called 
greatest.txt. The words in the file should appear as follows:
ADD
STORE
COMPARE
ZEROS
SUB
STOP

Write the code (in the same module or a new one) to find the word in the 
above file that has the greatest ASCII value. Also, find its order (e.g., the 
order of the word STORE is 1).

3. Rewrite Listing 8.9 using a while-loop instead of a for-loop. Verify 
your code by simulation.

4. Modify the assembler code of Listing 8.9 to accept labels instead of ex-
plicit addresses. Verify your assembler with the program shown below. 
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Notice that for the statement ADD Data1, Data1 is an address, and the 
value of this address is 208. Your code should find this address; do not 
manually substitute 208 for the address.
Label Code Address
 ORG 200
 CLA  0
 ADD  Data1
 XOR  Data2
 MULT  Data3
 XOR  Data2
 NAND  Data4
 PRITY  0
 HALT  0
Data1: 7
Data2: 5
Data3: 4
Data4: 2
 END

5. Build a package with procedures to find the integer code given the mne-
monic code.

6. Use Verilog file processing to compute and display the values of Y when 
X changes incrementally from 0 to 9. The relationship between X and Y 
is:

Y = X2 – 2X + 1

7. In Listing 8.12, it is desired to output the results to a file. Adjust your 
code, especially the user-defined types, to conform to the acceptable 
types that a VHDL file can handle. Rewrite the program and output 
your results to a text file named Wthr_forcst. Each entry of the file 
should be preceded by a short explanation, such as “The Day is” or “The 
Temperature is.”

8. For Listing 8.12, the following segment of the code has been modified 
as shown below. The simulation output of the code after modification 
is not the same as in Figure 8.14. Can you spot the modification and 
explain why we are not getting the same output as in Listing 8.12?
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Listing 8.12 Modified

architecture behavoir_record of WEATHER_FRCST is
begin
process (Day_in)
variable temp : forecast;

begin

case Day_in is

when Monday =>
temp.cond := sunny;
if (unit_in = “CEN”) then
temp.tempr := 35.6;
elsif (unit_in = “FEH”) then
temp.tempr := 1.2  35.6 + 32.0;
else
report (“invalid units”); 
end if;

9. In Listing 8.13, the code for description of a stack operation has been 
written. An assertion was made on the condition when the stack is full. 
Do the following:
(a)  Adjust the segment of the case for when to push to allow for mul-

tiple values of the data_in, so your simulation will show different 
values with the clock instead of just using one value as was done in 
Figure 8.16.

(b)  Use the assert statement with report to ensure that the stack can-
not be popped up if it is empty. Simulate your code and verify.

10. Use Verilog user-defined primitives to describe a D flip-flop with clear 
and preset inputs. The preset if high Q+ goes high.

11. Write a Verilog description to find the hit ratio for a cache system. 
The hit ratio is the ratio between the number of hits divided by the total 
number of times the cache was referenced. 

12. In a FIFO scheme for cache-memory replacement algorithm (Listing 
8.19), an additional bit was added to the cache-memory word to indicate 
the age of the two data stored in the index. Rewrite the code without 
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using this additional bit or any other extra bits. Your replacement algo-
rithm should still be based on FIFO.

13. Simulate the code shown in Listing 8.20 using a threshold of 10–8. What 
are the final values of the weights? How many cycles does it take the 
program to reach these final values?

14. In Case Study 8.1, a network was trained for the inputs I1 = 0 and I2 = 
1. Here, we want to train the network for all possible inputs. This can be 
done in the following steps:
Step 1:  Initialize the weights (as was done in the case study).

Step 2:  Calculate the actual outputs for each input using the same set 
of weights.

Step 3:  Calculate the errors separately for each of the four actual out-
puts; each input set has its desired output. For example, the in-
put set I1 = 1, I2 = 1 has a desired output of 0.

Step 4:  Take the average of the four errors and consider this average the 
ERROR.

Step 5:  Update the weights using the ERROR as was done in the case 
study.

Step 6:  Repeat Steps 2–5 until the ERROR is lower than the threshold.
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C H A P T E R

MIXED-LANGUAGE DESCRIPTION

9
Chapter Objectives

 Understand the concept of mixed-language description
 Learn the advantages of mixing VHDL and Verilog modules
 Learn how to invoke a Verilog module from a VHDL module
 Learn how to invoke a VHDL module from a Verilog module
 Learn the current limitations of mixed-language description

9.1 Highlights of Mixed-Language Description

Mixed-Language Description is a powerful tool in writing HDL code. 
The mixing here is referring to an HDL code with VHDL and Veilog ex-
tracts in the same module. Highlights of the mixed-language description 
can be summarized in the following facts.

Facts
 To write HDL code in mixed language, the simulator used with the 

HDL package should be able to handle a mixed-language environment.
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 In the mixed-language environment, both VHDL and Verilog module 
files are made visible to the simulator.

 In the mixed-language environmen t, both VHDL and Verilog libraries 
are made visible to the simulator.

 At the present time, the mixed-language environment has some limita-
tions, but the development of simulators that can handle mixed-lan-
guage environments with minimal constraints is underway. One of these 
major constraints is that a VHDL module can only invoke the entire 
Verilog module, and a Verilog module can only invoke a VHDL entity. 
For example, we cannot invoke a VHDL procedure from a Verilog mod-
ule. Check your simulator to see if it has recent updates that may not 
have such restrictions.

 Mixed-language description can combine the advantages of both VHDL 
and Verilog in one module. For example, VHDL has more extensive file 
operations than Verilog including write and read. By writing mixed 
language, the VHDL file operations can be incorporated in Verilog 
modules.

9.2 How to Invoke One Language From the Other

As mentioned, when writing VHDL code you can invoke (import) a 
Verilog module; if you are writing Verilog code, you can invoke (import) 
a VHDL entity. The process is similar in concept to invoking procedures, 
functions, tasks, and packages. For example, by instantiating a VHDL pack-
age in a Verilog module, the contents of this package are made visible to 
the module (see Section 9.2.1). Similarly, by invoking a Verilog module in a 
VHDL module, all information in the Verilog module is made visible to the 
VHDL module (see Section 9.2.2).

9.2.1 How to Invoke a VHDL Entity From a Verilog Module
In Verilog, invoke a VHDL entity by entering its name (identifier) and 

its ports in the Verilog module. The parameters of the module should match 
the type and port directions of the entity. VHDL ports that can be mapped 
to Verilog modules are: in, out, and inout; buffer, in some simulators, is 
not allowed. Only the entire VHDL entity can be made visible to the Ver-
ilog module. Listing 9.1 shows an example of how to invoke a VHDL entity 
from a Verilog module.
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LISTING 9.1 Invoking a VHDL Entity From a Verilog Module

//This is the Verilog module
module mixed (a, b, c, d);
input a, b;
output c, d;
...........
VHD_enty V1 (a, b, c, d);
/The above module VHD_enty is the VHDL entity to be
invoked in this module/
...........
endmodule
--This is the VHDL entity
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity VHD_enty is
    port (x, y : in std_logic; O1, O2 : out std_logic);
end VHD_enty;

architecture VHD_enty of VHD_enty is
begin
...........

end VHD_enty;

Consider the following statement in Listing 9.1:

VHD_enty V1 (a,b,c,d)

The simulator looks first in the Verilog module to see if there are any 
Verilog modules by the name of VHD_enty. If it could not find one, the 
simulator looks in the VHDL entities. When the simulator finds an entity 
with the name VHD_enty, it binds this entity to the Verilog module. In List-
ing 9.1, input a is passed to input port x; input b is passed to input y. The 
VHDL entity calculates the outputs O1 and O2; these two outputs are passed 
to the Verilog outputs c and d, respectively. Invoking a VHDL module is 
very similar to invoking a function or a task.

9.2.2 How to Invoke a Verilog Module From a VHDL Module
In the VHDL module, declare a component with the same name as the 

Verilog module to be invoked (see Chapter 4); the name and port modes 
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of the component should be identical to the name and input/output modes 
of the Verilog module. Remember that Verilog is case sensitive, so be sure 
to match the case. Listing 9.2 shows an example of how to invoke a Verilog 
module from a VHDL module.

LISTING 9.2 Invoking a Verilog Module From a VHDL Module

-- This is the VHDL Project

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Ver_VHD is
    port (a, b : in std_logic; c : out std_logic);
end Ver_VHD;

architecture Ver_VHD of Ver_VHD is
component V_modl
    port (x, y : in std_logic; z : out std_logic);

-- The name of the Component V_modl should be
-- identical to the name of the
-- Verilog module; also, the ports should be
-- identical in name and mode
-- with the inputs and outputs of the Verilog module

end component;

.......
end Ver_VHD;
//This is the Verilog module
module V_modl (x, y, z);

    input x, y;
        output z;

endmodule

Referring to Listing 9.2, the component statement in the VHDL module

component V_modl
port (x, y : in std_logic; z : out std_logic);
end component;
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declares a component by the name of V_modl with two input ports, x and 
y, and an output port z. The Verilog module V_modl has the same name 
(including the case) as the component and identical inputs and outputs. Ac-
cordingly, the Verilog module V_modl is bound to the VHDL component 
V_modl. If the Verilog module describes, for example, a two-input XOR 
gate, then in the VHDL module, component V_modl is a two-input XOR 
gate. In the following sections, complete examples of mixed-language de-
scriptions are covered.

9.3 Mixed-Language Description Examples

This section presents mixed-language examples. Section 9.3.1 covers 
examples of invoking VHDL entities from Verilog modules, and Section 
9.3.2 covers examples of invoking Verilog modules from VHDL modules.

9.3.1 Invoking a VHDL Entity From a Verilog Module
As previously mentioned, a VHDL entity is invoked in a Verilog mod-

ule by instantiating the Verilog module with a name that is identical to the 
entity’s name. No other construct should have the same name as the entity. 
A discussion of complete examples follows.

EXAMPLE 9.1 MIXED-LANGUAGE DESCRIPTION OF A FULL ADDER

Here, a full adder is constructed from two half adders, as was done in 
Chapter 4. The logic diagram shown in Figure 4.6 is copied here into Fig-
ure 9.1 for convenience. The code of the half adder is written in VHDL. A 
Verilog module is written to describe a full adder using the VHDL code of 
the half adder. Listing 9.3 shows a mixed-language code for the full adder.

carry

sum
y

cin

Half adder

Half adder

x

FIGURE 9.1 Full adder as two half adders.
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LISTING 9.3 Mixed-Language Description of a Full Adder

--This is the Verilog module
module Full_Adder1 (x, y, cin, sum, carry);
    input x, y, cin;
    output sum, carry;
    wire c0, c1, s0;

HA H1 (y, cin, s0, c0);
HA H2 (x, s0, sum, c1);

// Description of HA is written in VHDL in the entity HA
    or (carry, c0, c1);
endmodule

library IEEE;
use ieee.std_logic_1164.all;
entity HA is

--For correct binding between this VHDL code and the above
--Verilog code, the entity has to be named HA.
    port (a, b : in std_logic; s, c : out std_logic);
end HA;
architecture HA_Dtflw of HA is
begin
    s <= a xor b;
    c <= a and b;
end HA_Dtflw;

Referring to Listing 9.3, the Verilog statement

HA H1 (y, cin, s0, c0);

invokes a module by the name of HA. Because there is no Verilog module 
by this name, the simulator looks at the VHDL modules attached to the 
Verilog modules. The simulator finds an entity by the name of HA; ac-
cordingly, this entity and its bound architecture(s) are made visible to the 
Verilog module. The architecture here is a data-flow description of a half 
adder. The inputs y and cin are passed to the input ports of HA, a and 
b. The VHDL entity calculates the outputs s and c as:

s <= a xor b; c <= a and b;

The outputs of the entity s and c are passed to the outputs of the module 
HA, s0 and c0.
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EXAMPLE 9.2 MIXED-LANGUAGE DESCRIPTION OF A NINE-BIT ADDER

In this example, a nine-bit adder consisting of three adder slices is de-
scribed. Each adder slice is a three-bit carry-lookahead adder. Figure 9.2 
shows a block diagram of the adder.

A3
Three-bit
carrylook

ahead

A2
Three-bit
carrylook

ahead

A1
Three-bit
carrylook

ahead

3

a6-8

3

b6-8

3

Sum_total6-8

3

a3-5

3

b3-5

3

Sum_total3-5

3

a0-2

3

b0-2

3

c0cr0cr1

Sum_total0-2Carry_out

FIGURE 9.2 Block diagram of nine-bit adder.

Listing 9.4 shows the mixed-language description of the nine-bit adder. 
The three-bit carry-lookahead is described by a VHDL module, and the 
Verilog module invokes the VHDL entity three times. The VHDL entity 
adders_RL is a data-flow description of a three-bit lookahead adder (see 
Chapter 2). The delay-propagation time in Listing 9.2 is taken as 0. In the 
Verilog module, the VHDL entity is invoked by the statement:

adders_RL A1 (a [2:0], b [2:0], c0, sum_total [2:0], cr0);

The statement above passes the inputs (a2 a1 a0), (b2 b1 b0), and c0 to 
the input ports of the entity adders_RL, (x

2
 x

1
 x

0
), (y2 y1 y0), and cin. 

The entity calculates the three-bit output (sum
2
 sum

1
 sum

0
) and the one-bit 

output cout. The outputs (sum
2
 sum

1
 sum

0
) and cout are passed to the out-

puts of the Verilog module (sum_total
2
 sum_total

1
 sum_total

0
), and cr0, 

respectively. Each time the VHDL entity is invoked, three bits are added, 
and the output is passed to the Verilog module. Invoking the VHDL entity 
generates a nine-bit adder.

LISTING 9.4 Mixed-Language Description of a Nine-Bit Adder

module Nine_bitAdder (a, b, c0, sum_total, carry_out);
    input [8:0] a, b;
    input c0;
    output [8:0] sum_total;
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    output carry_out;
    wire cr0, cr1;

    //Invoke the VHDL entity
    adders_RL A1 (a [2:0], b [2:0], c0, 
                  sum_total [2:0], cr0);
    adders_RL A2 (a [5:3], b [5:3], cr0, 
                  sum_total [5:3], cr1);
    adders_RL A3 (a [8:6], b [8:6], cr1, 
                  sum_total [8:6], carry_out);

//adders_RL is the name of the VHDL entity

endmodule
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- This is a VHDL data-flow code for a 3-bit 
--carry-lookahead adder.

entity adders_RL is      
port (x, y : in std_logic_vector (2 downto 0); 
cin : in std_logic;     
sum : out std_logic_vector (2 downto 0); 
cout : out std_logic);

--The entity name is identical to that of the Verilog
-- module. The input and output ports have
-- the same mode as the inputs. and outputs of the Verilog
-- module.

end adders_RL;

architecture lkh_DtFl of adders_RL is

signal c0, c1 : std_logic;
signal p, g : std_logic_vector (2 downto 0);
constant delay_gt : time := 0 ns;
--The gate propagation delay here is equal to 0.
begin

g(0) <= x(0) and y(0) after delay_gt;
g(1) <= x(1) and y(1) after delay_gt;
g(2) <= x(2) and y(2) after delay_gt;
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p(0) <= x(0) or y(0) after delay_gt;
p(1) <= x(1) or y(1) after delay_gt;
p(2) <= x(2) or y(2) after delay_gt;
c0 <= g(0) or (p(0) and cin) after 2  delay_gt;

c1 <= g(1) or (p(1) and g(0)) or (p(1) and
    p(0) and cin) after 2  delay_gt;
cout <= g(2) or (p(2) and g(1)) or (p(2) and p(1) 
and g(0)) or(p(2) and p(1) and p(0) and cin)
    after 2  delay_gt;

sum(0) <= (p(0) xor g(0)) xor cin after delay_gt;
sum(1) <= (p(1) xor g(1)) xor c0 after delay_gt; 
sum(2) <= (p(2) xor g(2)) xor c1 after delay_gt;
end lkh_DtFl;

EXAMPLE 9.3  MIXED-LANGUAGE DESCRIPTION OF A THREE-BIT ADDER 
WITH ZERO FLAG

In this example, a mixed-language description of a three-bit adder is 
written. The adder has a one-bit flag. If the output of the adder is 0, the 
flag is set to 1; otherwise, it is set to 0. Figure 9.3 shows the logic diagram 
of the adder. A VHDL entity is written to describe the one-bit adder using 
structural description (see Chapter 4). The VHDL entity is invoked in the 
Verilog module three times.

Three one-bit
full adders

see Figure 9-4

3

B

3

A

3

3

Sum_3

Z_flag

Carry_out cin

FIGURE 9.3 Block diagram of a three-bit adder with a zero flag.
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Listing 9.5 shows the mixed-language description of the adder. The 
VHDL one-bit adder is built from AND_OR_NOT gates (see Figure 9.4).

sum

cout

cin

Y

X

FIGURE 9.4 Logic diagram of a one-bit adder.

The Verilog module

full_add FA0 (A[0], B[0], cin, Sum_3[0], cr0);

invokes the VHDL entity full_add. This entity describes, in structural 
description, a one-bit full adder. Invoking this entity three times from the 
Verilog module generates a three-bit adder. The VHDL module looks very 
long due to the fact that standard VHDL, in contrast to Verilog, does not 
have built-in primitive gates.

LISTING 9.5 Mixed-Language Description of a Three-Bit Adder with a Zero 
Flag

module three_bitAdd (A, B, cin, Sum_3, Carry_out, Z_flag);
    input [2:0] A, B;
    input cin;
    output [2:0] Sum_3;
    output Carry_out;
    output Z_flag;
    wire cr0, cr1;
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    full_add FA0 (A[0], B[0], cin, Sum_3[0], cr0);
    full_add FA1 (A[1], B[1], cr0, Sum_3[1], cr1);
    full_add FA2 (A[2], B[2], cr1, Sum_3[2], Carry_out);

--The above modules invoke the VHDL entity full_add

    assign Z_flag = ~(Sum_3[0] | Sum_3[1] | Sum_3[2] |
                      Carry_out);
endmodule

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity full_add is
    Port (X, Y, cin : in std_logic; 
           sum, cout : out std_logic);
--This is a 1-bit full adder component built from 
--AND-OR-NOT gates; see Figure 9.4.

end full_add;

architecture beh_vhdl of full_add is
--Instantiate the components of a 1-bit adder;
--see Figure 9.4.
component inv
    port(I1 : in std_logic; O1 : out std_logic);
end component;
component and2
   port(I1, I2 : in std_logic; O1 : out std_logic);
end component;
component and3
   port(I1, I2, I3 : in std_logic; O1 : out std_logic);
end component;
component or3
   port(I1, I2, I3 : in std_logic; O1 : out std_logic);
end component;
component or4
   port(I1, I2, I3, I4 : in std_logic; 
O1 : out std_logic);
end component;
for all : inv use entity work.bind1 (inv_0);
for all : and2 use entity work.bind2 (and2_0);
for all : and3 use entity work.bind3 (and3_0);
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for all : or3 use entity work.bind3 (or3_0);
for all : or4 use entity work.bind4 (or4_0);

--The above five “for” statements are to bind the inv,
-- and3, and2, or3, and or4 with the architecture
-- beh_vhdl. See Chapter 4, “Structural Descriptions.”
    signal Xbar, Ybar, cinbar, s0, s1, s2, 
               s3, s4, s5, s6 : std_logic;
begin
Iv1 : inv port map (X, Xbar);
Iv2 : inv port map (Y, Ybar);
Iv3 : inv port map (cin, cinbar);
A1 : and3 port map (X, Y, cin, s0);
A2 : and3 port map (Xbar, Y, cinbar, s1);
A3 : and3 port map (Xbar, Ybar, cin, s2);
A4 : and3 port map (X, Ybar, cinbar, s3);
A5 : and2 port map (X, cin, s4);
A6 : and2 port map (X, Y, s5);
A7 : and2 port map (Y, cin, s6);
O1 : or4 port map (s0, s1, s2, s3, sum);
O2 : or3 port map (s4, s5, s6, cout);
end beh_vhdl;

--The following is the behavioral description of the
--components instantiated in the entity full_add.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bind1 is
   port (I1 : in std_logic; O1 : out std_logic);
end bind1;
architecture inv_0 of bind1 is
begin
   O1 <= not I1;
end inv_0;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity bind2 is
   port (I1, I2 : in std_logic; O1 : out std_logic);
end bind2;
architecture and2_0 of bind2 is
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begin
O1 <= I1 and I2;
end and2_0;
architecture or2_0 of bind2 is
begin
O1 <= I1 or I2;
end or2_0;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bind3 is
   port (I1, I2, I3 : in std_logic; O1 : out std_logic);
end bind3;

architecture and3_0 of bind3 is
begin
   O1 <= I1 and I2 and I3;
end and3_0;

architecture or3_0 of bind3 is
begin
   O1 <= I1 or I2 or I3;
end or3_0;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity bind4 is
   Port (I1, I2, I3, I4 : in std_logic; 
   O1 : out std_logic);
end bind4;
architecture or4_0 of bind4 is
begin
    O1 <= I1 or I2 or I3 or I4;
end or4_0;

EXAMPLE 9.4  MIXED-LANGUAGE DESCRIPTION OF A MASTER-SLAVE D 
FLIP-FLOP

In Chapter 4, a structural description of a master-slave flip-flop was 
written. The flip-flop was built from two D-latches (see Figure 9.5).
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d d

C Qb

QD_in

clk

clkb
clk2

Q0

D-Latch
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Q_outQ
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FIGURE 9.5 Logic diagram of a master-slave D flip-flop.

In this example, a mixed-language description of the flip-flop is writ-
ten. Instead of structural description, VHDL data-flow description is used 
to simulate the D-latch (see Chapter 2). The master-slave flip-flop is de-
scribed in a Verilog module. The VHDL entity is invoked to import the 
description of a D-latch. Listing 9.6 shows the mixed-language description 
of a master-slave flip-flop.

LISTING 9.6 Mixed-Language Description of a Master-Slave D Flip-Flop

//This is the Verilog module
module D_Master (D_in, clk, Q_out, Qb_out);
   input D_in, clk;
   output Q_out, Qb_out;
   wire Q0, Qb, clkb; / wire statement here can be omitted./
   assign clkb = ~ clk;
   assign clk2 = ~ clkb;
   D_Latch D0 (D_in, clkb, Q0, Qb);

//D_Latch is the name of a VHDL entity describing a D-Latch

D_Latch D1 (Q0, clk2, Q_out, Qb_out);

endmodule
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity D_Latch is
--The entity has the same name as 
--the calling Verilog module

port (D, E : in std_logic;
      Q, Qbar : buffer std_logic);
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end D_Latch;

architecture DL_DtFl of D_Latch is
--This architecture describes a D-latch using
--data-flow description
constant Delay_EorD : Time := 9 ns;
constant Delay_inv : Time := 1 ns;

begin

Qbar <= (D and E) nor (not E and Q) after Delay_EorD;
Q <= not Qbar after Delay_inv;
end DL_DtFl;

The simulation waveform is shown in Figure 9.6. 

1 ns9 ns

clk

D_in

D_out

Db_out

FIGURE 9.6 Simulation waveform of a master-slave D flip-flop.

EXAMPLE 9.5 MIXED-LANGUAGE DESCRIPTION OF A 4x4 COMPARATOR

In Chapter 4, an HDL structural description of a 3x3 comparator was 
introduced. The comparator was built from three one-bit adders (see Fig-
ure 4.8). Here, mixed-language description is used. A VHDL behavioral 
module (see Chapter 3) to describe a one-bit full adder is written. A Verilog 
module invokes this VHDL module four times. Listing 9.7 shows the mixed-
language description of a 4x4 comparator. Consider the Verilog code:

generate

genvar i;
for (i = 0; i <= N; i = i + 1)
    begin : u
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    and (eq[i+1], sum[i], eq[i]);
end
endgenerate

If N = 3, the above Verilog code constitutes four two-input AND gates 
(see Figure 9.7). The input to each gate is sum(i) and eq(i); the output 
is eq(i+1). The output of the fourth AND gate, eq(4), is equal to 1 if and 
only if all sum(i), i = 1, 3 are equal to 1. Otherwise, it is equal to 0. If eq(4) 
= 1, this means that X = Y.

Sum(1)

Sum(0)

Sum(2) Sum(3)

eq(4)eq(3)eq(2)eq(1)

eq(0)

FIGURE 9.7 Logic diagram of the Verilog-generated statements in Listing 9.7.

LISTING 9.7 Mixed-Language Description of a 4x4 Comparator

module compr_genr (X, Y, xgty, xlty, xeqy);
parameter N = 3;
input [N:0] X, Y;
output xgty, xlty, xeqy;
wire [N:0] sum, Yb;
wire [N+1:0] carry, eq;
assign carry[0] = 1’b0;
assign eq[0] = 1’b1;
assign Yb = ~Y;

FULL_ADDER FA (X[0], Yb[0], carry[0], 
               sum[0], carry[1]);

-- The module FULL_ADDER has the same name
-- as the VHDL entity FULL_ADDER

FULL_ADDER FA1 (X[1], Yb[1], carry[1], 
                sum[1], carry[2]);
FULL_ADDER FA2 (X[2], Yb[2], carry[2], 
                sum[2], carry[3]);
FULL_ADDER FA3 (X[3], Yb[3], carry[3], 
                sum[3], carry[4]);
generate
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genvar i;
for (i = 0; i <= N; i = i + 1)
    begin : u
and (eq[i+1], sum[i], eq[i]);

end
endgenerate

assign xgty = carry [N+1];
assign xeqy = eq [N+1];
nor (xlty, xeqy, xgty);
endmodule

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity FULL_ADDER is
    Port (A, B, cin : in std_logic; 
           sum_1, cout : out std_logic);
end FULL_ADDER;

architecture beh_vhdl of FULL_ADDER is

--This architecture is a behavioral 
--description of a full adder.

begin

oneBit : process (A, B, cin)
    variable y : std_logic_vector (2 downto 0);
    begin
        Y := (A & B & Cin);

--The above statement is a concatenation of
--three bits A, B, and Cin

case y is
    when “000” => sum_1 <= ‘0’; cout <= ‘0’;
    when “110” => sum_1 <= ‘0’; cout <= ‘1’;
    when “101” => sum_1 <= ‘0’; cout <= ‘1’;
    when “011” => sum_1 <= ‘0’; cout <= ‘1’;
    when “111” => sum_1 <= ‘1’; cout <= ‘1’;
    when others => sum_1 <= ‘1’; cout <= ‘0’;
--Others here refer to 100, 001, 010
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end case;
    end process;
    end beh_vhdl;

9.3.2 Invoking a Verilog Module From a VHDL Module
As mentioned, a Verilog module can be invoked from a VHDL module 

by instantiating a component in the VHDL module that has the same name 
and ports as the Verilog module. The Verilog module should be the only 
construct that has the same name as the component. Presently, this is the 
only way Verilog modules can be invoked from VHDL. Several examples 
are discussed below.

EXAMPLE 9.6 INSTANTIATING AN AND GATE FROM A VHDL MODULE

A basic VHDL does not have built-in gates such as AND, OR, and XOR, 
unless the user attaches a vendor’s package that contains a description of 
the gates. Standard Verilog, on the other hand, has built-in descriptions of 
primitive gates of which we can take advantage. Using mixed-language de-
scription, a Verilog module is invoked in the VHDL module, and the gates 
that we want to use are instantiated. Listing 9.8 shows a mixed-language de-
scription of instantiating an AND gate in a VHDL module. The description 
of the AND gate is provided by the Verilog module. Referring to Listing 
9.8, the VHDL statements

component and2
    port (x, y : in std_logic; z : out std_logic);
end component;

declare a component by the name of and2. The component has two input 
ports, x and y, and one output port, z. To link this component to a Verilog 
module, the module has to have the same name and ports as the compo-
nent. The Verilog module is written as:

module and2 (x, y, z);

It has the same name and the same ports, so all Verilog statements pertain-
ing to x, y, and z are visible to the VHDL module. In the Verilog module, 
write:

and(z,x,y);

The statement above describes an AND relationship between x, y, and z.
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LISTING 9.8 Mixed-Language Description of an AND Gate

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

--This is the VHDL module

entity andgate is
    port (a, b : in std_logic; c : out std_logic);
end andgate;

architecture andgate of andgate is
component and2

--For correct binding with the Verilog module,
--the name of the component should be identical
--to that of the Verilog module.

    port (x, y : in std_logic; z : out std_logic);

--The name of the ports should be identical to the name
--of the inputs/outputs of the Verilog module.

end component;

begin
    g1 : and2 port map (a, b, c);
end andgate;
//This is the Verilog module
module and2 (x, y, z);

    input x, y;
    output z;
    and( z, x , y);
endmodule

EXAMPLE 9.7  MIXED-LANGUAGE DESCRIPTION OF A JK FLIP-FLOP WITH 
A CLEAR SIGNAL

In this example, a mixed-language description of a JK flip-flop is writ-
ten. JK flip-flops were covered in Chapters 3 and 4. The excitation table of 
a JK flip-flop with a clear signal is shown in Table 9.1.
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TABLE 9.1 Excitation Table for a JK Flip-Flop

Clear J K clk q (next state)
1 x x � q = 0
0 0 0 � No change (hold), next = current
0 1 0 � 1
0 0 1 � 0
0 1 1 � Toggle (next state) = invert of (current state)

The flip-flop is declared as a VHDL component, and a Verilog behav-
ioral description of the flip-flop based on Table 9.1 is written. The Verilog 
is linked to the VHDL component by giving the Verilog module the same 
name as the VHDL component. The ports of the component should also 
be the same as those of the Verilog module. Listing 9.9 shows the mixed-
language description of the flip-flop. The JK flip-flop is declared as a com-
ponent with the statement:

component jk_verilog
    port(j, k, ck, clear : in std_logic; 
q, qb : out std_logic);
end component;

The above component is linked to a Verilog module by the statement:

module jk_verilog (j, k, ck, clear, q, qb);

The above module has the same name and ports as the VHDL component 
jk_verilog. Accordingly, the relationship between the input and output 
ports described in the Verilog module is visible to the VHDL component. 
The Verilog module describes, in behavioral style, a JK flip-flop with an 
active high clear. Hence, the VHDL component jk_verilog is also a JK 
flip-flop with an active high clear.

LISTING 9.9 Mixed-Language Description of a JK Flip-Flop

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity JK_FF is
    Port (Jx, Kx, clk, clx : in std_logic; 
          Qx, Qxbar : out std_logic);
end JK_FF;
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architecture JK_FF of JK_FF is

--The JK flip flop is declared as a component
component jk_verilog
    port(j, k, ck, clear : in std_logic; 
         q, qb : out std_logic);
end component;
begin

jk1 : jk_verilog port map (Jx, Kx, clk, clx, Qx, Qxbar);

end JK_FF;
module jk_verilog (j, k, ck, clear, q, qb);
// The module name jk_verilog matches
// the name of the VHDL components

input j, k, ck, clear;
output q, qb;
--The input and output ports match those of the
--VHDL component, jk_verilog

reg q, qb;
reg [1:0] JK;
always @ (posedge ck, clear)
begin
    if (clear == 1)
        begin
            q = 1’b0;
            qb = 1’b1;
        end
        else
             begin
                  JK = {j, k};
                  case (JK)
                  2’d0 : q = q;
                  2’d1 : q = 0;
                  2’d2 : q = 1;
                  2’d3 : q = ~q;
                  endcase
                  qb = ~q;
             end
end
endmodule



472 • HDL WITH DIGITAL DESIGN

The simulation waveform of the JK flip-flop is shown in Figure 9.8.

clk

clx

Jx

Kx

Qx

Qxbar

FIGURE 9.8 Simulation waveform of a JK flip-flop with an active high clear.

EXAMPLE 9.8  MIXED-LANGUAGE DESCRIPTION OF A THREE-BIT 
SYNCHRONOUS COUNTER WITH CLEAR

This example was first covered in Chapter 4. Figure 4.20 shows the 
logic diagram of the counter, and Listing 4.23 shows the VHDL and the 
Verilog descriptions. Here, the code of the counter is written using mixed 
language. For convenience, Figure 4.20 is presented again here as Figure 
9.9. As shown, the counter consists of three JK flip-flops, and OR, AND, 
and INVERT gates.
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FIGURE 9.9 Three-bit synchronous counter with clear.
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Listing 9.10 shows the mixed-language description of the counter. A Ver-
ilog module that describes a JK flip-flop and an AND, OR, and INVERT is 
written. The Verilog module is invoked from a VHDL module three times. 
In the VHDL module, a component declaration for the flip-flop and the 
gates is written. The names of the components are the same as the corre-
sponding Verilog modules. For example, the VHDL statement:

component JK_FF
port (I1, I2, I3 : in std_logic; 
O1, O2 : inout std_logic);
end component;

declares a component by the name of JK_FF. The Verilog module by the 
name of JK_FF describes a JK flip-flop. Accordingly, the VHDL compo-
nent JK_FF is a JK flip-flop. To facilitate the link between the Verilog and 
VHDL modules, we slightly modify the VHDL module from Listing 4.23, 
in which the instantiation statement for flip-flop FF0 was written as:

FF0 : JK_FF port map (clrb1, ’1’, clk, q(0), qb(0));

The Verilog module can accept a signal, variable, or constant, but it may not 
accept the value 1. Therefore, we declare a signal named high and assign it 
a value of 1 as follows:

high <= ‘1’;
FF0 : JK_FF port map (clrb1, High, clk, q(0), qb(0));

LISTING 9.10 Mixed-Language Description of Three-Bit Counter with Clear

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity countr_3 is
port (clk, clrbar : in std_logic;
    q, qb : inout std_logic_vector (2 downto 0));
end countr_3;

architecture CNTR3 of countr_3 is

component JK_FF
    port (I1, I2, I3 : in std_logic; 
          O1, O2 : inout std_logic);
end component;

component inv
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    port (I1 : in std_logic; O1 : out std_logic);
end component;

component and2
    port (I1, I2 : in std_logic; O1 : out std_logic);
end component;

component or2
    port (I1, I2 : in std_logic; O1 : out std_logic);
end component;

signal J1, K1, J2, K2, clr, clrb1, s1, high : std_logic;
begin

    high <= ‘1’;

FF0 : JK_FF port map (clrb1, High, clk, q(0), qb(0));
A1 : and2 port map (clrb1, q(0), J1);
inv1 : inv port map (clr, clrb1);
inv2 : inv port map (clrbar, clr);

r1 : or2 port map (q(0), clr, K1);
FF1 : JK_FF port map (J1, K1, clk, q(1), qb(1));
A2 : and2 port map (q(0), q(1), s1);
A3 : and2 port map (clrb1, s1, J2);
r2 : or2 port map (s1, clr, K2);
FF2 : JK_FF port map (J2, K2, clk, q(2), qb(2));
end CNTR3 ;

module and2 (I1, I2, O1);
//This Verilog module represents an AND function

input I1, I2;
output O1;
assign O1 = I1 & I2;
endmodule

module inv (I1, O1);
//This Verilog module represents an INVERT function

input I1;
output O1;
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assign O1 = ~I1;
endmodule

module or2 (I1, I2, O1);
//This Verilog module represents an OR function

input I1, I2;
output O1;
assign O1 = I1 | I2;
endmodule

module JK_FF (I1, I2, I3, O1, O2);
//This Verilog module represents a JK flip-flop.
input I1, I2, I3;
output O1, O2;

reg O1, O2;
reg [1:0] JK;
initial
    begin
    O1 = 1’b0;
    O2 = 1’b1;
    end
always @ (posedge I3)
begin
    JK = {I1, I2};
    case (JK)
    2’d0 : O1 = O1;
    2’d1 : O1 = 0;
    2’d2 : O1 = 1;
    2’d3 : O1 = ~O1;
    endcase
    O2 = ~O1;
end
endmodule

EXAMPLE 9.9  MIXED-LANGUAGE DESCRIPTION OF AN N-BIT COUNTER 
WITH RIPPLE CARRY-OUT

In this example, we discuss an n-bit asynchronous counter with a ripple 
carry-out (RCO). Figure 9.10 shows the logic diagram of the counter. As 
shown, the ripple carry-out is 1 when all Qs are 1s. In Chapter 4, asynchro-
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nous counters were discussed and described using the generate statement. 
Here, we use mixed-language description to invoke a Verilog module from 
a VHDL module. Listing 9.11 shows the mixed-language description of the 
counter.
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FIGURE 9.10 Logic diagram of an n-bit synchronous counter with ripple carry-out.

As shown in Figure 9.10, to construct the counter, we need n-JK flip-
flops and n-input and gates. Two Verilog modules, jkff and andgate, 
are implemented to describe a JK flip-flop and a three-input AND gate, 
respectively. The module jkff is written in behavioral description, and the 
module andgate is written in data-flow description.

LISTING 9.11 Mixed-Language Description of an N-Bit Asynchronous Counter

--This is a VHDL module
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity asynch_ctrMx is
Generic (N : integer := 3);

port (clk, clear : in std_logic;
      C, Cbar : out std_logic_vector (N-1 downto 0);
rco : out std_logic);

end asynch_ctrMx;

architecture CT_strgnt of asynch_ctrMx is

component jkff is
--This is a JK flip-flop with a clear bound to Verilog
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-- module jkff

    port (j, k, clk, clear : in std_logic; 
          q, qb : out std_logic);
end component;
component andgate is
--This is a three-input AND gate bound to Verilog module
-- andgate

    port (I1, I2, I3 : in std_logic; O1 : out std_logic);
end component;

signal h, l : std_logic;
signal s : std_logic_vector (N downto 0);
signal s1 : std_logic_vector (N downto 0);
signal C_tem : std_logic_vector (N-1 downto 0);

begin
h <= ‘1’;
l <= ‘0’;
s <= (C_tem & clk);

-- s is the concatenation of Q and clk. We need this
-- concatenation to describe the clock of 
--each JK flip-flop.

s1(0) <= not clear;

Gnlop : for i in (N - 1) downto 0 generate

G1 : jkff port map (h, h, s(i), clear, C_tem(i), Cbar(i));

end generate GnLop;
C <= C_tem;
rc_gen : for i in (N - 2) downto 0 generate
--This loop to determine the ripple carry-out
rc : andgate port map (C_tem(i), C_tem(i+1), 
s1(i), s1(i+1));
end generate rc_gen;
rco <= s1(N-1);
end CT_strgnt;
module jkff (j, k, clk, clear, q, qb);
// This is a behavioral description of a JK flip-flop
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input j, k, clk, clear;
output q, qb;
reg q, qb;
reg [1:0] JK;
always @ (posedge clk, clear) 
begin
    if (clear == 1)
        begin
            q = 1’b0;
            qb = 1’b1;
        end
        else
            begin
                JK = {j,k};
                case (JK)
                2’d0 : q = q;
                2’d1 : q = 0;
                2’d2 : q = 1;
                2’d3 : q = ~q;
                endcase
                qb = ~q;
            end
end
endmodule
module andgate (I1, I2,I3, O1);
//This is a three-input AND gate
    input I1, I2, I3;
    output O1;
    assign O1 = (I1 & I2 & I3);
   endmodule

The simulation waveform is shown in Figure 9.11.

clk

clear

C 0 7 6 5 4 23

Cbar 7 0 1 2 3 54

FIGURE 9.11 Simulation waveform for an n-bit asynchronous counter. The simulation pattern might be 
different than shown due to the presence of transient states (hazards).
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EXAMPLE 9.10  MIXED-LANGUAGE DESCRIPTION OF A SWITCH-LEVEL 
MULTIPLEXER

In Chapter 5, several combinational and sequential logics were de-
scribed using VHDL or Verilog switch-level description. We also saw that 
the basic VHDL package, in contrast to Verilog, does not have built-in 
switch-level primitives. Here, mixed-language description is used to de-
scribe a 2x1 multiplexer; a switch-level Verilog description is invoked from 
a VHDL module. By invoking Verilog modules, the VHDL module be-
haves as if it possesses built-in switch-level primitives. Listing 9.12 shows 
the mixed-language description of a 2x1 multiplexer. The statement

component pmos_verlg
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

declares a VHDL component by the name pmos_verlg. The name of the 
component is the same as the name of the Verilog module that uses the 
built-in primitive pmos to describe a pmos switch. In this way, the switch is 
made visible to the VHDL module.

LISTING 9.12 Mixed-Language Description of a 2x1 Multiplexer

--This is the VHDL module.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity mux2x1_mxd is
Port (a, b, Sel, E : in std_logic; ybar : out std_logic);
end mux2x1_mxd;

architecture mux2x1switch of mux2x1_mxd is

component nmos_verlg
--This component, after linking to a 
--Verilog module, behaves as an nmos switch
port (O1 : out std_logic; I1, I2 : in std_logic);

end component;

component pmos_verlg
--This component, after linking to a Verilog module,
-- behaves as a pmos switch.
port (O1 : out std_logic; I1, I2 : in std_logic);
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end component;
--constant vdd : std_logic := ‘1’;
--constant gnd : std_logic := ‘0’;

-- In Chapter 5 we wrote Vdd and gnd as constants.
-- Some VHDL/Verilog simulators do not transfer constants
-- between VHDL and Verilog. So we wrote them as signals.

signal vdd, gnd, Selbar, s0, s1, s2, s3 : std_logic;
begin
    vdd <= ‘1’;
    gnd <= ‘0’;

--Invert signal Sel. If the complement of Sel is available,
--then no need for the following pair of transistors.

v1 : pmos_verlg port map (Selbar, vdd, Sel);
v2 : nmos_verlg port map (Selbar, gnd, Sel);
--Write the pull-down combination
n1 : nmos_verlg port map (s0, gnd, E);
n2 : nmos_verlg port map (s1, s0, Sel);
n3 : nmos_verlg port map (ybar, s1, a);
n4 : nmos_verlg port map (s2, s0, Selbar);
n5 : nmos_verlg port map (ybar, s2, b);
--Write the pull-up combination
p1 : pmos_verlg port map (ybar, vdd, E);
p2 : pmos_verlg port map (ybar, s3, Sel);
p3 : pmos_verlg port map (ybar, s3, a);
p4 : pmos_verlg port map (s3, vdd, Selbar);
p5 : pmos_verlg port map (s3, vdd, b);

end mux2x1switch;

// This is the Verilog Module

module nmos_verlg (O1, I1, I2);
    input I1, I2;
    output O1;
nmos (O1, I1, I2);
endmodule

module pmos_verlg (O1, I1, I2);
    input I1, I2;
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    output O1;
pmos (O1, I1, I2);
endmodule

EXAMPLE 9.11 INSTANTIATING CASEX IN VHDL

Chapter 3 covered the casex statement for both VHDL and Verilog. 
We have seen that casex ignores the “don’t care” (x) in the values of the 
control expression. Consider the following casex:

casex (a)
    4’bxxx1 : b = 4’d1;
    4’bxx10 : b = 4’d2;
    ………………..
    endcase;

All xs are ignored; for example, b = 1 if and only if the least significant 
bit of a is 1, regardless of the value of the high-order bits of a. Another 
Verilog variation of case is the casez (see Chapter 3), where z is the high 
impedance. VHDL does not have an exact replica of casex or casez. With 
mixed-language description, we can instantiate a command similar to casex 
and casez in the VHDL module. Listing 9.13 shows a mixed-language de-
scription that instantiates a command by the name of cas_x in the VHDL 
module; this command performs the same function as the Verilog casex. 
Listing 9.13 represents a four-bit priority encoder. This encoder was dis-
cussed in Chapter 3. The truth table of the encoder is shown in Table 9.2.

TABLE 9.2 Truth Table for a Four-Bit Encoder

Input Output
a b

xxx1 1
xx10 2
x100 4
1000 8

Others 0

LISTING 9.13 Instantiating casex in a VHDL Module

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity P_encodr is
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    Port (X : in std_logic_vector (3 downto 0);
        Y : out std_logic_vector (3 downto 0));
end P_encodr;
architecture P_encodr of P_encodr is

component cas_x
--The name of the component is identical to the name of the
--Verilog module

port (a : in std_logic_vector (3 downto 0);
    b : out std_logic_vector (3 downto 0));

end component;

begin

ax : cas_x port map (X, Y);

end P_encodr;

module cas_x (a, b);
    input [3:0] a;
    output [3:0] b;
    reg [3:0] b;
    always @ (a)
         begin
             casex (a)
            4’bxxx1 : b = 4’d1;
            4’bxx10 : b = 4’d2;
            4’bx100 : b = 4’d4;
            4’b1000 : b = 4’d8;
            default : b = 4’d0;

            endcase
         end
endmodule

EXAMPLE 9.12  MIXED-LANGUAGE DESCRIPTION OF A LOW-PASS RC 
FILTER

The function of an electronic filter is to block a certain frequency band 
in a signal. There are several types of simple filters such as low pass, high 
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pass, and band pass. Low-pass filters allow frequencies below a certain 
threshold (called the cutoff frequency) to pass with or without minimal 
attenuation. All frequencies above the threshold are attenuated; frequen-
cies close to the cutoff are less attenuated than those frequencies far from 
the cutoff. High-pass filters pass frequencies higher than the cutoff with 
or without minimal attenuation. Frequencies lower than the cutoff are at-
tenuated, and frequencies close to the cutoff are less attenuated than those 
signals far from the cutoff. 

Figure 9.12 shows a low-pass filter consisting of a resistance (R) con-
nected in serial with a capacitance (C). The impedance of the capacitance 
is (1/jwC) where w = 2f, f is the frequency, and j = 1 . The ratio of the 
output signal (Vo) to the input signal (Vi) is:

 Vo 1/jwC 1
Vi R 1/jwC jwCR 1

 
 

 (9.1)

(Vo/Vi) is called the transfer function of the filter (H(w)). The square of the 
amplitude of the transfer function can be written as:

 [H(w)]2 =
2

1
w CR 1

 (9.2)

 The cutoff frequency wc = (1/RC) (9.3)

Substitute Equation 9.3 into Equation 9.2 to get:

 [H(w)]2 = 2
c

1
(w/w ) 1  (9.4)

C

R

VoVi

FIGURE 9.12 Simple low-pass RC filter.
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We want to simulate Equation 9.4 using mixed-language descrip-
tion and output the value of [H(w)]2 as it changes with w; this value will 
be stored in a file. Because VHDL has extensive file operations, VHDL is 
implemented here to handle the file operations. The Verilog module will 
handle the calculations. Listing 9.14 shows the mixed-language description 
of a simple RC filter. In the VHDL module, the inputs and outputs are 
described as:

entity Filter_draw is
    Port (w, w_ctoff : in std_logic_vector (3 downto 0);
    Hw_vhd : out std_logic_vector (7 downto 0));
end Filter_draw;

As shown in the entity Filter_draw, the inputs and outputs are se-
lected to be of type std_logic_vector. The output [H(w)]2 in Equation 
9.4 is represented by the signal Hw_vhd. The inputs w and wc in Equation 
9.4 are represented by w and w_ctoff. To simplify the description, all inputs 
and outputs are assumed to be integers. We could have selected the type of 
inputs and outputs in the entity to be integer, but here we want to practice 
converting from one type to another. Also, we want an easy link between 
the VHDL and Verilog ports because integer ports are not allowed to be 
mapped from Verilog to VHDL. If the output Hw_vhd is calculated as in 
Equation 9.4, using integer division, the output would be zero for all values 
of w because the numerator is always less than the denominator. Instead, 
we calculate Equation 9.4 as real division and then scale it up by multiply-
ing it by 100. For example, if w = 3 units, and the cutoff = 4 units, then from 
Equation 9.4:

Real (Hw_vhd) = 
2

1
(3/ 4) 1

 = 0.64

After scaling up by 100, then Hw_vhd = 64

Because VHDL files accept only integers, real values, and characters, we 
write a VHDL function to convert from std_logic_vector to integer. In 
Listing 9.14, the user-defined function TO_Intgr converts std_logic_vec-
tor to integer. To invoke the Verilog module from the VHDL module, we 
write a component declaration in the VHDL module:

component flter_RC
    port (I1, I2 : in std_logic_vector (3 downto 0); 
          O1 : out std_logic_vector (7 downto 0));
end component;
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The name of the component is fl ter_RC; it has two input ports, I1 and I2 of 
type std_logic_vector, and one output port, O1 of type std_logic_vec-
tor. To invoke the Verilog module, we declare the module as follows:

module flter_RC (I1, I2, O1);
input [3:0] I1, I2;
output [7:0] O1;

The above Verilog module has the same name and ports as the VHDL 
component; thus, the module is visible to the VHDL module. In the Ver-
ilog module, we perform the real division O1 = 1/[(I1/I2)2 + 1]. Because I1 
and I2 are not declared as real, the division will be performed as integer, 
and O1 will be zero for all values of I1 and I2. To avoid this, we multiply 
I1 and I2 by 1.0:

s1 = ((1.0  I1) / (1.0  I2))  2;
S = 1.0 / (1.0 + s1);

S and s1 are declared as real; the value of S is the real value of the divi-
sion 1/[(I1/I2)2 + 1]. The output of the Verilog module, O1, is calculated by 
multiplying S by 100. This output is passed to the VHDL module. As can 
be seen, Verilog, in contrast to VHDL, is flexible in handling different data 
types. We would not have been able to easily perform the real division in 
VHDL. After calculating the output, it is entered into a text file. All of the 
data in std_logic_vector to be entered into the file must be converted to 
integers because files cannot take the type std_logic_vector. 

LISTING 9.14 Mixed-Language Description of a Simple RC Filter

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use std.textio.all;
use ieee.numeric_std.all;

entity Filter_draw is
Port (w, w_ctoff : in std_logic_vector (3 downto 0); 
      Hw_vhd : out std_logic_vector (7 downto 0));

end Filter_draw;

architecture Filter_draw of Filter_draw is

Function TO_Intgr (a : in std_logic_vector) return 
                          integer is
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--This Function converts std_logic_vector type to integer

variable result : integer;

begin
    result := 0;
    lop1 : for i in a’ range loop
    if a(i) = ‘1’ then
    result := result + 2i;
    end if; 
    end loop;
return result;
end TO_Intgr;

component flter_RC
--The name of the component “flter_RC” is the same name as
-- the Verilog module.
    port (I1, I2 : in std_logic_vector (3 downto 0); 
          O1 : out std_logic_vector (7 downto 0));

end component;
signal Hw_tmp : std_logic_vector (7 downto 0);
begin
dw : flter_RC port map (w, w_ctoff, Hw_tmp);

//output the data on a file
fl : process (w, w_ctoff, Hw_tmp)
file outfile : text;
variable fstatus : file_open_status;
variable temp : line;
variable Hw_int, w_int, w_ctoffintg : integer;

begin
--Files can take integer, real, or character;
--they cannot take std-logic-vector; so convert to integer.

Hw_int := TO_Intgr (Hw_tmp);
w_int := TO_Intgr (w);
w_ctoffintg := TO_Intgr (w_ctoff);
file_open (fstatus, outfile, “Wfile_int.txt”, write_mode);
--The file name is Wfile_int.txt
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--Write headings. Be sure your simulator supports
-- formatted output. otherwise take out all formatted
-- output statements

write (temp, “ This is a Simple R-C Low Pass Filter”);
--The above statement when entered in the VHDL module
-- should be entered in one line without carriage return.

writeline (outfile, temp);
write (temp, “ “);
writeline (outfile, temp);
write (temp, “ FREQUENCY 
CUTOFF Amplitude Square”);
--The above statement when entered in the VHDL module
--should be entered in one line without carriage return.

writeline (outfile, temp);
write (temp, “ “);

--write the values of the filter parameters
write (temp, w_int);
write (temp, “ “);
write (temp, w_ctoffintg);
write (temp, “ “);
write (temp, Hw_int);
writeline (outfile, temp);

file_close (outfile);
Hw_vhd <= Hw_tmp;
end process fl;
end Filter_draw;

// Next we write the Verilog module;
// the module performs a real division
module flter_RC (I1, I2, O1);

/The module performs the real division 
O1 = 1/[(I1/I2)2 + 1]/

input [3:0] I1, I2;
output [7:0] O1;
reg [7:0] O1;
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real S, s1;
always @ (I1, I2)
begin
s1 = ((1.0I1)/(1.0  I2))2 ;
/we multiply by 1.0 so the division is done in real
format./

S = 1.0 / (1.0 + s1);
O1 = 100.00  S;
end
endmodule

The file Wfi le_int.txt, after simulation, is shown in Figure 9.13.

This is a Simple R-C Low Pass Filter

FREQUENCY CUTOFF Amplitude Square*100
6443

FIGURE 9.13 The file Wfile_int.txt after simulation.

EXAMPLE 9.13  MIXED-LANGUAGE DESCRIPTION OF A 2x1 
MULTIPLEXOR WITH ACTIVE-LOW ENABLE USING 
USER-DEFINED PRIMITIVE

Example 8.12 introduced a Verilog code for the description of a 2x1 
multiplexor with active-low enable using user-defined primitive (UDP). 
Here, a VHDL code is written that invokes the Verilog code, so the VHDL 
code appears as if it can use the Verilog UDP. Listing 9.15 shows the 
mixed-language description of the multiplexer. The first part is a VHDL 
code declaring the inputs and the output of the multiplexer as ports of the 
entity muxVHDL:

port(G1,SL1,A1,B1: in std_logic; Y1: out std_logic);

The same VHDL code then declares a component by the name 
Mux2x1Prmtvvlog. The name of the component and its ports have to be 
the same as the name of the Verilog module and its ports. The Verilog code 
is identical to Listing 8.15. The simulation of the VHDL code is identical 
to that of Listing 8.15, except the inputs now are G1, SL1, A1, and B1, and 
the output is Y1. The VHDL simulation shows that the VHDL code can 
implement the Verilog UDP.
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LISTING 9.15 Mixed-Language Description of a 2x1 Multiplexor with Active-
Low Enable Using Verilog User-Defined Primitive

--This is the VHDL code

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity muxVHDL is
port(G1,SL1,A1,B1: in std_logic; Y1: out std_logic);
end muxVHDL;

architecture Behavioral of muxVHDL is
component Mux2x1Prmtvvlog
port(Gbar, SEL,A,B: in std_logic; Y: out std_logic);
end component;

begin
pl1: Mux2x1Prmtvvlog port map(G1,SL1,A1,B1,Y1);

end Behavioral;

//This is the Verilog code that should be 
//attached in the same project as the VHDL code

module Mux2x1Prmtvvlog(Gbar, SEL,A,B,Y);
input Gbar, SEL,A,B;
output Y; 
    multiplexer MUX1 (Y, Gbar, SEL,A,B) ;
endmodule

primitive multiplexer (mux, enable, control, dataA, dataB) ;
output mux;
input enable, control, dataA, dataB;
table
// enable control dataA dataB mux

 1 ? ? ? : 0;
 0 0 1 ?  : 1;
 0 0  0  ?  : 0;
 0 1  ?  1  : 1;
 0 1  ?  0  : 0; 
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 0 x  0  0  : 0;
 0 x  1  1  : 1;
endtable
endprimitive

9.4 Limitations of Mixed-Language Description

As previously mentioned, mixed-language description is somehow lim-
ited at present time. These limitations can be summarized as follows:

 Not all VHDL data types are supported in mixed-language description. 
Only bit, bit_vector, std_logic, std_ulogic, std_logic_vector, 
and std_ulogic_vector are supported.

 The VHDL port type buffer is not supported.

 Only a VHDL component construct can invoke a Verilog module. We 
cannot invoke a Verilog module from any other construct in the VHDL 
module.

 A Verilog module can only invoke a VHDL entity. It cannot invoke any 
other construct in the VHDL module such as a procedure or function.

9.5 Summary

This chapter discussed mixed-language descriptions: HDL code that 
includes constructs from both VHDL and Verilog. To be able to write in 
mixed-language style, the simulator should be able to handle mixed-lan-
guage description. Presently, mixed-language description has some limita-
tions. The main limitation is that in the VHDL module, only the entire 
Verilog module can be invoked; conversely, in the Verilog module, only the 
entire VHDL entity can be invoked. We have seen how to invoke/instanti-
ate a VHDL entity from a Verilog module and how to invoke/instantiate a 
Verilog module from a VHDL component. To invoke a VHDL entity from 
a Verilog module, the module statement is written in Verilog. The name of 
the module should be identical to the name of the entity, and the parameter 
types of the module should match the types of the ports of the entity. For 
example, the module statement:

HA H1 (y, cin, s0, c0);

written in a Verilog module invokes a VHDL entity named HA. In the Veril-
og module, no other module should have the name HA. On the other hand, 
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invoking a Verilog module from VHDL is done by declaring a component 
in the VHDL module with the same name as the Verilog module. The com-
ponent ports should have the same names and types as the ports of the 
Verilog module. For example, the VHDL component:

component V_modl
port (x, y : in std_logic; z : out std_logic);

end component;

invokes a Verilog module named V_modl.

9.6 Exercises

1. Consider the code shown in Listing 9.16.

LISTING 9.16 Code for Exercise 9.1

module mixed (a, b, c, d);
input a, b;
output c, d;
lgic L1 (c, d, a, b)
endmodule
entity lgic is
    port (x, y : in std_logic; O1, O2 : buffer std_logic);
end lgic;

architecture lgic of lgic is
begin
O1 <= x and y;
O2 <= not x;

end lgic;

Without using a computer, find any error(s) in Listing 9.16. Correct the 
errors (if any), and write the values of c and d if a = 1 and b = 0. Verify 
your answer by simulating the program.

2. In Listing 9.4, set the gate delay to 8 ns. Simulate the adder with the 
new gate delay and measure the total delay. Analytically justify the delay 
that you measured.

3. In Listing 9.7, we wrote the Verilog module as behavioral description. 
Repeat Example 9.5, but use Verilog gate-level description instead of 
behavioral description. Verify your description by simulation.
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4. In Listing 9.13, HDL code was written to instantiate the Verilog com-
mand casex in a VHDL module. Repeat the same steps to instantiate 
casez in a VHDL module. The truth table for casez is as shown in 
Table 9.3.

TABLE 9.3 Truth Table for casez

Input Output
a b

zzz1 1
zz10 2
z100 4
1000 8

Others 0

5. In Example 9.12, a low-pass RC filter was simulated. Repeat the same 
steps for a high-pass RC filter.

6. Add another output Y1bar in the VHDL code in Example 9.13. Y1bar is 
the invert of Y1. Write the mixed code and simulate.

9.7 Reference

Reed, M., and R. Rohrer, Applied Introductory Circuit Analysis for Electrical 
and Computer Engineers, Prentice Hall, Upper Saddle River, New Jersey, 
1999.
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10
Chapter Objectives

 Understand the concept of synthesis
 Learn how to map behavioral statements into logical gates and 

components
 Learn how to verify your synthesis
 Review and understand the fundamentals of digital-logic design for 

digital systems, such as adders, multiplexers, decoders, compara-
tors, encoders, latches, flip-flops, counters, and memory cells

 Understand the concept of sequential finite-state machines

10.1 Highlights of Synthesis

This chapter covers the fundamentals of synthesis. Synthesis here con-
verts HDL behavioral code into logical gates or components. These logi-
cal gates and components can be downloaded into electronic chips such as 
field programmable gate arrays (FPGAs).

Facts
 Synthesis maps the simulation (software) domain into the hardware 

domain.
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 In this chapter, synthesis can be viewed as reverse engineering. The 
user is provided with the behavioral code and is asked to develop the 
logic diagram.

 Not all HDL statements can be mapped into the hardware domain. 
The hardware domain is limited to signals that can take zeroes, ones, or 
are left open. The hardware domain cannot differentiate, for example, 
between signals and variables, as does the simulation (software) domain.

 To successfully synthesize behavior code into certain electronic chips, 
the mapping has to conform to the requirements and constraints im-
posed by the electronic-chip vendor.

 Several synthesis packages are available on the market. These packages 
can take behavior code, map it, and produce a net list that can be down-
loaded into the chip. This chapter focuses on learning how to synthesize 
the code manually, rather than on how to use the available synthesizers.

 Two synthesizers may synthesize the same code using a different number 
of the same gates. This is due to the different approaches taken by the two 
synthesizers to map the code. Consider, for example, the VHDL state-
ment y := 2x. One synthesizer might approach this statement as a shift to 
the left of x; another might approach it as a multiplication and might use a 
multiplier, which usually results in more gates than the mere shift.

General synthesis steps can be summarized (see Figure 10.1), as follows:

Step 1:  If the behavioral description of the system is available, go to Step 3. 
Otherwise, formulate a flowchart for the behavior of the system.

Step 2:  Use the flowchart to write a behavioral description of the system. 
Be sure to review the instructions of your synthesis tools to see if 
there are constraints on any of the behavioral statements you plan 
to use.

Step 3:  Simulate the behavioral code and verify that the simulation cor-
rectly describes the system.

Step 4:  Map the behavioral statements into components or logic gates (this 
chapter shows  you how to do that). Be sure that the components 
used are downloadable into the selected chip.

Step 5:  Write a structural- or gate-level description of the components and 
logic gates of Step 4. Simulate the structural description and verify 
that this simulation is similar to that of Step 3.
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Step 6:  Use CAD tools to download the gates and components of Step 4 
into the electronic chip, usually a FPGA chip.

Step 7:  Test the chip by inputting signals to the input pins of the chip and 
observe the output from the output pins. This step is similar to the 
verification done in Step 5, except the test here is on real, physical 
signals.

Use the flowchart to write a behavioral HDL
description

Simulate the behavioral module and verify
that the simulation correctly describes the

system

Map the behavioral statements into
components and logic gates (see Chapter 10)

Verify that the mapping is correct by writing a
structural description to simulate the mapped

components and logic gates.

Use CAD tools to download the components
and logic gates onto an electronic chip such

as FPGAs

Test the electronic chip to verify the
download.

Formulate a flowchart of the system

FIGURE 10.1 Synthesis steps.
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10.2 Synthesis Information From Entity and Module

Entity (VHDL) or Module in (Verilog) provide information on the in-
puts and outputs and their types for the system to be synthesized. For all the 
following examples, unless otherwise explicitly stated, the digital hardware 
domain in which the HDL code is synthesized consists of binary signals; 
their values can be 0, 1, or tristate (open). The domain does not include 
analog or multilevel signals.

10.2.1 Synthesis Information From Entity (VHDL)
In all of the examples shown here, libraries are not shown in the code 

since they provide no information to the hardware domain. Consider the 
VHDL code shown in Listing 10.1.

LISTING 10.1 VHDL Code for System1 Entity

entity system1 is
port (a, b : in bit; d : out bit);
end system1;

The synthesis information extracted from Listing 10.1 is summarized 
in Figure 10.2; system1 has two input signals, each one bit, and one output 
signal of one bit. Each signal can take 0 (low) or 1 (high).
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FIGURE 10.2 Synthesis information extracted from Listing 10.1.

Consider the entity shown in Listing 10.2.

LISTING 10.2 VHDL Code for System2 Entity

entity system2 is
port (a, b : in std_logic; d : out std_logic);
end system2; 
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System2 also has two one-bit input signals and one one-bit output sig-
nal. However, because the type is std_logic, each signal can take 0 (low), 
1 (high), or high impedance (open).

Consider the entity shown in Listing 10.3.

LISTING 10.3 VHDL Code for System3 Entity

entity system3 is
port (a, b : in std_logic_vector (3 downto 0);
d : out std_logic_vector (7 downto 0));
end entity system3;

System3 has two four-bit input signals and one eight-bit output signal. 
The input signals can be binary or left open. Figure 10.3 illustrates the in-
formation extracted from Listing 10.3.
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FIGURE 10.3 Synthesis information extracted from Listing 10.3.

Consider the entity shown in Listing 10.4.

LISTING 10.4 VHDL Code for System4 Entity

entity system4 is
port (a, b : in signed (3 downto 0);
    d : out std_logic_vector (7 downto 0));
end entity system4;

System4 has two four-bit signals and one eight-bit signal. The input 
signals are binary; the output signal can be binary or high impedance.

Consider the entity shown in Listing 10.5.

LISTING 10.5 VHDL Code for System5 Entity

entity system5 is
port (a, b : in unsigned (3 downto 0);
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    d : out std_logic_vector (7 downto 0));
end entity system5;

Synthesis information extracted from Listing 10.5 is identical to that 
extracted from Listing 10.4. Now consider the entity shown in Listing 10.6.

LISTING 10.6 VHDL Code for System6 Entity

entity system6 is
port (a, b : in unsigned (3 downto 0);
    d : out integer range -10 to 10);
end entity system6;

System6 has two four-bit input signals and one five-bit output signal. 
In the hardware domain, the integer is represented by binary, so five bits 
is adequate for representing d. Figure 10.4 illustrates the information ex-
tracted from Listing 10.6.
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FIGURE 10.4 Synthesis information extracted from Listing 10.6.

Consider the entity in Listing 10.7.

LISTING 10.7 VHDL Code for System7 Entity

entity system7 is
    generic (N : integer := 4; M : integer := 3);
        Port (a, b : in std_logic_vector (N downto 0);
            d : out std_logic_vector (M downto 0));
end system7;

Because N = 4 and M = 3, system7 has two five-bit input signals and one 
four-bit output signal. All signals are binary. N and M have no explicit hard-
ware mapping. Figure 10.5 illustrates the synthesis information extracted 
from the code of Listing 10.7.
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FIGURE 10.5 Synthesis information extracted from Listing 10.7.

Consider the entity in Listing 10.8.

LISTING 10.8 VHDL Code for ALUS2 Entity

package codes is
type op is (add, mul, divide, none);
end;
use work. codes; 

entity ALUS2 is
    port (a, b : in std_logic_vector (3 downto 0);
        cin : in std_logic; opc : in op;
        z : out std_logic_vector (7 downto 0);
        cout : out std_logic; err : out Boolean);
end ALUS2;

The package codes defines type op. Signal opc is of type op. In 
our digital hardware domain, there are only zeros and ones. Packages and 
libraries have no explicit mapping into the hardware domain; they are simu-
lation tools. To map the signal opc into the hardware domain, the signal is 
decoded. Because the signal can take one of four values (add, mul, divide, 
or none), it is decoded into two bits. A possible decoding is shown in Table 
10.1. Better decoding could be used; choose the one that yields the mini-
mum number of components after minimization.

TABLE 10.1 Decoding of Signal opc

Code Binary Code
add 00
mul 01
divide 10
none 11
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Figure 10.6 illustrates the information extracted from the Listing 10.8. 
As shown, entity ALUS2 has two input signals, a and b, each of four bits, one 
input signal cin of one bit, one input signal opc of two bits, one output sig-
nal z of eight bits, one output signal cout of one bit, and one output signal 
err of one bit. The Boolean type is mapped to binary 0 or 1.
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FIGURE 10.6 Synthesis information extracted from Listing 10.8.

Consider the entity and package shown in Listing 10.9.

LISTING 10.9 VHDL Code for Array1 Entity

package array_pkg is
constant N : integer := 4;
constant M : integer := 3;
subtype wordN is std_logic_vector (M downto 0);
type strng is array (N downto 0) of wordN;
end array_pkg;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.array_pkg.all;

entity array1 is
    generic (N : integer := 4; M : integer := 3);
    Port (a : in strng; z : out std_logic_vector (M downto 0));
end array1;
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From the package, type strng is an array of five elements, and each ele-
ment is four bits wide, so entity array1 has five input signals, each of four 
bits. The output of array1 is a four-bit signal. Figure 10.7 illustrates the 
synthesis information extracted from the code of Listing 10.9.
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FIGURE 10.7 Synthesis information extracted from Listing 10.9.

Now consider the entity shown in Listing 10.10.

LISTING 10.10 VHDL Code for Weather_frcst Entity

package weather_fcst is
Type cast is (rain, sunny, snow, cloudy);
Type weekdays is (Monday, Tuesday, Wednesday,
    Thursday, Friday, Saturday, Sunday);
end package weather_fcst;
library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.weather_fcst.all;
entity WEATHER_FRCST is
port (Day_in : in weekdays; out_temperature : out integer
      range -100 to 100; out_day : out weekdays; 
      out_cond : out cast);
end WEATHER_FRCST;

Elements of type cast in package weather_fcst can be decoded by 
two bits, as shown in Table 10.2.
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TABLE 10.2 Decoding Elements of Type cast

Code Binary Code
rain 00
sunny 01
snow 10
cloudy 11

The elements of type weekdays need three bits to be decoded. 
Table 10.3 shows a possible decoding of these elements.

TABLE 10.3 Decoding Elements of Type weekdays

Code Binary Code
Monday 000
Tuesday 001
Wednesday 010
Thursday 011
Friday 100
Saturday 101
Sunday 110

Accordingly, entity WEATHER_FRCST has one input signal, Day_in, 
which is three bits, an output signal, out_temperature, of seven bits, an 
output signal, out_day, of three bits, and an output signal, out_cond, of two 
bits. Figure 10.8 illustrates the synthesis information extracted from the 
code of Listing 10.10.
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FIGURE 10.8 Synthesis information extracted from Listing 10.10.
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Consider the code shown in Listing 10.11

LISTING 10.11 VHDL Code for Entity Procs_Mchn

library ieee;
use ieee.std_logic_1164.all;

package state_machine is
Type machine is (state0, state1, state2, state3);
Type st_machine is
record
state : machine;
weight : natural range 3 to 16;
Measr : std_logic_vector (5 downto 0);
end record;
end package state_machine;

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.state_machine.all ; 

entity Procs_Mchn is
port (S : in machine; Y : in st_machine;
      Z : out integer range -5 to 5);
end Procs_Mchn;

The entity Procs_Mchn has two inputs, S and Y, and one output, Z. Input 
S is of type machine; this type has four elements, so input S is mapped to 
two bits. Input Y is of type st_machine; this type is record (a collection of 
different types). The record includes type state, which is mapped to a 
two-bit signal, type weight, which is mapped to a five-bit signal, and type 
Measr, which is mapped to a six-bit signal. So, signal Y is mapped to six 
bits (the largest out of two, five, and six). Output Z is mapped to a four-bit 
signal. Figure 10.9 shows the synthesis information extracted from the code 
of Listing 10.11.
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FIGURE 10.9 Synthesis information extracted from Listing 10.11.

10.2.2 Verilog Synthesis Information From Module Inputs/Outputs
Verilog, in contrast to VHDL, does not have a large variety of types. In 

the following, we discuss synthesis information that can be extracted from 
the inputs and outputs of a module. Consider the code shown in Listing 
10.12.

LISTING 10.12 Verilog Code for Module System1v

module system1v (a, b, d);
input a, b;
output d;
endmodule

From Listing 10.12, system1v has two input signals, a and b, each of one 
bit, and one output signal d of one bit. All signals can take 0, 1, or high 
impedance. Figure 10.10 shows the synthesis information extracted from 
Listing 10.12.
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FIGURE 10.10 Synthesis information extracted from Listing 10.12.
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Consider the Verilog code shown in Listing 10.13.

LISTING 10.13 Verilog Code for Module System2v

module system2v (X, Y, Z);
input [3:0] X, Y;
output [7:0] Z;
reg [7:0] Z
........
endmodule

Listing 10.13 describes system2v with two input signals, X and Y, each of 
four bits, and one output signal, Z, of eight bits. The statement reg [7:0] 
Z; does not convey any additional information to the hardware domain; 
its use is solely for simulation. Figure 10.11 illustrates the information ex-
tracted from Listing 10.13.
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FIGURE 10.11 Synthesis information extracted from Listing 10.13.

Consider the code shown in Listing 10.14.

LISTING 10.14 Verilog Code for Module System3v

module system3v (a, b, c);
parameter N = 4;
parameter M = 3;
input [N:0] a;
output [M:0] c;
input b;
.........
endmodule
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Module system3v has two input signals, a and b, and one output signal 
c. Input a is a five-bit signal, input b is one bit, and output c is a four-bit sig-
nal. Parameter has no explicit mapping in the hardware domain; it is just a 
simulation tool to instantiate N and M. Figure 10.12 illustrates the synthesis 
information extracted from Listing 10.14.
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FIGURE 10.12 Synthesis information extracted from Listing 10.14.

Consider the code shown in Listing 10.15.

LISTING 10.15 Verilog Code for Module Array1v

module array1v (start, grtst);
parameter N = 4;
parameter M = 3;
input start;
output [3:0] grtst;
reg[M:0] a[0:N]; 
..............
endmodule

Module array1v has one one-bit input signal (start) and one four-bit out-
put signal (grtst). The register a is an array of five elements, each of four 
bits. This register is mapped to five signals, each of four bits. Figure 10.13 
illustrates the synthesis information extracted from Listing 10.15.
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FIGURE 10.13 Synthesis information extracted from Listing 10.15.

10.3 Mapping Process and Always in the Hardware Domain

Process (VHDL) and Always (Verilog) are the major behavioral state-
ments. These statements are frequently used to model systems with data 
storage such as counters, registers, and CPUs. The first line in both state-
ments declares, among other factors, the sensitivity list. This list determines 
the signals that activate process or always. The following examples illus-
trate the mapping of process and always. 

10.3.1 Mapping the Signal-Assignment Statement to Gate Level 
Consider the entity (module) shown in Listing 10.16.

LISTING 10.16a Mapping VHDL Code for Signal-Assignment Statement Y <= X

library ieee;
use ieee.std_logic_1164.all;

entity SIGNA_ASSN is
port (X : in bit; Y : out bit);
end SIGNA_ASSN;

architecture BEHAVIOR of SIGNA_ASSN is
begin
    P1 : process (X)
    begin

        Y <= X;
    end process P1;
    end BEHAVIOR;
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LISTING 10.16b Mapping Verilog Code for Signal-Assignment Statement Y = X

module SIGNA_ASSN (X, Y);
input X;
output Y;
reg y;
always @ (X)
    begin
    Y = X;
    end
endmodule

The code in Listing 10.16 describes a one-bit input signal X and a one-bit 
output signal Y (see Figure 10.14a). In VHDL Listing 10.16a, the entity 
is bound to architecture BEHAVIOR. The process has X as the sensitivity 
list. The signal-assignment statement states that Y = X. In the hardware 
domain, this statement is mapped to a buffer. Other statements such as 
begin, end, and architecture have no hardware mapping. The same ap-
plies for Listing 10.16b; the hardware is a buffer. Figure 10.14b shows this 
mapping: if X changes, Y is updated. This mimics the process activation in 
Listing 10.16 when an event occurs on X.
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FIGURE 10.14 Gate-level synthesis of Listing 10.16. a) Logic symbol. b) Gate-level logic diagram.

Consider the entity (module) shown in Listing 10.17.

LISTING 10.17 VHDL Code for Signal-Assignment Statement Y = 2 * X + 3: 
VHDL and Verilog

VHDL Signal-Assignment Statement Y = 2  X + 3
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;



SYNTHESIS BASICS • 509

entity sign_assn2 is
    port (X : in unsigned (1 downto 0); 
          Y : out unsigned (3 downto 0));
end ASSN2;
architecture BEHAVIOR of sign_assn2 is 
begin

P1 : process (X)
    begin
        Y <= 2  X + 3;
end process P1;
end BEHAVIOR;

Verilog Signal-Assignment Statement Y = 2  X + 3
module sign_assn2 (X, Y);
input [1:0] X;
output [3:0] Y;
reg [3:0] Y;
always @ (X)
    begin
        Y = 2  X + 3;
    end
endmodule

Listing 10.17 shows an entity (sign_assn2) with one input, x, of two 
bits and one output, Y, of four bits (see Figure 10.15a). The architecture 
that is bound to the entity and the Verilog module includes one process 
(P1) and one always, respectively. The process (always) contains one 
signal-assignment statement: Y <= 2  X + 3; (VHDL) or Y = 2  X + 3 
(Verilog). To synthesize the code, construct a truth table to find the logic 
diagram of sign_assn2 and use gate-level synthesis. Table 10.4 shows the 
truth table of sign_assn2.

TABLE 10.4 Truth Table for Listing 10.17

Input X Output Y
X1 X0 Y3 Y2 Y1 Y0

0 0 0 0 1 1
0 1 0 1 0 1
1 0 0 1 1 1
1 1 1 0 0 1
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From Table 10.4:

 Y(0) = 1

 Y(1) = (0)X

Y(2) = (1)X  X(0) + X(1) (0)X

 Y(3) = X(1) X(0)

Figure 10.15b shows the gate-level logic diagram of Listing 10.17.
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FIGURE 10.15 Gate-level synthesis of Listing 10.17. a) Logic symbol. b) Gate-level logic diagram.

To verify the synthesis, write the structural code for the logic diagram 
shown in Figure 10.15b and then simulate it. If the simulation waveform 
is the same as the simulation waveform in Listing 10.17, then the synthesis 
is correct. The simulation waveform for Listing 10.17 is shown in Figure 
10.16. The Verilog structural code is shown in Listing 10.18.

LISTING 10.18 Structural Verilog Code for the Logic Diagram in Figure 10.15b. 

module sign_struc(X, Y);
input [1:0] X;
output [3:0] Y;
reg [3:0] Y;
always @ (X)
    begin
        Y[0] = 1'b1;
        Y[1] = ~ X[0];
        Y[2] = X[0] ^ X[1];
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        Y[3] = X[1] & X[0];
end
endmodule

After simulating the code in Listing 10.18, the simulation is identical to 
Figure 10.16. We conclude that the synthesis is correct.

X(0)

X(1)

Y(0)

Y(1)

Y(2)

Y(3)
FIGURE 10.16 Simulation waveform for Listing 10.17.

10.3.2 Mapping the VHDL Variable-Assignment Statement to Gate Level
The variable-assignment statement is a VHDL statement. Verilog does 

not distinguish between signal- and variable-assignment statements. Con-
sider the VHDL code shown in  Listing 10.19.

Listing 10.19 VHDL Variable-Assignment Statement

library ieee;
use ieee.std_logic_1164.all;

entity parity_even is
    port (x : in std_logic_vector (3 downto 0); 
          C : out std_logic);

end parity_even;

architecture behav_prti of parity_even is
begin

P1 : process (x)
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variable c1 : std_logic;
    begin
        c1 := (x(0) xor x(1)) xor (x(2) xor x(3));
        C <= c1;
        end process P1;
end behav_prti;

Listing 10.19 shows an entity with one four-bit input and one one-bit out-
put (see Figure 10.17a). The architecture behav_prti is bound to the entity 
and consists of one process (P1). The process contains one variable declara-
tion, variable c1 : std_logic; and two assignment statements. One of 
the assignment statements is a signal, C <= c1;, and the other is a variable 
assignment:

c1 := (x(0) xor x(1)) xor (x(2) xor x(3)); 

The hardware domain cannot distinguish between signal and variable; 
all we have in the hardware domain are signals. To synthesize the code, no-
tice that signal C takes the value of variable c1, so in the hardware domain, 
c1 and C are one signal. The variable-assignment statement includes three 
XOR functions that are mapped to three XOR gates. More details on logical 
operators are covered in Section 10.3.3. Figure 10.17b shows the gate-level 
synthesis of Listing 10.19.

c

X(2)

X(1)

X(0)

X(3)

p
a
r
i
t
y
|
e
v
e
n

cX
4

(a) (b)
FIGURE 10.17 Gate-level synthesis of Listing 10.19. a) Logic symbol. b) Gate-level logic diagram.

10.3.3 Mapping Logical Operators
Mapping logical operators is relatively straightforward because finding 

the gate counterpart of a logical operator is very easy. For example, the 
mapping of logical operator and (VHDL) or & (Verilog) is an AND gate. 
Table 10.5 shows the logical operators in VHDL and Verilog and their gate-
level mappings.
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TABLE 10.5 Logical Operators and Their Gate-Level Mappings

Logical Operator Gate-Level Mapping
VHDL Verilog

and & AND
or |  OR
not ~  INVERTER
xor ^  XOR
xnor ^~  XNOR

To illustrate the mapping of logical operators, consider the code in List-
ing 10.20.

LISTING 10.20 Mapping Logical Operators: VHDL and Verilog

VHDL: Mapping Logical Operators
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity decod_var is
    port (a : in std_logic_vector (1 downto 0);
          D : out std_logic_vector (3 downto 0));
end decod_var;

architecture Behavioral of decod_var is

begin
dec : process (a)
variable a0bar, a1bar : std_logic;
    begin
        a0bar := not a(0);
        a1bar := not a(1);
        D(0) <= not (a0bar and a1bar);
        D(1) <= not (a0bar and a(1)); 
        D(2) <= not (a(0) and a1bar);
        D(3) <= not (a(0) and a(1));
    end process dec;

end Behavioral;

Verilog: Mapping Logical Operators
module decod_var (a, D);
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input [1:0] a;
output [3:0] D;
reg a0bar, a1bar;
reg [3:0] D;
always @ (a)

    begin
        a0bar = ~ a[0];
        a1bar = ~ a[1];
        D[0] = ~ (a0bar & a1bar);
        D[1] = ~ (a0bar & a[1]);
        D[2] = ~ (a[0] & a1bar);
        D[3] = ~ (a[0] & a[1]);
    end
endmodule

The statements

a0bar := not a(0); -- VHDL
a0bar = ~ a[0]; // Verilog

represent an inverter. The input to the inverter is the least significant bit of 
the input a. The statements

D[3] = ~ (a[0] & a[1]); -- VHDL
D(3) <= not (a(0) and a(1)); // Verilog

represent a two-input NAND gate. The input is a, and the output is the 
most significant bit of D.

Figure 10.18 shows the synthesis of the code in Listing 10.20.
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FIGURE 10.18 Gate-level synthesis of Listing 10.20. a) Logic symbol. b) Gate-level logic diagram.
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10.3.4 Mapping the IF Statement
Consider the HDL IF-else statement shown in Listing 10.21.

LISTING 10.21 Example of IF-else Statement: VHDL and Verilog

VHDL IF-else Description
process (a, x)
begin
    if (a = '1') then
    Y <= X;
    else
    Y <= '0';
    end if;
end process;

Verilog IF-else Description
always @ (a, X)
begin
    if (a == 1'b1)
    Y = X;
    else
    Y = 1'b0;
end

The IF statement in Listing 10.21 is synthesized by just an AND gate, as 
shown in Figure 10.19.

Y
X
a
FIGURE 10.19 Gate-level synthesis of Listing 10.21.

Now, consider the IF statement shown in Listing 10.22.

LISTING 10.22 Example of Multiplexer IF-else Statement: VHDL and 
Verilog 

VHDL Multiplexer IF-else Description

process (a, X, X1)
begin
    if (a = '1') then
    Y <= X;
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    else
    Y <= X1;
    end if;
end process;

Verilog Multiplexer IF-else Description
always @ (a, X, X1)
begin
    if (a == 1'b1)
    Y = X;
    else
Y = X1;
        end

The IF statement in Listing 10.22 represents a 2x1 multiplexer. Figure 
10.20 shows the synthesis of Listing 10.22.

Y

X

a

X1

FIGURE 10.20 Gate-level synthesis of Listing 10.22.

Consider the IF statement shown in Listing 10.23.

LISTING 10.23 Example of Comparison Using IF-else Statement: VHDL 
and Verilog 

VHDL IF-else Statement
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity IF_st is
    port (a : in std_logic_vector (2 downto 0); 
          Y : out Boolean);
end IF_st;

architecture IF_st of IF_st is
begin

IfB : process (a)
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variable tem : Boolean;
begin
    if (a < "101") then
    tem := true;
    else
    tem := false;
    end if;
Y <= tem;
end process;
end IF_st; 

Verilog IF-else Statement
module IF_st (a, Y);
input [2:0] a;
output Y;
reg Y;
always @ (a)
begin
if (a < 3’b101)
Y = 1'b1;
else
Y = 1'b0;
end
endmodule

To find the gate-level mapping of Listing 10.23, construct a truth table (see 
Table 10.6).

TABLE 10.6 Truth Table for Listing 10.23

Input a Output Y
a2 a1 a0 Y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0
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Figure 10.21 shows the K-map of Listing 10.23. From the figure, the Bool-
ean function of Y is:

Y = a(2) a(1) a(0)

a1a0

a2

0

0

1

10110100

Y

1 0 0

1

1

1 1

FIGURE 10.21 K-map for Listing 10.23.

From the Boolean function, draw the gate-level synthesis for Listing 10.22 
as shown in Figure 10.22.

Y

a(0)

a(1)

a(2)
FIGURE 10.22 Gate-level synthesis of Listing 10.23.

Now consider the elseif (VHDL) and Else-If (Verilog) statements 
in Listing 10.24.

LISTING 10.24 Example of elseif and Else-If: VHDL and Verilog

VHDL elseif Description

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

entity elseif is
port (BP : in natural range 0 to 7; 
      ADH : out natural range 0 to 15);
    end;
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architecture elseif of elseif is

    begin
    ADHP : process(BP)
         variable resADH : natural := 0;
         begin
              if BP <= 2 then resADH := 15;
             elsif BP >= 5 then resADH := 0;
             else
             resADH := BP  (-5) + 25;
             end if;

ADH <= resADH;
end process ADHP;
end elseif;

Verilog Else-If Description
module elseif (BP, ADH);
input [2:0] BP;
output [3:0] ADH;
reg [3:0] ADH;
always @ (BP)
begin
    if (BP <= 2) ADH = 15;
        else if (BP >= 5) ADH = 0;
        else
        ADH = BP  (-5) + 25;
    end
endmodule

Notice that the variable resADH in Listing 10.24 (VHDL) is identical 
in value to the output ADH. Accordingly, resADH is not mapped into the 
hardware domain. To synthesize the code, construct the truth table (see 
Table 10.7).

TABLE 10.7 Truth Table for Listing 10.24

BP
bit210

ADH
bit3210 

000 1111
001 1111
010 1111
011 1010
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BP
bit210

ADH
bit3210 

100 0101
101 0000
110 0000
111 0000

From Table 10.7, construct K-maps to find ADH (see Figure 10.23).
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1 0 0

1
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1 1

FIGURE 10.23 K-maps of Table 10.7.

From the K-maps, we find: 

ADH(0) = ADH(2) = Bp(1) Bp(0) Bp(2) Bp(1) Bp(2) Bp(0)

 ADH(1) = ADH(3) = Bp(2)

Figure 10.24 shows the gate-level synthesis of Listing 10.24.

ADH(0)
ADH(2)

ADH(1)
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FIGURE 10.24 Gate-level synthesis of Listing 10.24.
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Now consider the code in Listing 10.25.

LISTING 10.25 Example of IF Statement with Storage: VHDL and Verilog

VHDL IF Statement with Storage
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity If_store is
port (a, X : in std_logic; Y : out std_logic);
end If_store;

architecture If_store of If_store is

begin
    process (a, X)
    begin
        if (a = ‘1’) then
        Y <= X;

        end if;
    end process;
end If_store;

Verilog IF Statement with Storage
module If_store (a, X, Y);
input a, X;
output Y;
reg Y;
always @ (a, X)
    begin
        if (a == 1’b1)
        Y = X;
    end
endmodule

The IF statement in Listing 10.25 is similar to that of Listing 10.22, 
except when a = 0. In Listing 10.22, the value of the output Y is explicitly 
stated when a = 0. In Listing 10.25, the code states that when a = 0, there 
should be no change in the values of any signal. This means that the value 
of all signals should be stored during the execution of the IF statement. To 
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store signals in the hardware domain, latches or flip-flops are used. In List-
ing 10.25, signal a is implemented as a clock to a D-latch; the input to the 
latch is the signal X. If a = 0, then the output of the latch stays the same. If 
a = 1, then the output follows the input X. Figure 10.25 shows the mapping 
of Listing 10.25 to the hardware domain.

Q YDX

a

Qclk

FIGURE 10.25 Synthesis of Listing 10.25.

Consider the code in Listing 10.26.

Listing 10.26 Else-If Statement with Gate-Level Logic 

package weather_fcst is
Type unit is (cent, half, offset);

end package weather_fcst;

library ieee;
use ieee.std_logic_1164.all;
use work.weather_fcst.all; 

entity weather is
    port (a : in unit; tempr : in integer range 0 to 15;
          z : out integer range 0 to 15);
end weather;

architecture weather of weather is

begin
T : process (a, tempr)
variable z_tem : integer range 0 to 15;
    begin
        if ((tempr <= 7) and (a = cent)) then
        z_tem := tempr;
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        elsif ((tempr <= 7) and (a = offset)) then
        z_tem := tempr + 4;

        elsif ((tempr <= 7) and (a = half)) then
        z_tem := tempr /2;

        else
        z_tem := 15;

        end if;

        z <= z_tem;
    end process T;
end weather;

From the entity (module), we can summarize the extracted information 
as follows:

 Input a is a two-bit signal.

 Input tempr is a four-bit signal.

 Output z is a four-bit signal.

The code can be summarized as shown in Table 10.8.

TABLE 10.8 Summary of the Code in Listing 10.26

a tempr z
00 (cent)  0–7  z = tempr

01 (offset)  0–7 z = tempr + 4
10 (half)  0–7  z = tempr/2

11  xx  z = 15
xx  >7  z = 15

If we want to construct a truth table, it will be a (2 + 4 = 6) six-bit input 
and four-bit output; this table will be huge and cannot be analyzed easily. 
Accordingly, the code in Listing 10.26 is analyzed logically. Input a can be 
the select lines of a multiplexer. The multiplexer has four inputs; each input 
is a four-bit signal representing one of the four values tempr, tempr+4, 
tempr/2, or the constant 15. Figure 10.26 shows this analysis using register 
transfer level (RTL) logic.
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FIGURE 10.26 RTL synthesis of Listing 10.26.

To find the gate-level synthesis of Logic 1 in Figure 10.26, construct a 
truth table as shown in Table 10.9.

TABLE 10.9 Truth Table for Logic 1

tempr  tempr +4
bit3210  bit3210

0000  0100
0001  0101
0010  0110
0011  0111
0100  1000
0101  1001
0110  1010
0111  1011

1000–1111  dddd

Inspecting Table 10.8, tempr +4 can be written as:

tempr +4(0) = tempr (0)

tempr +4(1) = tempr (1)

tempr +4(2) = tempr(2)

tempr +4(3) = tempr (2)

For logic 2, do the same as for Logic 1. Table 10.10 shows the truth table 
of Logic 2.
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TABLE 10.10 Truth Table for Logic 2

tempr tempr/2
bit3210 bit3210

0000  0000
0001  0000
0010  0001
0011  0001
0100  0010
0101  0010
0110  0011
0111  0011

1000-1111  dddd

After inspecting Table 10.10:

tempr/2(0) = tempr (1)

tempr /2(1) = tempr (2)

 tempr /2(2) = 0

 tempr /2(3) = 0

For the select in Figure 10.26 to satisfy the condition temp  7, tempr (3) 
must be equal to 0. Accommodating the values of a, construct a truth table 
as shown in Table 10.11.

TABLE 10.11 Truth Table for Figure 10.26 Select

Tempr(3) a(1) a(0) Select
0 0  0 00
0 0 1 01
0 1 0 10
0 1 1 11
1 0 0 11
1 0 1 11
1 1 0 11
1 1 1 11

Figure 10.27 shows the K-maps of Table 10.11. From the K-maps: 
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Select(0) = temp(3) + a(0)
Select(1) = temp(3) + a(1)

Incorporating the gate-level logic of Logic 1, Logic 2, and Select in Figure 
10.26, the synthesis diagram of Listing 10.26 is shown in Figure 10.28.
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FIGURE 10.27 K-maps for Table 10.11.
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FIGURE 10.28 Synthesis of Listing 10.26.
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10.3.5 Mapping the case Statement
Mapping the case statement is very similar to mapping the IF state-

ment. The case statement is treated as a group of IF statements. Consider 
the case statement in Listing 10.27.

LISTING 10.27 Example of case Mapping

module case_nostr (a, b, ct, d);
input [3:0] a, b;
input ct;
output [4:0] d;
reg [4:0] d;
always @ (a, b, ct)
begin
case (ct)
1’b0 : d = a + b;

1’b1 : d = a - b;
endcase
end

endmodule

To synthesize the above code, construct a truth table. This table would 
have (4 + 4 +1 = 9) nine bits input for a, b, and ct, and five bits for the 
output d. This table would yield a minimum number of gates for the code 
in Listing 10.27; however, the table would be very large and hard to ana-
lyze. Another approach is to logically analyze the code using RTL blocks. 
Listing 10.27 includes two operations: four-bit addition and four-bit sub-
traction. The result is expressed in a five-bit output, d. Signal ct selects 
whether to add or subtract.  To add, use four one-bit ripple-carry adders. 
To subtract, use four one-bit subtractors, but the number of components 
can be reduced by noticing that the full adder can be used as a subtractor, 
as shown below:

d = a – b = a + (–b) = a + b  + 1
Figure 10.29 shows the RTL synthesis of Listing 10.27. The XOR gate is 
implemented to generate the complement of signal b.
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FIGURE 10.29 RTL synthesis of Listing 10.27.

Now, slightly change the code of Listing 10.27 to that shown in 
Listing 10.28.

LISTING 10.28 case Statement with Storage

module case_str (a, b, ct, d);
input [3:0] a, b;
input ct;
output [4:0] d;
reg [4:0] d;
always @ (a, b, ct)
begin
    case (ct)
        1’b0: d = a + b;
        1’b1: ; / This is a blank statement with 
                 no operation (null in VHDL)/
    endcase
end

endmodule
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The case in Listing 10.28 does not specify an action when ct = 1, so 
a latch is used to store the value of d when ct = 1. Figure 10.30 shows the 
RTL synthesis of Listing 10.28.

Q d5
Da

ct

QQE

Five
D-Latches

Four-bit
adder

54

b 4

FIGURE 10.30 RTL synthesis of Listing 10.28.

As mentioned in Chapter 3, Verilog has a variation of the command 
case, casex. Listing 10.29 shows a Verilog code using casex.

LISTING 10.29 Verilog casex

module Encoder_4 (IR, RA);
input [3:0] IR;
output [3:0] RA;
    reg [3:0] RA;
    always @ (IR)
        begin
            casex (IR)
                4’bxxx1 : RA = 4’d1;
                4’bxx10 : RA = 4’d2;
                4’bx100 : RA = 4’d4;
                4’b1000 : RA = 4’d8;
                default : RA = 4’d0;
            endcase
        end
endmodule

To synthesize the code in Listing 10.29, build a truth table as shown in 
Table 10.12.
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TABLE 10.12 Truth Table for the Code in Listing 10.29

Input Output
IR RA

xxx1  0001
xx10  0010
x100  0100
1000  1000

Others  0000

Notice the input IR has explicit value for all of its entries, so synthesis does 
not need storage. By inspecting Table 10.12, the Boolean function of the 
output can be written as:

 RA(0) = IR(0)

 RA(1) = IR(0)  IR(1)

 RA(2) = IR(0)  IR(1)  IR(2)

RA(3) = IR(0)  IR(1)  IR(2)  IR(3)

Figure 10.31 shows the logic diagram of Listing 10.29.

RA(1)
IR(0)

IR(1)

RA(2)
IR(0)
IR(1)
IR(2)

RA(3)

IR(0)

IR(1)

IR(2)
IR(3)

RA(0)IR(0)

FIGURE 10.31 Logic diagram of Listing 10.29.

Now consider the code shown in Listing 10.30. This code is slightly differ-
ent from that of Listing 7.9 (see Chapter 7).
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LISTING 10.30 Example of case with Storage

library IEEE;
use IEEE.STD_LOGIC_1164.all;
package types is
type states is (state0, state1, state2, state3);
end;
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use work.types.all;
entity state_machine is
    port (A, clk : in std_logic; pres_st : buffer states; 
          Z : out std_logic);
end state_machine;

architecture st_behavioral of state_machine is

begin

FM : process (clk, pres_st, A)
variable present : states := state0;
begin
if (clk = ‘1’ and clk’event) then
--clock’event is an attribute to the signal clk; 
--the above if Boolean expression means the positive
-- edge of clk
-- 
    case pres_st is
        when state0 =>
        if A ='1' then
        present := state1;
        Z <= '0';
        else
        present := state0;
        Z <= '1';
        end if;

        when state1 => if A ='1’ then
        present := state2;
        Z <= '0';
        else
        present := state3;
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        Z <= '0';
        end if;
    
        when state2 => if A ='1' then
        present := state3;
        Z <= '1';
        else
        present := state0;
        Z <= '0';
        end if;

        when state3 => if A ='1' then
        present := state0;
        Z <= '1';
        else
        present := state2;
        Z <= '1';
        end if;
    end case;

pres_st <= present;
end if;
end process FM;
end st_behavioral;

In Listing 10.30, the package types declares user-select types state0, 
state1, state2, and state3. To decode these user-selected types into 
the hardware domain, two bits are needed. So, state0 is decoded as 00, 
state1 as 01, state2 as 10, and state3 as 11. The libraries are software 
constructs that have no mapping into the hardware domain.

Now let us summarize the information collected from the entity. The 
name of the system or entity is state-machine. The system has a one-bit 
input A, a one-bit input clk, two-bit input/output states, and a one-bit out-
put Z. The architecture consists of case and IF statements. Let us see if we 
need to use a storage element. Consider the case statement:

case pres_st is
    when state0 => if A ='1' then
    present := state1;
    Z <= '0';
    else
    present := state0;
    Z <= '1';
    end if;
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In order to know to which state to go, we need to know the present state. 
For example, if the present state is state0, then the next state can be 
state1 or state0. The code implies that the current state must be remem-
bered, so, accordingly, storage elements are needed to synthesize the code. 
The best approach here is to follow the same steps covered in Chapter 4 for 
analyzing state machines. Write the excitation table of the machine and use 
D flip-flops. Table 10.13 shows the excitation table for Listing 10.30.

TABLE 10.13 Excitation Table for Listing 10.30

Present State Input Next State Output D Flip-Flop
Q1 Q0 A Q1+ Q0+ Z D1 D0
0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 1
0 1 0 1 1 0 1 1
0 1 1 1 0 0 1 0
1 0 0 0 0 1 0 0
1 0 1 1 1 1 1 1
1 1 0 1 0 1 1 0
1 1 1 0 0 1 0 0

From Table 10.13, construct K-maps to minimize the outputs.
 Figure 10.32 shows the K-maps.
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FIGURE 10.32 K-maps for Table 10.13.
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From the K-maps, find the Boolean function of the system as:

 D0 = A Q1 Q0  + A Q0

D1 = Q0 Q1  + A Q0 + AQ1 Q0

 Z = Q1 + A Q0

From the Boolean function, the logic diagram of the system is drawn. Fig-
ure 10.33 shows the logic diagram of Listing 10.30.

10.3.6 Mapping the Loop Statement
Loop in HDL description is an essential tool for behavioral modeling. It 

is, however, easier to code than it is to synthesize in the hardware domain. 
The problem is the repetition involved in the loop. For example, consider 
the VHDL Loop statement shown in Listing 10.31.

LISTING 10.31 A For-Loop Statement: VHDL and Verilog

VHDL For-Loop Statement
for i in 0 to 63 loop
temp(i) := temp(i) + b(i);
end loop;
Verilog For-Loop Statement

Z
s5

s0s1

s4 s3 s2

A

Clock

Q0

Q0clk

D0

Q1

Q1clk

D1

FIGURE 10.33 RTL logic diagram of Listing 10.30.
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for i = 0; i <= 63; i = i + 1
    begin
    temp[i] = temp[i] + b[i];
    end

As shown in Listing 10.31, the loop repeats the statement temp(i) = 
temp(i) + b(i) 64 times. This statement can be synthesized using adders. 
Each time the statement repeats, the index of the operands to be added is 
incremented. So the three lines of code in Listing 10.31 result in 64 adders. 
The straightforward approach to synthesizing a loop is to expand the loop 
into statements and synthesize each statement individually. For example, 
the loop in Listing 10.31 can be logically written as:

temp(0) = temp(0) + b(0)
temp(1) = temp (1) + b(1)
temp(2) = temp(2) + b(2)
……………………………

temp(63) = temp(63) + b(63)

Each statement is synthesized as a one-bit adder. 

EXAMPLE 10.1  SYNTHESIS OF THE LOOP STATEMENT

Consider the VHDL behavioral code shown in Listing 10.32.

LISTING 10.32 VHDL Code Includes For-Loop

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Listing10_32 is

port (a : in std_logic_vector (3 downto 0);
    c : in integer range 0 to 15;
    b : out std_logic_vector (3 downto 0));
    end Listing10_32;
    architecture Listing10_32 of Listing10_32 is
    begin       
    shfl : process (a, c)
    variable result, j : integer;
    variable temp : std_logic_vector (3 downto 0);
    begin 

        result := 0;    
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        lop1 : for i in 0 to 3 loop  
            if a(i) = ‘1’ then   
            result := result + 2i;  
            end if;     
        end loop;
            if result > c then
            lop2 : for i in 0 to 3 loop
                j := (i + 2) mod 4;
                temp (j) := a(i);
            end loop;    
                else
                lop3 : for i in 0 to 3 loop
                    j := (i + 1) mod 4;
                    temp (j) := a(i);
                end loop;
            end if;
        b <= temp;
    end process shfl;
end Listing10_32;

The code in Listing 10.32 describes a system with one four-bit input a, 
one integer input c, and a four-bit output b. In the hardware domain, there 
are only bits, so the integer c (because its range is from 0 to 15), is repre-
sented by four bits. If you are using a vendor’s synthesizer, be sure to spec-
ify the integer range; otherwise, the synthesizer, because it does not know 
the  range, will allocate more than 32 bits for the integer. Figure 10.34 
summarizes the information retrieved from the entity.

L
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G
10
|

32

b
4

a

c

4

4

FIGURE 10.34 Information retrieved from entity Listing 10.32.

The simulation output of the system described by Listing 10.32 is shown in 
Figure 10.35. From the figure, the system shuffles input a with two shuf-
fling patterns, depending on whether or not a is greater than c.
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a 1011 1100 0100 0110 1110 0111

b 1110 0011 1000 1100 1011 1110

c 7 7 7 7 7 7
FIGURE 10.35 Simulation output of Listing 10.32.

The code in Listing 10.32 included a process labeled shfl . The process 
has an IF statement and three For-Loops: lop1, lop2, and lop3. The 
first For-Loop, lop1, converts the std_logic_vector a to an integer. This 
conversion is ignored by the hardware domain; the main goal of this conver-
sion is to be able to compare a with the integer c. The hardware views the 
variable result and a as the same signal. The IF statement that starts with

if result > c then

is complete; if result > c, then loop lop2 is executed. Otherwise, loop 
lop3 is executed. Accordingly, latches are not needed to synthesize this IF 
statement. For loop lop2, expand the loop as shown in Table 10.14.

TABLE 10.14 Expanding the Loop lop2

i j temp(j) = a(i)
0 2 temp(2) = a(0)
1 3 temp(3) = a(1)
2 0 temp(0) = a(2)
3 1 temp(1) = a(3)

Notice from Listing 10.32 that the variable temp is identical to signal b; 
the hardware domain views b and temp as the same signal. For loop lop2, 
expand the loop as shown in Table 10.15.

TABLE 10.15 Expanding Loop lop3

i j temp(j) = a(i)
0 1 temp(1) = a(0)
1 2 temp(2) = a(1)
2 3 temp(3) = a(2)
3 0 temp(0) = a(3)
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From Tables 10.14 and 10.15, the logic diagram of the system consists 
of a four-bit magnitude comparator and four 2x1 multiplexers (see Fig-
ure 10.36). The four-bit comparator can be built from four-bit adders (see 
Chapter 4).

10.3.7 Mapping Procedures or Tasks
As mentioned in Chapter 6, procedures, tasks, and functions are code 

constructs that optimize HDL module writing. In the hardware domain, 
there is no logic for procedures or tasks; they are incorporated in the entity 
or the module that calls them. Consider the Verilog code for a task shown 
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FIGURE 10.36 RTL synthesis of Listing 10.32.
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in Listing 10.33.

Listing 10.33 A Verilog Example of a Task

module example_task (a1, b1, d1);
input a1, b1;
output d1;
reg d1;
always @ (a1, b1)
begin

xor_synth (d1, a1, b1);
end

task xor_synth;
output d;
input a, b;
begin
d = a ^ b;
end
endtask

endmodule

The task is performing a logical XOR operation on two operands, a and b. 
By incorporating this information in the module example_task, the module 
can be summarized as a system with two one-bit inputs, a1 and b1, and one 
one-bit output, d1. The relationship between d1 and a1 and b1 is:

d1 = a1 Å b1

The synthesis of this module is shown in Figure 10.37.

d1
a1

b1

FIGURE 10.37 Synthesis of Listing 10.33.

Now consider the code shown in Listing 10.34.

LISTING 10.34 An Example of a Procedure

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
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entity Int_Bin is
generic (N : integer := 3);
port (X_bin : out std_logic_vector (N downto 0); 
      Y_int : in integer;
     flag_even : out std_logic);
end Int_Bin;

architecture convert of Int_Bin is

procedure itb (bin : out std_logic_vector; 
               signal flag : out std_logic;
               N : in integer; int : inout integer) is

begin
if (int MOD 2 = 0) then
    flag <= ‘1’;
    else
    flag <= ‘0’;
end if;
for i in 0 to N loop

    if (int MOD 2 = 1) then 
    bin (i) := ‘1’;   
    else
    bin (i) := ‘0’;  
    end if;     

    int := int / 2;    

end loop;
end itb;

begin
process (Y_int)
variable tem : std_logic_vector (N downto 0);
variable tem_int : integer;

begin
    tem_int := Y_int;
    itb (tem, flag_even, N, tem_int);
    X_bin <= tem;
end process;
end convert;
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Let’s analyze the procedure itb. This procedure has two outputs (fl ag 
and bin), one input (N) and one inout (int). In the hardware domain, there 
is no distinction between variables and signals: all are signals. Also, type inte-
ger has to be converted to binary. The signal flag checks to see if signal int is 
divisible by two (even) or not (odd). This is done by the statements:

if (int MOD 2 = 0) then
    flag <= ‘1’;
    else
    flag <= ‘0’;
end if;

The procedure also includes a For-Loop:

for i in 0 to N loop

    if (int MOD 2 = 1) then 
        bin (i) := ‘1’;   
        else
        bin (i) := ‘0’;  
    end if;     

   int := int / 2;    
end loop;

The loop is converting type integer int to binary bin. This conversion 
is not mapped to the hardware domain. As mentioned above, all signals in 
the hardware domain are binary; we cannot have an integer signal in the 
hardware domain. So, for our synthesis, the procedure is performing a test 
to see whether the signal is even or odd.

Now let’s analyze the entity Int_Bin. The entity has two outputs: a 
four-bit signal X_bin (because N = 3) and a one-bit signal fl ag_even. The 
entity has one input of type integer, Y_int. The entity has one process:

process (Y_int)
variable tem : std_logic_vector (N downto 0);
variable tem_int : integer;

begin
   tem_int := Y_int;
   itb (tem, flag_even, N, tem_int);
   X_bin <= tem;
end process;
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The process is calling the procedure itb, the integer Y_int is con-
verted to binary X_bin, and fl ag_even is assigned a value of 1 if Y_int is 
even or 0 if it is odd. To find the hardware logic of fl ag_even, notice that if 
a binary number is even, its least significant bit is 0. Otherwise, the num-

ber is odd. So, fl ag_even = X_bin(0) . That is all there is to the synthesis of 
Listing 10.34. Figure 10.38 shows the synthesis of Listing 10.34; it is just a 
single inverter.

X_bin(0) Flag_even
FIGURE 10.38 Synthesis of Listing 10.34.

10.3.8 Mapping the Function Statement
Functions, like procedures, are simulation constructs; they opti-

mize the HDL module writing style. Consider the Verilog code shown in 
Listing 10.35.

LISTING 10.35 Verilog Example of a Function

module Func_synth (a1, b1, d1);
input a1, b1;
output d1;
reg d1;

always @ (a1, b1)
begin
d1 = andopr (a1, b1);
end

function andopr;
input a, b;
begin

andopr = a ^ b;
end
endfunction

endmodule

In the hardware domain, there is no distinction between the main mod-
ule and a function; we look to see what the function is performing and then 
incorporate this information in the entity or module where the function 
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is being called. For example, in Listing 10.35, the function andopr is per-
forming an AND logical operation on two operands. The result is a single 
operand. In the module Func_synth, this function is called to perform an 
AND operation on the two inputs of the module, a1 and b1; the result is 
stored in the output of the module d1. Listing 10.35 is synthesized as shown 
in Figure 10.39; it has an AND gate with two one-bit inputs, a1 and b1, and 
a one-bit output, d1.

x 011 000 100 001 101 0111

y 1011 0101 1101 0111 0111 0111
FIGURE 10.39 Synthesis of Listing 10.35.

Another example of function synthesis is shown in Listing 10.36.

LISTING 10.36 Example of Function Synthesis

module Function_Synth2 (x, y);

input [2:0] x;
output [3:0] y;
reg [3:0] y;
always @ (x)
begin
y = fn (x);
end

function [3:0] fn;
input [2:0] a;
begin

if (a <= 4)

fn = 2  a + 5;
end
endfunction

endmodule

The function in Listing 10.36 has one three-bit input a and one four-bit 
output fn. If the value of the input is less than or equal to four, the output 
is calculated as fn = 2  a + 5. If the input is greater than four, the func-
tion does not change the previous value of the output. Incorporating the 
function into the module Function_Synth2, we summarize the module as 
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representing a system with one three-bit input x and one four-bit output 
y. If x is less than or equal to four, y = 2  a + 5. If x is greater than four, 
y retains its previous value. This means that latches must be used to retain 
the previous value.

Figure 10.40 shows the simulation output of the module Function_
Synth2. As is shown, if x is greater than four, y retains its previous value. 
To synthesize this module, we use four high-level triggered D-latches be-
cause output y is four bits. If x is from zero to four, these latches should be 
transparent; if x is from five to seven, these latches should be inactive. We 
design a signal clk connected to the clock of the latches; if x is from zero to 
four, the clk is high; otherwise, it is low. Table 10.16 shows the truth table 
of signal clk.

x 011 000 100 001 101 0111

y 1011 0101 1101 0111 0111 0111
FIGURE 10.40 Simulation output of Listing 10.36.

TABLE 10.16 Truth Table for Signal clk

x(2)  x(1)  x(0)  clk
0  0  0  1
0  0  1  1
0  1  0  1
0  1  1  1
1  0  0  1
1  0  1  0
1  1  0  0
1  1  1  0

From Table 10.16, the signal clk can be written as:

clk = x(2) x(0) x(1)  

The truth table of output y when clk is high is shown in Table 10.17.

TABLE 10.17 Truth Table for Output y When clk is High

x(2) x(1) x(0) y(3) y(2) y(1) y(0)
0 0 0 0 1 0 1
0 0 1 0 1 1 1
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x(2) x(1) x(0) y(3) y(2) y(1) y(0)
0 1 0 1 0 0 1
0 1 1 1 0 1 1
1 0 0 1 1 0 1
1 0 1 d d d d
1 1 0 d d d d
1 1 1 d d d d

By inspecting Table 10.17, we find:

 y(0) = 1
 y(1) = x(0)
 y(2) = x(1)

y(3) = x(1) + x(2)
Figure 10.41 shows the synthesis of Listing 10.36.

clk

X(0)

X(1)

X(2)

D0 y(0)1

D1 y(1)

D2 y(2)

D3 y(3)

FIGURE 10.41 Synthesis of Listing 10.36.
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As shown in Figure 10.41, the main components of the synthesis are 
latches. These latches are for storing the previous values of y. If the IF 
statement can be modified in Listing 10.36 to make it complete, all four 
latches in Figure 10.41 can be avoided (see Exercise 10.8).

10.3.9 Mapping the Verilog User-Defined Primitive
In Chapter 8, Verilog user-defined primitive (UDP) was covered. List-

ing 10.37 shows a copy of Listing 8.15 where UDP was implemented. 

LISTING 10.37 (same as Listing 8.15) Verilog Code 2x1 Multiplexer with 
Active-Low Enable Using Combinational User-Defined Primitive

module Mux2x1Prmtv(A, B, SEL, Gbar,Y);
    input A,B,SEL,Gbar;

    output Y;

multiplexer MUX1 (Y, Gbar, SEL,A,B) ;

endmodule
primitive multiplexer (mux, enable, control, dataA, dataB) ;
output mux;
input enable, control, dataA, dataB;
table
// enable control dataA dataB mux
 1 ? ? ? : 0;
 0 0 1 ?  : 1;
 0 0  0  ?  : 0;
 0 1  ?  1  : 1;
 0 1  ?  0  : 0; 
 0 x  0  0  : 0;
 0 x  1  1  : 1;
endtable
endprimitive

To synthesize the code of Listing 10.37, we follow the same steps 
shown in Figure 10.1. The module can be summarized as a system with 
four one-bit inputs A, B, SEL, Gbar, and one one-bit output Y. The rela-
tionship between the output and the inputs of the system is shown in the 
statement table in Listing 10.37. To synthesize the code, a truth table is 
built; it is very similar to the contents of the statement table except, due 
to limitations of the hardware domain, the operator ? is replaced with the 
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“don’t care” operator x. Table 10.18 shows the truth table of representing 
the module in the hardware domain.

TABLE 10.18 Truth Table for Listing 10.37

Gbar SEL A B Y 

1 x x x 0
0 0 1 x 1
0 0 0 x 0
0 1 x 1 1
0 1 x 0 0 
0 x 0 0 0
0 x 1 1 1

Table 10.18 is the same as Table 2.4, and the logic diagram of Listing 10.37 
is the same as Figure 2.9.

10.4 Summary

This chapter covered the fundamentals of hardware synthesis. We 
looked at synthesis as reverse engineering; HDL code was synthesized it 
into gates and latches. The steps of synthesizing any system can be sum-
marized as follows:

1. Formulate the flowchart of the system.

2. Write the behavioral code of the system.

3. Simulate the behavioral code to verify the code.

4. Map the behavioral statements into hardware components and gates.

5. Write the structural code for the components and gates.

6. Simulate the structural code and compare it with the behavioral simula-
tion to verify the mapping.

7. Download the components and gates into an electronic chip.

8. Test the chip to verify that the download represents the system.

The hardware domain is very limited in comparison to the simulation 
domain. For example, the hardware domain cannot distinguish between 
VHDL variables and signals. We learned how to map behavioral statements 
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such as IF, case, and For-Loop. Any signal that needs to retain a value must 
be mapped using latches. Procedures, tasks, functions, and user-defined 
primitives are simulation tools; they do not have explicit hardware map-
pings. The operations they perform should be incorporated in the entity or 
in the module to be synthesized. Integers should be declared, if possible, 
with a range. This reduces the number of bits the synthesizer allocates for 
the integer. If the range is not specified, the synthesizer allocates at least 32 
bits for integers.

10.5 Exercises

1. Synthesize the code in Listing 10.38, simulate it, write the structural 
description, and verify it.

LISTING 10.38 Code for Exercise 10.1

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;

entity IF_sgned is
port (a : in signed (3 downto 0); Y : out Boolean);
end IF_sgned;

architecture IF_sgned of IF_sgned is

begin
IfB : process (a)
variable tem : Boolean;
begin
if (a < “1100”) then
tem := true;
else
tem := false;
end if;
Y <= tem;
end process;
end IF_sgned;

2. Synthesize the code in Listing 10.39. Simulate it, write the structural 
description, and verify it.
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LISTING 10.39 Code for Exercise 10.2

module elseif2 (inp, outp);
input [3:0] inp;
output [2:0] outp;
reg [2:0] outp;
always @ (inp)
begin
    if (inp[0] == 1’b1)
    outp = 3’d7;
    else if (inp[1] == 1’b1)
    outp = 3’d6;
    else if (inp[2] == 1’b1)
    outp = 3’d5;
    else
    outp = 3’d0;
end
endmodule

3. Verify the synthesis of Listing 10.26 by writing gate-level structural 
VHDL code for Figure 10.26. Simulate the code and verify that the 
simulation output is the same as that for Listing 10.26.

4. For the code of Listing 10.26, change the following lines:
else
    z_tem := 15;
    end if;

to just 
    end if;

Synthesize the new code using multiplexers, gates, and flip-flops (if 
needed).

5. Simulate the VHDL behavioral code of Listing 10.30. Write the VHDL 
structural description of the logic diagram shown in Figure 10.33 and 
simulate it. Verify that the two simulations are identical.

6. Synthesize the behavioral code shown in Listing 10.40 using RTL.

LISTING 10.40 Code for Exercise 10.6

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity exercise is
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port (a : in std_logic_vector (3 downto 0);
    c : in integer range 0 to 15;
    b : out std_logic_vector (3 downto 0));
    end exercise;
    architecture exercise of exercise is
    begin
    shfl : process (a, c)
    variable result, j : integer;
        variable temp : std_logic_vector (3 downto 0);
    begin 

        result := 0;
        lop1 : for i in 0 to 3 loop
             if a(i) = ‘1’ then
             result := result + 2i;
             end if; 
             end loop;
             if result > c then
             lop2 : for i in 0 to 3 loop
                  j := (i + 3) mod 4;
                  temp (j) := a(i);
                  end loop;
             end if;
    b <= temp;
    end process shfl;
end exercise;

7. For Figure 10.41, write the structural code for the logic shown in the fig-
ure, simulate it, and verify that the figure is the synthesis of Listing 10.36.

8. We want to realize Figure 10.41 on a programmable device such as a 
FPGA. Use the synthesis tools (provided in most cases with the HDL 
package) to synthesize the code of Listing 10.36. Compare the outcome 
of the synthesizer with Figure 10.41 and report the differences. Now, 
use the tools provided in your HDL package to download the design 
into a FPGA or compatible chip. Use the same test signals to compare 
the software’s and hardware’s simulation. Report the differences and 
suggest how to minimize these differences.

9. In Listing 10.36, if the statement inside function fn is written as:
function [3:0] fn;
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input [2:0] a;
begin

if (a <= 4)

fn = 2  a + 5;
end
endfunction

endmodule

then it is likely that the code is intended to say that if a is greater than four, 
the value of fn is unimportant. If this is true, can you modify the function’s 
code to avoid using the four latches? Redraw the synthesis of your code.

10. Synthesize the code in Listing 8.18. Hint: use RTL, use a register to 
synthesize the cpu address, and use a memory or group of registers to 
synthesize the cache. After synhesizing, write the Verilog code of the 
synthesis and verify it.



A P P E N D I X

CREATING A VHDL OR VERILOG 
PROJECT USING CAD SOFTWARE 
PACKAGE

A

In this appendix, the necessary steps to create a new project using Xilinx 
ISE 13.1 or 14.1 software are covered. The steps include the source code 
and its test bench code. Although these steps are for ISE 13.1, the same 
concepts can be applied to other versions or to other vendors’ products. 
These steps are for beginners. To find out more about these CAD packages, 
visit the homepage of the vendor.

Step 1:  Double click on the Xilinx Project Navigator icon. From the tool-
bar, select File ® New Project. A dialog box will open (see Figure A.1).

FIGURE A.1 New-project dialog box.

Step 2: In the new-project dialog box, type the desired location in the 
“Project Location” field or browse to the directory under which you want 
to create your new project directory using the browse button next to the 
“Project Location” field. 
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Step 3: Enter the name of the project. In Figure A.1, the name entered is 
“AppndxDemo.”

Step 4: Click “Next,” and Figure A.2 appears. Enter the appropriate in-
formation as shown in Figure A.2. The device is the chip where the HDL 
program, if desired, is downloaded after synthesis. The device in Figure A.2 
is selected to be from the Spartan3E chip family.

FIGURE A.2 Project dialog box.

Step 5: Click “Next” until you see the screen depicted in Figure A.3. This 
window summarizes the properties of the new project.

FIGURE A.3 Summary of entries to the project “AppndxDemo.”

Step 6: Click “Finish” (see Figure A.4). The screen now shows the name 
of the project and the device.
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FIGURE A.4 Simulation screen after clicking “Finish.”

Step 7: Attach the HDL module to your project. Click “Project” and select 
“New Source” (see Figure A.5).

FIGURE A.5 Attaching a new source to the project.

Step 8: Because we are writing a VHDL module, select “VHDL Module” 
and enter the name of the entity (VHDL) or module (Verilog) as the file 
name in Figure A.5. The name of the file here is selected to be “DemoFul-
ladder.” It is preferable to leave the location as it is so the module and the 
project are stored in the same directory. If writing Verilog, select “Verilog 
Module” Instead of VHDL Module. 

Step 9: Keep clicking “Next” until you can click “Finish.” You will then 
have the windows shown in Figure A.6. The screen section of “Sources in 
Project” shows the name of the project and the VHDL module. The right-
hand section of the screen shows a template for the VHDL module. Delete 
any comments or libraries that you do not need in your module. Referring 
to the left-hand side of Figure A.6, the “Processes for Source” panel shows 
the tools for compiling, testing, and synthesizing the VHDL module. On 
the bottom of the screen, the “Process View” panel accesses selected tools 
to display reports (logs) on various activities.
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FIGURE A.6 The project and module screen.

Step 10: Enter the VHDL code for full adder. The VHDL module here 
is the VHDL code for the full adder that was discussed in Chapter 2 (see 
Figure 2.5). The copy, cut, and paste tools can be accessed via the “Edit” 
menu on the toolbar. After finishing writing the module, click “Save.” The 
screen will display the code along with tools for testing and simulating the 
code (see Figure A.7).

FIGURE A.7 The full-adder module.

Step 11: Check the syntax of the VHDL program. This checking can be 
done using various tools; one of these tools is the behavioral check syntax, 
which appeared on the screen entitled “Processes,” as shown in Figure A.7. 
To check the syntax, select the file “Demofulladder” and click on “Behav-
ioral Check Syntax.” The results of syntax checking, with detected errors (if 
any), appear on the screen entitled “Console” at the bottom of Figure A.7. 
If there are no errors, the VHDL code has been compiled successfully.

Step 12: After compiling the code, we need to simulate and test it. There 
are several ways to simulate and test. Here, we use a test bench to simulate 
and test the code. A test bench is a user-written code that assigns values 
or wave forms to the input signals of the code being tested. To build a test 
bench (see Figure A.8), select the file “Demofulladder” and click “Project-
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New Source-VHDL Test Bench” and enter a name of the test bench. Here, 
we assign the name “fulladTstBnch” as the name of our test bench. 

FIGURE A.8 Building a test bench.

Keep clicking “Next” and then “Finish.” Figure A.9 shows the partial screen 
after clicking “Finish.” Start cleaning up the template by deleting the com-
ments if wanted.

FIGURE A.9 Test-bench template.

The test-bench template declares the file “Demofulladder” (the VHDL 
code) as a component and declares its associated signals, here the inputs 
a, b, and c, and the output sum and carryout. The template instantiates the 
signals of the full adder with the ports of the component. The template lists 
several processes that can be used to instantiate values or waveforms to 
each input signal. To test the full adder, we insatiate each input signal with 
a clock waveform; the period of the clock is varying from one signal to the 
other, so all possible values of signals a, b, and c are generated. Figure A.10 
shows the test-bench code. The statements

Pa: process
    begin
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        wait for period; 
        a <= not a;
    end process;

describe a process that generates a clock with a period of 20 ns. The state-
ment a <= not a; inverts signal a continuously; if a is 0, it will be inverted 
to 1 and vice versa. The statement wait for period; will delay the inver-
sion of signal a for 10 ns because the period was declared to be 10 ns. This 
delay and the inversion generate a clock with a period of 20 ns.


FIGURE A.10 The test-bench code. 

Step 13: After checking that the test-bench code has no errors, select the 
test-bench module and click on “Simulate Behavioral Model.” On the simu-
lation screen, adjust the scale to 10ns/division and click on “Run the Simu-
lation.” Figure A.11, which is a copy of Figure 2.7, shows the waveform that 
should appear on the screen.

a

b

c

Sum

Carryout
FIGURE A.11 Waveform output for full adder. 


