
MERCURY LEARNING AND INFORMATION

Dulles, Virginia
Boston, Massachusetts

New Delhi

HDL WITH
DIGITAL DESIGN

VHDL AND VERILOG

Nazeih Botros

www.ebook3000.com

http://www.ebook3000.org

Copyright ©2015 by MERCURY LEARNING AND INFORMATION LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way,
stored in a retrieval system of any type, or transmitted by any means, media, electronic display
or mechanical display, including, but not limited to, photocopy, recording, Internet postings,
or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

Nazeih Botros. HDL with Digital Design: VHDL and Verilog
ISBN: 978-1-938549-81-6

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as
a means to distinguish their products. All brand names and product names mentioned in this book are
trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service
marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2014950125

151617321 This book is printed on acid-free paper.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at authorcloudware.com and other digital vendors. Companion
files (figures and code listings) for this title are available by contacting info@merclearning.com. The sole
obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the disc, based on defective
materials or faulty workmanship, but not based on the operation or functionality of the product.

www.ebook3000.com

http://www.ebook3000.org

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the right
of ownership to any of the textual content in the book or ownership to any of the
information or products contained in it. This license does not permit uploading
of the Work onto the Internet or on a network (of any kind) without the writ-
ten consent of the Publisher. Duplication or dissemination of any text, code,
simulations, images, etc. contained herein is limited to and subject to licensing
terms for the respective products, and permission must be obtained from the
Publisher or the owner of the content, etc., in order to reproduce or network
any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accom-
panying algorithms, code, or computer programs (“the software”), and any ac-
companying Web site or software of the Work, cannot and do not warrant the
performance or results that might be obtained by using the contents of the
Work. The author, developers, and the Publisher have used their best efforts
to insure the accuracy and functionality of the textual material and/or programs
contained in this package; we, however, make no warranty of any kind, express
or implied, regarding the performance of these contents or programs. The
Work is sold “as is” without warranty (except for defective materials used in
manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or the
inability to use) the algorithms, source code, computer programs, or textual
material contained in this publication. This includes, but is not limited to, loss
of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to re-
placement of the book, and only at the discretion of the Publisher. The use of
“implied warranty” and certain “exclusions” vary from state to state, and might
not apply to the purchaser of this product.

www.ebook3000.com

http://www.ebook3000.org

PREFACE

This book provides the basic knowledge necessary to understand how to
design and analyze basic digital logic systems and to know how to simulate
these systems using hardware description languages. Systems here include
digital logic circuits such as: adders, multiplexers, decoders, multipliers, flip-
flops, latches, counters, sequential state machines, cache memories, and basic
computers, simplified biological mechanisms that describe the operation
of organs such as kidney, mathematical models (e.g., factorial, greatest of N
numbers, multiplication algorithms, polynomials), and artificial intelligence
(e.g., artificial neural networks). The book covers, in detail, Very High Speed
Integrated Circuit Hardware Description Language (VHDL) and Verilog
HDL. The book also covers a very important tool in writing the HDL code,
the mixed language description where both VHDL and Verilog constructs are
implemented in one HDL program. It also covers fundamentals of hardware
synthesis. The book classifies the HDL styles of writing into six groups: data
flow, behavioral, structural or gate-level, switch-level, mixed-type, and mixed
language description.

Book Organization

The following is a brief description of the subjects that are covered in each
chapter.

Chapter 1: Covers structure of the HDL module, operators including logical,
arithmetic, relational and shift, data types such as scalar, composite and file, and
a brief comparison between VHDL and Verilog. The chapter also covers how to
simulate and test HDL code using test benches

Chapter 2: Covers: a) Analysis and design of combinational circuits such as
adders, subtractors, decoders, multiplexers, comparators and simple multipliers,
and sequential circuits such as latches; b) Simulation of the above combinational
and sequential circuits using VHDL and Verilog data-flow description. The
description includes covering of logical operators, concurrent signal-assignment
statements, time delays, and vectors.

Chapter 3: Covers: a) Analysis and design of sequential circuits such as D flip-
flop, JK flip-flop, T flip-flop, binary counters, and shift register; b) Understand
the concept of some basic genetic and renal systems; c) Implementation of

www.ebook3000.com

http://www.ebook3000.org

xii • PREFACE

Booth algorithm; d) Simulation of the systems in (a), (b), and (c) using VHDL
and Verilog behavioral description. The description includes covering of the
sequential statements if, case, loop casex, casez, when, report, $display,
wait, loop, exit, next, always, repeat, forever, and initial.

Chapter 4: Covers: a) Analysis and design of sequential state machines; b)
Analysis and design of adders, multiplexers, decoders, comparators, encoders,
latches, flip-flops, counters, shift registers, and memory cells; c) Simulation
of the systems in (a) and (b) using VHDL and Verilog structural description
including the statements: component, use, and, or, not, xor, nor, generate,
generic, and parameter.

Chapter 5: Covers:
a) Analysis and design of primitive gates and simple logics using transistors
(switches); b) Simulation of the above logics using HDL switch-level description.
The description includes the Verilog statements nmos, pmos, cmos, supply1,
supply0, tranif0, tran, and tranif0.

Chapter 6: Covers: a) Handling of real (fraction) data, Implementation of
IEEE 754 Floating point representation and handling of signed numbers; b)
Analysis and design of combinational array multiplier; c) Exploring the enzyme-
substrate mechanism; d) Simulation of (a) and (b) using VHDL and Verilog
procedure, task, and function.

Chapter 7: Covers: a) Implementation of arrays, single and multidimensional;
b) Design of a basic computer; c) Simulation of (a) and (b) using VHDL and
Verilog mixed description. The description includes VHDL user-defined types
and packages.

Chapter 8: Covers: a) Analysis and design of cache memories and simple artificial
neural networks; b) Simulation of the above systems in (a); c) File processing,
character and string implementation VHDL Assert and Block statements.

Chapter 9: Covers: Mixed language description where both VHDL and Verilog
can be implemented in the same program.

Chapter 10: Covers the basics of hardware synthesis.

Who Should Use this Book?

The book is appropriate as a textbook for first or second year electrical
engineering, computer engineering, or computer science students; some of
the advanced topics in the book can be omitted if desired by the instructor.

www.ebook3000.com

http://www.ebook3000.org

PREFACE • xiii

The book is also appropriate for short courses for digital design engineers.
Suggested courses that could use this book are: digital logic design, computer
architecture, HDL programming and synthesis, application-specific integrated
circuits (ASICs) design, or digital design projects.

About the Examples covered in this Book

The examples written in this book are comprehensive and numerous. The
examples cover a wide span of topics such as digital design logic, artificial neural
networks, and simple biological mechanisms. The examples cover the analysis
and design of digital logic circuits and the basic microcomputer. The examples
cover, in detail, how to write the HDL code to simulate the systems under
consideration. Both VHDL and Verilog codes are explained and implemented
in the examples. The rules of writing the HDL code are explained in the
examples.

There might not be enough time available to cover all the examples. In this
case, the instructor can opt to cover only those examples that fit the student’s
“background.”

How to Use this Book

The digital logic design part of the book is designed to cover the basic
components in the early chapters (2–5) and then the more complex components
in chapters 6–10. The HDL part of the book covers the two major hardware
description languages, VHDL and Verilog. The book almost equally focuses
on both languages. If readers want to learn one language at a time, they can
read the sections with the title of the respective language. Almost all examples
in the book are written into two parts, a and b; part a is written in VHDL and
part b is written in Verilog. Some examples, however, are written in only one
language, when the example is dealing with a very specific language construct
that belongs only to one language and has no counterpart in the other language.
An example of this exception is the VHDL Assert statement; this statement
does not have a clear Verilog counterpart, so it is written only in VHDL.

If the reader wants to learn both languages at the same time; the book is
organized to serve as learning tool for both languages. The two languages are
not far apart from each other; they have several similarities. I have taught both
languages in one course in one semester. I started with one language (VHDL);
I covered the VHDL sections in Chapter 1, “Introduction,” and Chapter 2,
“Data Flow Description.” After covering VHDL in Chapters 1 and 2, the

www.ebook3000.com

http://www.ebook3000.org

xiv • PREFACE

student became familiar with the basic rules of HDL language and is ready
to learn the other language (Verilog). I covered Verilog material of Chapters
1 and 2. After Chapter 2 until the end of the semester, I have covered both
VHDL and Verilog at the same time in the same order as the Chapters of the
book. The order of these Chapters after Chapter 2 is: 1) Chapter 3, “Behavioral
description”; VHDL and Verilog have several similarities on behavioral
statements such as if, case, and loop. 2) Chapter 4, “Structural Description,”
again both languages have many similarities except the VHDL does not have
built-in components as the Verilog does. By including packages, VHDL can
use components very similar to that of Verilog. 3) Chapter 5, “Switch-Level
Description,” -again VHDL does not have built-in constructs for switch-level
descriptions, but we can include packages that allow us to write VHDL switch
level statements very close to that of Verilog. 4) Chapter 6, “Procedures, Tasks,
and Functions,” here VHDL and Verilog have many similarities. 5) Chapter 7,
“Mixed-Type Description.” 6) Chapter 8, “Advanced HDL Description.”
7) Chapter 9, “Mixed Language Description”; the student now knows both
VHDL and Verilog; in this chapter he will learn how to mix between VHDL
and Verilog constructs. 8) Chapter 10, “Synthesis Basics.”

Companion Files

Companion files (figures and code listings) for this title are available by
contacting info@merclearning.com.

Nazeih Botros
Carbondale, IL
February, 2015

www.ebook3000.com

http://www.ebook3000.org

CONTENTS

 Preface xi

 Chapter 1 Introduction 1
 1.1 Hardware Description Language 1
 1.2 Structure of the HDL Module 2
 1.2.1 Structure of the VHDL Module 4
 1.2.2 Structure of the Verilog Module 6
 1.3 Styles (Types) Of Description 8
 1.3.1 Data Flow Description 8
 1.3.2 Behavioral Description 9
 1.3.3 Structural Description 10
 1.3.4 Switch-Level Description 11
 1.3.5 Mixed-Type Description 12
 1.3.6 Mixed-Language Description 13
 1.4 Ports 13
 1.4.1 VHDL Ports 14
 1.4.2 Verilog Ports 14
 1.5 Operators 14
 1.5.1 Logical Operators 15
 1.5.1.1 VHDL Logical Operators 15
 1.5.1.2 Verilog Logical Operators 16
 1.5.2 Relational Operators 17
 1.5.2.1 VHDL Relational Operators 18
 1.5.2.2 Verilog Relational Operators 18
 1.5.3 Arithmetic Operators 19
 1.5.3.1 VHDL Arithmetic Operators 20
 1.5.3.2 Verilog Arithmetic Operators 21
 1.5.3.3 Arithmetic Operator Precedence 21
 1.5.4 Shift and Rotate Operators 21
 1.5.4.1 VHDL Shift/Rotate Operators 22
 1.5.4.2 Verilog Shift Operators 22
 1.6 Data Types 23
 1.6.1 VHDL Data Types 23
 1.6.1.1 Scalar Types 24
 1.6.1.2 Composite Types 27
 1.6.1.3 Access Types 28
 1.6.1.4 File Types 28
 1.6.1.5 Other Types 28

www.ebook3000.com

http://www.ebook3000.org

vi • CONTENTS

 1.6.2 Verilog Data Types 30
 1.6.2.1 Nets 30
 1.6.2.2 Register 30
 1.6.2.3 Vectors 31
 1.6.2.4 Integers 31
 1.6.2.4 Real 31
 1.6.2.5 Parameter 31
 1.6.2.6 Arrays 32
 1.7 Simulation and Synthesis 32
 1.8 Brief Comparison of VHDL and Verilog 33
 1.9 Summary 35
 1.10 Exercises 36

 Chapter 2 Data-Flow Description 39
 2.1 Highlights Of Data-Flow Description 39
 2.2 Signal Declaration And Assignment Statement 40
 2.2.1 Constant Declaration and Constant Assignment Statements 43
 2.2.2 Assigning a Delay Time to the Signal-Assignment Statement 44
 2.3 Data Type: Vector 57
 2.4 Common Programming Errors 74
 2.4.1 Common VHDL Programming Errors 75
 2.4.2 Common Verilog Programming Errors 76
 2.5 Summary 76
 2.6 Exercises 77

 Chapter 3 Behavioral Description 79
 3.1 Behavioral Description Highlights 79
 3.2 Structure of the HDL Behavioral Description 80
 3.3 The VHDL Variable-Assignment Statement 83
 3.4 Sequential Statements 85
 3.4.1 IF Statement 85
 3.4.1.1 Analysis of VHDL Code in Listings 3.2 and 3.3 91
 3.4.2 The case Statement 96
 3.4.2.1 Verilog casex and casez 112
 3.4.3 The wait-for Statement 114
 3.4.4 The Loop Statement 116
 3.4.4.1 For-Loop 116
 3.4.4.2 While-Loop 117
 3.4.4.3 Verilog repeat 118
 3.4.4.4 Verilog forever 118
 3.4.4.5 VHDL next and exit 118
 3.5 Common Programming Errors 139
 3.5.1 Common VHDL Programming Errors 139
 3.5.2 Common Verilog Programming Errors 140

www.ebook3000.com

http://www.ebook3000.org

CONTENTS • vii

 3.6 Summary 140
 3.7 Exercises 141

 Chapter 4 Structural Description 143
 4.1 Highlights of Structural Description 143
 4.2 Organization of Structural Description 144
 4.3 Binding 149
 4.4 State Machines 190
 4.5 generate (HDL), generic (VHDL), and parameter (Verilog) 213
 4.6 Summary 227
 4.7 Exercises 228

 Chapter 5 Switch-Level Description 231
 5.1 Highlights of Switch-Level Description 231
 5.2 Useful Definitions 232
 5.3 Single NMOS and PMOS Switches 232
 5.3.1 Verilog Description of NMOS and PMOS Switches 233
 5.3.2 VHDL Description of NMOS and PMOS Switches 234
 5.3.3 Serial and Parallel Combinations of Switches 236
 5.4 Switch-Level Description of Primitive Gates 237
 5.5 Switch-Level Description of Simple Combinational Logics 247
 5.6 Switch-Level Description of Simple Sequential Circuits 264
 5.6.1 CMOS Switches 267
 5.6.1.1 Switch-Level Logic Diagram of a D-Latch Using

PMOS and NMOS Switches 269
 5.6.1.2 Switch-Level Logic Diagram of a D-Latch

Using CMOS Switches 270
 5.7 Bidirectional Switches 272
 5.8 Summary 273
 5.9 Exercises 274
 5.10 References 275

 Chapter 6 Procedures, Tasks, and Functions 277
 6.1 Highlights of Procedures, Tasks, and Functions 277
 6.2 Procedures and Tasks 278
 6.2.1 Procedure (VHDL) 278
 6.2.2 Task (Verilog) 279
 6.2.3 Examples: Procedures and Tasks 280
 6.3 Functions 319
 6.3.1 VHDL Functions 319
 6.3.2 Verilog Functions 321
 6.3.3 Function Examples 322

www.ebook3000.com

http://www.ebook3000.org

viii • CONTENTS

 6.4 Summary 331
 6.5 Exercises 331
 6.6 Reference 332

 Chapter 7 Mixed-Type Description 333
 7.1 Why Mixed-Type Description? 333
 7.2 VHDL User-Defined Types 334
 7.3 VHDL Packages 336
 7.3.1 Implementations of Arrays 337
 7.3.1.1 Single-Dimensional Arrays 337
 7.3.1.2 Two-Dimensional Arrays 346
 7.4 Mixed-Type Description Examples 352
 7.5 Summary 382
 7.6 Exercises 382

 Chapter 8 Advanced HDL Description 387
 8.1 File Processing 387
 8.1.1 VHDL File Processing 388
 8.1.1.1 File_open 388
 8.1.1.2 File_close 389
 8.1.1.3 Readline 389
 8.1.1.4 Writeline 389
 8.1.1.5 Read 390
 8.1.1.6 Write 390
 8.1.2 Verilog File Processing 390
 8.1.2.1 $fopen 390
 8.1.2.2 $fclose 391
 8.1.2.3 $fdisplay 391
 8.1.2.4 $fmonitor 391
 8.2 Examples of File Processing 392
 8.2.1 Examples of VHDL File Processing 392
 8.2.2 Examples of Verilog File Processing 415
 8.3 VHDL Record Type 417
 8.4 Verilog User-Defined Primitives 426
 8.5 Cache Memory 430
 8.5.1 Direct Mapping 431
 8.5.2 Two-Way Set-Associative Mapping 433
 8.6 Summary 446
 8.7 Exercises 447
 8.8 References 450

CONTENTS • ix

 Chapter 9 Mixed-Language Description 451
 9.1 Highlights of Mixed-Language Description 451
 9.2 How to Invoke One Language From the Other 452
 9.2.1 How to Invoke a VHDL Entity From a Verilog Module 452
 9.2.2 How to Invoke a Verilog Module From a VHDL Module 453
 9.3 Mixed-Language Description Examples 455
 9.3.1 Invoking a VHDL Entity From a Verilog Module 455
 9.3.2 Invoking a Verilog Module From a VHDL Module 468
 9.4 Limitations of Mixed-Language Description 490
 9.5 Summary 490
 9.6 Exercises 491
 9.7 Reference 492

 Chapter 10 Synthesis Basics 493
 10.1 Highlights of Synthesis 493
 10.2 Synthesis Information From Entity and Module 496
 10.2.1 Synthesis Information From Entity (VHDL) 496
 10.2.2 Verilog Synthesis Information From Module Inputs/Outputs 504
 10.3 Mapping Process and Always in the Hardware Domain 507
 10.3.1 Mapping the Signal-Assignment Statement to Gate Level 507
 10.3.2 Mapping the VHDL Variable-Assignment Statement to

Gate Level 511
 10.3.3 Mapping Logical Operators 512
 10.3.4 Mapping the IF Statement 515
 10.3.5 Mapping the case Statement 527
 10.3.6 Mapping the Loop Statement 534
 10.3.7 Mapping Procedures or Tasks 538
 10.3.8 Mapping the Function Statement 542
 10.3.9 Mapping the Verilog User-Defined Primitive 546
 10.4 Summary 547
 10.5 Exercises 548

 Appendix Creating a VHDL or Verilog Project Using
CAD Software Package 553

Index 559

C H A P T E R1
INTRODUCTION

Chapter Objectives

 Understand the basics of hardware description language (HDL)
 Learn how the HDL module is structured
 Learn the use of operators in HDL modules
 Learn the different types of HDL objects
 Understand and analyze the half-adder circuit
 Understand the function of a simulator
 Understand the function of a synthesizer
 Understand the main differences between VHDL and Verilog HDL

1.1 Hardware Description Language

Hardware Description Language (HDL) is an essential computer-
aided design (CAD) tool for the modern design and synthesis of digital
systems. The recent steady advances in semiconductor technology continue
to increase the power and complexity of digital systems. Due to their com-
plexity, such systems cannot be easily realized using discrete integrated cir-
cuits (ICs) or even the newer schematic-level simulation. These systems are
usually realized using high-density programmable chips, such as appli-
cation-specific integrated circuits (ASICs) and field-programmable gate
arrays (FPGAs), and require sophisticated CAD tools. HDL is an inte-

2 • HDL WITH DIGITAL DESIGN

gral part of such tools. HDL offers the designer a very efficient tool for
implementing and synthesizing designs on chips.

The designer uses HDL to describe the system in a computer-language
code that is similar to several commonly used software languages such as C.
Debugging the design is easy because HDL packages implement simula-
tors and test benches. The two widely used hardware description languages
are VHDL and Verilog. Because the two languages are implemented in
both academia and industry, this book covers both languages.

After writing and testing the HDL code, the user can synthesize the
code into digital logic components such as gates and flip-flops that can be
downloaded into FPGAs or compatible electronic components. Usually,
the CAD package that has HDL will also have a synthesizer. The HDL
and synthesizer have made the task of designing complex systems much
easier and faster than before. It is worth mentioning here that the currently
available synthesizers have some limitations and cannot synthesize all HDL
constructs; however, continuous improvement of the synthesizers is being
undertaken by the electronic industry.

HDL has gone through continuous improvement since its inception.
Verilog was introduced in 1980s and has gone through several iterations
and standardization by the Institute of Electrical and Electronic Engineers
(IEEE), such as in December 1995 when Verilog HDL became IEEE
Standard 1364-1995, in 2001 when IEEE Std. 1364-2001 was introduced,
and in 2005 when IEEE 1800-2005 was introduced. VHDL, which stands
for very-high-speed integrated circuit (VHSIC) hardware description lan-
guage, was developed in the early 1980s. In 1987, the IEEE Standard 1076-
1987 version of VHDL was introduced, and several upgrades followed.
In 1993, VHDL was updated and more futures were added; the result of
this update was IEEE Standard 1076-1993. Recently, in 2008, the VHDL
IEEE 1076-2008 was introduced.

1.2 Structure of the HDL Module

HDL modules follow the general structure of software languages such
as C. The module has a source code that is written in high-level language
style. Text editors supplied by the HDL package vendor can be used to
write the module, or the code can be written using external text editors
and imported to the HDL package by copy and paste. The most recent-

INTRODUCTION • 3

ly introduced feature in HDL packages allows automatic generation of
HDL code from C-language code. VHDL has a somewhat different struc-
ture than Verilog HDL. In this book, Verilog HDL will be simply be re-
ferred to as Verilog. In Section 1.2.1, VHDL structure is discussed, and in
Section 1.2.2, Verilog structure is discussed.

To illustrate the structure of the HDL module, let’s consider a half-ad-
der circuit. A half adder is a combinational circuit, which is a circuit whose
output depends only on its input and which adds two input bits and outputs
the result as two bits, one bit for the sum and one bit for the carry out.
Examples of half addition include: 1 + 0 = 01, 1 + 1 = 10, and 0 + 0 = 00.
Table 1.1 shows the truth table of the half adder.

 TABLE 1.1 Truth Table for the Half Adder

Input Output
a b S C

0 0 0 0
1 0 1 0
0 1 1 0
1 1 0 1

The Boolean function of the output of the adder is obtained from the
truth table. The Boolean function of the output is generated using mint-
erms (where the output has a value of 1) or maxterms (where the output has
a value of 0). The Boolean function using minterms in the sum of products
(SOP) form is

S = a b + a b = a  b (1.1)

C = a b (1.2)

Using the maxterms in the product of sums (POS) forms

S = (a + b)(a + b) = a  b (1.3)

C = (a + b)(a + b)(a + b) = ab (1.4)

After minimization (aa = 0 and bb =0), the SOP and the POS yield
identical Boolean functions. Figure 1.1a shows the logic symbol of the half
adder. Figure 1.1b shows the logic diagram of the half adder.

4 • HDL WITH DIGITAL DESIGN

1.2.1 Structure of the VHDL Module
The VHDL module has two major constructs: entity and architecture.

Entity declares the input and output signals of the system to be described
and is given a name or identifier by the user. VHDL is case insensitive;
for example, the two entity names Half_ADDER and half_adder are treated
as the same name. The name should start with an alphabetical letter and
can include the special character underscore (_). Declarations include the
name and type of the inputs and outputs of the system. The inputs and
outputs here are called input ports and output ports. The name of the port
is user selected, and it has the same requirements as the entity’s name. The
entity that may describe the information depicted in Figure 1.1a is:

entity Half_adder is
port(a: in bit; b : in bit; S : out bit;
 C: out bit);
end half_adder;

The word entity is a predefined word. The name of the entity is
Half_adder. This name is user selected and does not convey any infor-
mation about the system; it is just an identifier. The entity could have
been given any other name. VHDL does not know that the entity Half_adder
describes a half adder simply by its name. The entity here has two input
ports and two output ports. The term is is a predefined word and must
be written after the name of the entity. The word port is predefined. The
names of the input ports are a and b, and they must be followed by a colon
(:). The predefined word in instantiates the mode of the port as an input

C

S

Half
adder

b

a

C

S
b

a

 a) b)
FIGURE 1.1 Half adder. a) Logic symbol. b) Logic diagram.

INTRODUCTION • 5

(see Section 1.4.1 for details on port modes). The type of these input signals
is bit and determines the allowed values that signals a and b can take. Type
bit allows the signal to take only either logic 0 or logic 1. There are several
other types, such as std_logic, real, and integer (see Section 1.6.1).
The entity also has two output ports, S and C; they are declared as outputs
with the predefined word out, and their type is bit. The order in which the
input and output ports are written inside the parentheses is irrelevant. The
output ports could have been listed before the input ports.

The last line of the entity’s code uses the predefined word end, and
it ends the entity. The name of the entity can follow the word end, as in
end Half_adder, or the name of the entity can be omitted and only end
is entered.

The semicolon (;) is an important character in HDL. It is used as a
separator similar to the carriage return character used in C language. For
example, the port statement can be written as:

port(a: in bit;
b : in bit;
S : out bit;
C: out bit);

The carriage return between the statements does not convey any in-
formation; it is the semicolon that signals a new statement. Ports can be
declared in, out, inout, buffer, or linkage (see Section 1.4.1).

The second construct of the VHDL module, the architecture, describes
the relationship between the inputs and outputs of the system. Architecture
has to be bound to an entity. This relationship can be described using sev-
eral sources; one of these sources is the Boolean function of the outputs.
Other sources for describing the relationship between the output(s) and the
input(s) are discussed in Section 1.3. Multiple architectures can be bound
to the same entity, but each architecture can be bound to only one entity.
Listing 1.1 shows an example of an architecture bound to the entity Half_
adder. The architecture is declared by the predefined word architecture,
followed by a user-selected name; this name follows the same name-select-
ing guidelines as the entity. In Listing 1.1, the name of the architecture is
dtfl _half. The name is followed by the predefined word of, followed
by the name of the entity. The predefined word of binds the architecture
dtfl _half to the entity Half_adder. Binding here means the information
listed in the entity is visible to the architecture.

6 • HDL WITH DIGITAL DESIGN

Throughout this book, Listings may include both VHDL and
Verilog descriptions. For the reader’s convenience, the Verilog
versions have been highlighted with a shaded background.

LISTING 1.1 Example of Entity Architecture

entity Half_adder is
 port(a: in bit; b : in bit; S : out bit;
 C: out bit);
 end half_adder;
architecture dtfl_half of Half_adder is
begin
S <= a xor b; -- statement 1
C <= a and b; -- statement 2
--Blank lines are allowed
end dtfl_half;

In Listing 1.1, the architecture dtfl _half recognizes the information
declared in the entity, such as the name and type of ports a, b, S, and C.
After entering the name of the entity, the predefined word is must be
entered. The architecture’s body starts with the predefined word begin,
followed by statements that detail the relationship between the outputs and
inputs.

In Listing 1.1, the body of the architecture includes two statements.
The two hyphens (--) signal that a comment follows. Statements 1 and 2
constitute the body of the architecture; they are signal assignment state-
ments (see Chapter 2). The two statements describe the relationship be-
tween the output ports S and C and the input ports a and b. The xor and
and are called logical operators (see Section 1.5.1.1); they simulate EXCLU-
SIVE-OR and AND logic, respectively. The architecture is concluded by the
predefined word end. The name of the architecture can follow, if desired,
the predefined word end. Leaving blank line(s) is allowed in the module;
also, spaces between two words or at the beginning of the line are allowed.

1.2.2 Structure of the Verilog Module
Verilog module has declaration and body. In the declaration, the name,

inputs, and outputs of the module are entered. The body shows the rela-
tionship between the inputs and the outputs. Listing 1.2 shows a Verilog
description of a half adder based on the Boolean function of the outputs.

NOTE

INTRODUCTION • 7

Listing 1.2 Example of a Verilog Module

module Half_adder(a,b,S,C);
 input a,b;
 output S, C;
 // Blank lines are allowed

 assign S = a ^ b; // statement 1
 assign C= a & b; // statement 2
endmodule

The name of the module in Listing 1.2 is a user-selected Half_adder.
In contrast to VHDL, Verilog is case sensitive. Half_adder, half_adder,
and half_addEr are all different names. The name of the module should
start with an alphabetical letter and can include the special character under-
score (_). The declaration of the module starts with the predefined word
module followed by the user-selected name. The names of the inputs and
outputs (they are called input and output ports) follow the same guidelines
as the module’s name. They are written inside parentheses separated by
a comma. The parenthesis is followed by a semicolon. In Listing 1.2, a, b,
S, and C are the names of the inputs and outputs. The order of writing the
input and output ports inside the parentheses is irrelevant. We could have
written the module statement as:

module half_adder (S, C, a, b);

The semicolon (;) plays the same rule as in VHDL module; it is a line
separator. Carriage return here does not indicate a new statement, the
semicolon does. Following the module statement, the input and output
port modes are declared. For example, the statement input a; declares
signal a as an input port. The modes of the ports are discussed in Section
1.4.2. In contrast to VHDL, the type of the input and output port signals
need not be declared. The order of writing the inputs and outputs and their
declaration is irrelevant. For example, the inputs and outputs in Listing 1.2
can be written as:

module half_adder (a,b, S, C);
 output S;
 output C;
 input a;
 input b;

8 • HDL WITH DIGITAL DESIGN

Also, more than one input or output could be entered on the same line
by using a comma (,) to separate each input or output as:

module half_adder (a,b, S, C);
 output S, C;
 input a, b;

Statements 1 and 2 in Listing 1.2 are signal assignment statements (see
Chapter 2). In statement 1, the symbol ^ represents an EXCULSIVE-OR
operation; this symbol is called a logical operator (see Section 1.5.1.2). So,
statement 1 describes the relationship between S, a, and b as S = a xor b. In
statement 2, the symbol & represents an AND logic; the symbol is called a
logical operator. So, statement 2 describes the relationship between C, a,
and b as C = a and b. Accordingly, Listing 1.2 simulates a half adder. The
double slash (//) is a comment command where a comment can be entered.
If the comment takes more than one line, a double slash or pair (/……../)
can be used. The module is concluded by the predefined word endmod-
ule. Leaving blank lines is allowed in the module; also, spaces between
two words or at the beginning of the line are allowed.

1.3 Styles (Types) Of Description

Several styles of code writing can be used to describe the system. Selec-
tion of the styles depends on the available information on the system. For
example, some systems may be easily described by the Boolean function of
the output; for other systems, such as biological mechanisms, it will be hard
to obtain the Boolean function of the output, but they can be described if
the relationship between the changes of the output with the input is known.
In the following section, six styles will be discussed: data flow, behavioral,
structural, switch level, mixed type, and mixed language.

1.3.1 Data Flow Description
Data flow describes how the system’s signals flow from the inputs to the

outputs. Usually, the description is done by writing the Boolean function
of the outputs. The data-flow statements are concurrent; their execution is
controlled by events. The VHDL architecture or Verilog module data-flow
description, as defined here, does not include any of the key words that
identify behavioral, structural, or switch-level descriptions. Data-flow de-
scriptions are covered in Chapter 2. Data-flow style has been implemented

www.ebook3000.com

http://www.ebook3000.org

INTRODUCTION • 9

in Section 1.2 where the Boolean function of S and C have been imple-
mented to describe the half adder; see Listing 1.1 (VHDL) and Listing 1.2
(Verilog).

1.3.2 Behavioral Description
A behavioral description models the system as to how the outputs be-

have with the inputs; usually, a flowchart is used to show this behavior. In
the half adder, the S output can be described as “1” if the inputs a and b
are not equal, otherwise S = “0,” (see Figure 1.2). The output C can be
described as acquiring a value of “1” only if each input (a and b) is “1.” The
HDL behavioral description is the one where the architecture (VHDL) or
the module (Verilog) contains the predefined word process (VHDL) or
always or initial (Verilog). Behavioral description is usually used when
the Boolean function or the digital logic of the system is hard to obtain. Be-
havioral description is covered in Chapter 3. Listing 1.3 shows a behavioral
description of the output S of the half adder.

Read
a, b

S = 0
NO

YES

a ≠ b ?

S = 1

FIGURE 1.2 Behavior of output S with changes in inputs a and b.

LISTING 1.3 Example of Behavioral Description

VHDL1B Description
entity Half_adder is
port(a: in bit; b : in bit; S : out bit;
 C: out bit);
end half_adder;

architecture beh_half of Half_adder is
begin
process (a, b)

10 • HDL WITH DIGITAL DESIGN

begin
if (a /= b) then
S <= ‘1’;
else
S <= ‘0’;
--Blank lines are allowed
end if;
end process;
end beh_half;

Verilog Description
module Half_adder(a,b,S,C);
 input a,b;
 output S, C;
 reg S,C;
 // Blank lines are allowed
 always @ (a,b)
 begin
 if (a != b)
 S = 1’b1;
 else
 S = 1’b0;
 end
endmodule

1.3.3 Structural Description
Structural description models the system as components or gates. This

description is identified by the presence of the keyword component in the
architecture (VHDL) or gates construct such as and, or, and not in the
module (Verilog). Structural description is covered in Chapter 4. For the
half adder, Figure 1.1b is used to write the structural code. Listing 1.4
shows a structural description for the half adder.

LISTING 1.4 Example of Structural Description

VHDL Description
entity Half_adder is
 port(a: in bit; b : in bit; S : out bit;
 C: out bit);
end half_adder;
architecture struct_exple of Half_adder is
--ADDITIONAL BINDING IS NEEDED TO RUN THIS PROGRAM;
--SEE CHAPTER 4

INTRODUCTION • 11

 component xor2
 --The above statement is a component statement
 port(I1, I2 : in std_logic;
 O1 : out std_logic);
 end component;
 component and2
 port(I1, I2 : in std_logic;
 O1 : out std_logic);
 end component;
 begin
 X1: xor2 port map (a,b, S);
 A1: and2 port map (a,b, C);
end struct_exple;

Verilog Description
module Half_adder1(a,b,S,C);
 input a, b;
 output S,C;
 and a1(C,a,b);
 //The above statement is AND gate
 xor x1(S,a,b);
 //The above statement is EXCLUSIVE-OR gate

endmodule

1.3.4 Switch-Level Description
The switch-level description is the lowest level of description. The sys-

tem is described using switches or transistors. Some of the Verilog pre-
defined words used in the switch level description are nmos, pmos, cmos,
tranif0, tran, and tranif1. VHDL does not have built-in switch-level
primitives, but a construct package can be built to include such primi-
tives. Details of the switch-level description can be found in Chapter 5.
Listing 1.5 shows the switch-level description of an inverter.

LISTING 1.5 An Example of A Switch-Level Description

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Inverter is
 Port (y : out std_logic; a: in std_logic);
end Inverter;

12 • HDL WITH DIGITAL DESIGN

architecture Invert_switch of Inverter is
--additional binding is needed to run this program;
--see chapter 5
 component nmos
 --nmos is one of the key words for switch-level.
 port (O1: out std_logic; I1, I2 : in std_logic);
 end component;
 component pmos
 --pmos is one of the key words for switch-level.
 port (O1: out std_logic ;I1, I2 : in std_logic);
end component;
 for all: pmos use entity work. mos (pmos_behavioral);
 for all: nmos use entity work. mos (nmos_behavioral);
 --The above two statements are referring to a package mos
 --See details in Chapter 5
 constant vdd: std_logic := ‘1’;
 constant gnd : std_logic:= ‘0’;
 begin
 p1 : pmos port map (y, vdd, a);
 n1: nmos port map (y, gnd, a);
end Invert_switch;

Verilog Description
module invert(y,a);
 input a;
 output y;
 supply1 vdd;
 supply0 gnd;
 pmos p1(y, vdd, a);
 nmos n1(y, gnd, a);
 /The above two statement are using the two primi-

tives pmos and nmos/
 endmodule

1.3.5 Mixed-Type Description
Mixed-type or mixed-style descriptions are those that use more than

one type or style of the above-mentioned descriptions. In fact, most of the
descriptions of moderate to large systems are mixed. Some parts of the
system may be described using one type and others using other types of
description. Mixed-type description is covered in Chapter 7.

INTRODUCTION • 13

1.3.6 Mixed-Language Description
The mixed-language description is a newly added tool to HDL de-

scription. The user now can write a module in one language (VHDL or
Verilog) and invoke or import a construct (entity or module) written in
the other language. Listing 1.6 illustrates the mixed-language description.
In this Listing, inside Verilog module Full_Adder1, the VHDL entity
HA is instantiated (imported). The information given in that entity is now
visible to the Verilog module. Mixed-language description is covered in
Chapter 9.

LISTING 1.6 Example of Mixed-Language Description

module Full_Adder1 (x,y, cin, sum, carry);
 input x,y,cin;
 output sum, carry;
 wire c0, c1, s0;
 HA H1 (y, cin, s0,c0);
 // Description of HA is written in VHDL in the
 // entity HA

 endmodule

library IEEE;
use ieee.std_logic_1164.all;
entity HA is
 --For correct binding between this VHDL code and the above
 --Verilog code, the entity has to be named here as HA
 port (a, b : in std_logic; s, c: out std_logic);
end HA;
architecture HA_Dtflw of HA is
 begin
 s <= a xor b;
 c <= a and b;
end HA_Dtflw;

1.4 Ports

A simple definition of ports can be stated as a communication means
between the system to be described and the environment.

14 • HDL WITH DIGITAL DESIGN

1.4.1 VHDL Ports
In VHDL, ports can take one of the following modes:

 in: The port is only an input port. In any assignment statement, the port
should appear only on the right-hand side of the statement (i.e., the port
is read).

 out: The port is only an output port. In any assignment statement, the
port should appear only on the left-hand side of the statement (i.e., the
port is updated).

 buffer: The port can be used as both an input and output but can have only
one source (i.e., limited fan out). The port can appear on either the left- or
right-hand side of an assignment statement. A buffer port can only be con-
nected to another buffer port or to a signal that also has only one source.

 inout: The port can be used as both an input and output.

 linkage: Same as inout but the port can only correspond to a signal.

1.4.2 Verilog Ports
Verilog ports can take one of the following three modes:

 input: The port is only an input port. In any assignment statement, the
port should appear only on the right-hand side of the statement (i.e., the
port is read).

 output: The port is an output port. In contrast to VHDL, the Verilog
output port can appear in either side of the assignment statement.

 inout: The port can be used as both an input and output. The inout port
represents a bidirectional bus.

1.5 Operators

HDL has an extensive list of operators. These operators are used ex-
tensively in every chapter of the book. Operators perform a wide variety of
functions. These functions can be classified as:

 Logical (see Section 1.5.1), such as AND, OR, and XOR

 Relational (see Section 1.5.2) to express the relation between objects.
These operators include equality, inequality, less than, less than or
equal, greater than, and greater than or equal.

INTRODUCTION • 15

 Arithmetic (see Section 1.5.3) such as addition, subtraction, multiplication,
and division

 Shift (see Section 1.5.4) to move the bits of an object in a certain direc-
tion, such as right or left

In the following section, HDL operators are discussed. The reader is
advised to briefly study the operators presented here in order to understand
their concept. These operators are implemented in almost every chapter of
this book. When implemented, the reader can return to this section to read
the details of operators used.

1.5.1 Logical Operators
These operators perform logical operations, such as AND, OR, NAND,

NOR, NOT, and XOR. The operation can be on two operands or on a single
operand. The operand can be single or multiple bits. In Section 1.5.1.1,
VHDL logical operators are discussed, and Verilog logical operators are
discussed in Section 1.5.1.2.

1.5.1.1 VHDL Logical Operators

Table 1.2 shows a list of VHDL logical operators. These operators
should appear only on the right-hand side of statements. The operators are
bitwise; they operate on corresponding bits of two signals. For example,
consider the statement Z: = X XOR Y. If X is four-bit signal 1011 and Y is
four-bit signal 1010, then Z = 0001.

TABLE 1.2 VHDL Logical Operators

Operator Equivalent Logic Operand Type Result Type

AND Bit Bit

OR Bit Bit

NAND Bit Bit

NOR Bit Bit

16 • HDL WITH DIGITAL DESIGN

Operator Equivalent Logic Operand Type Result Type

XOR Bit Bit

XNOR Bit Bit

NOT Bit Bit

1.5.1.2 Verilog Logical Operators
Verilog has extensive logical operators. These operators perform logical

operations such as AND, OR, and XOR. Verilog logical operators can be
classified into three groups: bitwise, Boolean logical, and reduction. The
bitwise operators operate on the corresponding bits of two operands. Con-
sider the statement: Z= X & Y, where the AND operator (&) “ANDs” the
corresponding bits of X and Y and stores the result in Z. For example, if X
is the four-bit signal 1011, and Y is the four-bit signal 1010, then Z = 1010.
Table 1.3 shows bitwise logical operators. For example, the NAND opera-
tion on X and Y is written as: Z = ~(X & Y).

TABLE 1.3 Verilog Bitwise Logical Operators

Operator Equivalent Logic Operand Type Result Type

& Bit Bit

 | Bit Bit

~ (&) Bit Bit

~ (|) Bit Bit

 ^ Bit Bit

INTRODUCTION • 17

Operator Equivalent Logic Operand Type Result Type

~^ Bit Bit

 ~ Bit Bit

Other types of logical operators include the Boolean logical operators.
These operators operate on two operands, and the result is in Boolean: 0
(false) or 1 (true). For example, consider the statement Z = X && Y where &&
is the Boolean logical AND operator. If X = 1011 and Y = 0001, then Z = 1.
If X = 1010 and Y = 0101, then Z = 0. Table 1.4 shows the Boolean logical
operators.

TABLE 1.4 Verilog Boolean Logical Operators

Operator Operation Number of Operands
&& AND Two
|| OR Two

The third type of logical operator is the reduction operator. Reduc-
tion operators operate on a single operand. The result is in Boolean. For
example, in the statement Y = &X, where & is the reduction AND operator,
and assuming X = 1010, then Y = (1 & 0 & 1 & 0) = 0. Table 1.5 shows the
reduction logic operators.

TABLE 1.5 Verilog Reduction Logical Operators

Operator Operation Number of Operands
& Reduction AND One
| Reduction OR One
~& Reduction NAND One
~ | Reduction NOR One
^ Reduction XOR One
~^ Reduction XNOR One
! NEGATION One

1.5.2 Relational Operators
Relational operators are implemented to compare the values of two ob-

jects. The result returned by these operators is in Boolean: false (0) or true (1).

18 • HDL WITH DIGITAL DESIGN

In Section 1.5.2.1, the VHDL relational operators are covered, and in
Section 1.5.2.2, the Verilog relational operators are covered.

1.5.2.1 VHDL Relational Operators

VHDL has extensive relational operators. Their main implementations
are in the if and case statements (see Chapter 3). Table 1.6 shows VHDL
relational operators.

TABLE 1.6 VHDL Relational Operators

Operator Description Operand
Type

Result Type

= Equality Any type Boolean
/= Inequality Any type Boolean
< Less than Scalar Boolean
<= Less than or equal Scalar Boolean
> Greater than Scalar Boolean
>= Greater than or equal Scalar Boolean

The following statements demonstrate the implementation of some of
the above relational operators.

If (A = B) then

A is compared to B. If A is equal to B, the value of the expression (A = B)
is true (1); otherwise, it is false (0).

If (A < B) then

If A is less than B, the value of the expression (A < B) is true (1);
otherwise, it is false (0).

1.5.2.2 Verilog Relational Operators

Verilog has a set of relational operators similar to VHDL. Table 1.7
shows Verilog relational operators. As in VHDL, the relational operators
return Boolean values: false (0) or true (1).

TABLE 1.7 Verilog Relational Operators

Operator Description Result Type
== Equality 0, 1, x
!= Inequality 0, 1, x
=== Equality inclusive 0, 1

INTRODUCTION • 19

Operator Description Result Type
!== Inequality inclusive 0, 1
< Less than 0, 1, x
<= Less than or equal 0, 1, x
> Greater than 0, 1, x
>= Greater than or equal 0, 1, x
? Conditional operator 0, 1, x

For the equality operator (==) and inequality operator (!=), the result
can be of type unknown (x) if any of the operands include “don’t care,” “un-
known (x),” or “high impedance z.” These types are covered in Section 1.6.

The following are examples of a Verilog relational operators:

if (A == B) .…….

If the value of A or B contains one or more “don’t care” or z bits, the
value of the expression is unknown. Otherwise, if A is equal to B, the value
of the expression is true (1). If A is not equal to B, the value of the expres-
sion is false (0).

if (A === B)…..

This is a bit-by-bit comparison. A or B can include x or high impedance
Z; the result is true (1) if all bits of A match that of B. Otherwise, the result
is false (0).

For the conditional operator “?” the format is:

Conditional-expression ? true-expression : false-expression ;

The conditional expression is evaluated; if true, true-expression is ex-
ecuted If false, false-expression is executed. If the result of the conditional-
expression is “x,” both false and true are executed, and their results are
compared bit by bit; if two corresponding bits are the same, the common
value of these bits is returned. If they are not equal, an “x” is returned. The
conditional operator is discussed in Chapter 2.

1.5.3 Arithmetic Operators
Arithmetic operators can perform a wide variety of operations, such

as addition, subtraction, multiplication, and division. In Section 1.5.3.1,
VHDL arithmetic operators are covered, and in Section 1.5.3.2, Verilog
arithmetic operators are covered.

20 • HDL WITH DIGITAL DESIGN

1.5.3.1 VHDL Arithmetic Operators

VHDL arithmetic operators operate on numeric and physical operand
types (see Section 1.6). Physical data types are those that can be measured
in units, such as time. An example of an arithmetic operator is the multi-
plication operator (); the statement Y: = (AB) calculates the value of Y as
the product of A multiplied by B. Table 1.8 shows the VHDL arithmetic
operators and the type of A, B, and Y.

TABLE 1.8 VHDL Arithmetic Operators

Operator Description A or B Type Y Type
+ Addition

A + B
A numeric
B numeric

Numeric

- Subtraction
A – B

A numeric
B numeric

 Numeric

 Multiplication
A × B

A integer or real
B integer or real

Same as A

 Multiplication
A × B

A physical
B integer or real

Same as A

 Multiplication
A × B

A integer or real
B physical

Same as B

/ Division
A ÷ B

A integer or real
B integer or real

Same as A

/ Division
A ÷ B

A integer or real
B physical

Same as B

/ Division
A ÷ B

A physical
B integer or real

Same as A

mod Modulus
A mod B

A only integer
B only integer

Integer

rem Remainder
A rem B

A only integer
B only integer

Integer

abs absolute
abs (A)

A numeric Positive numeric

& Concatenation
(A & B)

A numeric or array
B numeric or array

Same as A

 Exponent
A  B

A real or integer
B only integer

Same as A

INTRODUCTION • 21

1.5.3.2 Verilog Arithmetic Operators

Verilog, in contrast to VHDL, is not extensive type-oriented language.
Accordingly, for most operations, only one type of operation is expected for
each operator. An example of an arithmetic Verilog operator is the addition
operator (+); the statement Y = (A + B) calculates the value of Y as the sum
of A and B. Table 1.9 shows the Verilog arithmetic operators.

TABLE 1.9 Verilog Arithmetic Operators

Operator Description A or B Type Y Type
+ Addition

A + B
A numeric
B numeric

Numeric

- Subtraction
A – B

A numeric
B numeric

Numeric

 Multiplication
A × B

A numeric
B numeric

Numeric

/ Division
A ÷ B

A numeric
B numeric

Numeric

% Modulus
A % B

A numeric, not real
B numeric, not real

Numeric, not real

 Exponent
A  B

A numeric
B numeric

Numeric

{,} Concatenation
{A , B}

A numeric or array
B numeric or array

Same as A

{N{A}} Repetition A numeric or array Same as A

1.5.3.3 Arithmetic Operator Precedence
The precedence of the arithmetic operators in VHDL or Verilog is the

same as in C. The precedence of the major operators is listed below from
highest to lowest:



 / mod (%)

+ -

1.5.4 Shift and Rotate Operators
Shift and rotate operators are implemented in many applications, such

as in multiplication and division. A shift left represents multiplication by
two, and a shift right represents division by two. VHDL shift operators are

22 • HDL WITH DIGITAL DESIGN

discussed in Section 1.5.4.1, and Verilog shift operators are discussed in
Section 1.5.4.2.

1.5.4.1 VHDL Shift/Rotate Operators

Shift operators are unary operators; they operate on a single operand.
To understand the function of these operators, assume that operand A is the
four-bit vector 1110. Table 1.10 shows the VHDL shift operators as they
apply to operand A.

TABLE 1.10 VHDL Shift Operators

Operation Description
Before Shift

Operand A After
Shift

Operand A

A sll 1 Shift A one position
left logical

1110 1100

A sll 2 Shift A two positions
left logical

1110 10xx

A srl 1 Shift A one position
right logical

1110 x111

A srl 2 Shift A two positions
right logical

1110 xx11

A sla 1 Shift A one position
left arithmetic

1110 110x

A sra 1 Shift A one position
right arithmetic

1110 1111

A rol 1 Rotate A one
position left

1110 1101

A ror 1 Rotate A one posi-
tion right

1110 0111

Notice that rotate (ror or rol) keeps all bits of operand A. For exam-
ple, A ror 1 shifts A one position to the right and inserts the least significant
bit (0) in the vacant, most significant position.

1.5.4.2 Verilog Shift Operators

Verilog has the basic shift operators. Shift operators are unary opera-
tors; they operate on a single operand. To understand the function of these
operators, assume operand A is the four-bit vector 1110. Table 1.11 shows
the Verilog shift operators as they apply to operand A.

INTRODUCTION • 23

TABLE 1.11 Verilog Shift Operators

Operation Description
Before Shift

Operand A
After Shift

Operand A

A << 1 Shift A one position
left logical

1110 1100

A << 2 Shift A two positions
left logical

1110 1000

A >> 1 Shift A one position
right logical

1110 0111

A >> 2 Shift A two positions
right logical

1110 0011

A.>>> 2 Shift A two positions
right arithmetic

1110 1111

A.<<< 2 Shift A two positions
left arithmetic

1110 1000

1.6 Data Types

Because HDL is implemented to describe the hardware of a system,
the data or operands used in the language must have several types to match
the need for describing the hardware. For example, if we are describing a
signal, we need to specify its type (i.e., the values that the signal can take),
such as type bit, which means that the signal can assume only 0 or 1, or
type std_logic, in which the signal can assume a value out of nine possible
values that include 0, 1, and high impedance. Examples of types include
integer, real, vector, bit, and array. In Section 1.6.1, data types
for VHDL are discussed, and in Section 1.6.2, data types for Verilog are
discussed. The reader is advised to briefly study the data types presented
here in order to know their concepts. Data types are implemented in almost
every chapter of this book; when implemented, the reader can come back
to this section to read the details about a selected data type.

1.6.1 VHDL Data Types
As previously mentioned, VHDL is a type-oriented language; many op-

erations will not be executed if the right type for the operands has not been
chosen. The type of any element or object in VHDL determines the al-
lowed values that element can assume. Objects in VHDL can be signal (see
Chapter 2), variable (see Chapter 3), or constant (see Chapters 2 and 3).

24 • HDL WITH DIGITAL DESIGN

These objects can assume different types; these types can be classified into
five groups depending on the nature of the values the object can assume:
scalar, composite, access, file, and other.

1.6.1.1 Scalar Types

The values that a scalar can assume are numeric. Numeric values can be
integer, real, physical (such as time), Boolean (0 or 1), or characters when
stored as American Standard Code for Information Interchange (ASCII) or
compatible code. The following types constitute the scalar types.

Bit Type

The only values allowed here are 0 or 1. It is used to describe a signal
that takes only 1 (high) or 0 (low). The signal cannot take other values such
as high impedance (open). An example of implementing this type is when
the type of a port signal is described as:

port (I1, I2 : in bit; O1, O2 : out bit);

Signals I1, I2, O1, and O2 can assume only 0 or 1. If any of these sig-
nals must assume other levels or values, such as high impedance, bit type
cannot be used.

Boolean Type

This type can assume two values: false (0) or true (1). Both true
and false are predefined words. One of the most frequent applications
of the Boolean type is in the if statement (see Chapter 3). Consider the
statements:

If (y = B) then
 S := ‘1’;
else
 S := ‘0’;
end if;

The output of the first line, If (y =B), is Boolean: it is either true or
false. If true, then S = 1; if false, S = 0. Boolean can also be specified as
the port type:

port (I1, I2 : in bit; O1 : out bit; O2 : Boolean);

Integer Type

As the name indicates, this type covers all integer values; the values
can be negative or positive. The default range is from –2,147,483,648 to

INTRODUCTION • 25

+2,147,483,647. The user can specify a shorter range by using the pre-
defined word range. The predefined word natural can be used instead
of integer if the values of the object are always positive, including 0. An
example of the integer type is in the implementation of the exponent op-
erator (see Section 1.5.3.1). The exponent has to be of type integer, such
as X2 or Xy, where y is declared as integer. The port can also be
declared as type integer:

port (I1 : in natural; I2 : in bit; O1 : out integer; O2 : Boolean);
Another predefined type positive restricts the values an object can

take to be positive and higher than 0.

Real Type

This type accepts fractions, such as .4502, 12.5, and –5.2E–10 where

E–10 = 10–10. An example of using real type is:

port (I1 : in natural; I2 : in real; O1 : out integer; O2 :
 Boolean);

Character Type

This type includes characters that can be used to print a message using,
for example, the predefined command report, such as:

report (“Variable x is greater than Y”);

Notice that each character in the above message is just printed; no value
is assigned to them. The report statement is very similar to the print state-
ment in C language. Some format can be added to the characters printed
by report:

report (“Variable x is greater than Y.”) & CR &
 (“Variable x is > 2.34.”);

where & is the concatenation operator (see Section 1.5.3.1), and CR is a
predefined word for carriage return.

subtype and type, if used, assign numeric value to each character, as
follows:

subtype wordChr is character;
type string_chr is array (N downto 0) of wordChr;

In addition, subtype, type, and array are predefined words (see
arrays and user-defined types in this section and in Chapters 6–8). The two
statements above declare an array of N + 1 elements, and each element is

26 • HDL WITH DIGITAL DESIGN

a character. The characters are associated with ASCII values. For example,
character A has the ASCII value of 41 in hex. More discussion on characters
can be found in Chapter 8 and Chapter 3.

Physical Type

This type has values that can be measured in units, such as time (e.g.,
second, millisecond, microsecond) and voltage (e.g., volt, millivolt, micro-
volts). An example of type time is:

constant Delay_inv : time := 1 ns;

The above statement states that the constant Delay_inv is of type
time, and its initial value is one nanosecond (1 ns). The word time is pre-
defined; the units of time are as follows:

 fs femtosecond
 ps = 1,000 fs
 ns = 1,000 ps
 us = 1,000 ns
 ms = 1,000 us
 sec = 1,000 ms
 min = 60 sec
 hr = 60 min

User-Defined Types

The user can define a type by using the predefined word type as shown
below:

type op is (add, mul, divide, none);
variable opcode : op := mul;

Type op is user defined. The variable opcode is of type op and can
therefore be instantiated to: add, mul, divide, or none. More discussion
about user-defined types can be found in Chapter 7.

Severity Type

This type is used with the assert statement (see Chapter 8). An object
with type severity can take one of four values: note, warning, error, or
failure. An example of this type is as follows:

assert (Flag_full = false);

report “The stack is full”;
severity failure;

INTRODUCTION • 27

The assert condition is Flag_full = false. If Flag_full is not
false, a message is printed to indicate that the stack is full and simulation is
halted.

1.6.1.2 Composite Types

The composite type is a collection of values. There are three composite
types: bit vector, arrays (see Chapter 7), and records (see Chapter 8). An
array is a collection of values all belonging to a single type; a record is a col-
lection of values with the same or different types.

Bit_vector Type

The bit_vector type represents an array of bits; each element of the
array is a single bit. The following example illustrates the implementation
of type bit_vector:

Port (I1 : in bit; I2 : in bit_vector (5 downto 0); Sum : out bit);
In the above statement, port I2 is declared as type bit_vector; it

has six bits. Possible values of I2 include 110110, 011010, and 000000 or
any other six-bit number. More details about bit_vector can be found in
Chapter 2.

Array Type

This type is declared by using the predefined word array. For ex-
ample, the following statements declare the variable memory to be a single-
dimensional array of eight elements, and each element is an integer:

subtype wordN is integer;
type intg is array (7 downto 0) of wordN;
...........
variable memory : intg;

Arrays can be multidimensional. See Chapter 7 for more details on ar-
rays.

Record Type

An object of record type is composed of elements of the same or differ-
ent types. An example of record type is shown below:

Type forecast is
record
Tempr : integer range -100 to 100;

28 • HDL WITH DIGITAL DESIGN

Day : real;
Cond : bit;
end record;

............

variable temp : forecast

Variable temp is of type forecast; type forecast includes record, and
record has three different types: integer, real, and bit. More details
about records can be found in Chapter 8.

1.6.1.3 Access Types

Values belonging to an access type are pointers to objects of other
types. For example:

type ptr_weathr is access forecast;

The type ptr_weathr is a pointer to the type forecast shown in last
example of Section 1.6.1.2.

1.6.1.4 File Types

Objects of type fi le can be read from and written to using built-in func-
tions and procedures that are provided in the standard library. Some of
these procedures and functions are fi le_open to open files, readline to
read a line from the file, writeline to write a line into the file, and fi le_
close to close the file. More details about file types and operations can be
found in Chapter 8.

1.6.1.5 Other Types

There are several other types provided by external libraries. For ex-
ample, the IEEE library contains a package by the name of std_logic_1164.
This package contains an extremely important type: std_logic. Type bit
has only two values: level 0 and level 1. If more values are needed to repre-
sent the signal, such as high impedance, bit type cannot be used. Instead,
type std_logic, which can assume nine values including high impedance,
can be used.

INTRODUCTION • 29

Std_Logic Type

Std_Logic has nine values, including 1 and 0. Package std_logic_1164
should be attached to the VHDL module. The nine values of std_logic
type are shown in Table 1.12.

TABLE 1.12 Values of Std_Logic Type

Value Definition
U Uninitialized
X Unknown
0 Low
1 High
Z High imp edance
W Weak unknown
L Weak low
H Weak high
- Don ’t care

Std_logi c_vector Type
The type std_logic_vector represents an array. Each element of the

array is a single bit of type std_logic. The following example illustrates
the implementation of type std_logic_vector:

Port (I1 : in bit; I2 : in std_logic_vector (5 downto 0);
Sum : out bit);

In the above statement, port I2 is declared as type std_logic_vec-
tor; it has six bits. Possible values of I2 include 110110, 011010, or 0Z0Z00.
More details about std_logic_vector can be found in Chapter 2.

Signed

Signed is a numeric type. It is declared in the external package
numeric_std and represents signed integer data in the form of an array. The
leftmost bit is the sign; objects of type signed are represented in 2’ comple-
ment form. Consider the statement:

Variable prod : signed (3 downto 0) := 1010;

The above statement declares the variable prod. It is of type signed,
has four bits, and its initial value is 1010, or –6 (in decimal). Chapter 3
shows implementations of type signed.

30 • HDL WITH DIGITAL DESIGN

Unsigned

The type unsigned represents unsigned integer data in the form of an
array of std_logic and is a part of the package numeric_std. The following
example illustrates type unsigned:

Variable Qout : unsigned (3 downto 0) := 1010;

The above statement declares variable Qout as of type unsigned, it has
four bits, and its initial value is 1010, or 10 (in decimal).

1.6.2 Verilog Data Types
Verilog supports several data types including nets, registers, vectors,

integer, real, parameters, and arrays. More details on these types can be
found in almost all subsequent chapters.

1.6.2.1 Nets

Nets are declared by the predefined word wire. Nets have values that
change continuously by the circuits that are driving them. Verilog supports
four values for nets, as shown in Table 1.13.

TABLE 1.13 Verilog Net Values

Value Definition
0 Logic 0 (false)
1 Logic 1 (true)
X Unknown
Z High impedance

Examples of net types are as follows:

wire sum;
wire S1 = 1’b0;

The first statement declares a net by the name sum. The second state-
ment declares a net by the name of S1; its initial value is 1’b0, which rep-
resents 1 bit with value 0.

1.6.2.2 Register

Register, in contrast to nets, stores values until they are updated.
Register, as its name suggests, represents data-storage elements. Register
is declared by the predefined word reg. Verilog supports four values for
register, as shown in Table 1.14.

INTRODUCTION • 31

TABLE 1.14 Verilog Register Values

Value Definition
0 Logic 0 (false)
1 Logic 1 (true)
X Unknown
Z High impedance

An example of register is:
reg Sum_total;

The above statement declares a register by the name Sum_total.

1.6.2.3 Vectors

Vectors are multiple bits. A register or a net can be declared as a vector.
Vectors are declared by brackets []. Examples of vectors are:

wire [3:0] a = 4’b1010;
reg [7:0] total = 8’d12;

The first statement declares a net a. It has four bits, and its initial value
is 1010 (b stands for bit). The second statement declares a register total.
Its size is eight bits, and its value is decimal 12 (d stands for decimal). Vec-
tors are implemented in almost all subsequent chapters.

1.6.2.4 Integers

Integers are declared by the predefined word integer. An example of
integer declaration is:

integer no_bits;

The above statement declares no_bits as an integer.

1.6.2.4 Real

Real (floating-point) numbers are declared with the predefined word
real. Examples of real values are 2.4, 56.3, and 5e12. The value 5e12 is
equal to 5 × 1012. The following statement declares the register weight as
real:

real weight;

1.6.2.5 Parameter

Parameter represents a global constant. It is declared by the pre-
defined word parameter. The following is an example of implementing
parameters:

32 • HDL WITH DIGITAL DESIGN

module compr_genr (X, Y, xgty, xlty, xeqy);
parameter N = 3;
input [N:0] X, Y;
output xgty, xlty, xeqy;
wire [N:0] sum, Yb;

To change the size of the inputs x and y, the size of the nets sum, and
the size of net Yb to eight bits, the value of N is changed to seven as:

parameter N = 7

1.6.2.6 Arrays

Verilog, in contrast to VHDL, does not have a predefined word for ar-
ray. Registers and integers can be written as arrays. Consider the following
statements:

parameter N = 4;

parameter M = 3;

reg signed [M:0] carry [0:N];

The above statements declare an array by the name carry. The array
carry has five elements, and each element is four bits. The four bits are in
two’s complement form. For example, if the value of a certain element is
1001, then it is equivalent to decimal –7. Arrays can be multidimensional.
See Chapter 7 for more details on arrays.

1.7 Simulation and Synthesis

The ultimate goal for hardware description is to synthesize the system
onto an electronic chip. To synthesize an HDL description, it needs to be
simulated and tested. Synthesis basics are covered in Chapter 10. More
information about simulators and synthesizers can be found in the manual
of the HDL vendors. The steps of simulation and synthesis in general can
be summarized as follows:

1. Choose the preferred language to describe the system. The language
may be VHDL, Verilog, or mixed-language (both VHDL and Verilog).
Mixed-language descriptions are covered in Chapter 9.

2. Choose the style or type of description. Refer to Section 1.6 for selecting
a style.

INTRODUCTION • 33

3. Write the code. If writing a VHDL module, be sure to attach all the nec-
essary packages and libraries. At this step, some HDL packages require
the user to select the type of synthesis technology and chip type before
compilation.

4. Compile the code using the compiler supplied by the HDL package.
The compiler checks that the code satisfies the rules of the language and
displays any errors. Some compilers suggest how to fix the errors.

5. After successful compilation, the code is tested to see that it correctly
describes the system. This test is done by selecting the input and
output signals to be tested. For example, if a 2 x 1 multiplexer is be-
ing described, the two inputs, the select line, and the output might be
selected. The way these signals are selected differs from one simulator
to the other; there might be different ways to select signals even within
the same simulator. Some simulators are graphical. All signals in the
system are displayed in graphical fashion; the user selects the signals and
assigns initial values for them. The user then clicks a button to run the
simulation, and a simulation screen appears showing the waveform of
the selected signals. Some other simulators allow the user to write HDL
code, called test bench, for testing the source code.

6. After the simulation verifies that the signals behave as expected, the
compiled code can be synthesized. The simulator CAD package usu-
ally has a synthesizer. The synthesizer converts the compiled code into
a schematic and generates a net list. However, due to limitation in the
available synthesizers, some statements may not be synthesized and the
user may opt to change these statements if possible. The net list can be
downloaded onto a chip, usually field-programmable gate arrays. Chap-
ter 10 illustrates how to convert the HDL code to gate level or RTL, the
forms closest to the schematic original that the synthesizer can down-
load onto the chip.

Appendix A shows example of Steps 1–6 including a test bench.

1.8 Brief Comparison of VHDL and Verilog

As previously mentioned, VHDL and Verilog are hardware-description
languages that are popular in both industry and academia. Each language,
however, has some advantages and disadvantages over the other. These ad-
vantages and disadvantages may not be very clear to beginners. The two

34 • HDL WITH DIGITAL DESIGN

languages are continuously upgraded, and newer versions are introduced.
These newer versions bring the capability of the two languages closer. Ver-
ilog is considered better when describing a system at the gate or transistor
level due to its use of predefined primitives at this level. VHDL is consid-
ered better at the system level; multiple entity/architecture pairs lead to
flexibility and ease in writing code for complex systems. Recently, many
simulators have acquired the capability to use mixed-language simulations.
In mixed-language simulations, a construct of one language can be instanti-
ated into the other. This allows the user to utilize the advantages of both
languages (see Chapter 9). In the following sections, the major differences
between VHDL and Verilog, as seen by a beginner user, are listed.

Data Types

 VHDL: Definitely a type-oriented language, and VHDL types are built
in or users can create and define them. User-defined types give the user
a tool to write the code effectively; these types also support flexible
coding. VHDL can handle objects with multidimensional array types.
Another data type that VHDL supports is the physical type; the physi-
cal type supports more synthesizable or targeted design code.

 Verilog: Compared to VHDL, Verilog data types are very simple and
easy to use. All types are defined by the language.

Ease of Learning

 VHDL: For beginners, VHDL may seem hard to learn because of its
rigid type requirements. Advanced users, however, may find these rigid
type requirements easier to handle.

 Verilog: Easy to learn, Verilog users just write the module without
worrying about what library or package should be attached. Many of
the statements in the language are very similar to those in C language.

Libraries and Packages

 VHDL: Libraries and packages can be easily attached to the standard
VHDL package. Packages can include procedures and functions, and
the package can be made available to any module that needs to use it.
Packages are used to target a certain design. For example, if the system
modeled/designed includes arithmetic functions, a package can be used
that includes those functions.

INTRODUCTION • 35

 Verilog: Libraries are not as easily implemented as in VHDL, however
the basic Verilog package includes several libraries as integer part of
the package.

1.9 Summary

In this chapter, several introductory VHDL and Verilog topics have
been covered. The structure of the HDL module was discussed. The
VHDL module has two major constructs: an entity and architecture,
which are bound to the entity. Verilog has a module construct.

Operators, which perform a wide variety of operations, have been cov-
ered. Arithmetic operators (see summary in Table 1.15) perform arithme-
tic operations such as multiplication and division. Relational operators (see
summary in Table 1.16) perform comparisons such as greater than and
equality. Shift operators (see summary in Table 1.17) perform bit shifts
such as a logical shift (a specified number of bit positions) right. Logical
operators (see summary in Table 1.18) perform logical operations such as
AND.

Data types have also been covered, including bit, std_logic, std_log-
ic_vector, and array (for VHDL), and real, integer, reg, and wire (for
Verilog). The following description styles have been briefly contrasted: data
flow, behavioral, structural, switch level, mixed type, and mixed language.
Finally, a brief comparison of VHDL and Verilog has been presented.

TABLE 1.15 Summary of Arithmetic Operators for VHDL and Verilog

Operation Operator VHDL Verilog

Addition + +

Subtraction - -

Multiplication  
Division / /

Modulus mod %

Exponent  
Concatenation (&) { , }

36 • HDL WITH DIGITAL DESIGN

TABLE 1.16 Summary of Relational Operators for VHDL and Verilog

Operation Operator VHDL Verilog
Equality = ==

Inequality /= !=

Less than < <

Less than or equal <= <=

Greater than > >

Greater than or equal >= >=

Equality inclusive None ===

Inequality inclusive None !==

TABLE 1.17 Summary of Shift Operators for VHDL and Verilog

Operation Operator VHDL Verilog
Shift A logical left one position A sll 1 A << 1

Shift A logical right one position A srl 1 A >> 1

Shift A arithmetic left one position A sla 1 A <<< 1
Shift A arithmetic right one position A sra 1 A >>>1
Rotate A left one position A rol 1 None
Rotate A right one position A ror 1 None

TABLE 1.18 Summary of Logical Operators for VHDL and Verilog

Operation Operator VHDL Verilog
AND AND &

OR OR |

NAND NAND ~(&)

NOR NOR ~(|)

XOR XOR ^

XNOR XNOR ~^

NOT NOT ~

1.10 Exercises

1. Determine whether each of the following statements is VHDL, Verilog,
or can be both. Justify your answer.

 a. Parameter a;
 b. assign m=0;

INTRODUCTION • 37

 c. port (input1 : bit; output2 : bit; output3 : bit);
 d. module vhdl1(I1, I2, O1, O3);
 e. input D, E;
 f. y = a >>> 3;
 g. process Verlog(a, b, c)
 h. always @ (a, b,c)
 i. end
 j. architecture exc of chapter1 is
 k. endmodule

2. If A and B are two unsigned variables, with A = 1100 and B = 1001, find
the value of the following expressions:

 a. (A AND B)
 b. (A ^ B)
 c. (A XNOR B)
 d. (A & B)
 e. (A && B)
 f. !(A)

 g. ~|(B)
 h. A sll 3
 i. A >> 1

 j. B ror 2

 k. B >>> 2

3. Which style(s) would you chose to describe each of the following
systems? Explain your answer.

 a. A full adder
 b. A controller to control the traffic light in five-way intersection
 c. A circuit controlling the release of insulin according to the concentra-

tion of glucose
 d. Two pmos transistors connected in parallel

C H A P T E R

DATA-FLOW DESCRIPTION

2
Chapter Objectives

 Understand the concept of data-flow description in both VHDL and
Verilog

 Understand events and concurrent statements
 Identify the basic statements and components of data-flow descrip-

tion such as logical operators, signal-assignment statements, the
assign statement, time delays, and vectors

 Review and understand K-maps, Boolean function, and fundamen-
tals of some digital logic systems such as full adder, full subtractor,
2x1 multiplexer, 2x2 combinational multiplier, two-bit comparator,
delay latch, ripple-carry adder, and carry-lookahead adder

2.1 Highlights Of Data-Flow Description

Data flow is one type (style) of hardware description. Other types in-
clude behavioral, structural, switch level, mixed type, and mixed language.
Listed below are some facts about data-flow description:

 Data-flow description simulates the system to be described by showing
how the signal flows from the system inputs to its outputs. For example,
the Boolean function of the output or the logical structure of the sys-
tem shows such signal flow. A data-flow description of a half adder was
covered in Section 1.3.1.

www.ebook3000.com

http://www.ebook3000.org

40 • HDL WITH DIGITAL DESIGN

 Signal-assignment statements are concurrent. At any simulation time, all
signal-assignment statements that have an event are executed concur-
rently (see Section 2.2).

2.2 Signal Declaration And Assignment Statement

Figure 2.1 shows an AND-OR circuit. Signals a, b, c, and d are the
inputs, signal y is the output, and signals s1 and s2 are intermediates. The
Boolean function of the output y can be written as:

a

b

c

y

d

AND-OR y

s1a

s2

b

c

d

FIGURE 2.1 AND-OR circuit. a) Symbol diagram. b) Logic diagram.

y = s1 + s2; where s1=ab and s2 =cd (2.1)

The Boolean function of y could be written as:

Y = ab + cd (2.2)

Listing 2.1 shows the HDL code of the circuit.

LISTING 2.1 HDL code of Figure 2.1

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity andor is
 port (a,b,c,d: in std_logic; y : out std_logic);
end andor;

DATA-FLOW DESCRIPTION • 41

architecture andor_dtfl of andor is
signal s1,s2 : std_logic;
begin
 s1 <= a and b; --statement 1.
 s2 <= c and d; --statement 2.
 y <= s1 or s2; --statement 3.
end andor_dtfl;

Verilog description
module andor (a,b,c,d, y);
input a,b,c,d;
output y;
wire s1, s2; / wire statement here is not necessarily
 needed since s1 and s2 are single bit/
 assign s1 = a & b; //statement 1.
 assign s2 = c & d; //statement 2.
 assign y = s1 | s2; //statement 3.

endmodule

Using a CAD package with HDL simulator (see Appendix A), the code
in Listing 2.1 can be simulated on the screen of the computer, and a wave-
form showing a graphical relationship between the input and the output
can be obtained. Figure 2.2 shows such a waveform.

a

s1

c

s2

y

d

b

T0 T1 T2
FIGURE 2.2 Simulation waveform for the AND-OR circuit shown in Figure 2.1.

Referring to Listing 2.1, the input and output signals are declared in
the entity (module) as ports. In HDL, a signal has to be declared before it
can be used (although in Verilog, it is not necessarily needed if the signal is

42 • HDL WITH DIGITAL DESIGN

a single bit). Accordingly, signals s1 and s2 have to be declared. In VHDL,
s1 and s2 are declared as signals by using the predefined word signal in
the architecture:

signal s1, s2 : bit;

In Verilog, s1 and s2 are declared as signals by using the predefined
word wire:

wire s1, s2;

By default, all ports in Verilog are assumed to be wires. The value of
the wire is continuously changing with changes in the device that is deriving
it. For example, s1 is the output of the AND gate in Figure 2.1, and s1 is
continuously updated as a or b changes.

A signal-assignment statement is used to assign a value to a signal. The
left-hand side of the statement should be declared as a signal. The right-
hand side can be a signal, a variable, or a constant. The operator for signal
assignment is <= in VHDL or the predefined word assign in Verilog. In
Listing 2.1, statements 1, 2, and 3 are signal-assignment statements.

The execution of the signal-assignment statement in HDL is somehow
different in concept from that of software languages such as C. Statements
1–3 need an event to occur on its right-hand side to start execution. If no
event occurred on any statement, this statement would not be executed. An
event is a change in the value of a signal or variable such as a change from
0 to 1 (from low to high) or from 1 to 0 (from high to low). The statement
that receives an event first will be executed first regardless of the order of
its placement in the HDL code. If more than one statement have an event
at the same time, all of these statements will be executed concurrently (i.e.,
simultaneously). Accordingly, statement 3, for example, could have been
written before statement 1 in Listing 2.1, and the order of execution would
not be affected.

The signal-assignment statement is executed in two phases: calculation
and assignment. If an event occurs on the right-hand side of a statement,
then this side is calculated at the time of the event; after calculation, the
value obtained from the calculation is assigned to the left-hand side, taking
into consideration any timing information given in the statement (see Sec-
tion 2.4 for details of the timing information). Consider Listing 2.1 and Fig-
ure 2.2. At T0, an event has occurred in signal a and signal b (both signals
changed their value from 0 to 1, which is an event). Accordingly, an event
occurred in statement 1; the value of (a and b) is calculated as (1 and 1 = 1).

DATA-FLOW DESCRIPTION • 43

Because no delay time is specified, the value 1 is assigned immediately to
s1, changing s1 from 0 to 1. Changing the value of s1 from 0 to 1 constitutes
an event in s1 and in statement 3, which is executed as a result of the event
in its right-hand side. The right-hand side of statement 3 is calculated at T0
as (s1 [1] or s2 [0] = 1). The value of 1 is assigned to y; all at T0 because no
delay time is specified. At T1, there is event on signals a (1 to 0), c (0 to 1),
and d (0 to 1). Statements 1 and 2 will be executed concurrently because an
event occurred on their right-hand side. The right-hand side of statement
1 and 2 is calculated at T1 as (0 and 1 = 0) and (1 and 1 = 1); the value of
0 is assigned to s1, and the value of 1 is assigned to s2 at T1. Changing the
value of s1 and s2 constitutes an event on s1 and s2, which selects statement
3 for execution at T1; statement 3 is executed (calculation, s1 or s2 = 0 or 1
= 1), and accordingly, 1 is assigned to signal y. At T2, an event occurred on
signal c, statement 2 is executed at T2, and the calculation results in 0 and 1
= 0; the value 0 is assigned to s2, changing its value from 1 to 0 and generat-
ing an event in s2. Statement 3 is executed because an event (changing the
value of s2 from 1 to 0) occurred on the right-hand side. The calculation
results in 0 or 0 = 0; the value 0 is assigned to y at T2.

2.2.1 Constant Declaration and Constant Assignment Statements
A constant in HDL is treated as it is in C language; its value is constant

within the segment of the program where it is visible. A constant in VHDL
can be declared using the predefined word constant. In Verilog, a con-
stant can be declared by its type such as time or integer. For example, the
following statements declare period as a constant of type time:

constant period : time; -- VHDL
time period; // Verilog

To assign a value to a constant, use the assignment operator := in VHDL
or = in Verilog. For example, to assign a value of 100 nanoseconds to the
constant period described above:

period := 100 ns; -- VHDL
period = 100; // Verilog

In the above Verilog statement, there are no explicit units of time; 100
means 100 simulation screen time units. If the simulation screen time units
are defined as nanoseconds (ns), for example, then 100 will mean 100 nanosec-
onds. The declaration and assignment can be combined in one statement as:

Constant period : time := 100 ns; -- VHDL
time period = 100 //Verilog

44 • HDL WITH DIGITAL DESIGN

2.2.2 Assigning a Delay Time to the Signal-Assignment Statement
To assign a delay time to a signal-assignment statement, the predefined

word after in VHDL or # in Verilog is used. For example, the following
statement assigns a 10 ns delay time to signal S1:

S1 <= a and b after 10 ns -- VHDL
assign #10 S1 = a & b // Verilog

In Verilog, the delay is in simulation screen unit time. Let us assume
that there is a delay of 10 ns between the output of each statement 1–3 and
its input in Listing 2.1. This is equivalent to saying that operation (and) or
(or) takes 10 ns to be completed. Listing 2.2 shows the HDL code for Fig-
ure 2.1 with a 10 ns delay for the (and) and (or) operations.

LISTING 2.2 HDL code of Figure 2.1 with 10 ns delay

VHDL description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity andor_dly is
 port (a,b,c,d: in std_logic; y : out std_logic);
end andor_dly;
architecture andor_dtfl of andor_dly is
constant dly : time := 10 ns;
signal s1,s2 : std_logic;
begin
 s1 <= a and b after dly; --statement 1.
 s2 <= c and d after dly; --statement 2.
 y <= s1 or s2 after dly; --statement 3.
 end andor_dtfl;

Verilog description
module and_orDlyVr(a,b,c,d, y);
input a,b,c,d;
output y;
time dly = 10;
wire s1, s2;
/ wire above is not necessarily needed
since s1 and s2 are single bit/
 assign # dly s1 = a & b; //statement 1.
 assign # dly s2 = c & d; //statement 2.
 assign # dly y = s1 | s2; //statement 3.
endmodule

DATA-FLOW DESCRIPTION • 45

a

s1

c

s2

y

d

b

T0 T1 T2

10
ns

10
ns

T3

10
ns

10
ns

10
ns

T4 T5 T6 T7 T8

FIGURE 2.3 Simulation waveform of Listing 2.2.

Figure 2.3 shows the simulation waveform of Listing 2.2. Table 2.1
shows analysis of the waveform according to Listing 2.2. At T0, an event oc-
curred on signal a and signal b (both changed from 0 to 1). This event will
invoke execution of statement 1. The right-hand side (R.H.S) of statement
1 is calculated at T0 as (1 and 1 = 1). However, this value of 1 will not as-
signed to s1 at T0; rather, it will be assigned at T0 + 10 ns = T1. The rest of
Table 2.1 could be understood by following the same analysis that has been
done above at T0.

TABLE 2.1 Analysis of Waveform of Figure 2.3

Event(s) on
R.H.S

Time of
Event

Statement(s)
Affected by

Event

R.H.S
Calculations

Assignment
Value

Time of
Assignment

the
Calculated

Value
a (0 to 1)
b (0 to 1)

T0 Statem ent 1 1 and 1 = 1 s1 = 1 T1 (T0 +
10 ns)

s1 (0 to 1) T1 Statement 3 1 or 0 = 1 Y = 1 T2 (T1 +
10 ns)

a (1 to 0)
c (0 to 1)
d (0 to 1)

T3 Statements 1
and 2

1 and 0 = 0
1 and 1 = 1

s1 = 0
s2 = 1

T4 (T3 +
10 ns)
T4 (T3 +
10 ns)

(Contd.)

46 • HDL WITH DIGITAL DESIGN

Event(s) on
R.H.S

Time of
Event

Statement(s)
Affected by

Event

R.H.S
Calculations

Assignment
Value

Time of
Assignment

the
Calculated

Value
s1 (1 to 0)
s2 (0 to 1)

T4 Statement 3 0 or 1 = 1 y = 1 T5 (T4 +
10 ns)

c (1 to 0) T6 Statement 2 0 and 1 = 0 s2 = 0 T7 (T6 +
10 ns)

s2 (1 to 0) T7 Statement 3 0 or 0 = 0 y = 0 T8 (T7 =
10 ns)

From Table 2.1, the worst total delay time between the input and the
output of Figure 2.1, as expected, is 20 ns. It is to be noted that if a signal-
assignment statement did not specify a delay time, the assignment to its
left-hand side would occur after the default infinitesimally small delay time
of D (delta) seconds. This infinitesimally small time cannot be detected on
the screen, and the delay time will look as if it is zero. In the following sev-
eral examples, data-flow descriptions are introduced.

EXAMPLE 2.1 DATA-FLOW DESCRIPTION OF A FULL ADDER

A full adder is a combinational circuit (output depends only on the in-
put) that adds three input bits (a + b + c) and outputs the result as two bits;
one bit for the sum and one bit for the carryout. Examples of full addition
are: 1 + 0 + 1 = 10 (in decimal 1 + 0 + 1 = 2) and 1 + 1 + 1 = 11 (in decimal
1 + 1 + 1 = 3). Table 2.2 shows the truth table of the full adder.

TABLE 2.2 Truth Table For a Full Adder

Input Output
a b c Carryout Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

DATA-FLOW DESCRIPTION • 47

The Boolean function of the Sum and Carryout can be obtained from
K-maps as shown in Figure 2.4.

bc

a

0 1 1

10110100

Sum = f(a,b,c) = m(1,2,4,7)

1 1 1

bc

a

0

1

10110100

Carryout = f(a,b,c) = m(3,5,6,7)

1 1 1

1

FIGURE 2.4 K-maps for the minterms (m) for the Sum and Carryout.

From Figure 2.4, the Boolean functions can be written as:

Sum = a bc + a b c + ab c + abc (2.3)

Carryout = ab + ac + bc (2.4)

The symbol diagram of the full adder is shown in Figure 2.5a. The
logic diagram of a full adder based on Equations 2.3 and 2.4 is shown in
Figure 2.5b.

48 • HDL WITH DIGITAL DESIGN

a

b

c

Sum

Carryout

Full
adder

(a)

Sum

a'

a'

b'

b'

c

a

a

a
b
c

Carryout

b

c

a

c

a

b
a'

b

b'

c'

c'

c'b c

(a)
FIGURE 2.5 A full Adder. a) Logic symbol. b) Logic diagram.

The full adder can be built from several existing logic components such
as two half adders and multiplexers (see Exercise 2.1 at the end of this
chapter). Building a full adder from two half adders is based on the follow-
ing analysis.

The full adder adds a plus b plus c = carryout sum. If the addition is
performed in two steps: a plus b = C

1
S, and c plus S = C

2
 sum (sum is the

sum of the three bits). C
1
 and C

2
cannot have a value of 1 at the same time.

If C
1
 has value of 1, then C

2
 has to be 0 and vice versa. For example, to

add 1 plus 1 plus 1, divide the addition in two halves; the first half is 1 plus
1 = 10, and the second half is 0 plus 1 = 1. The carryout will be (C

1
 or C

2
);

in this example, it is 1 and the sum = 1. Figure 2.6 shows the logic diagram
of the full adder built from two half adders.

DATA-FLOW DESCRIPTION • 49

Carryout

Sum
b
c

Half adder

Half adder

a

FIGURE 2.6 A full adder built from two half adders.

Listing 2.3 shows the HDL code for the full adder as shown in
Figure 2.5. Review Section 1.5.1 to know the VHDL and Verilog logical
operators. The code assumes no delay time. The parenthesis in the code, as
in C language, gives the highest priority to the expression within the paren-
thesis and makes the code more readable.

LISTING 2.3 HDL Code of the Full Adder From Figure 2.5

VHDL description
 library IEEE;
 use IEEE.STD_LOGIC_1164.ALL;
 entity fulladder is
 Port (a,b,c : in std_logic;
 sum, Carryout : out std_logic);
 end fulladder;
 architecture flad_dtfl of fulladder is
 begin
 Sum <= (not a and not b and c) or
 (not a and b and not c) or
 (a and not b and not c) or
 (a and b and c);
 Carryout <= (a and b) or (a and c) or (b and c);
 end flad_dtfl;

 Verilog description
 module fulladder(a, b, c);
 output Sum, Carryout;
 input a, b, c;
 assign Sum = (~ a & ~ b & c)|(~ a & b & ~c)|
 (a & ~b & ~c)|(a & b & c) ;

 assign Carryout = (a & b) | (a & c) | (b & c);
 endmodule

50 • HDL WITH DIGITAL DESIGN

Figure 2.7 shows the waveform of a full adder with no delay time.

a

b

c

Sum

Carryout
FIGURE 2.7 Simulation waveform of a full adder with no delay time.

EXAMPLE 2.2 FULL SUBTRACTOR

A full subtractor performs the following operation: a - b - c = Borrow
Diff. Borrow and Diff are each one-bit output. The Diff is the difference,
and Borrow is the borrow. For example, 0 - 1 - 0 = 11. The subtraction is
done as follows: 0 - 1 cannot subtract 1 from 0 because 1 is greater than 0, so
borrow 1 from the higher-order bit. Accordingly, this 1 has a weight of 21,
so its value is 2; subtract 2 - 1 = 1. Now, for bit c, 1 - 0 = 1, so the difference
is 1, and the borrow is 1. Table 2.3 shows the truth table of a full subtractor.

TABLE 2.3 Truth Table for a Full Subtractor

Input Output
a b c Borrow Diff
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Compare the Diff in Table 2.3 and the Sum in Table 2.2; they are iden-
tical, so the Boolean function of the Diff is the same as the sum in Equation
2.3. For the Borrow, draw the K-map as shown in Figure 2.8.

DATA-FLOW DESCRIPTION • 51

bc

a

0 0

0

1

10110100

Borrow = f(a,b,c) = ∑ m(1,2,3,7)

1 0

1

1

1

FIGURE 2.8 K-map for the borrow of a full subtactor.

From Figure 2.8, the Boolean functions are:

Diff = a bc + a b c + ab c + abc ………………………… (2.5)

Borrow = a c + a b + bc …………………………………… (2.6)

The HDL code of the full subtractor is given as an exercise at the end
of this chapter.

EXAMPLE 2.3A 2x1 MULTIPLEXER WITH ACTIVE LOW ENABLE

A 2x1 multiplexer is a combinational circuit; it has two one-bit inputs, a
one-bit select line, and a one-bit output. Additional control signals may be
added, such as enable. The output of the basic multiplexer depends on the
level of the select line. If the select is high (1), the output is equal to one of
the two inputs. If the select is low (0), the output is equal to the other input. A
truth table for a 2x1 multiplexer with active low enable is shown in Table 2.4.

TABLE 2.4 Truth Table for a 2x1 Multiplexer

Input Output
SEL Gbar Y

X H L
L L A
H L B

If the enable (Gbar) is high (1), the output is low (0) regardless of the
input. When Gbar is low (0), the output is A if SEL is low (0), or the output is
B if SEL is high (1). From Table 2.4, the Boolean function of the output Y is:

Y = (S1 and A and SEL) or (S1 and B and SEL); S1 is the invert of Gbar

52 • HDL WITH DIGITAL DESIGN

Figure 2.9a shows the logic symbol, and Figure 2.9b shows the gate-
level structure of the multiplexer.

A

B

SEL

Gbar

Y2x1
Mux

Y

A

B

S4

S5S3

S1

S2
SEL

Gbar

 (a) (b)
FIGURE 2.9 2x1 Multiplexer. a) Logic symbol. b) Logic diagram.

Listing 2.4a shows the HDL code. To generate the code, follow Figure
2.9b. Propagation delay time for all gates is assumed to be 7 ns. Because
this is a data-flow description, the order in which the statements are written
in the code is irrelevant. For example, statement st6 could have been writ-
ten at the very beginning instead of statement st1. The logical operators
in VHDL and (Verilog) implemented in this Listing are: OR (|), AND (&),
and NOT (~).

LISTING 2.4a HDL Code of a 2x1 Multiplexer: VHDL and Verilog

VHDL description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity mux2x1 is
 port (A, B, SEL, Gbar : in std_logic;
 Y : out std_logic);
end mux2x1;
architecture MUX_DF of mux2x1 is
signal S1, S2, S3, S4, S5 : std_logic;
constant dly : time := 7ns;
Begin

-- Assume 7 nanoseconds propagation delay
-- for all and, or, and not operation.
 st1: Y <= S4 or S5 after dly;

DATA-FLOW DESCRIPTION • 53

 st2: S4 <= A and S2 and S1 after dly;
 st3: S5 <= B and S3 and S1 after dly;
 st4: S2 <= not SEL after dly;
 st5: S3 <= not S2 after dly;
 st6: S1 <= not Gbar after dly;
 end MUX_DF;

Verilog Description
module mux2x1 (A, B, SEL, Gbar, Y);
input A, B, SEL, Gbar;
output Y;
wire S1, S2, S3, S4, S5;
time dly = 7;
/ Assume 7 time units delay for all and, or, not operations. The
 delay here is expressedin simulation screen units. /

 assign # dly Y = S4 | S5; //st1
 assign #dly S4 = A & S2 & S1; //st2
 assign #dly S5 = B & S3 & S1; //st3
 assign #dly S2 = ~ SEL; //st4
 assign #dly S3 = ~ S2; //st5
 assign #dly S1 = ~ Gbar; //st6
 endmodule

Figure 2.10 shows the simulation waveform for the 2x1 multiplexer.

A

Y

B

Gbar

SEL

T0 T1

1
0

0
 n

s

1
1

4
 n

s

T2 T3

2
0

0
 n

s

T4

3
0

0
 n

s

T5

3
2

1
 n

s

2
2

8
 n

s

time

FIGURE 2.10 Simulation waveform for a 2x1 multiplexer.

54 • HDL WITH DIGITAL DESIGN

Analysis of Listing 2.4a

Referring to Listing 2.4a, because the description is a data flow, the
order of statements st1 to st6 is irrelevant; statement st5 could have been
written before statement st1 without changing the outcome of the HDL
program. In Figure 2.10, signal A changes from 1 to 0, and signal B changes
from 0 to 1 at T0; these changes constitute an event in signal-assignment
statements st2 and st3. Accordingly, statements st2 and st3 are executed
simultaneously. As previously mentioned, execution is done in two phases:
calculation and assignment. For statement st2, at T0, A = 0, S2 = 1 (the
inversion of SEL), and S1 = 1 (the inversion of Gbar); hence, the calculated
new value of S4 at T0 is (A AND S1 AND S2) = 0. This is a change in value
for S4 from 1 to 0, which is assigned to S4 after 7 ns from time T0 (at 107
ns). For statement st3, at T0, B = 1, S3 = 0, and S1 = 1. The calculated
value of S5 is 0, as it was before T0. At T = 107 ns, an event occurs on S4,
and this causes execution of statement st1. Y is calculated as (0 or 1) = 1,
and this value is assigned to Y after 7 ns, that is, at T1 = 107 + 7 = 114 ns.
Alternatively, statements st1 to st5 can be replaced by one statement:

-- VHDL:
Y <= not (Gbar) and ((sel and b) or (not sel and A)) after 21 ns;

// Verilog:
assign # 21 Y = ~ (Gbar) & ((SEL & B) | (~ SEL & A));

The above delay time of 21 ns is an estimated average delay time. If
either of the above two statements is used, individual delay times cannot be
assigned, as was done in Listing 2.4a.

EXAMPLE 2.3B 2x1 MULTIPLEXER WITH ACTIVE LOW ENABLE USING
VERILOG CONDITIONAL OPERATOR (?)

The conditional operator ? (see Section 1.5.2.2) can be used to describe
a multiplexer or any other similar system that utilizes a selector signal to
select between two options. The format of this operator can be written as:

Assign Y = Conditional-expression ? true-expression : false-expression

If the conditional expression is true, the value of the true expression
is assigned to Y; if the conditional expression is false, the value of the false

DATA-FLOW DESCRIPTION • 55

expression is assigned to Y. Listing 2.4b illustrates a Verilog code for a 2x1
multiplexer using the conditional operator ? to select the value of the out-
put Y according to the level of the enable Gbar. If Gbar is high (1), that is
to say the conditional expression is true, the output Y is assigned to low (0).
Otherwise, the output Y is assigned the false expression (SEL & B) | (~
SEL & A). Also, recall from Section 1.5.2.2 that both the true and the false
expressions can contain high impedance and don’t care; this will allow for
describing systems such as multiplexers with tri-state output (see the Exer-
cise section at the end of this chapter).

LISTING 2.4b HDL Code of a 2x1 Multiplexer Using Verilog Conditional (?)

module Mux2x1_conditional(input A,B,SEL,Gbar, output Y);
 assign Y = (Gbar) ? 1’b0 : (SEL & B) | (~ SEL & A);
endmodule

EXAMPLE 2.4 A 2x4 DECODER

A decoder is a combinational circuit. A 2x4 decoder has two inputs and
four outputs. For any input, only one output is active; all others are inac-
tive. For active high output decoders, only one output is high. The output
of n-bit input decoder is 2n bits. Table 2.5 shows the truth table of the 2x4
decoder.

TABLE 2.5 Truth Table for a 2x4 Decoder

Inputs Outputs

b a D3 D2 D1 D0
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

From Table 2.5, the Boolean function of the outputs can be written as:

 D0 = a b

 D1 = a b

 D2 = a b

 D3 = a b

Figure 2.11 shows the logic symbol and logic diagram of the decoder.

56 • HDL WITH DIGITAL DESIGN

D0

D0D1

D2

D3

a

b

a

D1

D2

D3b

2x4
Decoder

FIGURE 2.11 2x4 Decoder. a) Logic symbol. b) Logic diagram.

Listing 2.4 shows the HDL code of the decoder. Figure 2.12 shows the
simulation waveform of the decoder.

LISTING 2.4 HDL Code of a 2x4 Decoder Without Time Delay

VHDL description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity decoder2x4 is
 port (a, b : in std_logic;
 D : out std_logic_vector (3 downto 0));
end decoder2x4;
architecture decder_dtfl of decoder2x4 is
begin
 D(0) <= not a and not b;
 D(1) <= a and not b;
 D(2) <= not a and b;
 D(3) <= a and b;
end decder_dtfl;

Verilog description
module decoder2x4(a, b, D);
input a,b;
output [3:0]D;
 assign D[0] = ~a & ~ b;
 assign D[1] = a & ~ b;
 assign D[2] = ~a & b;
 assign D[3] = a & b;
endmodule

DATA-FLOW DESCRIPTION • 57

a

b

D[3:0] 0001 0010 0100 1000
FIGURE 2.12 Simulation Waveform of a 2x4 decoder with no time delay

2.3 Data Type: Vector

The vector data type was briefly covered in Chapter 1. A vector is a
data type that declares an array of similar elements, such as declaring an
object that has a width of more than one bit. In the previous examples, all
signals have been one-bit in width. If signal A has a four-bit width, it can be
declared as four different signals, a0, a1, a2, a3, as shown:

signal a0, a1, a2, a3 : bit; -- VHDL
wire a0, a1, a2, a3; // Verilog

Or, it can be declared using the vector declaration:

signal a : bit_vector (3 downto 0); -- VHDL
wire [3:0] a; // Verilog

In VHDL, downto ([3:0] in Verilog) is a predefined operator that
describes the width of the vector. If the value of a is 14

d
, or (1110)

2
, then

the elements of vector (array) a are:

a(3) = 1
a(2) = 1
a(1) = 1
a(0) = 0

The following declaration can also be used:

signal a : bit_vector (0 to 3); -- VHDL
wire [0:3] a; // Verilog

where to is a predefined word. In the above declaration, the elements
of the vector are:

a(0) = 1
a(1) = 1
a(2) = 1
a(3) = 0

This means the value of a is considered to be 7
d
 rather than 14

d.

58 • HDL WITH DIGITAL DESIGN

EXAMPLE 2.5 2x2 UNSIGNED COMBINATIONAL MULTIPLIER

Consider the multiplication of a × b, where a and b are each two-bit
numbers. The multiplication is illustrated as follows:

 a(1) a(0)
 b(1) b(0)

 b(0) × a(1) b(0) × a(0)
 b(1) × a(1) b(1) × a(0)
__
P(3) P(2) P(1) P(0)

Because it is only two-bit multiplication, the truth table and K-maps
can be easily implemented to find the Boolean function of the product.
When the number of bits is large and the K-maps are impractically large,
another approach may be taken to design the multiplier (see Chapter 3).
The truth table of the 2x2 multiplier is shown in Table 2.6, and Figure 2.13
shows the K-maps of the table.

TABLE 2.6 2x2 Unsigned (Magnitude) Combinational Multiplier

a1 a0 b1 b0 P3 P2 P1 P0
0 0 x x 0 0 0 0
x x 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 1 0 0 `1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

x- indicates don’t care

DATA-FLOW DESCRIPTION • 59

b1b0

a1a0

00

01

11

10

10110100

P0 = f(a1,a0,b1,b0) = (5,7,13,15)

1 1

1 1

b1b0

a1a0

00

01

11

10

10110100

P1 = f(a1,a0,b1,b0) = (6,7,9,11,13,14)

1

1

1

1

11

b1b0

a1a0

00

01

11

10

10110100

P2 = f(a1,a0,b1,b0) = (10,11,14)

1

1

1

FIGURE 2.13 K-maps of 2x2 Combinational Multiplier.

60 • HDL WITH DIGITAL DESIGN

From the K-maps and Table 2.6, the product can be written as:

P0 = a0 b0

P1= a1a0 b1 + a0 b0 b1 + a1 b0 b1 + a0 a1 b0

P2= a0 a1 b1 + a1 b0 b1

P3= a0 a1 b0 b1

Figure 2.14a shows the logic symbol, and Figure 2.14b shows the logic
diagram of the multiplier. The HDL code is shown in Listing 2.5, and the
simulation waveform is shown in Figure 2.15.

b1'

b1'

a1'

a1'

a0

b1

b1b1 b1a1 a1a1 b0 b0

b1

b1

b0'

b0'

b0

b0P2 P1 P0P3

b0

a1

a1

a1

a1

a0'

a0
'

b0
'

a0 a0

a0'

a0

P
42x2

Multiplier

b
2

a
2

(a) S(b)
FIGURE 2.14 2x2 combinational multiplier. a) Logic symbol. b) Logic diagram.

LISTING 2.5 HDL Code for a 2x2 Unsigned Combinational Array Multiplier:
VHDL and Verilog

VHDL Description
--For simplicity, propagation delay times are not
-- considered here.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity mult_comb is
 port (a,b: in std_logic_vector (1 downto 0);
 P : out std_logic_vector (3 downto 0));
end mult_comb;
architecture mult_dtfl of mult_comb is
begin
 P(0) <= a(0) and b(0);
 P(1) <= (not a(1) and a(0) and b(1)) or

DATA-FLOW DESCRIPTION • 61

 (a(0) and not b(0) and b(1)) or
 (a(1) and b(0) and not b(1))or
 (not a(0) and a(1) and b(0));
 P(2) <= (not a(0) and a(1) and b(1)) or
 (a(1) and not b(0) and b(1));
 P(3) <= a(0) and a(1) and b(0) and b(1);
 end mult_dtfl;

Verilog Description
module mult_arry (a, b, P);
input [1:0] a, b;
output [3:0] P;
/For simplicity, propagation delay times are not
considered in this example./
 assign P[0] = a[0] & b[0];
 assign P[1] = (~a[1] & a[0]& b [1]) |
 (a[0] & ~b[0]& b [1])|
 (a[1] & b[0]& ~b [1]) |
 (~a[0] & a[1]& b [0]);
 assign P[2] = (~a[0] & a[1]& b [1]) |
 (a[1] & ~b[0]& b [1]);
 assign P[3] = (a[0] & a[1]& b[0] & b [1]);

The simulation output of the multiplier is shown in Figure 2.15.

a

b

0 1 2 3

0 11 122 2 333

P 0 21 342 6 963
FIGURE 2.15 Simulation output for a two-bit multiplier.

EXAMPLE 2.6 DELAY LATCH

Latches are sequential circuits. The output of a sequential circuit de-
pends on the current state and the input. Figure 2.16 shows the logic sym-
bol of a delay latch (D-latch). At any time (T) the present value of Q is
called the current state. At any selected time (T + ts) the value of Q is called
the next state Q+. The value of the next state depends on the value of the
present state and the value of the input (D) (see Table 2.7). In Figure 2.16,
the current and next states are the same signal (Q). The current state is the

62 • HDL WITH DIGITAL DESIGN

value of Q (0 or 1) before the level of E becomes active. The next state is
the value of Q after the enable (E) becomes active. To find the Boolean
function of the latch, the excitation table is constructed. Table 2.7 shows
the inputs and the corresponding next state. Notice that the current state
is considered an input in addition to the input D. Assume an active high
enable (E).

Q

Qbar

D-Latch

D

E

FIGURE 2.16 Logic symbol of D-latch.

TABLE 2.7 Excitation Table of D-Latch with Active High Enable

Inputs Next State
E D Q Q+
0 x 0 0
0 x 1 1
1 0 x 0
1 1 x 1

Qbar (Qbar+) is always the inverse of Q (Q+). To find the Boolean func-
tion, use K-maps to minimize the minterms. The K-map for Q is shown in
Figure 2.17.

DATA-FLOW DESCRIPTION • 63

DQ

E

0 0

0

0

10110100

Q = f(E,D,Q) = ∑(1,3,6,7)

1 0

1

1

1

FIGURE 2.17 K-map for Q.

From Figure 2.17, Q and Qbar are found:

 Q EQ ED
Qbar = Q

 

Figure 2.18 shows the logic diagram of D-latch; the diagram is drawn to
be identical to that of the chip 74LS75.

Q

D
E

Qbar

FIGURE 2.18 Gate-level diagram of a D-latch.

Listing 2.6 shows the HDL description of the D-latch. A delay time of
9 ns is assumed between the input and Qbar and 1 ns between Q and Qbar.
Note the use of the port-mode buffer in VHDL for the signal Qbar (see
section 1.4). The buffer mode is assigned to a port if the port signal appears
as read (on the right-hand side of a signal-assignment statement) and as
updated (on the left-hand side of a signal-assignment statement). In List-
ing 2.6, although Q can be declared as only output, it is written with Qbar
as a buffer just to improve reading the code; if a signal can be declared as
output, it can also be declared as a buffer. In Verilog, Qbar does not neces-
sarily have to be declared as inout because the Qbar is not a bidirectional
external bus (see Section 1.4).

64 • HDL WITH DIGITAL DESIGN

LISTING 2.6 HDL Code for a D-Latch: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity D_Latch is
 port (D, E : in std_logic;
 Q, Qbar : buffer std_logic);

 --Q and Qbar are declared as buffer because they act
 --as both input and output, they appear on the
 --right and left hand side of a signal assignment.
 --inout or linkage could have been used instead of buffer.

end D_Latch;

architecture DL_DtFl of D_Latch is
constant Delay_EorD : Time := 9 ns;
constant Delay_inv : Time := 1 ns;
begin
--Assume 9-ns propagation delay time between
--E or D and Qbar; and 1 ns between Qbar and Q.

 Qbar <= (D and E) nor (not E and Q) after Delay_EorD;
 Q <= not Qbar after Delay_inv;
 end DL_DtFl;

Verilog Description
module D_latch (D, E, Q, Qbar);
 input D, E;
 output Q, Qbar;

 / Verilog treats the ports as internal ports,
 so Q and Qbar are not considered here as
 both input and output. If the port is
 connected externally as bidirectional,
 then it should be declared as inout. /

time Delay_EorD = 9;
time Delay_inv = 1;
 assign #Delay_EorD Qbar = ~((E & D) | (~E & Q));
 assign #Delay_inv Q = ~ Qbar;
endmodule

DATA-FLOW DESCRIPTION • 65

Figure 2.19 shows the simulation waveform of the D-latch.

Q

E

D

Qbar
1 ns

9 ns

FIGURE 2.19 Simulation waveform of a D-latch with active high enable.

EXAMPLE 2.7 TWO-BIT MAGNITUDE COMPARATOR

A two-bit comparator is a combinational circuit that compares two
words (numbers); each word has two bits. Figure 2.20 shows the logic sym-
bol of the comparator. In Figure 2.20, the two words are X and Y. The
output of the comparator indicates the result of the comparison: X > Y, X =
Y, or X < Y. Because the number of input bits is small (a total of four input
bits), a truth table of the comparator can be used to find the Boolean func-
tion. Table 2.8 shows the truth table of the 2x2 comparator.

X > Y

X = Y

X < Y

2x2
Comparator

X(0)

X(1)

Y(0)

Y(1)

FIGURE 2.20 Logic symbol of a 2x2 magnitude comparator.

66 • HDL WITH DIGITAL DESIGN

TABLE 2.8 Truth Table for a 2x2 Comparator

Input Output
X(1) X(0) Y(1) Y(0) X > Y X < Y X = Y

0 0 0 0 0 0 1
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 1 0 0
0 1 0 1 0 0 1
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 0 0 1
1 0 1 1 0 1 0
1 1 0 0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 0 0 1

If the number of bits increases, the table becomes huge, and other ap-
proaches should be used, such as implementation of n-full adders to con-
struct n×n comparators (see Chapter 4). After constructing the truth table,
K-maps are used (see Figure 2.21) to obtain the minimized Boolean func-
tion of the output of the comparator. Listing 2.7 shows the HDL descrip-
tion. The simulation waveform is shown in Figure 2.22.

Y(1)Y(0)
X(1)X(0)

00

01

11

10

10110100

X>Y

1

1

1

1 1

1

Y(1)Y(0)
X(1)X(0)

00

01

11

10

10110100

X<Y

1 1 1

11

1

FIGURE 2.21 K-maps for Table 2.4.

DATA-FLOW DESCRIPTION • 67

 (X Y) X(1)Y(1) X(0)Y(1) Y(0) X(0)X(1)Y(0)

(X Y) (1)Y(1) X(0) X(1)Y(0) X(0)Y(0)Y(1)

(X Y) (X Y) (X Y)

X

   

   

    
LISTING 2.7 HDL Code of a 2x2 Magnitude Comparator

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity COMPR_2 is
 port (x, y : in std_logic_vector(1 downto 0);
 xgty, xlty : buffer std_logic;
 xeqy : out std_logic);

end COMPR_2;

architecture COMPR_DFL of COMPR_2 is
begin
 xgty <= (x(1) and not y(1)) or (x(0) and not y(1)
 and not y(0)) or
 x(0) and x(1) and not y(0));

 xlty <= (y(1) and not x(1)) or (not x(0) and y(0)
 and y(1)) or (not x(0) and not x(1) and y(0));
 xeqy <= xgty nor xlty;

end COMPR_DFL;

Verilog Description
module compr_2 (x, y, xgty, xlty, xeqy);
input [1:0] x, y;
output xgty, xlty, xeqy;
 assign xgty = (x[1] & ~ y[1]) | (x[0] & ~ y[1]
 & ~ y[0]) | (x[0] &
 x[1] & ~ y[0]);
 assign xlty = (y[1] & ~ x[1]) | (~ x[0] &
 y[0] & y[1]) |(~ x[0] &
 ~ x[1] & y[0]);
 assign xeqy = ~ (xgty | xlty);

 endmodule

68 • HDL WITH DIGITAL DESIGN

X > Y

X

Y

X < Y

X = Y

0 1

111

2

222

3

3330

FIGURE 2.22 Simulation waveform of a 2x2 comparator.

CASE STUDY 2.1

In this case study, a three-bit adder is described. The adder is designed
using two approaches: ripple carry and carry lookahead. The description is
simulated, and timing characteristics of the two adders are compared. Fig-
ure 2.23 shows a block diagram of a three-bit ripple-carry adder.

sum(2)

one-bit adder

y(2)x(2)

cout

sum(1)

one-bit adder

y(1)x(1)

c(1)

sum(0)

one-bit adder

y(0)

cin

x(0)

c(0)

FIGURE 2.23 Block diagram of a three-bit ripple-carry adder.

The Boolean functions of a three-bit ripple-carry adder can be written
as (see Example 2.1):

sum(i) = x(i) XOR y(i) XOR c(i1), 0  i  2 (2.7)

c(i) = x(i)y(i) + x(i)c(i1) + y(i)c(i1), 0  i  2 (2.8)

cout = c(2), c(1) = cin (2.9)

Each one-bit adder in Figure 2.23 is described by Equations 2.7 and
2.8. To produce the sum and the carryout, each one-bit adder has to wait
until the preceding one-bit adder generates its carryout (c[0], c[1], or cout).

DATA-FLOW DESCRIPTION • 69

The maximum signal-propagation delay of the adder described above is 3d,
where d is the delay of a one-bit adder; for an n-bit adder, this delay is n × d.

Figure 2.24 shows a block diagram of a three-bit carry-lookahead
adder. The major difference between this adder and the ripple-carry adder
is how the carryout of each one-bit full adder is generated and propagated.
In ripple carry, each one-bit adder has to wait until the preceding adder unit
generates its carryout; in carry lookahead, each one-bit adder generates its
carryout at the same time. This simultaneous generation of carries leads to
shorter signal-propagation delays. The maximum delay in lookahead adders
is 4 × gd, where gd is the average gate delay. This delay is independent of
the number of one-bit adders.

sum(2)

p(2)

c(1)

x(2) y(2)

cout

g(2)

one-bit adder

sum(1)

p(1)

c(0)

x(1) y(1)

g(1)

one-bit adder

Carry Generator

sum(0)

p(0)

cin

x(0) y(0)

g(0)

one-bit adder

FIGURE 2.24 Block diagram of a three-bit carry-lookahead adder.

The Boolean functions of the carry-lookahead adder are:

sum(i) = x(i) XOR y(i) XOR c(i1), 0  i  2 (2.10)

g(i) = x(i) y(i) (2.11)

p(i) = x(i) + y(i) (2.12)

c(0) = g(0) + p(0)cin, c(1) = g(1) + p(1)g(0) + p(1)p(0)cin (2.13)

cout = c(2) = g(2) + p(2)g(1) + p(2)p(1)g(0) + p(2)p(1)p(0)cin (2.14)

www.ebook3000.com

http://www.ebook3000.org

70 • HDL WITH DIGITAL DESIGN

Listings 2.8 and 2.9 show the HDL code for the ripple-carry adder and
the carry-lookahead adders, respectively. A 4.0-ns delay is assumed for all
gate types. A constant of type time delay_gt is declared, and 4 ns is as-
signed to it:

constant delay_gt : time := 4 ns; -- VHDL
time delay_gt = 4; // Verilog

LISTING 2.8 Three-Bit Ripple-Carry Adder Case Study

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity adders_RL is
 port (x, y : in std_logic_vector (2 downto 0);
 cin : in std_logic;
 sum : out std_logic_vector (2 downto 0);
 cout : out std_logic);
end adders_RL;

--I. RIPPLE-CARRY ADDER

architecture RCarry_DtFl of adders_RL is
--Assume 4.0-ns propagation delay for all gates.

signal c0, c1 : std_logic;
constant delay_gt : time := 4 ns;

begin
 sum(0) <= (x(0) xor y(0)) xor cin after 2delay_gt;

--Treat the above statement as two 2-input XOR.

 sum(1) <= (x(1) xor y(1)) xor c0 after 2delay_gt;

--Treat the above statement as two 2-input XOR.
 sum(2) <= (x(2) xor y(2)) xor c1 after 2delay_gt;
--Treat the above statement as two 2-input XOR.
c0 <= (x(0) and y(0)) or (x(0) and cin) or
 (y(0) and cin) after 2delay_gt;
c1 <= (x(1) and y(1)) or (x(1) and c0) or
 (y(1) and c0) after 2delay_gt;
cout <= (x(2) and y(2)) or (x(2) and c1) or

DATA-FLOW DESCRIPTION • 71

 (y(2) and c1)after 2delay_gt;
end RCarry_DtFl;

Verilog Description
module adr_rcla (x, y, cin, sum, cout);
input [2:0] x, y;
input cin;
output [2:0] sum;
output cout;
// I. RIPPLE CARRY ADDER
wire c0, c1;
time delay_gt = 4;
//Assume 4.0-ns propagation delay for all gates.

 assign #(2delay_gt) sum[0] = (x[0] ^ y[0]) ^ cin;
//Treat the above statement as two 2-input XOR.

 assign #(2delay_gt) sum[1] = (x[1] ^ y[1]) ^ c0;
//Treat the above statement as two 2-input XOR.

 assign #(2delay_gt) sum[2] = (x[2] ^ y[2]) ^ c1;
//Treat the above statement as two 2-input XOR.

 assign #(2delay_gt) c0 = (x[0] & y[0]) |
 (x[0] & cin) | (y[0] & cin);
 assign #(2delay_gt) c1 = (x[1] & y[1]) |
 (x[1] & c0) | (y[1] & c0);

 assign #(2delay_gt) cout = (x[2] & y[2]) |
 (x[2] & c1) | (y[2] & c1);

endmodule

LISTING 2.9 Three-Bit Carry-Lookahead Adder Case Study

 VHDL Description
--II. CARRY-LOOKAHEAD ADDER
architecture lkh_DtFl of adders_RL is
--Assume 4.0-ns propagation delay for all gates
--including a 3-input xor.

signal c0, c1 : std_logic;
signal p, g : std_logic_vector (2 downto 0);
constant delay_gt : time := 4 ns;

72 • HDL WITH DIGITAL DESIGN

begin

 g(0) <= x(0) and y(0) after delay_gt;
 g(1) <= x(1) and y(1) after delay_gt;
 g(2) <= x(2) and y(2) after delay_gt;
 p(0) <= x(0) or y(0) after delay_gt;
 p(1) <= x(1) or y(1) after delay_gt;
 p(2) <= x(2) or y(2) after delay_gt;
 c0 <= g(0) or (p(0) and cin) after 2delay_gt;

 c1 <= g(1) or (p(1) and g(0)) or (p(1) and p(0)
 and cin) after 2delay_gt;
cout <= g(2) or (p(2) and g(1)) or (p(2) and p(1)
 and g(0)) or(p(2) and p(1) and
 p(0) and cin) after 2delay_gt;

sum(0) <= (p(0) xor g(0)) xor cin after delay_gt;
sum(1) <= (p(1) xor g(1)) xor c0 after delay_gt;
sum(2) <= (p(2) xor g(2)) xor c1 after delay_gt;
end lkh_DtFl;

Verilog Description
// II. CARRY-LOOKAHEAD ADDER
module lkahd_adder (x, y, cin, sum, cout);
input [2:0] x, y;
input cin;
output [2:0] sum;
output cout;
/Assume 4.0-ns propagation delay for all gates
including a 3-input xor./

wire c0, c1;
wire [2:0] p, g;
time delay_gt = 4;
 assign #delay_gt g[0] = x[0] & y[0];
 assign #delay_gt g[1] = x[1] & y[1];
 assign #delay_gt g[2] = x[2] & y[2];
 assign #delay_gt p[0] = x[0] | y[0];
 assign #delay_gt p[1] = x[1] | y[1];
 assign #delay_gt p[2] = x[2] | y[2];
 assign #(2delay_gt) c0 = g[0] | (p[0] & cin);

DATA-FLOW DESCRIPTION • 73

 assign #(2delay_gt) c1 = g[1] | (p[1] & g[0]) |
 (p[1] & p[0] & cin);

 assign #(2delay_gt) cout = g[2] | (p[2] & g[1]) |
 (p[2] & p[1] & g[0]) | (p[2] & p[1] &
 p[0] & cin);

 assign #delay_gt sum[0] = (p[0] ^ g[0]) ^ cin;
 assign #delay_gt sum[1] = (p[1] ^ g[1]) ^ c0;

assign #delay_gt sum[2] = (p[2] ^ g[2]) ^ c1;

endmodule

Figure 2.25 shows the waveform for both ripple-carry and carry-looka-
head adders without taking gate delay into consideration. Because there is
no delay, the two adders have identical waveforms. From the waveform, it
can be concluded that both adders are functioning correctly. Figures 2.26a
and 2.26b show the waveforms for ripple-carry and carry-lookahead after
taking the gate delay into consideration, respectively.

y

cin

sum

cout

5 4

x 7 6 5 4 3 2 1 0 02 1

4 3 2 1 0 7 6 5 57 6

FIGURE 2.25 Simulation waveform for a three-bit adder with no gate delay.

000 101x

000 001

3x8 = 24 ns

sum

cin

cout

000 011y

(a)

74 • HDL WITH DIGITAL DESIGN

000 101x

000 001

4x4 = 16 ns

sum

cin

cout

000 011y

(b)
FIGURE 2.26 Simulation waveforms for three-bit adders with a 4-ns gate delay. a) Ripple-carry adder. b)
Carry-lookahead adder.

To calculate the worst delay, values are selected for the inputs x, y, and
cin to obtain the maximum possible delay; this is done by selecting those
values that cause a change in all the carryout signals. The values x = y = cin
= 0 are selected to generate a zero signal on all the outputs, and then the
values x = 5, y = 3, and cin = 1. In Figure 2.26a, the total worst delay is 24
ns. Because there are three one-bit adders, and each has a worst delay of 8
ns (two XOR gates), the total worst delay is 8 × 3 = 24 ns, which is equal to
the number of one-bit adders times the delay of one one-bit adder.

In Figure 2.26b, the total worst delay is 16 ns, which is four times the
delay of a single gate (4 ns). If the number of input bits of the lookahead
adder is increased, the total worst delay is still the same 16 ns. More adders
will be discussed in Chapter 4.

2.4 Common Programming Errors

This section discusses common programming errors. These errors are
classified as either syntax or semantic errors. Syntax errors are those that
result from not following the rules of the language. For example, consider
the sentence: “Jim am a policeman.” The sentence has a syntax error. Ac-
cording to the rules of English language, the word “is” should replace “am.”
The sentence, after correcting the syntax error, may still have a semantic
error if Jim is not a policeman. A semantic error is an error in the meaning
of the statement, rather than an error in the mechanics of the statement.
The example above applies to HDL; there can be syntax and semantic er-
rors. Syntax errors terminate compilation of the program. Semantic errors

DATA-FLOW DESCRIPTION • 75

may not terminate the program, but the outcome of the program may not
be as expected.

2.4.1 Common VHDL Programming Errors
This section briefly discusses some common syntax and semantic errors

when writing VHDL programs. Table 2.9 shows a code written in VHDL
for two entities and the errors (if any) in that code.

TABLE 2.9 Errors in VHDL Code

Code Error
entity mult_comb The word is is missing
port (a; b : in std_logic_vector(1 downto 0)); Semicolon is inserted

instead of comma (a, b)
P : std_logic_vector (3 downto 0) The direction of the port P

is missing (out)
architecture MULT_DF of mult_cmb is The name of the entity is

misspelled: it should be
(mult_comb)

P(0) = a(0) and b(0); The signal-assignment
statement operator is wrong
(“<=” should replace “=”)

P(3) <= a(0) and a(1) b(0) and b(1); The “and” operator is
missing in a(1)b(0);

P(0) <= a(0) and b(2); The index of “b” is out of
range: it should be 0 or 1

end MUL_DF; The name of the architec-
ture is misspelled: it should
be MULT_DF

P(0) <= a(0) and b0; b0 is not the same as b(0)
--No Library listed on first line of code

entity errors is

port (t, t1: in std_logic ;

b,c: out std_logic);

end errors;

architecture Behavioral of errors is

begin

b <= t;

c <=b;

Behavioral;

IEEE.STD_LOGIC_1164.
ALL Library has to be
entered to use std-logic

b should be declared as
buffer since it is appearing
on both right- and left-hand
end

76 • HDL WITH DIGITAL DESIGN

2.4.2 Common Verilog Programming Errors
Here, some common syntax and semantic errors in writing Verilog pro-

grams are discussed. One of the most common errors for beginners is in
not adhering to Verilog’s case-sensitive nature. Table 2.10 lists Verilog code
and errors (if any).

TABLE 2.10 Possible Errors in Modified Listing 2.4 (Verilog)

Modified Code Error
module mult_comb (a, b, P) The semicolon (;) is missing at

the end of the statement
input [1:0] A, b; “A” is not defined: it should be lowercase

output (3:0) P; Brackets [3:0] should be used instead of
parentheses

P[0] = a[0] and b[0]; The word “assign” is missing
assign P[0] = a[0] and b[0]; The word “and” cannot be used here: in

Verilog, the logical operator “&” should be
used

Assign p[0] = S[0] | a[0]; Because S[0] is vector, it has to be declared:
if it is scalar (such as S0), it may not need to
be declared

endmodule; No semicolon at the end of “endmodule”

2.5 Summary

This chapter discussed data-flow descriptions based mainly on writing
the Boolean function(s) of the system. The Boolean function is coded as sig-
nal-assignment statements. In VHDL, the signal-assignment operator <= is
implemented to assign a value to a signal; in Verilog, the signal-assignment
operator is assign. Logical operators such as and (&), or (|), and xor
(^) have been implemented to describe the Boolean function in VHDL
(Verilog) code. The following table summarizes the commands that have
been used in this Chapter. Table 2.11 lists data-flow commands/compo-

DATA-FLOW DESCRIPTION • 77

nents in VHDL and their counterparts (if any) in Verilog.

TABLE 2.11 VHDL Versus Verilog Data-Flow Components

VHDL Command/Components Verilog Counterpart
entity module

<= assign

and, or, xor, not &, |, ^, ~

signal wire

after #

in, out, inout input, output, inout

(2 downto 0) [2:0]
(0 to 2) [0:2]

2.6 Exercises

1. Construct a full adder from two 4x1 multiplexers. One multiplexer is to
generate the sum, and the other generates the carryout. Write a data-
flow description (in both VHDL and Verilog) of the full adder. Use
a 5-ns delay for any gate including XOR. Draw the truth table of this
adder and derive the Boolean function after minimization. Simulate and
verify the circuit.

2. Write a data-flow description (in both VHDL and Verilog) of a system
that has three one-bit inputs, a(1), a(2), and a(3), and one one-bit output
b. The least significant bit is a(1). The output b is 1 only when {a(1)a(2)
a(3)} = 1, 2, 4, or 7 (all in decimal); otherwise, b is 0. Derive a minimized
Boolean function of the system and write the data-flow description.
Simulate the system and verify that it works as designed. What is the
function of this system?

3. Given the following Verilog description code, fill the values of s1 and s2
into the table. T = time in nanoseconds. Do not use a computer to solve
this problem.

 module problem (a, b, s1, s2);
 input a, b;
 output s1, s2;
 assign #10 s1 = a ^ b;
 assign #10 s2 = a | s1;

78 • HDL WITH DIGITAL DESIGN

 endmodule
 T=100 T=150 T=165 T=200 T=250 T=300
a 1 0 0 1 0 1
b 1 1 1 0 0 1
s1 0
s2 0

 Explain how you obtained the values for s1 and s2 at time T = 165 ns.
 Translate the Verilog code to VHDL.

4. Referring to Case Study 2.1, increase the number of bits from three
to four. Derive the Boolean functions of both the ripple-carry and the
carry-lookahead adders. Simulate the adders and calculate the worst
delay between the input and output using Verilog description. Contrast
your results with Figure 2.16 and explain.

5. The following VHDL code describes an SR-latch. Translate the code to
Verilog.

 entity SR is
 port (S, R : in bit; Q : buffer bit; Qb : out bit);
 end SR;
 architecture SR_DtFL of SR is
 begin
 Q <= S or (not R and Q);
 Qb <= not Q;
end SR_DtFL;

6. Describe a system that divides D/V to give a quotient, Q, and Remain-
der, R. The dividend, D, is three bits; the divisor, V, is two bits. If
V = 0, set a flag Z to 1. Write the truth table of the system and obtain the
Boolean functions of Q, R, and Z. Use VHDL and Verilog to describe
the system.

7. Change the multiplier in Example 2.5 to multiply XY where X is three
bits and Y is two bits. Find the Boolean function of the output and de-
scribe the system using VHDL and Verilog.

8. Write the VHDL and Verilog code describing the full subtractor shown
in Example 2.2.

9. Use the conditional operator in Example 2.3b to describe a 2x1 multi-
plexer with active high enable. If the enable is inactive (low), the output

C H A P T E R

BEHAVIORAL DESCRIPTION

3
Chapter Objectives

 Understand the concept of sequential statements and how they dif-
fer from concurrent statements

 Identify the basic statements and components of behavioral de-
scriptions such as process, variable-assignment statements if,
case, casex, casez, when, report, $display, wait, loop,

exit, next, always, repeat, forever, and initial
 Review and understand the basics of digital logic systems such as D

flip-flop, JK flip-flop, T flip-flop, binary counters, and shift register
 Understand the concept of some basic genetic and renal systems
 Both VHDL and Verilog descriptions are discussed

3.1 Behavioral Description Highlights

In Chapter 2, data-flow simulations were implemented to describe dig-
ital systems with known digital structures such as adders, multiplexers, and
latches. The behavioral description is a powerful tool to describe systems
for which digital logic structures are not known or are hard to generate.
Examples of such systems are complex arithmetic units, computer control
units, and biological mechanisms that describe the physiological action of
certain organs such as the kidney or heart.

80 • HDL WITH DIGITAL DESIGN

Facts

 The behavioral description describes the system by showing how out-
puts behave with the changes in inputs.

 In this description, details of the logic diagram of the system are not
needed; what is needed is how the output behaves in response to a
change in the input.

 In VHDL, the major behavioral-description statement is process. In
Verilog, the major behavioral-description statements are always and
initial.

 For VHDL, the statements inside the process are sequential. In Verilog,
all statements are concurrent (see “Analysis of VHDL Code” in Ex-
ample 3.5).

3.2 Structure of the HDL Behavioral Description

Listing 3.1 shows a simple example of HDL code describing a system
(half_add) using behavioral description. Usually sequential statements
such as IF or Case are used to describe the change of the output; however,
in this section, Boolean functions are used to describe the change. This is
done here to explain how the HDL executes signal-assignment statements
written inside process (VHDL) or inside always or initial (Verilog). The
code in Listing 3.1 mainly consists of signal-assignment statements.

Referring to the VHDL code, the entity half_add has two input ports,
I1 and I2, and two output ports, O1 and O2. The ports are of type bit;
this type is recognized by the VHDL package without the need to attach a
library. If the type is std_logic, for example, the IEEE library must be at-
tached. The name of the architecture is behave_ex; it is bound to the entity
half_add by the predefined word of. Process is the VHDL behavioral-
description keyword. Every VHDL behavioral description has to include a
process. The statement process (I1, I2) is a concurrent statement, so its
execution is determined by the occurrence of an event. I1 and I2 constitute
a sensitivity list of the process. The process is executed (activated) only if
an event occurs on any element of the sensitivity list; otherwise, the process
remains inactive. If the process has no sensitivity list, the process is execut-
ed continuously. The process in Listing 3.1 includes two signal-assignment
statements: statement 1 and statement 2.

BEHAVIORAL DESCRIPTION • 81

All statements inside the body of a process are executed sequentially.
Recall from Section 2.2 that the execution of a signal-assignment statement
has two phases: calculation and assignment. The sequential execution here
means sequential calculation, which means the calculation of a statement
will not wait until the preceding statement is assigned; it will only wait until
the calculation is done. To illustrate this sequential execution, refer to Fig-
ure 3.1. Assume that in Listing 3.1, at T = T0,

I1 changes from 0 to 1, while
I2 stays at 1. This change constitutes an event on I1, which in turn activates
the process. Statement 1 is calculated as O1 = (I1 XOR I2) = (1 XOR 0) =
1. Then, the value of O2 is calculated, still at T0, as (I1 and I2)= (1 and 0)=
0. After calculation, the value of 1 is assigned to O1 after the delay of 10 ns
at T0 +10 ns; the value of 0 is assigned to O2 after the delay of 10ns at T0
+ 10ns. For the above example, both data-flow and behavioral descriptions
yield the same output for the two signal-assignment statements. This is not
the case when a signal appears on both the right-hand side of the statement
and the left-hand side of another statement, which will be seen later.

Event on I1
activates the
process

1. Calculate for O1 (1 xor 0) = 1

2. Calculate for O2 (1 and 0) = 0

3. Assign O1 = 1 after 10 ns

4. Assign O2 = 0 after 10 ns

1. Calculate: O1 (1 xor 0) = 1, assign 1 to O1 after 10 ns

2. Calculate: O2 (1 and 0) = 0, assign 0 to O2 after 10 ns

I1

O1

O2

I2

10 ns

VHDL

Event on I1
activates
ALWAYS

I1

O1

O2

I2

10 ns

Verilog

FIGURE 3.1 Execution of signal-assignment statements inside process (VHDL) or inside always (Verilog).

Referring to the Verilog code in Listing 3.1, always is the Verilog behav-
ioral statement. In contrast to VHDL, all Verilog statements inside always
are treated as concurrent, the same as in the data-flow description (see

82 • HDL WITH DIGITAL DESIGN

Section 2.2). Also, here any signal that is declared as an output or appears
at the left-hand side of a signal-assignment statement should be declared
as a register (reg) if it appears inside always. In Listing 3.1, O1 and O2 are
declared outputs, so they should also be declared as reg.

LISTING 3.1 Example of an HDL Behavioral Description

VHDL Description
entity half_add is
port (I1, I2 : in bit; O1, O2 : out bit);
-- Since we are using type bit, no need for attaching a
-- Library.
-- If we use std_logic, we should attach the IEEE
-- Library.

end half_add;
architecture behave_ex of half_add is
begin
process (I1, I2)
 begin
 O1 <= I1 xor I2 after 10 ns; -- statement 1
 O2 <= I1 and I2 after 10 ns; -- statement 2
-- The above two statements are signal-assignment
-- statements with 10 nanoseconds delays.
--
--Other behavioral (sequential) statements can be added
-- here
 end process;
end behave_ex;

Verilog Description
module half_add (I1, I2, O1, O2);
input I1, I2;
output O1, O2;
reg O1, O2;
/ Since O1 and O2 are outputs and they are
 written inside “always,” they should be
 declared as reg /

always @(I1, I2)
 begin
 #10 O1 = I1 ^ I2; // statement 1.
 #10 O2 = I1 & I2; // statement 2.

BEHAVIORAL DESCRIPTION • 83

/The above two statements are
signal-assignment statements with 10 simulation screen units
delay/
/Other behavioral (sequential) statements can be added here/
 end
endmodule

3.3 The VHDL Variable-Assignment Statement

The use of variables inside processes is a common practice in VHDL
behavioral description. Consider the following two signal-assignment state-
ments inside a process, where S1, S2, and t1 are signals:

Signl : process(t1)
begin
st1 : S1 <= t1;
st2 : S2 <= not S1;
end process;

In VHDL, a statement can be labeled, and the label should be followed
by a colon. In the above code, Signl, st1, and st2 are labels. VHDL
code in this example does not use these labels for compilation or simula-
tion; they are optional. Labels are used here to refer to a certain statement
by its label. For example, to explain the statement S1 <= t1, it can be
referred to by statement st1.

In the above code, signal S1 appears on both the left-hand side of state-
ment st1 and on the right-hand side of statement st2. Assume at simula-
tion time T

0,
t1 = 0 and S1 = 0, and at simulation time T1, t1 changes

from 0 to 1 (see Figure 3.2). This change constitutes an event, and the
process labeled Signl is activated. For statement st1, S1 is calculated as
1. S1 does not acquire this new value of 1 at T1, but rather at T1 + D. For
statement st2, S2 at T1 is calculated using the old value of S1 (0). Alter-
nately, variable-assignment statements can be used instead of the above
signal- assignment statement as follows:

Varb : process(t1)
variable temp1, temp2 : bit; -- This is a variable
 -- declaration statement
begin
 st3 : temp1 := t1; -- This is a variable assignment
 -- statement

84 • HDL WITH DIGITAL DESIGN

st4 : temp2 := not temp1; -- This is a variable
 -- assignment statement
st5 : S1 <= temp1;
st6 : S2 <= temp2;
end process;

Signl: process(t1)
begin
st1: S1 <= t1;
st2: S2 <= not S1;
end process;

Varb: process(t1)
 variable temp1, temp2: bit;
 begin
 st3: temp1: = t1;
 st4: temp2: = not temp1;
 st5: S1 <= temp1;
 st6: S2 <= temp2;
 end process;

t1

T0 T1

S1

S2

t1

temp1

S1

S2

T0 T1

temp2

FIGURE 3.2 Signal versus variable in VHDL.

Variable-assignment statements, as in C language, are calculated and
assigned immediately with no delay time between calculation and assign-
ment. The assignment operator is :=. If t1 acquires a new value of 1 at T

1,

then momentarily temp1 = 1

and temp2 = 0. For statements st5 and

st6, S1 acquires the value of temp1 (1) at T1 + D, and S2 acquires the
value of temp2 (0) at T1 + D. Because D is infinitesimally small, S1 and
S2 appear on the simulation screen as if they acquire their new values at T

1
.

BEHAVIORAL DESCRIPTION • 85

3.4 Sequential Statements

There are several statements associated with behavioral descriptions.
These statements have to appear inside process in VHDL or inside always
or initial in Verilog. The following sections discuss some of these state-
ments.

3.4.1 IF Statement
IF is a sequential statement that appears inside process in VHDL or

inside always or initial in Verilog. It has several formats, some of which
are as follows:

VHDL IF-Else Formats
if (Boolean Expression) then
statement 1;
statement 2;
statement 3;
.......
 else
statement a;
statement b;
statement c;
.......
end if;

Verilog IF-Else Formats
if (Boolean Expression)
begin
 statement 1; / if only one statement, begin and end
 can be omitted /
 statement 2;
 statement 3;
.......
end
 else
begin
 statement a; / if only one statement, begin and end
 can be omitted /
 statement b;
 statement c;
.......
end

86 • HDL WITH DIGITAL DESIGN

The execution of IF statement is controlled by the Boolean expression.
If the Boolean expression is true, then statements 1, 2, and 3 are executed.
If the expression is false, statements a, b, and c are executed.

EXAMPLE 3.1 BOOLEAN EXPRESSION AND EXECUTION OF IF

VHDL
if (clk = ‘1’) then
temp := s1;
else
temp := s2;
end if;

Verilog
if (clk == 1’b1)
// 1’b1 means 1-bit binary number of value 1.
temp = s1;
else
temp = s2;

In Example 3.1, if clk is high (1), the value of s1 is assigned to the
variable temp. Otherwise, s2 is assigned to the variable temp. The else
statement can be eliminated, and in this case, the IF statement simulates a
latch, as shown in Example 3.2.

EXAMPLE 3.2 EXECUTION OF IF AS A LATCH

VHDL

if clk = ‘1’ then
 temp := s1;
end if;

Verilog

if (clk == 1)
begin
 temp = s1;
end

If clk is high, the value of s1 is assigned to temp. If clk is not high,
temp retains its current value, thus simulating a latch. Another format for
the IF statement is Else-IF.

BEHAVIORAL DESCRIPTION • 87

EXAMPLE 3.3 EXECUTION OF IF AS ELSE-IF

VHDL

if (Boolean Expression1) then
statement1; statement2;...
elsif (Boolean expression2) then
statement i; statement ii;...
else
statement a; statement b;...
end if;

Verilog
if (Boolean Expression1)
begin
 statement1; statement 2;.....
end
else if (Boolean expression2)
begin
 statementi; statementii;.....
end
else
begin
 statementa; statement b;....
 end

EXAMPLE 3.4 IMPLEMENTING ELSE-IF

VHDL

if signal1 =‘1’ then
temp := s1;
elsif signal2 = ‘1’ then
temp := s2;
else
temp := s3;
end if;

Verilog
if (signal1 == 1’b1)
temp = s1;
else if (signal2 == 1’b1)

88 • HDL WITH DIGITAL DESIGN

temp = s2;
else
temp = s3;

After execution of the above IF statement, temp acquires the values
shown in Table 3.1.

TABLE 3.1 Output Signals (temp) for Else-IF Statements in Example 3.4

signal1 signal2 temp =
0 0 s3
1 0 s1
0 1 s2
1 1 s1

The Boolean expression may specify other relational operations such
as inequality or greater than or less than (see Chapter 1 for details on rela-
tional operators).

To illustrate the difference between signal- and variable-assignment
statements in VHDL code, the behavioral description of a D-latch is writ-
ten in Example 3.5. A process is written based on signal-assignment state-
ments, and another process is written based on variable-assignment state-
ments. A comparison of the simulation waveforms of the two processes will
highlight the differences between the two assignment statements.

EXAMPLE 3.5 BEHAVIORAL DESCRIPTION OF A LATCH USING
VARIABLE AND SIGNAL ASSIGNMENTS

The functionality of a D-latch can be explained as follows: if the enable
(E) is active, the output of the latch (Q) follows the input (d); otherwise,
the outputs remain unchanged. Also, Qb, the invert output, is always the
invert of Q. Figure 3.3a shows the logic symbol of a D-latch. A flowchart
that illustrates this functionality is shown in Figure 3.3b. Listing 3.2 shows
the VHDL code of the D-latch using variable-assignment statements.

LISTING 3.2 VHDL Code for Behavioral Description of D-Latch Using
Variable-Assignment Statements

entity DLTCH_var is
 port (d, E : in bit; Q, Qb : out bit);
-- Since we are using type bit, no need for attaching a

BEHAVIORAL DESCRIPTION • 89

-- Library. If std_logic is used, IEEE library should be
--attached
end DLTCH_var;
architecture DLCH_VAR of DLTCH_var is
begin
VAR : process (d, E)
variable temp1, temp2 : bit;
begin
 if E = ‘1’ then
 temp1 := d; -- This is a variable assignment statement.
 temp2 := not temp1; -- This is a variable assignment
 -- statement.
end if;
Qb <= temp2; -- Value of temp2 is passed to Qb
Q <= temp1; -- Value of temp1 is passed to Q
end process VAR;
end DLCH_VAR;

Figure 3.4 shows the waveform for Listing 3.2. Clearly, from the wave-
form, the code correctly describes a D-latch where Q follows d when E is
high; otherwise, d retains its previous value. Also, Qb is the invert of Q at all

Q

Qb

d

E

D-Latch

E = 1?

Read
input d,E

Q,Qb retain
previous values

Q = d
Qb = not Q

NO

YES

 (a) (b)
FIGURE 3.3 D-Latch. a) Logic symbol. b) Flowchart.

90 • HDL WITH DIGITAL DESIGN

times.

d

E

Q

Qb

0 50 100 150 200
Time ns

250 300 350

FIGURE 3.4 Simulation waveform of a D-Latch using variable-assignment statements. The waveform
correctly describes a D-latch.

Next, the same VHDL code from Listing 3.2 is rewritten using signal-assign-
ment statements. Listing 3.3 shows the VHDL behavioral code for a D-Latch
using signal-assignment statements.

LISTING 3.3 VHDL Code for Behavioral Description of a D-Latch Using
Signal-Assignment Statements

entity Dltch_sig is
port (d, E : in bit; Q : buffer bit; Qb : out bit);
--Q is declared as a buffer because it is an
--input/output signal; it appears on both the left
-- and right hand sides of assignment statements.
end Dltch_sig;
architecture DL_sig of Dltch_sig is
begin
process (d, E)
 begin
 if E = ‘1’ then
 Q <= d; -- signal assignment
 Qb <= not Q; -- signal assignment
 end if;
end process;
end DL_sig;

Figure 3.5 shows the simulation waveform of Listing 3.3. The figure shows Q is
following Qb, which is an error because Qb should be the invert of Q. This error
is due to the sequential execution of the signal-assignment statements in the
behavioral description (see details below).

BEHAVIORAL DESCRIPTION • 91

d

E

Q

Qb

0 50 100 150 200
Time ns

250 300 350

FIGURE 3.5 Simulation waveform of a D-Latch using signal-assignment statements. Qb is following Q
instead of being the invert of Q.

3.4.1.1 Analysis of VHDL Code in Listings 3.2 and 3.3

The variable-assignment statements in Listing 3.2 are temp1 := d and
temp2 := not temp1. Referring to Figure 3.4, at simulation time T = 0
ns, initial values are: E = 0, d = 0, Q = 0, and Qb = 0. At T = 50 ns, signal E
changes from 0 to 1. Because temp1 and temp2 are variables, they instanta-
neously acquire their new values 1 and 0, respectively. These correct values
are passed to Q and Qb.

Listing 3.3 shows two signal-assignment statements inside the body of
the process, Q <= d and Qb <= not q. Initial values at T  50 ns are: E = 0,
d = 0, Q = 0, and Qb = 0. Recall that execution of a signal-assignment state-
ment inside a process is done in two phases (calculation and assignment).
At T = 50 ns, E changes from 0 to 1, and d is 1 at T = 50 ns. Q is calculated
as Q = d = 1. Q does not acquire this new value of 1 at T = 50 ns but at T =
50 + . At T = 50 ns, Qb is calculated as 1 (using the old value of Q because
Q has not yet acquired its new value of 1). After calculation, a value of 1 is
assigned to Q, and the same (wrong) value of 1 is assigned to Qb.

One of the major differences between VHDL and Verilog is that Ver-
ilog treats all signal-assignment statements as concurrent, whether they are
written as data flow or inside the body of always. Listing 3.4 shows the
Verilog code for a D-latch; the code generates the same waveform as in
Figure 3.4.

LISTING 3.4 Verilog Code for Behavioral Description of a D-Latch

module D_latch (d, E, Q, Qb);
input d, E;

92 • HDL WITH DIGITAL DESIGN

output Q, Qb;
reg Q, Qb;
always @ (d, E)
begin
 if (E == 1)
 begin
 Q = d;
 Qb = ~ Q;
 end
end
endmodule

EXAMPLE 3.6 BEHAVIORAL DESCRIPTION OF A 2x1 MULTIPLEXER WITH
TRI-STATE OUTPUT

To describe the behavior of the output of a multiplexer with the change
in the input, a flowchart is developed. Figure 3.6a shows the logic symbol
of the multiplexer, and Figure 3.6b shows diagram a flowchart describing
the functionality of the multiplexer. The flowchart shows how the output
behaves with the input. The output is high impedance if the enable (Gbar)
is high. When the enable is low, the output is equal to input B if select is
high; otherwise, the output is equal to A. The logic diagram of the multi-
plexer is not needed to write the HDL behavioral description. Although the
flowchart here represents a 2x1 multiplexer, it can represent any other ap-
plications that have the same behavior; these applications may come from
a variety of fields such as electrical engineering, computer engineering,
science, business, biomedical engineering, and many other fields. In this
example, for simplicity, the propagation delays between the input and the
output are not considered.

Listing 3.5 shows the HDL description of the multiplexer using the
IF-Else statement, and Listing 3.6 shows the HDL description with the
Else-IF statement. The VHDL code uses variable-assignment statements
to declare the variable temp; this variable is treated as if it is the output.
After calculation of its value, the variable is assigned to the output Y. VHDL
executes variable-assignment statements, as does C language; no delay time
is involved in the execution. The signal-assignment statements Y <= ‘Z’;
in VHDL and Y = 1’bz; in Verilog assign high impedance to the single-
bit Y. If Y is a three-bit signal, then the two statements in VHDL and Ver-
ilog are Y <= “ZZZ”; and Y = 3’bzzz;, respectively. Figure 3.7 shows
the simulation waveform of the multiplexer.

BEHAVIORAL DESCRIPTION • 93

LISTING 3.5 HDL Description of a 2x1 Multiplexer Using IF-Else
VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity MUX_if is
port (A, B, SEL, Gbar : in std_logic;
 Y : out std_logic);
end MUX_if;
architecture MUX_bh of MUX_if is
begin
process (A, B, SEL, Gbar)
-- A, B, SEL, and Gbar are the sensitivity list of the process.
 variable temp : std_logic;
-- Above statement is declaring temp as a variable; it
-- will be calculated as if it is the output of the

Y

A

B

2x1
Mux

SEL

Gbar

Gbar = 0?

Read
A, B, SEL,

Gbar

Y = high
Impedance

Y = A

Y = B

SEL = 1?

NO

NO

YES

YES

 (a) (b)
FIGURE 3.6 2x1 Multiplexer. a) Logic symbol. b) Flow chart.

94 • HDL WITH DIGITAL DESIGN

-- multiplexer.
begin
 if Gbar = ‘0’ then
 if SEL = ‘1’ then
 temp := B;
 else
 temp := A;
 end if;
--Now assign the variable temp to the output
 Y <= temp;
 else
 Y <= ‘Z’;
 end if;
end process;
end MUX_bh;

Verilog Description
module mux2x1 (A, B, SEL, Gbar, Y);
input A, B, SEL, Gbar;
output Y;
reg Y;
always @ (SEL, A, B, Gbar)
begin
 if (Gbar == 1)
 Y = 1’bz;
 else
 begin
 if (SEL)
 Y = B;

 else
 Y = A;
 end
end
endmodule

LISTING 3.6 HDL Description of a 2x1 Multiplexer Using Else-IF
VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity MUXBH is

BEHAVIORAL DESCRIPTION • 95

 port (A, B, SEL, Gbar : in std_logic;
 Y : out std_logic);
end MUXBH;
architecture MUX_bh of MUXBH is
begin
process (SEL, A, B, Gbar)
variable temp : std_logic;
 begin
 if (Gbar = ‘0’) and (SEL = ‘1’) then
 temp := B;
 elsif (Gbar = ‘0’) and (SEL = ‘0’)then
 temp := A;
 else
 temp := ‘Z’; -- Z is high impedance.
 end if;
 Y <= temp;
end process;
end MUX_bh;

Verilog Description
module MUXBH (A, B, SEL, Gbar, Y);
input A, B, SEL, Gbar;
output Y;
reg Y; / since Y is an output and appears inside
 always, Y has to be declared as reg(register) /

always @ (SEL, A, B, Gbar)
begin
 if (Gbar == 0 & SEL == 1)
 begin
 Y = B;
 end
 else if (Gbar == 0 & SEL == 0)
 Y = A;
 else
 Y = 1’bz; //Y is assigned to high impedance
end
endmodule

96 • HDL WITH DIGITAL DESIGN

High impedance

A

B

SEL

Gbar

Y

FIGURE 3.7 Simulation waveform of a 2x1 multiplexer.

3.4.2 The case Statement
The case statement is a sequential control statement. It has the follow-

ing format:

VHDL Case Format
case (control-expression) is
when test value or expression1 => statements1;
when test value or expression2 => statements2;
when test value or expression3 => statements3;
when others => statements4;
end case;

Verilog Case Format
case (control-expression)
test value1 : begin statements1; end
test value2 : begin statements2; end
test value3 : begin statements3; end
default : begin default statements end
endcase

If, for example, test value1 is true (i.e., it is equal to the value of the
control expression), statements1 is executed. The case statement must
include all possible conditions (values) of the control-expression. The
statement when others (VHDL) or default (Verilog) can be used to
guarantee that all conditions are covered. The case resembles IF except
the correct condition in case is determined directly, not serially as in IF
statements. The begin and end are not needed in Verilog if only a single

BEHAVIORAL DESCRIPTION • 97

statement is specified for a certain test value. The case statement can be
used to describe data listed into tables.

EXAMPLE 3.7 THE CASE STATEMENT

VHDL
case sel is
when “00” => temp := I1;
when “01” => temp := I2;
when “10” => temp := I3;
when others => temp := I4;
end case;

Verilog
case sel
2’b00 : temp = I1;
2’b01 : temp = I2;
2’b10 : temp = I3;
default : temp = I4;
endcase

In Example 3.7, the control is sel. If sel = 00, then temp = I1, if sel
= 01, then temp = I2, if sel = 10, then temp = I3, if sel = 11 (others or de-
fault), then temp = I4. All four test values have the same priority; it means
that if sel = 10, for example, then the third (VHDL) statement (temp :=
I3) is executed directly without checking the first and second expressions
(00 and 01).

EXAMPLE 3.8 BEHAVIORAL DESCRIPTION OF A POSITIVE EDGE-TRIG-
GERED JK FLIP-FLOP USING THE CASE STATEMENT

Edge-triggered flip-flops are sequential circuits. Flip-flops are trig-
gered by the edge of the clock, in contrast to latches where the level of the
clock (enable) is the trigger. Positive (negative) edge-triggered flip-flops
sample the input only at the positive (negative) edges of the clock; any
change in the input that does not occur at the edges is not sampled by the
output. Figures 3.8a and 3.8b show the logic symbol and the state diagrams
of a positive edge-triggered JK flip-flop, respectively.

98 • HDL WITH DIGITAL DESIGN

J

K

Q

Qb

clk

JK
Flip-
Flop

 x1

x0

10

0x 1x

 (a) (b)
FIGURE 3.8 JK flip-flop. a) Logic symbol. b) State diagram.

Table 3.2 shows the excitation table of the JK flip-flop. It conveys the
same information as the state diagram. The state diagram (Figure 3.8b)
shows the possible states (two in this case: q can take 0 or 1), state 0 and
state 1. The transition between these states has to occur only at the positive
edges of the clock. If the current state is 0 (q = 0), then the next state is 0(1)
if JK = 0x(1x), where x is “don’t care.” If the current state is 1 (q = 1), then
the next state is 1(0) if JK = x0(x1). Table 3.2 shows the same results as the
state diagram. For example, a transition from 0 to 1, according to the excita-
tion table, can occur if JK = 10 or JK = 11, which is JK = 1x.

TABLE 3.2 Excitation Table of a Positive Edge-Triggered JK Flip-Flop

J K clk q (next state)
0 0 � No change (hold), next = current
1 0 � 1
0 1 � 0
1 1 � Toggle (next state) = invert of (current state)
x x no +ve edge No change (hold), next = current

Listing 3.7 shows the HDL code for a positive edge-triggered JK flip-
flop using the case statement. In the Listing, rising_edge (VHDL) and

BEHAVIORAL DESCRIPTION • 99

posedge (Verilog) are predefined words called attributes. They represent
the positive edge of the clock (clk). If the positive edge is present, the at-
tribute yields to true. For VHDL, the clk has to be in std_logic to use
this attribute. Other attributes are covered in Chapters 4, 6, and 7. Any of
the four case statements can be replaced with others (VHDL) or default
(Verilog). For example:

when “00” => temp1 := temp1; -- VHDL
2’d3 : q =~ q; // Verilog

can be replaced by:
when others => temp1 := not temp1; -- VHDL
default : q =~ q; // Verilog

Because others here refers to 00, this replacement does not change
the output of the simulation as long as J and K values are either 0 or 1. The
waveform of the flip-flop is shown in Figure 3.9.

clk

JK 01 10 00 11

Q

Qb

FIGURE 3.9 Simulation waveform of a positive edge-triggered JK flip-flop.

LISTING 3.7 HDL Code for a Positive Edge-Triggered JK Flip-Flop Using the
case Statement

VHDL Description
library ieee;
use ieee.std_logic_1164.all;
entity JK_FF is
port(JK : in bit_vector (1 downto 0);
clk : in std_logic; q, qb : out bit);
end JK_FF;
architecture JK_BEH of JK_FF is
begin
P1 : process (clk)
variable temp1, temp2 : bit;
begin
if rising_edge (clk) then

100 • HDL WITH DIGITAL DESIGN

case JK is
when “01” => temp1 := ‘0’;
when “10” => temp1 := ‘1’;
when “00” => temp1 := temp1;
when “11” => temp1 := not temp1;
end case;
q <= temp1;
temp2 := not temp1;
qb <= temp2;
end if;
end process P1;
end JK_BEH;

Verilog Description
module JK_FF (JK, clk, q, qb);
input [1:0] JK;
input clk;
output q, qb;
reg q, qb;
always @ (posedge clk)
begin
 case (JK)
 2’d0 : q = q;
 2’d1 : q = 0;
 2’d2 : q = 1;
 2’d3 : q =~ q;
 endcase
 qb =~ q;
 end

 endmodule

EXAMPLE 3.9 BEHAVIORAL DESCRIPTION OF A THREE-BIT BINARY
COUNTER WITH ACTIVE HIGH SYNCHRONOUS CLEAR

Counters are sequential circuits. For count-up counters (or simply up
counters), the next state is the increment of the present state. For example,
if the present state is 101, then the next state is 110. For down-count coun-
ters (or simply down counters), the next state is the decrement of the pres-
ent state. For example, if the present state is 101, then the next state is 100.
A three-bit binary up counter counts from 0 to 7 (Mod 8). Decade counters

BEHAVIORAL DESCRIPTION • 101

count from 0 to 9 (Mod10). Synchronous clear means that clear resets the
counter when the clock is active; in contrast, asynchronous clear resets the
counter instantaneously. The counter can be depicted by a flowchart show-
ing its function (see Figure 3.10). Although the flowchart here represents
a counter, it could have represented any other system with the same be-
havior. The excitation table for the three-bit binary counter is as shown in
Table 3.3. The logic symbol is shown in Figure 3.10a.

q0q1q2

clk
clr

Three-bit counter



+ve edge
(clk)?

Read
current state

Q = 0

Next state = (current + 1)Mod8

clear = 1?

NO

NO

YES

YES

 (a) (b)
FIGURE 3.10 a) Logic symbol of a three-bit counter with clear. b) Flowchart.

TABLE 3.3 Excitation Table of a Three-Bit Binary Counter with Synchronous Active High Clear

clk
Input
clr Current State

Output
Next State

� H xxx 000
� L 000 001
� L 001 010

102 • HDL WITH DIGITAL DESIGN

clk
Input
clr Current State

Output
Next State

� L 010 011
� L 011 100
� L 100 101
� L 101 110
� L 110 111
� L 111 000
L x hold

The most efficient approach to describe the above counter is to use the
fact that the next state is the increment of the present for upward counting.
The goal here, however, is to use the case statement. Table 3.3 is treated as
a look-up table. Listing 3.8 shows the HDL code for the counter. To assign
initial values, such as 101, to the count at the start of simulation in Verilog,
the procedural initial is used as follows:

 initial
 begin
 q = 3’b101;
 end

The begin and end can be omitted if there is a single initial state-
ment.

In VHDL, the initial value is assigned to the variable temp after the
statement process, as shown:

 ctr : process (clk)
 variable temp : std_logic_vector (2 downto 0) := “101”;
 begin

Any value assigned to a variable written between process and its begin
is acquired only once at the beginning of the simulation; subsequent execu-
tion of the process will not reassign that value to the variable unless a new
simulation is executed. Figure 3.11 shows the simulation waveform of the
counter.

LISTING 3.8 HDL Code for a Three-Bit Binary Counter Using the case
Statement

 VHDL Description
 library IEEE;

BEHAVIORAL DESCRIPTION • 103

 use IEEE.STD_LOGIC_1164.ALL;
 entity CT_CASE is
 port (clk, clr : in std_logic;
 q : buffer std_logic_vector (2 downto 0));
 end CT_CASE;
 architecture ctr_case of CT_CASE is
 begin
 ctr : process(clk)
 variable temp : std_logic_vector (2 downto 0) := “101”;
 --101 is the initial value, so the counter starts from
 -- 110
 begin
 if rising_edge (clk) then
 if clr = ‘0’ then
 case temp is
 when “000” => temp := “001”;
 when “001” => temp := “010”;
 when “010” => temp := “011”;
 when “011” => temp := “100”;
 when “100” => temp := “101”;
 when “101” => temp := “110”;
 when “110” => temp := “111”;
 when “111” => temp := “000”;
 when others => temp := “000”;
 end case;
 else
 temp := “000”;
 end if;
 end if;
 q <= temp;
 end process ctr;

 end ctr_case;

 Verilog Description
 module CT_CASE (clk, clr, q);
 input clk, clr;

 output [2:0] q;
 reg [2:0] q;
 initial
 / The above initial statement is to force
 the counter to start from initial count q=110 /

104 • HDL WITH DIGITAL DESIGN

 q = 3’b101;
 always @ (posedge clk)
 begin
 if (clr == 0)
 begin
 case (q)
 3’d0 : q = 3’d1;
 3’d1 : q = 3’d2;
 3’d2 : q = 3’d3;
 3’d3 : q = 3’d4;
 3’d4 : q = 3’d5;
 3’d5 : q = 3’d6;
 3’d6 : q = 3’d7;
 3’d7 : q = 3’d0;
 endcase
 end
 else
 q = 3’b000;
 end
 endmodule

clk

q

clr

5 6 7 0 1 2 3 4 510
FIGURE 3.11 Simulation waveform of a three-bit positive edge-triggered counter with active high
synchronous clear.

EXAMPLE 3.10A MODELING THE GENOTYPE AND PHENOTYPE OF
HUMAN BLOOD USING BIT_VECTOR

In this example, some biomedical engineering applications are consid-
ered. The example is about determining the blood type of a child given the
blood type of the parents. First, consider some biological definitions to help
in understanding the example:

 Cells: The simplest basic structural units that make up all living things.

 Chromosomes: Rod-like structures that appear in the nucleus of the
cell, they contain the genes responsible for heredity. Humans have a
total 46 different chromosomes in most cells: 23 paternal (from the fa-

BEHAVIORAL DESCRIPTION • 105

ther) and 23 maternal (from the mother). Sex cells (sperm and ova) each
contain half the total number of chromosomes (i.e., 23).

 Deoxyribonucleic acid (DNA): A polymer of deoxyribonucleotides
in the form of a double helix. It is the genetic molecule of life and codes
the sequence of amino acids in proteins. Only identical twins have iden-
tical DNA. Otherwise, DNA differs from one person to another.

 Gametes: Sex cells that contain half of the number of chromosomes.
In humans, these cells comprise the genetic makeup of eggs and sperm.
Each gamete cell contains 23 chromosomes. When a male mates with a
female, the two sex cells (egg and sperm) combine to form a single cell
called a zygote. Gametes for blood types have a single allele: A, B, or O.

 Gene: A heritable unit in a chromosome, it is a series of nucleotide
bases on the DNA molecule that codes for polypeptides (chains of
amino acids). Humans have about 30,000 genes.

• Allele: An alternate form of a gene.

• Codominant alleles: Both alleles are expressed equally. The alleles
for blood types A and B are codominant. If combined from a male
and a female, the children will be blood type AB.

• Dominant allele: An allele that, if combined with other recessive
alleles, suppresses their expressions. In blood types, alleles A and B
are dominant.

• Recessive allele: An allele that, if combined with other dominant
alleles, is suppressed. For example, the brown-eye allele is dominant
to the blue-eye allele. If a male with blue eyes mates with a female
with brown eyes, their children (assuming complete dominance of
the brown-eye allele) will have brown eyes. For blood types, the O
allele is recessive to A and B.

 Genotype: The type of alleles in the cell. In the blood example, geneo-
type is the concatenation of the parental and maternal alleles such as
AO, AB, OO.

 Heterozygous in a gene: Two different alleles are inherited. For
blood types, heterozygous alleles can be AB, AO, or BO.

 Homozygous genes: These cells contain the same alleles of the gene.
A person who is homozygous for the brown-eye gene has inherited two
alleles for brown eyes, one from their mother and one from their father.

106 • HDL WITH DIGITAL DESIGN

A person who is homozygous for blood type A has two A alleles, one
parental and one maternal.

 Phenotype: The expression that results from allele combinations. For
example, the phenotype of the genotype AO is blood type A because A
is dominant and O is recessive. The phenotype of genotype AB is blood
type AB because A and B are codominant.

To find all possible genotypes and phenotypes of human blood, a table
is constructed to show all possible blood alleles (A, B, O) from male and
female gametes. Then, determine the offspring’s genotype. From the geno-
type, the phenotype is determined according to the type of allele (recessive,
dominant, or codominant). Table 3.4a shows all possible genotypes, and
Table 3.4b shows all possible phenotypes for the offspring.

TABLE 3.4 Genotypes and Phenotypes of Human Blood

A. Genotypes
♂ A B O
�♀
A AA AB AO
B AB BB BO
O AO BO OO

B. Phenotype
 �♂ A B O
�♀
A A AB A
B AB B B
O A B O

Tables 3.4a and 3.4b are look-up tables, and the case statement can
be used to describe the table. Listing 3.9 shows the code for describing the
genotypes and phenotypes using case. As shown in the Listing, the alleles
are decoded into two bits and entered in the entity as type bit_vector; the
output it is decoded in three bits and entered in the entity as a three-bit
vector. The two statements

 geno := allelm & allelf; -- VHDL
 geno = {allelm , allelf}; // Verilog

concatenate allelm and allelf into one vector, geno, using the concat-

BEHAVIORAL DESCRIPTION • 107

enation operator & for VHDL or { , } for Verilog (see Section 1.5.3). For ex-
ample, if allelm = 10, and allelf = 11, after concatenation, geno = 1011.

LISTING 3.9 HDL Code for Genotypes and Phenotypes Using the case State-
ment: VHDL and Verilog

This program takes the blood genotypes (alleles) of a male and a female
and generates the possible blood phenotypes of their offspring. The state-
ment report (VHDL) or display (Verilog) is used to print the phenotype
on the screen of the simulator. The male allele is allelm, and allelf is the
female allele. Both allelm and allelf are decoded as 00 for genotype A,
01 for B, or 10 for O. Phenotype A is decoded as 000, B as 001, AB as 010,
O as 011, and an illegal allele entry as 111. Figure 3.12 shows the simulation
waveform for genotypes and phenotypes of human blood.

VHDL Description
library ieee;
use ieee.std_logic_1164.all;
entity Bld_type is
 port (allelm, allelf : in bit_vector (1 downto 0);
 pheno : out bit_vector (2 downto 0));
end Bld_type;
architecture GEN_BLOOD of Bld_type is
begin
Bld : process (allelm, allelf)
variable geno : bit_vector(3 downto 0);
begin
 geno := allelm & allelf;

-- The operator (&) concatenates the two 2-bit vectors
-- allelf and allelm into one 4-bit vector geno.

 case geno is
 when “0000” => pheno <= “000”;
 report “phenotype is A “;
--report statement is close to printf in C language.
--The statement here prints on the screen whatever
--written between the quotations.
 when “0001” => pheno <= “010”;
 report “phenotype is AB “;
 when “0010” => pheno <= “000”;
 report “phenotype is A “;

108 • HDL WITH DIGITAL DESIGN

 when “0100” => pheno <= “010”;
 report “phenotype is AB “;
 when (“0101”) => pheno <= “001”;
 report “phenotype is B “;
 when (“0110”) => pheno <= “001”;
 report “phenotype is B “;
 when “1000” => pheno <= “000”;
 report “phenotype is A “;
 when (“1001”) => pheno <= “001”;
 report “phenotype is B “;
 when “1010” => pheno <= “011”;
 report “phenotype is O “;
 when others =>pheno <= “111”;
 report “illegal allele entry “;
end case;
end process;
end GEN_BLOOD;

Verilog Description
module bld_type (allelm, allelf, pheno);
input [1:0] allelm, allelf;
output [2:0] pheno;
reg [2:0] pheno;
reg [3:0] geno;
always @ (allelm, allelf)
begin

geno = {allelm , allelf};
/ { , } concatenates the two 2-bit vectors
allelm and allelf into one 4-bit vector geno /
case (geno)
4’d0 : begin pheno = 3’d0;
$display (“phenotype is A “); end
4’d1 : begin pheno = 3’d2;
$display (“phenotype is AB “); end
/ $display statement is close to printf in C language.
The statement here prints on the screen whatever
written between the quotations./

4’d2 : begin pheno = 3’d0;
$display (“phenotype is A “); end

BEHAVIORAL DESCRIPTION • 109

4’d4 : begin pheno = 3’d2;
$display (“phenotype is AB “); end
4’d5 : begin pheno = 3’d1;
$display (“phenotype is B “); end
4’d6 : begin pheno = 3’d10;
$display (“phenotype is B “); end
4’d8 : begin pheno = 3’d0;
$display (“phenotype is A “); end
4’d9 : begin pheno = 3’d1;
$display (“phenotype is B “); end
4’d10 : begin pheno = 3’d3;
$display (“phenotype is O “); end
default: begin pheno = 3’d7;
$display (“illegal allele entry “); end
endcase
end
endmodule

allelm

allelf

11 10

10

01 00 00 11 10 01 00

00

01

01

11 10

geno 1110 1010 0110 0010 0001 1100 1000 0100 000001011101 1001

pheno 111 011 001 000 010 111 000 010 000001111 001
FIGURE 3.12 Simulation waveforms for genotypes and phenotypes of human blood. The phenotype is also
printed (not shown here) on the main screen of the simulator.

EXAMPLE 3.10B MODELING THE GENOTYPE AND PHENOTYPE OF
HUMAN BLOOD USING CHARACTER TYPE

In Listing 3.9, the inputs allelm and allelf and the output pheno had
to be decoded into bits so they can be entered as bit_vector. Reading the
code in decoded bits is not easy because the reader has to memorize what
code was given to each signal. Using charcter type (see Section 1.6.1.1) is
more convenient in this case because reading the alleles as A, B, and O is
more convenient than reading them as 00, 01, and 10.

For VHDL, the string type is used to declare a signal in characters; it
resembles bit_vector, but the elements are ASCII characters rather than
bits. If the signal is six charcters in length, for example, the string is de-
clared as string (1 to 6). The double quotaion mark is used to assign the
value of the signal in ASCII such as “ABCDEF.”

110 • HDL WITH DIGITAL DESIGN

For Verilog, each ASCII character is represented by eight bits (two hex
digits). In Listing 3.10, allelm is represented as one character (two hex
digits); the output pheno is represented to two charcters (four hex digits of
a total of sixteen bits). The character assignment, same as in VHDL, is done
between double quotations. Figure 3.13 shows the simulation waveform of
Listing 3.10.

LISTING 3.10 HDL Code for Genotypes and Phenotypes Using the case
Statement and Character Type

VHDL Description

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity bld_charctr is
port (allelem, allelef : in string(1 to 1) ;
pheno : out string (1 to 2));
end bld_charctr;
architecture Bld_beh of bld_charctr is

begin

process (allelem, allelef)

variable geno: string (1 to 2);
begin
geno := (allelem & allelef);
case (geno) is
when “AA” => pheno <= “A “;
when “AB” => pheno <= “AB”;
when “AO” => pheno <= “A “;

allelm

allelf

? O

O

B A A ? O B A

A

B

B

? O

geno ?? OO BO AO AB ?? OA BA AABB?? OB

pheno ? O B A AB ? A AB AB? B

FIGURE 3.13 Simulation waveforms for genotypes and phenotypes of human blood using character type.

BEHAVIORAL DESCRIPTION • 111

when “BA” => pheno <= “AB”;
when “BB” => pheno <= “B “;
when “BO” => pheno <= “B “;

when “OA” => pheno <= “A “;
when “OB” => pheno <= “B “;
when “OO” => pheno <= “O “;

when others => pheno <= “??”;
end case;

end process;
end Bld_beh;

Verilog Description
module Bld_typeCharctr(allelm, allelf, pheno);

input [8:1] allelm, allelf;
output [28:1] pheno;

reg [28:1] pheno; /Since phenol is two characters;
 two ASCII characters are allocated to it./
reg [28:1] geno;
always @ (allelm, allelf)
begin

geno = {allelm , allelf};

case (geno)
“AA”: pheno = “A “;
“AB”: pheno = “AB”;
“AO”: pheno = “A “;
“BB”: pheno = “B “;
“BA”: pheno = “AB”;
“BO”: pheno = “B “;
“OA”: pheno = “A “;
“OB”: pheno = “B “;
“OO”: pheno = “O “;
default : pheno = “??”; //?? means invalid entry

endcase
end
endmodule

112 • HDL WITH DIGITAL DESIGN

3.4.2.1 Verilog casex and casez

Section 3.2.3 covered the case statement for both VHDL and Verilog.
Verilog has another two variations of case: casex and casez. casex ig-
nores the “don’t care” values of the control expression, and casez ignores
the high impedance in the control expression. For example, in the code

casex (a)
4’bxxx1: b = 4’d1;
4’bxx10: b = 4’d2;
………………..
 endcase;

all occurrences of x are ignored; b = 1 if and only if the least significant
bit of a (bit order 0) is 1, regardless of the value of the higher order bits of
a, and b = 2 if the bits of order 0 and 1 are 10, regardless of the value of all
other bits. For the Verilog variation casez, all high-impedance values (z) in
control expressions are ignored. For example:

casez (a)
4’bzzz1 : b = 4’d1;
4’bzz10 : b = 4’d2;
………………..
endcase;

b = 1 if and only if the least significant bit (bit of order 0) of a = 1, and
b = 2 if bit 0 of a = 0 and bit 1 of a = 1.

EXAMPLE 3.11 VERILOG DESCRIPTION OF A PRIORITY ENCODER USING
CASEX

A priority encoder encodes the inputs according to a priority set by
the user, such as when the input represents interrupt requests. If two or
more interrupt requests are issued at the same time by the devices needing
service, and the central processing unit (CPU) can only serve one device at
a time, then one of these requests should be given priority over the others
and be served first. A priority encoder can handle this task. The input to
the encoder is the interrupt requests, and the output of the encoder can be
memory addresses where the service routine is located or an address lead-
ing to the actual address of the routines. Table 3.5 shows the truth table of a
four-bit encoder; bit 0 of input a has the highest priority. Listing 3.11 shows

BEHAVIORAL DESCRIPTION • 113

the Verilog description for a four-bit priority encoder. Figure 3.14 shows
the simulation waveform of Listing 3.11.

TABLE 3.5 Truth Table for Four-Bit Encoder

Input Output
a b
xxx1 1
xx10 2
x100 4
1000 8
Others 0

LISTING 3.11 Verilog Description for a Four-Bit Priority Encoder Using
casex

module Encoder_4 (Int_req, Rout_addrs);
input [3:0] Int_req;
output [3:0] Rout_addrs;
reg [3:0] Rout_addrs;

always @ (Int_req)
begin
casex (Int_req)
4’bxxx1 : Rout_addrs=4’d1;
4’bxx10 : Rout_addrs=4’d2;
4’bx100 : Rout_addrs=4’d4;
4’b1000 : Rout_addrs= 4’d8;
default : Rout_addrs=4’d0;

endcase
end

endmodule

Int_req

Rout_addrs 0001 0010 1000 0001 0100 0001 0000 0010

1111 1110 1000 0011 1100 0101 0000 0110

FIGURE 3.14 Simulation waveform of a four-bit priority encoder.

114 • HDL WITH DIGITAL DESIGN

3.4.3 The wait-for Statement
The wait statement has several formats; in this section, only wait for a

time period is discussed. For example:

VHDl : wait for 10 ns;

Verilog # 10;

The wait statement can be implemented to generate clocks, as it is
usually common in bench marks. Listing 3.12 shows an example of using
the wait-for statement to generate three different clocks: a with a period
of 20 ns, b with a period of 40 ns, and c with a period of 80 ns. Note that if
a process (VHDL) or always (Verilog) does not have a sensitivity list, this
process or always will run indefinitely. Figure 3.15 shows the waveform
of Listing 2.12.

LISTING 3.12 Implementation of the wait-for Statement to Generate
Clocks

VHDL
Library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity waittestVHDL is
port (a,b,c : out std_logic);
end waittestVHDL;

architecture Behavioral of waittestVHDL is

begin
 p1 :process
 variable a1: std_logic := ‘0’;
 begin
 a <= a1;
 wait for 10 ns;
 a1 := not a1;

 end process;
p2 :process
variable b1: std_logic := ‘0’;
 begin
 b <= b1;
 wait for 20 ns;
 b1 := not b1;
end process;

BEHAVIORAL DESCRIPTION • 115

p3 :process
variable c1: std_logic := ‘0’;
 begin
 c <= c1;
 wait for 40 ns;
 c1 := not c1;
end process;
END;

Verilog
module waitstatement(a,b,c);
output a,b,c;
reg a,b,c;

initial
begin
// Initialize Inputs
 a = 0;
 b = 0;
 c = 0;
 end
always
 begin
 #10 ;
 a = ~ a;
 end

always
 begin
 #20 ;
 b = ~ b;
 end
always
 begin
 #40 ;
 c = ~ c;
 end

endmodule

116 • HDL WITH DIGITAL DESIGN

a

b

c
FIGURE 3.15 Simulation waveform of Listing 2.12.

3.4.4 The Loop Statement
Loop is a sequential statement that has to appear inside process in

VHDL or inside always or initial in Verilog. Loop is used to repeat the
execution of statements written inside its body. The number of repetitions
is controlled by the range of an index parameter. The loop allows the code
to be compressed; instead of writing a block of code as individual state-
ments, it can be written as one general statement that, if repeated, repro-
duces all statements in the block. There are several ways to construct a
loop. Some of those ways are discussed here.

3.4.4.1 For-Loop

The HDL general format for a For-Loop is:

for <lower index value> <upper index value> <step>
statements1; statement2; statement3; ….
end loop

If the value of index is between lower and upper, all statements writ-
ten inside the body of the loop are executed. For each cycle, the index is
modified at the end loop according to the step. If the value of index is not
between the lower and upper values, the loop is terminated.

EXAMPLE 3.12 FOR-LOOP: VHDL AND VERILOG

VHDL For-Loop
for i in 0 to 2 loop
if temp(i) = ‘1’ then
result := result + 2i;
end if;
end loop;
statement1; statement2;

Verilog For-Loop
for (i = 0; i <= 2; i = i + 1)
begin

BEHAVIORAL DESCRIPTION • 117

 if (temp[i] == 1’b1)
 begin
 result = result + 2i;
 end
 end
statement1; statement2;

The index is i, the lower value is 0, the upper value is 2, and the step
is 1. All statements between the for statement and end loop (VHDL) or
end (Verilog) are executed until the index i goes out of range. At the very
beginning of the loop, i takes the value of 0, and the statements if and re-
sult are executed as:

if temp(0) = ‘1’ then
result := result + 20;

When the program encounters the end of the loop, it increments i by 1.
If i is less than or equal to 2, the loop is repeated; otherwise, the program
exits the loop and executes statement1, statement2, and so on. In VHDL,
index i does not have to be declared, but in Verilog, it has to be declared.
If the loop statement is stated without range, the loop will run indefinitely.

3.4.4.2 While-Loop

The general format of the While-Loop is:

 while (condition)
 Statement1;
 Statement2;
 …………
 end

As long as the condition is true, all statements written before the end of
the loop are executed. Otherwise, the program exits the loop.

EXAMPLE 3.13 WHILE-LOOP: VHDL AND VERILOG

VHDL While-Loop
while (i < x)loop
 i := i + 1;
 z := i  z;
end loop;

118 • HDL WITH DIGITAL DESIGN

Verilog While-Loop
while (i < x)
 begin
 i = i + 1;
 z = i  z;
 end

In the above example, the condition is (i < x). As long as i is less than
x, i is incremented, and the product i  z (i multiplied by z) is calculated
and assigned to z.

3.4.4.3 Verilog repeat

In Verilog, the sequential statement repeat causes the execution of
statements between its begin and end to be repeated a fixed number of
times; no condition is allowed in repeat.

EXAMPLE 3.14 VERILOG REPEAT

repeat (32)
begin
 #100 i = i + 1;
end

In the above example, i is incremented 32 times with a delay of 100
screen time units. This describes a five-bit binary counter with a clock pe-
riod of 100 screen time units.

3.4.4.4 Verilog forever

The statement forever in Verilog repeats the loop endlessly. One com-
mon use for forever is to generate clocks in code-oriented test benches.
The following code describes a clock with a period of 20 screen time units:

initial
begin
 Clk = 1’b0;
 forever #20 clk = ~clk;
 end

3.4.4.5 VHDL next and exit

In VHDL, next and exit are two sequential statements associated
with loop; exit causes the program to exit the loop, and next causes the
program to jump to the end of the loop, skipping all statements written

BEHAVIORAL DESCRIPTION • 119

between next and end loop. The index is incremented, and if its value is
still within the loop’s range, the loop is repeated. Otherwise, the program
exits the loop.

EXAMPLE 3.15 VHDL NEXT-EXIT

for i in 0 to 2 loop
......
.....
next When z = ’1’;
statements1;
end loop;
statements2;

In the above example, at the very beginning of the loop’s execution,
i takes the value 0; at the statement next When z = ’1’, the program
checks the value of z. If z = 1, then statements1 is skipped and i is incre-
mented to 1. The loop is then repeated with i = 1. If z is not equal to 1, then
statements1 is executed, i is incremented to 1, and the loop is repeated.

EXAMPLE 3.16 BEHAVIORAL DESCRIPTION OF A FOUR-BIT POSITIVE
EDGE-TRIGGERED SYNCHRONOUS UP COUNTER

In this example, the Loop statement is used to convert values between
binary and integer and use this conversion to describe a binary up counter.
The HDL package is assumed to not contain predefined functions that will
increment a binary input or convert values between binary and integer. In
addition, the current and next state are expressed in binary rather than in-
teger. Describing a counter using the above binary-to-integer conversion is
not the most efficient way; the main goal here is to demonstrate the imple-
mentation of the Loop statement.

The next state of a binary counter is generated by incrementing the
current state. Because, in this example, a binary value cannot be increment-
ed directly by the HDL code (as was assumed), it is first converted to an
integer. HDL packages can easily increment integers. We increment the
integer and convert it back to binary. To convert an integer to binary, the
predefined operator MOD in VHDL or % in Verilog (see Section 1.5.3.1.) is
used. For example: (X MOD 2) equals 1 if X is 1 (odd) or equals 0 if X is 0

120 • HDL WITH DIGITAL DESIGN

(even, divisible by 2). By successively dividing the integer by 2 and record-
ing the remainder from the outcome of the MOD2, the integer is converted
to binary. To convert a binary to integer, multiply each bit by its weight and
accumulate the products: 1011

2
= (1 × 1) + (1 × 2) + (0 × 4) + (1 × 8) = 11

10.

If the bit is equal to 0, it can be ignored.

Listing 3.13 shows the HDL code of the counter. The simulation wave-
form is the same as that shown in Figure 3.11, except the count here is from
0 to 15 rather than from 0 to 7 as in the figure.

LISTING 3.13 HDL Code for a Four-Bit Counter With Synchronous Clear:
VHDL and Verilog

VHDL Description
library ieee;
use ieee.std_logic_1164.all;
entity CNTR_LOP is
port (clk, clr : in std_logic; q :
 buffer std_logic_vector (3 downto 0));
end CNTR_LOP;
architecture CTR_LOP of CNTR_LOP is
begin
ct : process(clk)
variable temp :
 std_logic_vector (3 downto 0) := “0000”;
variable result : integer := 0;
begin
if rising_edge (clk) then
 if (clr = ‘0’) then
 result := 0;
-- change binary to integer
 lop1 : for i in 0 to 3 loop
 if temp(i) = ‘1’ then
 result := result + 2i;
 end if;
 end loop;
-- increment result to describe a counter
 result := result + 1;
-- change integer to binary
 for j in 0 to 3 loop
 if (result MOD 2 = 1) then
 temp (j) := ‘1’;

BEHAVIORAL DESCRIPTION • 121

 else temp (j) := ‘0’;
 end if;
-- integer division by 2
 result := result/2;
 end loop;
 else temp := “0000”;
 end if;
q <= temp;
end if;
end process ct;
end CTR_LOP;

Verilog Description
module CNTR_LOP (clk, clr, q);
input clk, clr;
output [3:0] q;
reg [3:0] q;
integer i, j, result;
initial
begin
q = 4’b0000; //initialize the count to 0
end
always @ (posedge clk)
begin
 if (clr == 0)
 begin
 result = 0;
 //change binary to integer
 for (i = 0; i < 4; i = i + 1)
 begin
 if (q[i] == 1)
 result = result + 2i;
 end
 result = result + 1;
 for (j = 0; j < 4; j = j + 1)
 begin
 if (result %2 == 1)
 q[j] = 1;
 else
 q[j] = 0;
 result = result/2;
 end
 end

122 • HDL WITH DIGITAL DESIGN

 else q = 4’b0000;
end
endmodule

A more efficient approach to describe a binary counter is to directly
increment the current state. As mentioned before, the approach imple-
mented in Listing 3.13 is not the most efficient way to describe a counter.
To write an efficient code for a four-bit counter, direct increment of the
current state is used. The following Verilog code describes a four-bit binary
counter using direct increment of the current state:

module countr_direct (clk, Z);
input clk;
output [3:0] Z;
reg [3:0] Z;
initial
Z = 4’b0000;

/This initialization is needed if we want to start counting
from 0000 /

always @ (posedge clk)
Z = Z + 1;
endmodule

EXAMPLE 3.17 BEHAVIORAL DESCRIPTION OF A FOUR-BIT COUNTER
WITH SYNCHRONOUS HOLD USING THE LOOP
STATEMENT

To write the code for the counter, binary-integer conversion is used. As
mentioned in Example 3.16, this approach is not the most efficient way to
describe a counter, but it will be implemented here to demonstrate the use
of Loop and the Exit statements. The hold signal in a counter, when active,
retains the value of the output and keeps it unchanged until the hold is in-
activated. The flowchart of the counter is shown in Figure 3.16. In VHDL,
an exit statement is used to exit the loop when the hold is active. Verilog,
however, does not have an explicit exit statement, but the loop can be ex-
ited by assigning the index a value higher than its upper value. Listing 3.14
shows the HDL code for the counter. Figure 3.17 shows the simulation
waveform of the counter.

BEHAVIORAL DESCRIPTION • 123

+ve edge
(clk)?

Read
current state

Q = current state

Next state = (current + 1)Mod16

Hold = 1?

NO

NO

YES

YES

FIGURE 3.16 Flowchart of a four-bit counter with active high hold.

LISTING 3.14 HDL Code for a Four-Bit Counter with Synchronous Hold:
VHDL and Verilog

VHDL Description
library ieee;
use ieee.std_logic_1164.all;
entity CNTR_Hold is
port (clk, hold : in std_logic;
q : buffer std_logic_vector (3 downto 0));

end CNTR_Hold;
architecture CNTR_Hld of CNTR_Hold is
begin
ct : process (clk)
variable temp : std_logic_vector
 (3 downto 0) := “0000”;
-- temp is initialized to 0 so count starts at 0
variable result : integer := 0;
begin
if rising_edge (clk) then
 result := 0;

124 • HDL WITH DIGITAL DESIGN

-- change binary to integer
 lop1 : for i in 0 to 3 loop
 if temp(i) = ‘1’ then
 result := result + 2i;
 end if;
 end loop;
-- increment result to describe a counter
 result := result + 1;
 -- change integer to binary
 lop2 : for i in 0 to 3 loop
-- exit the loop if hold = 1
 exit when hold = ‘1’;
-- “when” is a predefined word
 if (result MOD 2 = 1) then
 temp (i) := ‘1’;
 else
 temp (i) := ‘0’;
 end if;
--Successive division by 2
 result := result/2;
 end loop;
 q <= temp;
end if;
end process ct;
end CNTR_Hld;

Verilog 4-Bit Counter with Synchronous Hold Description
module CT_HOLD (clk, hold, q);
input clk, hold;
output [3:0] q;
reg [3:0] q;
integer i, result;
initial
begin
q = 4’b0000; //initialize the count to 0
end
always @ (posedge clk)
begin
result = 0;

//change binary to integer

BEHAVIORAL DESCRIPTION • 125

for (i = 0; i <= 3; i = i + 1)
begin
if (q[i] == 1)
result = result + 2i;
end
result = result + 1;
for (i = 0; i <= 3; i = i + 1)
begin
if (hold == 1)
i = 4; //4 is out of range, exit.
else
 begin
 if (result %2 == 1)
 q[i] = 1;
 else
 q[i] = 0;
 result = result/2;
 end
end
end
endmodule

clk

q

hold

0 1 2 3 4 6 7 8 954
FIGURE 3.17 Simulation waveform of a four-bit binary counter with synchronous hold.

EXAMPLE 3.18 SHIFT REGISTERS DESCRIPTION USING THE LOOP
STATEMENT

The main function of a general-purpose register is to store data. The
data can be retrieved, or it can be stored indefinitely. The data in the reg-
ister can be manuplated by several actions such as shift. The data can be
shifted right or left logically (Figure 3.18), where zeros are used to fill the
vacant bits after shifting; in this shift, some data can be lost. The data can
also be shifted arithmatically (Figure 3.18), where if shifted right, the sign
of the data (the most significant bit) is preserved. The data in the register
can also be rotated left or right (Figure 3.18); here no data are lost. Shift
operation is widely used in many areas of digital design such as arithmetic
units and serial communications. Shift registers may have an external input

126 • HDL WITH DIGITAL DESIGN

bit that replaces the vacant bit after shift. Other registers may have load and
bidirectional shifts; these registers are called universal shift registers and
are covered in Chapter 4.

10111101

Register A

0 1
01011110

Right-shift logical of A

Left-shift logical of A
1 0

01111010

1 1
11011110

Right-shift arithmetic of A

Left-shift arithmetic of A
1 0

01111010

1 1
11011110

Right-rotate of A

Left-rotate of A
1 1

01111011

FIGURE 3.18 Single-register shift and rotation.

Listing 3.15 shows a HDL code for describing a logical shift, as shown
in Figure 3.18, using the Loop statement. The code shifts register q n bits
right or left logically. The number of bits to be shifted is determined by
user-selected parameter N. The code resembles the preserved statement
sll and slr in VHDL and (<< and >>) in Verilog. See Section 1.5.4.

$display statement in Listing 3.15 is one of Verilog’s system tasks that
displays values of objects on the console of the simulator. The statement

 $display (“ i= %d”, i);

will display a printout of the text between the quotation marks (i =)
excluding the %d, which determines that the object should be displayed in
decimal. The i after the comma is the object to be displayed. The $display
is a tool that can be used to display objects that are not listed as an output.
Several other formats can be selected for display such as:

%b for binary

%o for octal

$d for decimal

%h for hexadecimal

%t for time

%e or %f or %g for real

BEHAVIORAL DESCRIPTION • 127

%c for character

%s for string

%v for binary and strength

LISTING 3.15 HDL Code for Logical Shifting of a Register Using the Loop
Statement

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity shift_register is
 port(start : in std_logic; shft: in std_logic;
 N: in natural;
 q : out std_logic_vector(7 downto 0))
end shift_register;
--N is number of shifts selected by the user
architecture shift_righLift of shift_register is

begin
st: process (start)
variable vq : std_logic_vector (7 downto 0)
 := “11001110”;
--initial values for the vector is selected to be
 -- 1100110
begin
if (start =’1’) then
lop2: for j in 1 to N loop
lop1: for i in 0 to 6 loop
if shft =’0’ then
--shft = 0 is logical right shift; =1 logical left
-- shift

 vq(i) := vq(i+1);
 vq(7) :=’0’;
 else
 vq(7-i) := vq(6-i);
 vq(0) := ‘0’;
 end if;
end loop lop1;
end loop lop2;
end if;
q <= vq;

128 • HDL WITH DIGITAL DESIGN

end process st;

end shift_righLift;

Verilog Description
module shft_regVerilog(start,shft, N,q);
input start,shft;
input [7:1] N;
//N is number of requested shifts
output [7:0]q;
reg [7:0]q;
integer i,j;

initial
q = 8’b01100110;
/initial values for the vector is selected to be
1100110 /

always @ (posedge start)
begin
lop2: for (j= 1; j <= N; j = j +1)
begin
lop1: for (i= 0; i <= 6; i = i +1)
begin
if (shft == 1’b0)
/shft = 0 is logical right shift; =1 logical left
Shift /
begin
$display (“ shft = %d”, shft);/This is a system task
 to display The value of shift on the console’s
 screen of the simulator/
$display (“ i= %d”, i);
$display (“q[i] = %b”, q[i]);
$display (“q[i+1] = %b”, q[i+1]);
 q[i] = q[i+1];
 q[7] =1’b0; $display (“ q = %b”, q);end

else
begin q[7-i] = q[6-i];
q[0] = 1’b0; end
$display (“ shft = %d”, shft);

BEHAVIORAL DESCRIPTION • 129

end
end
end

endmodule

EXAMPLE 3.19 CALCULATING THE FACTORIAL USING BEHAVIORAL
DESCRIPTION WITH WHILE-LOOP

In this example, a HDL behavioral description is written to find the
factorial of a positive number N. The factorial of N is (N!) = Nx(N-1)x(N-
2)x(N-3)x ….x1. For example, 4!=4×34×24×1=24. In VHDL, N and the
output z are declared as natural; this restricts the values that N and z can
assume to positive integers. If N and z are declared as std_logic, the mul-
tiplication operator () cannot be used directly; they must be converted
to integers before multiplication or an external library should be attached.
In VHDL, be sure to include all the necessary libraries. If the appropriate
libraries are not included in the code, the simulator will not accept the dec-
laration and will report it as undefined.

In Verilog, the default declaration of inputs and outputs allows for the
direct use of arithmetic operators such as multiplication. Listing 3.16 shows
the HDL code for calculating the factorial.

LISTING 3.16 HDL Code for Calculating the Factorial of Positive Integers:
VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
--The above library statements can be omitted;
--however no error if it is not omitted.
--The basic VHDL has type “natural.”
entity factr is
port(N : in natural; z : out natural);
end factr;
architecture factorl of factr is
begin
process (N)
variable y, i : natural;
begin
 y := 1;

130 • HDL WITH DIGITAL DESIGN

 i := 0;
 while (i < N) loop
 i := i + 1;
 y := y  i;
 end loop;
 z <= y;
end process;
end factorl;

Verilog Description
module factr (N, z);
input [5:0] N;
output [15:0] z;
reg [15:0] z;
/ Since z is an output, and it will appear inside
“always,” then Z has to be declared “reg” /

integer i;
always @ (N)
begin
 z = 16’d1;
 i = 0;
 while (i < N)
 begin
 i = i + 1;
 z = i  z;
 end
end
endmodule

CASE STUDY 3.1 BOOTH ALGORITHM

The Booth algorithm is used to multiply two signed numbers. The
signed numbers are in twos-complement format. The function of the al-
gorithm is to determine the beginning and end of a string of 1s in the mul-
tiplier and perform multiplicand addition-accumulation at the end of the
string or perform subtraction-accumulation at the beginning of the string.
A string consists of one or more consecutive 1s. For example, 01110 has one
string, 1011 has two strings (1 and 11). Any signed number can be written

BEHAVIORAL DESCRIPTION • 131

in terms of its bit order at the beginning and end of the string. For example,
the number 0111011 has the following bit order:

Bit order 6 5 4 3 2 1 0

 0 1 1 1 0 1 1

The number above has two strings. One string has two 1s, begins at
bit 0, and ends at bit 1. The other string has three 1s, begins at bit 3, and
ends at bit 5. The value of any binary number is equal to (2end1+1  2begin1)
+ (2end2+1  2begin2)+ ….., where begin1 and begin2 are the bit orders of
the beginning of string1 and string2, respectively, and end1 and end2 are
the bit orders of the end of string1 and string2, respectively. So, 0111011 =
(22  20) +(26  23) = 3 + 56 = 59. For the multiplication Z = multiplier (X)
× multiplicand (Y), we can write:

 Z = {(2end1+1  2begin1) + (2end2+1  2begin2)+...}Y

 Y = {(2end1+1Y  2begin1Y) + (2end2+1Y  2begin2Y)+...} (3.1)

Multiplication of
Y by positive power(s)
of 2 is a shift left of
Y. For example, Y ×
23 is a three-left shift
of Y. From Equation
3.1, it can be seen that
the calculation of the
product Z consists of
addition at the end of
the string, subtraction
at the beginning of the
string, and a number
of shifts equal to the
number of the bits of
the multiplicand or
the multiplier; here we
assume multiplier and
multiplicand have the
same number of bits).
To guarantee no over-
flow, Z is selected to

Read
X(n), Y(n)

Initialize
E = 0, Z = 0, I = 0

Z = Z + Y
01 10

00 or 11

Arithm shift right
of Z

E = X(i)

I = i + 1

I = n?

Z = Z +(- Y)

Product = Z

E X(i)

FIGURE 3.19 Flowchart of the Booth multiplication algorithm.

132 • HDL WITH DIGITAL DESIGN

be double the width of X or Y. For example, if X is four bits, then Z is eight
bits. The beginning of a string is the transition from 0 to 1, while the end is
the transition from 1 to 0. To detect the transition, the one-bit register (E)
is used to hold 0 initially. By comparing E with the bits of X, the beginning
and end of the string can be detected. The flowchart of the algorithm is
shown in Figure 3.19.

To illustrate the algorithm, consider multiplication of two four-bit num-
bers: –5 (1011) multiplied by 7 (0111). To avoid any possibility of overflow
in the product, we assign eight bits to the product. The steps of the Booth
algorithm are shown in Table 3.6.

TABLE 3.6 Example of the Booth Algorithm

X = 1011, Y = 0111, –Y = 1001

Step X(i)E Action E Z
Initial 0 00000000
1, i = 0 10 subtract Y 1001

10010000
arithm. shift Z, E = x(i) 1 11001000

2, i = 1 11 arithm. shift Z, E = x(i) 1 11100100
3, i = 2 01 add Y 0111

01010100
arithm shift Z, E = x(i) 0 00101010

4, i = 3 10 subtract Y 1001
last step 10111010

arithm shift Z, E = x(i) 1 11011101

The answer is Z = 11011101 = –35. Note that Z – Y = Z + (–Y), so sub-
traction of Y from Z is an addition of the twos-complement of Y to Z.

The HDL code for a 4x4-bit Booth algorithm is shown in Listing 3.17.
The multiplier (X) and the multiplicand (Y) have to be declared as signed
numbers. To do this declaration, the predefined word signed is used. In
VHDL, be sure that the appropriate libraries are attached to the code. The
statement sum (7 downto 4) represents four bits of sum starting from bit
order seven and ending at bit order four. For example, if sum is the eight-bit
number 11001010, then sum (7 downto 4) is 1100.

The statement Y := -Y in VHDL (Y = -Y in Verilog) changes Y to its
twos complement. If Y = 1101, then –Y = 0011. The statement sum := sum

BEHAVIORAL DESCRIPTION • 133

srl in VHDL (Z = Z >> 1 in Verilog) is the logical shift right of sum(Z)
one position. For example, if sum or Z = 11010100, then after right shift,
sum(Z) = 01101010. In Listing 3.17, sum and Z are signed numbers; this
means that the most significant bit is the sign bit. If this bit is 0, the number
is positive, and if it is 1, the number is negative. Notice that after the logical
shift, the sign may change, as in our example where sum(Z) changes from
11010100 (a negative number) to 01101010 (a positive number) after a one-
position right shift. Another type of shift is arithmetic, where the sign is
preserved. An arithmetic right shift of 11010100 yields 11101010. The shift
in the Booth algorithm is arithmetic; the following two statements perform
arithmetic shift:
VHDL Verilog
sum := sum srl 1; Z = Z >>> 1;
sum (7):= sum(6);

The first statement performs logical shift, and the second performs sign
preservation. VHDL code has a predefined arithmetic shift operator, sra;.
For example, sum := sum sra 2 executes a right shift of two positions and
preserves the sign. To use this shift, be sure that the appropriate libraries
and simulator are used. The simulation waveform of the Booth algorithm is
shown in Figure 3.20.

LISTING 3.17 4x4-Bit Booth Algorithm: VHDL and Verilog

VHDL Description
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity booth is
 port (X, Y : in signed (3 downto 0);
 Z : buffer signed (7 downto 0));
end booth;
architecture booth_4 of booth is
begin

X 0111 1100 1011

Y 0101 0111 0011

Z 00100011 11100100 11110001

FIGURE 3.20 Simulation waveform of a Booth multiplication algorithm.

134 • HDL WITH DIGITAL DESIGN

process (X, Y)
variable temp : signed (1 downto 0);
variable sum : signed (7 downto 0);
variable E1 : unsigned (0 downto 0);
variable Y1 : signed (3 downto 0);
begin
sum := “00000000”; E1 := “0”;
for i in 0 to 3 loop
temp := X(i) & E1(0);
Y1 := - Y;
case temp is
 when “10” => sum (7 downto 4) :=
 sum (7 downto 4) + Y1;
 when “01” => sum (7 downto 4) :=
 sum (7 downto 4) + Y;
 when others => null;
end case;
sum := sum srl 1; --This is a logical
--shift of one position to the right
sum (7) := sum(6);

--The above two statements perform arithmetic
--shift where the sign of the
--number is preserved after the shift.

E1(0) := x(i);
end loop;
 if (y = “1000”) then

--If Y = 1000; then according to our code,
--Y1 = 1000 (-8 not 8 because Y1 is 4 bits only).
--The statement sum = -sum adjusts the answer.

 sum := - sum;
 end if;
z <= sum;
end process;
end booth_4;

Verilog Description
module booth (X, Y, Z);
input signed [3:0] X, Y;

BEHAVIORAL DESCRIPTION • 135

output signed [7:0] Z;
reg signed [7:0] Z;
reg [1:0] temp;
integer i;
reg E1;
reg [3:0] Y1;
always @ (X, Y)
begin
Z = 8’d0;
E1 = 1’d0;
for (i = 0; i < 4; i = i + 1)
begin
temp = {X[i], E1};

//The above statement is catenation

Y1 = - Y;

//Y1 is the 2’ complement of Y

case (temp)
2’d2 : Z [7 : 4] = Z [7 : 4] + Y1;
2’d1 : Z [7 : 4] = Z [7 : 4] + Y;
default : begin end
endcase
Z = Z >>> 1;
/The above statement is arithmetic shift of one position to
the right/

E1 = X[i];
 end
if (Y == 4’d8)

/If Y = 1000; then according to our code,
Y1 = 1000 (-8 not 8, because Y1 is 4 bits only).
The statement sum = - sum adjusts the answer./
 begin
 Z = - Z;
 end
 end
endmodule

136 • HDL WITH DIGITAL DESIGN

CASE STUDY 3.2 BEHAVIORAL DESCRIPTION OF A SIMPLIFIED RENAL
ANTIDIURETIC HORMONE MECHANISM

In this case study, the action
of antidiuretic hormone (ADH)
on water excreted by the kidney
is discussed. One function of the
kidney is to regulate the amount
of water excreted by the body as
urine. Human blood is 70% wa-
ter by volume. Regulation of the
water volume is directly related
to blood pressure regulation. An
excessive amount of water in the
body raises blood pressure, and
if the body excretes more water
than it needs to maintain proper
functions, blood pressure will
drop. Kidney failure has a direct
effect on blood pressure. The
main functional unit in the kid-
ney is the nephron. Figure 3.21
illustrates a schematic of nephron
functions.

Nephrons are tiny tubules through which blood flows. In nephrons,
some components in the blood, such as sodium and potassium, are reab-
sorbed by the body, and other components, such as urea, are excreted be-
cause they are toxic to the body. Any extra water that the body does not
need is also excreted as urine. Several hormones control the amount of
water excreted. One of those hormones is ADH. The function of ADH is
summarized as follows:

 The biological action of ADH is to conserve body water and regulate
tonicity of body fluids.

 ADH is released by the hypothalamic cells in the brain.
 Water deprivation (and subsequent low blood pressure) stimulates

ADH release. Conversely, excess water (and subsequent high blood
pressure) decreases ADH release.

Cortex

Outer
medulla

Inner
medulla

ADH U
r
i
n
e

B
l
o
o
d

Distal tubule

FIGURE 3.21 Nephron function in the human body.

BEHAVIORAL DESCRIPTION • 137

 The major target of ADH is the renal cells, specifically, the collecting
ducts of the nephrons.

 ADH causes the kidney to reabsorb (conserve) water. Absence of ADH
causes the kidney to excrete water as urine.

 Alcohol and caffeine inhibit ADH release and promote more urine.

Figure 3.22 describes a simplified possible representation of the re-
lationship between the concentration of ADH and blood pressure (BP).
Assume that the relationship is linear, and BP takes only positive integer
values.

The HDL code is shown in Listing 3.18. It is assumed that the body
samples its blood pressure at intervals; each interval is represented in the
code by the period of the clock. The major sequential statement in the code
is Else-IF. For simplification, the blood pressure and ADH are allowed to
take only integer-positive values. In VHDL, this means that BP and ADH
are declared as natural, allowing the application of the equation ADH = BP
 (-4) + 180.0. If BP and ADH are declared as std_logic_vectors,

A
D

H

Blood pressure BP

A
D

H
 = –4 B

P + 180

100

80

60

40

20

10 20 30 40 50 60 70 80 90

FIGURE 3.22 Concentration of ADH versus blood pressure (units are arbitrary).

138 • HDL WITH DIGITAL DESIGN

VHDL cannot directly multiply or add. In contrast, Verilog allows for di-
rect addition and multiplication if BP and ADH are declared as bit vectors.
Figure 3.23 shows the simulation waveform of an ADH-BP relationship.

LISTING 3.18 Antidiuretic Hormone Mechanism: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity ADH_BEH is
 port (clk : in std_logic; BP : in natural;
ADH : out natural);
-- Assume BP takes only positive integer values
end;
architecture ADH_XT of ADH_BEH is
begin
ADHP : process (clk)
variable resADH : natural := 0;
begin
if (clk = ‘1’) then
if Bp <= 20 then resADH := 100;
elsif Bp > 45 then resADH := 0;
else
 resADH := Bp  (-4) + 180;
end if;
end if;
ADH <= resADH;
end process ADHP;
end ADH_XT;

Verilog Description
module ADH_BEH (clk, BP, ADH);
input clk;
input [8:0] BP;
// Assume BP takes only positive integer values
output [8:0] ADH;
reg [8:0] ADH;
always @ (clk)
begin
if (clk == 1)

BEHAVIORAL DESCRIPTION • 139

begin
 if (BP <= 20) ADH = 100;
 else if (BP > 45.0) ADH = 0;
 else
 ADH = BP  (-4) + 180.0;
end
end
endmodule

clk

BP 30 7 20 40 45

ADH 60 100 100 20 0
FIGURE 3.23 Simulation waveform of ADH versus blood pressure.

3.5 Common Programming Errors

This section discusses some common programming errors. Additional
common errors are discussed in Chapter 2.

3.5.1 Common VHDL Programming Errors
The following is a brief discussion of some common syntax and se-

mantic errors in writing VHDL programs. Table 3.7 considers Listing 3.16
(VHDL) and some possible errors if the code is modified.

TABLE 3.7 Possible Errors in Modified VHDL Listing 3.13

Modified Code Error
process (Z) Sensitivity list cannot include output ports
process (N)
begin
variable y, i : natural;
port (N : in integer; z :
out natural);

Variable declaration should be before begin
The syntax is correct, but if N is forced to a
negative value, the loop will not
terminate, causing the program to hang up

y <= y  i; y has been declared as variable; the variable-
assignment operator := should be used instead
of the signal-assignment operator <=

(contd.)

140 • HDL WITH DIGITAL DESIGN

Modified Code Error
Z := y  i; Z has been declared as signal; the variable-

assignment operator := cannot be used
while (i < N) loop
i := i + 1;
y := y  i;
end;

end; should be written as
end loop;

3.5.2 Common Verilog Programming Errors
Here, some common Verilog syntax and semantic errors are briefly dis-

cussed. One of the most common errors for beginners is not adhering to
Verilog’s case-sensitive nature. Table 3.8 considers Listing 3.16 (Verilog)
and discusses some possible errors if the code is modified.

TABLE 3.8 Possible Errors in Modified Verilog Listing 3.16

Modified Code Error
module factr (N, z);
input [15:0] N;
output [15:0] z;
integer i;
 always @(N)

Because z is an output, it has to be
declared as reg

always @ (N) To end always, write only end.
Begin
z = 1;
.........
end always;

without semicolon

while (i <= N) There is no syntax error, but the result of the
program are not correct: try N = 2 and find z

3.6 Summary

In this chapter, the basics of behavioral description have been covered,
including the statements process (VHDL) and always (Verilog). Some se-
quential statements have also been discussed such as IF, wait, case,
and Loop. These sequential statements have to appear inside process in
VHDL or inside always or initial in Verilog. In VHDL, all signal-assign-
ment statements inside process are executed sequentially. Here, sequen-
tially means calculating the values of the left-hand side of the statements
in the order in which they are written. After calculation, the values are as-
signed taking into consideration any delay times. In Verilog, all statements

BEHAVIORAL DESCRIPTION • 141

inside always are executed concurrently, based on events. Execution of
variable-assignment statements inside process in VHDL, in contrast to
signal-assignment statements, does not involve any timing delays; execution
here is the same as in C language. Table 3.9 shows a list of the VHDL state-
ments covered in this chapter along with their Verilog counterparts (if any).

TABLE 3.9 Summary of VHDL Behavioral Statements and Their Verilog Counterparts

VHDL Verilog
process always

variable ------

------- reg

if;else;endif if;else;begin end

if;elsif;else;endif if;else if;else;begin end

case endcase case begin end

for loop for

while loop while

next, exit -----

------- repeat, forever

MOD %

signed signed

srl 1 >> 1

integer integer

wait for 10 ns #10

3.7 Exercises

1. Add asynchronous clear signal to the JK flip-flop discussed in Example
3.8. Write both VHDL and Verilog to describe the flip-flop and simulate
the code.

2. Write VHDL and Verilog code for a T flip-flop and simulate.

3. Modify Listing 3.15 to include rotate and arithmetic shift.

4. In Example 3.8, a JK flip-flop was described by using a case statement
on JK. Change the code to describe the flip-flop by using case on Q.
Simulate and verify your description.

5. Use binary-to-integer conversion to describe a four-bit even counter
with active low clear and synchronous load (load from external P to Q).
Use Verilog, simulate, and verify.

142 • HDL WITH DIGITAL DESIGN

6. Using the Booth algorithm (see Case Study 3.1), modify the code to
satisfy all the following requirements:

• The multiplier and the multiplicand are five bits each.

• If the multiplier or the multiplicand is 0, the product should be 0
without going through the multiplication steps.

• If the multiplier or the multiplicand is 1 (decimal), the product
should be equal to the multiplicand or the multiplier, respectively,
without going through the multiplication steps.

7. In Case Study 3.2, it was assumed that the relationship between ADH
and BP is linear: Bp  (-4) + 180 (VHDL). Change this relationship
to be exponential: ADH = a exp (b  BP). The value of ADH is 100 for
BP  20 and stays at 10 for BP  45. Write the VHDL code using the
case statement to describe this relationship. You can approximate the
values of ADH to be integers but be as accurate as possible.

8. Design an arithmetic and logical unit (ALU) that performs addition,
subtraction, multiplication, and integer division. The input to the ALU
is two signals, A and B, of integer type. The output is signal Z of integer
type. The ALU performs the operations according to a signal called op_
code. This op_code is of character type, and Table 3.10 shows the value
of the op_code (in character) and the selected operation.

TABLE 3.10 op_code and the selected operation

op_code Operation
add Add A to B and store the result in Z
sub Subtract B from A and store the result in Z
multply Multiply A x B and store the result in Z
dvdInt Divide A by B and store the result in Z

C H A P T E R

STRUCTURAL DESCRIPTION

4
Chapter Objectives

 Understand the concept of structural description, including the
binding of modules

 Identify the basic statements of structural description, such as com-
ponent, use, and, or, not, xor, nor, generate, generic, and
parameter

 Review and understand the fundamentals of digital logic design
for digital systems, such as adders, multiplexers, decoders, com-
parators, encoders, latches, flip-flops, counters, shift registers, and
memory cells

 Understand the concept of sequential finite-state machines

4.1 Highlights of Structural Description

Structural description is best implemented when the digital logic of
the details of hardware components of the system are known. An example
of such a system is a 2x1 multiplexer. The components of the system are
known: AND, OR, and NOT gates. Structural description can easily de-
scribe these components. On the other hand, it is hard (if not impossible)
to describe the digital logic of, say, hormone secretion in the blood; there-
fore, another description such as behavioral or mixed may be implemented.
Structural description is very close to schematic simulation.

144 • HDL WITH DIGITAL DESIGN

In this chapter, structural description is covered. Both gate-level and
register-level description are discussed for VHDL and Verilog. Highlights
of the structural description can be summerized in the following facts.

Facts

 Structural description simulates the system by describing its logical
components. The components can be gate level (such as AND gates,
OR gates, or NOT gates), or components can be in a higher logical level,
such as register-transfer level (RTL) or processor level.

 It is more convenient to use structural description than behavioral
description for systems that require specific design constraints. Con-
sider, for example, a system performing the operation A + B = C. In
behavioral description, the addition can be written as C = A + B with no
choice in selecting the type of adders used to perform this addition. In
structural description, the type of adder, such as look-ahead adders, can
be selected.

 All statements in structural description are concurrent. At any simula-
tion time, all statements that have an event are executed concurrently.

 A major difference between VHDL and Verilog structural description
is the availability of components (especially primitive gates) to the user.
Verilog recognizes all the primitive gates such as AND, OR, XOR, NOT,
and XNOR gates. Basic VHDL packages do not recognize any gates un-
less the package is linked to one or more libraries, packages, or modules
that have the gate description. Usually, the user develops these links, as
will be done in this chapter.

 Although structural description is implemented in this chapter to simu-
late digital systems, this does not mean that only one type of description
(structural) can be used in a module. In fact, in most descriptions of
complex systems, mixed-type descriptions (e.g., data flow, behavioral,
structural, or switch-level) are used in the same module (see Chapter 7).

4.2 Organization of Structural Description

Listing 4.1 shows an example of HDL code that describes a half adder
under the name of system using structural description. The entity (VHDL)
or module (Verilog) name is system; there are two inputs, a and b, and two

STRUCTURAL DESCRIPTION • 145

outputs, sum and cout. The entity or module declaration is the same as in
other description styles previously covered (data flow and behavioral).

In the VHDL description, the structural code (inside the architecture)
has two parts: declaration and instantiation. In declaration, all of the differ-
ent types of components are declared. For example, the statements

component xor2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;

declare a generic component by the name of xor2; the component has
two inputs (I1, I2) and one output (O1). The name (identifier) xor2 is
not a reserved or predefined word in VHDL; it is a user-selected name. To
specify the type of the component (e.g., AND, OR, XOR, etc.), additional
information should be given to the simulator (see Listing 4.2). If the system
has two or more identical components, only one declaration is needed. The
instantiation part of the code maps the generic inputs/outputs to the actual
inputs/outputs of the system. For example, the statement

X1 : xor2 port map (a, b, sum);

maps input a to input I1 of xor2, input b to input I2 of xor2, and output
sum to output O1 of xor2. This mapping means that the logic relationship
between a, b, and sum is the same as between I1, I2, and O1. If xor2
is specified through additional statements to be a XOR gate, for example,
then sum = a xor b. A particular order of mapping can be specified as:

X1 : xor2 port map (O1 => S, I1 => b , I2 => a);

S is mapped to O1, b is mapped to I1, and a is mapped to I2. Note that the
mapping of S is written before writing the mapping of the inputs; we could
have used any other order of mapping. As previously mentioned, structural-
description statements are concurrent and are driven by events. This means
that their execution depends on events, not on the order in which the state-
ments are placed in the module. So, placing statement A1 before statement
X1 in Listing 4.1 does not change the outcome of the VHDL program.

Verilog has a large number of built-in gates. For example, the statement:

xor X1 (sum, a, b);

describes a two-input XOR gate. The inputs are a and b, and the output is
sum. X1 is an optional identifier for the gate; the identifier can be omitted as:

xor (sum, a, b);

146 • HDL WITH DIGITAL DESIGN

Verilog has a complete list of built-in primitive gates. The output of
the gate sum has to be listed before the inputs a and b. Accordingly, the
Verilog code in Listing 4.1 is a complete structural description of a half
adder. Figure 4.1 shows a list of gates and their code in Verilog. As in struc-
tural VHDL, Verilog statements are concurrent; the order of appearance of
statements in the module is irrelevant.

buf not

and nand

or nor

xor xnor
FIGURE 4.1 Verilog built-in gates.

LISTING 4.1 HDL Structural Description

VHDL Description
--This code is not complete; binding statements should
--be aaded to recognize components
-- xor2 and and2 as 2-input
-- xor and and gate respectively.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity system is
port (a, b : in std_logic;
 sum, cout : out std_logic);
 end system;
 architecture struct_exple of system is
 --start declaring all different types of components
 component xor2
 port (I1, I2 : in std_logic;
 O1 : out std_logic);

STRUCTURAL DESCRIPTION • 147

 end component;
 component and2
 port (I1, I2 : in std_logic;
 O1 : out std_logic);
 end component;
 begin
 --Start of instantiation statements
 X1 : xor2 port map (a, b, sum);
 A1 : and2 port map (a, b, cout);
 end struct_exple;

Verilog Description
module system (a, b, sum, cout);
input a, b;
output sum, cout;
xor X1 (sum, a, b);
/ X1 is an optional identifier; it can be omitted./
and a1 (cout, a, b);
/ a1 is optional identifier; it can be omitted./
endmodule

EXAMPLE 4.1 HDL STRUCTURAL DESCRIPTION OF A HALF ADDER

The logic and symbol diagrams of the half adder have been shown be-
fore (see Figure 1.1). Listing 4.2 shows the HDL structural code for the
half adder. As mentioned before, VHDL does not have built-in gates. To
specify xor2 as an EXCLUSIVE-OR gate, bind (link) the component xor2
with an entity bearing the same name. By having the same name, all in-
formation in the entity is visible to the component. The entity specifies the
relationship between I1, I2, and O1 as EXCLUSIVE-OR; accordingly, the
inputs and output of xor2 behave as EXCLUSIVE-OR. The same is done
for component and2; it is bound to the entity and2.

LISTING 4.2 HDL Code of Half Adder: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity xor2 is
port(I1, I2 : in std_logic; O1 : out std_logic);
end xor2;
architecture Xor2_0 of xor2 is

148 • HDL WITH DIGITAL DESIGN

begin
 O1 <= I1 xor I2;
end Xor2_0;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity and2 is
 port (I1, I2 : in std_logic; O1 : out std_logic);
end and2;
architecture and2_0 of and2 is
begin
 O1 <= I1 and I2;
end and2_0;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity half_add is
 port (a, b : in std_logic; S, C : out std_logic);
end half_add;

architecture HA_str of half_add is
component xor2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
component and2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
begin
 X1 : xor2 port map (a, b, S);
 A1 : and2 port map (a, b, C);
end HA_str;

Verilog Description
Module system (a, b, sum, cout);
input a, b;
output sum, cout;
xor X1 (sum, a, b);
/ X1 is an optional identifier; it can be omitted./
and a1 (cout, a, b);
/ a1 is optional identifier; it can be omitted./
endmodule

STRUCTURAL DESCRIPTION • 149

The VHDL code looks much longer than the Verilog code. This is due
to the assumption that the basic VHDL packages do not have built-in li-
braries or packages for logical gates. The binding method above becomes
impractical when the number of gates becomes large. Every time a new
description is written, the entities of all gates used must also be written. In
the following sections, more efficient ways of binding are discussed.

4.3 Binding

Binding in HDL is common practice. Binding (linking) segment1 in
HDL code to segment2 makes all information in segment2 visible to seg-
ment1. Consider the VHDL code in Listing 4.3.

LISTING 4.3 Binding Between Entity and Architecture in VHDL

entity one is
port (I1, I2 : in std_logic; O1 : out std_logic);
end one;
architecture A of one is
signal s : std_logic;
..........
end A;
architecture B of one is
signal x : std_logic;
.......
end B;

Architecture A is bound to entity one through the predefined word of.
Also, architecture B is bound to entity one through the predefined word
of. Accordingly, I1, I2, and O1 can be used in both architecture A and
architecture B. Architecture A is not bound to architecture B, so signal s
is not recognized in architecture B. Likewise, signal x is not recognized in
architecture A.

Now consider Listing 4.4, where an entity is bound to a component.

LISTING 4.4 Binding Between Entity and Component in VHDL

entity orgate is
 port (I1, I2 : in std_logic; O1 : out std_logic);
end orgate;

architecture Or_dataflow of orgate is

150 • HDL WITH DIGITAL DESIGN

begin
 O1 <= I1 or I2;
end Or_dataflow;

entity system is
 port (x, y, z : in std_logic;
 out r : std_logic_vector (3 downto 0);
end system;

architecture system_str of system is
component orgate
port (I1, I2 : in std_logic; O1 : std_logic);
end component;
begin
orgate port map (x, y, r(0));
.......
end system_str;

The component orgate is bound to the entity orgate because it has
the same name. Architecture Or_datafl ow is bound to entity orgate by the
word of. All information in the entity is now visible to the component.
Accordingly, the relationship between I1, I2, and O1 defined in the archi-
tecture or_datafl ow is visible to the component orgate; hence, the compo-
nent orgate is an OR gate.

Now consider another way of VHDL binding where a library or a pack-
age is bound to a module. Listing 4.5 shows how a library can be bound to
a module.

LISTING 4.5 Binding Between Library and Module in VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity system is
port (I1, I2 : in std_logic;
O1 : out std_logic_vector (3 downto 0));

end system;
architecture lib_bound of system is
signal s : std_logic;
.............
end lib_bound;

STRUCTURAL DESCRIPTION • 151

IEEE is the name of the library, library and use are a predefined words,
and IEEE.STD_LOGIC_1164.ALL refers to the part of the library to be linked.
Library IEEE provides the definition for the standard_logic type. By
entering the name of the library and the statement use, all information in
the library is visible to the whole module. If the first two statements are
not written in Listing 4.5, the standard_logic type cannot be recognized.
Libraries can also be generated by the user. The HDL simulator generates
a library named work every time it compiles HDL code. This library can be
bound to another module by using the statement use, as follows:

use entity work.gates (or_gates);

The entity to be bound to the module is gates; gates has an architec-
ture by the name of or_gates, and all information in this architecture is
visible to the module wherever the use statement is written. Listing 4.6
shows an example of binding architecture in one module to a component
written in another module.

LISTING 4.6 Binding Between a Library and Component in VHDL

--First, write the code that will be bound to another
-- module
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bind2 is
 port (I1, I2 : in std_logic; O1 : out std_logic);
end bind2;

architecture xor2_0 of bind2 is
begin
O1 <= I1 xor I2;
end xor2_0;

architecture and2_0 of bind2 is
begin
 O1 <= I1 and I2;
end and2_0;

architecture and2_4 of bind2 is
begin
 O1 <= I1 and I2 after 4 ns;
end and2_4;

152 • HDL WITH DIGITAL DESIGN

--After writing the above code; compile it and store it
-- in a known location. Now, open another module
--where the above information is to be used.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity half_add is
port (a, b : in std_logic; S, C : out std_logic);
end half_add;
architecture HA_str of half_add is
component xor2
 port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
component and2
 port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
for all : xor2 use entity work.bind2 (xor2_0);
for all : and2 use entity work.bind2 (and2_4);
begin
X1 : xor2 port map (a, b, S);
A1 : and2 port map (a, b, C);
end HA_str;

The statement for all : xor2 use entity work.bind2 (xor2_0) binds
the architecture xor2_0 of the entity bind2 to the component xor2. By this
binding, component xor2 behaves as a two-input XOR gate with zero propaga-
tion delay. The statement for all : and2 use entity work.bind2 (and2_4)
binds the architecture and2_4 of the entity bind2 to the component and2. By
this binding, component and2 behaves as a two-input AND gate with a 4-ns
propagation delay. In Listing 4.6, it is assumed that both entities bind2 and
half_add have the same path (stored in the same directory). Otherwise, the
path of the library work has to be specified.

Throughout this chapter, the binding shown in Listing 4.6 is adopted. The
codes for all the gates expected are written, and the module is compiled and
stored. Whenever we want to use any component from the stored module, we
bind it to the current module. Listing 4.31 shows the VHDL binding code used
in all examples in this chapter. As previously mentioned, Verilog has all primi-
tive gates built in and ready to use. Verilog modules can be bound by just writ-
ing the name of the module to be bound. Listing 4.7 shows such binding.

STRUCTURAL DESCRIPTION • 153

LISTING 4.7 Binding Between Two Modules in Verilog

module one (O1, O2, a, b);
input [1:0] a;
input [1:0] b;
output [1:0] O1, O2;
two M0 (O1[0], O2[0], a[0], b[0]);
two M1 (O1[1], O2[1], a[1], b[1]);
endmodule

module two (s1, s2, a1, b1);
input a1;
input b1;
output s1, s2;
xor (s1, a1, b1);
and (s2, a1, b1);
endmodule

The statement: two M0 (O1[0], O2[0], a[0], b[0]); written in
module one binds module two to module one. Accordingly, the relation-
ship between O1, O2, a, and b is as follows:

O1[0] is the output of a two-input XOR gate with a[0] and b[0] as the
inputs

O2[1] is the output of a two-input AND gate with a[1] and b[1] as the
inputs

Other methods of binding are discussed in Chapters 6 and 8. The fol-
lowing examples cover binding and structural descriptions.

EXAMPLE 4.2 STRUCTURAL DESCRIPTION OF A 2x1 MULTIPLEXER
WITH ACTIVE LOW ENABLE

The truth table and logic diagram of this multiplexer have been cov-
ered in Chapter 2. The logic diagram is redrawn here for convenience (see
Figure 4.2).

From Figure 4.2, the components of the multiplexer are: two three-
input AND gates, three inverters, and one two-input OR gate. Each gate,
including the inverter, is assumed to have a 7-ns propagation delay time.

For VHDL, the binding method shown in Listing 4.6 is used. The code
to describe these gates is written, compiled, and then stored. Some other

154 • HDL WITH DIGITAL DESIGN

gates are included here that might be used for other examples. Listing 4.8
shows the code for several gates.

LISTING 4.8 VHDL Code for Several Gates

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity bind1 is
 port (I1 : in std_logic; O1 : out std_logic);
end bind1;
architecture inv_0 of bind1 is
begin
O1 <= not I1; --This is an inverter with zero delay
end inv_0;

architecture inv_7 of bind1 is
begin
O1 <= not I1 after 7 ns; --This is an inverter with a
 -- 7-ns delay
end inv_7;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

A

B

SEL

Gbar

Y2x1
Mux



S4

S5

Y

S3S2

S1

A

B

SEL

Gbar

FIGURE 4.2 Multiplexer. a) Logic diagram. b) Logic symbol.

STRUCTURAL DESCRIPTION • 155

entity bind2 is
 port (I1, I2 : in std_logic; O1 : out std_logic);
end bind2;

architecture xor2_0 of bind2 is
begin
O1 <= I1 xor I2; --This is exclusive-or with zero
 -- delay.
end xor2_0;

architecture and2_0 of bind2 is
begin
O1 <= I1 and I2; --This is a two input and gate with
 -- zero delay.
end and2_0;

architecture and2_7 of bind2 is
begin
O1 <= I1 and I2 after 7 ns; -- This is a two input and
 -- gate with 7-ns delay.
end and2_7;

architecture or2_0 of bind2 is
begin
O1 <= I1 or I2; -- This is a two input or gate with
 -- zero delay.
end or2_0;

architecture or2_7 of bind2 is
begin
O1 <= I1 or I2 after 7 ns; -- This is a two input or
 -- gate with 7-ns delay.
end or2_7;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity bind3 is
port (I1, I2, I3 : in std_logic; O1 : out std_logic);
end bind3;

architecture and3_0 of bind3 is
begin

156 • HDL WITH DIGITAL DESIGN

O1 <= I1 and I2 and I3; -- This is a three input and
 -- gate with zero delay.
end and3_0;

architecture and3_7 of bind3 is
begin
O1 <= I1 and I2 and I3 after 7 ns; --This is a three
 -- input and gate with 7-ns delay.
 --
end and3_7;

architecture or3_0 of bind3 is
begin
O1 <= I1 or I2 or I3; --This is a three input OR gate
 --with zero delay.
end or3_0;

architecture or3_7 of bind3 is
begin
O1 <= I1 or I2 or I3 after 7 ns; --This is a three
 --input or gate with 7-ns delay.
end or3_7;

After compilation of the above code, it is stored in a known directory
(path). Listing 4.9 shows the HDL code for a 2x1 multiplexer with active
low enable. The Verilog description is straightforward using the predefined
gates.

LISTING 4.9 HDL Description of a 2x1 Multiplexer with Active Low Enable:
VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity mux2x1 is
 port (A, B, SEL, Gbar : in std_logic;
 Y : out std_logic);
end mux2x1;

architecture mux_str of mux2x1 is
--Start components Declaration
component and3
port (I1, I2, I3 : in std_logic; O1 : out std_logic);
end component;

STRUCTURAL DESCRIPTION • 157

--Only different types of components need be declared.
--Since the multiplexer has two identical AND gates,
--only one is declared.

component or2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
component Inv
port (I1 : in std_logic; O1 : out std_logic);
end component;

signal S1, S2, S3, S4, S5 : std_logic;
for all : and3 use entity work.bind3 (and3_7);
for all : Inv use entity work.bind1 (inv_7);
for Or1 : or2 use entity work.bind2 (or2_7);
begin
--Start instantiation
A1 : and3 port map (A,S2, S1, S4);
A2 : and3 port map (B,S3, S1, S5);
IV1 : Inv port map (SEL, S2);
IV2 : Inv port map (Gbar, S1);
IV3 : Inv port map (S2, S3);
or1 : or2 port map (S4, S5, Y);
end mux_str;

Verilog Description
module mux2x1 (A, B, SEL, Gbar, Y);
input A, B, SEL, Gbar;
output Y;
and #7 (S4, A, S2, S1);
or #7 (Y, S4, S5);
and #7 (S5, B, S3, S1);
not #7 (S2, SEL);
not #7 (S3, S2);
not #7 (S1, Gbar);
endmodule

Referring to Listing 4.9, because the multiplexer has two identical
AND gates (both three-input AND gates), only one of them is declared in
the VHDL description by the statements:

component and3

158 • HDL WITH DIGITAL DESIGN

port (I1, I2, I3 : in std_logic; O1 : out std_logic);
end component;

Similarly, only one inverter is declared. If the two AND gates do not
have the same delay time (say, A1 has 0 ns and A2 has 7 ns) then instead of
all in the use statement, write:

for A1 : and3 use entity work.bind3 (and3_0);
for A2 : and3 use entity work.bind3 (and3_7);

For the Verilog description, the statement

and #7 (S4, A, S2, S1);

declares a three-input (A, s2, s1) AND gate with propagation delay
of seven simulation screen units. Note that s2 or s1 do not need to be de-
clared as wire; Verilog assumes that they are of the same type as A. If a
four-input AND gate is needed, the code will be:

and (o1, in1, in2, in3, in4)

where O1 is the output, and in1, in2, in3, and in4 are the inputs. The
gate in Verilog can have an optional name as:

or #7 orgate1 (O1, in1, in2)

The statement above describes an OR gate by the name orgate1; it has
two inputs (in1, in2) and an output (O1). The name is optional and can
be omitted. The simulation waveform of the multiplexer is identical to that
of Figure 2.10.

EXAMPLE 4.3 STRUCTURAL DESCRIPTION OF A 2x4 DECODER WITH
TRI-STATE OUTPUT

A decoder is a combinational circuit. The output is a function of the
input only. A 2x4 decoder has two inputs and four outputs. For any input
only one output is active; all other outputs are inactive. For an active high
output decoder, only one output is high. The output can be deactivated or
put in high impedance if the decoder has an enable. For a tri-state output,
if the enable is inactive, then all the outputs are in high impedance. The
output of an n-bit input decoder is 2n bits. Table 4.1 shows the truth table
of 2x4 decoder.

STRUCTURAL DESCRIPTION • 159

TABLE 4.1 Truth Table for a 2x4 Decoder with Tri-State Outputs

Inputs Outputs
Enable I1 I2 D3 D2 D1 D0

0 x x Z Z Z Z
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

Tri-state buffers are used at the output. If the enable is low, then all
outputs are in high impedance (Z). From Table 4.1, we can write the Bool-
ean function of the outputs:

D0 = I0 I1

D1 = I0 I1
D2 = I0 I1
D3 = I0 I1

Figure 4.3 shows the logic diagram of the decoder.

s0

s1

s2

s3 D3

D2

D1
I0

I1

D0

Enable
FIGURE 4.3 Logic diagram of a 2x4 decoder with tri-state output.

160 • HDL WITH DIGITAL DESIGN

To write the VHDL code, we first need to write a description of the
tri-state buffer gate. The easiest description type that can be written for
the tri-state buffer is behavioral, using the if statement. This description is
attached to the entity bind2 (see Listing 4.8). Listing 4.10 shows a behav-
ioral description of a tri-state buffer. The Verilog has built-in buffers (see
Figure 4.4).

in out

bufif1

Enable

in out

notif1

Enable

in out

bufif0

Enable

in out

notif0

Enable

FIGURE 4.4 Verilog built-in buffers.

LISTING 4.10 VHDL Behavioral Description of a Tri-State Buffer

entity bind2 is
port (I1, I2 : in std_logic; O1 : out std_logic);
end bind2;
...........
--Add the following architecture to
--the entity bind2 of Listing 4.8
architecture bufif1 of bind2 is
begin
buf : process (I1, I2)
variable tem : std_logic;
begin
if (I2 =’1’) then
tem := I1;
else
tem := ‘Z’;
end if;
O1 <= tem;
end process buf;
end bufif1;

STRUCTURAL DESCRIPTION • 161

Now, write the HDL structural description of the decoder as shown
in Listing 4.11. Figure 4.5 shows the simulation waveform of the decoder.

LISTING 4.11 HDL Description of a 2x4 Decoder with Tri-State Output

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity decoder2x4 is
 port (I : in std_logic_vector(1 downto 0);
 Enable : in std_logic;
 D : out std_logic_vector (3 downto 0));
end decoder2x4;

architecture decoder of decoder2x4 is
component bufif1
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
component inv
port (I1 : in std_logic; O1 : out std_logic);
end component;
component and2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
for all : bufif1 use entity work.bind2 (bufif1);
for all : inv use entity work.bind1 (inv_0);
for all : and2 use entity work.bind2 (and2_0);
signal s0, s1, s2, s3 : std_logic;
signal Ibar : std_logic_vector (1 downto 0);
-- The above signals have to be declared before they
-- can be used
begin
 B0 : bufif1 port map (s0, Enable, D(0));
 B1 : bufif1 port map (s1, Enable, D(1));
 B2 : bufif1 port map (s2, Enable, D(2));
 B3 : bufif1 port map (s3, Enable, D(3));
 iv0 : inv port map (I(0), Ibar(0));
 iv1 : inv port map (I(1), Ibar(1));
 a0 : and2 port map (Ibar(0), Ibar(1), s0);
 a1 : and2 port map (I(0), Ibar(1), s1);
 a2 : and2 port map (Ibar(0), I(1), s2);
 a3 : and2 port map (I(0), I(1), s3);
end decoder;

162 • HDL WITH DIGITAL DESIGN

Verilog Description
module decoder2x4 (I, Enable, D);
input [1:0] I;
input Enable;
output [3:0] D;
wire [1:0] Ibar;
 bufif1 (D[0], s0, Enable);
 bufif1 (D[1], s1, Enable);
 bufif1 (D[2], s2, Enable);
 bufif1 (D[3], s3, Enable);
 not (Ibar[0], I[0]);
 not (Ibar[1], I[1]);
 and (s0, Ibar[0], Ibar[1]);
 and (s1, I[0], Ibar[1]);
 and (s2, Ibar[0], I[1]);
 and (s3, I[0], I[1]);
endmodule

Enable

I 11 10 01 00 11 10 01 00 11 10

D 1000 0100 0010 0001 1000 0100
FIGURE 4.5 Simulation waveform of a 2x1 decoder with tri-state output.

EXAMPLE 4.4 STRUCTURAL DESCRIPTION OF A FULL ADDER

In this example, a full adder (Listing 4.13) is built from two half adders
(Listing 4.12). The full adder adds (a + b + cin) to generate sum and car-
ry. A half adder is used to add (a + b) to generate sum1 and carry1. An-
other half adder is used to add (sum1 + cin) to generate sum and carry2.
The carry of the summation (a + b + cin) is the logical OR of carry1
and carry2. Figures 4.6a and 4.6b show the logical symbol and diagram of
this full adder, respectively.

For the VHDL code, write the code for half adder. Then, include this
code in Listing 4.8. Listing 4.12 shows the code of the half adder as part of
Listing 4.8. Now, write the structural description of the full adder as two
half adders. Listing 4.13 shows the HDL code for a full adder.

STRUCTURAL DESCRIPTION • 163

x

y
cin

sum

carry

(a)

carry

sum
y

cin
Half adder

Half adder

x

(b)
FIGURE 4.6 Full adder as two half adders. a) Logic symbol. b) Logic diagram.

LISTING 4.12 VHDL Description

--This code is to be appended to Listing 4.8
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bind22 is
 Port (I1, I2 : in std_logic;
 O1, O2 : out std_logic);
end bind22;

architecture HA of bind22 is
component xor2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
component and2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;

164 • HDL WITH DIGITAL DESIGN

for A1 : and2 use entity work.bind2 (and2_0);
for X1 : xor2 use entity work.bind2 (xor2_0);
begin
 X1 : xor2 port map (I1, I2, O1);
 A1 : and2 port map (I1, I2, O2);
end HA;

LISTING 4.13 HDL Description of a Full Adder (Figures 4.6a and 4.6b)

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity FULL_ADDER is
 Port (x, y, cin : in std_logic;
 sum, carry : out std_logic);
end FULL_ADDER;
architecture full_add of FULL_ADDER is
component HA
Port (I1, I2 : in std_logic; O1, O2 : out std_logic);
end component;
component or2
Port (I1, I2 : in std_logic; O1 : out std_logic);
end component;

for all : HA use entity work.bind22 (HA);
for all : or2 use entity work.bind2 (or2_0);
signal s0, c0, c1 : std_logic;

begin
 HA1 : HA port map (y, cin, s0, c0);
 HA2 : HA port map (x, s0, sum, c1);
 r1 : or2 port map (c0, c1, carry);
end full_add;

Verilog Description
module FULL_ADDER (x, y, cin, sum, carry);
input x, y, cin;
output sum, carry;
HA H1 (y, cin, s0, c0);
HA H2 (x, s0, sum, c1);
//The above two statements bind module HA
//to the present module FULL_ADDER
 or (carry, c0, c1);

STRUCTURAL DESCRIPTION • 165

endmodule
module HA (a, b, s, c);
input a, b;
output s, c;
xor (s, a, b);
and (c, a, b);
endmodule

To use the above VHDL code in future examples, it is added to entity
bind32 in Listing 4.31.

EXAMPLE 4.5 STRUCTURAL DESCRIPTION OF A THREE-BIT
RIPPLE-CARRY ADDER

In this example, a three-bit ripple-carry adder is described. Then, in
Example 4.7, this adder is implemented to build a magnitude comparator.
The logic diagram of the adder is as shown in Figure 2.23 of Chapter 2.
Listing 4.14 shows the structural description of the three-bit ripple-carry
adder.

LISTING 4.14 HDL Description of a Three-Bit Ripple-Carry Adder: VHDL
and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity three_bit_adder is
 port(x, y : in std_logic_vector (2 downto 0);
 cin : in std_logic;
 sum : out std_logic_vector (2 downto 0);
 cout : out std_logic);
end three_bit_adder;

architecture three_bitadd of three_bit_adder is
component FULL_ADDER
port (I1, I2, I3 : in std_logic;
 O1, O2 : out std_logic);
end component;
for all : FULL_ADDER
 use entity work.bind32 (full_add);
signal carry : std_logic_vector (1 downto 0);

166 • HDL WITH DIGITAL DESIGN

begin
M0 : FULL_ADDER port map (x(0), y(0), cin, sum(0), carry(0));
M1 : FULL_ADDER port map (x(1), y(1), carry(0), sum(1),
 carry(1));
M2 : FULL_ADDER port map (x(2), y(2), carry(1), sum(2), cout);
end three_bitadd;

Verilog Description
module three_bit_adder (x, y, cin, sum, cout);
input [2:0] x, y;
input cin;
output [2:0] sum;
output cout;
wire [1:0] carry;
FULL_ADDER M0 (x[0], y[0], cin, sum[0], carry[0]);
FULL_ADDER M1 (x[1], y[1], carry[0], sum[1], carry[1]);
FULL_ADDER M2 (x[2], y[2], carry[1], sum[2], cout);

/ It is assumed that the module FULL_ADDER
(Listing 4.13) is attached by the simulator to
the module three_bit_adder so, no need to
rewrite the module FULL_ADDER./

endmodule

Inspection of the code in Listing 4.14 shows that there may be lag time
between the steady state of each of the adders and the carryout (cout).
This lag time produces transient states before the values of the sum and
carryout settle. For example, if the inputs to the adder are 101 and 001, and
the previous output of the adder is 1001, some transient states can be 0100
and 1010 before the output settles at 0110. The appearance of these tran-
sient states is called hazards. These transient states, however, have short
duration and may not be noticed.

EXAMPLE 4.6 STRUCTURAL DESCRIPTION OF A THREE-BIT
TWO-STAGE CARRY-SAVE ADDER

The ripple-carry adder in Example 4.5 has a delay that is proportional
to the number of bits added. This is because each full adder has to wait for
the generation of the carry out of the preceeding full adder to start adding
its input bits to this carry out. If each full adder can add its inputs indepen-
dently from other full adders, the addition will be proportional to just a de-

STRUCTURAL DESCRIPTION • 167

lay of a single adder because all full adders would be capable of adding their
inputs simultanously. Carry-save adders utilize the concept of independent
addition; several of the full adders in the carry-save system, but not all, can
add their inputs simultanously. Figure 4.7 shows the logic diagram of a
three-bit four-word carry-save adder. The adder adds four words (a + b +
c + d) where each word is three bits. FA1, FA2, and FA3 add a + b + c and
generate sum and partial (not final) carryout at the same time. The same
is true for FA4, FA5, and FA6; however, these three adders have to wait
on the upper-stage adders (FA1, FA2, and FA3) to complete their addition
and generate their carryouts (cr0 and cr1). The adders FA7, FA8, and FA9
are connected as ripple-carry adders; each adder of this stage has to wait
for carryout from upper-stage and preceeding full adders. These riple-carry
adders can be replaced by lookahead adders to decrease the delay associ-
ated with them. If each full adder has a delay of d ns, then the first stage
takes 1d to finish its task, the second stage takes 1d to finsh its task, and
the last stage takes 3d to finsh its task. The total delay to add four three-bit
words is (1 + 1 + 3)d = 5d ns, which is faster than using ripple-carry adders.

a[2]
b[2]

FA3
+

c[2]

d[2]

sm2

summ2 summ1 summ0

sumtotal[3]

FA6
+

FA9
+

sumtotal[2]

FA8
+

sumtotal[1] sumtotal[0]

FA7
+

cr1

d[1]

sm1

FA5
+

d[0]

sm0

FA4
+

cr0cr2

crr2 crr1 crr0

crrr1 crrr0
cc

final_carryout

a[1]
b[1]

FA2
+

c[1]

a[0]
b[0]

FA1
+

c[0]

FIGURE 4.7 Two-stage carry-save adder.

168 • HDL WITH DIGITAL DESIGN

Listing 4.15 shows the Verilog code for the adder of Figure 4.7. The
Listing contains a main module carry_saveadder and another module
full_adder. The module full_adder is bound to the main module by a
statement such as:

full_adder FA1(a1[0],b1[0],c1[0], sm0,cr0);

where a, b, and c in the full_adder module is linked (replaced) by
a1[0], b1[0], and c1[0]. The result of addition sum and carryout is linked
(uploaded) to sm0 and cr0, respectively.

LISTING 4.15 Verilog Description of Carry-Save Adder (Figure 4.7)

module carry_saveadder(a1,b1,c1,d1,sum_total,final_carryout);
input[2:0] a1, b1,c1,d1;
output [3:0]sum_total;
output final_carryout;

full_adder FA1(a1[0],b1[0],c1[0], sm0,cr0);
//FA1 is a user-selected label
full_adder FA2(a1[1],b1[1],c1[1], sm1,cr1);
full_adder FA3(a1[2],b1[2],c1[2], sm2,cr2);

full_adder FA4(sm0,d1[0],1’b0, smm0,crr0);
full_adder FA5(sm1,d1[1],cr0, smm1,crr1);
full_adder FA6(sm2,d1[2],cr1, smm2,crr2);
assign sum_total[0] =smm0;

full_adder FA7(crr0,smm1,1’b0, sum_total[1],crrr0);
full_adder FA8(crr1,smm2,crrr0, sum_total[2],crrr1);
full_adder FA9(crr2,crrr1,cr2, sum_total[3],cc);
assign final_carryout = cc;

endmodule
module full_adder (a,b,c,Sum,Carryout);
input a,b,c;
output Sum, Carryout;
not (a_bar,a); // this is an inverter
not (b_bar,b);
not (c_bar,c);
and a1 (s0,a_bar,b_bar, c);/This is And gate with
 optional name a1/
and a2 (s1,a_bar,b, c_bar);
and a3 (s2,a,b_bar, c_bar);

STRUCTURAL DESCRIPTION • 169

and a4 (s3,a,b,c);
or o1(Sum, s0,s1,s2,s3);
and a5 (s5,a,b);
and a6 (s6,a,c);
and a7 (s7,b,c);
or o2(Carryout,s5,s6,s7);
endmodule

EXAMPLE 4.7 STRUCTURAL DESCRIPTION OF A THREE-BIT
MAGNITUDE COMPARATOR USING A THREE-BIT ADDER

Chapter 2 covered a 2x2-bit comparator using truth tables. If the num-
ber of bits to be compared is more than two bits, the truth tables become
so huge that is too difficult to handle. In this example, a different approach
is taken. Consider two numbers X and Y, each of n bits; if X is greater than
Y, then:

 X  Y > 0 (4.2)

–Y is the twos complement of Y = Y + 1; substituting in Equation 4.2,
the condition of X > Y is rewritten as:

 X + Y + 1 > 0 (4.3)

Or, Equation 4.3 can be rewritten as:

 X + Y > 1 (4.4)

For n bits, –1 is a string of n bits; each bit is 1. If n = 5, for example 1d=
(11111)2, so Equation 4.4 can be rewritten as:

 X + Y > 1……1111 (4.5)

Equation 4.5 states that if X is greater than Y, the sum of X and Y
should be greater than 1…1111. If n adders are used to add X plus Y , then
for X to be greater than Y, the n-bit sum should be greater than n ones.
This can only happen if the n-bit adders have a final carryout of 1. So, if X
is added to Y using n-bit adders, and the final carryout is 1, then it can be
concluded that X > Y. If there is no final carryout, then X  Y. To check for
equality, it is noticed that if X = Y then:

 X + Y = 1……1111 (4.6)

170 • HDL WITH DIGITAL DESIGN

In this example, n = 3 is being considered. Figure 4.8 shows the logic
diagram of the comparator.

Full
adder

Y2 X2

Full
adder

Y1 X1

Full
adder

carry0carry1carry2

sum0sum1sum2

xlty xeqyxgty

Y0 X0

0

FIGURE 4.8 A full-adder-based comparator.

Listing 4.16 shows the HDL code for the comparator. The HDL code
for a full adder has already been written (see Listing 4.13). The full-adder
components (macros) are used in Listing 4.16. Because they are identical,
only one generic full adder is declared as:

component full_adder
port(I1, I2, I3 : in std_logic;
 O1, O2 : out std_logic);
end component;

To use these components, link their work library from Listing 4.13 as:

for all : full_adder use entity work.bind32 (full_add); --VHDL

or, in Verilog, link the module built in Listing 4.13 as:

FULL_ADDER M0 (X[0], Yb[0], 1’b0, sum[0], carry[0]); //Verilog

STRUCTURAL DESCRIPTION • 171

LISTING 4.16 HDL Description of a Three-Bit Comparator Using Adders

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity three_bit_cmpare is
port (X, Y : in std_logic_vector (2 downto 0);
 xgty, xlty, xeqy : buffer std_logic);
end three_bit_cmpare;

architecture cmpare of three_bit_cmpare is

--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer.

component full_adder
port (I1, I2, I3 : in std_logic;
 O1, O2 : out std_logic);
end component;
component Inv
port (I1 : in std_logic; O1 : out std_logic);
end component;
component nor2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
component and3
port (I1, I2, I3 : in std_logic; O1 : out std_logic);
end component;
for all : full_adder use entity work.bind32 (full_add);
for all : Inv use entity work.bind1 (inv_0);
for all : nor2 use entity work.bind2 (nor2_0);
for all : and3 use entity work.bind3 (and3_7);
--To reduce hazards, an AND gate is
--implemented with a 7-ns delay.
signal sum, Yb : std_logic_vector (2 downto 0);
signal carry : std_logic_vector (1 downto 0);
begin
 in1 : inv port map (Y(0), Yb(0));
 in2 : inv port map (Y(1), Yb(1));
 in3 : inv port map (Y(2), Yb(2));

172 • HDL WITH DIGITAL DESIGN

 F0 : full_adder port map (X(0), Yb(0),
 ‘0’, sum(0), carry(0));
 F1 : full_adder port map (X(1), Yb(1), carry(0),
 sum(1), carry(1));
 F2 : full_adder port map (X(2), Yb(2), carry(1),
 sum(2), xgty);
 a1 : and3 port map (sum(0), sum(1), sum(2), xeqy);
 n1 : nor2 port map (xeqy, xgty, xlty);
end cmpare;

Verilog Description
module three_bit_cmpare (X, Y, xgty, xlty, xeqy);
input [2:0] X, Y;
output xgty, xlty, xeqy;
wire [1:0] carry;
wire [2:0] sum, Yb;
 not (Yb[0], Y[0]);
 not (Yb[1], Y[1]);
 not (Yb[2], Y[2]);
 FULL_ADDER M0 (X[0], Yb[0], 1’b0, sum[0],
 carry[0]);
FULL_ADDER M1 (X[1], Yb[1], carry[0], sum[1],
 carry[1]);
FULL_ADDER M2 (X[2], Yb[2], carry[1], sum[2],
 xgty);
and #7 (xeqy, sum[0], sum[1], sum[2]);
/ To reduce hazard use an AND gate with a delay of 7 units/
nor (xlty, xeqy, xgty);
endmodule

EXAMPLE 4.8 STRUCTURAL DESCRIPTION OF AN SET-RESET LATCH

A set-reset (SR) latch is a sequential circuit. The output and the next
state depends on the input(s) and the current state. It memorizes, as is the
case for sequential circuits, one of its states when S = R = 0. Memorization
is achieved through feedback between the output Q, its complement Q ,
and the inputs. The inputs receive the values of the current output through
the feedback lines. The state where S = R = 1 is prohibited because it may
lead to unstable output (both Q and Q acquire the same logic level). The
latch is implemented in digital systems as a switch or memory cell for static
random-access memory (SRAM). The excitation table of the latch is shown
in Table 4.2.

STRUCTURAL DESCRIPTION • 173

TABLE 4.2 Excitation Table of an SR-Latch

S R Current State Next State
1 0 x 1
0 1 x 0
0 0 q q
1 1 x prohibited

Figures 4.9a and 4.9b show the logic symbol and diagram, respectively, of
an SR-latch using NOR gates. Notice the connection (feedback) between the
output Q and the input of the NOR gate in Figure 4.9b. Listing 4.17 shows the
HDL structural description of an SR-latch based on NOR gates.

S Q

R Q
 

Q
R

Qbar
S

 (a) (b)
FIGURE 4.9 SR-Latch. a) Logic symbol. b) Logic diagram.

LISTING 4.17 HDL Description of an SR-Latch with NOR Gates

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity SR_latch is
 port (R, S : in std_logic;
 Q, Qbar : buffer std_logic);
--Q, Qbar are declared buffer because
--they behave as input and output.

end SR_latch;

architecture SR_strc of SR_latch is
--Some simulators would not allow mapping between
--buffer and out. In this
--case, change all out to buffer.
component nor2

174 • HDL WITH DIGITAL DESIGN

port (I1, I2 : in std_logic; O1 : out std_logic);
end component;
for all : nor2 use entity work.bind2 (nor2_0);
begin
 n1 : nor2 port map (S, Q, Qbar);
 n2 : nor2 port map (R, Qbar, Q);
end SR_strc;

Verilog Description
module SR_Latch (R, S, Q, Qbar);
input R, S;
output Q, Qbar;
nor (Qbar, S,Q);
nor (Q, R, Qbar);
endmodule

To use the above code in future VHDL examples, it is appended to
Listing 4.31. Figure 4.10 shows the simulation waveform of the SR-latch.

R

Qbar

Q

S

FIGURE 4.10 Simulation waveform of an SR-latch.

EXAMPLE 4.9 STRUCTURAL DESCRIPTION OF A D-LATCH WITH
ACTIVE LOW CLEAR

A D-latch is a sequential circuit. The output of the latch (Q) follows
the input (D) as long as the enable (E) is high. Q is the complement of Q.
The clear signal is chosen here to be asynchronous active low, which means
if the clear signal is low, the output is cleared (Q = 0) momentarily. The
latch has been discussed in Chapter 2. The logic symbol and diagram are as
shown in Figure 4.11. Listing 4.18 shows the HDL structural description
of a D-latch.

STRUCTURAL DESCRIPTION • 175

Q

Qbar

D-Latch

D

E

clrbar 

Q

Qbar

D
E

clrbar

 (a) (b)
FIGURE 4.11 D-Latch with clear. a) Logic symbol. b) Logic diagram.

LISTING 4.18 HDL Description of a D-Latch with Active Low Clear

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity D_LatchWclr is
 port (D, E,clrbar : in std_logic;
 Q, Qbar : buffer std_logic);
end;
architecture D_latch_str of D_LatchWclr is

--be sure to use buffer rather than output in all
-- components; some simulators will not map output
--to buffer.

component and3
port (I1, I2, I3 : in std_logic;
 O1 : buffer std_logic);
end component;
component nor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
for all : and3 use entity work.bind3 (and3_4);
for all : nor2 use entity work.bind2 (nor2_4);

176 • HDL WITH DIGITAL DESIGN

for all : inv use entity work.bind1 (inv_1);
signal Eb, s1, s2 : std_logic;
begin
 a1 : and3 port map (D, E, clrbar, s1);
 a2 : and3 port map (Eb, D,clrbar, s2);
 in1 : inv port map (E, Eb);
 in2 : inv port map (Qbar, Q);
 n2 : nor2 port map (s1, s2, Qbar);
end D_latch_str;

To use the above code in future examples, it is appended to
Listing 4.31.

Verilog Description
module D_latchWclr(D, E,clrbar, Q, Qbar);
input D, E, clrbar;
output Q, Qbar;
/ assume 4 ns delay for and gate and nor gate,
and 1 ns for inverter /
//The clear is active low; if clrbar = 0, Q=0

and #4 gate1 (s1, D, E, clrbar);

/ the name “gate1” is optional; we could have
 written and #4 (s1, D, E) /
 and #4 gate2 (s2, Eb, Q, clrbar);
 not #1 (Eb, E);
 nor #4 (Qbar, s1, s2);
 not #1 (Q, Qbar);
endmodule

The simulation waveform is the same as in Figure 2.19 except for the
addition of signal clrbar; if the clrbar signal is low, Q should go low.

EXAMPLE 4.10 STRUCTURAL DESCRIPTION OF A PULSE-TRIGGERED,
MASTER-SLAVE D FLIP-FLOP WITH ACTIVE LOW CLEAR

The D-latch discussed in Listing 4.18 has a characteristic that may not
be desirable in digital circuits such as counters. The D-latch output follows
its input as long as the enable is high. In counters, for example, the output is
desired to change only once during the active phase of the clock. To achieve
this, flip-flops are needed. A master-slave D flip-flop is a sequential circuit
where the output follows the input only once at the transition of the clock

STRUCTURAL DESCRIPTION • 177

from inactive to active. Figure 4.12 shows the logic symbol of the master-
slave D flip-flop. Table 4.3 shows the excitation table of the flip-flop.

TABLE 4.3 Excitation Table for the Master-Slave D Flip-Flop

Input Current State Clock Next State
Clrbar D Q clk Q+

0 x x 0
1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

The logic diagram of the master-slave flip-flop is shown in Figure 4.12.
The flip-flop consists of two active high enable D-latches; the first latch is
called the master, and the second is called the slave. The master latch drives
the slave. The clock of the master is the invert of the clock of the slave.
Because the clock of one of the latches is the invert of the other, at any
time one latch will be active while the other is inactive. At the high level of
the clock, the slave is active; its output Q follows its input QM (QM is the
output of the master). Because the master is inactive at the high level of the
clock, any change in D (the input of the slave) is not transmitted to QM,
so QM and Q stay the same during the high level of the clock, unaffected
by any change in D. Thus, the flip-flop is sensitive to the clock pulse rather
than the level, as in a D-latch.

D

clrbar

d dQ

D-Latch

Q0

clk2clkb
clk

C Qb

Q

Qbar

Q

D-Latch

C Qb

FIGURE 4.12 Logic diagram of a master-slave D flip-flop with active low clear.

Listing 4.19 shows the HDL code of the master-slave D flip-flop. In the
VHDL code, there is already code for the D_latchWclrbar (see Listing 4.18);
this code is attached to the flip-flop code by the statement

178 • HDL WITH DIGITAL DESIGN

for all : D_latchWclrbar use entity work.
 bind32(D_latch_Wclr);

which links the architecture D_latch_Wclr to the current module. In
Verilog, we link the module D_latchWclr to the module D_FFMasterWclr
by the statement

D_latchWclr D0 (D, clkb,clrbar, Q0, Qb0);

Note that the order of the linked parameters (D, clkb, clrbar, Q0,
and Qb0) to match D, E, clrbar, Q, and Qbar of the D_latchWclr mod-
ule, respectively, for proper mapping.

LISTING 4.19 HDL Description of a Master-Slave D Flip-Flop with Active
Low Clear

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity D_FFMasterWclr is
 Port (D, clk, clrbar : in std_logic;
 Q, Qbar : buffer std_logic);
end D_FFMasterWclr ;

architecture D_FF_str of D_FFMasterWclr is

component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
component D_latchWclrbar
port (I1, I2, I3 : in std_logic;
 O1, O2 : buffer std_logic);
end component;
for all : D_latchWclrbar use
 entity work. bind32(D_latch_Wclr);
for all : inv use entity work.bind1 (inv_1);
signal clkb, clk2, Q0, Qb0 : std_logic;
begin
 D0 : D_latchWclrbar port map (D, clkb,clrbar, Q0, Qb0);
 D1 : D_latchWclrbar port map (Q0, clk2, clrbar, Q, Qbar);
 in1 : inv port map (clk, clkb);
 in2 : inv port map (clkb, clk2);
end D_FF_str;

STRUCTURAL DESCRIPTION • 179

Verilog Description
module D_FFMasterWclr(D, clk,clrbar, Q, Qbar);
input D, clk, clrbar;
output Q, Qbar;
not #1 (clkb, clk);
not #1 (clk2, clkb);
D_latchWclr D0 (D, clkb,clrbar, Q0, Qb0);
D_latchWclr D1 (Q0, clk2,clrbar, Q, Qbar);
endmodule

To use the above VHDL code in future examples, it is appended to
entity bind32 in Listing 4.31.

Figure 4.13 shows the simulation waveform of the master-slave D flip-
flop. It is clear from the figure that signal D is sampled only at the transition
of the clock from low to high. If D changes during the high level (or the
low level) of the clock, the output Q remains the same; it does not respond
to this change. Compare Figure 4.13 with Figure 2.19 and notice the dif-
ference between a latch and a flip-flop. During the high level of the clock
(called enable in the latch), Q follows D for the latch. In the flip-flop, Q
follows D only at the clock transitions from low to high.

D

clk

Q

clrbar

FIGURE 4.13 Simulation waveform of a master-slave D flip-flop.

EXAMPLE 4.11 STRUCTURAL DESCRIPTION OF A PULSE-TRIGGERED
MASTER-SLAVE JK FLIP-FLOP WITH ACTIVE LOW CLEAR

A JK flip-flop can be viewed as an extension of the SR-latch. The
flip-flop has all the allowed states of the SR. The prohibited state in the
SR-latch is replaced by a toggle state where the output of the flip-flop is
complemented every time J = K = 1. Table 4.4 shows the excitation table
of a pulse-triggered JK flip-flop. Another type of flip-flop is the T flip-flop,
where a JK flip-flop with terminal J is connected to terminal K to form ter-
minal T, is shown in Figure 4.14.

180 • HDL WITH DIGITAL DESIGN

Q

Qb

J

K

T

clk

T
Flip-
Flop

FIGURE 4.14 Logic diagram of a T flip-flop.

TABLE 4.4 Excitation Table for a Pulse-Triggered JK Flip-Flop

J K Q clk Q+

0 0 Q0 Q0

0 1 x 0

1 0 x 1

1 1 Q0 Q0

The Boolean function of a JK fl ip-fl op can be derived from a D fl ip-fl op.
Table 4.5 shows the J and K values and the corresponding D values. The D
values are obtained by fi nding the value of D that can produce the transition
from Q to Q+. For example, if Q = 0, and Q+ is 1, then D should be 1. In fact,
the value of D will be equal to Q+ for all transitions.

TABLE 4.5 Relationship Between JK Flip-Flop and D Flip-Flop

J K Q clk Q+ D
0 0 0 0 0

0 0 1 1 1

0 1 0 0 0

0 1 1 0 0

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 0

STRUCTURAL DESCRIPTION • 181

To find the Boolean function of D, form K-maps as shown in
Figure 4.15.

KQ
J

00

1

10110100

D

01 11

1

0

0 00

FIGURE 4.15 K-maps of Table 4.5.

From Figure 4.15, the Boolean functions are:

 D=KQ+JQ (4.7)

Equation 4.7 is used to build a master-slave JK flip-flop from a master-
slave D flip-flop. Figure 4.16 shows a master-slave JK flip-flop generated
from a master-slave D flip-flop.

D
Master-Slave

d
DD

S1

S2
Kb

K

J

clk

Q

QQ

Q

 FIGURE 4.16 Pulse-triggered master-slave JK flip-flop.

Listing 4.20 shows the HDL code for the master-slave JK flip-flop
illustrated in Figure 4.16.

182 • HDL WITH DIGITAL DESIGN

LISTING 4.20 HDL Description of a Master-Slave JK Flip-Flop: VHDL and
Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity JK_FLFL is
 port (J, K, clk, clrbar : in std_logic;
 Q, Qbar : buffer std_logic);

-- Q and Qbar are declared buffer so they can be input
-- or output

end JK_FLFL;

architecture JK_Master of JK_FLFL is

component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component or2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
component D_FFMasterWclr
port (D, clk, clrbar : in std_logic;
 Q, Qbar : buffer std_logic);
end component;
for all : and2 use entity work.bind2 (and2_4);
for all : or2 use entity work.bind2 (or2_4);
for all : inv use entity work.bind1 (inv_1);
for all : D_FFMasterWclr use
 entity work. D_FFMasterWclr (D_FF_str);
signal s1, s2, Kb, DD : std_logic;
begin
 a1 : and2 port map (J, Qbar, s1);
 a2 : and2 port map (Kb, Q, s2);
 in1 : inv port map (K, Kb);
 or1 : or2 port map (s1, s2, DD);
 DFF : D_FFMasterWclr port map (DD, clk,clrbar, Q, Qbar);

STRUCTURAL DESCRIPTION • 183

end JK_Master;

Verilog Description
module JK_FF (J, K, clk,clrbar, Q, Qbar);
input J, K, clk, clrbar;
output Q, Qbar;
wire s1, s2;
 and #4 (s1, J, Qbar);
 and #4 (s2, Kb, Q);
 not #1 (Kb, K);
 or #4 (DD, s1, s2);
D_FFMasterWclr D0 (DD, clk,clrbar, Q, Qbar);
endmodule
module D_FFMasterWclr(D, clk,clrbar, Q, Qbar);

/ no need to rewrite this module here if it has
been already attached to the above module (JK_FF). /

input D, clk, clrbar;
output Q, Qbar;

 not #1 (clkb, clk);
 not #1 (clk2, clkb);
 D_latchWclr D0 (D, clkb,clrbar, Q0, Qb0);
 D_latchWclr D1 (Q0, clk2,clrbar, Q, Qbar);

endmodule

module D_latchWclr(D, E,clrbar, Q, Qbar);
/ no need to rewrite this module here if it has
been already attached to the above module (JK_FF). /

input D, E, clrbar;
output Q, Qbar;
/ assume 4 ns delay for and gate and nor gate,
and 1 ns for inverter /
//The clear is active low; if clrbar = 0, Q=0

and #4 gate1 (s1, D, E, clrbar);

/ the name “gate1” is optional; we could have
 written and #4 (s1, D, E) /
 and #4 gate2 (s2, Eb, Q, clrbar);

184 • HDL WITH DIGITAL DESIGN

 not #1 (Eb, E);
 nor #4 (Qbar, s1, s2);
 not #1 (Q, Qbar);
endmodule

Notice here that the VHDL code in Listing 4.20 is getting shorter (the
VHDL code is not shorter but getting shorter) compared to the Verilog
code. This is due to the fact that VHDL user-built components are being
linked, such as and2, or2, and inv. Their codes do not need to be rewrit-
ten because they are linked to the current module.

EXAMPLE 4.12 STRUCTURAL DESCRIPTION OF AN SRAM CELL

A simple memory cell has been designed using an SR-latch; Figure
4.17a shows the symbol diagram of the cell. The cell has tri-state output.
If the select line (Sel) is low, the output of the cell is in high impedance. A
read/write (R/W) input signal controls the cell’s cycle type. If R/W is high,
the cell is in read cycle; if it is low, the cell is in write cycle. Table 4.6 shows
the excitation table of the cell with inputs (select, R/W, data in, current
state) and the corresponding outputs (next state, output). From the current
state and next state, S and R of the latch are determined according to Table
4.2. For example, if the current state is 0 and next state 0, then two combi-
nations of SR can generate this transition: S = 0, R = 0, and S = 0, R = 1, so
SR = 0x when x is “don’t care.”

CELL

SEL

R/W

Din

O1



S

R O1

Din
RW
Sel

Q

Q

 (a) (b)
FIGURE 4.17 SRAM memory cell. a) Logic symbol. b) Logic diagram.

STRUCTURAL DESCRIPTION • 185

TABLE 4.6 Excitation Table of an SRAM Memory Cell

Select R/W Data In Current
State

Next
State

 Output Latch

Sel RW Din Q Q+ O1 S R
0 x x Q Q Z 0 0
1 0 0 0 0 0 0 x
1 0 0 1 0 0 0 1
1 0 1 0 1 1 1 0
1 0 1 1 1 1 x 0
1 1 0 0 0 0 0 x
1 1 0 1 1 1 x 0
1 1 1 0 0 0 0 x
1 1 1 1 1 1 x 0

From Table 4.6, K-maps are constructed (see Figure 4.18).

Din Q

Sel R/W

00

01

11

10

10110100

O1

Z Z Z Z

Z Z

0

Z Z

0

0

1 1

1

0

1

Din Q

Sel R/W

00

01

11

10

10110100

S

0 0 0 0

0 0

0

0 0

0

0

x x

x

0

1

Din Q

Sel R/W

00

01

11

10

10110100

R

0 0 0 0

0 0

1

0 0

x

x

0 0

0

x

1

FIGURE 4.18 K-maps for Table 4.6.

186 • HDL WITH DIGITAL DESIGN

From the K-maps:

S = Sel RW Din

R = Sel RW Din

O1 = Sel Din + SelRWQ = R + SelRW Q (for Sel = 1)

O1 = Z (for Sel = 0)

The logic diagram of the cell is shown in Figure 4.17b.

The code for the memory cell is shown in Listing 4.21. The VHDL code
uses the SR-latch that was designed in Listing 4.17 as a component (macro),
using the statement

component SR_Latch
port (I1, I2 : in std_logic;
O1, O2 : buffer std_logic);
end component;

which declares a generic SR-latch. This latch is
linked to the memory-cell code by the s t a t e m e n t

for all : SR_Latch use entity work.bind22 (SR_Latch);

The VHDL statement

SR1 : SR_Latch port map (R, S, Q, open);

assigns R and S as the inputs of the SR-latch SR1. The noninverted
output of the latch is assigned to Q, and the inverted output is left open;
open is a VHDL predefined word. For Verilog, link the module of the SR-
latch that has been designed in Listing 4.17 to the memory cell code by the
statement:

SR_Latch RS1 (R, S, Q, Qbar);

which links the module SR_Latch to the current module memory.

LISTING 4.21 HDL Description of an SRAM Memory Cell: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity memory is

STRUCTURAL DESCRIPTION • 187

 port (Sel, RW, Din : in std_logic;
 O1: buffer std_logic);

end memory;

architecture memory_str of memory is
--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer.

component and3
port (I1, I2, I3 : in std_logic; O1 : out std_logic);
end component;

component inv
port (I1 : in std_logic; O1 : out std_logic);
end component;

component or2
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;

component bufif1
port (I1, I2 : in std_logic; O1 : out std_logic);
end component;

component SR_Latch
port (I1, I2 : in std_logic;
 O1, O2 : buffer std_logic);
end component;
for all : and3 use entity work.bind3 (and3_0);
for all : inv use entity work.bind1 (inv_0);
for all : or2 use entity work.bind2 (or2_0);
for all : bufif1 use entity work.bind2 (bufif1);
for all : SR_Latch use entity work.bind22 (SR_Latch);
signal RWb, Dinb, S, S1, R, O11, Q : std_logic;
begin
 in1 : inv port map (RW, RWb);
 in2 : inv port map (Din, Dinb);
 a1 : and3 port map (Sel, RWb, Din, S);
 a2 : and3 port map (Sel, RWb, Dinb, R);
 SR1 : SR_Latch port map (S, R, Q, open);
--open is a predefined word;

188 • HDL WITH DIGITAL DESIGN

--it indicates that the port is left open.
 a3 : and3 port map (Sel, RW, Q, S1);
 or1 : or2 port map (S1, S, O11);
 buf1 : bufif1 port map (O11, Sel, O1);
end memory_str;

Verilog Description
module memory (Sel, RW, Din, O1);
input Sel, RW, Din;
output O1;
 not (RWb, RW);
 not (Dinb, Din);
 and (S, Sel, RWb, Din);
 and (R, Sel, RWb, Dinb);
 SR_Latch RS1 (R, S, Q, Qbar);
 and (S1, Sel, RW, Q);
 or (O11, S1, S);
 bufif1 (O1, O11, Sel);
endmodule

EXAMPLE 4.13 STRUCTURAL DESCRIPTION OF A THREE-BIT UNIVERSAL
SHIFT REGISTER

Figure 4.19 shows the symbol and logic diagram of a three-bit universal
shift register. The register can be loaded externally from a three-bit data
P on the positive edge of the clock. The data stored in the register can be
right shifted with one-bit DSR replacing the most significant bit of Q every
shift. The data stored in the register can also be left shifted with one-bit
DSL replacing the least significant bit of Q every shift. The truth table of
the register is shown in Table 4.7. Listing 4.22 shows the Verilog code for
the shift register. To test the shift function of the register, load external data
(P) using the load function and then shift left or right.

TABLE 4.7 Truth Table for the Shift Register

Clrbar s1 s0 Action
0 x x Clear (Q = 0)
1 1 1 Load P into Q (Q = P) at the positive edge of the clock
1 0 1 Shift right, DSR replaces Q2 at the positive edge of the clock
1 0 1 Shift left, DSL replaces Q0 at the positive edge of the clock
1 0 0 Hold (Q retains its current value with the clock)

STRUCTURAL DESCRIPTION • 189

LISTING 4.22 Verilog Description of a Three-Bit Universal Shift Register

module shft_regsterUniv(clk, clrbar,
s0,s1,P,DSR,DSL,Q,Qb);
input clk, clrbar,s0,s1,DSR,DSL;
output [2:0] Q,Qb,P;
not (s0bar, s0);
not (s0t,s0bar);
not (s1bar, s1);
not (s1t, s1bar);

and #4 a0(aa0, DSR, s1bar,s0t);
and #4 a1(aa1, s0t, s1t,P[2]);
and #4 a2(aa2, s0bar, s1t,Q[1]);
and #4 a3(aa3, s0bar, s1bar,Q[2]);
or #4 or2 (D2,aa0,aa1,aa2,aa3);
D_FFMasterWclr DFM0(D2,clk,clrbar,Q[2],Qb[2]);

and #4 a4(aa4, Q[2], s1bar,s0t);
and #4 a5(aa5, s0t, s1t,P[1]);
and #4 a6(aa6, s0bar, s1t,Q[0]);
and #4 a7(aa7, s0bar, s1bar,Q[1]);
or #4 or1 (D1,aa4,aa5,aa6,aa7);
D_FFMasterWclr DFM1(D1,clk, clrbar,Q[1],Qb[1]);

P

�

�

QShift
register

D SR

D SL

Clrbar

s�

s� 

or�

a� a� a� a� a� a� a� a� a� a� a�� a��

or� or�

D

D �

clk
Q

P �P �P �
s�

s�

DSR

D

D �

Q � Q � Q �

clk
QD

D �

clk

clrbar
clk

Q

DSL

 (a) (b)
FIGURE 4.19 Universal shift register with clear. a) Symbol diagram. b) Logic diagram.

190 • HDL WITH DIGITAL DESIGN

and #4 a8(aa8, Q[1], s1bar,s0t);
and #4 a9(aa9, s0t, s1t,P[0]);
and #4 a10(aa10, s0bar, s1t,DSL);
and #4 a11(aa11, s0bar, s1bar,Q[0]);
or #4 or0 (D0,aa8,aa9,aa10,aa11);
D_FFMasterWclr DFM2(D0,clk,clrbar,Q[0], Qb[0]);
endmodule

4.4 State Machines

Synchronous sequential circuits are called state machines. The main
components of the state machine are latches and flip-flops; additional com-
binational components may also be present. Synchronous clock pulses are
fed to all flip-flops and latches of the machine. There are two types of syn-
chronous sequential circuits: Mealy and Moore circuits. The output or next
state of Mealy circuits depends on the inputs and the present (current)
state of the flip-flops/latches. The output or next state of the Moore circuit
depends only on the present states. The present state and next state for a
particular flip-flop are the same pin (output Q). The current state is the
value of Q just before the present clock pulse or edge; the next state is the
value of Q after the clock pulse or the edge. To build a state machine, the
following steps are performed:

1. Determine the number of states. If the system is n-bit, then the number
of flip-flops is n, and the number of states is 2n. The number of flip-flops
here is calculated according to the classical method, where the number
of flip-flops is the minimum possible. Another method in which each
state is represented by one flip-flop is frequently used when the num-
ber of bits is getting too large to handle by the classical method. For
example, if the system is three bits, then the classical method requires
three flip-flops, while the one flip-flop per state method requires eight
flip-flops. In this chapter, the classical method is implemented.

2. Construct a state diagram that shows the transition between states. At
each state, consider it as the current state; after the clock is active (edge
or pulse), the system moves from current state to next state. Determine
the next state according to the input if the system is Mealy or accord-
ing to the current state only if the system is Moore. Also, determine the
output (if any) of the system at this current state.

3. From the state diagram, construct the excitation table that tabulates the in-
puts and the outputs. The inputs always include the current states, and the

STRUCTURAL DESCRIPTION • 191

outputs always include the next states. The table also includes the inputs of
the flip-flops or latches that constitute the state machine. For example, if
the flip-flops implemented in a certain machine are JK flip-flops, then the
inputs J and K of the flip-flop are determined according to the transition
from current to next state. If, for example, the current state is 0 and the
next is 0, then J = 0 and K = x (don’t care). If the flip-flops are D flip-flops,
then the Ds of the flip-flops are the same as the corresponding next states.

4. Find J and K in terms of the inputs and minimize using K-maps or any
other appropriate method.

5. If using structural description to simulate the system, draw a logic dia-
gram of the system using appropriate available macros such as latches,
adders, and flip-flops.

The following examples are state machines. More examples of state ma-
chines and counters will be discussed in Chapters 6 and 7.

EXAMPLE 4.14 STRUCTURAL DESCRIPTION OF A THREE-BIT
SYNCHRONOUS COUNTER WITH ACTIVE LOW CLEAR

A synchronous counter can be viewed as a simple finite state machine.
The logic symbol of the counter is shown in Figure 4.20. The counter is
constructed from JK flip-flops.

q2q1q0 q2q1q0

clr

clrbar clk

Three-bit Counter

FIGURE 4.20 Logic symbol of a three-bit counter with active low clear.

The state diagram of the counter is shown in Figure 4.21. Because the
counter counts from 0 to 7, three flip-flops are needed to cover that count.
The transition depends on the current state and the input (clrbar). Usually
D flip flops are used; however, we will use JK flip flops just to practice with
their implementation in the state machine. The next step is to construct the
excitation table.

192 • HDL WITH DIGITAL DESIGN

Table 4.8a shows the excitation table of a JK flip-flop, and Table 4.8b
shows the excitation table of the counter.

TABLE 4.8A Excitation Table for a JK Flip-Flop

Inputs Outputs
Current State J K Next State

0 1 x 1
0 0 x 0
1 x 1 0
1 x 0 1

TABLE 4.8B Excitation Table for a Three-Bit Synchronous Counter with Active Low Clear

Inputs Outputs

Input Current State Next State Flip-Flops
clrbar q2 q1 q0 q2+ q1+ q0+ J2K2 J1K1 J0K0

0 x x x 0 0 0 xx xx xx
1 0 0 0 0 0 1 0x 0x 1x
1 0 0 1 0 1 0 0x 1x x1
1 0 1 0 0 1 1 0x x0 1x
1 0 1 1 1 0 0 1x x1 x1
1 1 0 0 1 0 1 x0 0x 1x
1 1 0 1 1 1 0 x0 1x x1

S0S7

S6

S5

S4 S3

S2

S1

1

1

1

1

1

1

1

1

0

0

0

0

0
0

0

FIGURE 4.21 State diagram of a three-bit
counter with active low clear.

STRUCTURAL DESCRIPTION • 193

Inputs Outputs

Input Current State Next State Flip-Flops
clrbar q2 q1 q0 q2+ q1+ q0+ J2K2 J1K1 J0K0

1 1 1 0 1 1 1 x0 x0 1x
1 1 1 1 0 0 0 x1 x1 x1

Now, construct the K-maps of the Table 4.8b. The J-K flip-flops with
active low clear previously constructed in Example 4.11 are used here. Ac-
cordingly, the clear action will be done by just activating the clear function
of the JK flip-flops. Figure 4.22 shows the K-maps of Table 4.8b.

q1q0

q2

0

X

10110100

J2 = K2

1 XX X

1

FIGURE 4.22 K-maps of Table 4.8b.

From Table 4.b and the K-maps:

J0 = K0=1

J1 = K1 = q0

J2 = K2= q0 q1

Next, draw the logic diagram of the counter (see Figure 4.23).

Q

Q K

q2 J2

K2

clrbar
J

clk

q2

JK2

Q

Q K

q1 J1

K1

clrbar
J

q1

JK1

Q

Q K

q0 J0

K0

clrbar

clrbar

J

1

q0

JK0

FIGURE 4.23 Logic diagram of a three-bit synchronous counter with active low clear using master-slave JK
flip-flops.

194 • HDL WITH DIGITAL DESIGN

Now, write the structural description of the counter. The previously
built macros and modules are used, as is the JK flip-flop designed in Listing
4.20. In VHDL, declare it as component:

component JK_FLFL
port (J, K, clk, clrbar : in std_logic;
 Q, Qbar : buffer std_logic);
end component;
for all : JK_FLFL
 use entity work. JK_FLFL (JK_Master);

Be sure to attach all the entities needed, such as entity JK_
FLFL, and be sure to compile all of those entities to generate the
work library before using them in the entity CTStatemachine.
In Verilog, link the current module to the JK_FF module written in List-

ing 4.20b. As an example of this linking, when J = K = 1:

JK_FF FF0(1’b1, 1’b1, clk, clrbar, q[0], qb[0]);

Listing 4.23 shows the HDL code of the counter. The basic VHDL
package does not include definitions of the components JK_FLFL and

and2. Several CAD vendors can provide packages that contain these defi-
nitions; if these packages are included in Listing 4.23, there is no need for
component declaration statements for them.

LISTING 4.23 HDL Description of a Three-Bit Synchronous Counter Using
Master-Slave JK Flip-Flops: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity CTStatemachine is
 port(clk, clrbar : in std_logic;
 Q, Qbar: buffer std_logic_vector (2 downto 0));
end CTStateMachine;

architecture ct_3 of CTStateMachine is
component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component JK_FLFL
port (J, K, clk, clrbar : in std_logic;
 Q, Qbar : buffer std_logic);

STRUCTURAL DESCRIPTION • 195

end component;
for all : and2 use entity work.bind2 (and2_4);
for all : JK_FLFL use entity work.
 JK_FLFL (JK_Master);

--Be sure to attach the entity-architectures
-- shown above
signal J2,K2 : std_logic;

begin
JK0 : JK_FLFL port map (‘1’, ‘1’, clk, clrbar, Q(0), Qbar(0));
JK1 : JK_FLFL port map (q(0), q(0), clk, clrbar, Q(1), Qbar(1));
A1: and2 port map (q(0), q(1), J2);
A2: and2 port map (q(0), q(1), K2);
JK2 : JK_FLFL port map (J2, K2, clk, clrbar, Q(2), Qbar(2));
end ct_3;

Verilog Description
module CTstatemachine(clk, clrbar, q, qb);
input clk, clrbar;
output [2:0] q, qb;

JK_FF FF0(1’b1, 1’b1, clk, clrbar, q[0], qb[0]);

assign J1 = q[0]; / a buffer could have been used here
 and in all assign statement in this module/

assign K1 = q[0];
JK_FF FF1 (J1, K1, clk, clrbar, q[1], qb[1]);

and A1 (J2, q[0], q[1]);
assign K2 = J2;
JK_FF FF2(J2, K2, clk, clrbar, q[2], qb[2]);
endmodule

The simulation waveform of the counter is shown in Figure 4.24.

q 0 1 2 1 23 4 5 6 7 0 0

clrbar

clk

FIGURE 4.24 Simulation waveform of a three-bit synchronous counter with active low clear.

196 • HDL WITH DIGITAL DESIGN

EXAMPLE 4.15 STRUCTURAL DESCRIPTION OF A THREE-BIT
SYNCHRONOUS EVEN COUNTER WITH ACTIVE HIGH HOLD

Assume the counter here is
counting up. The number of flip-
flops is three. First, draw the state
diagram of the counter as shown in
Figure 4.25. For all even current
states, the next state is the next
even. For example, if the current
state is 010 (2), then the next state
is 100 (4). For any odd state (in-
valid state), the next state can be
selected to be any state that en-
sures the continuity of the count.
For example, if the current state is
the invalid state 001, the next state
can be 000. In the case of invalid
states, choose the next state that
yields the minimum number of

components or minterms; this is done by assigning “don’t cares” to the next
state of invalid state and selecting 1 or 0 instead of the “don’t care” that
yields to more minimizations. This will be explained when the excitation
table is formed.

From the state diagram, generate the excitation table. Table 4.9 shows
the excitation table of the counter using D flip-flops. The Ds of the flip-flop
are the same as the next state.

TABLE 4.9 Excitation Table for a Three-Bit Even Counter

Inputs Outputs
Current state Next State Flip-Flops

H Q2 Q1 Q0 Q2+ Q1+ Q0+ D2 D1 D0
0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 1 0 0
0 0 1 1 1 0 0 0 0 0
0 1 0 0 1 1 0 1 1 0
0 1 0 1 0 1 0 0 0 0

S7

S6

S0

S5

S4

S3

S2

S1

1

1

1

1

0

0

0 0

FIGURE 4.25 State diagram of an even three-bit
counter. The Hold is shown in the diagram as only input.

STRUCTURAL DESCRIPTION • 197

Inputs Outputs
Current state Next State Flip-Flops

H Q2 Q1 Q0 Q2+ Q1+ Q0+ D2 D1 D0
0 1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0 1 0
1 0 1 1 0 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0
1 1 0 1 0 0 0 0 0 0
1 1 1 0 1 1 0 1 1 0
1 1 1 1 0 0 0 0 0 0

From the excitation table, generate the K-maps. Figure 4.26 shows the
K-maps of the counter. Referring to the K-maps, for odd states any next
state can be assigned because odd states are not valid. The only restriction
is that the next state should yield a valid state. Select the next state that
yields elimination of more terms. For example, if the current state is 101,
select the next state 100; this yields less minterms.

Q1Q0

H Q2

00

01

11

10

10110100

D1

1 1 0 0

1 1

0

0 0

0

0

0 0

0

1

1

Q1Q0

H Q2

00

01

11

10

10110100

D2

0 0 1 1

1 0

0

0 0

1

0

0 0

0

1

0

FIGURE 4.26 K-maps of an even three-bit counter.

From the K-maps, find the Boolean functions:

D0 = 0

D1 = Q1 H + HQ1 Q0

D2 = Q2 Q1 Q0 + Q0 HQ2 + H Q2 Q1

198 • HDL WITH DIGITAL DESIGN

Using the above Boolean functions, draw the logic diagram of the coun-
ter. Figure 4.27 shows the logic symbol and logic diagram of the counter.

Q2Q1Q0 Q2Q1Q0

H

Hold clk

Three-bit Counter

Q

Q

Q2 Q1 Q0

d

Q2

D-Latch

Q

Q

d

Q1

D-Latch

Q 0

clk

H

Q

d

Q0

D-Latch

FIGURE 4.27 Three-bit even counter. a) Logic symbol. b) Logic diagram.

Next, write the HDL code for the counter. The macros for the D mas-
ter-slave flip-flops developed in Listing 4.19 are used. In VHDL code:

component D_FFMasterWclr
port (D, clk, clrbar : in std_logic;
 Q, Qbar : buffer std_logic);
end component;
for all : D_FFMasterWclr use
 entity work. D_FFMasterWclr (D_FF_str);

In Verilog, write the code that links the D_FFMaster designed in Listing
4.19 to the new module:

D_FFMasterWclr DFF0 (1’b0, clk, clrbar, Q[0], Qbar[0]);

Listing 4.24 shows the HDL code of the counter.

STRUCTURAL DESCRIPTION • 199

LISTING 4.24 HDL Description of a Three-Bit Synchronous Even Counter
with Hold: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity CTR_EVEN is
port (H, clk, clrbar : in std_logic;
Q, Qbar : buffer std_logic_vector (2 downto 0));

-- Input clrbar is added to help in testing;
-- set clrbar to low initially when testing
--to clear the output and then set it back to high

end CTR_EVEN;

architecture Counter_even of CTR_EVEN is
--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer.

component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;

component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;

component or2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;

component and3
port (I1, I2, I3 : in std_logic;
O1 : buffer std_logic);
end component;

component or3
port (I1, I2, I3 : in std_logic;
O1 : buffer std_logic);
end component;

200 • HDL WITH DIGITAL DESIGN

component D_FFMasterWclr
port (D, clk, clrbar : in std_logic;
 Q, Qbar : buffer std_logic);
end component;

for all : D_FFMasterWclr use
 entity work. D_FFMasterWclr (D_FF_str);
for all : inv use entity work.bind1 (inv_0);
for all : and2 use entity work.bind2 (and2_0);
for all : and3 use entity work.bind3 (and3_0);
for all : or2 use entity work.bind2 (or2_0);
for all : or3 use entity work.bind3 (or3_0);
signal Hbar, a1, a2, a3, a4,
 a5, OR11, OR22 : std_logic;
begin
DFF0 : D_FFMasterWclr port map (‘0’, clk, clrbar, Q(0),Qbar(0));
inv1 : inv port map (H, Hbar);
an1 : and2 port map (Hbar, Qbar(1), a1);
an2 : and3 port map (H, Q(1), Qbar(0), a2);
r1 : or2 port map (a2, a1, OR11);

DFF1 : D_FFMasterWclr port map (OR11, clk, clrbar,
 Q(1), Qbar(1));
an3 : and3 port map (Q(2), Qbar(1), Qbar(0), a3);
an4 : and3 port map (Qbar(0), H, Q(2), a4);
an5 : and3 port map (Hbar, Qbar(2), Q(1), a5);
r2 : or3 port map (a3, a4, a5, OR22);

DFF2 : D_FFMasterWclr port map (OR22, clk, clrbar,
 Q(2), Qbar(2));
end Counter_even;

Verilog Description
module CTR_EVEN(H, clk, clrbar, Q, Qbar);
// Input clrbar is added to help in testing;
//set clrbar to low initially when testing
//to clear the output and then set it back to high

input H, clk, clrbar;
output [2:0] Q, Qbar;

D_FFMasterWclr DFF0 (1’b0, clk, clrbar, Q[0], Qbar[0]);
not (Hbar, H);

STRUCTURAL DESCRIPTION • 201

and (a1, Qbar[1], Hbar);
and (a2, H, Q[1], Qbar[0]);
or (OR1, a1, a2);

D_FFMasterWclr DFF1 (OR1, clk, clrbar, Q[1], Qbar[1]);
and (a3, Q[2], Qbar[1], Qbar[0]);
and (a4, Qbar[0], H, Q[2]);
and (a5, Hbar, Qbar[2], Q[1]);
or (OR2, a3, a4, a5);

D_FFMasterWclr DFF2 (OR2, clk, clrbar, Q[2], Qbar[2]);
endmodule

The simulation waveform of the counter is shown in Figure 4.28. As
shown in the figure, the Hold is active high. If it is high and the clock pulse
is present, the counter holds its output Q to the present value. Some tran-
sient states may appear in the simulation due to hazards.

Q 0 2 4 4 66 0 2 4 4 4 0

H

clk

FIGURE 4.28 Simulation waveform of an even counter with Hold.

EXAMPLE 4.16 STRUCTURAL DESCRIPTION OF A THREE-BIT SYNCHRO-
NOUS UP/DOWN COUNTER WITH ACTIVE HIGH CLEAR

The logic symbol of the three-bit synchronous up/down counter is shown
in Figure 4.29. The number of flip-flops is three. TC is a terminal count;
it is active when the counter
completes its count. In this
example, TC is high when
the count is up to seven or
down to zero. The clear here
is active high; if it is high, the
output of the counter is set
to zero. Again just to prac-
tice with JK flip-flops we will
use them here rather than
using D flip-flops.

Q2Q1Q0 Q2Q1Q0

clr clk Dir (Up/Down)

TC

Three-bit Counter

FIGURE 4.29 Symbol logic diagram of an up/down three-bit
counter.

202 • HDL WITH DIGITAL DESIGN

The state diagram of the counter is shown in Figure 4.30. The input
signal, Dir, determines whether the counter counts up or down. If Dir = 0,
the counter counts down, if Dir = 1, the counter counts up. From the state
diagram, generate the excitation table of the counter (see Table 4.10).

S0S7

S6

S5

S4 S3

S2

S1

0/0

0/0

0/0

0/0

0/0

0/0

0/0

Clear/TC

Dir = 1 (up)

0/1

1/01/0
1/0

1/0

1/0

1/0

1/0

S0S7

S6

S5

S4 S3

S2

S1

0/0

0/0

0/0

0/0

0/0

0/0

0/0

Dir = 0 (down)

0/1

1/0
1/0

1/0

1/0

1/0

1/0

1/0

Clear/TC

FIGURE 4.30 State diagram of three-bit synchronous up/down counter.

TABLE 4.10 Excitation Table for a Three-Bit Up/Down Counter with a
Terminal Count Using Master-Slave JK Flip-Flops

Inputs Outputs
Input Current State Next State Output Flip-Flop

Clr Dir Q2 Q1 Q0 Q2+ Q1+ Q0+ TC J2K2 J1K1 J0K0
1 x x x x 0 0 0 0 xx xx xx
0 0 0 0 0 1 1 1 1 1x 1x 1x
0 0 0 0 1 0 0 0 0 0x 0x x1
0 0 0 1 0 0 0 1 0 0x x1 1x
0 0 0 1 1 0 1 0 0 0x 1x x1
0 0 1 0 0 0 1 1 0 x1 1x 1x
0 0 1 0 1 1 0 0 0 x0 0x x1
0 0 1 1 0 1 0 1 0 x0 x1 1x
0 0 1 1 1 1 1 0 0 x0 x0 x1
0 1 0 0 0 0 0 1 0 0x 0x 1x
0 1 0 0 1 0 1 0 0 0x 1x x1
0 1 0 1 0 0 1 1 0 0x x0 1x
0 1 0 1 1 1 0 0 0 1x x1 x1
0 1 1 0 0 1 0 1 0 x0 0x 1x
0 1 1 0 1 1 1 0 0 x0 1x x1
0 1 1 1 0 1 1 1 0 x0 x0 1x
0 1 1 1 1 0 0 0 1 x1 x1 x1

STRUCTURAL DESCRIPTION • 203

Next, use K-maps to find the Boolean function of the outputs. The clear
function will be provided by activating the clear of the JK flip-flop that was
covered in Example 4.11. Accordingly, the clear input (clr) in Table 4.10 is
not included in the Boolean function of the outputs. Figure 4.31 shows the
K-maps from which the following Boolean functions are obtained.

Q1Q0

Dir Q2

00

01

11

10

10110100

J0

1 1 1 1

1 1

1

1 1

1

1

1 1

1

1

1

Q1Q0

Dir Q2

00

01

11

10

10110100

K0

1 1 1 1

1 1

1

1 1

1

1

1 1

1

1

1

Q1Q0

Dir Q2

00

01

11

10

10110100

J1

1 0 1 1

1 0

1

1 1

0

0

1 1

1

1

1

Q1Q0

Dir Q2

00

01

11

10

10110100

K1

1 0 0 1

1 0

1

0 1

0

0

1 1

1

0

0

Q1Q0

Dir Q2

00

01

11

10

10110100

J2

1 0 0 0

1 0

0

0 0

0

0

0 1

1

0

0

Q1Q0

Dir Q2

00

01

11

10

10110100

K2

1 0 0 0

1 0

0

0 0

0

0

0 1

1

0

0

FIGURE 4.31 K-maps of a three-bit synchronous up/down counter.

 J0 =K0=1
J1 = Dir Q0+ Q1 + DirQ0, K1 = Dir Q0+DirQ

 J2 = Q0Q1Dir + Dir Q0 Q1 , K2 = J2
 TC = Dir Q0 Q1 Q2 + QoQ1A2Dir

204 • HDL WITH DIGITAL DESIGN

From the above Boolean functions, draw the logic diagram of the coun-
ter, as shown in Figure 4.32.

Q

Q

J

K K2

J2

Q2Q2

clrbar

1

clr

Q

Q

J

K K1

Q0 Q0

Dir

Q1

K1 J1

clk

J1

Q1Q1

clrbar
Q

Q

J

K K0

J0

Q0Q0

clrbar

FIGURE 4.32 Logic diagram of a three-bit synchronous up/down counter (for only J0, J1, K0, and K1).

Listing 4.25 shows the HDL code for the counter. To reduce the haz-
ards use gates with a propagation delay. Four nanoseconds are assigned for
all primitive gates except for the inverter which is assigned 1 ns.

LISTING 4.25 HDL Description of a 3-Bit Synchronous Up/Down Counter
with Clear and Terminal Count—VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity up_down is
 port (clr, Dir, clk : in std_logic;
 TC : buffer std_logic;
 Q, Qbar : buffer std_logic_vector (2 downto 0));
end up_down;

STRUCTURAL DESCRIPTION • 205

architecture Ctr_updown of up_down is
--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer.

component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;

component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component or2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component or3
port (I1, I2,I3 : in std_logic; O1 : buffer std_logic);
end component;
component and3
port (I1, I2, I3 : in std_logic;
 O1 : buffer std_logic);
end component;

component and4
port (I1, I2, I3, I4 : in std_logic;
 O1 : buffer std_logic);
end component;

component JK_FLFL
port (J, K, clk, clrbar : in std_logic;
 Q, Qbar : buffer std_logic);
end component;

for all : JK_FLFL use entity work.
 JK_FLFL (JK_Master);
for all : inv use entity work.bind1 (inv_1);
for all : and2 use entity work.bind2 (and2_4);
for all : and3 use entity work.bind3 (and3_4);
for all : and4 use entity work.bind4 (and4_4);
for all : or2 use entity work.bind2 (or2_4);
for all : or3 use entity work.bind3 (or3_4);
--Be sure that all the reference entities

206 • HDL WITH DIGITAL DESIGN

--above such as JK_FLFL
--are attached in the project.
signal clrbar, Dirbar, J1, K1, J2, K2 : std_logic;
signal s : std_logic_vector (5 downto 0);
begin
 in1 : inv port map (clr, clrbar);
 in2 : inv port map (Dir, Dirbar);
 an1 : and2 port map (Dirbar, Qbar(0), s(0));
 an2 : and2 port map (Dir, Q(0), s(1));
 an3 : and3 port map (Dirbar, Qbar(1), Qbar(0), s(2));
 an4 : and3 port map (Dir, Q(1), Q(0), s(3));
 an5 : and4 port map (Dir, Q(1), Q(0), Q(2), s(4));
 an6 : and4 port map (Dirbar, Qbar(1),
 Qbar(0), Qbar(2), s(5));

 r0 : or3 port map (s(0), s(1), Q(1), J1);
 r1 : or2 port map (s(0), s(1), K1);
 r2 : or2 port map (s(2), s(3), J2);
 K2 <= J2;
 r3 : or2 port map (s(4), s(5), TC);

 JKFF0 : JK_FLFL port map
 (‘1’, ‘1’, clk, clrbar, Q(0), Qbar(0));
 JKFF1 : JK_FLFL port map
 (J1, K1, clk, clrbar, Q(1), Qbar(1));
 JKFF2 : JK_FLFL port map
 (J2, K2, clk, clrbar, Q(2), Qbar(2));
end Ctr_updown;

Verilog Description
module up_down(clr, Dir, clk, Q, Qbar, TC);

input clr, Dir, clk;
output [2:0] Q, Qbar;
output TC;
not #1 (clrbar, clr);
not #1 (Dirbar, Dir);
and #4 a1(s0, Dirbar, Qbar[0]);
and #4 a2(s1, Dir, Q[0]);
and #4 a3(s2, Dirbar, Qbar[0], Qbar[1]);
and #4 a4(s3, Q[0], Q[1], Dir);
and #4 a5(s4, Dirbar, Qbar[0], Qbar[1], Qbar[2]);
and #4 a6(s5, Q[0], Q[1], Q[2],Dir);

STRUCTURAL DESCRIPTION • 207

or #4 r1(J1, s0, Q[1], s1);
or #4 r2(K1, s0, s1);
or #4 r3(J2, s2, s3);
assign K2 = J2;// a buffer can be
//used to generate the above statement
or #4 r4(TC, s4, s5);

JK_FF JKFF0 (1’b1, 1’b1, clk, clrbar, Q[0], Qbar[0]);
JK_FF JKFF1 (J1, K1, clk, clrbar, Q[1], Qbar[1]);
JK_FF JKFF2 (J2, K2, clk,clrbar, Q[2], Qbar[2]);
/Be sure that all the reference entities above
such as JK_FLFL are attached in the project./
endmodule

The simulation waveform of the counter is shown in Figure 4.33. When
the count is three, the Dir (up/down) is changed from down to up count. Due
to the synchronous nature of the Dir signal, the counter continues counting
down to two, then starts counting up to three, four, fi ve, and so forth.

Q 0 7 6 5 65 4 3 2 3 4 7

H Down
Up

clk

FIGURE 4.33 The simulation waveform of an up/down counter.

EXAMPLE 4.17 STRUCTURAL DESCRIPTION OF A THREE-BIT
SYNCHRONOUS DECADE COUNTER

A cecade up counter counts
from zero to nine, and the num-
ber of flip-flops to cover all
counts is four. The state dia-
gram of the counter is shown in
Figure 4.34a. There are invalid
states from 10 to 14. If any one
of these invalid states is a cur-
rent state, the next state can be
any state that restores continuity
of the count. As before, the next
state selected should be the ones

0

9

8

7

6

5

13

12 10 11

4
3

2

1

15

14

FIGURE 4.34 State diagram (final) of a decade counter.

208 • HDL WITH DIGITAL DESIGN

that yields more minimization. This is determined when the K-maps are
generated. Figure 4.34 shows the final state diagram after taking into con-
sideration the K-maps.

Next, construct the excitation table. Table 4.11 shows the excitation
table of the decade counter.

TABLE 4.11 Excitation Table for a Decade Counter with a Terminal Count Using D Master-Slave Flip-Flops

Inputs Outputs
Current State Next State Output

Q3 Q2 Q1 Q0 Q3+ Q2+ Q1+ Q0+ TC
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 1 0
0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 0 1 0
0 1 0 1 0 1 1 0 0
0 1 1 0 0 1 1 1 0
0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 1 0
1 0 0 1 0 0 0 0 1
1 0 1 0 1 0 1 1 0
1 0 1 1 0 1 0 0 0
1 1 0 0 1 1 0 1 0
1 1 0 1 0 1 0 0 0
1 1 1 0 1 1 1 1 0
1 1 1 1 0 0 0 0 0

K-maps of the outputs are shown in Figure 4.35.

All Ds of the D flip-flops are equal to the corresponding next state. For
example, when the current state is 0101 (5), the next state is 0110 (6), and
D0 = 0, D1 = 1, D2 = 1, and D3 = 0. Applying K-maps (Figure 4.35) to
Table 4.11 gives:

 D0 = Q0

 D1 = Q3 Q1 Q0 + Q1 Q0

D2 = Q2 Q1 + Q2 Q0 + Q1Q0 Q2

 D3 = Q3 Q0 + Q0Q1Q2 Q3

 TC = Q0 Q1 Q2 Q3

STRUCTURAL DESCRIPTION • 209

From the Boolean functions, draw the logic diagram of the counter.
Figure 4.36 shows the logic diagram of the counter. Listing 4.26 shows the
HDL code for the counter.

Q D

Q

Q3Q3 D3

D-FF3

Q D

Q

Q2Q2 D2

D-FF2

Q D

Q

Q1Q1 D1

D-FF1

Q D

Q

Q0Q0

D-FF0

Q3 Q0

Q0

D1

Q0Q1Q0Q0 Q2
Q2Q1Q2

Q1
Q1

D2

Q0
Q2

Q1

D3

Q3 Q3

TC

Q0

Q3 Q1

Q2

FIGURE 4.36 Logic diagram of a decade counter.

Q1Q0

Q3Q2

00

01

11

10

10110100

D0

1 0 0 1

1 0

0

0 1

1

1

0 0

0

1

1

Q1Q0

Q3Q2

00

01

11

10

10110100

D1

0 1 0 1

0 1

0

0 1

0

0

0 0

0

1

1

Q1Q0

Q3Q2

00

01

11

10

10110100

D2

0 0 1 0

1 1

0

0 1

1

0

1 0

1

1

0

Q1Q0

Q3Q2

00

01

11

10

10110100

D3

0 0 0 0

0 0

0

1 0

1

1

0 0

0

1

1

FIGURE 4.35 K-maps for a decade counter. All “don’t cares” have been assigned 0 or 1 to yield
to minimum components.

210 • HDL WITH DIGITAL DESIGN

LISTING 4.26 HDL Description of a Three-Bit Synchronous Decade Counter
with Terminal Count: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity decade_ctr is
 port (clk, clr : in std_logic;
 Q, Qbar : buffer std_logic_vector (3 downto 0);
 TC : buffer std_logic);
end decade_ctr;

architecture decade_str of decade_ctr is
--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer.
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
component buf
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component and3
port (I1, I2, I3 : in std_logic;
 O1 : buffer std_logic);
end component;
component and4
port (I1, I2, I3, I4 : in std_logic;
 O1 : buffer std_logic);
end component;
component or2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component or3
port (I1, I2, I3 : in std_logic;
 O1 : buffer std_logic);
end component;

component D_FFMasterWclr
port (D, clk, clrbar : in std_logic;
 Q, Qbar : buffer std_logic);

STRUCTURAL DESCRIPTION • 211

end component;

for all : D_FFMasterWclr use entity
 work. D_FFMasterWclr (D_FF_str);
for all : inv use entity work.bind1 (inv_1);
for all : buf use entity work.bind1 (buf_1);
for all : and2 use entity work.bind2 (and2_4);
for all : and3 use entity work.bind3 (and3_4);
for all : and4 use entity work.bind4 (and4_4);
for all : or2 use entity work.bind2 (or2_4);
for all : or3 use entity work.bind3 (or3_4);
signal s : std_logic_vector (6 downto 0);
signal D : std_logic_vector (3 downto 0);
signal clrbar : std_logic;
begin
i1 : inv port map(clr, clrbar);
b1 : buf port map (Qbar(0), D(0));
DFF0 : D_FFMasterWclr port map (D(0), clk, clrbar,
 Q(0), Qbar(0));

--Assume AND gates and OR gates have 4 ns propagation
--delay and invert has 1 ns.
a1 : and3 port map (Qbar(3), Qbar(1), Q(0), s(0));
a2 : and2 port map (Q(1), Qbar(0), s(1));
r1 : or2 port map (s(0), s(1), D(1));
DFF1 : D_FFMasterWclr port map (D(1), clk, clrbar,
 Q(1), Qbar(1));

a3 : and2 port map (Q(2), Qbar(1), s(2));
a4 : and2 port map (Q(2), Qbar(0), s(3));
a5 : and3 port map (Q(1), Q(0), Qbar(2), s(4));
r2 : or3 port map (s(2), s(3), s(4), D(2));
DFF2 : D_FFMasterWclr port map (D(2), clk, clrbar,
 Q(2), Qbar(2));

a6 : and2 port map (Q(3), Qbar(0), s(5));
a7 : and4 port map (Q(0), Q(1), Q(2), Qbar(3), s(6));
r3 : or2 port map (s(5), s(6), D(3));
DFF3 : D_FFMasterWclr port map (D(3), clk, clrbar,
 Q(3), Qbar(3));
a8 : and4 port map (Q(0), Qbar(1), Qbar(2), Q(3), TC);

end decade_str;

212 • HDL WITH DIGITAL DESIGN

Verilog Description
module decade_ctr(clk, clrbar,Q, Qbar, TC);
input clk,clrbar;
//use clrbar input to clear the counter when simulting
output [3:0] Q, Qbar;
output TC;
wire [3:0] D;
wire [6:0] s;
buf #1 (D[0], Qbar[0]);

D_FFMasterWclr DFF0 (D[0], clk, clrbar, Q[0], Qbar[0]);
/Assume and gates and or gates have 4 ns propagation
delay and invert has 1 ns./

and #4 (s[0], Qbar[3], Qbar[1], Q[0]);
and #4 (s[1], Q[1], Qbar[0]);

or #4 (D[1], s[0], s[1]);
D_FFMasterWclr FF1 (D[1], clk, clrbar, Q[1], Qbar[1]);

and #4 (s[2],Q[2], Qbar[1]);
and #4 (s[3],Q[2], Qbar[0]);
and #4 (s[4],Q[1], Q[0], Qbar[2]);
or #4 (D[2], s[2], s[3], s[4]);
D_FFMasterWclr FF2 (D[2], clk,clrbar, Q[2], Qbar[2]);
and #4 (s[5], Q[3], Qbar[0]);
and #4 (s[6], Q[0], Q[1], Q[2], Qbar[3]);
or #4 (D[3], s[5], s[6]);
D_FFMasterWclr FF3 (D[3], clk,clrbar, Q[3], Qbar[3]);
and #4 (TC, Q[0], Qbar[1], Qbar[2], Q[3]);

endmodule

Figure 4.37 shows the simulation waveform of the decade counter.

TC

0 1 2 9 03 4 5 6 7 8 1Q

clk

FIGURE 4.37 Simulation waveform of the decade counter.

STRUCTURAL DESCRIPTION • 213

4.5 generate (HDL), generic (VHDL), and parameter (Verilog)

The predefined word generate is mainly used for repetition of concur-
rent statements. Its counterpart in behavioral description is the For-Loop,
and it can be used to replicate structural or gate-level description state-
ments. generate has several formats, one of which is covered here. See
Chapter 7 for more formats.

In VHDL, the format for the generate statement is:

L1 : for i in 0 to N generate
v1 : inv port map (Y(i), Yb(i));
--other concurrent statements can be entered here
end generate;

The above statement describes N + 1 inverters (assuming inv was de-
clared as an inverter component with input Y and output Yb). The input
to inverter is Y(i), and the output is Yb(i). L1 is a required label for the
generate statement.

An equivalent generate statement in Verilog is:

generate
genvar i;
for (i = 0; i <= N; i = i + 1)
begin : u
not (Yb[i], Y[i]);
end
endgenerate

The statement genvar i declares the index i of the generate state-
ment; genvar is a predefined word. U is a label for the predefined word
begin; and begin must have a label.

The words generic (in VHDL) and parameter (in Verilog) are used to
define global constants. The generic statement can be placed within en-
tity, component, or instantiation statements. The following generic VHDL
statement inside the entity declares N as a global constant of value 3:

entity compr_genr is
generic (N : integer := 3);
port (X, Y : in std_logic_vector (N downto 0);
 xgty, xlty, xeqy : buffer std_logic);

The following Verilog statement declares N as a global constant with a
value of 3:

214 • HDL WITH DIGITAL DESIGN

parameter N = 3;
input [N:0] X, Y;

The following examples cover generate, generic, and parameter.

EXAMPLE 4.18 STRUCTURAL DESCRIPTION OF (N+1)-BIT MAGNITUDE
COMPARATOR USING THE GENERATE STATEMENT

In Listing 4.16, a three-bit comparator has been described. In this sec-
tion, an (N+1)-bit comparator using the generate statement is introduced.
Listing 4.28 shows the HDL code for the (N+1)-bit comparator. Referring
to Listing 4.28, the following statements generate N+1 inverters, N+1 full
adders, and N+1 two-input and gates:

G1 : for i in 0 to N generate
v1 : inv port map (Y(i), Yb(i));
FA : full_adder port map (X(i), Yb(i),
carry(i), sum(i), carry(i+1));
a1 : and2 port map (eq(i), sum(i), eq(i+1));
end generate G1;

The following Verilog statements also generate N+1 inverters, N+1 full
adders, and N+1 two-input and gates:

generate
genvar i;
for (i = 0; i <= N; i = i + 1)
begin : u
not (Yb[i], Y[i]);
FULL_ADDER FA (X[i], Yb[i], carry [i], sum [i], carry[i+1]);
and (eq[i+1], sum[i], eq[i]);
end

LISTING 4.28 HDL Description of N-Bit Magnitude Comparator Using the
generate Statement: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity compr_genr is
generic (N : integer := 3);
 port (X, Y : in std_logic_vector (N downto 0);

STRUCTURAL DESCRIPTION • 215

 xgty, xlty, xeqy : buffer std_logic);
end compr_genr;

architecture cmpare_str of compr_genr is
--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer.

component full_adder
port (I1, I2, I3 : in std_logic;
 O1, O2 : buffer std_logic);
end component;
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
component nor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
signal sum, Yb : std_logic_vector (N downto 0);
signal carry, eq : std_logic_vector (N + 1 downto 0);

for all : full_adder use entity work.bind32 (full_add);
for all : inv use entity work.bind1 (inv_1);
for all : nor2 use entity work.bind2 (nor2_7);
for all : and2 use entity work.bind2 (and2_7);
begin
 carry(0) <= ‘0’;
 eq(0) <= ‘1’;

 G1 : for i in 0 to N generate
 v1 : inv port map (Y(i), Yb(i));
 FA : full_adder port map (X(i), Yb(i), carry(i),
 sum(i), carry(i+1));
 a1 : and2 port map (eq(i), sum(i), eq(i+1));
end generate G1;
xgty <= carry(N+1);
xeqy <= eq(N+1);
n1 : nor2 port map (xeqy, xgty, xlty);

end cmpare_str;

216 • HDL WITH DIGITAL DESIGN

Verilog Description
module Compr_genr(X, Y, xgty, xlty, xeqy);
parameter N = 3;
input [N:0] X, Y;
output xgty, xlty, xeqy;
wire [N:0] sum, Yb;
wire [N+1 : 0] carry, eq;
assign carry[0] = 1’b0;
assign eq[0] = 1’b1;

generate

genvar i;
for (i = 0; i <= N; i = i + 1)
 begin : u
 not (Yb[i], Y[i]);
/ The above statement is equivalent to assign Yb = ~Y if outside
the generate loop /

 FULL_ADDER FA(X[i], Yb[i], carry [i], sum [i], carry[i+1]);
 /be sure that the module FULL_ADDER
 is entered (attached) in the project/
 and (eq[i+1], sum[i], eq[i]);
 end
endgenerate
assign xgty = carry[N+1];
assign xeqy = eq[N+1];
nor (xlty, xeqy, xgty);

endmodule

EXAMPLE 4.19 STRUCTURAL DESCRIPTION OF AN N-BIT ASYNCHRONOUS
DOWN COUNTER USING THE GENERATE STATEMENT

Asynchronous counters differ from synchronous counters in the way
the clock is connected to each flip-flop. In synchronous counters, all flip-
flops are driven by the same clock. In asynchronous counters, each flip-flop
may be driven by a different clock. Figure 4.38 shows an n-bit asynchro-
nous counter using JK flip-flops. The clock of the first flip-flop is the main
clock. The clock of the second flip-flop is the output of the first JK flip-flop.
This pattern is repeated where the clock of the ith flip-flop is driven by the
output of (i–1)th flip-flop.

STRUCTURAL DESCRIPTION • 217

Q

Q

Qn

J

K
1

Q

Q

Q2

J

K
1

Q

Q

Q0

J

K
1

clk

Q

Q

Q1

J

K
1

FIGURE 4.38 Logic diagram of n-bit asynchronous down counter.

Asynchronous counters suffer more from hazards than synchronous
counters. This is due to the way the clock of each flip-flop is connected.
Each flip-flop has to wait until the output of the preceding flip-flop settles.
During the period before the flip-flop settles, there will be transient states.
Listing 4.29 shows the HDL code for an n-bit asynchronous counter. To
use generate effectively, the n flip-flops should be described by a general
statement that will be replicated. All flip-flops, except the first, have a re-
peated pattern: the clock of the ith flip-flop is the output of the (i–1)th. To
bring the first flip-flop into this pattern, concatenate the clock and the Qs
of all flip-flops in one vector, S, that represents all the clocks:

s <= (Q & clk); --VHDL
assign s = {Q, clk}; //Verilog

LISTING 4.29 HDL Description of an N-Bit Asynchronous Down Counter Us-
ing generate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity asynch_ctr is
Generic (N : integer := 3);

-- This is a 3-bit counter. If a different number of
-- bits is needed, simply change the
-- value of N here only.
 port (clk, clrbar : in std_logic;
 Q, Qbar : buffer std_logic_vector (N-1 downto 0));

end asynch_ctr;

architecture CT_strgnt of asynch_ctr is
--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer.

218 • HDL WITH DIGITAL DESIGN

component JK_FLFL
port (J, K, clk, clrbar : in std_logic;
 Q, Qbar : buffer std_logic);
end component;

for all : JK_FLFL use entity work.
 JK_FLFL (JK_Master);

-- For bind32, see Listing 4.17a

signal h, l : std_logic;
signal s : std_logic_vector (N downto 0);
begin
h <= ‘1’;
l <= ‘0’;
s <= (Q & clk);

-- s is the concatenation of Q and clk. We need
-- this concatenation to
-- describe the clock of each JK flip-flop.
Gnlop : for i in (N-1) downto 0 generate

G1 : JK_FLFL port map (h, h, s(i), clrbar,
 Q(i), Qbar(i));
end generate GnLop;
end CT_strgnt;

Verilog Description
module asynch_ctr(clk,clrbar, Q, Qbar);

parameter N = 3;
/ This is a 3-bit counter. If a different number of
bits is needed, simply change the value
of N here only./

input clk, clrbar;
output [N-1:0] Q, Qbar;
wire [N:0] s;
assign s = {Q, clk};
/ s is the concatenation of Q and clk.
 This concatenation is needed to describe the clock
 of each JK flip-flop. /

STRUCTURAL DESCRIPTION • 219

 generate
 genvar i;
 for (i = 0; i < N; i = i + 1)

 begin : u

 JK_FF JKFF0 (1’b1, 1’b1, s[i],clrbar, Q[i],
 Qbar[i]);
 // JK_FF is as shown in Listing 4.17b
 end
 endgenerate

endmodule

Figure 4.39 shows the simulation waveform of the counter with N = 3.
The waveform may contain several transient states.

0 7 6 7 65 4 3

Transient
states

2 1 0 5Q

clk

FIGURE 4.39 Simulation waveform of n-bit asynchronous down counter (n = 3).

EXAMPLE 4.20 STRUCTURAL DESCRIPTION OF AN N-BIT MEMORY WORD
USING GENERATE

In Listing 4.21, a single memory cell is described. The cell here is ex-
panded to n bits using the generate statement. Listing 4.30 shows the HDL
code for the n-bit memory word. Referring to Listing 4.30, the VHDL
statements

G1 : for i in 0 to N generate
M : memory_cell port map (sel, R_W, Data_in(i),
Data_out(i));
end generate;

and the Verilog statements

generate
genvar i;
for (i = 0; i <= N; i = i + 1)
begin : u
memory M1 (sel, R_W, Data_in [i], Data_out[i]);
end
endgenerate

220 • HDL WITH DIGITAL DESIGN

replicate the memory cell designed in Listing 4.29 n times.

LISTING 4.30 HDL Description of N-Bit Memory Word Using generate:
VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Memory_word is
Generic (N : integer := 7);
 port (Data_in : in std_logic_vector (N downto 0);
 sel, R_W : in std_logic; Data_out : out
 std_logic_vector (N downto 0));
end Memory_word;

architecture Word_generate of Memory_word is
component memory_cell
Port (Sel, RW, Din : in std_logic;
 O1 : buffer std_logic);
end component;

for all : memory_cell use entity
 work.memory (memory_str);
begin
G1 : for i in 0 to N generate
M : memory_cell port map (sel, R_W, Data_in(i),
 Data_out(i));
end generate;
end Word_generate;

Verilog Description
module Memory_Word (Data_in, sel, R_W, Data_out);

parameter N = 7;
input [N:0] Data_in;
input sel, R_W;
output [N:0] Data_out;

generate
genvar i;
for (i = 0; i <= N; i = i + 1)
begin : u

STRUCTURAL DESCRIPTION • 221

memory M1 (sel, R_W, Data_in [i], Data_out[i]);

end

endgenerate
endmodule

LISTING 4.31 VHDL Code for Components Used for Binding in Chapter 4

--Some simulators will not allow mapping between
--buffer and out. In this
--case, change all out to buffer as it is done here.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bind1 is
port (O1 : buffer std_logic; I1 : in std_logic);
end bind1;
architecture inv_0 of bind1 is
begin
O1 <= not I1;
end inv_0;
architecture inv_1 of bind1 is
begin
O1 <= not I1 after 1 ns;
end inv_1;

architecture inv_7 of bind1 is
begin
O1 <= not I1 after 7 ns;
end inv_7;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity bind2 is
port (O1 : buffer std_logic; I1, I2 : in std_logic);
end bind2;

architecture xor2_0 of bind2 is
begin
O1 <= I1 xor I2;
end xor2_0;
architecture and2_0 of bind2 is
begin

222 • HDL WITH DIGITAL DESIGN

O1 <= I1 and I2;
end and2_0;
architecture and2_4 of bind2 is
begin
O1 <= I1 and I2 after 4 ns;
end and2_4;

architecture and2_7 of bind2 is
begin
O1 <= I1 and I2 after 7 ns;
end and2_7;

architecture or2_0 of bind2 is
begin
O1 <= I1 or I2;
end or2_0;

architecture or2_7 of bind2 is
begin
O1 <= I1 or I2 after 7 ns;
end or2_7;

architecture nor2_0 of bind2 is
begin
O1 <= I1 nor I2;
end nor2_0;

architecture nor2_7 of bind2 is
begin
O1 <= I1 nor I2 after 7 ns;
end nor2_7;

architecture nor2_4 of bind2 is
begin
O1 <= I1 nor I2 after 4 ns;
end nor2_4;

architecture bufif1 of bind2 is
begin
buf : process (I1, I2)
variable tem : std_logic;
begin

STRUCTURAL DESCRIPTION • 223

if (I2 =’1’)then
tem := I1;
else
tem := ‘Z’;
end if;
O1 <= tem;
end process buf;
end bufif1;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bind3 is
port (O1 : buffer std_logic;
I1, I2, I3 : in std_logic);
end bind3;

architecture and3_0 of bind3 is
begin
O1 <= I1 and I2 and I3;
end and3_0;

architecture and3_4 of bind3 is
begin
O1 <= I1 and I2 and I3 after 4 ns;
end and3_4;

architecture and3_7 of bind3 is
begin
O1 <= I1 and I2 and I3 after 7 ns;
end and3_7;

architecture or3_0 of bind3 is
begin
O1 <= I1 or I2 or I3;
end or3_0;

architecture or3_7 of bind3 is
begin
O1 <= I1 or I2 or I3 after 7 ns;
end or3_7;

library IEEE;

224 • HDL WITH DIGITAL DESIGN

use IEEE.STD_LOGIC_1164.ALL;
entity bind22 is
Port (O1, O2 : buffer std_logic;
I1, I2 : in std_logic);
end bind22;

architecture HA of bind22 is
component xor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
for A1 : and2 use entity work.bind2 (and2_0);
for X1 : xor2 use entity work.bind2 (xor2_0);
 begin
 X1 : xor2 port map (I1, I2, O1);
 A1 : and2 port map (I1, I2, O2);
 end HA;

architecture SR_Latch of bind22 is
component nor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
for all : nor2 use entity work.bind2 (nor2_0);

begin
n1 : nor2 port map (I1, O1, O2);
n2 : nor2 port map (I2, O2, O1);
end SR_Latch;

architecture D_latch of bind22 is
component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component nor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
for all : and2 use entity work.bind2 (and2_4);

STRUCTURAL DESCRIPTION • 225

for all : nor2 use entity work.bind2 (nor2_4);
for all : inv use entity work.bind1 (inv_1);
signal I2b, s1, s2 : std_logic;
begin
a1 : and2 port map (I1, I2, s1);
a2 : and2 port map (I2b, O1, s2);
in1 : inv port map (I2, I2b);
in2 : inv port map (O2, O1);
n2 : nor2 port map (s1, s2, O2);
end D_latch;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bind32 is
port (I1, I2, I3 : in std_logic;
O1, O2 : buffer std_logic);

end bind32;

architecture full_add of bind32 is
component HA
port (I1, I2 : in std_logic;
 O1, O2 : buffer std_logic);
end component;
component or2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
for all : HA use entity work.bind22 (HA);
for all : or2 use entity work.bind2 (or2_0);
signal s0, c0, c1 : std_logic;

begin
HA1 : HA port map (I2, I3, s0, c0);
HA2 : HA port map (I1, s0, O1, c1);
r1 : or2 port map (c0, c1, O2);
end full_add;

architecture D_latch_Wclr of bind32 is
component and3
port (I1, I2, I3 : in std_logic;
 O1 : buffer std_logic);
end component;

226 • HDL WITH DIGITAL DESIGN

component nor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
for all : and3 use entity work.bind3 (and3_4);
for all : nor2 use entity work.bind2 (nor2_4);
for all : inv use entity work.bind1 (inv_1);
signal I2b, s1, s2 : std_logic;
begin
a1 : and3 port map (I1, I2, I3, s1);
a2 : and3 port map (I2b, O1,I3, s2);
in1 : inv port map (I2, I2b);
in2 : inv port map (O2, O1);
n2 : nor2 port map (s1, s2, O2);
end D_latch_Wclr;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity D_LatchWclr is
port (D, E,clrbar : in std_logic;
 Q, Qbar : buffer std_logic);
end;

architecture D_latch_str of D_LatchWclr is
component and3
port (I1, I2, I3 : in std_logic;
 O1 : buffer std_logic);
end component;
component nor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
for all : and3 use entity work.bind3 (and3_4);
for all : nor2 use entity work.bind2 (nor2_4);
for all : inv use entity work.bind1 (inv_1);
signal Eb, s1, s2 : std_logic;
begin
a1 : and3 port map (D, E, clrbar, s1);

STRUCTURAL DESCRIPTION • 227

a2 : and3 port map (Eb, D,clrbar, s2);
in1 : inv port map (E, Eb);
in2 : inv port map (Qbar, Q);
n2 : nor2 port map (s1, s2, Qbar);
end D_latch_str;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity D_FFMasterWclr is
Port (D, clk, clrbar : in std_logic;
 Q, Qbar : buffer std_logic);
end D_FFMasterWclr ;

architecture D_FF_str of D_FFMasterWclr is
component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;
component D_latchWclrbar
port (I1, I2, I3 : in std_logic;
 O1, O2 : buffer std_logic);
end component;
for all : D_latchWclrbar use entity
 work. bind32(D_latch_Wclr);
for all : inv use entity work.bind1 (inv_1);
signal clkb, clk2, Q0, Qb0 : std_logic;
begin
D0 : D_latchWclrbar port map (D, clkb,clrbar, Q0, Qb0);
D1 : D_latchWclrbar port map (Q0, clk2, clrbar, Q,
Qbar);
in1 : inv port map (clk, clkb);
in2 : inv port map (clkb, clk2);
end D_FF_str;

4.6 Summary

In this chapter, the fundamentals of structural description have been
covered. Gate-level description was discussed and implemented to build
more complex structures (macros). Verilog has built-in gates such as and,
or, nand, nor, and buf. Basic VHDL does not have built-in gates, but
these gates can be built by using the predefined word component and

228 • HDL WITH DIGITAL DESIGN

binding it to written behavioral descriptions. Both VHDL and Verilog have
the predefined command generate for replicating structural macros. Table
4.11 shows a list of the VHDL statements covered in this chapter, along
with their Verilog counterparts (if any).

TABLE 4.11 Summary of VHDL Statements and Their Verilog Counterparts

VHDL Verilog
generate generate

port map Built in
and2, or2, xor2, nor2, and, or, xor, nor,

xnor2, inv xnor, not

(The above VHDL gates are user-built)
use library Built in

4.7 Exercises

1. Design a four-bit parity generator. The output is 0 for even parity and 1
for odd parity. Write both the VHDL and Verilog codes.

2. Design a counter that counts 0, 1, 3, 6, 7, 0, 1… using the state-machine
approach. Show all details of your answer. Write both the VHDL and
Verilog codes.

3. Referring to Listing 4.26 (Verilog), change the count from down to up
and rewrite the code.

4. Translate the VHDL code shown in Listing 4.32 to Verilog. What is the
logic function of the system?

LISTING 4.32 Code for Exercise 4.4

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity system is
Port (a, b, c : in std_logic;
 d, e : buffer std_logic);
end system;

architecture prob_6 of system is
component xor2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;

STRUCTURAL DESCRIPTION • 229

component and2
port (I1, I2 : in std_logic; O1 : buffer std_logic);
end component;

component or3
port (I1, I2, I3 : in std_logic;
O1 : buffer std_logic);

end component;

component inv
port (I1 : in std_logic; O1 : buffer std_logic);
end component;

for all : xor2 use entity work.bind2 (xor2_0);
for all : and2 use entity work.bind2 (and2_0);
for all : inv use entity work.bind1 (inv_0);
for all : or3 use entity work.bind3 (or3_0);
signal s1, s2, s3, s4, abar, bbar, cbar : std_logic;
begin
x1 : xor2 port map (a, b, s1);
x2 : xor2 port map (s1, c, d);
c1 : inv port map (a, abar);
c2 : inv port map (b, bbar);
c3 : inv port map (a, cbar);
a1 : and2 port map (abar, b, s2);
a2 : and2 port map (abar, c, s3);
a3 : and2 port map (b, c, s4);
r1 : or3 port map (s2, s3, s4, e);
end prob_6;

5. Construct a two-digit decade counter that counts from 0 to 99. Use the
module of the decade counter in Listing 4.26. Write both the VHDL
and Verilog codes. (Hint: use the terminal count, TC, to cascade the
decade counters.)

6. Write VHDL description for the universal shift register discussed in
Example 4.13.

7. Repeat Example 4.14 using D flip-flops.

8. Repeat Example 4.16 using D flip-flops.

9. Use generate and parameter to write a Verilog code for an n-bit
subtractor.

C H A P T E R

SWITCH-LEVEL DESCRIPTION

5
Chapter Objectives

 Understand the concept of describing and simulating digital
systems using transistors

 Identify the basic statements of switch-level description in Verilog,
such as nmos, pmos, cmos, supply1, supply0, tranif0, tran,
and tranif0

 Develop a counterpart VHDL switch-level package that matches the
switch-level functions of the Verilog description

 Review and understand the fundamentals of transistors and how
they can be implemented as switches

 Review Boolean functions for combinational circuits

5.1 Highlights of Switch-Level Description

Highlights of the switch-level description can be summarized in the
following facts.

Facts

 Switch-level description implements switches (transistors) to describe
relatively small-scale digital systems.

 Switch-level description is usually implemented in very-large-scale inte-
grated (VLSI) circuit layouts.

232 • HDL WITH DIGITAL DESIGN

 Switch-level description is the lowest HDL logic level that can be used
to simulate digital systems.

 Only small-scale systems can be simulated using pure switch-level
description. If the system is not small, a huge number of switches are
needed, which may render the simulation impractical.

 Switch-level description is routinely used along with other types of mod-
eling to describe digital systems.

 The switches used in this chapter are assumed to be perfect; they are
either open (high impedance) or closed (zero impedance).

 In contrast to Verilog, basic VHDL does not have built-in statements
such as nmos, pmos, and cmos. To use these statements in VHDL, user-
built packages must be developed or supplied by the vendor.

Before discussing the HDL code for transistor-level description, let’s
review some facts

5.2 Useful Definitions

 MOS: Metal oxide semiconductor.

 N-type semiconductor: The free carriers are negatively charged
electrons.

 P-type semiconductor: The free carriers are positively charged holes.

 Valence electrons: Electrons in the outer shell of an atom that can
interact with the valence electrons of another atom.

5.3 Single NMOS and PMOS Switches

Figure 5.1a shows a single N-Channel MOS (NMOS) switch, and
Figure 5.1b shows a single P-Channel MOS (PMOS) switch. The switch
has three signals: drain, gate, and source. If the gate is at logic 1, then the
NMOS is closed (ON), and the PMOS is open (OFF). If the gate is at logic
0, then the NMOS is open (OFF), and the PMOS is closed (ON).

SWITCH-LEVEL DESCRIPTION • 233

Gate

Drain

Source

 

Gate

Drain

Source

 (a) (b)
FIGURE 5.1 MOS switch. a) NMOS. b) PMOS.

5.3.1 Verilog Description of NMOS and PMOS Switches
Verilog has built-in code for NMOS and PMOS switches. In Verilog,

there are four logical levels: 1, 0, X (“don’t care”), and Z (high impedance).
Table 5.1a shows the relationship between the drain, source, and gate of a
NMOS switch, and Table 5.1b shows the same for a PMOS switch.

TABLE 5.1A Relationship Between Source, Drain, and Gate in NMOS Switches

Gate

Drain

0 1 X Z
0 Z 0 L L
1 Z 1 H H
X Z X X X
Z Z Z Z Z

TABLE 5.1B Relationship Between Source, Drain, and Gate in PMOS Switches

Gate

Drain

0 1 X Z
0 0 Z L L
1 1 Z H H
X X Z X X
Z Z Z Z Z

For an NMOS switch, the Verilog code is:

nmos n1 (drain, source, gate) //The switch name “n1” is optional.

234 • HDL WITH DIGITAL DESIGN

The code can be written as:

nmos n1 (O1, I1, I2);

For the PMOS switch, the Verilog code is:

pmos p1 (drain, source, gate) //The switch name “p1” is optional.

or the code can be written as:

pmos p1 (O1, I1, I2);

5.3.2 VHDL Description of NMOS and PMOS Switches

Basic VHDL does not have built-in descriptions for NMOS or NMOS
switches. Switches are built using behavioral description. Listing 5.1 shows
the code, which does not include any consideration of delay times.

LISTING 5.1 VHDL Behavioral Code for NMOS and PMOS Switches

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity mos is
 Port (O1 : out std_logic; I1, I2 : in std_logic);
end mos;

architecture nmos_behavioral of mos is

-- All switches presented here do not include any
-- time parameters, such as rise time and fall time.
-- They only mimic the logical functions of their
-- Verilog counterparts.

begin
switch : process (I1, I2)
variable temp : std_logic;
begin
case I2 is
when ‘0’=> temp := ‘Z’;
when ‘1’ => temp := I1;
when others => case I1 is
 when ‘0’ => temp := ‘L’;
 when ‘1’ => temp := ‘H’;
 when others => temp := I1;

SWITCH-LEVEL DESCRIPTION • 235

 end case;
end case;
O1 <= temp;
end process switch;
end nmos_behavioral;
architecture pmos_behavioral of mos is

begin
switch : process (I1, I2)
variable temp : std_logic;
begin

case I2 is
when ‘1’=> temp := ‘Z’;
when ‘0’ => temp := I1;
when others => case I1 is
 when ‘0’ => temp := ‘L’;
 when ‘1’ => temp := ‘H’;
 when others => temp := I1;
 end case;
end case;
O1 <= temp;
end process switch;
end pmos_behavioral;

To write the NMOS and PMOS codes as components, bind the entity
of Listing 5.1 to a component statement. Listing 5.2 shows such binding.

LISTING 5.2 VHDL Code for NMOS and PMOS Switches as Components

architecture nmos of mos is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral);
for all : nmos use entity work.mos (nmos_behavioral);

236 • HDL WITH DIGITAL DESIGN

5.3.3 Serial and Parallel Combinations of Switches
Consider two NMOS switches connected in serial as shown in

Figure 5.2a. Assume the gates g1 and g2 can only take logic 0 or logic 1. If
g1 or g2 is at 0, then the path between y and d is open (OFF). If g1 and g2
are at 1, then the path between y and d is closed (ON), and y = d.

g1

d

y

g2

 

g1

d

y

g2

 

g1g2

d

y

 

g1g2

d

y

 (a) (b) (c) (d)
FIGURE 5.2 Combination of switches. a) Two NMOS switches in serial.
b) Two PMOS switches in serial. c) Two NMOS switches in parallel.
d) Two PMOS switches in parallel.

Table 5.2a summarizes the relationship between y, d, g1, and g2.

TABLE 5.2A Two NMOS Switches Connected in Serial (Figure 5.2a)

g1 g2 y
1 1 d
0 1 Z
1 0 Z
0 0 Z

Now, consider two PMOS switches connected in serial (Figure 5.2b).
The path between y and d is closed (ON) only when both g1 and g2 are at
0; at this instant, y = d. The path is open (OFF) if g1 or g2 is at 1. Table 5.2b
summarizes the relationship between y and d.

TABLE 5.2B Two PMOS Switches Connected in Serial (Figure 5.2b)

g1 g2 y
1 1 Z
0 1 Z
1 0 Z
0 0 d

SWITCH-LEVEL DESCRIPTION • 237

When two NMOS switches are connected in parallel (Figure 5.2c), the
path between y and d is open only when both g1 and g2 are 0. Otherwise, it
is closed, and y = d, as shown in Table 5.2c

TABLE 5.2C Two NMOS Switches Connected in Parallel (Figure 5.2c)

g1 g2 y
1 1 d
0 1 d
1 0 d
0 0 Z

For two PMOS switches connected in parallel (Figure 5.2d), the path
between y and d is open only when both g1 and g2 are at 1. Otherwise, it is
closed, and y = d, as shown in Table 5.2d.

TABLE 5.2D Two PMOS Switches Connected in Parallel (Figure 5.2d)

g1 g2 y
1 1 Z
0 1 d
1 0 d
0 0 d

5.4 Switch-Level Description of Primitive Gates

This section describes the design of primitive gates from switches (tran-
sistors). The approach here is a simple one, but it may yield a greater num-
ber of transistors. Tables 5.2a–d are used to build the gate from a combina-
tion of switches. After constructing the switches, the code is written using
Listings 5.1 and 5.2.

EXAMPLE 5.1 SWITCH-LEVEL DESCRIPTION OF AN INVERTER

The truth table of the inverter is shown in Table 5.3.

TABLE 5.3 Truth Table for an Inverter

Input Output
a y
0 1
1 0

238 • HDL WITH DIGITAL DESIGN

For any switch circuit, level 1 is represented by the power
supply voltage (vdd), and level 0 is represented by the ground
(gnd). To design the inverter, two complementary switches
are needed: one to pull y down to 0 (gnd) and the other to pull
y up to 1 (vdd). Figure 5.3 shows this connection.

The HDL code is shown in Listing 5.3, and the state-
ment

pmos port map (y, vdd, a);

represents a PMOS switch with source y, drain vdd, and gate
a. In the Verilog statements

supply1 vdd;
supply0 gnd;

supply1 and supply0 are predefined words that represent high voltage
and ground, respectively. In VHDL, these two voltage levels are created by
using constant declaration statements:

constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;

LISTING 5.3 HDL Code for an Inverter: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Inverter is
 port (y : out std_logic; a : in std_logic);
end Inverter;

architecture Invert_switch of Inverter is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral);
for all : nmos use entity work.mos (nmos_behavioral);
constant vdd : std_logic := ‘1’;

a

gnd

vdd

y

FIGURE 5.3 An inverter.

SWITCH-LEVEL DESCRIPTION • 239

constant gnd : std_logic := ‘0’;
begin
p1 : pmos port map (y, vdd, a);
n1 : nmos port map (y, gnd, a);
end Invert_switch;

Verilog Description
module invert (y, a);
input a;
output y;
supply1 vdd; /supply1 is a predefined word for the
 high voltage./
supply0 gnd; /supply0 is a predefined word for the
 ground./
pmos p1 (y, vdd, a); /the name “p1” is optional; it
 can be omitted./
nmos n1 (y, gnd, a); /the name “n1” is optional; it can
 be omitted. /
endmodule

EXAMPLE 5.2 SWITCH-LEVEL DESCRIPTION OF A TWO-INPUT AND GATE

In this example, a two-input AND gate is described. The truth table of
the two-input AND gate is shown in Table 5.4.

TABLE 5.4 Truth Table for a Two-Input AND Gate

Input Output
a b y
0 0 0
1 0 0
0 1 0
1 1 1

From Table 5.4, two switch combinations are
needed: one to pull y up to vdd only when both gates
of the combination are at level 1 (Table 5.2a satisfies
this requirement), and another combination to pull y
to ground whenever one of the gates is at level 0 (Ta-
ble 5.2b satisfies this requirement). The final design is
composed of two serial NMOS switches and two paral-
lel PMOS switches. Figure 5.4 shows the switch-level

a

b

gnd

vdd

y

FIGURE 5.4 Switch-level
logic diagram of an AND
gate with week output.

240 • HDL WITH DIGITAL DESIGN

diagram of the AND gate. The design here will yield to week output, see
Example 5.6 for details.

From Figure 5.4, write the HDL code. Listing 5.4 shows the HDL
code of a two-input AND gate.

LISTING 5.4 HDL Code for a Two-Input AND Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity and2gate is
 port (y : out std_logic; a, b : in std_logic);
end and2gate;

architecture and_switch of and2gate is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral);
for all : nmos use entity work.mos (nmos_behavioral);
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1 : std_logic;
begin

n1 : nmos port map (s1, vdd, a);
n2 : nmos port map (y, s1, b);
p1 : pmos port map (y, gnd, a);
p2 : pmos port map (y, gnd, b);
end and_switch;

Verilog Description
module and2gate (y, a, b);
input a, b;
output y;
supply1 vdd;

SWITCH-LEVEL DESCRIPTION • 241

supply0 gnd;

nmos (s1, vdd, a);
nmos (y, s1, b);
pmos (y, gnd, a);
pmos (y, gnd, b);
endmodule

As shown in Figure 5.4, the PMOS switches pull y down to ground
level, and the NMOS switches pull y up to vdd level. This arrangement re-
sults in degraded output and should be avoided. When cascaded, degraded
outputs can deteriorate the final outputs and render them unrecognizable.
To generate strong outputs, the NMOS switches should pull the output
down to ground, and the PMOS switches should pull the output up to vdd.
To design a switch-level AND gate with strong output, a different approach
should be followed (see Section 5.5).

EXAMPLE 5.3 SWITCH-LEVEL DESCRIPTION OF A TWO-INPUT OR GATE

In this example, a two-input OR gate is designed. The truth table of a
two-input OR gate is shown in Table 5.5.

TABLE 5.5 Truth Table for a Two-Input OR Gate

Input Output
a b y
0 0 0
1 0 1
0 1 1
1 1 1

From the table, notice that to design switch-level circuits for the OR
gate, two complementary combinations are needed (see Table 5.2). The
first combination pulls y down to ground level only when both gates are
at level 0 (Table 5.2b satisfies this requirement). The second combination
pulls y up to vdd when either g1 or g2 is at level 1 (Table 5.2c satisfies this
requirement). The switch-level OR gate consists of two complementary
combinations: two serial PMOS switches and two parallel NMOS switches.
Figure 5.5 shows the switch-level diagram of a two-input OR gate.

242 • HDL WITH DIGITAL DESIGN

a

b

gnd

vdd

y

FIGURE 5.5 Switch-level logic diagram of an OR gate.

From Figure 5.5, the HDL code is written using the macros pmos and
nmos. Listing 5.5 shows the HDL code of the switch-level two-input OR
gate.

LISTING 5.5 HDL Code of a Two-Input OR Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity or2gate is
 port (y : out std_logic; a, b : in std_logic);
end or2gate;

architecture or_switch of or2gate is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral);
for all : nmos use entity work.mos (nmos_behavioral);
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1 : std_logic;
begin

SWITCH-LEVEL DESCRIPTION • 243

n1 : nmos port map (y, vdd, a);
n2 : nmos port map (y, vdd, b);
p1 : pmos port map (y, s1, a);
p2 : pmos port map (s1, gnd, b);
end or_switch;

Verilog Description
module OR2gate (a, b, y);

input a, b;
output y;

supply1 vdd;
supply0 gnd;

nmos (y, vdd, a);
nmos (y, vdd, b);
pmos (y, s1, a);
pmos (s1, gnd, b);
endmodule

As shown in Figure 5.5, the PMOS switches pull y down to ground lev-
el, and the NMOS switches pull y up to vdd level. This arrangement results
in degraded outputs and should be avoided. Degraded outputs, when cas-
caded, can deteriorate the final outputs and render them unrecognizable.
To generate strong outputs, the NMOS switches should pull the output
down to ground, and the PMOS switches should pull the output up to vdd.
If we want to design a switch-level OR gate with strong output, we should
follow a different approach (see Section 5.5).

EXAMPLE 5.4 SWITCH-LEVEL DESCRIPTION OF A TWO-INPUT NAND GATE

In this example, a switch-level NAND two-input gate is designed. The
truth table of the two-input NAND gate is shown in Table 5.6.

TABLE 5.6 Truth Table for a Two-Input NAND Gate

Input Output

a b y
0 0 1
1 0 1
0 1 1
1 1 0

244 • HDL WITH DIGITAL DESIGN

Referring to Table 5.6, the gate can be designed using
two complementary switch combinations (see Table 5.2).
The first combination pulls y up to vdd when either of
the two switch gates is at level 0 (Table 5.2d satisfies this
requirement). The second combination pulls y down to
ground level only when both gates are at level 1 (Table 5.2a
satisfies this requirement). The final design consists of
two complementary combinations: two parallel PMOS
switches and two serial NMOS switches. Figure 5.6 shows
the switch-level logic diagram of an NAND gate.

From Figure 5.6, write the HDL code. Listing 5.6
shows the HDL code of the NAND gate using the two
macros pmos and nmos.

LISTING 5.6 HDL Code for a Two-Input NAND Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity nand2gate is
 port (y : out std_logic; a, b : in std_logic);
end nand2gate;

architecture nand_switch of nand2gate is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral);
for all : nmos use entity work.mos (nmos_behavioral);
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1 : std_logic;
begin
n1 : nmos port map (s1, gnd, b);
n2 : nmos port map (y, s1, a);

a

b

gnd

vdd

y

FIGURE 5.6 Switch-level
logic diagram of an NAND
gate.

SWITCH-LEVEL DESCRIPTION • 245

p1 : pmos port map (y, vdd, a);
p2 : pmos port map (y, vdd, b);
end nand_switch;

Verilog Description
module NAND2gate (a, b, y);
input a, b;
output y;
supply1 vdd;
supply0 gnd;
nmos (s1, gnd, b);
nmos (y, s1, a);
pmos (y, vdd, a);
pmos (y, vdd, b);
endmodule

EXAMPLE 5.5 SWITCH-LEVEL DESCRIPTION OF A TWO-INPUT NOR GATE

Here, a switch-level two-input NOR gate is designed. The truth table of
the two-input NOR gate is shown in Table 5.7.

TABLE 5.7 Truth Table for a Two-Input NOR Gate

Input Output
a b y
0 0 1
1 0 0
0 1 0
1 1 0

Referring to Table 5.7, we can design the gate us-
ing two complementary switch combinations (see Ta-
ble 5.2). The first combination pulls y up to vdd when
the gate levels of both switches are at 0 (Table 5.2b
satisfies this requirement). The second combination
pulls y down to ground level when either switch gate
is at level 1 (Table 5.2c satisfies this requirement).
The final design consists of two complementary com-
binations: two serial PMOS switches and two parallel
NMOS switches. Figure 5.7 shows the switch-level
logic diagram of the NOR gate.

a

b

gnd

vdd

y

FIGURE 5.7 Switch-level
logic diagram of an NOR
gate.

246 • HDL WITH DIGITAL DESIGN

From Figure 5.7, write the HDL code. Listing 5.7 shows the HDL
code of the NOR gate using the two macros pmos and nmos.

LISTING 5.7 HDL Code for a Two-Input NOR Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity nor2gate is
 port (y : out std_logic; a, b : in std_logic);
end nor2gate;

architecture nor_switch of nor2gate is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral);

for all : nmos use entity work.mos (nmos_behavioral);
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1 : std_logic;
begin

n1 : nmos port map (y, gnd, a);
n2 : nmos port map (y, gnd, b);
p1 : pmos port map (s1, vdd, a);
p2 : pmos port map (y, s1, b);
end nor_switch;

Verilog Description
module nor2gate (a, b, y);
input a, b;
output y;
supply1 vdd;
supply0 gnd;
nmos (y, gnd, a);

SWITCH-LEVEL DESCRIPTION • 247

nmos (y, gnd, b);
pmos (s1, vdd, a);
pmos (y, s1, b);
endmodule

5.5 Switch-Level Description of Simple Combinational Logics

In this section, simple combinational circuits will be designed using
single PMOS and NMOS switches. The same logic is implemented as in
Section 5.4, where Table 5.2 was used to come up with switch-level logics.
Unless otherwise mentioned, all switch-level circuits here are designed to
produce strong outputs (i.e., the output is either the ground or the vdd).

EXAMPLE 5.6 SWITCH-LEVEL DESCRIPTION OF A TWO-INPUT AND GATE
WITH STRONG OUTPUT

As mentioned in Section 5.4, to
produce strong output, the NMOS
switches should pull the output
down to ground, and the PMOS
should pull the output up to vdd.
The design of NAND, invert, and
NOR systems discussed in Section
5.4 satisfy this requirement. One ap-
proach is to convert the AND gate
to a NAND and inverter. Figure 5.8
shows a switch-level logic diagram
of an AND gate constructed from a
NAND gate and an inverter.

Listing 5.8 shows the HDL
code for the AND gate. The code is
longer than that of Listing 5.4, but it
should produce strong outputs.

LISTING 5.8 HDL Code for a Two-Input AND Gate with Strong Output:
VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

a

b

gnd

y
y1

vdd

FIGURE 5.8 Switch-level logic diagram of an AND
gate constructed from an NAND gate and
an inverter.

248 • HDL WITH DIGITAL DESIGN

entity and2Sgate is
 port (y : out std_logic; a, b : in std_logic);
end and2Sgate;
architecture and_strong of and2Sgate is

component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;
for all : pmos use entity work.mos (pmos_behavioral);
for all : nmos use entity work.mos (nmos_behavioral);
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1, y1 : std_logic;
begin

-- NAND
n1 : nmos port map (s1, gnd, b);
n2 : nmos port map (y1, s1, a);
p1 : pmos port map (y1, vdd, a);
p2 : pmos port map (y1, vdd, b);

-- Invert
n3 : nmos port map (y, gnd, y1);
p3 : pmos port map (y, vdd, y1);

end and_strong;

Verilog Description
module and2Sgate (a, b, y);

input a, b;
output y;
supply1 vdd;
supply0 gnd;
//NAND
nmos (s1, gnd, a);
nmos (y1, s1, b);

SWITCH-LEVEL DESCRIPTION • 249

pmos (y1, vdd, a);
pmos (y1, vdd, b);

//inverter
nmos (y, gnd, y1);
pmos (y, vdd, y1);
endmodule

EXAMPLE 5.7 SWITCH-LEVEL DESCRIPTION OF A TWO-INPUT OR GATE
WITH STRONG OUTPUT

As was done in Listing 5.8, to produce
a strong output, the OR gate is changed
to a NOR and inverter. The switch-lev-
el logic of both NOR and inverter use
NMOS switches to pull the output down
to ground level, and NMOS switches to
pull the output up to vdd. This generates
strong outputs that are not degraded.
Figure 5.9 shows the switch-level logic
diagram of an OR gate constructed from
the NOR gate and inverter.

Listing 5.9 shows the HDL code for
an OR gate constructed from the NOR
gate and inverter. The code is longer
than that of Listing 5.5, but it should pro-
duce strong outputs.

LISTING 5.9 HDL Code of a Two-Input OR Gate with Strong Output: VHDL
and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity OR2Sgate is
 port (y : out std_logic; a, b : in std_logic);
end OR2Sgate;

architecture orgate_strong of OR2Sgate is

a

b

gnd

y
y1

vdd

FIGURE 5.9 Switch-level logic diagram of an
OR gate constructed from the NOR gate and
inverter.

250 • HDL WITH DIGITAL DESIGN

component nmos
 port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral);
for all : nmos use entity work.mos (nmos_behavioral);
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1, y1 : std_logic;
begin

--NOR
n1 : nmos port map (y1, gnd, a);
n2 : nmos port map (y1, gnd, b);
p1 : pmos port map (s1, vdd, a);
p2 : pmos port map (y1, s1, b);

--Invert
n3 : nmos port map (y, gnd, y1);
p3 : pmos port map (y, vdd, y1);

end orgate_strong;

Verilog Description
module OR2Sgate (a, b, y);

input a, b;
output y;
supply1 vdd;
supply0 gnd;

//NOR
nmos (y1, gnd, a);
nmos (y1, gnd, b);
pmos (s1, vdd, a);
pmos (y1, s1, b);

SWITCH-LEVEL DESCRIPTION • 251

//inverter
nmos (y, gnd, y1);
pmos (y, vdd, y1);
endmodule

EXAMPLE 5.8 SWITCH-LEVEL DESCRIPTION OF A THREE-INPUT NAND
GATE

Here, a three-input NAND gate is described. Table 5.8 shows the truth
table of the three-input NAND gate.

TABLE 5.8 Truth Table for a Three-Input NAND Gate

Input Output
a b c y
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 1
1 0 1 1
1 0 1 1
1 1 0 1
1 1 1 0

As shown in Table 5.8, the output is
0 only when a, b, and c are 1. Table 5.2a,
when extended to three switches, indi-
cates the use of three NMOS switches
connected in serial as the pull-down
combination. For the pull-up combi-
nation, Table 5.2d, extended to three
switches, needs three PMOS switch-
es connected in parallel. Figure 5.10
shows the switch-level logic diagram for
a three-input NAND gate.

Listing 5.10 shows the HDL code
for the three-input NAND gate using
pmos and nmos switches.

a
b
c

gnd

vdd

y

FIGURE 5.10 Switch-level logic diagram of a
three-input NAND gate.

252 • HDL WITH DIGITAL DESIGN

LISTING 5.10 HDL Code for a Three-Input NAND Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity nand3gate is
 port (y : out std_logic; a, b, c : in std_logic);
end nand3gate;

architecture nand3_switch of nand3gate is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral);
for all : nmos use entity work.mos (nmos_behavioral);
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1, s2 : std_logic;
begin

n1 : nmos port map (s1, gnd, a);
n2 : nmos port map (s2, s1, b);
n3 : nmos port map (y, s2, c);
p1 : pmos port map (y, vdd, a);
p2 : pmos port map (y, vdd, b);
p3 : pmos port map (y, vdd, c);
end nand3_switch;

Verilog Description
module nand3gate (a, b, c, y);
input a, b, c;
output y;
supply1 vdd;
supply0 gnd;

nmos (s1, gnd, a);
nmos (s2, s1, b);

SWITCH-LEVEL DESCRIPTION • 253

nmos (y, s2, c);
pmos (y, vdd, a);
pmos (y, vdd, b);
pmos (y, vdd, c);
endmodule

EXAMPLE 5.9 SWITCH-LEVEL DESCRIPTION OF A THREE-INPUT NOR
GATE

In this example, a three-input NOR gate is described using switch-level
description. Table 5.9 shows the truth table of the NOR gate.

TABLE 5.9 Truth Table for a Three-Input NOR Gate

Input Output
a b c y
0 0 0 1
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
0 1 0 0
1 1 1 0

Referring to Table 5.9, the NOR gate has
an output of 1 only when a, b, and c are zeros.
This is the opposite logic of NAND, so the seri-
al combination of NMOS switches for the pull-
down combination for the NAND is converted
to a parallel combination of NMOS switches for
the NOR gate. Similarly, the parallel combina-
tion of PMOS switches for the pull-up in the
NAND gate is converted to a serial combina-
tion of PMOS switches in the NOR gate. Figure
5.11 shows the switch-level logic diagram of a
three-input NOR gate.

Listing 5.11 shows the HDL code for the
three-input NOR gate using pmos and nmos
switches.

b

c

gnd

vdd

y

a

FIGURE 5.11 Switch-level logic
diagram of a NOR gate.

254 • HDL WITH DIGITAL DESIGN

LISTING 5.11 HDL Code for a Three-Input NOR Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity nor3gate is
 port (y : out std_logic; a, b, c : in std_logic);
end nor3gate;

architecture nor3_switch of nor3gate is

component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral);
for all : nmos use entity work.mos (nmos_behavioral);
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1, s2 : std_logic;

begin
n1 : nmos port map (y, gnd, a);
n2 : nmos port map (y, gnd, b);
n3 : nmos port map (y, gnd, c);

p1: pmos port map (s1, vdd, a);
p2: pmos port map (s2, s1, b);
p3: pmos port map (y, s2, c);
end nor3_switch;

Verilog Description
module nor3gate (a, b, c, y);
input a, b, c;
output y;
supply1 vdd;
supply0 gnd;
nmos (y, gnd, a);

SWITCH-LEVEL DESCRIPTION • 255

nmos (y, gnd, b);
nmos (y, gnd, c);
pmos (s1, vdd, a);
pmos (s2, s1, b);
pmos (y, s2, c);
endmodule

EXAMPLE 5.10 SWITCH-LEVEL DESCRIPTION OF SIMPLE COMBINATIONAL
LOGIC

This example discusses the switch-level description of the logic pre-
sented by the Boolean function y =abc+de . A straightforward approach
would be to treat the logic as a three-input NAND gate: two two-input
NAND gates and an inverter (see Figure 5.12). The number of switches
(transistors) for this combination is 6 + (2 × 4) + 2 = 16.

y

a
b
c

d
e

y

a
b
c

d
e

y

a
b
c

d
e

FIGURE 5.12 Gate-level logic diagram for abc+dey = .

The number of transistors can be reduced by investigating the Bool-
ean function. Note that y is pulled to zero only if abc = 1 or if de = 1. This
means that the pull-down combination for
abc is three NMOS switches driven by a,
b, and c. The three switches are connected
in serial. For de, two serial NMOS switch-
es are driven by d and e; the two switches
are connected in parallel with the three
NMOS switches. The pull-up combina-
tion is three PMOS switches driven by a,
b, and c connected in parallel; the combi-
nation is connected in serial with another
two PMOS switches driven by d and e,
accounting for the ORing of abc with de.
The total number of transistors is 10, in
contrast to 16 for the straightforward ap-
proach. Figure 5.13 shows the switch-level
logic diagram.

a

b

s4

s2

s1

s3

c

gnd

vdd

y

d

e

FIGURE 5.13 Switch-level logic diagram
for abc+dey = .

256 • HDL WITH DIGITAL DESIGN

Listing 5.12 shows the HDL code for the logic using pmos and nmos
switches.

LISTING 5.12 HDL Code for the Logic abc+dey = : VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

 entity simple_logic is
port (y : out std_logic; a, b, c, d : in std_logic);
end simple_logic;

architecture ABC of simple_logic is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral);
for all : nmos use entity work.mos (nmos_behavioral);
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s1, s2, s3 : std_logic;

begin
n1 : nmos port map (s1, gnd, c);
n2 : nmos port map (s2, s1, b);
n3 : nmos port map (y, s2, a);
n4 : nmos port map (y, gnd, d);
p1 : pmos port map (y, s3, a);
p2 : pmos port map (y, s3, b);
p3 : pmos port map (y, s3, c);
p4 : pmos port map (s3, vdd, d);
end ABC;

Verilog Description
module simple_logic (a, b, c, d, e, y);
input a, b, c, d, e;
output y;

SWITCH-LEVEL DESCRIPTION • 257

supply1 vdd;
supply0 gnd;
nmos (s1, gnd, c);
nmos (s2, s1, b);
nmos (y, s2, a);
nmos (s3, gnd, e);
nmos (y, s3, d);

pmos (y, s4, a);
pmos (y, s4, b);
pmos (y, s4, c);

pmos (s4, vdd, d);
pmos (s4, vdd, e);
endmodule

EXAMPLE 5.11 SWITCH-LEVEL DESCRIPTION OF A XNOR GATE

To satisfy the requirement that NMOS switches pull down to ground
(pass 0) and PMOS switches pull up (pass 1) to vdd, the XNOR gate is treat-
ed as the inverse of an XOR gate, so the Boolean function of the XNOR
gate can be written as:

 y = ab+ab=(ba +ab) (5.1)

According to the relationship in Ta-
ble 5.1, the pull-down combination
is active when b a or a b is equal to
1. For b a , this is accomplished with
two NMOS transistors (switches) con-
nected in serial and driven by b and a
(see Table 5.2a). The same is true for a
b ; two transistors connected in serial
are needed. For the OR, the two serial
transistors are connected in parallel
(see Table 5.2c). For the pull-up com-
bination, the serial and parallel combi-
nations in the pull-down are converted
to parallel and serial, respectively. Fig-
ure 5.14 shows the transistor switch-
level logic diagram of the XNOR gate.

s3

s1s2

vdd

gnd

y

a

a
b

b

FIGURE 5.14 Switch-level logic diagram for a
XNOR gate. Assume both input signal and its
complement are available.

258 • HDL WITH DIGITAL DESIGN

Listing 5.13 shows the HDL code for the XNOR gate. Two inverters
are used to generate the inverse of a and b. If the true and complement
logic of a and b are available, there is no need for the inverters.

LISTING 5.13 HDL Code for a XNOR Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity XOR_XNOR is
 port (y : out std_logic; a, b : in std_logic);
end XOR_XNOR;

architecture XNORgate of XOR_XNOR is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral
for all : nmos use entity work.mos (nmos_behavioral);
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal abar, bbar, s1, s2, s3 : std_logic;
begin

-- Invert a and b. If the complement of a and b
--are available, then there is no need for the
--following two pair (nmos and pmos) switches.
--

p1 : pmos port map (abar, vdd, a);
n1 : nmos port map (abar, gnd, a);
p2 : pmos port map (bbar, vdd, b);
n2 : nmos port map (bbar, gnd, b);

--Write the pull-down combination
n3 : nmos port map (s1, gnd, a);
n4 : nmos port map (y, s1, bbar);
n5 : nmos port map (s2, gnd, abar);
n6 : nmos port map (y, s2, b);

SWITCH-LEVEL DESCRIPTION • 259

--Write the pull-up combination
p3 : pmos port map (y, s3, a);
p4 : pmos port map (y, s3, bbar);
p5 : pmos port map (s3, vdd, abar);
p6 : pmos port map (s3, vdd, b);

end XNORgate;

Verilog Description
module XOR_XNOR (a, b, y);

input a, b;
output y;

supply1 vdd;
supply0 gnd;

/ Invert a and b. If the complement of a and b
 are available, then there is no need for the
 following two pair (nmos and pmos) switches /

pmos (abar, vdd, a);
nmos (abar, gnd, a);
pmos (bbar, vdd, b);
nmos (bbar, gnd, b);

// Write the pull-down combination
nmos (s1, gnd, a);
nmos (y, s1, bbar);
nmos (s2, gnd, abar);
nmos (y, s2, b);

// Write the pull-up combination
pmos (y, s3, a);
pmos (y, s3, bbar);
pmos (s3, vdd, abar);
pmos (s3, vdd, b);
endmodule

XOR/XNOR gates are very important because they are the basic com-
ponents in full adders. They have also been implemented in comparison

260 • HDL WITH DIGITAL DESIGN

circuits. Several publications can provide
more information on reducing the num-
ber of transistors used in XOR or XNOR
gates (Wang 1995, Weste 2003). Figure
5.15 shows an XNOR gate with four tran-
sistors (Wang 1995). Figure 5.15 is based
on the fact that the output of the XNOR

gate is equal to b if a = 0 or is equal to b

if a = 1. Listing 5.14 shows the code for
such an XNOR gate.

LISTING 5.14 HDL Code for a XNOR Gate: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity XNOR_degrade is
 Port (y : out std_logic; a, b : in std_logic);
end XNOR_degrade;

architecture XNORgate of XNOR_degrade is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral
for all : nmos use entity work.mos (nmos_behavioral);
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s0 : std_logic;

begin
p1 : pmos port map (s0, vdd, b);
p2 : pmos port map (y, s0, a);
n1 : nmos port map (s0, gnd, b);
n2 : nmos port map (y, b, a);
end XNORgate;

p1
p2

n2

n1

gnd
y

vdd

a

b

FIGURE 5.15 Switch-level logic diagram for a
XNOR gate.

SWITCH-LEVEL DESCRIPTION • 261

Verilog Description
module gate (a, b, y);

input a, b;
output y;

supply1 vdd;
supply0 gnd;

pmos p1 (s0, vdd, b);
pmos p2 (y, s0, a);

nmos n1 (s0, gnd, b);
nmos n2 (y, b, a);
endmodule

EXAMPLE 5.12 SWITCH-LEVEL DESCRIPTION OF A 2x1 MULTIPLEXER
WITH ACTIVE HIGH ENABLE

The Boolean function of such a multiplexer is as shown in Equation 5.2:

 y = E(a Sel + b Sel) (5.2)
E is the enable, a and b are the inputs, Sel is the select, and y is the output.
If E = 0, the multiplexer is disabled, and the output y is 0. If E = 1 and
Sel = 1, the output y is a; if E = 1 and Sel = 0, the output y = b.

As in Listing 5.14, the output is inversed to satisfy the requirement that
the NMOS switches pull down the output to ground level while the PMOS
switches pull up y to vdd level. Accordingly, the truth table of the multi-
plexer is as shown in Table 5.10.

TABLE 5.10 Truth Table for the Complement-Output Multiplexer

Input Output
a b Sel E y

x x x 0 1
0 0 0 1 1
1 0 0 1 1
0 1 0 1 0
1 1 0 1 0
0 0 1 1 1
1 0 1 1 0

(Contd.)

262 • HDL WITH DIGITAL DESIGN

Input Output
a b Sel E y

0 1 1 1 1
1 1 1 1 0

From Table 5.10, note that y is 0 when Sel = 1 and a = 1 or when Sel =
0 and b = 1, so the pull-down combination is two NMOS switches in serial
driven by a and Sel connected in parallel, with two serial switches driven by
b and Sel . When E = 0, y = 1; this is a PMOS (pull-up) switch. The switch
level of the multiplexer is shown in Figure 5.16.

vdd

y

Sel

Sel

b

E

a

n1

s0

s2
n4

n5 n3

p2

p4p5

p3

s3 p1

n2

s1

gnd
FIGURE 5.16 Switch-level logic diagram for a 2x1 multiplexer with active high enable and complement out-
put. Assume Sel signal is available.

Listing 5.15 shows the HDL code for the multiplexer.

SWITCH-LEVEL DESCRIPTION • 263

LISTING 5.15 HDL Code for a 2x1 Multiplexer with Active High Enable and
Complement Output: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity mux2x1 is
port (a, b, Sel, E : in std_logic;
 ybar : out std_logic);
end mux2x1;
architecture mux2x1switch of mux2x1 is
component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral);
for all : nmos use entity work.mos (nmos_behavioral);
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal Selbar, s0, s1, s2, s3 : std_logic;

begin
--Invert signal Sel. If the complement of Sel is
--available then, there is no need for
--the following pair of transistors.

v1 : pmos port map (Selbar, vdd, Sel);
--All instantiation statements should be
--labeled
v2 : nmos port map (Selbar, gnd, Sel);
--Write the pull-down combination
n1 : nmos port map (s0, gnd, E);
n2 : nmos port map (s1, s0, Sel);
n3 : nmos port map (ybar, s1, a);
n4 : nmos port map (s2, s0, Selbar);
n5 : nmos port map (ybar, s2, b);
--Write the pull-up combination
p1 : pmos port map (ybar, vdd, E);
p2 : pmos port map (ybar, s3, Sel);

264 • HDL WITH DIGITAL DESIGN

p3 : pmos port map (ybar, s3, a);
p4 : pmos port map (s3, vdd, Selbar);
p5 : pmos port map (s3, vdd, b);

end mux2x1switch;

Verilog Description
module mux2x1 (a, b, Sel, E, ybar);
input a, b, Sel, E;
output ybar;
supply1 vdd;
supply0 gnd;

/ Invert signal Sel. If the complement of Sel
 is available then, there is no need for
 the following pair of transistors /

pmos (Selbar, vdd, Sel);
nmos (Selbar, gnd, Sel);

//Write the pull-down combination
nmos n1 (s0, gnd, E);
nmos n2 (s1, s0, Sel);
nmos n3 (ybar, s1, a);
nmos n4 (s2, s0, Selbar);
nmos n5 (ybar, s2, b);

//Write the pull-up combination
pmos p1 (ybar, vdd, E);
pmos p2 (ybar, s3, Sel);
pmos p3 (ybar, s3, a);
pmos p4 (s3, vdd, Selbar);
pmos p5 (s3, vdd, b);

endmodule

5.6 Switch-Level Description of Simple Sequential Circuits

In Section 5.5, the switch-level description of combinational circuits
was discussed. This chapter will cover description of some simple sequen-
tial circuits.

SWITCH-LEVEL DESCRIPTION • 265

EXAMPLE 5.13 SWITCH-LEVEL DESCRIPTION OF AN SR-LATCH

The SR-latch was discussed in Chapter 4,
and the gate-level logic diagram of the latch
was shown in Figure 4.9. It is redrawn here for
convenience in Figure 5.17.

As shown in Figure 5.17, the latch consists
of two NOR gates. The switch-level logic dia-
gram is designed directly from the gate-level
diagram. A switch-level NOR gate was
previously built in Listing 5.11. PMOS
and NMOS switches are used to build the
switch-level logic diagram of the latch (see
Figure 5.18).

Listing 5.16 shows the HDL code of
the latch. Because there are several tran-
sistors (switches), it is preferable to label
the Verilog code for each transistor. For
example, the Verilog code for switch n1
in Figure 5.18 is nmos n1 (Qbar, gnd,
S). The label n1 in Verilog is optional, but
because there are several transistors, each
transistor has been labeled. In VHDL, the
labeling of each instantiation statement is
required. For example, the instantiation
statement of transistor n1 is n1: nmos

port map (Qbar, gnd, S). Label n1 is
required. Figure 5.19 shows the simula-
tion waveform of the multiplexer.

QR

QbarS
FIGURE 5.17 SR-latch.

R

gnd

p4

s1

n3n4

p3

vdd

Q

S

gnd

p1

s0

n1n2

p2

vdd

Q

FIGURE 5.18 Switch-level logic diagram
of an SR-latch.

S

R

Q

Qbar
FIGURE 5.19 Simulation waveform of an SR-Latch.

266 • HDL WITH DIGITAL DESIGN

LISTING 5.16 HDL Code for an SR-Latch: VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity SR_Latch is
port (S, R : in std_logic; Q, Qbar : inout std_logic);
end SR_Latch;
architecture SR of SR_Latch is

component nmos
port (O1 : inout std_logic; I1, I2 : in std_logic);
--port O1 is selected here to be inout to match
--its use in the latch circuit
end component;

component pmos
port (O1 : inout std_logic; I1, I2 : in std_logic);
--port O1 is selected here to be inout
--to match its use in the latch circuit
end component;

for all : pmos use entity work.mos (pmos_behavioral);
for all : nmos use entity work.mos (nmos_behavioral);
--In this example only, the mode of Output port O1
--in the entity “mos” should
--be declared as inout instead of out.
constant vdd : std_logic := ‘1’;
constant gnd : std_logic := ‘0’;
signal s0, s1, s2 : std_logic;

begin
n1 : nmos port map (Qbar, gnd, S);
n2 : nmos port map (Qbar, gnd, Q);
p1 : pmos port map (s0, vdd, Q);
p2 : pmos port map (Qbar, s0, S);

n3 : nmos port map (Q, gnd, Qbar);
n4 : nmos port map (Q, gnd, R);
p3 : pmos port map (s1, vdd, R);
p4 : pmos port map (Q, s1, Qbar);
end SR;

SWITCH-LEVEL DESCRIPTION • 267

Verilog Description
module SR_latch (S, R, Q, Qbar);
input S, R;
output Q, Qbar;
supply1 vdd;
supply0 gnd;

nmos n1 (Qbar, gnd, S);
nmos n2 (Qbar, gnd, Q);
pmos p1 (s0, vdd, Q);
pmos p2 (Qbar, s0, S);

nmos n3 (Q, gnd, Qbar);
nmos n4 (Q, gnd, R);
pmos p3 (s1, vdd, R);
pmos p4 (Q, s1, Qbar);
endmodule

5.6.1 CMOS Switches
In the previous sections, single switches (NMOS or PMOS) were dis-

cussed. It has been seen that for a strong signal, the NMOS switch should
pass 0, and the PMOS should pass 1. Another family of MOS switches is
CMOS. As shown in Figure 5.20, the CMOS switch consists of two switch-
es connected in parallel; one of the switches is NMOS, and the other is
PMOS. The gate controls of the two switches, gn and gp, are usually the
true and complement of the same signal. In this chapter, gn and gp are al-
ways the true and complement of the same signal, respectively. If gn is high
(gp is low), the switch becomes conductive (output = input). If gn is low (gp
is high), the switch becomes open. The main characteristic of the switch is
that it can pass both strong 1 and strong 0.

Verilog has a built-in function to
describe a CMOS switch. The fol-
lowing Verilog statement describes a
CMOS switch with input and output
and gates gn for the NMOS switch
and gp for the PMOS switch (see
Figure 20):

cmos (output, input, gn, gp)

Output

gp

gn

Input

FIGURE 5.20 CMOS switch.

268 • HDL WITH DIGITAL DESIGN

The basic VHDL package does not have a built-in code for CMOS
switches, but it can be built as a macro consisting of the NMOS switch and
PMOS switch described in Section 5.3.2. Listing 5.17 shows VHDL code
for the CMOS switch shown in Figure 5.20.

LISTING 5.17 VHDL Code for the CMOS Switch in Figure 5.19.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity CMOS is
port (output : out std_logic;
 input, gn, gp : in std_logic);
end CMOS;

architecture macro of CMOS is

--All switches presented here do not include any
--time parameters, such as
--rise time and fall times. They only mimic the
--logical functions of their
--Verilog counterparts.

component nmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

component pmos
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

for all : pmos use entity work.mos (pmos_behavioral);
for all : nmos use entity work.mos (nmos_behavioral);

begin
n1 : nmos port map (output, input, gn);
p1 : pmos port map (output, input, gp);
end macro;

EXAMPLE 5.14 SWITCH-LEVEL DESCRIPTION OF A D-LATCH

The D-latch was covered in Chapter 2. Here, no clear signal is consid-
ered; adding clear signal is covered in Exercise 5.9. Table 5.11 shows the
excitation table the D-latch.

SWITCH-LEVEL DESCRIPTION • 269

TABLE 5.11 Excitation Table for a D-Latch

Inputs Next State
E D Q Q+

0 x 0 0
0 x 1 1
1 0 x 0
1 1 x 1

The output follows D when the enable is high. When the enable is low,
the output retains its previous value. The Boolean function of the output Q is:

 Q = E Q + ED (5.3)
Two approaches are taken to find the switch-level logic diagram of the latch.
The first approach used is the Boolean function and NMOS and PMOS
switches. The second approach uses CMOS switches.

5.6.1.1 Switch-Level Logic Diagram of a D-Latch Using PMOS and
NMOS Switches

Equation 5.3 can be rewritten as:

 (QE+ED)Q and Q is the inverse of Q
Tables 5.2a–d are used to find the switch-level logic diagram. Figure 5.21

shows the switch-level logic diagram of the D-latch. Listing 5.18 shows the
Verilog code for the latch.

p3

p1

n2 n4

n3n1

s1s0

p4

E

E

D

gnd

vdd

p2

s2

Q

Q

FIGURE 5.21 Switch-level logic diagram of a D-latch using PMOS and NMOS
switches. Inverters between Q and Q and between E and E are not shown.

270 • HDL WITH DIGITAL DESIGN

LISTING 5.18 Verilog Code for a D-Latch Using NMOS and PMOS Switches

module D_latch (D, E, Q, Qbar);
input D, E;
output Q, Qbar;
supply1 vdd;
supply0 gnd;

pmos (Ebar, vdd, E);
nmos (Ebar, gnd, E);
nmos n1 (s0, gnd, D);
nmos n2 (Qbar, s0, E);
nmos n3 (s1, gnd, Q);
nmos n4 (Qbar, s1, Ebar);

pmos p1 (Qbar, s2, D);
pmos p2 (Qbar, s2, E);
pmos p3 (s2, vdd, Q);
pmos p4 (s2, vdd, Ebar);

endmodule

5.6.1.2 Switch-Level Logic Diagram of a D-Latch Using CMOS Switches

Figure 5.22 shows the switch-level logic diagram of the D-latch. When
enable (E) is high, CMOS switch c1 is closed, CMOS switch c2 is opened,
and Q follows D. When E is low, CMOS switch c1 is opened, CMOS switch
c2 is closed, and Q retains its previous value.

gnd

vdd

Q
C2

C1
D

E

gnd

vdd

E

E

Q

FIGURE 5.22 Switch-level logic diagram of a D-latch using CMOS switches.

SWITCH-LEVEL DESCRIPTION • 271

Listing 5.19 shows the HDL code for the D-latch. Due to the nature of
signal Q, where it is an input and output with more than one source (one
CMOS switch and an inverter), Q is declared as inout. Because there are
three inverters, the inverter module discussed in Listing 5.3 is bound to the
current module D-Latch, rather than writing three individual inverters. In
VHDL, use the statement:

for all : invert use entity work.
 inverter (Invert_switch);

to bind inverter to the current module D_Latch. In Verilog, we use
the statement:

invert inv1 (Ebar, E);

which binds the module invert to the current module D_Latch.

LISTING 5.19 HDL Code for a D-Latch Using CMOS Switches: VHDL and
Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity D_Latch is
port (D, E : in std_logic; Q, Qbar : inout std_logic);
-- Referring to Figure 5.22, signal Q is
--input and output and has multiple
--sources (the inverter and the CMOS switches,
--so Q has to be declared as
--inout. All other ports are also adjusted in
--the following components to be inout.
end D_Latch;

architecture DlatchCmos of D_Latch is
component CMOS
port (output : out std_logic;
 input, gn, gp : in std_logic);
end component;
component invert
port (y : out std_logic; a : in std_logic);
end component;
for all : CMOS use entity work.CMOS (macro);

272 • HDL WITH DIGITAL DESIGN

for all : invert use entity work.
 inverter(Invert_switch);
signal Ebar, s1 : std_logic;
begin
c1 : cmos port map (Q, D, E, Ebar);
c2 : cmos port map (Q, s1, Ebar, E);
inv1 : invert port map (Ebar, E);
inv2 : invert port map (Qbar, Q);
inv3 : invert port map (s1, Qbar);

end DlatchCmos;

Verilog Description
module D_latch (D, E, Q, Qbar);
input D, E;
output Q, Qbar;
cmos (Q, D, E, Ebar);
cmos (Q, s1, Ebar, E);
invert inv1 (Ebar, E);
invert inv2 (Qbar, Q);
invert inv3 (s1, Qbar);
endmodule

module invert (y, a);
input a;
output y;
supply1 vdd;
supply0 gnd;
pmos p1 (y, vdd, a);
nmos n1 (y, gnd, a);
endmodule

5.7 Bidirectional Switches

Bidirectional switches conduct in both ways, from drain to source and
from source to drain. Their main use is as bidirectional buffers (busses).
Three types of bidirectional switches are available in Verilog: tran, tra-
nif0, and tranif1. Switch tran has no control; it conducts all the time.
Switch tranif1 conducts if control is 1. Otherwise, the nondriving signal
(output) is put on high impedance. Switch tranif0 conducts if control is
0. Otherwise, the nonconducting signal (output) is put on high impedance.
The Verilog code for the three switches is as follows:

SWITCH-LEVEL DESCRIPTION • 273

tran (dataio1, dataio2);
trannif0 (dataio1, dataio2, control);
tranif1 (dataio1, dataio2, control);

VHDL does not have built-in switches, but these switches can be built
as in Section 5.3.2.

Listing 5.20 shows the same Verilog code in Listing 5.12, but tranif1
and tranif0 are used instead of NMOS and PMOS switches.

LISTING 5.20 HDL Code for the Logic abc+dey = : VHDL and Verilog

module simple_logic (a, b, c, d, e, y);
input a, b, c, d, e;
output y;

supply1 vdd;
supply0 gnd;

tranif1 (s1, gnd, c);
tranif1 (s2, s1, b);
tranif1 (y, s2, a);
tranif1 (s3, gnd, e);
tranif1 (y, s3, d);

tranif0 (y, s4, a);
tranif0 (y, s4, b);
tranif0 (y, s4, c);

tranif0 (s4, vdd, d);
tranif0 (s4, vdd, e);

endmodule

5.8 Summary

In this chapter, HDL descriptions based on switches have been pre-
sented. The switches are built from perfect transistors. The transistor is
either conducting to saturation or not conducting; this corresponds to two
switch states, closed and open, respectively. Switch-level is the lowest lev-
el of HDL description. Verilog has an extensive switch-level description
library. Standard VHDL does not have switch-level; if we use VHDL for
switch-level description, packages have to built or imported from vendors.

274 • HDL WITH DIGITAL DESIGN

VHDL switches have also been built as components (see Chapter 4).
The power supply (vdd) and ground (gnd) in all systems covered in this
chapter are the sources of the strongest 1s and 0s; nmos switches pass strong
0, and pmos switches pass strong 1. To produce strong output signals, nmos
switches are employed as pull-down to ground networks, and pmos switches
are employed as pull-up to vdd networks. Parallel and serial combinations
of pmos and nmos switches have been implemented to describe combina-
tional and sequential circuits. Other switches such as cmos, tran, tra-
nif0, and tranif1, constructed from parallel combinations of NMOS and
PMOS switches, have been also been discussed.

Many publications are available on the examples covered in this chap-
ter. These publications may use innovative ways to reduce the number of
transistors. The reader is encouraged to consult them (see References) if
the main goal is to find a design with the minimum number of transistors.

5.9 Exercises

In all the following questions, unless otherwise mentioned, choose the
design that yields strong outputs.

1. Derive the switch-level (transistor) logic of an XOR gate using a mini-
mum number of transistors. Write and verify by simulation the VHDL
code using PMOS and NMOS switches.

2. Without using the computer, inspect the Verilog code shown in Listing
5.21 and find the Boolean function of the output y. Translate the code
to VHDL and verify your code by simulating it.

LISTING 5.21 Verilog Code for Exercise 5.2

module Problem_2 (a, b, c, y);
input a, b, c;
output y;

supply1 vdd;
supply0 gnd;

pmos (d, vdd, c);
nmos (d, gnd, c);
cmos (y, a, c, d);

SWITCH-LEVEL DESCRIPTION • 275

cmos (y, b, d, c);

endmodule

3. For the XNOR gate discussed in Listing 5.13, use NAND gates and
inverters to design the XNOR gate. Write the switch-level Verilog code
and verify your design. Contrast this approach with that of Listing 5.13
in terms of the total number of transistors needed.

4. Referring to Listing 5.15, construct the gate level of the multiplexer
using NOR gates and inverters. Write the switch-level VHDL code and
verify your design. What is the total number of transistors used in this
gate-level design?

5. Design the switch level for an SR-latch from the Boolean function using
the minimum number of switches. Compare the number of switches
used with that of Listing 5.15. Write the VHDL code and verify your
design by simulation.

6. Write the VHDL code for Listing 5.18. Verify your code by simulation.

7. In Figure 5.22, the control E is active high. Modify the figure to show an
active low enable.

8. Repeat Listing 5.15 using tranif0 and tranif1 instead of PMOS and
NMOS switches.

9. Add active low clear signal to the D-Latch in Example 5.14 and rewrite
the VHDL and Verilog codes.

5.10 References

Wang, J., S. Fang, and W. Feng. 1995. New Efficient Designs for XOR and
XNOR Functions on the Transistor Level. IEEE Journal of Solid State
Circuits 29:780–786.

Weste, Neil H. E. and D. Harris, CMOS VLSI Design, 3rd ed. Upper Saddle
River, NJ: Addison-Wesley, 2004.

C H A P T E R

PROCEDURES, TASKS, AND
FUNCTIONS

6
Chapter Objectives

 Understand the concept of procedures (VHDL), tasks (Verilog), and
functions (both VHDL and Verilog)

 Review and understand how to convert between different types of
data

 Review signed vector multiplication
 Understand combinational arrays multiplier
 Review IEEE 754 representation of floating point
 Understand a simple enzyme mechanism

6.1 Highlights of Procedures, Tasks, and Functions

Facts
 Procedures, tasks, and functions are HDL tools to optimize the writ-

ing style of HDL code. They are implemented to instantiate a seg-
ment or a construct of code. Instead of writing the segment/construct
every time it is needed, a single call statement to a function, task, or
procedure that references the segment/construct is all that is needed.

 Procedures and tasks can have more than one input and more than
one output. Functions have a single output, but they can have more
than one input.

278 • HDL WITH DIGITAL DESIGN

 Procedures and functions in VHDL can be called only from within
process. Tasks and functions in Verilog can be called only from
within always or initial.

6.2 Procedures and Tasks

Procedures (VHDL) and tasks (Verilog) are similar to subroutines in
other software languages such as C. In many modules, a routine is repeat-
edly used, such as a multiplication algorithm, addition algorithm, or a con-
version between two numbering systems. Instead of writing these routines
every time they are needed, the routines’ codes can be stored as the body
of a procedure (VHDL) or as the body of a task (Verilog). Whenever the
routine needs to be executed, the procedure (task) is called by writing just
one call statement. Section 6.2.1 discusses procedures, and Section 6.2.2
discusses tasks.

6.2.1 Procedure (VHDL)
Procedure is a behavioral statement (see Chapter 3). A procedure has

two parts: the declaration and the body. The declaration includes the name
of the procedure, the inputs to the procedure and their types, and the out-
puts of the procedure and their types. For example, the declaration:

procedure Booth (X, Y : in signed (3 downto 0);
 Z: out signed (7 downto 0)) is

declares a procedure by the name (identifier) Booth. The inputs are
variables X and Y, each is four bits, and the type of the inputs is signed.
The output is a four-bit variable Z, and its type is signed. In the declaration
statement, procedure and is are predefined words and have to be inserted
in the order shown. If the inputs or outputs are signals, they should be ex-
plicitly specified as follows:

procedure exmple (signal a : in std_logic ;
 signal y: out std_logic) is

The body of the procedure contains the behavioral statements that de-
scribe the details of the procedure, mainly the relationship between the
input(s) and the output(s). The body of the procedure cannot include the
behavioral statement process. An example of a procedure is:

procedure exmple (signal a : in std_logic;
 signal y : out std_logic) is

PROCEDURES, TASKS, AND FUNCTIONS • 279

variable x : std_logic;
begin
x := a;
case x is
…………………
end case;
y <= x;
end exmple;

The procedure is called by a sequential statement that appears inside
process. For example, the above procedure exmple is called as follows:

process (d, clk)
begin
......
exmple (d, z);
.........
end process

The input of the procedure a is linked to d, and accordingly, d assumes
the value of a. The type of a should match the type of d. After execution
of the procedure, the output of the procedure, y, is passed to z. The type
of z should match the type of y. If a vector is an output or input of a pro-
cedure, it should not be constrained in length. Consider the declaration of
procedure Vect_constr:

procedure Vect_constr (X : in std_logic_vector;
 Y : out std_logic_vector) is

The length of vectors X and Y should not be constrained (i.e., they
should not be specified). VHDL has a large number of built-in procedures
in its standard package. Other procedures can be imported from external
packages. An example of a built-in procedure is open fi le (see Chapter 8).

6.2.2 Task (Verilog)
Task is a Verilog subprogram. It can be implemented to execute speci-

fied routines repeatedly. The format in which the task is written can be
divided into two parts: the declaration and the body of the task. In the
declaration, the name of the task is specified, and the outputs and inputs of
the task are listed. An example of a task declaration is:

task addr;
output cc, dd;
input aa, bb;

280 • HDL WITH DIGITAL DESIGN

addr is the name (identifier) of the task. The outputs are cc and dd,
and the inputs are aa and bb. task is a predefined word. The body of the
task shows the relationship between the outputs and inputs. An example of
the body of a task is:

begin
cc = aa ^ bb;
.............
end
endtask

The body of the task cannot include always or initial. A task must be
called within the behavioral statement always or initial (see Chapter 3).
An example of calling the task addr is:

............
always @ (a, b)
begin
addr (c, d, a, b);
end

addr is the name of the task. Inputs a and b are passed to aa and bb.
The outputs of the task cc and dd are passed, after execution, to c and
d, respectively. Verilog has a large number of built-in tasks included in its
package.

6.2.3 Examples: Procedures and Tasks
The following examples discuss procedures and tasks. Some of the ex-

amples have been covered in the previous chapters (2–4). Here, they are
rewritten using procedure and task.

EXAMPLE 6.1 HDL BEHAVIORAL DESCRIPTION OF A FULL ADDER USING
PROCEDURE AND TASK

In Chapter 4, a full adder was constructed from two half adders. Here,
the same concept is used to design a full adder from two half adders using
behavioral description. The code for a half adder is written using procedure
in VHDL or task in Verilog to construct the full adder. Figure 6.1 shows a
block diagram of the full adder.

PROCEDURES, TASKS, AND FUNCTIONS • 281

carry

sum
y

cin

Half adder

Half adder

x

FIGURE 6.1 Block diagram of a full adder as two half adders.

Listing 6.1 shows the HDL code for the full adder using procedure
(VHDL) and task (Verilog). Referring to the VHDL Listing, the code for
the half adder is written as a procedure:

procedure Haddr(sh, ch : out std_logic;
ah, bh : in std_logic) is
begin
sh := ah xor bh;
ch := ah and bh;
end Haddr;

The name of the above procedure is Haddr; the inputs are sh and
ch, and the outputs are ah and bh. The type of the outputs and inputs is
std_logic. The code of the procedure is based on the Boolean functions
of the half adder. To call the procedure, the call statement has to be inside
process. To call the procedure Haddr:

Haddr (sum1, c1, y, cin);

where Haddr is the name of the procedure, and the values y and cin
are passed to the inputs of the procedure ah and bh, respectively. After
calculating the outputs (sh and ch), the procedure passes the value of those
outputs to sum1 and c1, respectively.

For the Verilog code, the task is:

task Haddr;
output sh, ch;
input ah, bh;
begin
 sh = ah ^ bh;
 ch = ah & bh;
end
endtask

282 • HDL WITH DIGITAL DESIGN

The name of the task is Haddr; the inputs are ah and bh, and the outputs
are sh and ch. The task code is based on the Boolean functions of the half
adder. To call task, it has to be inside always or initial because task is
a behavioral (sequential) statement. Therefore, to call the task Haddr:

Haddr (sum1, c1, y, cin);

where haddr is the name of the task. The values y and cin are passed
to the inputs of the task ah and bh, respectively. After calculating the out-
puts (sh and ch), the task passes the value of the outputs to sum1 and c1,
respectively.

LISTING 6.1 HDL Description of a Full Adder Using procedure and task:
VHDL and Verilog

VHDL Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity full_add is
port (x, y, cin : in std_logic; sum, cout : out std_logic);
end full_add;

architecture two_halfs of full_add is

-- The full adder is built from two half adders
procedure Haddr (sh, ch : out std_logic;
ah, bh : in std_logic) is
--This procedure describes a half adder
begin
sh := ah xor bh;
ch := ah and bh;
end Haddr;

begin

addfull : process (x, y, cin)
variable sum1, c1, c2, tem1, tem2 : std_logic;
begin
 Haddr (sum1, c1, y, cin);
 Haddr (tem1, c2, sum1, x);
 --The above two statements are calls to
 --the procedure Haddr

PROCEDURES, TASKS, AND FUNCTIONS • 283

 tem2 := c1 or c2;
 sum <= tem1;
 cout <= tem2;
end process;

end two_halfs;

Verilog Description
module Full_add (x, y, cin, sum, cout);
//The full adder is built from two half adders
input x, y, cin;
output sum, cout;
reg sum, sum1, c1, c2, cout;
always @ (x, y, cin)
begin

Haddr (sum1, c1, y, cin);
Haddr (sum, c2, sum1, x);
//The above two statements are calls to the task Haddr.
cout = c1 | c2;
end

task Haddr;
//This task describes the half adder
output sh, ch;
input ah, bh;
begin
 sh = ah ^ bh;
 ch = ah & bh;
end
endtask
endmodule

Notice that the half adder procedure (task) was executed twice, but
the body of the procedure (task) was only written once.

EXAMPLE 6.2 HDL DESCRIPTION OF AN N-BIT RIPPLE-CARRY ADDER
USING PROCEDURE AND TASK

In Listing 4.14 of Chapter 4, the HDL structural description of a three-
bit ripple-carry adder was introduced. Here, the behavioral code for an

284 • HDL WITH DIGITAL DESIGN

N-bit ripple-carry adder is written using procedure (VHDL) and task
(Verilog). Listing 6.2 shows the HDL code of the adder. The procedure
(task) Faddr describes a one-bit full adder. To describe an N-bit adder, the
procedure (task) is called N times.

LISTING 6.2 HDL Description of an N-Bit Ripple-Carry Adder Using
procedure and task: VHDL and Verilog

VHDL N-Bit Ripple-Carry Adder Using procedure
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity adder_ripple is
generic (N : integer := 3);
 port (x, y : in std_logic_vector (N downto 0);
 cin : in std_logic;

 sum : out std_logic_vector (N downto 0);
 cout : out std_logic);
end adder_ripple;

architecture adder of adder_ripple is
procedure Faddr (sf, cof : out std_logic;
 af, bf, cinf : in std_logic) is
--This procedure describes a full adder
begin
sf := af xor bf xor cinf;
cof := (af and bf) or (af and cinf) or (bf and cinf);
end Faddr;

begin
addrpl : process (x, y, cin)
variable c1, c2, tem1, tem2 : std_logic;
variable cint : std_logic_vector (N+1 downto 0);
variable sum1 : std_logic_vector (N downto 0);
begin
cint(0) := cin;
for i in 0 to N loop
 Faddr (sum1(i), cint(i+1), x(i), y(i), cint(i));
 --The above statement is a call to the procedure Faddr
end loop;
sum <= sum1;

PROCEDURES, TASKS, AND FUNCTIONS • 285

cout <= cint(N+1);
end process;
end adder;

Verilog N-Bit Ripple-Carry Adder Using task
module adder_ripple (x, y, cin, sum, cout);
parameter N = 3;
input [N:0] x, y;
input cin;
output [N:0] sum;
output cout;

reg [N+1:0] cint;
reg [N:0] sum;
reg cout;
integer i;
always @ (x, y, cin)
begin
 cint[0] = cin;
 for (i = 0; i <= N; i = i + 1)
 begin
 Faddr (sum[i], cint[i+1], x[i], y[i], cint[i]);
 //The above statement is a call to task Faddr
end
cout = cint[N+1];
end
task Faddr;
//The task describes a full adder
output sf, cof;
input af, bf, cinf;
begin
 sf = af ^ bf ^ cinf;
 cof = (af & bf) | (af & cinf) | (bf & cinf);
end
endtask
endmodule

EXAMPLE 6.3 UNSIGNED BINARY-VECTOR-TO-INTEGER CONVERSION
USING PROCEDURE AND TASK

Because VHDL is known to be a strict data-type-oriented language,
conversion between data types, such as integer and binary, is important.

286 • HDL WITH DIGITAL DESIGN

Verilog, however, is flexible when dealing with data types and allows com-
putational operations between different types without any conversion.
However, to understand task, Verilog code will be used to describe con-
version examples.

In Chapter 3, behavioral code was written for conversions between bi-
nary and integer data. Here, procedure (task) is used to perform the
conversion.

Listing 6.3 shows the HDL code for converting an unsigned binary vec-
tor to an integer. The conversion is based on accumulating the weighted
sum of the binary bits. The code

result := result + 2i; --VHDL
int = int + 2i //Verilog

performs the accumulation. To create a global constant N that repre-
sents the number of binary bits to be converted write the following code:

generic (N : integer := 3); --VHDL
parameter N = 3; //Verilog

In Listing 6.3, N = 3 is used as an example; the number of bits can be
changed just by changing the value of N. The statement

for i in bin’Range loop

has an index i with a range equal to that of bin. Range is a predefined
attribute.

In addition to conversion, the procedure (task) outputs a flag (Z): Z = 1
if the value of the binary vector is zero. Otherwise, Z = 0.

LISTING 6.3 HDL Code for Converting an Unsigned Binary to an Integer Us-
ing procedure and task: VHDL and Verilog

VHDL: Converting an Unsigned Binary to an Integer Using proce-
dure
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all; --This Library is for
-- type “unsigned”

entity Bin_Int is
generic (N : natural := 3);

PROCEDURES, TASKS, AND FUNCTIONS • 287

 port (X_bin : unsigned (N downto 0);
 Y_int : out natural; Z : out std_logic);
 --Y is always positive
end Bin_Int;

architecture convert of Bin_Int is

procedure bti (bin : in unsigned; int : out natural;
 signal Z : out std_logic) is

-- the procedure bti is to change binary to integer
-- Flag Z is chosen to be a signal rather than a variable
-- Since the binary vector is always positive,
-- use type natural for the output of the procedure.
variable result : natural;
begin

result := 0;
for i in bin’Range loop

--bin’Range represents the range of the unsigned vector bin
--Range is a predefined attribute
 if bin(i) = ‘1’ then
 result := result + 2i;
 end if;
end loop;
int := result;
if (result = 0) then
 Z <= ‘1’;
 else
 Z <= ‘0’;
 end if;
end bti;

begin
process (X_bin)
variable tem : natural;

begin
bti (X_bin, tem, Z);
Y_int <= tem;
end process;
end convert;

288 • HDL WITH DIGITAL DESIGN

Verilog: Converting an Unsigned Binary to an Integer Using task
module Bin_Int (X_bin, Y_int, Z);
parameter N = 3;
input [N:0] X_bin;
output integer Y_int;
output Z;
reg Z;
always @ (X_bin)
begin
 bti (Y_int, Z, N, X_bin);
end

task bti;
parameter P = N;
output integer int;
output Z;
input N;
input [P:0] bin;
integer i, result;
begin
 int = 0;
//change binary to integer
 for (i = 0; i <= P; i = i + 1)
 begin
 if (bin[i] == 1)
 int = int + 2i;
 end
 if (int == 0)
 Z = 1’b1;
else
Z = 1’b0;
end
endtask
endmodule

The simulation output for Listing 6.3 is shown in Figure 6.2

PROCEDURES, TASKS, AND FUNCTIONS • 289

X_bin

Y_int

Z

14 13 3 0 9 5 1

1110 1101 0011 0000 1001 0101 0001

FIGURE 6.2 Simulation output for binary-to-integer conversion.

EXAMPLE 6.4 FRACTION-TO-REAL CONVERSION USING PROCEDURE
AND TASK

Here, a fraction is represented as a fixed-point number where the bi-
nary point is at the left of the most significant bit. Examples of such binary
numbers are 0.11 (equivalent to 2–1 + 2–2 = 0.5 + 0.25 = 0.75) and 0.001
(equivalent to 2–3 = 0.125). Listing 6.4 shows the HDL code for converting
the binary using procedure and task by multiplying each bit by its weight.
The first leftmost bit has a weight of 2–1; the next bit to the right has a
weight of 2–2, and so on.

LISTING 6.4 HDL Code for Converting a Fraction Binary to Real Using pro-
cedure and task: VHDL and Verilog

VHDL: Converting a Fraction Binary to Real Using procedure
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Bin_real is
generic (N : integer := 3);
port (X_bin : in std_logic_vector (0 to N); Y : out real);
end Bin_real;
architecture Bin_real of Bin_real is
procedure binfloat (a : in std_logic_vector (0 to 3);
float : out real) is

--This procedure converts fraction expressed
--in fixed-point binary to real
variable tem,j : real;
begin
 tem := 0.0;

290 • HDL WITH DIGITAL DESIGN

 j := 1.0;
 for i in 0 to N loop
 j := j/ 2.0;

 if (a(i) = ‘1’) then

 tem := tem + j;
 end if;
 end loop;
float := tem;
end binfloat;
begin

rel : process (X_bin)
variable temp : real;
begin
 binfloat (X_bin, temp);
 Y <= temp;
end process rel;
end Bin_real;

Verilog: Converting a Fraction Binary to Real Using task
module Bin_real (X_bin);
parameter N = 3;
input [N:0] X_bin;
real Z;

always @ (X_bin)
begin
 binfloat (X_bin, Z);
end

task binfloat;
parameter P = N;
input [0:P] a;
output real float;
integer i;
begin
 float = 0.0;
 for (i = 0; i <= P; i = i + 1)
 begin
 if (a[i] == 1)
 float = float + 1.0 / 2(i+1);

PROCEDURES, TASKS, AND FUNCTIONS • 291

// The above statement multiplies each bit by its weight.
 //
 end
end
endtask
endmodule

The simulation output is shown in Figure 6.3.

X_bin 1000 0100 0010 0001 0101 0001

Z 0.5 0.25 0.125 0.0625 0.3125 0.75

FIGURE 6.3 Simulation output for fraction binary conversion to real.

EXAMPLE 6.5 UNSIGNED INTEGER CONVERSION TO BINARY USING
PROCEDURE AND TASK

In this example, integer-type data is converted to binary-type data. As
was done in Chapter 3, the integer is successively divided by two to find the
equivalent binary. The mod function is used to find the remainder of the di-
vision by two. Listing 6.5 shows the HDL code for converting an integer to
binary using procedure and task. The code also checks to see if the integer
is even or odd. The even_fl ag in Listing 6.5 equals one when the integer is
even; if even _fl ag is zero, then the integer is odd.

LISTING 6.5 HDL Code for Converting an Unsigned Integer to Binary Using
procedure and task: VHDL and Verilog

VHDL: Converting an Unsigned Integer to Binary Using procedure
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Int_Bin is
generic (N : integer := 3);
port (X_bin : out std_logic_vector (N downto 0);
 Y_int : in integer;
 flag_even : out std_logic);
end Int_Bin;

architecture convert of Int_Bin is

292 • HDL WITH DIGITAL DESIGN

procedure itb (bin : out std_logic_vector;
 signal flag : out std_logic;
 N : in integer; int : inout integer) is

-- The procedure itb is to convert the integer to binary
-- The dimension of bin does not have to be specified
-- at the above declaration statement; the procedure
-- can determine the dimension of bin later in its body.

begin
if (int MOD 2 = 0) then
--The above statement checks int to see if it is even.
 flag <= ‘1’;
 else
 flag <= ‘0’;
end if;
for i in 0 to N loop

 if (int MOD 2 = 1) then
 bin (i) := ‘1’;
 else
 bin (i) := ‘0’;
 end if;

-- perform integer division by 2
int := int/2;
end loop;
end itb;

begin
process (Y_int)
variable tem : std_logic_vector (N downto 0);
variable tem_int : integer ;
begin
 tem_int := Y_int;
 itb (tem, flag_even, N, tem_int);
 X_bin <= tem;
end process;
end convert;
Verilog: Converting an Unsigned Integer to Binary Using task
module Int_Bin (X_bin, flag_even, Y_int);
/In general Verilog, in contrast to VHDL, does not
 strictly differentiate between integers and binaries;

PROCEDURES, TASKS, AND FUNCTIONS • 293

 for example, if bin is declared as a binary of width 4,
 bin = bin/2 can be written, and the Verilog, but not
 VHDL, performs this division as if bin is integer.
 In the following, the corresponding VHDL program in
 Listing 6.5a is just translated to practice with
 the command task /
parameter N = 3;
output [N:0] X_bin;
output flag_even;
input [N:0] Y_int;
reg [N:0] X_bin;
reg flag_even;
always @ (Y_int)
begin
itb (Y_int, N, X_bin, flag_even);
end
task itb;
parameter P = N;
input integer int;
input N;
output [P:0] bin;
output flag;
integer j;
begin

if (int %2 == 0)
//The above statement checks int to see if it is even.
 flag = 1’b1;
 else
 flag = 1’b0;

for (j = 0; j <= P; j = j + 1)
 begin
 if (int %2 == 1)
 bin[j] = 1;
 else
 bin[j] = 0;
 int = int/2;
 end
end
endtask

endmodule

294 • HDL WITH DIGITAL DESIGN

The simulation output of this conversion is shown in Figure 6.4.

Y_int 12 0 15 7 8 9

X_bin

Flag_even

1100 0000 1111 0111 1000 1001

FIGURE 6.4 Simulation output for integer conversion to binary.

EXAMPLE 6.6 SIGNED BINARY-TO-INTEGER CONVERSION USING
PROCEDURE AND TASK

Here, a signed binary is considered. The value of the binary data can be
negative or positive. As is common, the negative data is represented by its
2s complement. The most significant bit of the data is the sign bit: if it is 0,
the number is positive; otherwise, it is negative.

If the data is positive (the most significant bit is 0), then it is identical
to unsigned data. For example, for four-bit data, 0101 is a positive number
because its most significant bit is 0; the value of the number is +5. The
data 1011 is a negative number; the value is –5. The decimal value of any
negative number Y in the 2s-complement format can be written as Y’ – 2N,
where N is the number of bits of Y, and Y’ is equal to the decimal value of
unsigned Y. For example, if Y = 1011, then N = 4. Y’ = 1011, unsigned =
11d. So, Y = 11 – 16 = –5.

Listing 6.5 shows the HDL code for converting from signed binary to
integer using procedure (task). In addition to conversion, the procedure
determines the parity (even or odd) of the input binary. Because a code has
previously been written for conversion from binary to integer (Listing 6.3),
it is used here. If the binary data is positive, it is the same code as in List-
ing 6.3. If the binary data is negative, its integer value is calculated as if it is
unsigned, and this integer value is corrected by subtracting sixteen. Refer-
ring to the HDL code in Listing 6.6, the sign of the input date is tested for
its most significant bit; if it is 1, the integer value (result) is corrected as
follows:

VHDL

PROCEDURES, TASKS, AND FUNCTIONS • 295

if (binsg(M) = ‘1’) then
result := result - 2(M+1);
end if;

Verilog
if (bin [P] == 1)
int = int - 2(P+1);

To know whether the parity is odd or even, the 1s in the input data
are counted and stored in the variable parity. Then, parity is divided
by two: if there is a remainder, the parity is odd. Otherwise, it is even. The
built-in function modulus, mod (VHDL) or % (Verilog), is used to determine
whether parity is odd or even as follows:

VHDL
if (parity mod 2 = 1) then
--if parity is divisible by 2, then it is even,
--otherwise it is odd.
 even <= ‘0’;
 else
 even <= ‘1’;
end if;

Verilog
if ((parity % 2) == 1)
//if parity is divisible by 2, then it is even,
otherwise it is odd.

even = 0;
else
even = 1;

The signal even_parity in Listing 6.6 identifies the parity of the input
data. If the parity is even, then even_parity is one, otherwise, it is zero.

LISTING 6.6 HDL Code for Converting a Signed Binary to an Integer Using
procedure and task: VHDL and Verilog.

VHDL: Converting a Signed Binary to an Integer Using procedure
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity signed_btoIn is

296 • HDL WITH DIGITAL DESIGN

generic (N : integer := 3);
port (X_bin : in signed (N downto 0); Y_int : out integer;
 even_parity : out std_logic);
end signed_btoIn;

architecture convert of signed_btoIn is

procedure sbti (binsg : in signed; M : in integer;
 int : out integer; signal even : out std_logic) is

--The procedure sbti is to change signed binary to integer
-- and also to find whether the parity of the binary
--is odd or even.
--The dimension of “sbin” does not have to be specified
--at the declaration statement; it can be declared later
--in the body of the procedure.

variable result, parity : integer;
begin

result := 0;
for i in 0 to M loop
if binsg(i) = ‘1’ then
result := result + 2i;
parity := parity + 1;
end if;
end loop;

if (binsg(M) = ‘1’) then
result := result - 2(M+1);
end if;
int := result;

if (parity mod 2 = 1) then
 even <= ‘0’;
 else
 even <= ‘1’;
end if;

end sbti;

begin

PROCEDURES, TASKS, AND FUNCTIONS • 297

process (X_bin)
variable tem : integer;
begin
 sbti (X_bin, N, tem, even_parity);
 Y_int <= tem;
end process;
end convert;

Verilog: Converting a Signed Binary to an Integer Using task
module signed_btoIn(X_bin, Y_int, even_parity);
/In general, Verilog (in contrast to VHDL) does not
 strictly differentiate between integers and binaries;
 for example if bin is declared as binary of width 4,
 write bin = bin/2, and the Verilog (but not VHDL) will
 perform this division. In the following, just translate
 the corresponding VHDL counterpart program. /

parameter N = 3;
input signed [N:0] X_bin;
output integer Y_int;
output even_parity;
reg even_parity;

always @ (X_bin)
begin
 sbti (Y_int, even_parity, N, X_bin);
end
task sbti;
parameter P = N;
output integer int;
output even;
input N;
input [P:0] bin;
integer i;
reg parity;

begin

int = 0;
parity = 0;
//change binary to integer
for (i = 0; i <= P; i = i + 1)

298 • HDL WITH DIGITAL DESIGN

 begin
 if (bin[i] == 1)
 begin
 int = int + 2i;
 parity = parity + 1;
 end
 end
 if ((parity % 2) == 1)
 even = 0;
 else
 even = 1;

 if (bin [P] == 1)
 int = int - 2(P+1);
end
endtask

endmodule

The simulation output of the conversion is shown in Figure 6.5.

X_bin 0111 1011 1110 1101 0011 1100

Y_int

even_parity

7 –5 –2 –3 3 –4

FIGURE 6.5 Simulation output for converting a signed binary to an integer.

EXAMPLE 6.7 INTEGER-TO-SIGNED-BINARY CONVERSION USING
PROCEDURE

In this example, an integer is converted to signed binary (see Listing 6.7).
The sign of the integer is tested and negated only if it is negative. The same code
from Listing 6.3 is applied. The outcome of the sign test is stored in the variable
flag. After calculating the equivalent binary, its value is adjusted according to
the flag. If the flag is one, this means that the integer has been negated, so the
binary is negated. If the flag is zero, no action is taken. The conversion is written
in procedure sitb and declared as:

procedure sitb (sbin : out signed; M, int : in integer) is

PROCEDURES, TASKS, AND FUNCTIONS • 299

In the declaration statement above, the dimension of sbin does not
have to be specified. The procedure can determine the dimension later in
its body.

LISTING 6.7 VHDL Code for Converting an Integer to a Signed Binary Using
procedure

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;
entity signed_IntToBin is
generic (N : integer := 3);
port (X_bin : out signed (N downto 0); Y_int : in integer);
end signed_IntToBin;

architecture convert of signed_IntToBin is
procedure sitb (sbin : out signed; M, int : in integer) is

-- The procedure sitb is to convert integer into signed
-- binary. The dimension of “sbin” does not have to be
-- specified at the declaration statement; it can be
--declared later in the body of the procedure.

variable temp_int : integer;
variable flag : std_logic;
variable bin : signed (M downto 0);
begin

if (int < 0) then
 temp_int := - int;
 flag := ‘1’;
 --if flag = 1, the number is negative
 else
temp_int := int;
end if;
for i in 0 to M loop
if (temp_int MOD 2 = 1) then
bin (i) := ‘1’;
else
bin (i) := ‘0’;
end if;
--integer division by 2
temp_int := temp_int/2;

300 • HDL WITH DIGITAL DESIGN

end loop;
if (flag = ‘1’) then
sbin := - bin;
else sbin := bin;
end if;
end sitb;
begin
process (Y_int)
variable tem : signed (N downto 0);
begin
sitb(tem, N, Y_int);
X_bin <= tem;
end process;
end convert;

EXAMPLE 6.8 SIGNED VECTOR MULTIPLICATION USING PROCEDURE
AND TASK

In this example, vector multiplication is performed. Equation 6.1 shows
vector multiplication

 d = a × b (6.1)

where a is a row vector with three elements, and b is a column vector
with three elements. Accordingly, d is a row vector with three elements.
Equation 6.1 can be written as:

 d =  a0 a1 a2 ×

b0
b1
b2

 
 
 
 
  

 (6.2)

From Equation 6.2,

 d = a0 b0 + a1 b1 + a2 b2 (6.3)

In this example, all elements of Equation 6.3 are signed binary. To mul-
tiply two signed numbers, Booth algorithm (as discussed in Chapter 3) is
implemented. Listing 6.8 shows the HDL code for signed vector multipli-
cation using procedure (task). The inputs to the multiplication algorithm
are written as:

port (a0, a1, a2, b0, b1, b2 : in signed (N downto 0);
d : out signed (3N downto 0));

If a large number of elements are being multiplied, the above code may
not be practical because a large number of ports must be listed. In Chapter 7,

PROCEDURES, TASKS, AND FUNCTIONS • 301

the ports are listed as an array; this will shorten the code. The Booth algo-
rithm is written as a procedure or task with the declaration:

VHDL
procedure booth (X, Y : in signed (3 downto 0);
Z : out signed (7 downto 0));

Verilog
task booth;
input signed [3:0] X, Y;
output signed [7:0] Z;

where the inputs are X and Y, and the output is Z. The procedure (task) is
restricted to 4x4 bits. The procedure (task) can be generalized to multiply
any NxN bits (see Exercise 6.2). The three procedure (task) callings calcu-
late the partial products a0b0, a1b1, and a2b2 as:

booth (a0, b0, tem0);
booth (a1, b1, tem1);
booth (a2, b2, tem2);

The partial products are stored in the eight-bit registers tem0, tem1, and
tem2, respectively. To find the product d, add tem0 + tem1 + tem2, and,
according to Listing 6.8, the product is stored in ten-bit register d. By
choosing ten bits, any overflow is avoided that might occur after accumulat-
ing the partial products in register d. To calculate d in Verilog, simply write:

d = tem0 + tem1 + tem2;

In VHDL, the language is strictly type and size oriented, so the VHDL
simulator may not perform the above operation because d has a different
size than tem0, tem1, and tem2. Several approaches can be taken to adjust
the size. The approach here is to convert tem0, tem1, and tem2 to integers
by using the procedure sbti and add all integers and convert back to bi-
nary by using the procedure sitb. Another approach is to extend the sizes
of tem0, tem1, and tem2 to ten bits and then add tem0+tem1+tem2 (see
Exercise 6.1).

LISTING 6.8 HDL Code for Signed-Vector Multiplication Using procedure
and task: VHDL and Verilog

VHDL: Signed-Vector Multiplication Using procedure
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;

302 • HDL WITH DIGITAL DESIGN

entity Vector_Booth is
generic (N : integer := 3);
port (a0, a1, a2, b0, b1, b2 : in signed (N downto 0);
 d : out signed (3N downto 0));
end Vector_Booth;

architecture multiply of Vector_Booth is
procedure booth (X, Y : in signed (3 downto 0);
 Z : out signed (7 downto 0)) is
--Booth algorithm here is restricted to 4x4 bits.
--It can be adjusted to multiply any NxN bits.
variable temp : signed (1 downto 0);
 variable sum : signed (7 downto 0);
 variable E1 : unsigned (0 downto 0);
 variable Y1 : signed (3 downto 0);
begin

sum := “00000000”; E1 := “0”;
 for i in 0 to 3 loop
 temp := X(i) & E1(0);
 Y1 := -Y;
 case temp is
 when “10” => sum (7 downto 4) :=
 sum (7 downto 4) + Y1;
 when “01” => sum (7 downto 4) :=
 sum (7 downto 4) + Y;
 when others => null;
 end case;
 sum := sum srl 1;
 sum (7) := sum(6);
 E1(0) := x(i);
 end loop;
 if (y = “1000”) then

--If Y = 1000; then according to the code,
--Y1 = 1000 (-8 not 8 because Y1 is 4 bits only).
--The statement sum = -sum adjusts the answer.

 sum := -sum;
 end if;
 Z := sum;
 end booth;

PROCEDURES, TASKS, AND FUNCTIONS • 303

procedure sitb (sbin : out signed; M, int : in integer) is
-- The procedure sitb is to convert integer into signed
-- binary. The dimension of “sbin” does not have to be
-- specified at the declaration statement; it can be
--declared later in the body of the procedure.
variable temp_int : integer;
variable flag : std_logic;
variable bin : signed (M downto 0);
begin

if (int < 0) then
temp_int := -int;
flag := ‘1’;
else
temp_int := int;
end if;

for i in 0 to M loop
if (temp_int MOD 2 = 1) then
bin (i) := ‘1’;
else
bin (i) := ‘0’;
end if;
temp_int := temp_int/2;
end loop;
if (flag = ‘1’) then
sbin := -bin;
else
sbin := bin;
end if;
end sitb;

procedure sbti (binsg : in signed; M : in integer;
 int : out integer) is

-- The procedure sbti is to change signed binary to
-- integer.No need to specify the dimension of “sbin”
-- at the declaration statement; it can be declared
-- later in the body of the procedure.

variable result : integer;

begin

304 • HDL WITH DIGITAL DESIGN

result := 0;
for i in 0 to M loop
if binsg(i) = ‘1’ then
result := result + 2i;
end if;
end loop;

if (binsg(M) = ‘1’) then
result := result - 2(M+1);
end if;
int := result;
end sbti;

begin
process (a0, b0, a1, b1, a2, b2)
variable tem0, tem1, tem2 : signed ((2N + 1) downto 0);
variable d_temp : signed (3N downto 0);
variable temi0, temi1, temi2, temtotal : integer;

begin
--Find the partial products a0b0, a1b1, a2b2
booth (a0, b0, tem0);
booth (a1, b1, tem1);
booth (a2, b2, tem2);

-- Change the partial products to integers
sbti (tem0, (2N+1), temi0);
sbti (tem1, (2N+1), temi1);
sbti (tem2, (2N+1), temi2);

-- Find the total integer sum of partial products
temtotal := temi0 + temi1 + temi2;

-- Change the integer to binary
sitb (d_temp, 3N, temtotal);

d <= d_temp;
end process;
end multiply;

Verilog: Signed-Vector Multiplication Using task
module Vector_Booth (a0, a1, a2, b0, b1, b2, d);

PROCEDURES, TASKS, AND FUNCTIONS • 305

parameter N = 3;
input signed [N:0] a0, a1, a2, b0, b1, b2;
output signed [3N : 0] d;
reg signed [2N+1 : 0] tem0, tem1, tem2;

reg signed [3N : 0] d;

always @ (a0, b0, a1, b1, a2, b2)
begin
booth (a0, b0, tem0);
//booth is a task to multiply a0 x b0 = tem0

booth (a1, b1, tem1);
booth (a2, b2, tem2);
d = tem0 + tem1 + tem2;
end
task booth;
input signed [3:0] X, Y;
output signed [7:0] Z;
reg signed [7:0] Z;
reg [1:0] temp;
integer i;
reg E1;
reg [3:0] Y1;

begin
Z = 8’d0;
E1 = 1’d0;

for (i = 0; i < 4; i = i + 1)
begin
temp = {X[i], E1}; //This is catenation
Y1 = -Y; //Y1 is the 2’ complement of Y
case (temp)
 2’d2 : Z [7:4] = Z [7:4] + Y1;
 2’d1 : Z [7:4] = Z [7:4] + Y;
 default : begin end
endcase
Z = Z >> 1; /This is a logical shift of one position to
 the right/
Z[7] = Z[6];
 /The above two statements perform arithmetic shift

306 • HDL WITH DIGITAL DESIGN

 where the sign of the number is preserved after
 the shift./
E1 = X[i];

end

if (Y == 4’b1000) Z = -Z;

/ If Y = 1000, then Y1 = 1000 (should be 8 not -8).
 This error is because Y1 is 4 bits only.
 The statement Z = -Z adjusts the value of Z. /

 end

endtask
endmodule

Figure 6.6 shows the output simulation of the vector multiplication.

a0 1001 1000 1000 1011

a1 0010 1000 1000 1111

a2 1011 1000 1000 0101

b0 0111 0111 1000 1110

d 1111000100 1101011000 0011000000 1111101001

b2 0011 0111 1000 1000

b1 0010 0111 1000 1001

FIGURE 6.6 Simulation output of vector multiplication.

PROCEDURES, TASKS, AND FUNCTIONS • 307

EXAMPLE 6.9 SIGNED 3x3-BIT MULTIPLICATION USING
COMBINATIONAL ARRAY

The Booth algorithm was introduced in Chapter 3. The algorithm com-
pares two consecutive bits of the multiplicand (ai ai-1) and performs addi-
tion if ai ai-1 = 01, subtraction if ai ai-1 = 10, or nothing if ai ai-1 = 00 or ai
ai-1= 11. After the comparison, a single arithmetic right shift is performed.
The algorithm repeats the comparison-shift N times where N is the num-
ber of bits of the multiplicand. A clock is used to count the iterations and
load the intermediate values. The multiplication algorithm, instead of us-
ing sequential approach, can be implemented using combinational circuits.
Comparison, addition, and subtraction can be implemented by combina-
tional circuits; the shift can be accomplished physically by shifting (plac-
ing) the combinational-circuit elements according to their placement in the
partial products. For example, if the product is four bits (P3 P2 P1 P0), then
the circuit that generated P1 is placed on the left-hand side of the circuit
generating P0. Figure 6.7 shows a combinational circuit that multiplies x
× b = p. Each x and b is three-bit signed number. Figure 6.7a shows two
types of cells: comp, which compares two bits, and FAS, which can add or
subtract. In comp cells, the comparison between two consecutive bits x(i)
and x(i-1) is done as follows:

C1 = x(i) xor x(i-1) C2 = x(i) and x(i 1)

C1C2 indicates whether x(i) x(i-1) are equal to 11, 00, 01, or 10. Cell
FAS is mainly a combinational adder/subtractor circuit. According to the
output of the comp cell, the FAS cell will add if C1C2 = 10, will subtract
if C1C2 = 11, and will be transparent (output = input) if C1 = 0. Table 6.1
shows the relationship between x(i) x(i-1) and the operation executed by
the FAS cell.

TABLE 6.1 FAS Cell

x(i) x(i-1) C2C1 FAS operation
00 00 Transparent: S = a
01 01 Addition: S1 S = a + b + c
10 11 Subtraction: S1 S = a - b - c
11 00 Transparent: S = a

From Table 6.1:
C1 = x(i) xor x(i-1)

C2 = x(i) and x(i 1)

308 • HDL WITH DIGITAL DESIGN

Figure 6.7b shows the multiplication of -3 × 2 where x = 2 and b = 3;
initially, a is set to 0.

Listing 6.9 shows the HDL code for the multiplier. In Listing 6.9, pro-
cedure COMPR is generating C1 and C2. Procedure Fulladdr performs the
addition if C2C1 = 01 and generates sum and carryout. Procedure Fullsub
performs subtraction when C2C1 = 11 and generates difference (Diff) and
Borrow. More details about the logic design of the array can be found in
Hayes, 1998 [1].

LISTING 6.9 HDL Code for Signed 3x3-Bit Multiplication Using
Combinational Array: VHDL and Verilog

VHDL
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity boothArrayProc is
port (start: in std_logic;
 x : in std_logic_vector (2 downto 0);
y: in std_logic_vector (4 downto 0);
p:out std_logic_vector(4 downto 0));
--Input y is 3-bit plus two additional sign extension
-- bits.
end boothArrayProc;

architecture boothar of boothArrayProc is
procedure COMPR (n1 : in std_logic_vector;
i : in integer range 0 to 3; c1, c2: out std_logic) is
begin
c1 := n1(i+1) xor n1(i);
c2 := n1(i+1) and not n1(i);
end procedure COMPR;

procedure Fulladdr (a, b,c : in std_logic;
sum, Carryout : out std_logic) is
begin
Sum := (not a and not b and c) or
 (not a and b and not c) or
 (a and not b and not c) or
 (a and b and c);
Carryout := (a and b) or (a and c) or (b and c);
end procedure Fulladdr;
procedure Fullsub (a, b,c : in std_logic; Diff,

PROCEDURES, TASKS, AND FUNCTIONS • 309

Borrow : out std_logic) is
begin
Diff := (not a and not b and c) or
 (not a and b and not c) or
 (a and not b and not c) or
 (a and b and c);
Borrow := ((not a) and c) or ((not a) and b) or (b and c);

end procedure Fullsub;

begin
B1: process (start,x,y)
variable s1, s2: std_logic;
variable T : std_logic_vector(3 downto 0);

variable f, E, z: std_logic_vector(4 downto 0):= “00000”;
variable carry_temp: std_logic_vector(5 downto 0);
variable i,j,layer, j1 :integer range 0 to 6 ;

S1

b S
c

c2FSA

a b

c1 X(i–1)
X(i)

(a)

FSA

0

0

0

1 1 1

1 1

FSA

0

0

0 FSA

0

0 0

0 FSA

0 0

0 1
1

1

1
1

0 FSA comp

0

0

00
0

1

comp

comp

FSA 1

0
1 0

FSA

0

1 FSA

1 1

1 FSA
0

FSA
0

1 1 10 0
P4 P3 P2 P1 P0

1

FSA FSA
0 00

0

(b)
FIGURE 6.7 A combinational array multiplier a) Cells comp and FAS. b) A multiplier circuit
that multiplies -3 × 2 where x = 2 and b = -3.

310 • HDL WITH DIGITAL DESIGN

begin
if (start = ‘1’) then
f := “00000”; E := “00000”;z := “00000”;
carry_temp := “000000”;
T := (x & ‘0’);-- T now represents all the inputs to
 --cells COMP including the initial
 --zero on the first COMP cell.
for layer in 0 to 2 loop

carry_temp(0) := ‘0’;

COMPR (T,layer,s1,s2);

if (s1 = ‘0’) then
for j in 0 to (4-layer) loop
z(j + layer) := f(j + layer);
end loop;

elsif (s2 = ‘0’) then
for j in 0 to (4-layer) loop

Fulladdr (f(j+layer), y(j), carry_temp(j),
 z(j+ layer), carry_temp(j+1));
end loop;
else
for j in 0 to (4-layer) loop

Fullsub (f(j+layer), y(j),
carry_temp(j), z(j+layer), carry_temp(j+1));
end loop;
end if;
for j1 in 0 to (4-layer) loop

f(j1 + layer) := z(j1 + layer);end loop;

end loop;
end if;
p <= z;
end process B1;
end boothar;

Verilog
module bootharrayTask(start, x, y, p);

PROCEDURES, TASKS, AND FUNCTIONS • 311

input start;
input [2:0] x;
input [4:0]y;
output [4:0] p;
/input y is 3-bit with additional 2 bits as sign extension/

reg [4:0] f,E,p;
reg [3:0] T;
integer layer,i, j,j1;
reg [5:0] carry_temp;
reg s1, s2;
always @ (start,x,y)
begin

if (start == 1’b1)
begin
T = {x,1’b0};/ T now represents all the inputs to
 cells COMP including the initial
 zero on the first COMP cell./
f = 5’d0; E = 5’d0; p = 5’d0; carry_temp = 6’d0;
for (layer = 0; layer <= 2; layer = layer + 1)

begin
carry_temp [0] = 1’b0;

COMPR (T,layer,s1,s2);

if (s1 == 1’b0)
begin
for (j = 0; j <= (4-layer); j = j+1)
begin

p[j + layer] = f[j + layer];

end
end

else if (s2 == 1’b0)
begin
for (j = 0; j <= (4-layer); j = j+1)
begin

312 • HDL WITH DIGITAL DESIGN

Fulladdr (f[j+layer], y[j], carry_temp[j],
 p[j+ layer], carry_temp[j+1]);
end
end
else
begin
for (j = 0; j <= (4-layer); j = j+1)
begin

Fullsub (f[j+layer], y[j], carry_temp[j],
 p[j+ layer], carry_temp[j+1]);
end
end

for (j1 = 0; j1 <= (4-layer); j1 = j1+1)
begin

f[j1 + layer] = p[j1 + layer];
end

end
end
end
task COMPR;
input [3:0]n1;
input integer i;
output c1, c2;
begin
c1 = n1[i+1] ^ n1[i];
c2 = n1[i+1] & (~ n1[i]);
end
endtask
task Fulladdr;
input a, b,c;
output sum, Carryout;
reg sum, Carryout;
begin
sum = (~a & ~b & c) |
 (~a & b & ~ c) |
 (a & ~ b & ~ c) |
 (a & b & c);
Carryout = (a & b) | (a & c) | (b & c);
end

PROCEDURES, TASKS, AND FUNCTIONS • 313

endtask
task Fullsub;
input a, b,c;
output Diff, Borrow;
begin
Diff = (~a & ~b & c) |
 (~a & b & ~ c) |
 (a & ~ b & ~ c) |
 (a & b & c);
Borrow = ((~ a) & c) | ((~ a) & b) | (b & c);
end
endtask

endmodule

EXAMPLE 6.10 DESCRIPTION OF ENZYME-SUBSTRATE ACTIVITY USING
PROCEDURE AND TASK

Enzymes are molecules (generally proteins) that increase the speed
of a chemical reaction. The human body uses a large number of different
enzymes to speed up various types of chemical reactions such as those in-
volved in metabolism. Each enzyme is specific for a certain reactant, called
a substrate. For the substrate-enzyme complex to work, the enzyme must
be capable of binding to the substrate; if the enzyme cannot bind to the
substrate, the enzyme will not be active. The activity of the enzyme increas-
es with the strength of binding. There are several theories that explain this
binding such as the key-lock mechanism. In this mechanism, the physical
shape of the enzyme matches a groove on the substrate where it can bind.
Figure 6.8a illustrates a potentially strong bond between the enzyme and
substrate. Figure 6.8b illustrates a case where binding is almost impossible
between the substrate and enzyme.

Substrate

E
n
z
y
m
e

Substrate

E
n
z
y
m
e

(a) (b)
FIGURE 6.8 Binding between substrate and enzyme. (a) Strong. (b) Week.

314 • HDL WITH DIGITAL DESIGN

The binding strength between the substrate and the enzyme is mea-
sured by a parameter called the dissociation constant (M). If M is large, the
binding or affinity between substrate and enzyme is weak and vice versa.
The rate of reaction between an enzyme with dissociation constant, M, and
a substrate with concentration, S, is represented by Equation 6.4

 max
S

V = V
S + M

 (6.4)

where S is the concentration of the substance and Vmax is the maximum pos-
sible rate of reaction when S >> M. Usually, Vmax is assigned the value of
1 (100%), and accordingly, V is measured as a fraction or percentage.
Figure 6.9 shows a graphical representation of Equation 6.4 for a dissociation
constant of three units. Notice that if S = M, then V = 0.5Vmax, so M can be
viewed as the concentration of substrate at which the rate of reaction is 50%
of Vmax. Figure 6.9 shows the relationship between the substrate concentra-
tion, S, and rate of reaction, V.

0.8
V

0.5

0.3

0.0
1 5 10 15 20

S

1.0

FIGURE 6.9 Relationship between the substrate concentration, S, and rate of reaction, V.

Listing 6.10 shows the HDL code describing the enzyme-substrate ac-
tivity. The challenge here is to write HDL code that can operate on real
numbers. Recall that V is a fraction if Vmax is taken as 1.

PROCEDURES, TASKS, AND FUNCTIONS • 315

Several basic VHDL simulators, in contrast to Verilog, will not accept a
mix of integer and real numbers in the same assignment statement. Here,
we assume that the user does not have an external library or packages that
convert between integer and real. Also, in Listing 6.10, the VHDL code as-
sumes that S and M are fractions; if not, the user can scale down both S and
M to be fractions. In VHDL code, S and M are represented by fractions in
the Q4 (four bits) format. The four bits are converted to real fraction by the
procedure flt. The procedure multiplies bit, i, with its weight, 2-i, and ac-
cumulates the product into a real number fl oat. The rate of reaction (V) is
calculated using Equation 6.4. To display the rate of reaction in binary, the
real number is converted to an integer by the procedure rltointg.

On the other hand, Verilog code is very easy to write because Verilog
allows for the mixing of integer and real.

Listing 6.10 simulates Equation 6.4 (the relationship between the rate
of reaction and concentrate of substrate). This same approach can be used
to simulate other equations similar to Equation 6.4 such as the output of
certain filters as a function of frequency or a transistor collector’s voltage as
a function of collector current.

LISTING 6.10 HDL Description for Enzyme Activity Using procedure and
task: VHDL and Verilog

VHDL: Enzyme Activity Using procedure
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_arith.all;
-- A description of enzyme-substrate binding mechanism.
-- S= (Vmax S)/(S + M) where S is the substrate
-- concentration, M is the dissociation constant, and Vmax
-- is the maximum rate of reaction. In this example,
-- Vmax = 1. The inputs are S and M in binary (fraction);
-- the output v is in Q4 format. This means that v is
-- always less than one, with the binary point placed to
-- the left of the most significant bit. For example,
-- if v = 1010, the decimal equivalent is .5 + .125 =
-- 0.625. To calculate v, convert S and M to real fraction,
-- find the real value of (S/(S + M)), convert this real
-- value to Q4 by multiplying it with 24 = 16, and

316 • HDL WITH DIGITAL DESIGN

-- convert the integer to binary.
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_arith.all;

entity enzyme_beh is
port (S : in std_logic_vector (0 to 3);
 M : in std_logic_vector(0 to 3);
 v : out real ; intg_bin : out integer;
 start: in bit);
end enzyme_beh;

architecture enzyme of enzyme_beh is
procedure flt (a : in std_logic_vector (0 to 3);
 float : out real) is

--This procedure converts fraction expressed
--in fixed-point binary (Q4) to real
variable tem,j : real;
begin
 tem := 0.0;
 j := 1.0;

 for i in 0 to 3 loop
 j := j/ 2.0;
 if (a(i) = ‘1’) then

 tem := tem + j;
 end if;
 end loop;
float := tem;
end flt;
procedure rltointg (a1 : in real ; Bin1 : out integer) is

--This procedure converts real to integer
--The procedure does not round off
variable tem,j : real := 0.0;
variable tmp : integer := 0;
begin

while (tmp <= 256) loop

PROCEDURES, TASKS, AND FUNCTIONS • 317

--Assume the maximum integer value is 256; if not,
--adjust accordingly
if (a1 > j) then
tmp := tmp + 1;
 j := j + 1.0;
 else
 exit;
 end if;
 end loop;
 Bin1 := tmp;
end rltointg;

begin
P1 : process(S, M, start)
variable temp1, temp11, vmax : real;
variable temp2: integer := 0;

begin
if (start = ‘1’) then
vmax := 1.0;
flt(S,temp1);
flt(M,temp11);
temp1 := Vmax  (temp1/(temp1 + temp11));
v <= temp1;
temp1 := temp1 16.0;
rltointg (temp1, temp2);
intg_bin <= temp2;
end if;
end process P1;
end enzyme;

Verilog: Enzyme Activity Using task
/ A description of enzyme-substrate binding mechanism.
 S= (Vmax S)/(S + M), where S is the substrate
 concentration, M is the dissociation constant,
 and Vmax is the maximum rate of reaction. In this
 example, Vmax =1. The inputs are S and M in binary
 (integer);
 the output v is in Q4 format. This means that v is
 always less than 1, with the binary point placed to the
 left of the most significant bit. For example, if
 v = 1010, the

318 • HDL WITH DIGITAL DESIGN

 decimal equivalent is .5 + .125 = 0.625. To calculate V,
 find the real value of (S /(S + M)), convert this real
 value to Q4 by multiplying it with 24 =16, and convert
 the integer to binary. /
module enzyme_beh (S, M, V);
input [3:0] S, M;
output [3:0] V;
integer vmax;
reg [3:0] V;
real vr;
always @ (S, M)
begin
vmax = 1;
vr = vmax  (1.0  S) / (S  1.0 + M  1.0);
vr = vr  24;
rti (vr, V);
end
task rti;
/ This task can be replaced by just one statement, v1= r.
 Verilog, in contrast to VHDL, can handle different
 types of the assignment statement. Verilog finds the
 equivalent integer value v1 for the real r. The task has
 been designed here only to match the same steps done in
 VHDL. /

input real r;
output [3:0] v1;
real temp;
begin
temp = r;
v1 = 4’b0000;
while (temp >= 0.5)
begin
 v1 = v1 + 1;
 temp = r - 1.0  v1;
end
end
endtask
endmodule

Figure 6.10 shows the simulation output of the relationship between
substrate concentration, S, and rate of reaction, V, for M = 3 units.

PROCEDURES, TASKS, AND FUNCTIONS • 319

M 0011 0011 0011 0011 00110011

Vr 0.2500 0.500 0.700 0.785714 0.83330.75

V 0100 1000 1011 1101 11011100

S 0001 0011 0111 1011 11111001

FIGURE 6.10 Simulation output of the relationship between substrate concentration, S, and rate of reac-
tion, V, for M = 3 units.

6.3 Functions

Functions are behavioral statements. As is the case when calling proce-
dure or task, functions must be called within process (VHDL) or always
or initial (Verilog). Functions take one or more inputs, and, in contrast
to procedure or task, they return only a single output value.

6.3.1 VHDL Functions
As in procedure, functions have a declaration and a body. An example

of a function declaration is:

function exp (a, b : in std_logic) return std_logic is

where function is a predefined word, exp is the user-selected name
of the function, and a and b are the inputs. Only inputs are allowed in the
function declaration. The function returns a single output by the use of
the predefined word return. The function exp returns a variable of type
std_logic, and is is a predefined word that has to be at the end of the dec-
laration statement. The name of the output is not listed in the declaration;
it is listed in the body of the function. The body of the function lists the re-
lationship between the inputs and the output to be returned. All statements
in the body of the function should be behavioral (sequential) statements,
and return is used to point to the output of the function. An example of a
function’s declaration and body (VHDL) is shown in Listing 6.11.

LISTING 6.11 Example of a VHDL Function

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

320 • HDL WITH DIGITAL DESIGN

entity Func_exm is
port (a1, b1 : in std_logic; d1 : out std_logic);
end Func_exm;

architecture Behavioral of Func_exm is
function exp (a, b : in std_logic) return std_logic is
variable d : std_logic;
begin
d := a xor b;
return d;
end function exp;

begin
process (a1, b1)
begin
d1 <= exp (a1, b1);
--The above statement is a function call
end process;
end Behavioral;

In Listing 6.11, the name of the function is exp; it has two inputs, a and
b, of type std_logic. The type of the output to be returned is std_logic.
The output to be returned is d. The function, as seen from its body, is
performing a xor function on the inputs a and b. To call the function, it
should be written inside a process. The function is called by the following
statement:

d1 <= exp (a1, b1);

The function call passes a1 and b1 to a and b, respectively, then calcu-
lates a1 XOR b1 and passes the output of the XOR to d1.

The standard VHDL package has many built-in functions; other func-
tions can be imported from packages attached to the VHDL module. Some
examples of built-in functions are:

mod: finds the modulo of x mod y

abs: finds the absolute value of a signed number

To_INTEGER: returns an integer value of a signed input

TO_SIGNED: takes an integer and returns its signed binary equivalent

PROCEDURES, TASKS, AND FUNCTIONS • 321

The package ieee.numeric_std.all has a large number of built-in
functions.

6.3.2 Verilog Functions
Functions in Verilog have a declaration statement and a body. In the

declaration, the size (dimension), type, and name of the output are speci-
fied, as well as the names and sizes (dimensions) of the inputs. For example,
the declaration statement

function exp;
input a, b;

declares a function with the name (identifier) exp. The function has two
inputs, a and b, and one output, exp. All inputs are one-bit data, and the
output is also one-bit data. The inputs and output can take 0, 1, x (“don’t
care”), or Z (high impedance). The body of the function follows the declara-
tion in which the relationship between the output and the inputs is stated.
An example of a function and its call is shown in Listing 6.12. The function
calculates exp = a XOR b.

LISTING 6.12 Verilog Function That Calculates exp = a XOR b
module Func_exm (a1, b1, d1);
input a1, b1;
output d1;
reg d1;

always @ (a1, b1)
begin

/The following statement calls the function exp
and stores the output in d1./

d1 = exp (a1, b1);
end

function exp ;
input a, b;
begin

exp = a ^ b;
end
endfunction
endmodule

322 • HDL WITH DIGITAL DESIGN

In addition to user-defined functions, the standard Verilog package in-
cludes a large number of built-in functions such as modulus %.

6.3.3 Function Examples

EXAMPLE 6.11 FUNCTION TO FIND THE GREATER OF TWO SIGNED
NUMBERS

In this example, the greater of two signed numbers, x and y, is deter-
mined. Each number is a signed binary of four bits, and function is called
in the main module to find the greater of the two input numbers. The result
is stored in z. Listing 6.13 shows the HDL code of this example.

LISTING 6.13 HDL Function to Find the Greater of Two Signed Numbers:
VHDL and Verilog

VHDL Function to Find the Greater of Two Signed Numbers
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;

entity greater_2 is
port (x, y : in signed (3 downto 0);
 z : out signed (3 downto 0));
end greater_2;

architecture greater_2 of greater_2 is
function grt (a, b : signed (3 downto 0)) return signed is
-- The above statement declares a function by the name grt.
-- The inputs are 4-bit signed numbers.

variable temp : signed (3 downto 0);
begin
 if (a >= b) then
 temp := a;
 else
 temp := b;
 end if;
return temp;
end grt;

begin

PROCEDURES, TASKS, AND FUNCTIONS • 323

process (x, y)
begin
 z <= grt (x, y); --This is a function call.
end process;
end greater_2;

Verilog Function to Find the Greater of Two Signed Numbers
module greater_2 (x, y, z);
input signed [3:0] x;
input signed [3:0] y;
output signed [3:0] z;
reg signed [3:0] z;
always @ (x, y)
begin
z = grt (x, y); //This is a function call.
end

function [3:0] grt;

/The above statement declares a function by the name grt;
grt is also the output of the function/

input signed [3:0] a, b;
/The above statement declares two inputs to the function;
both are 4-bit signed numbers./

begin
if (a >= b)
grt = a;
else
grt = b;
end
endfunction

endmodule

EXAMPLE 6.12 FUNCTION TO FIND THE FLOATING SUM Y = ,
3

i i

i=0
(-1) (x)

0 < X < 1

In this example, a function is written that accumulates the polynomial
summation of x. The polynomial in this example is of the third degree. The
input number x is a positive fraction, and it is represented as a fixed-point

324 • HDL WITH DIGITAL DESIGN

Q4 format. This means that the binary point is at the left of the most sig-
nificant bit of x, and the total number of bits is four. For example, if the
number is 1010, then its decimal value is 2–1 + 0 + 2–3 + 0 = 0.5 + 0.125 =
0.625. The output y in this example is assigned a Q8 format. To calculate y,

first convert x to real, then calculate the real sum of
3

i i

i=0
(-1) (x) = 1 – x +

x2 – x3. To convert the sum to Q8, multiply the real sum by 28; this generates
a real number. This real number is converted to an integer, and finally, the
integer is converted to binary. For example, if x = 1011, the following steps
are executed:

1. Convert x to real: 1011 is converted to 0.5 + 0.125 + 0.0625 = 0.6875

2. Multiply the real number in Step 1 by 28: 0.6875 × 28 = 176.0

3. Convert the real number in Step 2 to an integer: 176.0 is converted to
176

4. Convert the integer in Step 3 to an eight-bit binary:
176 is converted to B0 (hex)

Listing 6.14 shows the HDL code for calculating y. Referring to the
VHDL, three procedures are built: flt, rltointg, and itb. The procedure
flt converts std_logic to real. We need this procedure to convert the in-
put x. The procedure rltointg converts the real value to an integer, and itb
converts the integer to std_logic. The function exp implements the three
procedures to calculate y. In VHDL, procedures are allowed to be written
in the body of the function.

The Verilog code in Listing 6.14 consists of three functions: float, rti,
and exp. In contrast to VHDL, Verilog does not allow tasks to be written in
the body of the function. The function float converts binary numbers that
represent fractions (Q4) to real numbers. The function rti converts real
numbers to integers.

Because Verilog is not a very strict type-oriented language, we can re-
write function rti as:

function [15:0] rti;
input real r;

begin

PROCEDURES, TASKS, AND FUNCTIONS • 325

 rti = r;
end
endfunction

The statement rti = r; has a left-hand rti of type integer and a right-
hand side of r (real). Verilog allows this mixing of two types; it calculates the
right-hand side as real, and when assigned to the left-hand side, the type is
converted from real to integer.

LISTING 6.14 HDL Code for y = ,
3

i i

i=0
(-1) (x) 0 < x < 1: VHDL and Verilog

VHDL Floating Sum Description
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity segma is
port (x : in std_logic_vector (0 to 3);
 y: out std_logic_vector (7 downto 0));
end segma;

architecture segm_beh of segma is

procedure flt (a : in std_logic_vector (0 to 3);
 float : out real) is

--This procedure converts fraction expressed
-- in fixed-point binary to real
variable tem,j : real;
begin
 tem := 0.0;
 j := 1.0;

 for i in 0 to 3 loop
 j := j/ 2.0;

 if (a(i) = ‘1’) then

 tem := tem + j;
 end if;
 end loop;
float := tem;
end flt;

326 • HDL WITH DIGITAL DESIGN

procedure rltointg (a1 : in real ; Bin1 : out integer) is

--This procedure converts real to integer
--The procedure does not round off
variable tem,j : real := 0.0;
variable tmp : integer := 0;
begin

while (tmp <= 256) loop
--Assume the maximum integer value is 256;
--if not, adjust accordingly
if (a1 > j) then
tmp := tmp + 1;
 j := j + 1.0;
 else
 exit;
 end if;
 end loop;
 Bin1 := tmp;
end rltointg;

procedure itb (bin : out std_logic_vector;
N : in integer; int : in integer) is
--This procedure is to convert integer to binary
variable temp_int : integer := int;
begin

 for i in 0 to N loop
 if (temp_int MOD 2 = 1) then
 bin(i) := ‘1’;
 else bin(i) := ‘0’;
 end if;
 temp_int := temp_int/2;
 end loop;
 end itb;
function exp (a : in std_logic_vector (0 to 3))
 return std_logic_vector is

variable z1 : real;
variable intgr : integer;
variable tem : std_logic_vector (7 downto 0);

PROCEDURES, TASKS, AND FUNCTIONS • 327

begin
 flt (a, z1);
 z1 := 1.0 - z1 + z1  z1 - z1  z1  z1;
 z1 := z1  256.0; -- 256 is for 8 bits
 rltointg (z1, intgr);
 itb (tem, 7, intgr);
 return tem;

 end exp;
begin
sg1 : process (x)
variable tem1 : std_logic_vector (7 downto 0);
variable tem2: integer;
begin

tem1 := exp(x);
y <= tem1;

end process sg1;

end segm_beh;

Verilog Floating Sum Description
module segma1(x,y);
input [0:3] x;
// x is a fraction in Q4 format, 0 < x < 1.
output [7:0] y;
reg [7:0] y;
always @ (x)
begin
 y = exp (x);
end
function [7:0] rti;
//This function convers real to integer with rounding off
input real r;

begin
 rti = r;
end
endfunction
function [7:0] exp;
input [0:3] a;

328 • HDL WITH DIGITAL DESIGN

real z1;

integer i;
begin

 z1 = 0.0;
 for (i = 0; i <= 3; i = i + 1)
 begin
 if (a[i] == 1)

 z1 = z1 + 1.0 / 2(i+1);
/The above statement multiplies
each bit by its weight/
end

 z1 = 1.0 - z1 + z12 - z13;
 z1 = z1  28;
 exp = rti(z1);

end
endfunction
endmodule

The simulation output of Listing 6.14 is shown in Figure 6.11.

x 1000 1111 0100

y 10100000 00011110 11001100

FIGURE 6.11 Simulation output of Listing 6.14.

EXAMPLE 6.13 IMPLEMENTATION OF IEEE 754 FLOATING-POINT
REPRESENTATION

In Example 6.12, the real number was represented by four bits in Q4
format (fixed-point representation); the binary point is located just to the
left of the most signifact bit of the number. For example, if the number is
10002, the binary point is located to the left of the most significant bit, in
this case, the bit with value 1, and the value of the number is 8/16 = 0.5.
Fixed-point representation is not used in computers due to its limited ac-
cuaracy. For four bits, the lowest number that can be represented with full

PROCEDURES, TASKS, AND FUNCTIONS • 329

accuracy is 1/16; any number less than 1/16 will not be represented with
100% accuracy and may be considered (depending on the rounding systems
used) as zero. On the other hand, floating-point representation, which rep-
resents the number using exponent and mantessa fields, are more accurate
and is the common representation for real numbers in computers. Because
any number can be represented with unlimited variations of exponent and
mantessa, the Institute of Electrical and Eleconics Engineers (IEEE) has
established a standard format (IEEE 754) for the representation of float-
ing-point numbers. According to this format, any floating-point number is
represented by 32 bits for single precision and 64 bits for double precision,
as shown in Figure 6.12. The value of the number N is:

N=(-1)s x (1 + Fraction) x 2(Exponent – Bias)

The fraction is less than one and is represented by 23 bits for
single precision and 53 for double precision. The “1” that is
added to the fraction is hidden and does not appear in the for-
mat (see Figure 6.12). The bias is 127 for single precision and
1023 for double precision. For example, the number 0.5 × 2-10 is
represented in single precision as
00111010110000000000000000000000
where the sign is positive (0); the exponent is 127 + (-10) =
117

10
 = 011101012; the fraction is

100000000000000000000002

0 1 8 9 31

Exponent
8 bitsS

Fraction
23 bits

0 1 10 11 63

Exponent
11 bitsS

Fraction
52 bits

(b)

(a)

FIGURE 6.12 IEEE 754 floating-point representation. a) Single precision. b) Double precision.

Listing 6.15 shows a Verilog code for the conversion of any positive
number to the IEEE 754 single-precision floating-point representation.
For example, if the number is x = 24.0, it is converted first to (1 + fraction)
2(Exponent – Bias) by dividing x by 24 which yields to x = 1.5 × 24; the fraction is
0.5, and the exponent is 127 + 4 = 131. The output IEEE_fl t for x = 24.0 is:

01000001110000000000000000000000

330 • HDL WITH DIGITAL DESIGN

LISTING 6.15 Verilog Code for Conversion to Single-Precision IEEE 754
Floating-Point Representation

module IEEEflt(start, IEEE_flt);
input start;
output [0:31] IEEE_flt;//This is the 32-bit IEEE
reg [7:0] j;
reg [0:31] IEEE_flt;
real x = 24.0; / x is the iput number in decimal
 format; assume all numbers entered here are
 positive; see Exercise at the end of the Chapter/

real Mant;integer i;
always @ (start,x,j)
begin
if (start == 1’b1)
begin

j =8’d127;//The exponent is in excess 127
if (x != 0.0)
begin
while (x >= 2.0)
begin
x = x/ 2.0;
j = j +1;
end

while (x < 1.0)
begin
x = x 2.0;
j = j -1;
end

end

end
Mant = x-1.0;

for (i =0 ; i <= 22; i = i + 1)
begin
IEEE_flt [9+i] = 1’b0;
Mant = Mant  2.0;
if (Mant >= 1.0)

PROCEDURES, TASKS, AND FUNCTIONS • 331

begin
IEEE_flt [9+i] = 1’b1;
Mant = Mant-1.0;
end
end
IEEE_flt [0] = 1’b0;
IEEE_flt [1:8] = j[7:0];
end

endmodule

6.4 Summary

In this chapter, procedure (VHDL), task (Verilog), and function
(both VHDL and Verilog) have been covered. Procedures, tasks, and func-
tions can optimize the style of writing HDL code; they shorten the code.
The procedure/task has a declaration statement and a body, and it can have
more than one input and more than one output. On the other hand, a func-
tion can have more than one input but only one output. VHDL allows pro-
cedure calls to be written inside functions; Verilog does not allow such calls.

6.5 Exercises

1. In Listing 6.6, negative binary numbers were converted to integers by
reverse-negating them. Another approach is to find the integer value
of any twoscomplement number by detecting the beginning and end of
strings of ones in the number (see Case Study 3.1). Apply this approach
and write both the VHDL and Verilog codes for such a conversion.
Verify your code by simulation and compare the two approaches.

2. In Listing 6.8, a VHDL Booth procedure was written that multiplies 4x4
bits. Modify the VHDL procedure so it can multiply any NxN. Verify
your answer by simulation.

3. In Listing 6.8 (VHDL), temtotal = tem0 + tem1 + tem2 was added
by converting to integer, adding, and then changing back to binary. An
alternate approach is to adjust the width of all partial products (after
they are calculated) to be the same as temtotal and then add. Perform
this alternate approach and verify your results by simulation.

332 • HDL WITH DIGITAL DESIGN

4. Derive the HDL code (both VHDL and Verilog) for the function y = Ln
x; 0 < x < 1. Express y in Q15 format. Hint: use polynomial representa-
tion for Ln (x).

5. Write a function to calculate the area of a sphere, given the radius.

6. Rewrite the code for the Booth array (Listing 6.9) to simulate an NxN
array multiplier. Hint: For N layers, the bottom layer contains N cells,
and the number of cells increases by one.

7. In Listings 6.10 and 6.14, the VHDL code for the procedure rlto-
intg does not round off. For example, if the real value is 215.3175, the
procedure will output 216 for the integer equivalent. On the other hand,
the Verilog code of the procedure is rounding off. Rewrite the VHDL
procedure so it will round off. Adjust the VHDL code to output the
same value as the Verilog.

8. Repeat Listing 6.15 but for positive or negative numbers and use
double precision.

6.6 Reference

Hayes, J., Computer Architecture and Organization, 3rd ed. McGraw Hill, Boston,
Massachusetts, USA, 1998.

C H A P T E R

MIXED-TYPE DESCRIPTION

7
Chapter Objectives

 Learn how to use different types (styles) of descriptions to write
HDL modules

 Learn which type or style of description to use for optimal writing
style

 Understand the concept of packages in VHDL and how to use them
 Practice with single and multidimensional arrays
 Practice with real (floating) numbering systems
 Practice user-defined types
 Practice using finite sequential-state machines
 Review and understand the steps needed to design and describe a

basic computer

7.1 Why Mixed-Type Description?

Our definition of mixed-type description is an HDL code that mixes
different types (styles) of descriptions within the same module. In previous
chapters, description codes consisted mainly of one type such as data flow
(see Chapter 2), behavioral (see Chapter 3), structural (see Chapter 4), or
switch level (see Chapter 5). Here, the code is written using more than one
type of description in the same module.

In fact, it is very common to write mixed descriptions because each
part of the selected system may be written best by a certain type of descrip-
tion. For example, consider a system that performs two operations: addition

334 • HDL WITH DIGITAL DESIGN

(Z = x + y) and division (Z = x / y). The code can be written using a few
styles. The first style is to use behavioral statements to model the addition
and the division. This style is somewhat easy to write because HDL has
built-in addition and division functions. The behavioral statements are writ-
ten inside process (VHDL) or always (Verilog) as:

Z := a + b; --VHDL or Z := x / y; --VHDL
Z = a + b; //Verilog or Z = x / y; //Verilog

The ultimate goal of VHDL or Verilog description is to synthesize the
description on electronic chips (see Chapter 10). If the behavioral descrip-
tion is used, the author has no control over selecting the components or
the methods used to implement the addition and division. The HDL pack-
age may contain addition or division algorithms not suitable for the current
needs of the user. For example, the addition algorithm might need to be as
fast as possible; to achieve this fast addition, adders such as carry lookahead
or carry-save should be used. There is no guarantee, however, that behav-
ioral description will implement those adders in its addition function. A sec-
ond option is to use data-flow or structural description. These descriptions
can be implemented to describe the specific adder. It is, however, hard to
implement these descriptions in complex algorithms such as division. The
third option is to use a mixture of two types (styles) of descriptions: struc-
tural or data-flow for addition and behavioral for division. This description
is referred to here as a mixed type.

Before considering examples of mixed-type description, some tools
and commands that could be used to write more complex codes are dis-
cussed. Section 7.2 discusses user-defined types, and Section 7.3 discusses
packages and arrays.

7.2 VHDL User-Defined Types

VHDL has an extensive set of predefined data types such as bit, std_
logic, array, and natural (see Chapter 1). In some applications, other
data types that are not included in the basic HDL package are needed.
Examples of such types are weekdays, weather, or grades. These are user-
defined types. To instantiate a user-defined type, the predefined word type
is used. An example of instantiating a user-defined type is:

type week_days is (mon, tues, wed, th, fr, sat, sun);

This statement declares a user-defined type by the name of week_days,

MIXED-TYPE DESCRIPTION • 335

and type is a predefined word; the elements or members of week_days are
mon, tues, wed, th, fr, sat, and sun. Another example of a user-defined
type is:

type states is (S0, S1, S2, S3);

This statement declares a user-defined type by the name of states.
The elements (members) of states are s0, s1, s2, and s3. Another ex-
ample of a user-defined type is:
type weather is (sunny, cloudy, rain, snow);

This statement declares a user-defined type by the name of weather,
and the elements (members) of weather are sunny, cloudy, rain, and
snow. Another example of a user-defined type is:

type decimal_numbers is (‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’);

This statement declares a user-defined type by the name of decimal_
numbers; the elements (members) of decimal_numbers are the integers:
‘0’, ‘1’, ‘2’, ‘3’, ‘4’, and ‘5’. If the members of a type are digits,
they should be written between two apostrophes, such as ‘5.’ Another ex-
ample of a user-defined type is:

type grades is (A, B, C, D, F, I);

This statement declares a user-defined type by the name of grades; the
elements (members) of grades are A, B, C, D, F, and I. The statement:

signal scores : grades;

declares scores as the of type grades. This means that scores can be
assigned a value of A, B, C, D, F, or I.

A subtype of a type can be declared by using the predefined word sub-
type, as shown below:

subtype failed is grades range D to I;
signal scores : failed;

where failed is a subtype of grades and has a range from D to I, range
is a predefined attribute, so scores can be assigned a value of D, F, or I.
Another example is:

subtype values is integer range 10 to 100;
signal x : values;

Signal x can be assigned an integer value from 10 to 100. Remember
from Chapter 1 that integer is a predefined type.

336 • HDL WITH DIGITAL DESIGN

7.3 VHDL Packages

Packages constitute an essential part of VHDL description. Packages
allow the user to access built-in constructs. Packages may include type and
subtype declarations, constant definitions, function and procedure, and
component declarations. VHDL has default built-in packages that include
predefined words such as bit, bit_vector, and integer. In addition to
the defaults, the user can attach a variety of packages to the VHDL module.

Several packages have been implemented in previous chapters; exam-
ples include packages authored by IEEE: IEEE.STD_LOGIC_1164, IEEE.
STD_LOGIC_ARITH, IEEE.NUMERIC_STD, IEEE.STD_LOGIC_UNSIGNED, and
IEEE.STD_LOGIC_SIGNED. In addition to such built-in packages, the user
can attach other packages to the VHDL module. A package consists of a
declaration and a body. The declaration states the name (identifier) of the
package and the names (identifiers) of types, procedures, functions, and
components. The body of the package contains the code for all the identifi-
ers listed in the declaration. Listing 7.1 shows an example of a user-defined
package.

LISTING 7.1 An Example of a VHDL Package

package conversions is
 type wkdays is (mon, tue, wed, th, fr);
 procedure convert (a : in bit; b : out integer);
 function incr (b : std_logic_vector) return std_logic_vec-
tor;
 end conversions;

package body of conversions is written as:

procedure convert (a : in bit; b : out integer) is
begin
.......
end convert;
function incr (b : std_logic_vector) return std_logic_vector is
begin
...
end incr;
end conversions;

As shown in Listing 7.1, the name of the package is conversions; the

MIXED-TYPE DESCRIPTION • 337

package contains Type wkdays, Procedure convert, and function incr.
The package body lists the code of the procedure convert and function
incr. Listing 7.2 shows another package example. The name of the package
is codes; the members are add, mul, divide, and none.

LISTING 7.2 An Example of a VHDL Package

library ieee;
use ieee.std_logic_1164.all;
package codes is
type op is (add, mul, divide, none);
end;
use work.codes;

entity ALUS2 is
 port (a, b : in std_logic_vector (3 downto 0);
 cin : in std_logic; opc : in op;
 z : out std_logic_vector (7 downto 0);
 cout : buffer std_logic);
end ALUS2;

To use this package in a VHDL module, the statement use work.
Codes; is entered. Notice that in the entity ALUS2, opc is declared as a
of type op; this means opc can be assigned a value of add, mul, divide, or
none.

7.3.1 Implementations of Arrays
As discussed in Chapter 1, arrays are a data type; all elements of the ar-

ray should have the same type. The array can be single-dimensional or
multidimensional. HDL allows for multidimensional arrays. Arrays can be
composed of signals, constants, or variables. This section covers arrays in
detail, as well as several implementations.

7.3.1.1 Single-Dimensional Arrays

Single-dimensional arrays have single index. They are declared as follows:

VHDL Single-Dimensional Array

The two statements

type datavector is array (3 downto 0) of wordarray;
subtype wordarray is std_logic_vector (1 downto 0);

338 • HDL WITH DIGITAL DESIGN

declare an array by the name of datavector; it has four elements, and
each element is two bits. An example of this array is:

(“11”, “10”, “10”, “01”)

The value of each element of the array in decimal is:

datavector(0) = 1, datavector(1) = 2, datavector(2) = 2,
datavector(3) = 3.

Verilog Single-Dimensional Array

In Verilog, arrays are declared using the predefined word reg. An ex-
ample of array declaration in Verilog is:

reg [1:0] datavector[0:3];

This declares an array by the name of datavector; it has four elements,
and each element is two bits. An example of this array is:

datavector[0] = 2’b01;
datavector[1] = 2’b10;
datavector[2] = 2’b10;
datavector[3] = 2’b11;

The following examples cover array implementations.

EXAMPLE 7.1 FIND THE GREATEST AMONG N ELEMENTS OF AN ARRAY

Listing 7.3 shows the HDL code for finding the greatest element
(grtst) of array a. First, initialize grtst with 0. Then, grtst is compared
with the first element of array a. If the first element is greater than grtst,
then set grtst to be equal to the first element; otherwise, grtst is left
unchanged. The same is done with the other elements.

LISTING 7.3 HDL Code for Finding the Greatest Element of an Array: VHDL
and Verilog

VHDL: Finding the Greatest Element of an Array
library IEEE;
use IEEE.STD_LOGIC_1164.all;

--Build a package for an array
package array_pkg is
constant N : integer := 4;
--N+1 is the number of elements in the array.

constant M : integer := 3;

MIXED-TYPE DESCRIPTION • 339

--M+1 is the number of bits of each element
--of the array.
subtype wordN is std_logic_vector (M downto 0);
type strng is array (N downto 0) of wordN;

end array_pkg;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use work.array_pkg.all;
-- The above statement makes the package array_pkg visible
-- in this module.

entity array1 is
 generic (N : integer :=4; M : integer := 3);

--N + 1 is the number of elements in the array; M = 1 is
-- the number of bits of each element.
 Port (a : inout strng;
 z : out std_logic_vector (M downto 0));
end array1;

architecture max of array1 is

begin
com: process (a)
variable grtst : wordN;
begin

--enter the data of the array.
 a <= (“0110”, “0111”, “0010”, “0011”, “0001”);

 grtst := “0000”;

 lop1 : for i in 0 to N loop

 if (grtst <= a(i)) then
 grtst := a(i);
 report “ grtst is less or equal than a”;
 -- use the above report statement if you want to
 -- monitor the progress of the program.
 else
 report “grtst is greater than a”;

340 • HDL WITH DIGITAL DESIGN

 -- Use the above report statement to monitor the
 -- progress of the program
 end if;
 end loop lop1;
 z <= grtst;

end process com;

end max;

Verilog: Finding the Greatest Element of an Array
module array1 (start, grtst);
parameter N = 4;
parameter M = 3;
input start;
output [3:0] grtst;
reg [M:0] a[0:N];

/The above statement is declaring an array of N + 1 elements;
each element is M bits. /

reg [3:0] grtst;
integer i;
always @ (start)
begin
a[0] = 4’b0110;
a[1] = 4’b0111;
a[2] = 4’b0010;
a[3] = 4’b0011;
a[4] = 4’b0001;
grtst = 4’b0000;
for (i = 0; i <= N; i= i +1)
 begin
 if (grtst <= a[i])
 begin
 grtst = a[i];
 $display (“ grtst is less or equal than a”);
// use the above statement to monitor the program
 end
 else
 $display (“ grtst is greater than a”);

MIXED-TYPE DESCRIPTION • 341

// use the above statement to monitor the program
 end
end
endmodule

EXAMPLE 7.2 MULTIPLICATION OF TWO SIGNED N-ELEMENT VECTORS
USING ARRAYS

This example describes the multiplication of two signed vectors. The
two vectors have the dimension of 1×(N+1) and (N+1)×1. Chapter 6 cov-
ered the multiplication of two three-element vectors; here, arrays are used
to expand the multiplication to N elements. Listing 7.4 shows the descrip-
tion of two signed vectors of N elements. A Booth algorithm is implement-
ed, (see Chapter 3), and code from Chapter 6 is used to multiply signed
numbers in twos-complement format. The algorithm is written as proce-
dure in VHDL or task in Verilog.

In VHDL, the procedure booth is included in a package. The package
booth_pkg is declared as:

package booth_pkg is
constant N : integer := 4;

constant M : integer := 3;

subtype wordN is signed (M downto 0);
type strng is array (N downto 0) of wordN;
procedure booth (X, Y : in signed (3 downto 0);
 Z : out signed (7 downto 0));
end booth_pkg;

The package booth_pkg includes the procedure booth and an array
declaration. The array is declared as a user-defined type, strng, and a user-
defined subtype, wordN. It has N + 1 elements; each element is M + 1 bits.
In our example, N is selected as 4, and M = 3, so the array has five elements,
and each element is four bits in signed (twos complement) format.

In Verilog, the array is declared as:

reg signed [M:0] b[0:N];

which is an array of N + 1 elements. Each element is M + 1 bits.

342 • HDL WITH DIGITAL DESIGN

LISTING 7.4 Multiplication of Two Signed N-Element Vectors: VHDL and
Verilog

VHDL: Multiplication of Two Signed N-Element Vectors
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use ieee.numeric_std.all;

package booth_pkg is
constant N : integer := 4;
--N + 1 is the number of elements in the array.

constant M: integer := 3;
--M + 1 is the number of bits of each element
--of the array.

subtype wordN is signed (M downto 0);
type strng is array (N downto 0) of wordN;
procedure booth (X, Y : in signed (3 downto 0);
 Z : out signed (7 downto 0));

end booth_pkg;

package body booth_pkg is
procedure booth (X, Y : in signed (3 downto 0);
 Z : out signed (7 downto 0)) is
--Booth algorithm here is restricted to 4x4 bits.
--It can be adjusted to multiply any NxN bits.
variable temp : signed (1 downto 0);
 variable sum : signed (7 downto 0);
 variable E1 : unsigned (0 downto 0);
 variable Y1 : signed (3 downto 0);
begin

sum := “00000000”; E1 := “0”;
 for i in 0 to 3 loop
 temp := X(i) & E1(0);
 Y1 := -Y;
 case temp is
 when “10” => sum (7 downto 4) :=
 sum (7 downto 4) + Y1;
 when “01” => sum (7 downto 4) :=

MIXED-TYPE DESCRIPTION • 343

 sum (7 downto 4) + Y;
 when others => null;
 end case;
 sum := sum srl 1;
 sum(7) := sum(6);
 E1(0) := x(i);
 end loop;
 if (y = “1000”) then

 sum := -sum;
 --If Y = 1000; then Y1 is calculated as 1000;
 --that is -8, not 8 as expected. This is because Y1 is
 --4 bits only. The statement sum = -sum corrects
 --this error.
 end if;
 Z := sum;
 end booth;
end booth_pkg;
-- We start writing the multiplication algorithm using
-- the package booth_pkg
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;
use work.booth_pkg.all;

entity vecor_multply is
generic (N : integer := 4; M : integer := 3);
--N + 1 is the number of elements in the array; M + 1 is
-- the number of bits of each element.

 Port (a, b : in strng; d : out signed (3N downto 0));
end vecor_multply;
architecture multply of vecor_multply is

begin
process (a, b)
variable temp : signed (7 downto 0);
variable temp5 : signed (3N downto 0) := “0000000000000”;

begin

344 • HDL WITH DIGITAL DESIGN

for i in 0 to 4 loop
booth(a(i), b(i), temp);

--accumulate the partial products in the product temp5
temp5 := temp5 + temp;
end loop;
d <= temp5;
end process;

end multply;

Verilog: Multiplication of Two Signed N-Element Vectors
module vecor_multply (start, d);
parameter N = 4;
parameter M = 3;
input start;
output signed [3N:0] d;
reg signed [M:0] a[0:N];
reg signed [M:0] b[0:N];
reg signed [3N:0] d;
reg signed [3N:0] temp;
integer i;

always @ (start)
begin
 a[0] = 4’b1100;
 a[1] = 4’b0000;
 a[2] = 4’b1001;
 a[3] = 4’b0011;
 a[4] = 4’b1111;

 b[0] = 4’b1010;
 b[1] = 4’b0011;
 b[2] = 4’b0111;
 b[3] = 4’b1000;
 b[4] = 4’b1000;
 d = 0;
 for (i = 0; i <= N; i = i + 1)
 begin
 booth (a[i], b[i], temp);
 d = d + temp;
 end
end

MIXED-TYPE DESCRIPTION • 345

task booth;
input signed [3:0] X, Y;
output signed [7:0] Z;
reg signed [7:0] Z;
reg [1:0] temp;
integer i;
reg E1;
reg [3:0] Y1;

begin
Z = 8’d0;
E1 = 1’d0;

for (i = 0; i < 4; i = i + 1)
 begin
 temp = {X[i], E1}; //This is catenation
 Y1 = -Y; //Y1 is the 2’complement of Y
 case (temp)
 2’d2 : Z[7:4] = Z[7:4] + Y1;
 2’d1 : Z[7:4] = Z[7:4] + Y;
 default : begin end

 endcase
 Z = Z >> 1;
 /The above statement is a logical shift of
 one position to the right/

 Z[7] = Z[6];
/The above two statements perform arithmetic shift where the
sign of the number is preserved after the shift. /
 E1 = X[i];

 end
if (Y == 4’b1000)

/ If Y = 1000, then Y1 = 1000 (should be 8 not -8).
This error is because Y1 is 4 bits only.
The statement Z = -Z adjusts the value of Z. /

Z = -Z;
end

346 • HDL WITH DIGITAL DESIGN

endtask
endmodule

Figure 7.1 shows the simulation output of the vector multiplication. Ar-
ray a is written here in integer format for convenience:

 a = {–1 3 –7 0 –4}

 b = {–8 –8 7 3 –6}

multiplying a × b = 8 – 24 – 49 + 0 + 24 = –41 =d

As shown in Figure 7.1, d has the correct value of –41.

1111 0011 1001 0000 1100

1000 1000 0111 0011 1010

1111111010111

a

b

d
FIGURE 7.1 Simulation output of vector multiplication.

7.3.1.2 Two-Dimensional Arrays

VHDL and Verilog (after 2003) allow for multidimensional arrays. In
VHDL, two-dimensional arrays are described by using type statements.
For example, the statements

subtype wordg is integer;
type singl is array (2 downto 0) of wordg;
type doubl is array (1 downto 0) of singl;

describe a two-dimensional array. Each single-dimensional array has
three elements, and each element is an integer. An example of a two-di-
mensional array is the array y:

y = ((10 5 6), (3 –2 7))

The elements of the array y are:

y(0)(0) = 7 refers to element 0 of array 0

y(1)(1) = 5 refers to element 1 of array 1

y(2)(0) = 3 refers to element 2 of array 0

y(2)(1) = 10 refers to element 2 of array 0

MIXED-TYPE DESCRIPTION • 347

In Verilog, the statement

reg [5:0] Y [0:4] [0:4];

represents a two-dimensional array (a matrix) with five rows
and five columns; each element of the matrix is six bits. For
example, such an array can be:

[25,24,23,22,21], [20,19,18,17,16], [15,14,13,12,11],

[10,9,8,7,6], [5,4,3,2,1]

with Y[0][0]=1,Y[0][1]=2, Y[4]4]=25

Another two-dimensional array statement

reg [3:0] Y [0:5] [0:3];

represents a two-dimensional array (a matrix) with six rows and four
columns; each element of the matrix is four bits.

EXAMPLE 7.3 TWO-DIMENSIONAL ARRAYS

This example considers a two-dimensional array. Listing 7.5 shows
the HDL description of a two-dimensional array. In VHDL, the package
twodm_array is used to declare a two- dimensional array with five single ar-
rays; each single array has five elements. The elements are of type integer.

In Verilog, five single arrays of five elements where each element is six
bits has been created. The loop assigns a value (K) to each elemt Y[i][j]; K
is incremented by one starting from Y[0][0] and continuing until Y[4][4].
To find the value of any element, the user enters N (row) and M(column).

LISTING 7.5 HDL Code for a Two-Dimensional Array

VHDL Two-Dimensional Array
library IEEE;
use IEEE.STD_LOGIC_1164.all;

--Build a package to declare the array
package twodm_array is

constant N : integer := 4;
-- N+1 is the number of elements in the array.
-- this is [N+1,N+1] matrix with N+1 rows and N+1 columns

348 • HDL WITH DIGITAL DESIGN

subtype wordg is integer;
type strng1 is array (N downto 0) of wordg;
type strng2 is array (N downto 0) of strng1;
end twodm_array;
--use the package to describe a two-dimensional array

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use work.twodm_array.all;

-- The above statement instantiates the package twodm_array

entity two_array is
 Port (N, M : integer; z : out integer);
end two_array;

architecture Behavioral of two_array is

begin
com : process (N, M)
variable t : integer;
constant y : strng2 := ((7, 6, 5, 4, 3), (6, 7, 8, 9, 10),
 (30, 31, 32, 33, 34), (40, 41, 42, 43, 44),
 (50, 51, 52, 53, 54));
begin

t := y (N)(M);

--Look at the simulation output to identify the elements of the
--array
z <= t;
end process com;
end Behavioral;

Verilog Two-Dimensional Array
module twodmarrays(start,N,M,Z);
parameter N1 = 4;
parameter M1 = 4;
input start;
input [2:0] N,M;
output integer Z;

MIXED-TYPE DESCRIPTION • 349

reg [5:0] Y [0:4] [0:4];
//The following statements generate the array as
//[25,24,23,22,21], [20,19,18,17,16], [15,14,13,12,11],
// [10,9,8,7,6], [5,4,3,2,1] with Y[0][0]=1,Y[0][1]=2

integer i,j,K = 0;
always @ ((start == 1’b1),N,M)
begin
K = 0;
for (i = 0; i <= N1; i= i +1)
begin
for (j = 0; j <= M1; j= j +1)

 begin
K= K +1;
 Y[i][j]= K;

end
 end
Z = Y[N][M];
end
endmodule

Figure 7.2 shows the VHDL simulation output of Listing 7.5. From the
simulation:

y[0][0], the first element in the first array = 54

y[0][3], the fourth element of the first array = 51

y[2][4], the fifth element of the third array = 30

N

M

0 0 0 2 4 4

0 3 4 4 4 3

Z 54 51 50 30 7 6
FIGURE 7.2 VHDL simulation output of the array in Listing 7.5.

350 • HDL WITH DIGITAL DESIGN

EXAMPLE 7.4 MATRIX ADDITION

Here, an HDL code is written to add two matrices. The matrices must
have the same dimensions. The addition of the two matrices yields a matrix
with the same dimension as the two matrices. Consider the addition of the
two matrices:

3 4 5 4 5 6 7 8
6 7 8 9 10 9 10 11 12 13

11 12 13 14 15 14 15 16 17 18
19 20 21 22 2316 17 18 19 20
24 25 26 27 2821 22 23 24 25

   
   
   
   
      
   
   
     

1 2

The addition is done by adding row by row. Listing 7.6 shows the HDL
description of the addition of two [5×5] matrices. In VHDL, the two ma-
trices are entered as inputs. In Verilog, the two matrices are generated by
two loops.

LISTING 7.6 VHDL Description: Addition of Two [5×5] Matrices

-- First, write a package to declare a two-dimensional
--array with five elements
library IEEE;
use IEEE.STD_LOGIC_1164.all;

package twodm_array is

constant N : integer := 4;
-- N+1 is the number of elements in the array.
-- This is an NxN matrix with N rows and N columns.
subtype wordg is integer;
type strng1 is array (N downto 0) of wordg;
type strng2 is array (N downto 0) of strng1;
end twodm_array;

--Second, write the code for addition
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use work.twodm_array.all;
entity matrices is
 Port (x, y : strng2; z : out strng2);

MIXED-TYPE DESCRIPTION • 351

--strng2 type is 5x5 matrix
end matrices;

architecture sum of matrices is

begin
com : process (x, y)
variable t : integer := 0;
begin

for i in 0 to 4 loop
for j in 0 to 4 loop
t := x(i)(j) + y(i)(j);
z(i)(j) <= t;

end loop;

end loop;
end process com;
end sum;

Verilog Description: Addition of Two [5×5] Matrices
module sumMatrices(start,N,M,Z);
//The program generates two matrices
//X,Y (two dimensional arrays)
//and add them up and store the sum
//in matrix sum
parameter N1 = 4;
parameter M1 = 4;
input start;
input [2:0] N,M;
output integer Z;
reg [6:0] sum [0:4] [0:4];
reg [5:0] Y [0:4] [0:4];
reg [5:0] X [0:4] [0:4];
//initial values in the array are generated by the loop
//statements as:
//[25,24,23,22,21], [20,19,18,17,16], [15,14,13,12,11],
//[10,9,8,7,6], [5,4,3,2,1}with Y[0][0]=1,Y[0][1]=2
integer i,j,K = 0;
always @ ((start == 1’b1),N,M)

352 • HDL WITH DIGITAL DESIGN

begin
K =0;
for (i = 0; i <= N1; i= i +1)
begin
for (j = 0; j <= M1; j= j +1)
 begin
K= K +1;
 Y[i][j]= K;
 X[i][j] = K + 3;

end
 end
Z = Y[N][M];

for (i = 0; i <= N1; i= i +1)
begin
for (j = 0; j <= M1; j= j +1)
 begin
sum[i][j]= X[i][j] + Y[i][j];

end
end
end
endmodule

After simulation of the above code, the sum matrix is displayed as:

7 9 11 13
15 17 19 21 23
25 27 29 31 33
35 37 39 41 43
45 47 49 51 53

 
 
 
 
 
 
 
 
  

5

7.4 Mixed-Type Description Examples

This section presents some examples of mixed-type descriptions. The
strategy is to use the type or style of description that best fits the needs of
the system (or parts of the system) to be described. Structural or data-flow
description may be the best fit for any part of the system that needs specific
hardware architecture. Behavioral description is best used when describing,

MIXED-TYPE DESCRIPTION • 353

for example, a complex arithmetic operation with no specific hardware ar-
chitecture is desired. If the system to be described consists of transistors or
transistor-based circuits, then switch-level description may be the best fit.

EXAMPLE 7.5 HDL DESCRIPTION OF AN ARITHMETIC-LOGIC UNIT

The arithmetic-logic unit
(ALU) is one of the major units
in a computer. The unit per-
forms arithmetic operations
such as addition, subtraction,
and division, and logical oper-
ations such as AND, OR, and
INVERT. The ALU in this
example has three inputs (see
Figure 7.3) a, b, and cin. In-
puts a and b are four bits, and
cin is one bit. The output z is
six bits. The unit can perform
addition, multiplication, inte-
ger division, or no operation.
To select one operation out
of the available four, a two-bit
signal opc is implemented to select the desired operation. The selection is
shown in Table 7.1.

TABLE 7.1 Operation Selection of the ALU

Operation Code (opc) Operation
00 Addition
01 Multiplication
10 Integer division
11 No operation

In this example, the implementation of carry-lookahead adders is
desired. Because the adders are specified, the most convenient style of de-
scription is structural or data flow. Chapter 2 described these adders using
data-flow description, so it is repeated here. Recall that data-flow descrip-
tion is usually implemented by writing the Boolean functions of the sys-
tem. Because no specific hardware structure is specified, multiplication and

Inputs

Arithmetic logic unit (ALU)

b cin

3

a

3

6

2

Operation
(opc)

z

Outputs
FIGURE 7.3 Block diagram of the arithmetic-logical unit.

354 • HDL WITH DIGITAL DESIGN

division can be described by behavioral statements within a process. The
multiplication operator () and the division operator (/) are used to per-
form the multiplication and division.

Listing 7.7 shows the VHDL code for the ALU. The package codes_
Arithm declares a user-defined type op; the elements of op are the opera-
tion codes for addition (add), multiplication (mul), division (divide), and
no operation (none). The package also includes a user-defined function,
TO_UNSIGN. This function converts from integer to unsigned. This function
(or a similar one) may be built in to some vendors’ packages. Converting
between integer and unsigned is needed because many VHDL simulators
cannot perform the unsigned division z = a / b. VHDL can perform integer
division.

Listing 7.7 also shows the Verilog code for the ALU. In Verilog, it is easy
to perform addition, multiplication, and division on unsigned numbers; no
conversion to integer is needed. On the other hand, Verilog does not have
as extensive user-defined type statements as does VHDL. The parameter
statement is used to assign values to ALU operations. For example, to as-
sign 00 to the addition operation code add, write:

parameter add = 0;

LISTING 7.7 HDL Description of an ALU: VHDL and Verilog

VHDL ALU Description
--Here the code for a package for user-defined
--type and function is written.
library ieee;
use ieee.std_logic_1164.all;
use IEEE.STD_LOGIC_1164.ALL,IEEE.NUMERIC_STD.ALL;
package codes_Arithm is
type op is (add, mul, divide, none);
-- type op is for the operation codes for the ALU.
--The operations are: addition, multiplication,
--division, and no operation

function TO_UNSIGN (b : integer) return unsigned;
end;

package body codes_Arithm is
function TO_UNSIGN (b : integer) return unsigned is

MIXED-TYPE DESCRIPTION • 355

--The function converts integers to unsigned. This function
--can be omitted if it is included in the vendor’s package;
--the vendor’s package, if available, should be attached.

variable temp : integer;
variable bin : unsigned (5 downto 0);
begin
temp := b;
for j in 0 to 5 loop

 if (temp MOD 2 = 1) then
 bin (j) := ‘1’;
 else bin (j) := ‘0’;
 end if;
 temp := temp/2;
 end loop;
 return bin;

end TO_UNSIGN;
end codes_Arithm;

--Now we write the code for the ALU
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;
use work.codes_arithm.all;

--The above use statement is to set the user-
--defined package “codes_arithm.all” visible to this
-- module.

entity ALU_mixed is

port (a, b : in unsigned (2 downto 0);
 cin : in std_logic;
 opc : in op; z : out unsigned (5 downto 0));
--opc is of type “op”; type op is defined in the
--user-defined package “codes_arithm”
end ALU_mixed;
architecture ALU_mixed of ALU_mixed is
 signal c0, c1 : std_logic;
 signal p, g : unsigned (2 downto 0);

356 • HDL WITH DIGITAL DESIGN

 signal temp1 : unsigned (5 downto 0);

begin

--The following is a data flow-description of a 3-bit
-- lookahead adder. The sum is stored in the three least
-- significant bits of temp1.
adder.
-- The carry out is stored in temp1(3).

g(0) <= a(0) and b(0);
g(1) <= a(1) and b(1);
g(2) <= a(2) and b(2);
p(0) <= a(0) or b(0);
p(1) <= a(1) or b(1);
p(2) <= a(2) or b(2);
c0 <= g(0) or (p(0) and cin);
c1 <= g(1) or (p(1) and g(0)) or
 (p(1) and p(0) and cin);
temp1(3) <= g(2) or (p(2) and g(1)) or (p(2) and p(1)
 and g(0)) or (p(2) and p(1) and p(0) and cin);

--temp1(3) is the final carryout of the adders
 temp1(0) <= (p(0) xor g(0)) xor cin;
 temp1(1) <= (p(1) xor g(1)) xor c0;
 temp1(2) <= (p(2) xor g(2)) xor c1;
 temp1 (5 downto 4) <= «00»;

process (a, b, cin, opc, temp1)
--The following is a behavioral description for the
-- multiplication and division functions of the ALU.
 variable temp : unsigned (5 downto 0);
 variable a1, a2, a3 : integer;
begin
 a1 := TO_INTEGER (a);
 a2 := TO_INTEGER (b);
--The predefined function «TO_INTEGER»
--converts unsigned to integer.
--The function is a member of the VHDL package
-- IEEE.numeric.
 case opc is
 when mul =>

MIXED-TYPE DESCRIPTION • 357

 a3 := a1  a2;
 temp := TO_UNSIGN(a3);
--The function «TO_UNSIGN» is a user-defined function
--written in the user-defined package «codes_arithm.»
 when divide =>
 a3 := a1 / a2;
 temp := TO_UNSIGN(a3);

 when add =>
 temp := temp1;
 when none =>
 null;

end case;

z <= temp;
end process;

end ALU_mixed;

Verilog ALU Description
module ALU_mixed (a, b, cin, opc, z);
parameter add = 0;
parameter mul = 1;
parameter divide = 2;
parameter nop = 3;
input [2:0] a, b;
input cin;
input [1:0] opc;
output [5:0] z;
reg [5:0] z;
wire [5:0] temp1;
wire [2:0] g, p;
wire c0, c1;

// The following is data-flow description
// for 3-bit lookahead adder
 assign g[0] = a[0] & b[0];
 assign g[1] = a[1] & b[1];
 assign g[2] = a[2] & b[2];
 assign p[0] = a[0] | b[0];

358 • HDL WITH DIGITAL DESIGN

 assign p[1] = a[1] | b[1];
 assign p[2] = a[2] | b[2];
 assign c0 = g[0] | (p[0] & cin);
 assign c1 = g[1] | (p[1] & g[0]) | (p[1] & p[0] & cin);
 assign temp1[3] = g[2] | (p[2] & g[1]) | (p[2] & p[1]
 & g[0]) | (p[2] & p[1] & p[0] & cin);
 // temp1[3] is the final carryout of the adders
 assign temp1[0] = (p[0] ^ g[0]) ^ cin;
 assign temp1[1] = (p[1] ^ g[1]) ^ c0;
 assign temp1[2] = (p[2] ^ g[2]) ^ c1;
 assign temp1[5:4] = 2’b00;

 //The following is behavioral description

always @ (a, b, cin, opc, temp1)
begin
 case (opc)
 mul : z = a  b;
 add : z = temp1;
 divide : z = a / b;
 nop : z = z;
 endcase
end
endmodule

Figure 7.4 shows the simulation output of the ALU. Notice the integer
division of 5 / 7 = 0.

101a 101 101 101 101 101

111b 111 111 011 011 011

addopc

cin

mul divide divide mul add

001101z 100011 000000 000001 001111 001000
FIGURE 7.4 Simulation output of the ALU.

MIXED-TYPE DESCRIPTION • 359

EXAMPLE 7.6 HDL DESCRIPTION OF A 16×8 SRAM

In Chapter 4, a static memory cell using structural description was de-
scribed. In this example, a 16×8 SRAM is described. Because the descrip-
tion of this memory in structural style would be huge, and no specific logic
is required, behavioral statements to describe the memory will be imple-
mented. Figure 7.5 shows a block diagram of the memory. The memory has
eight-bit input data (Data_in), eight-bit output data (Data_out), four-bit
address bus (ABUS), a chip select (CS), and read/write signal (R_ WR).

16x8
RAM

Chip select (CS)

Address bus (ABUS) 4

Data in (Data_in)

Read/write (R_wr)

8 Data out (Data_out)8

FIGURE 7.5 A block diagram of 16×8 static memory.

The function table of the memory is shown in Table 7.2. Listing 7.8
shows the HDL code for the RAM.

TABLE 7.2 Function Table of SRAM

CS R_ WR Data_out Memory Function
0 x Z (high impedance) The memory is deselected
1 1 M (ABUS) This is a read; M refers to memory loca-

tions, and contents of a memory location
pointed to by ABUS are placed in the
output data

1 0 This is a write cycle; data in the Data_in
are stored in M (ABUS)

Referring to Listing 7.8 VHDL, an array to represent the memory is
implemented. Because the memory is 16×8 bits, an array of sixteen ele-
ments is used, and each element is eight bits. The array is written in a
package array_pkg. Because the index of the array should be an integer,
and the ABUS in the entity memory16x8 is declared unsigned, the ABUS is
converted from unsigned to integer using the predefined function TO_IN-
TEGER.

360 • HDL WITH DIGITAL DESIGN

In the Verilog version of Listing 7.8, an array is used to represent the
memory. The array is instantiated by the statement:

reg [7:0] Memory [0:15];

that describes an array by the name Memory; it has sixteen words, and
each word is eight bits.

LISTING 7.8 HDL Description of 16×8 SRAM: VHDL and Verilog

VHDL 16×8 SRAM Description
library IEEE;
use IEEE.STD_LOGIC_1164.all;

--Build a package for an array
package array_pkg is
constant N : integer := 15;
--N+1 is the number of elements in the array.

constant M : integer := 7;
--M+1 is the number of bits of each element
--of the array.
subtype wordN is std_logic_vector (M downto 0);
type strng is array (N downto 0) of wordN;

end array_pkg;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;
use work.array_pkg.all;
entity memory16x8 is
generic (N : integer := 15; M : integer := 7);
--N+1 is the number of words in the memory; M+1 is the
--number of bits of each word.
 Port (Memory : inout strng; CS : in std_logic;
 ABUS: in unsigned (3 downto 0);
 Data_in : in std_logic_vector (7 downto 0);
 R_WRbar : in std_logic;
 Data_out : out std_logic_vector (7 downto 0));
end memory16x8;

architecture SRAM of memory16x8 is
begin
com : process (CS, ABUS, Data_in, R_WRbar)

MIXED-TYPE DESCRIPTION • 361

variable A : integer range 0 to 15;
begin

if (CS = ‘1’) then

A := TO_INTEGER (ABUS);
-- TO_INTEGER is a built-in function

if (R_WRbar = ‘0’) then

Memory (A) <= Data_in;
else

Data_out <= Memory(A);

end if;
else
Data_out <= “ZZZZZZZZ”;
--The above statement describes high impedance.
end if;
end process com;
end SRAM;

Verilog 16×8 SRAM Description
module memory16x8 (CS, ABUS, Data_in, R_WRbar, Data_out);
input CS, R_WRbar;
input [3:0] ABUS;
input [7:0] Data_in;
output [7:0] Data_out;
reg [7:0] Data_out;
reg [7:0] Memory [0:15];

always @ (CS, ABUS, Data_in, R_WRbar)
begin

if (CS == 1’b1)
 begin
 if (R_WRbar == 1’b0)
 begin
 Memory [ABUS] = Data_in;
 end
 else

362 • HDL WITH DIGITAL DESIGN

 Data_out = Memory [ABUS];
 end
 else
 Data_out = 8’bZZZZZZZZ;

//The above statement describes high impedance
end
endmodule

The simulation output of Listing 7.8 is shown in Figure 7.6. Data are
written in memory locations 0, 14, 15, and 8, and the contents of two mem-
ory locations, 0 and 15, are read; the read data match the written. The
memory is deselected by setting CS to zero, and consequently, the memory
Data_out, as expected, goes on high impedance.

0ABUS

R_WRbar

CS

014 15 15 148 8

170Data_in 255 3 7

170 3Data_in 7 255
FIGURE 7.6 Simulation output of 16×8 static memory.

EXAMPLE 7.7 DESCRIPTION OF A FINITE SEQUENTIAL-STATE MACHINE

State machines are very useful tools for designing systems because their
operation can be described in time events or steps. The control unit of a
computer is an example of such a system. (See Case Study 7.1, which will
include information from this example to write a mixed-type description of a
basic computer.) The control unit generates different signals at certain time
events. For example, when it boots up, a reset signal is needed to initialize
components or registers in the computer. The control unit should generate
this reset signal at the right time, that is, when the operation starts.

In this example, the control unit will be designed as a finite state ma-
chine. In Chapter 4, finite state machines were designed using structural
description. Here, the machine is designed by using behavioral descrip-

MIXED-TYPE DESCRIPTION • 363

tion. The state diagram of the
machine shows the signals that
need to be generated at each
step, and it also shows the next
step to which the machine has
to go. The term states will be
used here to refer to steps.
Consider the state diagram
shown in Figure 7.7.

The state machine in Fig-
ure 7.7 shows that, for exam-
ple, if the machine is in state0
and the input is 0, the machine
stays in state0 and generates a
signal of 1 at the output. If the
input is 1, the machine gener-
ates a signal of 0 at the output, and transits to state1. Listing 7.9 lists the
HDL code for the finite sequential-state machine shown in Figure 7.7.

LISTING 7.9 HDL Code for the State Machine in Figure 7.7: VHDL and
Verilog

VHDL State-Machine Description
library IEEE;
use IEEE.STD_LOGIC_1164.all;

--First we write a package that includes type “states.”
package types is
type op is (add, mul, divide, none);
type states is (state0, state1, state2, state3);
end;
 -- Now we use the package to write the code for the
 -- state machine.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use work.types.all;
entity state_machine is
 port (A, clk : in std_logic; pres_st : buffer states;
 Z : out std_logic);
end state_machine;

state0

state2

state1state3

1/0
1/0

1/0
1/1

0/0
0/0

0/0

0/1

FIGURE 7.7 State diagram of a finite sequential-state
machine.

364 • HDL WITH DIGITAL DESIGN

architecture st_behavioral of state_machine is

begin

FM : process (clk, pres_st, A)
variable present : states := state0;
begin
if (clk = ‘1’ and clk’event) then
case pres_st is
 when state0 =>
 if A =’1’ then
 present := state1;
 Z <= ‘0’;
 else
 present := state0;
 Z <= ‘1’;
 end if;
when state1 =>
if A =’1’ then
 present := state2;
 Z <= ‘0’;
 else
 present := state3;
 Z <= ‘0’;
 end if;

when state2 =>
 if A =’1’ then
 present := state3;
 Z <= ‘1’;
 else
 present := state0;
 Z <= ‘0’;
end if;

when state3 =>
 if A =’1’ then
 present := state0;
 Z <= ‘0’;
 else
 present := state2;
 Z <= ‘0’;

MIXED-TYPE DESCRIPTION • 365

 end if;
end case;
pres_st <= present;
end if;
end process FM;
end st_behavioral;

Verilog State-Machine Description
`define state0 2’b00
`define state1 2’b01
`define state2 2’b10
`define state3 2’b11
// We could have declared these states as parameters.
// See Listing 7.7.

module state_machine (A, clk, pres_st, Z);

input A, clk;
output [1:0] pres_st;
output Z;
reg Z;

reg [1:0] present;
reg [1:0] pres_st;

initial
begin
 pres_st = 2’b00;
end
always @ (posedge clk)
begin
 case (pres_st)
 `state0 :
 begin
 if (A == 1)
 begin
 present = `state1;
 Z = 1’b0;
 end
 else
 begin

366 • HDL WITH DIGITAL DESIGN

 present = `state0;
 Z = 1’b1;
 end
 end
 `state1 :
 begin
 if (A == 1)
 begin
 present = `state2;
 Z = 1’b0;
 end
 else
 begin
 present = `state3;
 Z = 1’b0;
 end
 end
 `state2 :
 begin
 if (A == 1)
 begin
 present = `state3;
 Z = 1’b1;
 end
 else
 begin
 present = `state0;
 Z = 1’b0;
 end
 end
 `state3 :
 begin
 if (A == 1)
 begin
 present = `state0;
 Z = 1’b0;
 end
 else
 begin
 present = `state2;
 Z = 1’b0;
 end
 end

MIXED-TYPE DESCRIPTION • 367

endcase
pres_st = present;
end
endmodule

The simulation waveform is shown in Figure 7.8.

state0Pres_st

z

a

clk

state1 state2 state3 state1

FIGURE 7.8 Simulation waveform of the state machine shown in Figure 7.7.

CASE STUDY 7.1 HDL DESCRIPTION OF A BASIC COMPUTER

In this case study, the HDL description for a basic computer will be
written. In this computer, the CPU consists of ALU, registers, and a control
unit. The ALU performs all arithmetic and logic operations (see Table 7.3).
The registers inside the CPU store data, and communicate with the ALU
and the memory. The memory here is 16×8 bits. Figure 7.9 shows the dif-
ferent computer registers.

Listed below are definitions of the components shown in Figure 7.9:

 Program Counter (PC): Stores the address of the instruction to be
executed. It is four bits wide because the memory has sixteen words.

 Address Register (AR): Connected to the address bus of the memory,
it supplies addresses to the memory. It is four bits wide because the
memory has sixteen words. In this computer, AR is the only register that
can provide addresses to the memory.

 Data Register (DR): Connected to the data bus of the memory, it
receives and stores data from the memory. It is eight bits wide because
the width of the memory word is eight bits. In our computer, DR is the
only register that can communicate with memory data bus.

368 • HDL WITH DIGITAL DESIGN

 Accumulator (AC): A general register that stores data. This register
has two equal halves, low (ACL) and high (ACH), and each is eight bits.
The AC is sixteen bits wide.

 Instruction Register (IR): Stores three-bit operation code (op code).

The control unit supervises all other units in the computer, providing
timing and control signals. In our basic computer, all programs are stored in
the memory. A program is a group of instructions and the data it is process-
ing. The instruction is eight bits wide (see Figure 7.10) and has two fields:
operation code (op code) and address.

OP Code Address

01234567Bit

FIGURE 7.10 Basic computer instruction format.

The op code field determines the type of operation the computer
should perform. The address determines the location of the operand in
memory, and the operand is the data on which the operation is performed.
The computer has eight different instructions, so three bits are needed to
decode the instruction operations. Table 7.3 shows a possible decoding for
these operations.

Inputs

Decoder

.....

.........

ACH 8 bits ACL 8 bits

Arithmetic logic unit (ALU)

IR
3

bits

PC
4

bits

AR
4

bits

Memory
16x8 bits

DR 8 bits

Control unit
Finite state machine

Start

OP Code

FIGURE 7.9 Registers in the basic computer.

MIXED-TYPE DESCRIPTION • 369

TABLE 7.3 Operation Codes

Operation in Mnemonic OP Code
HALT 000
ADD 001

MULT 010
DIVID 011
XOR 100

PRITY 101
NAND 110

CLA 111

The memory used here is 16×8 bits. To access this memory, a four-bit ad-
dress is needed. We will use five bits for the address; the extra bit is for any
future expansion of the memory. Therefore, the instruction is eight bits wide
with three bits for the op code and five bits for the address. The following is a
description of the instructions shown in Table 7.3:

 HALT: Halts the computer by deactivating the master clock; all regis-
ters retain their current data.

 ADD: This is an addition operation. The contents of the lower half of
the accumulator register (ACL) are added to the contents of a memory
location; the result is stored in ACL.

 MULT: Multiplies the contents of the lower half of the AC with an
operand in the memory and stores the result in AC (both halves).

 DIVID: This is integer division. It divides the contents of the lower
half of the AC by the contents of the memory location; the result is
stored in ACL.

 XOR: Performs the logical operation EXCLUSIVE-OR between the
contents of ACL and a memory location; the result is stored in ACL.

 PRITY: This is an even parity generator. The parity bit for the least
significant seven bits of ACL is calculated, and the parity bit is inserted
in the most significant bit of ACL.

 NAND: Performs the logical operation NAND between the contents of
ACL and a memory location; the result is stored in ACL.

 CLA: Clears the contents of the ACL.

370 • HDL WITH DIGITAL DESIGN

The memory location in all of the above instructions is determined by
the address provided by the instruction and is stored in the address register
(AR). A couple of detailed instruction explanations are:

 ADD 7: This instruction adds the contents of the lower half of the ac-
cumulator to the contents of memory location 7; the result is stored in
ACL.

 DIVID 5: This instruction divides the contents of the lower half of the
accumulator by the contents of memory location 5; the result is stored in
ACL.

The computer executes the instructions in two cycles: fetch and execute
(see Figure 7.11). The control unit supplies all required signals necessary
for operation of the two cycles. In the fetch cycle, the instruction is moved
from the memory to the DR. The lower four bits (0 to 3) of DR are stored
in AR; bits 5–7 of the DR are stored in IR. The PC is incremented to point
at the next instruction to be fetched. The three bits of the IR are decoded
into eight outputs by a 3×8 decoder. The output of the decoder determines
the type of operation requested by the instruction. For example, if the least
significant output of the decoder is active, then the operation requested
belongs to the op code 000, which is HALT.

In the execute cycle, the computer executes the instruction that has
been fetched. For example, if the instruction is ADD, the execute cycle is-
sues a memory read, DR � M [AR], to move the operand from the memory
to the DR. M stands for memory. This movement is necessary because the
ALU can operate only on DR and AC, but not on data stored in memory.
After moving the operand to DR, an ADD operation in the ALU is se-
lected. Different ALU operations are selected according to control signals
supplied by the control unit. Accordingly, the ALU executes the micro-
operation AC � AC + DR. For the instruction PRITY, the execute cycle
calculates the parity bit (bit 7 of the accumulator) as:

Parity (ACL(7)) = ACL(6) XOR ACL(5) XOR ACL(4) XOR ACL(3)

XOR ACL(2) XOR ACL(1) XOR ACL(0)

The control unit oversees the fetch-and-execute cycle. The control unit
here is designed as a finite sequential-state machine. Figure 7.12 shows the
state diagram of the machine. The figure only shows transitions between
states; it does not show outputs. The states state0, state1, and state2 are

MIXED-TYPE DESCRIPTION • 371

performing the three steps of the fetch cycle, while state3 performs the
execute cycle (see Figure 7.11).

To define the basic computer’s operation, we store a program in the
memory. Table 7.4 shows the instructions of the program with the op code
written in mnemonic and the instructions written in hexadecimal. For
example, the instruction:

1 ADD 9

is stored in memory location 1, the op code is ADD, and the address is 9.
The instruction adds the contents of the accumulator (AC) to the contents

CPU on?

ResetStart

No

MULTADDHALT

AR ← PC

PC ← PC+1
IR ← DR(5–7)
AR ← DR(0–3)

Fetch
cycle

Yes

DR ← M[AR]

CLA DIVID XOR PRITY NAND

ACL ← 0

TURN CPU OFF

DR ← M[AR]

ACL ← ACL/DR

DR ← M[AR]

ACL ← ACL + DR

ACL(7) ←

ACL(6) XOR ACL(5)

DR ← M[AR]

AC ← ACL * DR

DR ← M[AR]

ACL ← ACL XOR DR

DR ← M[AR]

ACL ← ACL NAND DR

Execute
cycle

Decode IR

FIGURE 7.11 Fetch-and-execute cycles of the basic computer.

372 • HDL WITH DIGITAL DESIGN

of memory location 9; the result of addition is stored in the accumulator.
The accumulator in our computer is always the default register. The binary
value of the op code ADD is 001 (see Table 7.3). The instruction is eight
bits wide, so the binary representation of the instruction is 00101001, which
is 29 in hexadecimal.

CPU is on?

Start

No

Yes

state0

Reset

state1

state2

state3
Halt

All Other OP
codes

FIGURE 7.12 State diagram of the finite sequential-state machine.

MIXED-TYPE DESCRIPTION • 373

TABLE 7.4 Contents of Memory of the Basic Computer

 Instruction in Mnemonic or Memory Contents (Eight Bits)

Location Instruction Data in Hex
0 CLA E0
1 ADD 9 29
2 XOR A 8A
3 MULT B 4B
4 DIVID C 6C
5 XOR D 8D
6 NAND E CE
7 PRITY A0
8 HALT 00
9 C 0C
A 5 05
B 4 04
C 9 09
D 3 03
E 9 09
F 7 07

Listing 7.10 shows the HDL code for the basic computer program
shown in Table 7.4. Referring to the VHDL Listing, the package Comp_Pkg
declares a one-dimensional array with sixteen elements; each element is
eight bits. This array represents the memory of the computer. In the entity
computer_basic, the signal clk_master simulates the master clock of
the computer. The signal ON_OFF simulates an on/off switch. The data-flow
statement

clk <= clk_master and ON_OFF;

simulates an AND gate. The signal clk simulates the clock signal of
the CPU; if the switch is off, the clock signal to the CPU is inactive, and
accordingly, the CPU is inactive. The statement

z(0) <= ACL(6) xor ACL (5) xor ACL (4)xor
ACL (3)xor ACL (2)xor ACL (1)xor ACL (0);

generates an even-parity bit. We selected to write this statement as data
flow (outside always), because it is easier to write the Boolean as data-flow

374 • HDL WITH DIGITAL DESIGN

description, rather than the behavioral of this parity generator circuit. The
statements

ARI := TO_INTEGER(AR);
DR := Memory (ARI);

convert AR from unsigned to integer by the built-in function TO_INTEGER.
This function is part of the package ieee.numeric_std. We convert to in-
teger because the index of the array ARI has to be of type integer in VHDL.

Referring to the Verilog description, the memory is simulated by the
statement:

reg [7:0] Memory [0:15];

which describes an array of fifteen elements (words); each element is
eight bits. In contrast to VHDL, Verilog can accept an index of an array
declared as bit_vector. For example, we can write

DR = Memory [AR];

without specifying AR to be of type integer.

LISTING 7.10 HDL Code for the Basic-Computer Memory Program
(Table 7.4): VHDL and Verilog

VHDL Basic-Computer Memory Program
--Write the code for Package Comp_Pkg
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use ieee.numeric_std.all;

package Comp_Pkg is
constant N: integer := 15;
--N+1 is the number of elements in the array.
constant M : integer := 7;
--M+1 is the number of bits of each element
--of the array.

subtype wordN is unsigned (M downto 0);
type strng is array (N downto 0) of wordN;
type states is (state0, state1, state2, state3);

end Comp_Pkg;

MIXED-TYPE DESCRIPTION • 375

--Now write the code for the control unit
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use ieee.numeric_std.all;
use work.Comp_Pkg. all;

entity computer_basic is

generic (N : integer := 15; M : integer := 7);
--N+1 is the number of words in the memory; M+1 is the
--number of bits of each word.

Port (Memory : inout strng;
 PC : buffer unsigned (3 downto 0);
 clk_master : std_logic;
 ACH : buffer unsigned (7 downto 0);
 ACL : buffer unsigned (7 downto 0);
 Reset : buffer std_logic; ON_OFF : in std_logic);

end computer_basic;

architecture Behavioral_comp of computer_basic is
signal z : unsigned (0 downto 0);
signal clk : std_logic;

begin

z(0) <= ACL(6) xor ACL(5) xor ACL(4) xor
 ACL(3) xor ACL(2) xor ACL(1) xor ACL(0);
--Z has to be in vector form to match ACL

clk <= clk_master and ON_OFF;

--The above two statements are data-flow description.
--The following is behavioral description.

cpu : process (Reset, PC, ACL, ACH, clk, Memory, z(0))
variable AR : unsigned (3 downto 0);
variable DR : unsigned (7 downto 0);
variable pres_st, next_st : states;
variable ARI : integer range 0 to 16;

376 • HDL WITH DIGITAL DESIGN

variable IR : unsigned (2 downto 0);
variable PR : unsigned (15 downto 0);

begin

if rising_edge (clk) then
if Reset = ‘1’ then
pres_st := state0;
Reset <= ‘0’;
PC <= «0000»;
end if;

case pres_st is
when state0 =>
next_st := state1;
--This is fetch cycle
AR := PC;

when state1 =>
next_st := state2;
ARI := TO_INTEGER(AR);
--This is fetch cycle
DR := Memory (ARI);
when state2 =>
next_st := state3;
--This is fetch cycle
PC <= PC + 1;
IR := DR (7 downto 5);
AR := DR (3 downto 0);
when state3 =>
--This is execute cycle

case IR is
 when «111» =>
 --The op code is CLA
 ACL <= «00000000»;
 next_st := state0;

 when «001» =>
 --The op code is ADD
 ARI := TO_INTEGER(AR);
 DR := memory (ARI);
 ACL <= ACL + DR;

MIXED-TYPE DESCRIPTION • 377

 next_st := state0;

 when «010» =>
 --The op code is MULT
 ARI := TO_INTEGER(AR);
 DR := memory (ARI);
 PR := ACL  DR;
 ACL <= PR (7 downto 0);
 ACH <= PR (15 downto 8);
 next_st := state0;

 when «011» =>
 --The op code is DIVID
 ARI := TO_INTEGER(AR);
 DR := memory (ARI);
 ACL <= ACL / DR;
 next_st := state0;

 when «100» =>
 --The op code is XOR
 ARI := TO_INTEGER(AR);
 DR := memory (ARI);
 ACL <= ACL XOR DR;
 next_st := state0;

 when «110» =>
 --The op code is NAND
 ARI := TO_INTEGER(AR);
 DR := memory (ARI);
 ACL <= ACL NAND DR;
 next_st := state0;

 when «101» =>
 --The op code is PRITY
 ACL(7) <= z(0);
 next_st := state0;

 when «000» => null;
 -- The op code is HALT
 next_st := state3;

 when others => null;
 end case;

378 • HDL WITH DIGITAL DESIGN

when others => null;
end case;
pres_st := next_st;
end if;
end process cpu;
end Behavioral_comp;

Verilog Basic-Computer Memory Program
module computer_basic (PC, clk_master, ACH, ACL,
 Reset, ON_OFF);
parameter state0 = 2’b00;
parameter state1 = 2’b01;
parameter state2 = 2’b10;
parameter state3 = 2’b11;

output [3:0] PC;
input clk_master;
output Reset;
input ON_OFF;
output [7:0] ACH;
output [7:0] ACL;
reg [1:0] pres_st;
reg [1:0] next_st;
reg Reset;
reg [3:0] PC;
reg [3:0] AR;
reg [7:0] DR;
reg [2:0] IR;
reg [7:0] ACH;
reg [7:0] ACL;
reg [15:0] PR;
reg [7:0] Memory [0:15];

assign z = ACL[6] ^ ACL[5] ^ ACL[4]^
 ACL[3]^ ACL[2]^ ACL[1]^ ACL[0];

/The above statement can be written using the reduction
 XOR as: assign z = ^ ACL[6:0];/
//

assign clk = clk_master & ON_OFF;
always @ (Reset, PC, ACL, ACH, posedge(clk), z, pres_st)

MIXED-TYPE DESCRIPTION • 379

begin

 if (Reset == 1’b1)
 begin
 pres_st = state0;
 Reset = 1’b0;
 PC = 4’d0;
 Memory [0] = 8’hE0; Memory [1] = 8’h29;
 Memory [2] = 8’h8A; Memory [3] = 8’h4B;
 Memory [4] = 8’h6C; Memory [5] = 8’h8D;
 Memory [6] = 8’hCE; Memory [7] = 8’hA0;
 Memory [8] = 8’h00; Memory [9] = 8’h0C;
 Memory [10] = 8’h05; Memory [11] = 8’h04;
 Memory [12] = 8’h09; Memory [13] = 8’h03;
 Memory [14] = 8’h09;
 Memory [15] = 8’h07;
 end

 case (pres_st)

 state0 :
 begin
 next_st = state1;
 AR = PC;
 end
 state1 :
 //This is fetch cycle
 begin
 next_st = state2;
 DR = Memory [AR];
 end

 state2 :
 //This is fetch cycle
 begin
 next_st = state3;
 PC = PC + 1;
 IR = DR [7:5];
 AR = DR [3:0];
 end

 state3 :
 //This is execute cycle

380 • HDL WITH DIGITAL DESIGN

 begin
 case (IR)
 3’d7 :
 //The op code is CLA
 begin
 ACL = 8’d0;
 next_st = state0;
 end
 3’d1 :
 //The op code is ADD
 begin
 DR = Memory [AR];
 ACL = ACL + DR;
 next_st = state0;
 end
 3’d2 :
 //The op code is MULT
 begin
 DR = Memory [AR];
 PR = ACL  DR;
 ACL = PR [7:0];
 ACH = PR [15:8];
 next_st = state0;
 end
 3’d3 :
 //The op code is DIVID
 begin
 DR = Memory [AR];
 ACL = ACL / DR;
 next_st = state0;
 end

 3’d4 :
 //The op code is XOR
 begin
 DR = Memory [AR];
 ACL = ACL ^ DR;
 next_st = state0;
 end
 3’d6 :
 //The op code is NAND
 begin

MIXED-TYPE DESCRIPTION • 381

 DR = Memory [AR];
 ACL = ~(ACL & DR);
 next_st = state0;
 end
 3’d5 :
 //The op code is PRITY
 begin
 ACL[7] = z;
 next_st = state0;
 end
 3’d0 :
 //The op code is HALT
 begin
 next_st = state3;
 end
 default :
 begin
 end
 endcase
 end
 default :
 begin
 end
 endcase
 pres_st = next_st;
end
endmodule

Figure 7.13 shows the simulation output of the accumulator register.
To start simulation, reset is forced high and then unforced.

0000 0001 0010 0011 0100 0101PC

111 001 100 010 011IR

0

0

12 9 36 4
ACL

(In decimal)

ACH
(In decimal)

FIGURE 7.13 Simulation output of the accumulator register.

382 • HDL WITH DIGITAL DESIGN

7.5 Summary

This chapter covered mixed-type descriptions (HDL code that includes
more than one style of description in the same module). An example of
mixed description is when we write a module using behavioral and data-
flow statements. In some systems, one part can be best described by be-
havioral statements, and other parts of the system can be best described
by data-flow description. Instead of writing a module with only behavioral
or only data flow, we write the module using both behavioral and data-flow
descriptions; that is what is defined as mixed-type description.

An example to illustrate the mixed-type description is the ALU of a
computer. Some operations of the ALU, such as division, are usually de-
scribed by behavioral statements because it is not easy to find the Boolean
function or the hardware logic for division. Other operations, such as addi-
tion, may be described by data-flow or structural description because it is
usually easy to find the logic diagram of adders. In addition to mixed-type
descriptions, packages and single/multidimensional arrays were covered.
Packages are an essential construct in VHDL code. User-defined types,
components, functions, and procedures can be written in a package and
made visible to a VHDL module by attaching (including) the package with
the module.

7.6 Exercises

1. Write the HDL code to find the value and the order of the smallest ele-
ment in an array. The elements are four-bit signed numbers. Simulate
and verify your code.

2. Given an array of N elements, write the HDL code to organize the ele-
ments of the array in ascending order. All elements are integers.

3. Consider the code shown in Listing 7.11.

LISTING 7.11 Exercise 7.3

library IEEE;
use IEEE.STD_LOGIC_1164.all;

package arrypack is

MIXED-TYPE DESCRIPTION • 383

constant N : integer := 2;
constant M : integer := 1;

subtype wordg is integer;
type singl1 is array (N downto 0) of wordg;
type singl2 is array (N downto 0) of singl1;
type arry3 is array (M downto 0) of singl2;
end arrypack;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use work.arrypack.all;

entity exercise is
 Port(N, M, P : integer; z : out integer);
end exercise;

architecture exercise of exercise is

begin
com : process (N, M, P)
variable t : integer;
constant y : arry3 := (((5, 4, 3), (8, 9, 10), (32, 33, 34)),
 ((42, 43, 44), (52, 53, 54), (-10, -7, -5)));

begin

t := y (N)(M)(P);
z <= t;
end process com;

end exercise;

 a) What is the value of the following elements of y?

 y (0,0,0), y (0,0,1), y (0,0,2), y (0,1,2), y (1,1,2), y (1,2,2)

 b) If we change all (N downto 0) and (M downto 0) in package ar-
rypack to (0 to N) and (0 to M), what will be the values of the
elements in part a?

384 • HDL WITH DIGITAL DESIGN

4. Repeat Listing 7.8 but for a memory of 128×16. Store the following data
in the corresponding memory locations:
Memory Location in Decimal Contents in Decimal
 0 123
 127 1025
 55 35
 105 801
 99 0

Verify your storage by reading the data from the above locations.

5. For the state diagram shown in Figure 7.14, write a behavioral HDL
program to simulate the state machine. Verify your answer by simula-
tion.

state0

state2

state1state3

1/0
1/1

1/0
1/1

0/1 0/0

0/0

0/1

FIGURE 7.14 State-machine instruction format for Exercise 7.5.

6. Write a Verilog code to perform the following:
[C] = [A] – [B]

All matrices are 6x6. Matrix [A] has the following elements: a(i+1,j) =
a(i,j)+ 4 with a(0,0) = 0.

Matrix [B] has the following elements: b(i+1,j) = b(i,j)  2 with b(0,0) = 1.

In your code, first generate the matrices and then perform the subtrac-
tion.

MIXED-TYPE DESCRIPTION • 385

7. For Case Study 7.1, increase the memory size to 32×16. Also, change all
instructions so the result of each instruction is stored in a memory loca-
tion rather than the accumulator. The address of this memory location
is the same as the address provided in the instruction. For example, the
instruction ADD 9 would mean the addition of the contents of AC to
the contents of memory location 9 with storage of the result in memory
location 9. Keep the size of all registers at eight bits. Rewrite the VHDL
code shown in Listing 7.10 and verify by simulation.

C H A P T E R

ADVANCED HDL DESCRIPTION

8
Chapter Objectives

 Explore several advanced topics in HDL Description, such as file
processing, character and string implementation, and the type re-
cord

 Understand VHDL Assert and Block statements
 Understand Verilog user-defined primitives
 Acquire a basic knowledge of cache memories
 Acquire a basic knowledge of artificial neural networks

8.1 File Processing

Files are implemented when dealing with a large amount of data that
need to be stored and accessed. Also, files can be used to display format-
ted output, such as reports. Files can be read or written. To read from or
write to a file, it must be opened, and after reading or writing is finished,
the file must be closed. A closed file cannot be accessed unless it is opened.
In Section 8.1.1, the VHDL file description is explored, and Section 8.1.2
discusses Verilog file descriptions.

388 • HDL WITH DIGITAL DESIGN

8.1.1 VHDL File Processing
File processing can be slightly different from one HDL simulator to

another. Appropriate packages have to be attached to the VHDL module.
The reader is advised to consult his or her VHDL package and simulator
for files-handling capability. This section will present complete examples of
file description with the names of the appropriate packages. Files have to
be declared by the predefined object type fi le. File declaration includes
the predefined word fi le followed by (in this order) the port direction or
mode of the file (infi le or outfi le), a colon, and the subtype of the file.
An example of file declaration is:

file infile : text;

The above statement declares a file with mode infi le, and the subtype of
the file is text. The IEEE package textio should be attached (see exam-
ples in the following sections). VHDL has built-in procedures for file han-
dling. These procedures include fi le_open, readline, writeline, read,
write, and fi le_close. In the following sections, each of these procedures
is briefly discussed.

8.1.1.1 File_open

The fi le_open procedure opens the file; files cannot be accessed if not
opened. This procedure has the following declaration:

Procedure file_open (status : file_open_status, infile : file
type, external_name : in string,
open_kind : file_open_kind) is

The statement status enables the VHDL to keep track of the activities of
the file (e.g., open, close, read, etc.); infi le is the type (mode) of the file.
The infi le is used for input files (their contents will be read), and outfi le is
used for output files (they will be written into). The external_name is the
name of the file to be opened; the name has to be in string form such as
“rprt.txt” or “testfi le.txt.” The open_kind is the mode of opening the
read_mode or write_mode. An example of implementing fi le_open is:

file_open (fstatus, infile, “testfile.txt”, read_mode);

The above procedure opens a file by the name of testfi le.txt for
reading. The file is an input file (infi le) with type txt. It is located in
the same path as the procedure. For example, if the procedure is written
in a module stored in directory C under a subdirectory VHDL_files, then

ADVANCED HDL DESCRIPTION • 389

testfi le should be stored in the subdirectory VHDL_files; otherwise, the
path of testfi le should be explicitly stated in the declaration of fi le_open.
The file is then opened for reading.

The following procedure opens a text outfi le by the name of store.
txt for writing:

file_open (fstatus, outfile, “store.txt”, write_mode);

8.1.1.2 File_close

The procedure fi le_close is used to close an open file. For example:

file_close (infile);

closes the open file infi le. The name and path of infi le are specified in
the procedure fi le_open. The following statement closes outfi le:

file_close (outfile);

8.1.1.3 Readline

The predefined procedure readline reads a line from the file opened
in read mode. An example of implementing this procedure is:

readline (infile, temp);

The above statement reads a line from infi le and stores the line in variable
temp. Variable temp has to be of predefined type line. The name and type
of infi le should have been stated in the procedure fi le_open. Inside the file
specified by infi le, a carriage return is the separator between the lines. If
readline is repeated before closing the file, another line is read. A carriage
return indicates a new line.

8.1.1.4 Writeline

The predefined procedure writeline writes a line into an outfi le that
is open for write mode. An example of implementing this procedure is:

writeline (outfile, temp);

The above statement writes a line stored in the variable temp into the
file outfi le. Variable temp has to be of type line. The name and path of
outfi le should be specified in the procedure fi le_open. Only integers, real
values, or characters can be written into outfi le. If writeline is repeated
before closing outfi le, a new line is stored in outfi le.

390 • HDL WITH DIGITAL DESIGN

8.1.1.5 Read

To read an integer, a character, or a real value from a line in an infi le
that is open for read mode, the procedure read is used. For example, if
intg1 has been declared as of type integer, the statement

read (temp, intg1);

performs a single read of an integer from line temp of the open file (for read
mode) and stores the value of this integer in intg1. If a character or a real
value is to be read, the variable intg1 should be of type character or real,
respectively. If intg1 is a single value (not an array), each time the read op-
eration is executed, a single word of the line is read and stored in intg1. If
the read statement is repeated before closing the file, the next word in the
line is read and stored in intg1.

8.1.1.6 Write

The procedure write stores an integer, a character, or a real value from
a line to an outfi le that is open for write_mode. For example, if intg1 has
been declared as type integer, the statement

write (temp, intg1);

stores the integer intg1 in the line temp of the open outfi le, which is in
write mode. If a character or a real value is to be written, the variable intg1
should be of type character or real, respectively. Each time the write
operation is executed, a single word is stored in the line. If the write state-
ment is repeated before closing the file, a new value of intg1 is stored in
the line.

8.1.2 Verilog File Processing
Standard Verilog can handle several file operations. As in VHDL, be-

fore accessing a file, it must be opened. If the file is not open, it cannot be
read from or written to. Accessing a file is accomplished through built-in
tasks such as $fopen, $fdisplay, $fmonitor, and $fclose. More tasks are
being introduced in newer Verilog packages. Let us briefly investigate each
of these tasks.

8.1.2.1 $fopen

The task $fopen is used to open files. It is the counterpart of the
VHDL procedure fi le_open. The format for opening a file is:

ADVANCED HDL DESCRIPTION • 391

Channel = $fopen (“name of the fi le”);

where Channel is a variable of type integer; it indicates the channel num-
ber. Verilog uses this channel number to track and identify which files are
open. Verilog automatically assigns an integer value to each channel. For
example, to open a text file named testfi le:

ch1 = $fopen (“testfile.txt”);

and ch1 becomes the indicator (identifier) of file testfi le.txt.

8.1.2.2 $fclose

The task $fclose closes a file indicated by the channel number. For
example the task

$fclose (ch1);

closes the file testfi le.txt.

8.1.2.3 $fdisplay

The task $fdisplay is the counterpart of write in VHDL. It can write
variables, signals, or quoted strings. The format of $fdisplay is as follows:

$fdisplay (channel, V1, V2, V3,);

where V1, V2, V3, and so on are variables, signals, or quoted strings. For
example, consider the following $fdisplay task:

$fdisplay (ch1, “item description quantity”);

After executing the task, the file testfi le.txt displays:

item description quantity

The number of spaces displayed in the file between each string is the
same number of spaces inside the quotations.

8.1.2.4 $fmonitor

The task $fmonitor has the following format:

$fmonitor (channel, V1, V2, V3,…..)

The task monitors and records the values of V1, V2, V3, and so on. For
example, consider the following $fmonitor task:

$fmonitor (ch1, “ %b”, quantity);

The above task monitors the variable quantity and records its value in
binary in the file testfi le.txt indicated by ch1, and %b indicates binary

392 • HDL WITH DIGITAL DESIGN

format. If quantity = 7 in decimal, after execution of the above task, the
file testfi le.txt displays:

item description quantity
 111

Different formats can be selected such as:

%d Display in decimal
%s Display strings
%h Display in hex
%o Display in octal
%c Display in ASCII character
%f Display real numbers in decimal format

Escape characters may also used; some of these characters are:

\n Insert a blank line
\t Insert tab
\\ Insert the character \
\” Insert the character “
\ Insert the character %

8.2 Examples of File Processing

The following sections present and discuss some examples of file pro-
cessing. Because VHDL and Verilog file processing are not very similar,
their examples are discussed separately.

8.2.1 Examples of VHDL File Processing
The following examples cover file processing in VHDL.

EXAMPLE 8.1 READING A FILE CONTAINING INTEGER NUMBERS

Consider a text file (written by a Notepad, for example) by the name of
fi le_int.txt in the same path as the VHDL module that accesses it (see
Listing 8.1). The contents of the file are integers written in two lines (see
Figure 8.1). The two lines are separated by a carriage return, and the inte-
gers are separated by a space band (the number of space bands can be one

or more than one).

In this example, the first integer is to be mul-
tiplied by two, the second by five, the third by

12
20

–3 5

FIGURE 8.1 File file_int.txt.

ADVANCED HDL DESCRIPTION • 393

three, and the fourth by four. The products are stored in the integer vari-
ables z, z1, z2, and z3, respectively.

To calculate the products, open the file, read its contents, perform the
multiplication, and close the file. Referring to Listing 8.1, the statement

file_open (fstatus, infile, “file_int.txt”, read_mode);

opens the infi le fi le_int.txt for reading. The statement

readline (infile, temp);

reads a line from the file fi le_int.txt and stores this line in the vari-
able temp of type line. If the statement is repeated, temp acquires the
next line. The statement

read (temp, count);

reads a single integer from the line temp and stores the integer in the
variable count. If the statement is repeated, count will acquire the next
integer from the same line. The statement

file_close (infile);

closes the file. No operation can be performed on the file as long as it is
closed. If the file is opened again, readline reads the first line of the file.
To repeat the code for another file, be sure to create an event in the process
by turning off (START = 0) and turning on (START = 1).

LISTING 8.1 VHDL Code for Reading and Processing a Text File Containing
Integers

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;

entity FREAD_INTG is
port (START : in std_logic;
z, z1, z2, z3 : out integer);
end FREAD_INTG;

architecture FILE_BEHAVIOR of FREAD_INTG is
begin

process (START)

394 • HDL WITH DIGITAL DESIGN

-- declare the infile as a text file
file infile : text;

--declare the variable fstatus (or any other variable name)
--as of type file_open_status
variable fstatus : file_open_status;
variable count : integer;

--declare variable temp as of type line
variable temp : line;

begin
if (START = ‘1’) then
--open the file file_int.txt in read mode
file_open (fstatus, infile, “file_int.txt”, read_mode);

--Read the first line of the file and store the line in temp
readline (infile, temp);
-- temp now has the data: 12 -3 5

-- Read the first integer (12) from the
--line temp and store it in the integer variable count.

 read (temp, count);

--count has the value of 12. Multiply by 2 and store in z
 z <= 2  count;

-- Read the second integer from the line temp and
-- store it in count
 read (temp, count);
--count now has the value of -3

--Multiply by 5 and store in z1
 z1 <= 5  count;

-- read the third integer in line temp
--and store it in count.
 read (temp, count);

--Multiply by 3 and store in z2
 z2 <= 3  count;

ADVANCED HDL DESCRIPTION • 395

--Read the second line and store it in temp
 readline (infile, temp);
--temp has only the second line

--Read the first integer of the second line
--and store it in count.
 read (temp, count);

--Multiply by 4 and store in z3
 z3 <= 4  count;

--Close the infile
file_close (infile);
end if;
end process;
end FILE_BEHAVIOR;

After the code in Listing 8.1 executes, z, z1, z2, and z3 take the fol-
lowing values:

z = 24, z1 = –15, z2 = 15, z3 = 80

EXAMPLE 8.2 READING A FILE CONTAINING REAL NUMBERS

In this example, a file by the name of fi le_real.txt is read. The con-
tents of this file are real numbers (containing fractions) written in decimal
format such as 50.3 (see Figure 8.2). The contents are written in two lines
separated by a carriage return. The numbers are separated by one or more
spaces. Listing 8.2 shows the code for reading the file; it is very similar to
Listing 8.1. Open the file with fi le_open and read a line from the file us-
ing the procedure readline. Af-
ter reading a line, one word is read
at a time by invoking the procedure
read. Each word is a real number;
spaces are not read but are recog-
nized as separators between words.

LISTING 8.2 VHDL Code for Reading a Text File Containing Real Numbers

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;

–13.4
–55.32

–5.654 .023

FIGURE 8.2 File file_real.txt.

396 • HDL WITH DIGITAL DESIGN

entity FREAD_REAL is
port (START : in std_logic;
z, z1, z2, z3 : out real);
end FREAD_REAL;

architecture FILE_BEHAVIOR of FREAD_REAL is
begin

process (START)
file infile : text;
variable fstatus : file_open_status;
variable count : real;
--Variable count has to be of type real
variable temp : line;

begin
if (START = ‘1’) then
--Open the file
 file_open (fstatus, infile,
 “file_real.txt”, read_mode);

-- Read a line
 readline (infile, temp);

--Read one number and store it in real variable count
 read (temp, count);
--multiply by 2
z <= 2.0  count;

--read another number
 read (temp, count);
--multiply by 5
 z1 <= 5.0  count;
 --read another number
 read (temp, count);
 --multiply by 3
 z2 <= 3.0  count;

 --read another line
 readline (infile, temp);
 read (temp, count);

ADVANCED HDL DESCRIPTION • 397

 --multiply by 4
 z3 <= 4.0  count;
 file_close (infile);
 end if;
end process;
end FILE_BEHAVIOR;

After executing Listing 8.2, z, z1, z2, and z3 take the following values:
z = –26.8, z1 = –28.27, z2 = 0.069, z3 = –221.28

EXAMPLE 8.3 READING A FILE CONTAINING ASCII CHARACTERS

Figure 8.3 shows the file to be read,
named fi le_chr.txt. The contents of this file
are ASCII characters. ASCII characters can
be digits (e.g., 0, 1, 2), letters of the alphabet
(e.g., A, B, C), or special characters (e.g., ; 
& #). The space band is an ASCII character and is read as a character. List-
ing 8.3 shows the code for reading the file fi le_chr.txt. The file has two
lines (see Figure 8.3) separated by a carriage return. The first line has three
characters, A5B, and the second line has one character, M. If the first line
contains A B instead of A5B, it is still read as three characters: A, space
band, and B.

Listing 8.3 shows the VHDL code for reading an ASCII file. The file
is opened with fi le_open. A line from the file is read using the procedure
readline. After reading a line, one word at a time is read by invoking the
procedure read; each word is a character, including spaces. The character
is then stored in the variable count; this variable has to be of type char-
acter.

LISTING 8.3 VHDL Code for Reading an ASCII File

use ieee.std_logic_1164.all;
use std.textio.all;

entity FREAD_character is
port (START : in std_logic;
 z, z1, z2, z3 : out character);
end FREAD_character;

A5B
M

FIGURE 8.3 File file_chr.txt.

398 • HDL WITH DIGITAL DESIGN

architecture FILE_BEHAVIOR of FREAD_character is
begin

process (START)
file infile : text;
variable fstatus : file_open_status;
variable count : character;
-- Variable count has to be of type character
variable temp : line;

begin

if(START = ‘1’) then
 file_open (fstatus, infile, “file_chr.txt”, read_mode);

--read a line from the file
 readline (infile, temp);
--read a character from the line into count.
--Count has to be of type character.
--

 read (temp, count);

--store the character in z
 z <= count;
 read (temp, count);
 z1 <= count;
 read (temp, count);
 z2 <= count;
 readline (infile, temp);
 read (temp, count);
 z3 <= count;
 file_close (infile);
 end if;
end process;
end FILE_BEHAVIOR;

After the code in Listing 8.3 executes, z, z1, z2, and z3 take the fol-
lowing values:

z = A, z1 = 5, z2 = B, z3 = M

Reading files has been covered in the previous examples. The follow-
ing examples cover writing into files. As mentioned, VHDL files can store
integers, real values, and characters.

ADVANCED HDL DESCRIPTION • 399

EXAMPLE 8.4 WRITING INTEGERS TO A FILE

In this example, writing into the text file Wfi le_int.txt is considered.
Assume that the file is located in the same path as the VHDL module that
accesses it (see Listing 8.4). Integers will be written into the file. Start by
opening the file using the procedure fi le_open. Assemble the line to be
stored using the procedure write, as follows:

write (temp, z);

The above statement stores the integer z into the line temp. Quoted char-
acters can be stored in temp as follows:

write (temp, “This is an integer file”);

Executing this statement results in storing the message “This is an in-
teger fi le” in temp. If the statement is repeated, another integer or char-
acter is stored into temp. A space is to be stored between each two integers.
After all integers and characters have been stored in the line, the line is
written to the file using the procedure:

writeline (outfile, temp);

The above procedure, writeline, writes the line temp into the outfi le,
Wfi le_int.txt.

LISTING 8.4 VHDL Code for Writing Integers to a File

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;

entity FWRITE_INT is
port (START : in std_logic);

end FWRITE_INT;

architecture FILE_BEHAVIOR of FWRITE_INT is
begin

process (START)
file outfile : text;
variable fstatus : file_open_status;
--declare temp as of type line
variable temp : line;
variable z,z1,z2,z3 : integer := 6;

400 • HDL WITH DIGITAL DESIGN

begin
 if(START = ‘1’) then
 z := 12; z1 := 23; z2 := -56; z3 := -45;
 file_open (fstatus, outfile,
 “Wfile_int.txt”, write_mode);
 --The generated file “Wfile_int.txt” is in
 --the same directory as this VHDL module
 --Insert the title of the file Wfile_int.txt.
 --Your simulator should support formatted text;
 --if not, remove all formatted statements “ “.

 write (temp, “This is an integer file”);

 --Write the line temp into the file
 writeline (outfile, temp);
 --store the first integer in line temp
 write (temp, z);

 -- leave space between the integer numbers.
 write (temp, “ “);
 write (temp, z1);

 -- leave another space between the integer numbers.
 write (temp, “ “);
 write (temp, z2);
 write (temp, “ “);

 writeline (outfile, temp);
 --Insert the fourth integer value on a new line
 write (temp, z3);
 writeline (outfile, temp);
file_close(outfile);
 end if;
end process;
end FILE_BEHAVIOR;

After executing the code above, the outfi le Wfi le_int.txt appears as
shown in Figure 8.4.

This is an integer file
12 23 –56
–45

FIGURE 8.4 File Wfile_int.txt.

ADVANCED HDL DESCRIPTION • 401

In the same way as was done in Listing 8.4, characters or real numbers
can be written into an outfi le.

EXAMPLE 8.5 READING A STRING OF CHARACTERS AND STORING
THEM INTO AN ARRAY

In previous examples, a single character from the file was read and
stored in a single variable count. Here, a string of characters are read and
stored in an array. To handle arrays, a package is built that contains an ar-
ray of characters. The package array_pkg is shown in Listing 8.5. Subtype
wordchr of type character is used. The array is written as type string_
chr, which is an array of the subtype wordchr. The array consists of N + 1
elements, and each element is type character.

LISTING 8.5 VHDL Code for Writing a Package Containing a String of Five
Characters

library IEEE;
use IEEE.STD_LOGIC_1164.all;

package array_pkg is
constant N : integer := 4;
--N+1 is the number of elements in the array.
subtype wordChr is character;
type string_chr is array (N downto 0) of wordChr;

end array_pkg;

Now, a string of characters need to be read from the file string_chr
and stored in an array. Listing 8.6 shows the code for reading a string from
the file. A single word composed of five characters, “STORE,” is stored in
the file. The package written in Listing 8.5 is used here to instantiate the ar-
ray. In Listing 8.6, z is declared as type string_chr. This means that z is an
array of five elements, (N down to 0) where N = 4; each element is a single
character. The file is opened, the string is read and then stored in array z.

LISTING 8.6 VHDL Code for Reading a String of Characters into an Array

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;

402 • HDL WITH DIGITAL DESIGN

--include the package with this module
use work.array_pkg.all;

entity FILE_CHARCTR is
port (START : in std_logic; z : out string_chr);

--string_char is included in the package array_pkg;
--z is a 5-character array

end FILE_CHARCTR;

architecture FILE_BEHAVIOR of FILE_CHARCTR is
begin

process (START)
file infile : text;
variable fstatus : file_open_status;
variable count : string_chr;
variable temp : line;

begin
file_open (fstatus, infile, “myfile1.txt”, read_mode);
readline (infile, temp);

read (temp, count);
--Variable count has been declared as an array of five
-- elements, each element is a single character.
--
z <= count;

file_close (infile);
end process;

end FILE_BEHAVIOR;

After the code in Listing 8.6 is executed, the signal z contains “S” “T”
“O” “R” “E.”

EXAMPLE 8.6 FINDING THE WORD IN A FILE WITH THE SMALLEST
ASCII VALUE

When an ASCII character is read, the VHDL package assigns the
unique hexadecimal (hex) value for that character. Table 8.1 shows the

ADVANCED HDL DESCRIPTION • 403

hexadecimal values for several characters. Notice that A has the lowest hex
value among the letters, while Z has the highest. In this example, we want
to find the word that has the lowest ASCII hex value.

TABLE 8.1 ASCII Character Hexadecimal Values

Character Hex Value Character Hex Value
A 41 U 55
B 42 V 56
C 43 W 57
D 44 X 58
E 45 Y 59
F 46 Z 5A
G 47 0 30
H 48 1 31
I 49 2 32
J 4A 3 33
K 4B 4 34
L 4C 5 35
M 4D 6 36
N 4E 7 37
O 4F 8 38
P 50 9 39
Q 51 CARRIAGE RET 0D
R 52 SPACE 20
S 53) 29
T 54 = 3D

The file that contains the word to be found, the word with the smallest
ASCII value (f_smallest), is shown in Figure
8.5. The file consists of eleven words; each word
has a maximum of five characters and is followed
by a carriage return. The file can have any number
of words, but the last word must be “END.”

Listing 8.7 shows the VHDL code for finding
the word with the lowest ASCII value. The small-
est value will be stored in a character-type variable,
smallest, and the variable is initialized with the
highest possible ASCIII value (in our example,
“ZZZZZ”). Compare the value of smallest with

STORE
STOP
ADD
ADA
SUB
MTPLY
LOAD
JUMP
HLT
COMPR
END

FIGURE 8.5 File f_smallest.

404 • HDL WITH DIGITAL DESIGN

each word. If the value of the word is less than the value of smallest, then
smallest assumes the value of this word. Otherwise, smallest retains its
value. Continue this comparison until the last word in the file is encoun-
tered. The code tests each word to see if it is “END.” If it is, then the pro-
gram stops; if not, the program continues. The statement that checks for
the word “END” in Listing 8.7 is a while-loop:

while (count /= (‘E’, ‘N’, ‘D’, ‘ ‘, ‘ ‘)) loop

The operator /= is the logic NOT EQUAL. The variable count has to be
declared as type character. The above loop will continue running until the
variable count is equal to END. The statement

read (temp, count);

reads a character word from the line temp. Because count is declared as an
array of characters (string_chr), each time a word is read, the ASCII value
corresponding to the characters of the word (see Table 8.1) is computed
and stored in the variable count. This is how the VHDL determines that
“ADD” is less than “AND.”

Listing 8.7 VHDL Code for Finding the Smallest ASCII Value

--The following package needs to be attached
--to the main module.

library IEEE;
use IEEE.STD_LOGIC_1164.all;

package array_pkg is
constant N : integer := 4;
--N+1 is the number of elements in the array.
subtype wordChr is character;
type string_chr is array (N downto 0) of wordChr;

end array_pkg;

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.array_pkg.all;

--Now start writing the code to find the smallest
entity SMALLEST_CHRCTR is

ADVANCED HDL DESCRIPTION • 405

 port (START : in std_logic; z : out string_chr);

end SMALLEST_CHRCTR;

architecture BEHAVIOR_SMALLEST of SMALLEST_CHRCTR is

begin
process (START)
file infile : text;
variable fstatus : file_open_status;
variable count, smallest :
 string_chr := (‘z ‘, ‘z ‘, ‘z ‘, ‘z ‘, ‘z ‘);

-- The above statement assigns initial values (Z’s) to
-- count and smallest.

variable temp : line;

begin
 file_open (fstatus, infile,
 “f_smallest.txt”, read_mode);
 while (count /= (‘E’, ‘N’, ‘D’, ‘ ‘, ‘ ‘)) loop
 readline (infile, temp);
 read (temp, count);
 if (count < smallest) then
 smallest := count;
 end if;
 end loop;
z <= smallest;
file_close (infile);
end process;
end BEHAVIOR_SMALLEST;

After execution, the output z is equal to “ADA.”

EXAMPLE 8.7 IDENTIFYING A MNEMONIC CODE AND ITS INTEGER
EQUIVALENT FROM A FILE

In many programming applications, the user writes the source code in
mnemonic. The computer, if not equipped with the appropriate assembler
or compiler, understands only machine language, which consists of zeroes
and ones. Assemblers and compilers translate from mnemonic to machine

406 • HDL WITH DIGITAL DESIGN

language. In this example, the
code is written for a simple as-
sembler. An integer code is as-
signed to each mnemonic code.
This assignment is user selected.
The mnemonic code and its in-
teger value are stored in the file
cods.txt (see Figure 8.6).

Listing 8.8 is the VHDL
code to find the integer code for

each mnemonic. Referring to, the statement

if (temp = assmbly_code) then

The statement tests whether temp is equal to assmbly_code. This com-
parison can be done because temp and assmbly_code have been declared
with the same type of arrays of characters.

LISTING 8.8 VHDL Code for Finding the Integer Code for a Mnemonic Code

--The following package needs to be
--attached to the main module

library IEEE;
use IEEE.STD_LOGIC_1164.all;
package array_pkg is
constant N : integer := 4;
--N+1 is the number of elements in the array.
subtype wordChr is character;
type string_chr is array (N downto 0) of wordChr;

end array_pkg;

--Start writing the code to find the assigned integer value
library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.array_pkg.all;

entity OPCODES is
 port (assmbly_code : in string_chr; z : out string_chr;
 z1 : out integer);

HALT
ADD
XOR
MULT
DIVID
NAND
PRITY
CLA

User-assigned integer code
0
1
4
2
3
6
5
7

Mnemonic code

FIGURE 8.6 File cods.txt.

ADVANCED HDL DESCRIPTION • 407

end OPCODES;

architecture BEHAVIOR of OPCODES is

begin

process (assmbly_code)
file infile : text;

variable fstatus : file_open_status;
variable temp : string_chr := (‘ ‘, ‘ ‘, ‘ ‘, ‘ ‘, ‘ ‘);
variable tem_bin : integer;
variable regstr : line;

begin
file_open (fstatus, infile, “cods.txt”, read_mode);
 for i in 0 to 8 loop
 -– while loop could have been used instead
 -- of for loop. See Exercise 8.3.

 readline (infile, regstr);

 read (regstr, temp);
 if (temp = assmbly_code) then
 z <= temp;

 read (regstr, tem_bin);
 z1 <= tem_bin;
 exit;
 else if (i > 7)then
 report (“ERROR: CODE COULD NOT BE FOUND”);
 z <= (‘E’, ‘R’, ‘R’, ‘O’, ‘R’);

 -- assign -1 to z1 if an error occurs
 z1 <= -1;
 end if;
 end if;
end loop;

file_close(infile);

end process;
end BEHAVIOR;

408 • HDL WITH DIGITAL DESIGN

EXAMPLE 8.8 VHDL CODE OF AN ASSEMBLER

An assembly program is a group of instructions written in mnemonic
code. The instructions usually contain four fields: label, operation code (op-
code), address, and comments. In this example, the instruction will have
only two fields: opcode and address. The opcode determines the type of
operation, such as addition, subtraction, or data movement.

Because the opcode in an assembly program is written in mnemonics,
the operation for addition could be written, for example, as ADD. The ad-
dress field determines the memory address of the operand. For example,
the assembly code ADD 9 means the operation is addition, and the addi-
tion operation is adding the data (operand) in memory location address 9
to the contents of a CPU register (usually the accumulator). The result of
the addition is stored in the accumulator. For the CPU to understand the
assembly instruction, the contents of the instruction have to be translated
into machine language code, which consists of zeroes and ones. The pro-
gram that translates assembly code to machine code is called an assembler
(see Figure 8.7).

Codes in decimal
Assembler

Codes in mnemonic

FIGURE 8.7 The input and output of an assembler.

Listing 8.9 shows the code for an assembler. The assembly program to
be translated is written in the file asm.txt (see Figure 8.8). Integer op-
codes are assigned to the mnemonic codes, as shown in Table 8.2. This as-
signment is arbitrary; the programmer can assign any pattern of code to the

mnemonic code as long as each code has a unique
integer value. In this example, the same code pat-
tern is followed as in Figure 8.6. The mnemonic
codes ORIG and END have no integer codes; they
are called pseudo codes. ORIG tells the assembler
the starting memory location where the output of
the assembler is stored. END tells the assembler
where the last line of the assembly program is.
Figure 8.9 shows the flowchart of our assembler.

ORG
CLA
ADD
XOR
MULT
DIVID
XOR
NAND
PRITY
HALT
HLT
END

200
0
9
10
11
12
13
14
0
0
5

FIGURE 8.8 File asm.txt.

ADVANCED HDL DESCRIPTION • 409

TABLE 8.2 Integer Codes Assigned to Mnemonic Codes

Mnemonic Code Assigned Integer Code in Decimal
CLA 7
ADD 1
XOR 4

MULT 2
DIVID 3
NAND 6
PRITY 5
HALT 0

Start

Read a line from
the assembly file

Ctr = Starting
 address

Is the code
END?

Is the code
ORIG ?

No

No

Finish

Search for the
decimal

equivalent of the
code

Yes

Yes

Increment Ctr

Write onto the
output file the code
and the address in

decimal

FIGURE 8.9 Flowchart of the assembler.

410 • HDL WITH DIGITAL DESIGN

The assembler first reads a line from the assembly file asm.txt. In
Listing 8.9, the line is read by the read procedure readline:

readline (infile, regstr);

The infile is the file asm.txt. If the first line is read, the contents of reg-
str would be:

ORIG 200

and regstr is read using the procedure read:

read (regstr, temp);

The read procedure above stores one word (an array of five charac-
ters) in temp. If this is the first line of asm.txt, then temp = “ORIG.” As
shown in Figure 8.9, the assembler tests the code to see what type it is. In
the case of ORIG, the if statement is used as follows:

if (temp = (‘O’,’R’,’I’,’G ‘,’ ‘)) then
read (regstr, ctr);

If the code is “ORIG,” the same line is read again, which results in storing
the value 200 in ctr. If the code of the first line is not “ORIG,” an error
is reported. After the first line is finished (see Figure 8.9), the subsequent
lines are read, and the case statement is used to determine the codes and
the addresses. For example, the statements

when (‘M’,’U’,’L’,’T’,’ ‘) => code := 2;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);

test the code to see if it is “MULT.” If the code is “MULT,” an integer of
value 2 is assigned to MULT (see Table 8.2), and the address part of the
code is written into the outfi le. In Listing 8.9, a for-loop is implemented to
test all lines of the infi le. Using the for-loop means that the exact number
of lines in the infi le is known; if the exact number is not known, while-loop
could have been implemented to test all the lines, regardless of the number
of lines. This can be done by specifying an end-of-file word, such as “END,”
as the condition for terminating the while-loop (see Listing 8.7).

ADVANCED HDL DESCRIPTION • 411

LISTING 8.9 VHDL Assembler Code

--The following package needs to be attached
--to the main module
library IEEE;
use IEEE.STD_LOGIC_1164.all;

package array_pkg is
constant N : integer := 4;
--N+1 is the number of elements in the array.

subtype wordChr is character;
type string_chr is array (N downto 0) of wordChr;

end array_pkg;

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.array_pkg.all;

--Now start the code for the assembly
entity ASSMBLR is

 port (START : in bit);

end ASSMBLR;

architecture BEHAVIOR_ASSM of ASSMBLR is
begin

process (START)
file infile : text;
file outfile : text;

variable fstatus, fstatus1 : file_open_status;
variable temp : string_chr := (‘ ‘, ‘ ‘, ‘ ‘, ‘ ‘, ‘ ‘);
variable code, addr : integer;
variable regstr, regstw : line;
variable ctr : integer := -1;

 begin
file_open (fstatus, infile, “asm.txt”, read_mode);

412 • HDL WITH DIGITAL DESIGN

file_open (fstatus1, outfile, “outf.txt”, write_mode);

-- Prepare the outfile where the results of the assembler
-- are stored.

write (regstw, “Location Code Address”);
writeline (outfile, regstw);

for i in 0 to 11 loop
--while-loop could have been used instead of for-loop.

readline (infile, regstr);

read (regstr, temp);
if (temp = (‘O’, ‘R’, ‘I’, ‘G’, ‘ ‘)) then
read (regstr, ctr);

elsif (ctr = -1)then
-- If the code of the first line in the file is not ORIG
-- report an error

write (regstw, “ ERROR: FIRST OPCODE SHOULD BE ORIG”);
writeline (outfile, regstw);
exit;

else
read (regstr, addr);
write (regstw, ctr);
write (regstw, “ “);
ctr := ctr + 1;

case temp is

when (‘H’, ‘A’, ‘L’, ‘T’, ‘ ‘) =>
code := 0;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);

when (‘A’, ‘D’, ‘D’, ‘ ‘, ‘ ‘) =>
code := 1;

ADVANCED HDL DESCRIPTION • 413

write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);
when (‘M’, ‘U’, ‘L’, ‘T’, ‘ ‘) =>
code := 2;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);
when (‘D’, ‘I’, ‘V’, ‘I’, ‘D’) =>
code := 3;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);
when (‘X’, ‘O’, ‘R’, ‘ ‘, ‘ ‘) =>
code := 4;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);

when (‘P’, ‘R’, ‘I’, ‘T’, ‘Y’) =>
code := 5;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);
when (‘N’, ‘A’, ‘N’, ‘D’, ‘ ‘) =>
code := 6;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);
when (‘C’, ‘L’, ‘A’, ‘ ‘, ‘ ‘) =>
code := 7;
write (regstw, code);
write (regstw, “ “);
write (regstw, addr);
writeline (outfile, regstw);
when (‘E’, ‘N’, ‘D’, ‘ ‘, ‘ ‘) =>

414 • HDL WITH DIGITAL DESIGN

write (regstw, “END OF FILE “);
writeline (outfile, regstw);
exit;

when others =>
code := -20;
write (regstw, “ERROR “);
write (regstw, code);
writeline (outfile, regstw);
end case;

end if;

end loop;
file_close(infile);
file_close (outfile);

end process;
end BEHAVIOR_ASSM;

Figure 8.10 shows the outfi le “outf.txt” after translating Figure 8.8.
Notice that in Figure 8.8, the code “HALT” was intentionally miswritten
as “HLT.” Listing 8.9 spotted this error and reported it in outf.txt (see
Figure 8.10).

Location
200
201
202
203
204
205
206
207
208
209
210

7
1
4
2
3
4
6
5
0
ERROR
END OF FILE

Address
0
9
10
11
12
13
14
0
0
–20

Code

FIGURE 8.10 Contents of the file outf.txt.

Figure 8.11 shows the rewritten assembly program (Figure 8.8) and
intentionally omits “ORIG” from the first line of code. According to Listing
8.9, this is an error.

ADVANCED HDL DESCRIPTION • 415

CLA
ADD
XOR
MULT
DIVID
XOR
NAND
PRITY
HALT
HLT
END

0
9
10
11
12
13
14
0
0
5

FIGURE 8.11 Variation of the infile asm.txt. ORIG is omitted.

Figure 8.12 shows the contents of the outfi le according to the infi le
of Figure 8.11.

Code AddressLocation

ERROR: FIRST OPCODE SHOULD BE ORIG

FIGURE 8.12 Outfile outf.text for translating Figure 8.11.

8.2.2 Examples of Verilog File Processing
Verilog file processing is based on several built-in tasks such as $fopen,

$fdisplay, $fmonitor, and $fclose. The following example discusses
file processing in Verilog.

EXAMPLE 8.9 MANIPULATING AND DISPLAYING DATA IN A VERILOG FILE

In this example, consider a system with one two-bit input, a, and one
three-bit output, b. Output b is related to input a as shown in Equation 8.1:

 b = 2a (8.1)

It is desired to record the value of the outputs as the inputs from a file
named fi le4.txt change. This file is located in the same path as the Verilog
module that accesses it. Listing 8.10 shows the Verilog code. The file fi le4.
txt is opened using the task $fopen:

ch1 = $fopen(“file4.txt”);

where fi le4.txt is the name of the file, and ch1 is the indicator of the

416 • HDL WITH DIGITAL DESIGN

channel that keeps track of the opened file. To write headings to the file,
the task $fdisplay is used. For example, the following statement leaves
two spaces, one blank line, one tab(t), and writes the heading “This is
fi le4.txt,” and then leaves a blank line:

$fdisplay (ch1, “ \n\tThis is file4.txt\n”);

To monitor any signals, the task $fmonitor is used. This task monitors the
value of the signal and prints this value into the file. For example, the state-
ment:

$fmonitor (ch1,” %d\t\t%d%b\n”,a,b,
b);

monitors the value of signals a and b. These values are printed in fi le4.txt
as follows: leave two spaces, print a in decimal, insert two tabs, print the
value of b in decimal, leave thirty spaces, print the same value of b in binary.

LISTING 8.10 Verilog Code for Storing b = 2a in file4.txt
module file_test (a, b);
input [1:0] a;
output [2:0] b;
reg [2:0] b;
integer ch1;

initial
 begin
 ch1 = $fopen(“file4.txt”);
 $fdisplay (ch1, “\n\t\t\t This is file4.txt \n”);
 $fdisplay (ch1, “ Input a in Decimal\t
 \t Output b in Decimal\t\t Output b in Binary\n “);
/The above statement when entered in the Verilog module
should be entered in one line without carriage return /

 end
always @ (a)
 begin
 b = 2  a;
 $fmonitor (ch1,”\t%d\t\t\t\t%d\t\t\t\t%b \n”, a,b, b);
 end
endmodule

Figure 8.13 shows fi le4.txt after execution of Listing 8.10.

ADVANCED HDL DESCRIPTION • 417

This is file4.txt

Input a in decimal Output b in binaryOutput b in decimal

000

010

100

110

0

2

4

6

0

1

2

3

FIGURE 8.13 File4.txt of Listing 8.10.

8.3 VHDL Record Type

Record type is a collection of elements; the elements can be of the same
type or of different types. An example of record is shown in Listing 8.11.
The record in Listing 8.11 includes elements of type integer, weekdays,
and weather.

LISTING 8.11 Example of Record Type

Type weather is (rain, sunny, snow, cloudy);
Type weekdays is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday);

Type forecast is
Record
Tempr : integer range -100 to 100;
Day : weekdays;
Cond : weather;
end record;

Another example of implementing record is shown in Listing 8.12. The
user provides a certain day and a desired unit of temperature (Centigrade
or Fahrenheit), and the VHDL program outputs the current temperature
and the forecast condition (e.g., rain, cloudy, snowy, or sunny). Let’s exam-
ine the following code from Listing 8.12:

process (Day_in)
variable temp : forecast;

begin

case Day_in is

418 • HDL WITH DIGITAL DESIGN

when Monday =>
temp.cond := sunny;
if (unit_in = “CEN”) then
temp.tempr := 35.6;
else
temp.tempr := 1.2  35.6 + 32.0;
end if;

The signal Day_in is declared as type weekdays, so possible values for
this signal are Monday, Tuesday, Wednesday, Thursday, Friday, Satur-
day, or Sunday. The variable temp is declared as type forecast. This type
is a record, so possible types for this variable are real, string, weekdays,
or cast. To select one type out of these four types, we write, for example,
temp.cond. Now temp is of type cast and can assume one of the values of
this type (i.e., rain, sunny, snow, or cloudy).

LISTING 8.12 VHDL Code for an Example of Record

The following is the code of the package weather_fcst

package weather_fcst is
Type cast is (rain, sunny, snow, cloudy);
Type weekdays is (Monday, Tuesday, Wednesday,
 Thursday, Friday, Saturday, Sunday);
Type forecast is
Record
Tempr : real range -100.0 to 100.0;
unit : string (1 to 3);
Day : weekdays;
Cond : cast;

end record;
end package weather_fcst;

-- Now write the program
library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.weather_fcst.all;
entity WEATHER_FRCST is
 port (Day_in : in weekdays;
 unit_in : in string (1 to 3);
 out_temperature : out real;

ADVANCED HDL DESCRIPTION • 419

 out_unit : out string (1 to 3);

 out_day : out weekdays; out_cond : out cast);
-- Type string is a predefined

end WEATHER_FRCST;

--Now we write the code
architecture behavoir_record of WEATHER_FRCST is
begin
process (Day_in, unit_in)
variable temp : forecast ;

begin

case Day_in is

when Monday =>
temp.cond := sunny;
if (unit_in = “CEN”) then
temp.tempr := 35.6;
elsif (unit_in = “FEH”) then
temp.tempr := 1.2  35.6 + 32.0;
else
report (“invalid units”);
end if;

when Tuesday =>
temp.cond := rain;

if (unit_in = “CEN”) then
temp.tempr := 30.2;
elsif (unit_in = “FEH”) then
temp.tempr := 1.2  30.2 + 32.0;
else
report (“invalid units”);
end if;

when Wednesday =>
temp.cond := sunny;
if (unit_in = “CEN”) then
temp.tempr := 37.2;

420 • HDL WITH DIGITAL DESIGN

elsif (unit_in = “FEH”) then
temp.tempr := 1.2  37.2 + 32.0;
else
report (“invalid units”);
end if;

when Thursday =>
temp.cond := cloudy;
if (unit_in = “CEN”) then
temp.tempr := 30.2;
elsif (unit_in = “FEH”) then
temp.tempr := 1.2  30.2 + 32.0;
else
report (“invalid units”); end if;

when Friday =>
temp.cond := cloudy;
if (unit_in = “FEH”) then
temp.tempr := 33.9;
elsif (unit_in = “FEH”) then

temp.tempr := 1.2  33.9 + 32.0;
else
report (“invalid units”);
end if;

when Saturday =>
temp.cond := rain;
if (unit_in = “CEN”) then
temp.tempr := 25.1;
elsif (unit_in = “FEH”) then
temp.tempr := 1.2  25.1 + 32.0;
else
report (“invalid units”);
end if;

when Sunday =>
temp.cond := rain;
if (unit_in = “FEH”) then
temp.tempr := 27.1;
elsif (unit_in = “FEH”) then
temp.tempr := 1.2  27.1 + 32.0;

ADVANCED HDL DESCRIPTION • 421

else
report (“invalid units”);
end if;

when others =>
temp.tempr := 99.99;
report (“ERROR-NOT VALID DAY”);
end case;

out_temperature <= temp.tempr;
out_unit <= unit_in;
out_day <= Day_in;
out_cond <= temp.cond;
end process;
end behavoir_record;

The simulation output is shown in Figure 8.14.

FEH CEN FEH

76.64

FEH

37.2

sunny

74.7235.6

CEN

out_day

out_cond

out_unit FEH

sunny

CEN

out_temperature

unit_in CEN

WednesdayMondayday_in

WednesdayMonday

FIGURE 8.14 Simulation output of Listing 8.12.

422 • HDL WITH DIGITAL DESIGN

EXAMPLE 8.10 MEMORY STACK USING ASSERT AND REPORT
STATEMENTS

In Chapter 1, the statement assert was briefly discussed. The format
of this statement is:

assert (Boolean condition)
report “ optional message display”
severity failure;

The severity level can be note, warning, error, or failure. The
severity level failure is the highest priority; it causes the simulation to
halt. Here in this example, the assert statement is implemented to design
a memory stack.

The memory stack consists of a group of memory locations. A special
register called the stack pointer operates as an address pointer for the stack.
The contents of the stack pointer are pointed at the top of the stack. The
top of the stack does not necessarily coincide with the physical top of the
stack. The lowest address the stack pointer can assume is referred to as the
bottom of the stack (see Figure 8.15). The stack has two major operations:
push and pop. Push stores data on top of the stack, and the stack pointer
is incremented to point to the new top. Pop retrieves data from the top of
the stack, and the stack pointer is decremented to point at the new top of
the stack.

Usually the stack has two one-bit flags to indicate whether the stack
is full or empty. If the stack is full (i.e., the stack pointer is pointing at the
highest possible address of the stack), a push operation cannot be executed.
If the stack is empty (i.e., the stack pointer is pointing at the lowest possible
address of the stack), a pop operation cannot be executed. If the stack is
full and the CPU tries to execute a push operation, the full flag is set. If the
stack is empty and the CPU tries to execute a pop operation, the empty flag
is set. Listing 8.13 shows the VHDL code for stack operation.

LISTING 8.13 VHDL Code for Stack Operation

library IEEE;
use IEEE.STD_LOGIC_1164.all;

library IEEE;
use IEEE.STD_LOGIC_1164.all;
package stack_pkg is
constant N : integer := 15;

ADVANCED HDL DESCRIPTION • 423

constant M : integer := 3;
--N+1 is the number of elements in the array.
subtype Memoryword is std_logic_vector (M downto 0);

type Memory is array (N downto 0) of Memoryword;
--The above array represents a 16x4 bits memory
type stack is (push, pop, none);
--The above statement defines three members (push, pop, and
-- none) of the user-defined type stack.
end stack_pkg;

Data_in

Data_in

Data_in

Data_in

Data_in

Data_in

Data_in

Memory

Stack
Stack_pointer

1111

0000 Stack Empty

Stack Full

FIGURE 8.15 A block diagram of memory and the memory stack.

424 • HDL WITH DIGITAL DESIGN

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;
use work.stack_pkg.all;

entity stck_asrt is
generic (N : integer := 15; M : integer := 3);
 Port (action : in stack; Data_in : in std_logic_vector
 (M downto 0); clk : in std_logic);
end stck_asrt;

architecture Behavioral of stck_asrt is

begin
stk : process (action, data_in, clk)
variable stack_pointer : integer := 0;
variable Mem_comp : Memory;
begin
if (rising_edge (clk)) then

case action is
when push =>
Mem_comp (stack_pointer) := data_in;
stack_pointer := stack_pointer + 1;
--if the operation is push, the stack pointer is
-- incremented as shown above.
--
assert (stack_pointer < 5)
report “ stack is full-program halts”
severity Failure;

--The above three statements state that if the stack
-- pointer is not less than 5, the program halts
--and the message “stack is full-program halts” is
-- displayed.
“
when pop =>
stack_pointer := stack_pointer - 1;
--If pop, the stack pointer is decremented

when others => null;
end case;

ADVANCED HDL DESCRIPTION • 425

end if;
end process;
end Behavioral;

Figure 8.16 shows the simulation waveform for Listing 8.13. The figure
shows the operation push where the stack pointer is incremented every
time a data is pushed. In the figure, the data has a single value = 1011.

Simulator halts

1011

pushAction

data_in

clk

FIGURE 8.16 Simulation waveform of the stack in Listing 8.13.

EXAMPLE 8.11 D-LATCH VHDL DESCRIPTION USING BLOCK STATEMENT

D-latch has been described before using data flow, behavioral, and
structural descriptions. Here, the Block statement is implemented. The
Block statement refers to a block of concurrent statements within the ar-
chitecture. All local declared signals and variables inside the block are vis-
ible only inside the block. The Block statement has to be labeled. The block
can be guarded (accessed on a condition), and signals inside the block can
be guarded. A simplified format for the Block statement is:

label: block (guard_condition)
-- guard_condition can be ommitted
 declarations
begin
 concurrent statements
--above statement can be guarded
end block label;

Listing 8.14 shows the VHDL code for describing a four-bit D latch. The
block is guarded by the condition E = 1 where E is the enable of the latch;
the four output signals Q are guarded by following the input signal D. Be sure
that your simulator can handle the block and the block-guarded statements.

426 • HDL WITH DIGITAL DESIGN

Listing 8.14 VHDL Code for a Four-Bit D-Latch Using Block Statement

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity BLCKstatement is
port(E: in std_logic; D: in std_logic_vector (3 downto 0);
 Q: out std_logic_vector (3 downto 0));
end BLCKstatement;

architecture blck of BLCKstatement is
begin
Dlatch: block (E = ‘1’)
begin
Q(0) <= guarded D(0);
Q(1) <= guarded D(1);
Q(2) <= guarded D(2);
Q(3) <= guarded D(3);
end block;

8.4 Verilog User-Defined Primitives

Verilog has several built-in primitives such as and, or, and xor gates
that have been implemented in Chapter 4. In addition to the built-in, the
user can build his or her own primitives to describe combinational and se-
quential logic. A very simplified format for the user-defined primitive by
the name of “sample” is:

module identifier(inputs, outputs)
input……
output…..
/this is the main module where the user defined primitive
is called/

Sample S1(out, in1, in2, in3)
…..
endmodule

Primitive Sample(outp, inp1, inp2, inp3)
//This is the body of the primitive
Output outp;
Input inp1,inp2, inp3;
table

ADVANCED HDL DESCRIPTION • 427

//table is a predefined word
Valu1 valu2 valu3 : value4
……………………………
endtable
endprimitive

The body of the primitive is entered after the end of the module; the
primitive is called from within the module. All entries in the table of the
primitive can have only a single bit. The primitive is allowed to have one
output only; primitive Sample has an output outp. The primitive Sample
has three inputs inp1, inp2, and inp3. The predefined word table allows
the user to enter a table that consists of values of the inputs and the out-
put. Value4 is the value of the output giving the input as value1, value2,
value3 corresponding to inp1, inp2, and inp3. Valu1, valu2, valu3, and
valu4 can include 0, 1, or x (don’t care). Two types of primitives are dis-
cussed here: combinational and sequential. In combinational, the output in
the table depends on the inputs only; the table resembles the truth table
of combinational circuits. In sequential, the output depends on the current
state and the input; the table resembles the transition table of sequential
circuits. The following examples will clarify the implementation of user-
defined primitives.

EXAMPLE 8.12 DESCRIPTION OF A 2x1 MULTIPLEXER WITH ACTIVE LOW
ENABLE USING USER-DEFINED PRIMITIVES

A description of a 2x1 multiplexer has been written using data-flow de-
scription (see Example 2.3a and Figure 2.9), behavioral description (see
Example 3.6), and structural description (see Example 4.2). Here, the mul-
tiplexer is described using combinational user-defined primitive (UDP).
The function of the multiplexer has been shown in Table 2.4 and copied
here in Table 8.3.

TABLE 8.3 Truth Table for a 2x1 Multiplexer

Input Output
SEL Gbar Y

X H L
L L A
H L B

428 • HDL WITH DIGITAL DESIGN

The Verilog code for the description of the muliplexer using UDP is
shown in Listing 8.15. Notice that the entered values can be 0, 1, x, or ?.
The operator x is the “don’t care;” the operator ? can assume the values 0,
1, or x.

LISTING 8.15 Verilog Code 2x1 Multiplexer with Active Low Enable Using
Combinational User-Defined Primitive

module Mux2x1Prmtv(A, B, SEL, Gbar,Y);
 input A,B,SEL,Gbar;

 output Y;

multiplexer MUX1 (Y, Gbar, SEL,A,B) ;

endmodule
primitive multiplexer (mux, enable, control, dataA, dataB) ;
output mux;
input enable, control, dataA, dataB;
table
// enable control dataA dataB mux
 1 ? ? ? : 0;
 0 0 1 ? : 1;
 0 0 0 ? : 0;
 0 1 ? 1 : 1;
 0 1 ? 0 : 0;
 0 x 0 0 : 0;
 0 x 1 1 : 1;
endtable
endprimitive

The simulation waveform is the same as in Figure 2.10 but without
any delay.

EXAMPLE 8.13 DESCRIPTION OF A ONE-BIT D-LATCH WITH ACTIVE
HIGH CLEAR USING SEQUENTIAL USER-DEFINED
PRIMITIVE

Example 2.4 covered a one-bit latch; data-flow style was implemented
to describe the latch. Table 2.7 showed the transition table for the latch.
Table 8.4 shows a transition table for D-latch with active high clear. In the
table, Q is the current state, and Q+ is the next state.

ADVANCED HDL DESCRIPTION • 429

TABLE 8.4 Excitation Table of D-Latch with Active High Enable

Inputs Next State
E Clr D Q Q+

x 1 x x 0
0 0 x 0 0
0 0 x 1 1
1 0 0 x 0
1 0 1 x 1

Listing 8.16 shows the Verilog code for the latch using sequential user-
defined primitive D_latch. The primitive D_latch shows the current state
O1 and the next state O1+. Notice that O1 is declared as an output and a
register because the primitive needs to know the stored value of the current
state.

LISTING 8.16 Verilog Code for a D-Latch with Active High Clear Using
Sequential User-Defined Primitive

module latchprimitive(E, clr,D, Q, Qbar);
 input E, clr,D;

 output Q,Qbar;

D_latch D1 (Q, E,clr, D) ;
assign Qbar = ~ Q;

endmodule

primitive D_latch(O1, inp1, inp2, inp3) ;
output O1;
reg O1 ;
input inp1,inp2,inp3;
table
// inp1 inp2 inp3 O1 O1+
1 0 1 : ? : 1 ;
1 0 0 : ? : 0 ;
0 0 ? : ? : - ; // no change
? 1 ? : ? : 0; //if clear signal is=1, Q=0
endtable
endprimitive

430 • HDL WITH DIGITAL DESIGN

Figure 8.17 shows the simulation waveform of the latch.

Clr

Q

Qbar

Don’t care

Don’t care

D

E

FIGURE 8.17 Simulation waveform of Listing 8.16.

8.5 Cache Memory

Cache memory is a very fast random-access memory (RAM). A typical
storage media in a microcomputer consists of a hard disk (the longest access
time and the largest size, usually > 100 gigabytes), the main memory (the
intermediate access time between the hard disk and the cache with an aver-
age size of 1/100 of the hard-disk size), and the cache memory (the short-
est access time and the smallest size, usually 1/100 of the size of the main
memory). The hard desk is usually the least expensive in terms of the cost
per storage byte, followed by the main memory and followed by the cache,
so the cache is the most expensive in terms of cost per byte of storage.
The cache can be built inside the CPU, usually called L1 cache (level 1),
or outside the cache, usually called L2 cache. A computer system may have
more than one level of cache. Because the cache is the fastest access mem-
ory in the computer, data written into or read from the cache will take a
short time, and accordingly, the computer system would be faster than the
same system if it did not have cache memory. However, because the size of
the cache is the smallest among the storage media, cache memories cannot
store all the data available in the memory. The communication protocol
between the CPU, main memory, and cache memory assumes that the data
requested by the CPU is located in the cache, and the CPU communicates
directly with the cache first; if the requested data is not found in the cache,
this data has to be moved from the main memory to the cache. Moving

ADVANCED HDL DESCRIPTION • 431

the data from the main memory to the cache takes a relatively long time
because the main memory is relatively slow compared to the cache. So, to
speed up the microcomputer, the requested data by the CPU should be
made available in the cache. If the requested data is found in the cache, it
is called a hit; otherwise, it is a miss. A parameter called the hit ratio calcu-
lates the ratio of the number of hits divided by the total number of requests
or references. Obviously, to improve the performance of the computer, the
hit ratio has to be as high as possible. For the CPU to identify the data in
the cache to determine whether a hit or a miss has occurred, a mapping
between the data in the main memory and the cache should be established.
This mapping is to assure that the data that have moved from the main
to the cache can be identified. Several mapping schemes such associative,
random, direct, and set-associative mapping are implemented in the cache
system. Direct mapping is also known as one-way set-associative mapping.
Here, direct and set-associative mapping are discussed; for more informa-
tion on the cache system, refer to Hayes, 1998 [1] and Patterson, 2011 [2].
To illustrate the mapping schemes, consider a main memory of 16x4 bits
and a four-word cache. The width of the cache will be determined accord-
ing to the mapping scheme. Let’s assume that the data in the main memory
are as shown in Table 8.5.

TABLE 8.5 Contents of Main Memory in Decimal

Locationd Datad Locationd Datad

0 3 8 2
1 4 9 1
2 9 10 14
3 10 11 8
4 7 12 6
5 0 13 5
6 13 14 12
7 15 15 11

8.5.1 Direct Mapping
Let’s start with an empty cache and assume that the first four words in

the main memory are to be moved into the cache. The four words will be
moved one word at a time; other applications may move the four words as
a block, but here, only a single word movement is considered. To access
any word in the main memory, a four-bit address is needed; for the first

432 • HDL WITH DIGITAL DESIGN

word, for example, this address is 00002. To move the data of this location
to the cache using direct mapping, the address is partitioned into two fields,
tag and cache address, which is called an index. Because the cache is four
words, the index is two bits. Because the index is two bits, the tag is what-
ever is left from the four-bit memory address, which will be two bits; the
memory address is divided into the index of two bits (the least significant
two bits) and the tag of two bits (the most significant two bits). For the first
memory word, the index is 00 and the tag is 00. For the memory address
0001, the index is 01 and the tag is 00. The data of value 3 will be stored in
the cache address of 00; for the same data word, the tag (00) is inserted at
the left of the data. In binary, the data is stored in location 00 of the cache,
000011, a total of six bits. The contents of the cache memory after filling
the cache with the first four main memory words are shown in Table 8.6.
The information in the index and the tag can retrace the data to its memory
location. For example, the index 11 (cache memory location 11) and the
corresponding tag 00 are pointing at main memory location (0011), and the
data in this location is 1010.

TABLE 8.6 Contents of Cache Memory in Binary

Location (index)2 Data2 Location (index)2 Data2

00 000011 10 001001
01 000100 11 001010

Figure 8.18a illustrates the direct-mapping scheme. Listing 8.17 illustrates
the direct-mapping Verilog description. The main memory is represented
by an array M:

reg [3:0] M [0:15];

The array M consists of sixteen four-bit words (elements). The data in the
main memory are entered for each element of the array; for example, M[12]
= 4’d6 means that location 12d of the main memory is assigned the data 6.
The cache memory is represented by the array cache:

reg [N:0] cache [0:3];

The array cache consists of four words, and each word is four bits.

The CPU requests data from the cache by issuing a memory address
where the data is stored. The Listing allows the user to select a one-way
or two-way by entering 0 or 1, respectively, for the case-control expression
cachemapping. The statement

ADVANCED HDL DESCRIPTION • 433

cache[cpuaddress1 [1:0]] =
{cpuaddress1[3:2],M[cpuaddress1]};

concatenates ({) bits 2-3 of the issued CPU address with the main-memory
data in the address issued by the CPU. For example, if the CPU issues a
main-memory address of 0100 (4), then location 00 (index) of the cache will
have 01 (tag) concatenated with M (4), which is 7, so location 00 of the cache
will have 010111.

8.5.2 Two-Way Set-Associative Mapping
Figure 8.18 illustrates one- and two-way associative mapping. Figure

8.18a illustrates the filling (writing) of the first three main-memory loca-
tions (from 0 to 2) in the cache. For this one-way mapping, if another data
other than the first four data that have been stored needed to be stored
in the cache, one of the cache data has to be deleted. For example, if the
data of the main memory location 11112 needed to be stored (written) in
the cache, the cache data in index 11 has to be deleted because the new
tag is 11 while the old tag is 00. In two-way set-associative mapping, each
word of the cache is double the width of that of one-way mapping; this al-
lows for storing two memory data with the same index but with different
tags in a single word of the cache. Figure 8.18b illustrates two-way map-
ping. The two main memory words in locations 0010 and 1110 cannot be
stored in a single word for one-way mapping because they have the same
index (10) but two different tags (00 and 11). However, in two-way map-
ping, these two data can be stored in location (index) 10 of the cache. The
content of this location is 001001111100, which is the first tag (00), the first
data (1001), the second tag (11), and the second data (1100). The following
statement from Listing 8.17 illustrates the filling of a selected cache loca-
tion with two-way set-associative mapping:

cache2[cpuaddress1 [1:0]] = {({cpuaddress1[3:2],
 M[cpuaddress1]}),
 ({cpuaddress2[3:2],M[cpuaddress2]})};

where cpuaddress1[1:0] is the index, cpuaddress1[3:2]is the first
tag,

M[cpuaddress1] is the first data, cpuaddress2[3:2]is the second tag,
and M[cpuaddress2]is the second data. Concatenation is used to concat-
enate all twelve bits into a single cache word.

434 • HDL WITH DIGITAL DESIGN

data

0000

0001

0010

1110

1111

1100

1011

0011

0100

1001

bit0

bit0

bit5

bit3

i
n
d
e
x

t
a
g

bit0

bit11

data

data

00

01

10

11

000011

000100

001001 001001 111100

index tag

i
n
d
e
x

t
a
g

data data

00

01

10

11

index tag tag

(a) (b)
FIGURE 8.18 Mapping schemes. a) One-way set-associative mapping. b) Two-way set-associative mapping.

LISTING 8.17 Verilog Code for One- and Two-Way Set-Associative Mapping

//single word mapping, one and two-way
module casheMem(start, cachemapping, cpuaddress1,
 cpuaddress2);

parameter N= 5;
parameter N1=11;
input start;
input cachemapping;
input [3:0] cpuaddress1, cpuaddress2;

reg [3:0] M [0:15];
reg [N:0] cache [0:3];
reg [N1:0] cache2 [0:3];

ADVANCED HDL DESCRIPTION • 435

always @(start, cachemapping,cpuaddress1, cpuaddress2)
begin
M[0] = 4’d3; M[1] = 4’d4; M[2] = 4’d9;
M[3] = 4’d10; M[4] = 4’d7; M[5] = 4’d0;
M[6] = 4’d13; M[7] = 4’d15; M[8] = 4’d2;

M[9] = 4’d1; M[10] = 4’d14; M[11] = 4’d8;
M[12] = 4’d6; M[13] = 4’d5; M[14] = 4’d12;
M[15] = 4’d11;

 case (cachemapping)

 1’b0: begin //one-way set-associative (direct mapping)//
cache[cpuaddress1 [1:0]] =
 {cpuaddress1[3:2],M[cpuaddress1]};
 end
1’b1 : begin //two-way associative//
if (cpuaddress1 [1:0] == cpuaddress2 [1:0])
cache2[cpuaddress1 [1:0]] = {({cpuaddress1[3:2],
 M[cpuaddress1]}),
 ({cpuaddress2[3:2],M[cpuaddress2]})};

begin

cache2[cpuaddress1 [1:0]]
={cpuaddress1[3:2],M[cpuaddress1]};
cache2[cpuaddress2 [1:0]]
={cpuaddress2[3:2],M[cpuaddress2]};
end
end
endcase;

end
endmodule

Listing 8.18 shows a Verilog code for determining whether a hit or a
miss has occurred after the CPU issued a request of data. The request is
done by issuing a main-memory address where the required data is located.
This address is presented to the cache to see if the data is in its contents. If
it is in the cache, a hit has occurred. Otherwise, a miss has occurred. The
cache is filled using two-way set-associative mapping. The statement

436 • HDL WITH DIGITAL DESIGN

if ((cpuaddress [3:2] == data [11:10])
| (cpuaddress [3:2] == data [5:4]))

checks to see if a hit or a miss has occurred for a given index. If the tag
cpuaddress[3:2] matches either one of the two tags stored in the cache
at the given index, a hit has occurred. The two tags are data [11:10] and
data [5:4].

LISTING 8.18 Verilog Code for Determining a Hit or Miss

//Determining Hit or Miss without replacement
module hitmiss(cpuaddress, hitORmiss);
parameter N1=11;
input [3:0] cpuaddress;
output [48:1] hitORmiss ;
reg [48:1] hitORmiss;
reg [N1:0] cache [0:3];
reg [3:0] M [0:15];
reg [N1:0] data;

always @(cpuaddress)
begin
/fill two-way the cache in order starting from
memory location 0; s0 locations 0000 and 0100
will occupy the first cache location/

M[0] = 4’d3; M[1] = 4’d4; M[2] = 4’d9;
M[3] = 4’d10; M[4] = 4’d7; M[5] = 4’d0;
M[6] = 4’d13; M[7] = 4’d15; M[8] = 4’d2;

M[9] = 4’d1; M[10] = 4’d14; M[11] = 4’d8;
M[12] = 4’d6; M[13] = 4’d5; M[14] = 4’d12;
M[15] = 4’d11;

cache[0] = 12’b000011010111; cache[1] =12’b000100010000;
cache[2] = 12’b001001011101; cache[3] = 12’b001010011111;
hitORmiss = “miss”;
data = cache[cpuaddress[1:0]];

if ((cpuaddress [3:2] == data [11:10])
| (cpuaddress [3:2] == data [5:4]))
hitORmiss = “hit “;

ADVANCED HDL DESCRIPTION • 437

end
endmodule

When a miss occurs in two-way set-associative mapping, new data from
the main memory is moved into the cache according to its index and tag.
However, if the location in the cache where the new data should be stored
is occupied, then one of the cache memory words has to be replaced by
the new data. If the cache allows a selection of where to store the new data
(such as in two-way mapping, where there are two locations to choose from
at each index), then a replacement strategy should be in place. Replace-
ment of old data with new data is not an easy task. If old data is replaced
and the computer requests this data again, the data has to be moved again
from the main memory to the cache, and this slows the computer. If the
replacement strategy is not efficient, the computer with a cache would be
slower than the same computer without cache. In Listing 8.18, a simple
replacement algorithm is implemented. The replacement is based on the
first-in first-out (FIFO) strategy. The new data will replace the oldest data.
Here, a bit is added as the least significant bit of the cache word. This bit
(if 0) indicates that the least significant four-bit data in the first set of the
cache word is the older and should be replaced if needed. If the added bit is
1, it indicates that the most significant four-bit data in the second set of the
cache word is older and should be replaced if needed. Figure 8.19 shows
the output of Listing 8.19.

LISTING 8.19 Verilog Code for Two-Way Set-Associative Cache System with
Replacement

module FIFOreplace(cpuaddress, hitORmiss);
parameter N1=11;
input [3:0] cpuaddress;
output [48:1] hitORmiss ;
reg [48:1] hitORmiss;
reg [N1+1:0] cache [0:3];
reg [3:0] M [0:15];
reg [N1+2:0] data;
initial
begin
/fill the cache in two-way set associative mapping
in order starting from memory
location 0; so locations 0000 and 0100
will occupy the first cache word/

438 • HDL WITH DIGITAL DESIGN

M[0] = 4’d3; M[1] = 4’d4; M[2] = 4’d9;
M[3] = 4’d10; M[4] = 4’d7; M[5] = 4’d0;
M[6] = 4’d13; M[7] = 4’d15; M[8] = 4’d2;

M[9] = 4’d1; M[10] = 4’d14; M[11] = 4’d8;
M[12] = 4’d6; M[13] = 4’d5; M[14] = 4’d12;
M[15] = 4’d11;

/bit0 (the least significant bit) of the word in the
cache indicates the age of the data in the first and the
second set. If bit0=0 then the least significant
data (set) is the older and should be replaced; otherwise
if bit0 =1; the most significant data(set) is the older
and should be replaced. /

cache[0] = 13’b0000110101110; cache[1] =13’b0001000100000;
cache[2] = 13’b0010010111010; cache[3] =13’b0010100111110;
end

always @(cpuaddress)
begin
hitORmiss = “miss”;
data = cache[cpuaddress[1:0]];

if ((cpuaddress [3:2] == data [12:11])
| (cpuaddress [3:2] == data [6:5]))
hitORmiss = “hit “;
 else
 begin
 if (data[0] == 1’b0)
 begin
 data[0] = 1’b1;
 data[6:5] = cpuaddress [3:2];
data[4:1] = M[cpuaddress];
cache[cpuaddress[1:0]] = data;
end
else
data[0] = 1’b0;
data[12:11] = cpuaddress [3:2];
data[10:7] = M[cpuaddress];
cache[cpuaddress[1:0]] = data;
end

ADVANCED HDL DESCRIPTION • 439

end
endmodule

Initial cache contents

cpuaddress[1:0] or Index

New cache contents

cpuaddress[1:0] or Index

New cache contents

cpuaddress[1:0] or Index

New cache contents

cpuaddress[1:0] or Index

New cache contents

01AE 0220 04ba

0000

01AE

1111

1111

0220 04ba

01AE

053E

0220 04ba 1DF7

1DF7

053E

04ba

04ba

01AE

01AE 0576

hitORmiss = miss

hitORmiss = hit

hitORmiss = miss

hitORmiss = hit

0011

0220

0220

FIGURE 8.19 Replacement algorithm based on the FIFO strategy.

CASE STUDY 8.1 SIMULATION OF ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) are simulated networks that mimic
a simplified biological nervous system. To understand how ANNs operate,
let us review the operation of an extremely simplified nervous system. The
main cells in the nervous system are neurons. A neuron is composed of
three major parts: a soma (or body), an axon, and a dendrite (see Figure
8.20). The neuron receives signals from other neurons through its den-
drites, so dendrites are the inputs.

The neuron sends signals to other neurons through its axons, so axons
are the outputs of the neuron. The connection between the axons of one

440 • HDL WITH DIGITAL DESIGN

neuron to the dendrites or soma of another neuron is called a synapse. The
signals that a neuron sends to its neighbors can activate or excite the receiv-
ing neurons, or they can deactivate or inhibit them. The signal that the neu-
ron sends can be viewed as a spike. When the neuron sends this signal, the
neuron is said to be firing. The neuron sends this signal if it receives enough
excitation signals from other neurons. A threshold electric level determines
whether or not the excitation signals are high enough for firing. The neuron
fires only when the weighted sum of these excitation signals is higher than
the threshold. Each neuron asserts different weights on its neighbors.

In the artificial neural network, a node simulates the neuron. Each
node has inputs and outputs, and the node is connected to a group of oth-
er nodes. The assertion of each node on other nodes is measured by the
weight of the connection. The networks are implemented in many applica-
tions such as pattern recognition and complex-function generation. In this
case study, the network is implemented to generate a simple XOR function.
Figure 8.21 shows a simple artificial neural network. The network consists
of three layers: input, hidden, and output.

The input layer consists of two nodes, node1 and node2. The hidden
layer consists of one node, node3, and the output layer consists of one node,

Dendrites
(input)

Soma (body)
and cell
nucleus

Axons
(output)

FIGURE 8.20 A biological neuron.

4

3
O3

O4

Theta4

Theta3 W32

W42

W43

W31

W41

1
O1

2
O2

I2I1
FIGURE 8.21 A simple XOR artificial neural network.

ADVANCED HDL DESCRIPTION • 441

node4. Wij represents the weight between node j and node i. Because the
network, shown in Figure 8.21, functions as a XOR gate, the inputs and the
output of the network should satisfy Table 8.7.

TABLE 8.7 Values of the Inputs and the Desired Outputs for an XOR Artificial Neural Network

I1 I2 Desired Output (O4)
0 0 0
1 0 1
0 1 1
1 1 0

By adjusting the weights, the network can be programmed to behave as
a XOR gate. Weight adjustment is called training the network. Network
training is done in the following steps:

Step 1: Initialize the weights and assign random small values to the
weights.

Step 2: Select an input with the desired output from Table 8.7.

Step 3: Calculate the output of each node including the output node.

Step 4: Calculate the error of node 4.

Step 5: Select another input and repeat Steps 3–4 and average the four �4
errors and the four 3 obtained from the four input sets.

Step 6: Update the weights with the new errors calculated in Step 5.

Step 7: Repeat Steps 2–6 until the error �4 is lower than the user-defined
threshold.

In Step 3, for the input layer (nodes 1 and 2), the output is equal to the
input (O1 = I1 and O2 = I2). For other nodes, the output is calculated as:

 Oi = f (weighted sum) (8.2)

where the weighted sum is the sum of each output of all nodes connected to
the node, i, multiplied by the weight. For example, for node 3, the weighted
sum is determined as:

weighted sum of node 3 = O1W31 + O2W32 + Theta3 × 1

Theta is called the bias or the offset. The weight of all biases theta is equal
to 1. The function f (see Equation 8.2) is called the firing function. In our

442 • HDL WITH DIGITAL DESIGN

example, f is assumed to be a straight line with saturation values in both pos-
itive and negative directions (see Figure 8.22). Many other firing functions
are implemented in training of artificial neural networks. Some examples of
these functions are sigmoid, linear, and relay (zero level or saturation level).
More details on artificial neural networks can be found in Haykin, 1999 [3].

0.5

1.0

wt
–3 –2 –1 1 2 3

f(wt)

FIGURE 8.22 The firing function.

For Step 4, the outputs of the network (node 4) calculated in Step 2
most likely are not equal to the desired output (see Table 8.3). This error,
which resulted from the weights selected in Step 1, is calculated as:

 Error of node 4 =�4 = (d – O4) O4 (1 – O4) (8.3)

Because node 3 is not an output node, its error is calculated with a dif-
ferent formula than Equation 8.3 [3]:

 �3 = O3 (1 – O3) (�4 W43) (8.4)

In Step 5, select another input and repeat Steps 3–4. Average the four
�4 errors and the four �3 obtained from the four input sets. You can take the
root mean square of the errors instead of the simple average.

In Step 6, use the following equations to update the weights with the
new errors calculated in Step 5:

 W4i (new) = W4i (old) + 0.54Oi i = 1, 3 (8.5)

 W3i (new) = W2i (old) + 0.53Oi i = 1, 2 (8.6)

 Thetai (new) = Thetai (old) + 0.5 �i (8.7)

Step 7 repeats Steps 2–6 until the error �4 is lower than the user-
defined threshold.

ADVANCED HDL DESCRIPTION • 443

Listing 8.20 shows the HDL code for the artificial neural network of
Figure 8.21. For simplicity, the network is trained only for input I1 = 0 and
I2 = 1. The desired output for this set of inputs, as shown in Table 8.7, is 1.
The training is done with the help of a finite-state machine. A flow chart
of this machine is shown in Figure 8.23. As shown, the machine has four
states: state0, state1, state2, and state3. State0 corresponds to Step 3, state1
corresponds to Step 4, state2 corresponds to Step 6, and state3 corresponds
to Step 7.

LISTING 8.20 HDL Description of a Simple Artificial Neural Network

library IEEE;
use IEEE.STD_LOGIC_1164.all;
-- Write a package to include user-selected type
package types is

Calculate
outputs

Equation 2
State0

State1Calculate errors
Equations 3-4

Error<
threshold

Record the
number of
iterations

Output weights
finish

Yes

No

State3

State2

Update weights
Equations 5-7

FIGURE 8.23 Flow chart of the state machine.

444 • HDL WITH DIGITAL DESIGN

type state_machine is (state0, state1, state2, state3);
end;

-- Write the code for the state machine
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use ieee.numeric_std.all;
use work.types.all;

entity neural is

 port (clk : in std_logic; I1, I2, Target4,
 threshld : in real;
 W31_O, W32_O, W41_O, W42_O, W43_O, Theta3_O,
 Theta4_O : out real;
 output4 : out real; count_O : out natural);

--The weights could have been entered as an array

end neural;

architecture Behavioral of neural is
-- write the firing function
function firing (wt : in real) return real is
variable wt_rl : real;

begin
--The firing function here is a straight line with
--saturation levels at both the positive and negative ends
if (wt <= -2.2) then
wt_rl := 0.06;
elsif (wt > 2.5) then
wt_rl := 1.0;
else
wt_rl := 0.20  wt + 0.5;
end if;
return wt_rl;
end firing;

begin

ADVANCED HDL DESCRIPTION • 445

--Write the code for the state machine
train : process (I1, I2, Target4, threshld, clk)
variable O1, O2, O3, O4, wtsum, delta3, delta4 : real;
variable eita : real := 0.5;
variable pres_st : state_machine := state0;

--Assign initial values for the weights and theta
variable W31 : real := -1.5;
variable W32 : real := -1.5;
variable W41 : real := -1.0;
variable W42 : real := -1.0;
variable W43 : real := -2.0;
variable Theta3 : real := 1.0;
variable Theta4 : real := 1.0;
variable count : natural := 0;
begin

if (clk = ‘1’ and clk’event) then

case pres_st is
 when state0 =>

--Calculate outputs from Equation 2
 O1 := I1;
 O2 := I2;

--Calculate the weighted sum
 wtsum := W31  O1 + W32O2 + Theta3;
--Apply the firing function
 O3 := firing (wtsum);

wtsum := W41  O1 + W42  O2 + W43  O3 + Theta4;

O4 := firing (wtsum);

pres_st := state1;

when state1 =>
-- Calculate errors
 delta4 := (Target4 - O4) O4  (1.0 - O4);

 delta3 := O3  (1.0 - O3)  (delta4  W43);

446 • HDL WITH DIGITAL DESIGN

if (delta4 < threshld) then
--The threshold is a user-selected value
 pres_st := state3;
 else
 pres_st := state2;
--Record the number of iteration
 count := count + 1;
 count_O <= count;
 end if;

when state2 =>
--Update weights
 W41 := W41 + eita  delta4  O1;
 W42 := W42 + eita  delta4  O2;
 W43 := W43 + eita  delta4  O3;
 Theta4 := Theta4 + eita  O4;
 W31 := W31 + eita  delta3  O1;
 W32 := W32 + eita  delta3  O2;
 Theta3 := Theta3 + eita  O3;

 pres_st := state0;
when state3 =>
--Finish; report results
 W41_O <= W41;
 W42_O <= W42;
 W43_O <= W43;
 W32_O <= W32;
 W31_O <= W31;
 Theta3_O <= Theta3;
 Theta4_O <= Theta4;
 output4 <= O4;
end case;
end if;
end process train;

end Behavioral;

8.6 Summary

In this chapter, some advanced descriptions were covered. File pro-
cessing in both VHDL and Verilog were discussed. To access any file, the
file has to be opened before it is accessed. VHDL has several file-process-

ADVANCED HDL DESCRIPTION • 447

ing procedures such as fi le_open to open files, readline to read a line
from the file, writeline to write a line into the file, and fi le_close to
close the file.

Verilog has file-processing functions such as $fopen to open a file,
$fdisplay to write data into the file, and $fmonitor to monitor an object
in the file. The VHDL record type was covered; record is a collection of
different types. Also, Verilog user-defined primitives were covered. Cache
memories were briefly discussed and described using Verilog arrays. Fi-
nally, artificial neural networks were discussed, as was the complete VHDL
code for their training.

8.7 Exercises

1. Write the following data in the VHDL text file exercise_ch8. In the
file, keep the format and type of the data as it is shown below:
THIS IS THE FILE OF THE EXERCISE OF CHAPTER 8

Training data is 5 3.1 -1.5
Nodes A, B, C, D
Test data 23 12 -5
END

2. Write the VHDL code to store the following words in a file called
greatest.txt. The words in the file should appear as follows:
ADD
STORE
COMPARE
ZEROS
SUB
STOP

Write the code (in the same module or a new one) to find the word in the
above file that has the greatest ASCII value. Also, find its order (e.g., the
order of the word STORE is 1).

3. Rewrite Listing 8.9 using a while-loop instead of a for-loop. Verify
your code by simulation.

4. Modify the assembler code of Listing 8.9 to accept labels instead of ex-
plicit addresses. Verify your assembler with the program shown below.

448 • HDL WITH DIGITAL DESIGN

Notice that for the statement ADD Data1, Data1 is an address, and the
value of this address is 208. Your code should find this address; do not
manually substitute 208 for the address.
Label Code Address
 ORG 200
 CLA 0
 ADD Data1
 XOR Data2
 MULT Data3
 XOR Data2
 NAND Data4
 PRITY 0
 HALT 0
Data1: 7
Data2: 5
Data3: 4
Data4: 2
 END

5. Build a package with procedures to find the integer code given the mne-
monic code.

6. Use Verilog file processing to compute and display the values of Y when
X changes incrementally from 0 to 9. The relationship between X and Y
is:

Y = X2 – 2X + 1

7. In Listing 8.12, it is desired to output the results to a file. Adjust your
code, especially the user-defined types, to conform to the acceptable
types that a VHDL file can handle. Rewrite the program and output
your results to a text file named Wthr_forcst. Each entry of the file
should be preceded by a short explanation, such as “The Day is” or “The
Temperature is.”

8. For Listing 8.12, the following segment of the code has been modified
as shown below. The simulation output of the code after modification
is not the same as in Figure 8.14. Can you spot the modification and
explain why we are not getting the same output as in Listing 8.12?

ADVANCED HDL DESCRIPTION • 449

Listing 8.12 Modified

architecture behavoir_record of WEATHER_FRCST is
begin
process (Day_in)
variable temp : forecast;

begin

case Day_in is

when Monday =>
temp.cond := sunny;
if (unit_in = “CEN”) then
temp.tempr := 35.6;
elsif (unit_in = “FEH”) then
temp.tempr := 1.2  35.6 + 32.0;
else
report (“invalid units”);
end if;

9. In Listing 8.13, the code for description of a stack operation has been
written. An assertion was made on the condition when the stack is full.
Do the following:
(a) Adjust the segment of the case for when to push to allow for mul-

tiple values of the data_in, so your simulation will show different
values with the clock instead of just using one value as was done in
Figure 8.16.

(b) Use the assert statement with report to ensure that the stack can-
not be popped up if it is empty. Simulate your code and verify.

10. Use Verilog user-defined primitives to describe a D flip-flop with clear
and preset inputs. The preset if high Q+ goes high.

11. Write a Verilog description to find the hit ratio for a cache system.
The hit ratio is the ratio between the number of hits divided by the total
number of times the cache was referenced.

12. In a FIFO scheme for cache-memory replacement algorithm (Listing
8.19), an additional bit was added to the cache-memory word to indicate
the age of the two data stored in the index. Rewrite the code without

450 • HDL WITH DIGITAL DESIGN

using this additional bit or any other extra bits. Your replacement algo-
rithm should still be based on FIFO.

13. Simulate the code shown in Listing 8.20 using a threshold of 10–8. What
are the final values of the weights? How many cycles does it take the
program to reach these final values?

14. In Case Study 8.1, a network was trained for the inputs I1 = 0 and I2 =
1. Here, we want to train the network for all possible inputs. This can be
done in the following steps:
Step 1: Initialize the weights (as was done in the case study).

Step 2: Calculate the actual outputs for each input using the same set
of weights.

Step 3: Calculate the errors separately for each of the four actual out-
puts; each input set has its desired output. For example, the in-
put set I1 = 1, I2 = 1 has a desired output of 0.

Step 4: Take the average of the four errors and consider this average the
ERROR.

Step 5: Update the weights using the ERROR as was done in the case
study.

Step 6: Repeat Steps 2–5 until the ERROR is lower than the threshold.

8.8 References

Hayes, J. P., Computer Architecture and Organization, 3rd ed. McGraw Hill,
1998.

Patterson, A., and Hennessy, J. Computer Organization and Design, 4th ed.
Morgan Kaufmann, 2011

Haykin, S., Neural Networks, 2nd ed. Prentice Hall, 1999.

C H A P T E R

MIXED-LANGUAGE DESCRIPTION

9
Chapter Objectives

 Understand the concept of mixed-language description
 Learn the advantages of mixing VHDL and Verilog modules
 Learn how to invoke a Verilog module from a VHDL module
 Learn how to invoke a VHDL module from a Verilog module
 Learn the current limitations of mixed-language description

9.1 Highlights of Mixed-Language Description

Mixed-Language Description is a powerful tool in writing HDL code.
The mixing here is referring to an HDL code with VHDL and Veilog ex-
tracts in the same module. Highlights of the mixed-language description
can be summarized in the following facts.

Facts
 To write HDL code in mixed language, the simulator used with the

HDL package should be able to handle a mixed-language environment.

452 • HDL WITH DIGITAL DESIGN

 In the mixed-language environment, both VHDL and Verilog module
files are made visible to the simulator.

 In the mixed-language environmen t, both VHDL and Verilog libraries
are made visible to the simulator.

 At the present time, the mixed-language environment has some limita-
tions, but the development of simulators that can handle mixed-lan-
guage environments with minimal constraints is underway. One of these
major constraints is that a VHDL module can only invoke the entire
Verilog module, and a Verilog module can only invoke a VHDL entity.
For example, we cannot invoke a VHDL procedure from a Verilog mod-
ule. Check your simulator to see if it has recent updates that may not
have such restrictions.

 Mixed-language description can combine the advantages of both VHDL
and Verilog in one module. For example, VHDL has more extensive file
operations than Verilog including write and read. By writing mixed
language, the VHDL file operations can be incorporated in Verilog
modules.

9.2 How to Invoke One Language From the Other

As mentioned, when writing VHDL code you can invoke (import) a
Verilog module; if you are writing Verilog code, you can invoke (import)
a VHDL entity. The process is similar in concept to invoking procedures,
functions, tasks, and packages. For example, by instantiating a VHDL pack-
age in a Verilog module, the contents of this package are made visible to
the module (see Section 9.2.1). Similarly, by invoking a Verilog module in a
VHDL module, all information in the Verilog module is made visible to the
VHDL module (see Section 9.2.2).

9.2.1 How to Invoke a VHDL Entity From a Verilog Module
In Verilog, invoke a VHDL entity by entering its name (identifier) and

its ports in the Verilog module. The parameters of the module should match
the type and port directions of the entity. VHDL ports that can be mapped
to Verilog modules are: in, out, and inout; buffer, in some simulators, is
not allowed. Only the entire VHDL entity can be made visible to the Ver-
ilog module. Listing 9.1 shows an example of how to invoke a VHDL entity
from a Verilog module.

MIXED-LANGUAGE DESCRIPTION • 453

LISTING 9.1 Invoking a VHDL Entity From a Verilog Module

//This is the Verilog module
module mixed (a, b, c, d);
input a, b;
output c, d;
...........
VHD_enty V1 (a, b, c, d);
/The above module VHD_enty is the VHDL entity to be
invoked in this module/
...........
endmodule
--This is the VHDL entity
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity VHD_enty is
 port (x, y : in std_logic; O1, O2 : out std_logic);
end VHD_enty;

architecture VHD_enty of VHD_enty is
begin
...........

end VHD_enty;

Consider the following statement in Listing 9.1:

VHD_enty V1 (a,b,c,d)

The simulator looks first in the Verilog module to see if there are any
Verilog modules by the name of VHD_enty. If it could not find one, the
simulator looks in the VHDL entities. When the simulator finds an entity
with the name VHD_enty, it binds this entity to the Verilog module. In List-
ing 9.1, input a is passed to input port x; input b is passed to input y. The
VHDL entity calculates the outputs O1 and O2; these two outputs are passed
to the Verilog outputs c and d, respectively. Invoking a VHDL module is
very similar to invoking a function or a task.

9.2.2 How to Invoke a Verilog Module From a VHDL Module
In the VHDL module, declare a component with the same name as the

Verilog module to be invoked (see Chapter 4); the name and port modes

454 • HDL WITH DIGITAL DESIGN

of the component should be identical to the name and input/output modes
of the Verilog module. Remember that Verilog is case sensitive, so be sure
to match the case. Listing 9.2 shows an example of how to invoke a Verilog
module from a VHDL module.

LISTING 9.2 Invoking a Verilog Module From a VHDL Module

-- This is the VHDL Project

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Ver_VHD is
 port (a, b : in std_logic; c : out std_logic);
end Ver_VHD;

architecture Ver_VHD of Ver_VHD is
component V_modl
 port (x, y : in std_logic; z : out std_logic);

-- The name of the Component V_modl should be
-- identical to the name of the
-- Verilog module; also, the ports should be
-- identical in name and mode
-- with the inputs and outputs of the Verilog module

end component;

.......
end Ver_VHD;
//This is the Verilog module
module V_modl (x, y, z);

 input x, y;
 output z;

endmodule

Referring to Listing 9.2, the component statement in the VHDL module

component V_modl
port (x, y : in std_logic; z : out std_logic);
end component;

MIXED-LANGUAGE DESCRIPTION • 455

declares a component by the name of V_modl with two input ports, x and
y, and an output port z. The Verilog module V_modl has the same name
(including the case) as the component and identical inputs and outputs. Ac-
cordingly, the Verilog module V_modl is bound to the VHDL component
V_modl. If the Verilog module describes, for example, a two-input XOR
gate, then in the VHDL module, component V_modl is a two-input XOR
gate. In the following sections, complete examples of mixed-language de-
scriptions are covered.

9.3 Mixed-Language Description Examples

This section presents mixed-language examples. Section 9.3.1 covers
examples of invoking VHDL entities from Verilog modules, and Section
9.3.2 covers examples of invoking Verilog modules from VHDL modules.

9.3.1 Invoking a VHDL Entity From a Verilog Module
As previously mentioned, a VHDL entity is invoked in a Verilog mod-

ule by instantiating the Verilog module with a name that is identical to the
entity’s name. No other construct should have the same name as the entity.
A discussion of complete examples follows.

EXAMPLE 9.1 MIXED-LANGUAGE DESCRIPTION OF A FULL ADDER

Here, a full adder is constructed from two half adders, as was done in
Chapter 4. The logic diagram shown in Figure 4.6 is copied here into Fig-
ure 9.1 for convenience. The code of the half adder is written in VHDL. A
Verilog module is written to describe a full adder using the VHDL code of
the half adder. Listing 9.3 shows a mixed-language code for the full adder.

carry

sum
y

cin

Half adder

Half adder

x

FIGURE 9.1 Full adder as two half adders.

456 • HDL WITH DIGITAL DESIGN

LISTING 9.3 Mixed-Language Description of a Full Adder

--This is the Verilog module
module Full_Adder1 (x, y, cin, sum, carry);
 input x, y, cin;
 output sum, carry;
 wire c0, c1, s0;

HA H1 (y, cin, s0, c0);
HA H2 (x, s0, sum, c1);

// Description of HA is written in VHDL in the entity HA
 or (carry, c0, c1);
endmodule

library IEEE;
use ieee.std_logic_1164.all;
entity HA is

--For correct binding between this VHDL code and the above
--Verilog code, the entity has to be named HA.
 port (a, b : in std_logic; s, c : out std_logic);
end HA;
architecture HA_Dtflw of HA is
begin
 s <= a xor b;
 c <= a and b;
end HA_Dtflw;

Referring to Listing 9.3, the Verilog statement

HA H1 (y, cin, s0, c0);

invokes a module by the name of HA. Because there is no Verilog module
by this name, the simulator looks at the VHDL modules attached to the
Verilog modules. The simulator finds an entity by the name of HA; ac-
cordingly, this entity and its bound architecture(s) are made visible to the
Verilog module. The architecture here is a data-flow description of a half
adder. The inputs y and cin are passed to the input ports of HA, a and
b. The VHDL entity calculates the outputs s and c as:

s <= a xor b; c <= a and b;

The outputs of the entity s and c are passed to the outputs of the module
HA, s0 and c0.

MIXED-LANGUAGE DESCRIPTION • 457

EXAMPLE 9.2 MIXED-LANGUAGE DESCRIPTION OF A NINE-BIT ADDER

In this example, a nine-bit adder consisting of three adder slices is de-
scribed. Each adder slice is a three-bit carry-lookahead adder. Figure 9.2
shows a block diagram of the adder.

A3
Three-bit
carrylook

ahead

A2
Three-bit
carrylook

ahead

A1
Three-bit
carrylook

ahead

3

a6-8

3

b6-8

3

Sum_total6-8

3

a3-5

3

b3-5

3

Sum_total3-5

3

a0-2

3

b0-2

3

c0cr0cr1

Sum_total0-2Carry_out

FIGURE 9.2 Block diagram of nine-bit adder.

Listing 9.4 shows the mixed-language description of the nine-bit adder.
The three-bit carry-lookahead is described by a VHDL module, and the
Verilog module invokes the VHDL entity three times. The VHDL entity
adders_RL is a data-flow description of a three-bit lookahead adder (see
Chapter 2). The delay-propagation time in Listing 9.2 is taken as 0. In the
Verilog module, the VHDL entity is invoked by the statement:

adders_RL A1 (a [2:0], b [2:0], c0, sum_total [2:0], cr0);

The statement above passes the inputs (a2 a1 a0), (b2 b1 b0), and c0 to
the input ports of the entity adders_RL, (x

2
 x

1
 x

0
), (y2 y1 y0), and cin.

The entity calculates the three-bit output (sum
2
 sum

1
 sum

0
) and the one-bit

output cout. The outputs (sum
2
 sum

1
 sum

0
) and cout are passed to the out-

puts of the Verilog module (sum_total
2
 sum_total

1
 sum_total

0
), and cr0,

respectively. Each time the VHDL entity is invoked, three bits are added,
and the output is passed to the Verilog module. Invoking the VHDL entity
generates a nine-bit adder.

LISTING 9.4 Mixed-Language Description of a Nine-Bit Adder

module Nine_bitAdder (a, b, c0, sum_total, carry_out);
 input [8:0] a, b;
 input c0;
 output [8:0] sum_total;

458 • HDL WITH DIGITAL DESIGN

 output carry_out;
 wire cr0, cr1;

 //Invoke the VHDL entity
 adders_RL A1 (a [2:0], b [2:0], c0,
 sum_total [2:0], cr0);
 adders_RL A2 (a [5:3], b [5:3], cr0,
 sum_total [5:3], cr1);
 adders_RL A3 (a [8:6], b [8:6], cr1,
 sum_total [8:6], carry_out);

//adders_RL is the name of the VHDL entity

endmodule
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- This is a VHDL data-flow code for a 3-bit
--carry-lookahead adder.

entity adders_RL is
port (x, y : in std_logic_vector (2 downto 0);
cin : in std_logic;
sum : out std_logic_vector (2 downto 0);
cout : out std_logic);

--The entity name is identical to that of the Verilog
-- module. The input and output ports have
-- the same mode as the inputs. and outputs of the Verilog
-- module.

end adders_RL;

architecture lkh_DtFl of adders_RL is

signal c0, c1 : std_logic;
signal p, g : std_logic_vector (2 downto 0);
constant delay_gt : time := 0 ns;
--The gate propagation delay here is equal to 0.
begin

g(0) <= x(0) and y(0) after delay_gt;
g(1) <= x(1) and y(1) after delay_gt;
g(2) <= x(2) and y(2) after delay_gt;

MIXED-LANGUAGE DESCRIPTION • 459

p(0) <= x(0) or y(0) after delay_gt;
p(1) <= x(1) or y(1) after delay_gt;
p(2) <= x(2) or y(2) after delay_gt;
c0 <= g(0) or (p(0) and cin) after 2  delay_gt;

c1 <= g(1) or (p(1) and g(0)) or (p(1) and
 p(0) and cin) after 2  delay_gt;
cout <= g(2) or (p(2) and g(1)) or (p(2) and p(1)
and g(0)) or(p(2) and p(1) and p(0) and cin)
 after 2  delay_gt;

sum(0) <= (p(0) xor g(0)) xor cin after delay_gt;
sum(1) <= (p(1) xor g(1)) xor c0 after delay_gt;
sum(2) <= (p(2) xor g(2)) xor c1 after delay_gt;
end lkh_DtFl;

EXAMPLE 9.3 MIXED-LANGUAGE DESCRIPTION OF A THREE-BIT ADDER
WITH ZERO FLAG

In this example, a mixed-language description of a three-bit adder is
written. The adder has a one-bit flag. If the output of the adder is 0, the
flag is set to 1; otherwise, it is set to 0. Figure 9.3 shows the logic diagram
of the adder. A VHDL entity is written to describe the one-bit adder using
structural description (see Chapter 4). The VHDL entity is invoked in the
Verilog module three times.

Three one-bit
full adders

see Figure 9-4

3

B

3

A

3

3

Sum_3

Z_flag

Carry_out cin

FIGURE 9.3 Block diagram of a three-bit adder with a zero flag.

460 • HDL WITH DIGITAL DESIGN

Listing 9.5 shows the mixed-language description of the adder. The
VHDL one-bit adder is built from AND_OR_NOT gates (see Figure 9.4).

sum

cout

cin

Y

X

FIGURE 9.4 Logic diagram of a one-bit adder.

The Verilog module

full_add FA0 (A[0], B[0], cin, Sum_3[0], cr0);

invokes the VHDL entity full_add. This entity describes, in structural
description, a one-bit full adder. Invoking this entity three times from the
Verilog module generates a three-bit adder. The VHDL module looks very
long due to the fact that standard VHDL, in contrast to Verilog, does not
have built-in primitive gates.

LISTING 9.5 Mixed-Language Description of a Three-Bit Adder with a Zero
Flag

module three_bitAdd (A, B, cin, Sum_3, Carry_out, Z_flag);
 input [2:0] A, B;
 input cin;
 output [2:0] Sum_3;
 output Carry_out;
 output Z_flag;
 wire cr0, cr1;

MIXED-LANGUAGE DESCRIPTION • 461

 full_add FA0 (A[0], B[0], cin, Sum_3[0], cr0);
 full_add FA1 (A[1], B[1], cr0, Sum_3[1], cr1);
 full_add FA2 (A[2], B[2], cr1, Sum_3[2], Carry_out);

--The above modules invoke the VHDL entity full_add

 assign Z_flag = ~(Sum_3[0] | Sum_3[1] | Sum_3[2] |
 Carry_out);
endmodule

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity full_add is
 Port (X, Y, cin : in std_logic;
 sum, cout : out std_logic);
--This is a 1-bit full adder component built from
--AND-OR-NOT gates; see Figure 9.4.

end full_add;

architecture beh_vhdl of full_add is
--Instantiate the components of a 1-bit adder;
--see Figure 9.4.
component inv
 port(I1 : in std_logic; O1 : out std_logic);
end component;
component and2
 port(I1, I2 : in std_logic; O1 : out std_logic);
end component;
component and3
 port(I1, I2, I3 : in std_logic; O1 : out std_logic);
end component;
component or3
 port(I1, I2, I3 : in std_logic; O1 : out std_logic);
end component;
component or4
 port(I1, I2, I3, I4 : in std_logic;
O1 : out std_logic);
end component;
for all : inv use entity work.bind1 (inv_0);
for all : and2 use entity work.bind2 (and2_0);
for all : and3 use entity work.bind3 (and3_0);

462 • HDL WITH DIGITAL DESIGN

for all : or3 use entity work.bind3 (or3_0);
for all : or4 use entity work.bind4 (or4_0);

--The above five “for” statements are to bind the inv,
-- and3, and2, or3, and or4 with the architecture
-- beh_vhdl. See Chapter 4, “Structural Descriptions.”
 signal Xbar, Ybar, cinbar, s0, s1, s2,
 s3, s4, s5, s6 : std_logic;
begin
Iv1 : inv port map (X, Xbar);
Iv2 : inv port map (Y, Ybar);
Iv3 : inv port map (cin, cinbar);
A1 : and3 port map (X, Y, cin, s0);
A2 : and3 port map (Xbar, Y, cinbar, s1);
A3 : and3 port map (Xbar, Ybar, cin, s2);
A4 : and3 port map (X, Ybar, cinbar, s3);
A5 : and2 port map (X, cin, s4);
A6 : and2 port map (X, Y, s5);
A7 : and2 port map (Y, cin, s6);
O1 : or4 port map (s0, s1, s2, s3, sum);
O2 : or3 port map (s4, s5, s6, cout);
end beh_vhdl;

--The following is the behavioral description of the
--components instantiated in the entity full_add.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bind1 is
 port (I1 : in std_logic; O1 : out std_logic);
end bind1;
architecture inv_0 of bind1 is
begin
 O1 <= not I1;
end inv_0;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity bind2 is
 port (I1, I2 : in std_logic; O1 : out std_logic);
end bind2;
architecture and2_0 of bind2 is

MIXED-LANGUAGE DESCRIPTION • 463

begin
O1 <= I1 and I2;
end and2_0;
architecture or2_0 of bind2 is
begin
O1 <= I1 or I2;
end or2_0;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity bind3 is
 port (I1, I2, I3 : in std_logic; O1 : out std_logic);
end bind3;

architecture and3_0 of bind3 is
begin
 O1 <= I1 and I2 and I3;
end and3_0;

architecture or3_0 of bind3 is
begin
 O1 <= I1 or I2 or I3;
end or3_0;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity bind4 is
 Port (I1, I2, I3, I4 : in std_logic;
 O1 : out std_logic);
end bind4;
architecture or4_0 of bind4 is
begin
 O1 <= I1 or I2 or I3 or I4;
end or4_0;

EXAMPLE 9.4 MIXED-LANGUAGE DESCRIPTION OF A MASTER-SLAVE D
FLIP-FLOP

In Chapter 4, a structural description of a master-slave flip-flop was
written. The flip-flop was built from two D-latches (see Figure 9.5).

464 • HDL WITH DIGITAL DESIGN

d d

C Qb

QD_in

clk

clkb
clk2

Q0

D-Latch

C Qb Qb_out

Q_outQ

D-Latch

FIGURE 9.5 Logic diagram of a master-slave D flip-flop.

In this example, a mixed-language description of the flip-flop is writ-
ten. Instead of structural description, VHDL data-flow description is used
to simulate the D-latch (see Chapter 2). The master-slave flip-flop is de-
scribed in a Verilog module. The VHDL entity is invoked to import the
description of a D-latch. Listing 9.6 shows the mixed-language description
of a master-slave flip-flop.

LISTING 9.6 Mixed-Language Description of a Master-Slave D Flip-Flop

//This is the Verilog module
module D_Master (D_in, clk, Q_out, Qb_out);
 input D_in, clk;
 output Q_out, Qb_out;
 wire Q0, Qb, clkb; / wire statement here can be omitted./
 assign clkb = ~ clk;
 assign clk2 = ~ clkb;
 D_Latch D0 (D_in, clkb, Q0, Qb);

//D_Latch is the name of a VHDL entity describing a D-Latch

D_Latch D1 (Q0, clk2, Q_out, Qb_out);

endmodule
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity D_Latch is
--The entity has the same name as
--the calling Verilog module

port (D, E : in std_logic;
 Q, Qbar : buffer std_logic);

MIXED-LANGUAGE DESCRIPTION • 465

end D_Latch;

architecture DL_DtFl of D_Latch is
--This architecture describes a D-latch using
--data-flow description
constant Delay_EorD : Time := 9 ns;
constant Delay_inv : Time := 1 ns;

begin

Qbar <= (D and E) nor (not E and Q) after Delay_EorD;
Q <= not Qbar after Delay_inv;
end DL_DtFl;

The simulation waveform is shown in Figure 9.6.

1 ns9 ns

clk

D_in

D_out

Db_out

FIGURE 9.6 Simulation waveform of a master-slave D flip-flop.

EXAMPLE 9.5 MIXED-LANGUAGE DESCRIPTION OF A 4x4 COMPARATOR

In Chapter 4, an HDL structural description of a 3x3 comparator was
introduced. The comparator was built from three one-bit adders (see Fig-
ure 4.8). Here, mixed-language description is used. A VHDL behavioral
module (see Chapter 3) to describe a one-bit full adder is written. A Verilog
module invokes this VHDL module four times. Listing 9.7 shows the mixed-
language description of a 4x4 comparator. Consider the Verilog code:

generate

genvar i;
for (i = 0; i <= N; i = i + 1)
 begin : u

466 • HDL WITH DIGITAL DESIGN

 and (eq[i+1], sum[i], eq[i]);
end
endgenerate

If N = 3, the above Verilog code constitutes four two-input AND gates
(see Figure 9.7). The input to each gate is sum(i) and eq(i); the output
is eq(i+1). The output of the fourth AND gate, eq(4), is equal to 1 if and
only if all sum(i), i = 1, 3 are equal to 1. Otherwise, it is equal to 0. If eq(4)
= 1, this means that X = Y.

Sum(1)

Sum(0)

Sum(2) Sum(3)

eq(4)eq(3)eq(2)eq(1)

eq(0)

FIGURE 9.7 Logic diagram of the Verilog-generated statements in Listing 9.7.

LISTING 9.7 Mixed-Language Description of a 4x4 Comparator

module compr_genr (X, Y, xgty, xlty, xeqy);
parameter N = 3;
input [N:0] X, Y;
output xgty, xlty, xeqy;
wire [N:0] sum, Yb;
wire [N+1:0] carry, eq;
assign carry[0] = 1’b0;
assign eq[0] = 1’b1;
assign Yb = ~Y;

FULL_ADDER FA (X[0], Yb[0], carry[0],
 sum[0], carry[1]);

-- The module FULL_ADDER has the same name
-- as the VHDL entity FULL_ADDER

FULL_ADDER FA1 (X[1], Yb[1], carry[1],
 sum[1], carry[2]);
FULL_ADDER FA2 (X[2], Yb[2], carry[2],
 sum[2], carry[3]);
FULL_ADDER FA3 (X[3], Yb[3], carry[3],
 sum[3], carry[4]);
generate

MIXED-LANGUAGE DESCRIPTION • 467

genvar i;
for (i = 0; i <= N; i = i + 1)
 begin : u
and (eq[i+1], sum[i], eq[i]);

end
endgenerate

assign xgty = carry [N+1];
assign xeqy = eq [N+1];
nor (xlty, xeqy, xgty);
endmodule

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity FULL_ADDER is
 Port (A, B, cin : in std_logic;
 sum_1, cout : out std_logic);
end FULL_ADDER;

architecture beh_vhdl of FULL_ADDER is

--This architecture is a behavioral
--description of a full adder.

begin

oneBit : process (A, B, cin)
 variable y : std_logic_vector (2 downto 0);
 begin
 Y := (A & B & Cin);

--The above statement is a concatenation of
--three bits A, B, and Cin

case y is
 when “000” => sum_1 <= ‘0’; cout <= ‘0’;
 when “110” => sum_1 <= ‘0’; cout <= ‘1’;
 when “101” => sum_1 <= ‘0’; cout <= ‘1’;
 when “011” => sum_1 <= ‘0’; cout <= ‘1’;
 when “111” => sum_1 <= ‘1’; cout <= ‘1’;
 when others => sum_1 <= ‘1’; cout <= ‘0’;
--Others here refer to 100, 001, 010

468 • HDL WITH DIGITAL DESIGN

end case;
 end process;
 end beh_vhdl;

9.3.2 Invoking a Verilog Module From a VHDL Module
As mentioned, a Verilog module can be invoked from a VHDL module

by instantiating a component in the VHDL module that has the same name
and ports as the Verilog module. The Verilog module should be the only
construct that has the same name as the component. Presently, this is the
only way Verilog modules can be invoked from VHDL. Several examples
are discussed below.

EXAMPLE 9.6 INSTANTIATING AN AND GATE FROM A VHDL MODULE

A basic VHDL does not have built-in gates such as AND, OR, and XOR,
unless the user attaches a vendor’s package that contains a description of
the gates. Standard Verilog, on the other hand, has built-in descriptions of
primitive gates of which we can take advantage. Using mixed-language de-
scription, a Verilog module is invoked in the VHDL module, and the gates
that we want to use are instantiated. Listing 9.8 shows a mixed-language de-
scription of instantiating an AND gate in a VHDL module. The description
of the AND gate is provided by the Verilog module. Referring to Listing
9.8, the VHDL statements

component and2
 port (x, y : in std_logic; z : out std_logic);
end component;

declare a component by the name of and2. The component has two input
ports, x and y, and one output port, z. To link this component to a Verilog
module, the module has to have the same name and ports as the compo-
nent. The Verilog module is written as:

module and2 (x, y, z);

It has the same name and the same ports, so all Verilog statements pertain-
ing to x, y, and z are visible to the VHDL module. In the Verilog module,
write:

and(z,x,y);

The statement above describes an AND relationship between x, y, and z.

MIXED-LANGUAGE DESCRIPTION • 469

LISTING 9.8 Mixed-Language Description of an AND Gate

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

--This is the VHDL module

entity andgate is
 port (a, b : in std_logic; c : out std_logic);
end andgate;

architecture andgate of andgate is
component and2

--For correct binding with the Verilog module,
--the name of the component should be identical
--to that of the Verilog module.

 port (x, y : in std_logic; z : out std_logic);

--The name of the ports should be identical to the name
--of the inputs/outputs of the Verilog module.

end component;

begin
 g1 : and2 port map (a, b, c);
end andgate;
//This is the Verilog module
module and2 (x, y, z);

 input x, y;
 output z;
 and(z, x , y);
endmodule

EXAMPLE 9.7 MIXED-LANGUAGE DESCRIPTION OF A JK FLIP-FLOP WITH
A CLEAR SIGNAL

In this example, a mixed-language description of a JK flip-flop is writ-
ten. JK flip-flops were covered in Chapters 3 and 4. The excitation table of
a JK flip-flop with a clear signal is shown in Table 9.1.

470 • HDL WITH DIGITAL DESIGN

TABLE 9.1 Excitation Table for a JK Flip-Flop

Clear J K clk q (next state)
1 x x � q = 0
0 0 0 � No change (hold), next = current
0 1 0 � 1
0 0 1 � 0
0 1 1 � Toggle (next state) = invert of (current state)

The flip-flop is declared as a VHDL component, and a Verilog behav-
ioral description of the flip-flop based on Table 9.1 is written. The Verilog
is linked to the VHDL component by giving the Verilog module the same
name as the VHDL component. The ports of the component should also
be the same as those of the Verilog module. Listing 9.9 shows the mixed-
language description of the flip-flop. The JK flip-flop is declared as a com-
ponent with the statement:

component jk_verilog
 port(j, k, ck, clear : in std_logic;
q, qb : out std_logic);
end component;

The above component is linked to a Verilog module by the statement:

module jk_verilog (j, k, ck, clear, q, qb);

The above module has the same name and ports as the VHDL component
jk_verilog. Accordingly, the relationship between the input and output
ports described in the Verilog module is visible to the VHDL component.
The Verilog module describes, in behavioral style, a JK flip-flop with an
active high clear. Hence, the VHDL component jk_verilog is also a JK
flip-flop with an active high clear.

LISTING 9.9 Mixed-Language Description of a JK Flip-Flop

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity JK_FF is
 Port (Jx, Kx, clk, clx : in std_logic;
 Qx, Qxbar : out std_logic);
end JK_FF;

MIXED-LANGUAGE DESCRIPTION • 471

architecture JK_FF of JK_FF is

--The JK flip flop is declared as a component
component jk_verilog
 port(j, k, ck, clear : in std_logic;
 q, qb : out std_logic);
end component;
begin

jk1 : jk_verilog port map (Jx, Kx, clk, clx, Qx, Qxbar);

end JK_FF;
module jk_verilog (j, k, ck, clear, q, qb);
// The module name jk_verilog matches
// the name of the VHDL components

input j, k, ck, clear;
output q, qb;
--The input and output ports match those of the
--VHDL component, jk_verilog

reg q, qb;
reg [1:0] JK;
always @ (posedge ck, clear)
begin
 if (clear == 1)
 begin
 q = 1’b0;
 qb = 1’b1;
 end
 else
 begin
 JK = {j, k};
 case (JK)
 2’d0 : q = q;
 2’d1 : q = 0;
 2’d2 : q = 1;
 2’d3 : q = ~q;
 endcase
 qb = ~q;
 end
end
endmodule

472 • HDL WITH DIGITAL DESIGN

The simulation waveform of the JK flip-flop is shown in Figure 9.8.

clk

clx

Jx

Kx

Qx

Qxbar

FIGURE 9.8 Simulation waveform of a JK flip-flop with an active high clear.

EXAMPLE 9.8 MIXED-LANGUAGE DESCRIPTION OF A THREE-BIT
SYNCHRONOUS COUNTER WITH CLEAR

This example was first covered in Chapter 4. Figure 4.20 shows the
logic diagram of the counter, and Listing 4.23 shows the VHDL and the
Verilog descriptions. Here, the code of the counter is written using mixed
language. For convenience, Figure 4.20 is presented again here as Figure
9.9. As shown, the counter consists of three JK flip-flops, and OR, AND,
and INVERT gates.

J

Q K

Q clrbar
clrbl

clr

1

JK2

J

Q K

Q

JK1

J

Q K

Q

JK0

FIGURE 9.9 Three-bit synchronous counter with clear.

MIXED-LANGUAGE DESCRIPTION • 473

Listing 9.10 shows the mixed-language description of the counter. A Ver-
ilog module that describes a JK flip-flop and an AND, OR, and INVERT is
written. The Verilog module is invoked from a VHDL module three times.
In the VHDL module, a component declaration for the flip-flop and the
gates is written. The names of the components are the same as the corre-
sponding Verilog modules. For example, the VHDL statement:

component JK_FF
port (I1, I2, I3 : in std_logic;
O1, O2 : inout std_logic);
end component;

declares a component by the name of JK_FF. The Verilog module by the
name of JK_FF describes a JK flip-flop. Accordingly, the VHDL compo-
nent JK_FF is a JK flip-flop. To facilitate the link between the Verilog and
VHDL modules, we slightly modify the VHDL module from Listing 4.23,
in which the instantiation statement for flip-flop FF0 was written as:

FF0 : JK_FF port map (clrb1, ’1’, clk, q(0), qb(0));

The Verilog module can accept a signal, variable, or constant, but it may not
accept the value 1. Therefore, we declare a signal named high and assign it
a value of 1 as follows:

high <= ‘1’;
FF0 : JK_FF port map (clrb1, High, clk, q(0), qb(0));

LISTING 9.10 Mixed-Language Description of Three-Bit Counter with Clear

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity countr_3 is
port (clk, clrbar : in std_logic;
 q, qb : inout std_logic_vector (2 downto 0));
end countr_3;

architecture CNTR3 of countr_3 is

component JK_FF
 port (I1, I2, I3 : in std_logic;
 O1, O2 : inout std_logic);
end component;

component inv

474 • HDL WITH DIGITAL DESIGN

 port (I1 : in std_logic; O1 : out std_logic);
end component;

component and2
 port (I1, I2 : in std_logic; O1 : out std_logic);
end component;

component or2
 port (I1, I2 : in std_logic; O1 : out std_logic);
end component;

signal J1, K1, J2, K2, clr, clrb1, s1, high : std_logic;
begin

 high <= ‘1’;

FF0 : JK_FF port map (clrb1, High, clk, q(0), qb(0));
A1 : and2 port map (clrb1, q(0), J1);
inv1 : inv port map (clr, clrb1);
inv2 : inv port map (clrbar, clr);

r1 : or2 port map (q(0), clr, K1);
FF1 : JK_FF port map (J1, K1, clk, q(1), qb(1));
A2 : and2 port map (q(0), q(1), s1);
A3 : and2 port map (clrb1, s1, J2);
r2 : or2 port map (s1, clr, K2);
FF2 : JK_FF port map (J2, K2, clk, q(2), qb(2));
end CNTR3 ;

module and2 (I1, I2, O1);
//This Verilog module represents an AND function

input I1, I2;
output O1;
assign O1 = I1 & I2;
endmodule

module inv (I1, O1);
//This Verilog module represents an INVERT function

input I1;
output O1;

MIXED-LANGUAGE DESCRIPTION • 475

assign O1 = ~I1;
endmodule

module or2 (I1, I2, O1);
//This Verilog module represents an OR function

input I1, I2;
output O1;
assign O1 = I1 | I2;
endmodule

module JK_FF (I1, I2, I3, O1, O2);
//This Verilog module represents a JK flip-flop.
input I1, I2, I3;
output O1, O2;

reg O1, O2;
reg [1:0] JK;
initial
 begin
 O1 = 1’b0;
 O2 = 1’b1;
 end
always @ (posedge I3)
begin
 JK = {I1, I2};
 case (JK)
 2’d0 : O1 = O1;
 2’d1 : O1 = 0;
 2’d2 : O1 = 1;
 2’d3 : O1 = ~O1;
 endcase
 O2 = ~O1;
end
endmodule

EXAMPLE 9.9 MIXED-LANGUAGE DESCRIPTION OF AN N-BIT COUNTER
WITH RIPPLE CARRY-OUT

In this example, we discuss an n-bit asynchronous counter with a ripple
carry-out (RCO). Figure 9.10 shows the logic diagram of the counter. As
shown, the ripple carry-out is 1 when all Qs are 1s. In Chapter 4, asynchro-

476 • HDL WITH DIGITAL DESIGN

nous counters were discussed and described using the generate statement.
Here, we use mixed-language description to invoke a Verilog module from
a VHDL module. Listing 9.11 shows the mixed-language description of the
counter.

J
1

Q K

Q

Q(n-1)

J
1

Q K

Q

Q1

J
1

Q K

clk

Q

Q0

rc0

FIGURE 9.10 Logic diagram of an n-bit synchronous counter with ripple carry-out.

As shown in Figure 9.10, to construct the counter, we need n-JK flip-
flops and n-input and gates. Two Verilog modules, jkff and andgate,
are implemented to describe a JK flip-flop and a three-input AND gate,
respectively. The module jkff is written in behavioral description, and the
module andgate is written in data-flow description.

LISTING 9.11 Mixed-Language Description of an N-Bit Asynchronous Counter

--This is a VHDL module
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity asynch_ctrMx is
Generic (N : integer := 3);

port (clk, clear : in std_logic;
 C, Cbar : out std_logic_vector (N-1 downto 0);
rco : out std_logic);

end asynch_ctrMx;

architecture CT_strgnt of asynch_ctrMx is

component jkff is
--This is a JK flip-flop with a clear bound to Verilog

MIXED-LANGUAGE DESCRIPTION • 477

-- module jkff

 port (j, k, clk, clear : in std_logic;
 q, qb : out std_logic);
end component;
component andgate is
--This is a three-input AND gate bound to Verilog module
-- andgate

 port (I1, I2, I3 : in std_logic; O1 : out std_logic);
end component;

signal h, l : std_logic;
signal s : std_logic_vector (N downto 0);
signal s1 : std_logic_vector (N downto 0);
signal C_tem : std_logic_vector (N-1 downto 0);

begin
h <= ‘1’;
l <= ‘0’;
s <= (C_tem & clk);

-- s is the concatenation of Q and clk. We need this
-- concatenation to describe the clock of
--each JK flip-flop.

s1(0) <= not clear;

Gnlop : for i in (N - 1) downto 0 generate

G1 : jkff port map (h, h, s(i), clear, C_tem(i), Cbar(i));

end generate GnLop;
C <= C_tem;
rc_gen : for i in (N - 2) downto 0 generate
--This loop to determine the ripple carry-out
rc : andgate port map (C_tem(i), C_tem(i+1),
s1(i), s1(i+1));
end generate rc_gen;
rco <= s1(N-1);
end CT_strgnt;
module jkff (j, k, clk, clear, q, qb);
// This is a behavioral description of a JK flip-flop

478 • HDL WITH DIGITAL DESIGN

input j, k, clk, clear;
output q, qb;
reg q, qb;
reg [1:0] JK;
always @ (posedge clk, clear)
begin
 if (clear == 1)
 begin
 q = 1’b0;
 qb = 1’b1;
 end
 else
 begin
 JK = {j,k};
 case (JK)
 2’d0 : q = q;
 2’d1 : q = 0;
 2’d2 : q = 1;
 2’d3 : q = ~q;
 endcase
 qb = ~q;
 end
end
endmodule
module andgate (I1, I2,I3, O1);
//This is a three-input AND gate
 input I1, I2, I3;
 output O1;
 assign O1 = (I1 & I2 & I3);
 endmodule

The simulation waveform is shown in Figure 9.11.

clk

clear

C 0 7 6 5 4 23

Cbar 7 0 1 2 3 54

FIGURE 9.11 Simulation waveform for an n-bit asynchronous counter. The simulation pattern might be
different than shown due to the presence of transient states (hazards).

MIXED-LANGUAGE DESCRIPTION • 479

EXAMPLE 9.10 MIXED-LANGUAGE DESCRIPTION OF A SWITCH-LEVEL
MULTIPLEXER

In Chapter 5, several combinational and sequential logics were de-
scribed using VHDL or Verilog switch-level description. We also saw that
the basic VHDL package, in contrast to Verilog, does not have built-in
switch-level primitives. Here, mixed-language description is used to de-
scribe a 2x1 multiplexer; a switch-level Verilog description is invoked from
a VHDL module. By invoking Verilog modules, the VHDL module be-
haves as if it possesses built-in switch-level primitives. Listing 9.12 shows
the mixed-language description of a 2x1 multiplexer. The statement

component pmos_verlg
port (O1 : out std_logic; I1, I2 : in std_logic);
end component;

declares a VHDL component by the name pmos_verlg. The name of the
component is the same as the name of the Verilog module that uses the
built-in primitive pmos to describe a pmos switch. In this way, the switch is
made visible to the VHDL module.

LISTING 9.12 Mixed-Language Description of a 2x1 Multiplexer

--This is the VHDL module.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity mux2x1_mxd is
Port (a, b, Sel, E : in std_logic; ybar : out std_logic);
end mux2x1_mxd;

architecture mux2x1switch of mux2x1_mxd is

component nmos_verlg
--This component, after linking to a
--Verilog module, behaves as an nmos switch
port (O1 : out std_logic; I1, I2 : in std_logic);

end component;

component pmos_verlg
--This component, after linking to a Verilog module,
-- behaves as a pmos switch.
port (O1 : out std_logic; I1, I2 : in std_logic);

480 • HDL WITH DIGITAL DESIGN

end component;
--constant vdd : std_logic := ‘1’;
--constant gnd : std_logic := ‘0’;

-- In Chapter 5 we wrote Vdd and gnd as constants.
-- Some VHDL/Verilog simulators do not transfer constants
-- between VHDL and Verilog. So we wrote them as signals.

signal vdd, gnd, Selbar, s0, s1, s2, s3 : std_logic;
begin
 vdd <= ‘1’;
 gnd <= ‘0’;

--Invert signal Sel. If the complement of Sel is available,
--then no need for the following pair of transistors.

v1 : pmos_verlg port map (Selbar, vdd, Sel);
v2 : nmos_verlg port map (Selbar, gnd, Sel);
--Write the pull-down combination
n1 : nmos_verlg port map (s0, gnd, E);
n2 : nmos_verlg port map (s1, s0, Sel);
n3 : nmos_verlg port map (ybar, s1, a);
n4 : nmos_verlg port map (s2, s0, Selbar);
n5 : nmos_verlg port map (ybar, s2, b);
--Write the pull-up combination
p1 : pmos_verlg port map (ybar, vdd, E);
p2 : pmos_verlg port map (ybar, s3, Sel);
p3 : pmos_verlg port map (ybar, s3, a);
p4 : pmos_verlg port map (s3, vdd, Selbar);
p5 : pmos_verlg port map (s3, vdd, b);

end mux2x1switch;

// This is the Verilog Module

module nmos_verlg (O1, I1, I2);
 input I1, I2;
 output O1;
nmos (O1, I1, I2);
endmodule

module pmos_verlg (O1, I1, I2);
 input I1, I2;

MIXED-LANGUAGE DESCRIPTION • 481

 output O1;
pmos (O1, I1, I2);
endmodule

EXAMPLE 9.11 INSTANTIATING CASEX IN VHDL

Chapter 3 covered the casex statement for both VHDL and Verilog.
We have seen that casex ignores the “don’t care” (x) in the values of the
control expression. Consider the following casex:

casex (a)
 4’bxxx1 : b = 4’d1;
 4’bxx10 : b = 4’d2;
 ………………..
 endcase;

All xs are ignored; for example, b = 1 if and only if the least significant
bit of a is 1, regardless of the value of the high-order bits of a. Another
Verilog variation of case is the casez (see Chapter 3), where z is the high
impedance. VHDL does not have an exact replica of casex or casez. With
mixed-language description, we can instantiate a command similar to casex
and casez in the VHDL module. Listing 9.13 shows a mixed-language de-
scription that instantiates a command by the name of cas_x in the VHDL
module; this command performs the same function as the Verilog casex.
Listing 9.13 represents a four-bit priority encoder. This encoder was dis-
cussed in Chapter 3. The truth table of the encoder is shown in Table 9.2.

TABLE 9.2 Truth Table for a Four-Bit Encoder

Input Output
a b

xxx1 1
xx10 2
x100 4
1000 8

Others 0

LISTING 9.13 Instantiating casex in a VHDL Module

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity P_encodr is

482 • HDL WITH DIGITAL DESIGN

 Port (X : in std_logic_vector (3 downto 0);
 Y : out std_logic_vector (3 downto 0));
end P_encodr;
architecture P_encodr of P_encodr is

component cas_x
--The name of the component is identical to the name of the
--Verilog module

port (a : in std_logic_vector (3 downto 0);
 b : out std_logic_vector (3 downto 0));

end component;

begin

ax : cas_x port map (X, Y);

end P_encodr;

module cas_x (a, b);
 input [3:0] a;
 output [3:0] b;
 reg [3:0] b;
 always @ (a)
 begin
 casex (a)
 4’bxxx1 : b = 4’d1;
 4’bxx10 : b = 4’d2;
 4’bx100 : b = 4’d4;
 4’b1000 : b = 4’d8;
 default : b = 4’d0;

 endcase
 end
endmodule

EXAMPLE 9.12 MIXED-LANGUAGE DESCRIPTION OF A LOW-PASS RC
FILTER

The function of an electronic filter is to block a certain frequency band
in a signal. There are several types of simple filters such as low pass, high

MIXED-LANGUAGE DESCRIPTION • 483

pass, and band pass. Low-pass filters allow frequencies below a certain
threshold (called the cutoff frequency) to pass with or without minimal
attenuation. All frequencies above the threshold are attenuated; frequen-
cies close to the cutoff are less attenuated than those frequencies far from
the cutoff. High-pass filters pass frequencies higher than the cutoff with
or without minimal attenuation. Frequencies lower than the cutoff are at-
tenuated, and frequencies close to the cutoff are less attenuated than those
signals far from the cutoff.

Figure 9.12 shows a low-pass filter consisting of a resistance (R) con-
nected in serial with a capacitance (C). The impedance of the capacitance
is (1/jwC) where w = 2f, f is the frequency, and j = 1 . The ratio of the
output signal (Vo) to the input signal (Vi) is:

 Vo 1/jwC 1
Vi R 1/jwC jwCR 1

 
 

 (9.1)

(Vo/Vi) is called the transfer function of the filter (H(w)). The square of the
amplitude of the transfer function can be written as:

 [H(w)]2 =
2

1
w CR 1

 (9.2)

 The cutoff frequency wc = (1/RC) (9.3)

Substitute Equation 9.3 into Equation 9.2 to get:

 [H(w)]2 = 2
c

1
(w/w) 1 (9.4)

C

R

VoVi

FIGURE 9.12 Simple low-pass RC filter.

484 • HDL WITH DIGITAL DESIGN

We want to simulate Equation 9.4 using mixed-language descrip-
tion and output the value of [H(w)]2 as it changes with w; this value will
be stored in a file. Because VHDL has extensive file operations, VHDL is
implemented here to handle the file operations. The Verilog module will
handle the calculations. Listing 9.14 shows the mixed-language description
of a simple RC filter. In the VHDL module, the inputs and outputs are
described as:

entity Filter_draw is
 Port (w, w_ctoff : in std_logic_vector (3 downto 0);
 Hw_vhd : out std_logic_vector (7 downto 0));
end Filter_draw;

As shown in the entity Filter_draw, the inputs and outputs are se-
lected to be of type std_logic_vector. The output [H(w)]2 in Equation
9.4 is represented by the signal Hw_vhd. The inputs w and wc in Equation
9.4 are represented by w and w_ctoff. To simplify the description, all inputs
and outputs are assumed to be integers. We could have selected the type of
inputs and outputs in the entity to be integer, but here we want to practice
converting from one type to another. Also, we want an easy link between
the VHDL and Verilog ports because integer ports are not allowed to be
mapped from Verilog to VHDL. If the output Hw_vhd is calculated as in
Equation 9.4, using integer division, the output would be zero for all values
of w because the numerator is always less than the denominator. Instead,
we calculate Equation 9.4 as real division and then scale it up by multiply-
ing it by 100. For example, if w = 3 units, and the cutoff = 4 units, then from
Equation 9.4:

Real (Hw_vhd) =
2

1
(3/ 4) 1

 = 0.64

After scaling up by 100, then Hw_vhd = 64

Because VHDL files accept only integers, real values, and characters, we
write a VHDL function to convert from std_logic_vector to integer. In
Listing 9.14, the user-defined function TO_Intgr converts std_logic_vec-
tor to integer. To invoke the Verilog module from the VHDL module, we
write a component declaration in the VHDL module:

component flter_RC
 port (I1, I2 : in std_logic_vector (3 downto 0);
 O1 : out std_logic_vector (7 downto 0));
end component;

MIXED-LANGUAGE DESCRIPTION • 485

The name of the component is fl ter_RC; it has two input ports, I1 and I2 of
type std_logic_vector, and one output port, O1 of type std_logic_vec-
tor. To invoke the Verilog module, we declare the module as follows:

module flter_RC (I1, I2, O1);
input [3:0] I1, I2;
output [7:0] O1;

The above Verilog module has the same name and ports as the VHDL
component; thus, the module is visible to the VHDL module. In the Ver-
ilog module, we perform the real division O1 = 1/[(I1/I2)2 + 1]. Because I1
and I2 are not declared as real, the division will be performed as integer,
and O1 will be zero for all values of I1 and I2. To avoid this, we multiply
I1 and I2 by 1.0:

s1 = ((1.0  I1) / (1.0  I2))  2;
S = 1.0 / (1.0 + s1);

S and s1 are declared as real; the value of S is the real value of the divi-
sion 1/[(I1/I2)2 + 1]. The output of the Verilog module, O1, is calculated by
multiplying S by 100. This output is passed to the VHDL module. As can
be seen, Verilog, in contrast to VHDL, is flexible in handling different data
types. We would not have been able to easily perform the real division in
VHDL. After calculating the output, it is entered into a text file. All of the
data in std_logic_vector to be entered into the file must be converted to
integers because files cannot take the type std_logic_vector.

LISTING 9.14 Mixed-Language Description of a Simple RC Filter

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use std.textio.all;
use ieee.numeric_std.all;

entity Filter_draw is
Port (w, w_ctoff : in std_logic_vector (3 downto 0);
 Hw_vhd : out std_logic_vector (7 downto 0));

end Filter_draw;

architecture Filter_draw of Filter_draw is

Function TO_Intgr (a : in std_logic_vector) return
 integer is

486 • HDL WITH DIGITAL DESIGN

--This Function converts std_logic_vector type to integer

variable result : integer;

begin
 result := 0;
 lop1 : for i in a’ range loop
 if a(i) = ‘1’ then
 result := result + 2i;
 end if;
 end loop;
return result;
end TO_Intgr;

component flter_RC
--The name of the component “flter_RC” is the same name as
-- the Verilog module.
 port (I1, I2 : in std_logic_vector (3 downto 0);
 O1 : out std_logic_vector (7 downto 0));

end component;
signal Hw_tmp : std_logic_vector (7 downto 0);
begin
dw : flter_RC port map (w, w_ctoff, Hw_tmp);

//output the data on a file
fl : process (w, w_ctoff, Hw_tmp)
file outfile : text;
variable fstatus : file_open_status;
variable temp : line;
variable Hw_int, w_int, w_ctoffintg : integer;

begin
--Files can take integer, real, or character;
--they cannot take std-logic-vector; so convert to integer.

Hw_int := TO_Intgr (Hw_tmp);
w_int := TO_Intgr (w);
w_ctoffintg := TO_Intgr (w_ctoff);
file_open (fstatus, outfile, “Wfile_int.txt”, write_mode);
--The file name is Wfile_int.txt

MIXED-LANGUAGE DESCRIPTION • 487

--Write headings. Be sure your simulator supports
-- formatted output. otherwise take out all formatted
-- output statements

write (temp, “ This is a Simple R-C Low Pass Filter”);
--The above statement when entered in the VHDL module
-- should be entered in one line without carriage return.

writeline (outfile, temp);
write (temp, “ “);
writeline (outfile, temp);
write (temp, “ FREQUENCY
CUTOFF Amplitude Square”);
--The above statement when entered in the VHDL module
--should be entered in one line without carriage return.

writeline (outfile, temp);
write (temp, “ “);

--write the values of the filter parameters
write (temp, w_int);
write (temp, “ “);
write (temp, w_ctoffintg);
write (temp, “ “);
write (temp, Hw_int);
writeline (outfile, temp);

file_close (outfile);
Hw_vhd <= Hw_tmp;
end process fl;
end Filter_draw;

// Next we write the Verilog module;
// the module performs a real division
module flter_RC (I1, I2, O1);

/The module performs the real division
O1 = 1/[(I1/I2)2 + 1]/

input [3:0] I1, I2;
output [7:0] O1;
reg [7:0] O1;

488 • HDL WITH DIGITAL DESIGN

real S, s1;
always @ (I1, I2)
begin
s1 = ((1.0I1)/(1.0  I2))2 ;
/we multiply by 1.0 so the division is done in real
format./

S = 1.0 / (1.0 + s1);
O1 = 100.00  S;
end
endmodule

The file Wfi le_int.txt, after simulation, is shown in Figure 9.13.

This is a Simple R-C Low Pass Filter

FREQUENCY CUTOFF Amplitude Square*100
6443

FIGURE 9.13 The file Wfile_int.txt after simulation.

EXAMPLE 9.13 MIXED-LANGUAGE DESCRIPTION OF A 2x1
MULTIPLEXOR WITH ACTIVE-LOW ENABLE USING
USER-DEFINED PRIMITIVE

Example 8.12 introduced a Verilog code for the description of a 2x1
multiplexor with active-low enable using user-defined primitive (UDP).
Here, a VHDL code is written that invokes the Verilog code, so the VHDL
code appears as if it can use the Verilog UDP. Listing 9.15 shows the
mixed-language description of the multiplexer. The first part is a VHDL
code declaring the inputs and the output of the multiplexer as ports of the
entity muxVHDL:

port(G1,SL1,A1,B1: in std_logic; Y1: out std_logic);

The same VHDL code then declares a component by the name
Mux2x1Prmtvvlog. The name of the component and its ports have to be
the same as the name of the Verilog module and its ports. The Verilog code
is identical to Listing 8.15. The simulation of the VHDL code is identical
to that of Listing 8.15, except the inputs now are G1, SL1, A1, and B1, and
the output is Y1. The VHDL simulation shows that the VHDL code can
implement the Verilog UDP.

MIXED-LANGUAGE DESCRIPTION • 489

LISTING 9.15 Mixed-Language Description of a 2x1 Multiplexor with Active-
Low Enable Using Verilog User-Defined Primitive

--This is the VHDL code

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity muxVHDL is
port(G1,SL1,A1,B1: in std_logic; Y1: out std_logic);
end muxVHDL;

architecture Behavioral of muxVHDL is
component Mux2x1Prmtvvlog
port(Gbar, SEL,A,B: in std_logic; Y: out std_logic);
end component;

begin
pl1: Mux2x1Prmtvvlog port map(G1,SL1,A1,B1,Y1);

end Behavioral;

//This is the Verilog code that should be
//attached in the same project as the VHDL code

module Mux2x1Prmtvvlog(Gbar, SEL,A,B,Y);
input Gbar, SEL,A,B;
output Y;
 multiplexer MUX1 (Y, Gbar, SEL,A,B) ;
endmodule

primitive multiplexer (mux, enable, control, dataA, dataB) ;
output mux;
input enable, control, dataA, dataB;
table
// enable control dataA dataB mux

 1 ? ? ? : 0;
 0 0 1 ? : 1;
 0 0 0 ? : 0;
 0 1 ? 1 : 1;
 0 1 ? 0 : 0;

490 • HDL WITH DIGITAL DESIGN

 0 x 0 0 : 0;
 0 x 1 1 : 1;
endtable
endprimitive

9.4 Limitations of Mixed-Language Description

As previously mentioned, mixed-language description is somehow lim-
ited at present time. These limitations can be summarized as follows:

 Not all VHDL data types are supported in mixed-language description.
Only bit, bit_vector, std_logic, std_ulogic, std_logic_vector,
and std_ulogic_vector are supported.

 The VHDL port type buffer is not supported.

 Only a VHDL component construct can invoke a Verilog module. We
cannot invoke a Verilog module from any other construct in the VHDL
module.

 A Verilog module can only invoke a VHDL entity. It cannot invoke any
other construct in the VHDL module such as a procedure or function.

9.5 Summary

This chapter discussed mixed-language descriptions: HDL code that
includes constructs from both VHDL and Verilog. To be able to write in
mixed-language style, the simulator should be able to handle mixed-lan-
guage description. Presently, mixed-language description has some limita-
tions. The main limitation is that in the VHDL module, only the entire
Verilog module can be invoked; conversely, in the Verilog module, only the
entire VHDL entity can be invoked. We have seen how to invoke/instanti-
ate a VHDL entity from a Verilog module and how to invoke/instantiate a
Verilog module from a VHDL component. To invoke a VHDL entity from
a Verilog module, the module statement is written in Verilog. The name of
the module should be identical to the name of the entity, and the parameter
types of the module should match the types of the ports of the entity. For
example, the module statement:

HA H1 (y, cin, s0, c0);

written in a Verilog module invokes a VHDL entity named HA. In the Veril-
og module, no other module should have the name HA. On the other hand,

MIXED-LANGUAGE DESCRIPTION • 491

invoking a Verilog module from VHDL is done by declaring a component
in the VHDL module with the same name as the Verilog module. The com-
ponent ports should have the same names and types as the ports of the
Verilog module. For example, the VHDL component:

component V_modl
port (x, y : in std_logic; z : out std_logic);

end component;

invokes a Verilog module named V_modl.

9.6 Exercises

1. Consider the code shown in Listing 9.16.

LISTING 9.16 Code for Exercise 9.1

module mixed (a, b, c, d);
input a, b;
output c, d;
lgic L1 (c, d, a, b)
endmodule
entity lgic is
 port (x, y : in std_logic; O1, O2 : buffer std_logic);
end lgic;

architecture lgic of lgic is
begin
O1 <= x and y;
O2 <= not x;

end lgic;

Without using a computer, find any error(s) in Listing 9.16. Correct the
errors (if any), and write the values of c and d if a = 1 and b = 0. Verify
your answer by simulating the program.

2. In Listing 9.4, set the gate delay to 8 ns. Simulate the adder with the
new gate delay and measure the total delay. Analytically justify the delay
that you measured.

3. In Listing 9.7, we wrote the Verilog module as behavioral description.
Repeat Example 9.5, but use Verilog gate-level description instead of
behavioral description. Verify your description by simulation.

492 • HDL WITH DIGITAL DESIGN

4. In Listing 9.13, HDL code was written to instantiate the Verilog com-
mand casex in a VHDL module. Repeat the same steps to instantiate
casez in a VHDL module. The truth table for casez is as shown in
Table 9.3.

TABLE 9.3 Truth Table for casez

Input Output
a b

zzz1 1
zz10 2
z100 4
1000 8

Others 0

5. In Example 9.12, a low-pass RC filter was simulated. Repeat the same
steps for a high-pass RC filter.

6. Add another output Y1bar in the VHDL code in Example 9.13. Y1bar is
the invert of Y1. Write the mixed code and simulate.

9.7 Reference

Reed, M., and R. Rohrer, Applied Introductory Circuit Analysis for Electrical
and Computer Engineers, Prentice Hall, Upper Saddle River, New Jersey,
1999.

C H A P T E R

SYNTHESIS BASICS

10
Chapter Objectives

 Understand the concept of synthesis
 Learn how to map behavioral statements into logical gates and

components
 Learn how to verify your synthesis
 Review and understand the fundamentals of digital-logic design for

digital systems, such as adders, multiplexers, decoders, compara-
tors, encoders, latches, flip-flops, counters, and memory cells

 Understand the concept of sequential finite-state machines

10.1 Highlights of Synthesis

This chapter covers the fundamentals of synthesis. Synthesis here con-
verts HDL behavioral code into logical gates or components. These logi-
cal gates and components can be downloaded into electronic chips such as
field programmable gate arrays (FPGAs).

Facts
 Synthesis maps the simulation (software) domain into the hardware

domain.

494 • HDL WITH DIGITAL DESIGN

 In this chapter, synthesis can be viewed as reverse engineering. The
user is provided with the behavioral code and is asked to develop the
logic diagram.

 Not all HDL statements can be mapped into the hardware domain.
The hardware domain is limited to signals that can take zeroes, ones, or
are left open. The hardware domain cannot differentiate, for example,
between signals and variables, as does the simulation (software) domain.

 To successfully synthesize behavior code into certain electronic chips,
the mapping has to conform to the requirements and constraints im-
posed by the electronic-chip vendor.

 Several synthesis packages are available on the market. These packages
can take behavior code, map it, and produce a net list that can be down-
loaded into the chip. This chapter focuses on learning how to synthesize
the code manually, rather than on how to use the available synthesizers.

 Two synthesizers may synthesize the same code using a different number
of the same gates. This is due to the different approaches taken by the two
synthesizers to map the code. Consider, for example, the VHDL state-
ment y := 2x. One synthesizer might approach this statement as a shift to
the left of x; another might approach it as a multiplication and might use a
multiplier, which usually results in more gates than the mere shift.

General synthesis steps can be summarized (see Figure 10.1), as follows:

Step 1: If the behavioral description of the system is available, go to Step 3.
Otherwise, formulate a flowchart for the behavior of the system.

Step 2: Use the flowchart to write a behavioral description of the system.
Be sure to review the instructions of your synthesis tools to see if
there are constraints on any of the behavioral statements you plan
to use.

Step 3: Simulate the behavioral code and verify that the simulation cor-
rectly describes the system.

Step 4: Map the behavioral statements into components or logic gates (this
chapter shows you how to do that). Be sure that the components
used are downloadable into the selected chip.

Step 5: Write a structural- or gate-level description of the components and
logic gates of Step 4. Simulate the structural description and verify
that this simulation is similar to that of Step 3.

SYNTHESIS BASICS • 495

Step 6: Use CAD tools to download the gates and components of Step 4
into the electronic chip, usually a FPGA chip.

Step 7: Test the chip by inputting signals to the input pins of the chip and
observe the output from the output pins. This step is similar to the
verification done in Step 5, except the test here is on real, physical
signals.

Use the flowchart to write a behavioral HDL
description

Simulate the behavioral module and verify
that the simulation correctly describes the

system

Map the behavioral statements into
components and logic gates (see Chapter 10)

Verify that the mapping is correct by writing a
structural description to simulate the mapped

components and logic gates.

Use CAD tools to download the components
and logic gates onto an electronic chip such

as FPGAs

Test the electronic chip to verify the
download.

Formulate a flowchart of the system

FIGURE 10.1 Synthesis steps.

496 • HDL WITH DIGITAL DESIGN

10.2 Synthesis Information From Entity and Module

Entity (VHDL) or Module in (Verilog) provide information on the in-
puts and outputs and their types for the system to be synthesized. For all the
following examples, unless otherwise explicitly stated, the digital hardware
domain in which the HDL code is synthesized consists of binary signals;
their values can be 0, 1, or tristate (open). The domain does not include
analog or multilevel signals.

10.2.1 Synthesis Information From Entity (VHDL)
In all of the examples shown here, libraries are not shown in the code

since they provide no information to the hardware domain. Consider the
VHDL code shown in Listing 10.1.

LISTING 10.1 VHDL Code for System1 Entity

entity system1 is
port (a, b : in bit; d : out bit);
end system1;

The synthesis information extracted from Listing 10.1 is summarized
in Figure 10.2; system1 has two input signals, each one bit, and one output
signal of one bit. Each signal can take 0 (low) or 1 (high).

s
y
s
t
e
M
1

d

a

b

FIGURE 10.2 Synthesis information extracted from Listing 10.1.

Consider the entity shown in Listing 10.2.

LISTING 10.2 VHDL Code for System2 Entity

entity system2 is
port (a, b : in std_logic; d : out std_logic);
end system2;

SYNTHESIS BASICS • 497

System2 also has two one-bit input signals and one one-bit output sig-
nal. However, because the type is std_logic, each signal can take 0 (low),
1 (high), or high impedance (open).

Consider the entity shown in Listing 10.3.

LISTING 10.3 VHDL Code for System3 Entity

entity system3 is
port (a, b : in std_logic_vector (3 downto 0);
d : out std_logic_vector (7 downto 0));
end entity system3;

System3 has two four-bit input signals and one eight-bit output signal.
The input signals can be binary or left open. Figure 10.3 illustrates the in-
formation extracted from Listing 10.3.

s
y
s
t
e
m
3

d
8

a

b

4

4

FIGURE 10.3 Synthesis information extracted from Listing 10.3.

Consider the entity shown in Listing 10.4.

LISTING 10.4 VHDL Code for System4 Entity

entity system4 is
port (a, b : in signed (3 downto 0);
 d : out std_logic_vector (7 downto 0));
end entity system4;

System4 has two four-bit signals and one eight-bit signal. The input
signals are binary; the output signal can be binary or high impedance.

Consider the entity shown in Listing 10.5.

LISTING 10.5 VHDL Code for System5 Entity

entity system5 is
port (a, b : in unsigned (3 downto 0);

498 • HDL WITH DIGITAL DESIGN

 d : out std_logic_vector (7 downto 0));
end entity system5;

Synthesis information extracted from Listing 10.5 is identical to that
extracted from Listing 10.4. Now consider the entity shown in Listing 10.6.

LISTING 10.6 VHDL Code for System6 Entity

entity system6 is
port (a, b : in unsigned (3 downto 0);
 d : out integer range -10 to 10);
end entity system6;

System6 has two four-bit input signals and one five-bit output signal.
In the hardware domain, the integer is represented by binary, so five bits
is adequate for representing d. Figure 10.4 illustrates the information ex-
tracted from Listing 10.6.

d
5

a

b

s
y
s
t
e
m
6

4

4

FIGURE 10.4 Synthesis information extracted from Listing 10.6.

Consider the entity in Listing 10.7.

LISTING 10.7 VHDL Code for System7 Entity

entity system7 is
 generic (N : integer := 4; M : integer := 3);
 Port (a, b : in std_logic_vector (N downto 0);
 d : out std_logic_vector (M downto 0));
end system7;

Because N = 4 and M = 3, system7 has two five-bit input signals and one
four-bit output signal. All signals are binary. N and M have no explicit hard-
ware mapping. Figure 10.5 illustrates the synthesis information extracted
from the code of Listing 10.7.

SYNTHESIS BASICS • 499

s
y
s
t
e
m
7

d
4

a

b

5

5

FIGURE 10.5 Synthesis information extracted from Listing 10.7.

Consider the entity in Listing 10.8.

LISTING 10.8 VHDL Code for ALUS2 Entity

package codes is
type op is (add, mul, divide, none);
end;
use work. codes;

entity ALUS2 is
 port (a, b : in std_logic_vector (3 downto 0);
 cin : in std_logic; opc : in op;
 z : out std_logic_vector (7 downto 0);
 cout : out std_logic; err : out Boolean);
end ALUS2;

The package codes defines type op. Signal opc is of type op. In
our digital hardware domain, there are only zeros and ones. Packages and
libraries have no explicit mapping into the hardware domain; they are simu-
lation tools. To map the signal opc into the hardware domain, the signal is
decoded. Because the signal can take one of four values (add, mul, divide,
or none), it is decoded into two bits. A possible decoding is shown in Table
10.1. Better decoding could be used; choose the one that yields the mini-
mum number of components after minimization.

TABLE 10.1 Decoding of Signal opc

Code Binary Code
add 00
mul 01
divide 10
none 11

500 • HDL WITH DIGITAL DESIGN

Figure 10.6 illustrates the information extracted from the Listing 10.8.
As shown, entity ALUS2 has two input signals, a and b, each of four bits, one
input signal cin of one bit, one input signal opc of two bits, one output sig-
nal z of eight bits, one output signal cout of one bit, and one output signal
err of one bit. The Boolean type is mapped to binary 0 or 1.

A
L
U
S
2

z

cout

8

a

b

cin

opc err

4

2

4

FIGURE 10.6 Synthesis information extracted from Listing 10.8.

Consider the entity and package shown in Listing 10.9.

LISTING 10.9 VHDL Code for Array1 Entity

package array_pkg is
constant N : integer := 4;
constant M : integer := 3;
subtype wordN is std_logic_vector (M downto 0);
type strng is array (N downto 0) of wordN;
end array_pkg;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use work.array_pkg.all;

entity array1 is
 generic (N : integer := 4; M : integer := 3);
 Port (a : in strng; z : out std_logic_vector (M downto 0));
end array1;

SYNTHESIS BASICS • 501

From the package, type strng is an array of five elements, and each ele-
ment is four bits wide, so entity array1 has five input signals, each of four
bits. The output of array1 is a four-bit signal. Figure 10.7 illustrates the
synthesis information extracted from the code of Listing 10.9.

a
r
r
a
y
1

z
4

a(0)

a(1)

a(2)

a(3)

a(4)

4

4

4

4

4

FIGURE 10.7 Synthesis information extracted from Listing 10.9.

Now consider the entity shown in Listing 10.10.

LISTING 10.10 VHDL Code for Weather_frcst Entity

package weather_fcst is
Type cast is (rain, sunny, snow, cloudy);
Type weekdays is (Monday, Tuesday, Wednesday,
 Thursday, Friday, Saturday, Sunday);
end package weather_fcst;
library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.weather_fcst.all;
entity WEATHER_FRCST is
port (Day_in : in weekdays; out_temperature : out integer
 range -100 to 100; out_day : out weekdays;
 out_cond : out cast);
end WEATHER_FRCST;

Elements of type cast in package weather_fcst can be decoded by
two bits, as shown in Table 10.2.

502 • HDL WITH DIGITAL DESIGN

TABLE 10.2 Decoding Elements of Type cast

Code Binary Code
rain 00
sunny 01
snow 10
cloudy 11

The elements of type weekdays need three bits to be decoded.
Table 10.3 shows a possible decoding of these elements.

TABLE 10.3 Decoding Elements of Type weekdays

Code Binary Code
Monday 000
Tuesday 001
Wednesday 010
Thursday 011
Friday 100
Saturday 101
Sunday 110

Accordingly, entity WEATHER_FRCST has one input signal, Day_in,
which is three bits, an output signal, out_temperature, of seven bits, an
output signal, out_day, of three bits, and an output signal, out_cond, of two
bits. Figure 10.8 illustrates the synthesis information extracted from the
code of Listing 10.10.

W
E
A
T
H
E
R
|
F
R
C
S
T

out_temperature
7

Day_in

out_day

out_cond

3

2

3

FIGURE 10.8 Synthesis information extracted from Listing 10.10.

SYNTHESIS BASICS • 503

Consider the code shown in Listing 10.11

LISTING 10.11 VHDL Code for Entity Procs_Mchn

library ieee;
use ieee.std_logic_1164.all;

package state_machine is
Type machine is (state0, state1, state2, state3);
Type st_machine is
record
state : machine;
weight : natural range 3 to 16;
Measr : std_logic_vector (5 downto 0);
end record;
end package state_machine;

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;
use work.state_machine.all ;

entity Procs_Mchn is
port (S : in machine; Y : in st_machine;
 Z : out integer range -5 to 5);
end Procs_Mchn;

The entity Procs_Mchn has two inputs, S and Y, and one output, Z. Input
S is of type machine; this type has four elements, so input S is mapped to
two bits. Input Y is of type st_machine; this type is record (a collection of
different types). The record includes type state, which is mapped to a
two-bit signal, type weight, which is mapped to a five-bit signal, and type
Measr, which is mapped to a six-bit signal. So, signal Y is mapped to six
bits (the largest out of two, five, and six). Output Z is mapped to a four-bit
signal. Figure 10.9 shows the synthesis information extracted from the code
of Listing 10.11.

504 • HDL WITH DIGITAL DESIGN

P
r
o
c
s
|

M
c
h
h

Z
4

S

Y

2

6

FIGURE 10.9 Synthesis information extracted from Listing 10.11.

10.2.2 Verilog Synthesis Information From Module Inputs/Outputs
Verilog, in contrast to VHDL, does not have a large variety of types. In

the following, we discuss synthesis information that can be extracted from
the inputs and outputs of a module. Consider the code shown in Listing
10.12.

LISTING 10.12 Verilog Code for Module System1v

module system1v (a, b, d);
input a, b;
output d;
endmodule

From Listing 10.12, system1v has two input signals, a and b, each of one
bit, and one output signal d of one bit. All signals can take 0, 1, or high
impedance. Figure 10.10 shows the synthesis information extracted from
Listing 10.12.

s
y
s
t
e
m
1
v

d

a

b

FIGURE 10.10 Synthesis information extracted from Listing 10.12.

SYNTHESIS BASICS • 505

Consider the Verilog code shown in Listing 10.13.

LISTING 10.13 Verilog Code for Module System2v

module system2v (X, Y, Z);
input [3:0] X, Y;
output [7:0] Z;
reg [7:0] Z
........
endmodule

Listing 10.13 describes system2v with two input signals, X and Y, each of
four bits, and one output signal, Z, of eight bits. The statement reg [7:0]
Z; does not convey any additional information to the hardware domain;
its use is solely for simulation. Figure 10.11 illustrates the information ex-
tracted from Listing 10.13.

s
y
s
t
e
m
2
v

Z
7

X

Y

4

4

FIGURE 10.11 Synthesis information extracted from Listing 10.13.

Consider the code shown in Listing 10.14.

LISTING 10.14 Verilog Code for Module System3v

module system3v (a, b, c);
parameter N = 4;
parameter M = 3;
input [N:0] a;
output [M:0] c;
input b;
.........
endmodule

506 • HDL WITH DIGITAL DESIGN

Module system3v has two input signals, a and b, and one output signal
c. Input a is a five-bit signal, input b is one bit, and output c is a four-bit sig-
nal. Parameter has no explicit mapping in the hardware domain; it is just a
simulation tool to instantiate N and M. Figure 10.12 illustrates the synthesis
information extracted from Listing 10.14.

s
y
s
t
e
m
3
v

c
4

a

b

5

FIGURE 10.12 Synthesis information extracted from Listing 10.14.

Consider the code shown in Listing 10.15.

LISTING 10.15 Verilog Code for Module Array1v

module array1v (start, grtst);
parameter N = 4;
parameter M = 3;
input start;
output [3:0] grtst;
reg[M:0] a[0:N];
..............
endmodule

Module array1v has one one-bit input signal (start) and one four-bit out-
put signal (grtst). The register a is an array of five elements, each of four
bits. This register is mapped to five signals, each of four bits. Figure 10.13
illustrates the synthesis information extracted from Listing 10.15.

SYNTHESIS BASICS • 507

a
r
r
a
y
1
v

grtst
4

start
a[0]

a[1]
a[2]

a[3]

a[4]

4

4

4

4

4

FIGURE 10.13 Synthesis information extracted from Listing 10.15.

10.3 Mapping Process and Always in the Hardware Domain

Process (VHDL) and Always (Verilog) are the major behavioral state-
ments. These statements are frequently used to model systems with data
storage such as counters, registers, and CPUs. The first line in both state-
ments declares, among other factors, the sensitivity list. This list determines
the signals that activate process or always. The following examples illus-
trate the mapping of process and always.

10.3.1 Mapping the Signal-Assignment Statement to Gate Level
Consider the entity (module) shown in Listing 10.16.

LISTING 10.16a Mapping VHDL Code for Signal-Assignment Statement Y <= X

library ieee;
use ieee.std_logic_1164.all;

entity SIGNA_ASSN is
port (X : in bit; Y : out bit);
end SIGNA_ASSN;

architecture BEHAVIOR of SIGNA_ASSN is
begin
 P1 : process (X)
 begin

 Y <= X;
 end process P1;
 end BEHAVIOR;

508 • HDL WITH DIGITAL DESIGN

LISTING 10.16b Mapping Verilog Code for Signal-Assignment Statement Y = X

module SIGNA_ASSN (X, Y);
input X;
output Y;
reg y;
always @ (X)
 begin
 Y = X;
 end
endmodule

The code in Listing 10.16 describes a one-bit input signal X and a one-bit
output signal Y (see Figure 10.14a). In VHDL Listing 10.16a, the entity
is bound to architecture BEHAVIOR. The process has X as the sensitivity
list. The signal-assignment statement states that Y = X. In the hardware
domain, this statement is mapped to a buffer. Other statements such as
begin, end, and architecture have no hardware mapping. The same ap-
plies for Listing 10.16b; the hardware is a buffer. Figure 10.14b shows this
mapping: if X changes, Y is updated. This mimics the process activation in
Listing 10.16 when an event occurs on X.

S
I
G
N
A
|
A
S
S
N

YX

X Y

FIGURE 10.14 Gate-level synthesis of Listing 10.16. a) Logic symbol. b) Gate-level logic diagram.

Consider the entity (module) shown in Listing 10.17.

LISTING 10.17 VHDL Code for Signal-Assignment Statement Y = 2 * X + 3:
VHDL and Verilog

VHDL Signal-Assignment Statement Y = 2  X + 3
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

SYNTHESIS BASICS • 509

entity sign_assn2 is
 port (X : in unsigned (1 downto 0);
 Y : out unsigned (3 downto 0));
end ASSN2;
architecture BEHAVIOR of sign_assn2 is
begin

P1 : process (X)
 begin
 Y <= 2  X + 3;
end process P1;
end BEHAVIOR;

Verilog Signal-Assignment Statement Y = 2  X + 3
module sign_assn2 (X, Y);
input [1:0] X;
output [3:0] Y;
reg [3:0] Y;
always @ (X)
 begin
 Y = 2  X + 3;
 end
endmodule

Listing 10.17 shows an entity (sign_assn2) with one input, x, of two
bits and one output, Y, of four bits (see Figure 10.15a). The architecture
that is bound to the entity and the Verilog module includes one process
(P1) and one always, respectively. The process (always) contains one
signal-assignment statement: Y <= 2  X + 3; (VHDL) or Y = 2  X + 3
(Verilog). To synthesize the code, construct a truth table to find the logic
diagram of sign_assn2 and use gate-level synthesis. Table 10.4 shows the
truth table of sign_assn2.

TABLE 10.4 Truth Table for Listing 10.17

Input X Output Y
X1 X0 Y3 Y2 Y1 Y0

0 0 0 0 1 1
0 1 0 1 0 1
1 0 0 1 1 1
1 1 1 0 0 1

510 • HDL WITH DIGITAL DESIGN

From Table 10.4:

 Y(0) = 1

 Y(1) = (0)X

Y(2) = (1)X X(0) + X(1) (0)X

 Y(3) = X(1) X(0)

Figure 10.15b shows the gate-level logic diagram of Listing 10.17.

Y(0)

X(0)

X(1)

1

Y(1)

Y(2)

Y(3)

S
I
G
N
A
|
A
S
S
N
2

X Y
42

(a) (b)
FIGURE 10.15 Gate-level synthesis of Listing 10.17. a) Logic symbol. b) Gate-level logic diagram.

To verify the synthesis, write the structural code for the logic diagram
shown in Figure 10.15b and then simulate it. If the simulation waveform
is the same as the simulation waveform in Listing 10.17, then the synthesis
is correct. The simulation waveform for Listing 10.17 is shown in Figure
10.16. The Verilog structural code is shown in Listing 10.18.

LISTING 10.18 Structural Verilog Code for the Logic Diagram in Figure 10.15b.

module sign_struc(X, Y);
input [1:0] X;
output [3:0] Y;
reg [3:0] Y;
always @ (X)
 begin
 Y[0] = 1'b1;
 Y[1] = ~ X[0];
 Y[2] = X[0] ^ X[1];

SYNTHESIS BASICS • 511

 Y[3] = X[1] & X[0];
end
endmodule

After simulating the code in Listing 10.18, the simulation is identical to
Figure 10.16. We conclude that the synthesis is correct.

X(0)

X(1)

Y(0)

Y(1)

Y(2)

Y(3)
FIGURE 10.16 Simulation waveform for Listing 10.17.

10.3.2 Mapping the VHDL Variable-Assignment Statement to Gate Level
The variable-assignment statement is a VHDL statement. Verilog does

not distinguish between signal- and variable-assignment statements. Con-
sider the VHDL code shown in Listing 10.19.

Listing 10.19 VHDL Variable-Assignment Statement

library ieee;
use ieee.std_logic_1164.all;

entity parity_even is
 port (x : in std_logic_vector (3 downto 0);
 C : out std_logic);

end parity_even;

architecture behav_prti of parity_even is
begin

P1 : process (x)

512 • HDL WITH DIGITAL DESIGN

variable c1 : std_logic;
 begin
 c1 := (x(0) xor x(1)) xor (x(2) xor x(3));
 C <= c1;
 end process P1;
end behav_prti;

Listing 10.19 shows an entity with one four-bit input and one one-bit out-
put (see Figure 10.17a). The architecture behav_prti is bound to the entity
and consists of one process (P1). The process contains one variable declara-
tion, variable c1 : std_logic; and two assignment statements. One of
the assignment statements is a signal, C <= c1;, and the other is a variable
assignment:

c1 := (x(0) xor x(1)) xor (x(2) xor x(3));

The hardware domain cannot distinguish between signal and variable;
all we have in the hardware domain are signals. To synthesize the code, no-
tice that signal C takes the value of variable c1, so in the hardware domain,
c1 and C are one signal. The variable-assignment statement includes three
XOR functions that are mapped to three XOR gates. More details on logical
operators are covered in Section 10.3.3. Figure 10.17b shows the gate-level
synthesis of Listing 10.19.

c

X(2)

X(1)

X(0)

X(3)

p
a
r
i
t
y
|
e
v
e
n

cX
4

(a) (b)
FIGURE 10.17 Gate-level synthesis of Listing 10.19. a) Logic symbol. b) Gate-level logic diagram.

10.3.3 Mapping Logical Operators
Mapping logical operators is relatively straightforward because finding

the gate counterpart of a logical operator is very easy. For example, the
mapping of logical operator and (VHDL) or & (Verilog) is an AND gate.
Table 10.5 shows the logical operators in VHDL and Verilog and their gate-
level mappings.

SYNTHESIS BASICS • 513

TABLE 10.5 Logical Operators and Their Gate-Level Mappings

Logical Operator Gate-Level Mapping
VHDL Verilog

and & AND
or | OR
not ~ INVERTER
xor ^ XOR
xnor ^~ XNOR

To illustrate the mapping of logical operators, consider the code in List-
ing 10.20.

LISTING 10.20 Mapping Logical Operators: VHDL and Verilog

VHDL: Mapping Logical Operators
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity decod_var is
 port (a : in std_logic_vector (1 downto 0);
 D : out std_logic_vector (3 downto 0));
end decod_var;

architecture Behavioral of decod_var is

begin
dec : process (a)
variable a0bar, a1bar : std_logic;
 begin
 a0bar := not a(0);
 a1bar := not a(1);
 D(0) <= not (a0bar and a1bar);
 D(1) <= not (a0bar and a(1));
 D(2) <= not (a(0) and a1bar);
 D(3) <= not (a(0) and a(1));
 end process dec;

end Behavioral;

Verilog: Mapping Logical Operators
module decod_var (a, D);

514 • HDL WITH DIGITAL DESIGN

input [1:0] a;
output [3:0] D;
reg a0bar, a1bar;
reg [3:0] D;
always @ (a)

 begin
 a0bar = ~ a[0];
 a1bar = ~ a[1];
 D[0] = ~ (a0bar & a1bar);
 D[1] = ~ (a0bar & a[1]);
 D[2] = ~ (a[0] & a1bar);
 D[3] = ~ (a[0] & a[1]);
 end
endmodule

The statements

a0bar := not a(0); -- VHDL
a0bar = ~ a[0]; // Verilog

represent an inverter. The input to the inverter is the least significant bit of
the input a. The statements

D[3] = ~ (a[0] & a[1]); -- VHDL
D(3) <= not (a(0) and a(1)); // Verilog

represent a two-input NAND gate. The input is a, and the output is the
most significant bit of D.

Figure 10.18 shows the synthesis of the code in Listing 10.20.

a(1)

a(0)

D(3)

D(2)

D(1)

D(0)d
e
c
o
d
|
v
a
r

Da 2 4

(a) (b)
FIGURE 10.18 Gate-level synthesis of Listing 10.20. a) Logic symbol. b) Gate-level logic diagram.

SYNTHESIS BASICS • 515

10.3.4 Mapping the IF Statement
Consider the HDL IF-else statement shown in Listing 10.21.

LISTING 10.21 Example of IF-else Statement: VHDL and Verilog

VHDL IF-else Description
process (a, x)
begin
 if (a = '1') then
 Y <= X;
 else
 Y <= '0';
 end if;
end process;

Verilog IF-else Description
always @ (a, X)
begin
 if (a == 1'b1)
 Y = X;
 else
 Y = 1'b0;
end

The IF statement in Listing 10.21 is synthesized by just an AND gate, as
shown in Figure 10.19.

Y
X
a
FIGURE 10.19 Gate-level synthesis of Listing 10.21.

Now, consider the IF statement shown in Listing 10.22.

LISTING 10.22 Example of Multiplexer IF-else Statement: VHDL and
Verilog

VHDL Multiplexer IF-else Description

process (a, X, X1)
begin
 if (a = '1') then
 Y <= X;

516 • HDL WITH DIGITAL DESIGN

 else
 Y <= X1;
 end if;
end process;

Verilog Multiplexer IF-else Description
always @ (a, X, X1)
begin
 if (a == 1'b1)
 Y = X;
 else
Y = X1;
 end

The IF statement in Listing 10.22 represents a 2x1 multiplexer. Figure
10.20 shows the synthesis of Listing 10.22.

Y

X

a

X1

FIGURE 10.20 Gate-level synthesis of Listing 10.22.

Consider the IF statement shown in Listing 10.23.

LISTING 10.23 Example of Comparison Using IF-else Statement: VHDL
and Verilog

VHDL IF-else Statement
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity IF_st is
 port (a : in std_logic_vector (2 downto 0);
 Y : out Boolean);
end IF_st;

architecture IF_st of IF_st is
begin

IfB : process (a)

SYNTHESIS BASICS • 517

variable tem : Boolean;
begin
 if (a < "101") then
 tem := true;
 else
 tem := false;
 end if;
Y <= tem;
end process;
end IF_st;

Verilog IF-else Statement
module IF_st (a, Y);
input [2:0] a;
output Y;
reg Y;
always @ (a)
begin
if (a < 3’b101)
Y = 1'b1;
else
Y = 1'b0;
end
endmodule

To find the gate-level mapping of Listing 10.23, construct a truth table (see
Table 10.6).

TABLE 10.6 Truth Table for Listing 10.23

Input a Output Y
a2 a1 a0 Y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

518 • HDL WITH DIGITAL DESIGN

Figure 10.21 shows the K-map of Listing 10.23. From the figure, the Bool-
ean function of Y is:

Y = a(2) a(1) a(0)

a1a0

a2

0

0

1

10110100

Y

1 0 0

1

1

1 1

FIGURE 10.21 K-map for Listing 10.23.

From the Boolean function, draw the gate-level synthesis for Listing 10.22
as shown in Figure 10.22.

Y

a(0)

a(1)

a(2)
FIGURE 10.22 Gate-level synthesis of Listing 10.23.

Now consider the elseif (VHDL) and Else-If (Verilog) statements
in Listing 10.24.

LISTING 10.24 Example of elseif and Else-If: VHDL and Verilog

VHDL elseif Description

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

entity elseif is
port (BP : in natural range 0 to 7;
 ADH : out natural range 0 to 15);
 end;

SYNTHESIS BASICS • 519

architecture elseif of elseif is

 begin
 ADHP : process(BP)
 variable resADH : natural := 0;
 begin
 if BP <= 2 then resADH := 15;
 elsif BP >= 5 then resADH := 0;
 else
 resADH := BP  (-5) + 25;
 end if;

ADH <= resADH;
end process ADHP;
end elseif;

Verilog Else-If Description
module elseif (BP, ADH);
input [2:0] BP;
output [3:0] ADH;
reg [3:0] ADH;
always @ (BP)
begin
 if (BP <= 2) ADH = 15;
 else if (BP >= 5) ADH = 0;
 else
 ADH = BP  (-5) + 25;
 end
endmodule

Notice that the variable resADH in Listing 10.24 (VHDL) is identical
in value to the output ADH. Accordingly, resADH is not mapped into the
hardware domain. To synthesize the code, construct the truth table (see
Table 10.7).

TABLE 10.7 Truth Table for Listing 10.24

BP
bit210

ADH
bit3210

000 1111
001 1111
010 1111
011 1010

520 • HDL WITH DIGITAL DESIGN

BP
bit210

ADH
bit3210

100 0101
101 0000
110 0000
111 0000

From Table 10.7, construct K-maps to find ADH (see Figure 10.23).

Bp1Bp0

Bp2

0

0

1

10110100

ADH(0)

1 0 0

0

1

1 1

Bp1Bp0

Bp2

0

0

1

10110100

ADH(1)

1 0 0

1

0

1 1

FIGURE 10.23 K-maps of Table 10.7.

From the K-maps, we find:

ADH(0) = ADH(2) = Bp(1) Bp(0) Bp(2) Bp(1) Bp(2) Bp(0)

 ADH(1) = ADH(3) = Bp(2)

Figure 10.24 shows the gate-level synthesis of Listing 10.24.

ADH(0)
ADH(2)

ADH(1)
ADH(3)

Bp(0)

Bp(1)

Bp(2)

FIGURE 10.24 Gate-level synthesis of Listing 10.24.

SYNTHESIS BASICS • 521

Now consider the code in Listing 10.25.

LISTING 10.25 Example of IF Statement with Storage: VHDL and Verilog

VHDL IF Statement with Storage
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity If_store is
port (a, X : in std_logic; Y : out std_logic);
end If_store;

architecture If_store of If_store is

begin
 process (a, X)
 begin
 if (a = ‘1’) then
 Y <= X;

 end if;
 end process;
end If_store;

Verilog IF Statement with Storage
module If_store (a, X, Y);
input a, X;
output Y;
reg Y;
always @ (a, X)
 begin
 if (a == 1’b1)
 Y = X;
 end
endmodule

The IF statement in Listing 10.25 is similar to that of Listing 10.22,
except when a = 0. In Listing 10.22, the value of the output Y is explicitly
stated when a = 0. In Listing 10.25, the code states that when a = 0, there
should be no change in the values of any signal. This means that the value
of all signals should be stored during the execution of the IF statement. To

522 • HDL WITH DIGITAL DESIGN

store signals in the hardware domain, latches or flip-flops are used. In List-
ing 10.25, signal a is implemented as a clock to a D-latch; the input to the
latch is the signal X. If a = 0, then the output of the latch stays the same. If
a = 1, then the output follows the input X. Figure 10.25 shows the mapping
of Listing 10.25 to the hardware domain.

Q YDX

a

Qclk

FIGURE 10.25 Synthesis of Listing 10.25.

Consider the code in Listing 10.26.

Listing 10.26 Else-If Statement with Gate-Level Logic

package weather_fcst is
Type unit is (cent, half, offset);

end package weather_fcst;

library ieee;
use ieee.std_logic_1164.all;
use work.weather_fcst.all;

entity weather is
 port (a : in unit; tempr : in integer range 0 to 15;
 z : out integer range 0 to 15);
end weather;

architecture weather of weather is

begin
T : process (a, tempr)
variable z_tem : integer range 0 to 15;
 begin
 if ((tempr <= 7) and (a = cent)) then
 z_tem := tempr;

SYNTHESIS BASICS • 523

 elsif ((tempr <= 7) and (a = offset)) then
 z_tem := tempr + 4;

 elsif ((tempr <= 7) and (a = half)) then
 z_tem := tempr /2;

 else
 z_tem := 15;

 end if;

 z <= z_tem;
 end process T;
end weather;

From the entity (module), we can summarize the extracted information
as follows:

 Input a is a two-bit signal.

 Input tempr is a four-bit signal.

 Output z is a four-bit signal.

The code can be summarized as shown in Table 10.8.

TABLE 10.8 Summary of the Code in Listing 10.26

a tempr z
00 (cent) 0–7 z = tempr

01 (offset) 0–7 z = tempr + 4
10 (half) 0–7 z = tempr/2

11 xx z = 15
xx >7 z = 15

If we want to construct a truth table, it will be a (2 + 4 = 6) six-bit input
and four-bit output; this table will be huge and cannot be analyzed easily.
Accordingly, the code in Listing 10.26 is analyzed logically. Input a can be
the select lines of a multiplexer. The multiplexer has four inputs; each input
is a four-bit signal representing one of the four values tempr, tempr+4,
tempr/2, or the constant 15. Figure 10.26 shows this analysis using register
transfer level (RTL) logic.

524 • HDL WITH DIGITAL DESIGN

Four
4x1

MUX
z

0

1

2

3

tempr

tempr

tempr+4Logic 1

Logic 2 tempr/2

15

Select

4

4

4

4

4

2

FIGURE 10.26 RTL synthesis of Listing 10.26.

To find the gate-level synthesis of Logic 1 in Figure 10.26, construct a
truth table as shown in Table 10.9.

TABLE 10.9 Truth Table for Logic 1

tempr tempr +4
bit3210 bit3210

0000 0100
0001 0101
0010 0110
0011 0111
0100 1000
0101 1001
0110 1010
0111 1011

1000–1111 dddd

Inspecting Table 10.8, tempr +4 can be written as:

tempr +4(0) = tempr (0)

tempr +4(1) = tempr (1)

tempr +4(2) = tempr(2)

tempr +4(3) = tempr (2)

For logic 2, do the same as for Logic 1. Table 10.10 shows the truth table
of Logic 2.

SYNTHESIS BASICS • 525

TABLE 10.10 Truth Table for Logic 2

tempr tempr/2
bit3210 bit3210

0000 0000
0001 0000
0010 0001
0011 0001
0100 0010
0101 0010
0110 0011
0111 0011

1000-1111 dddd

After inspecting Table 10.10:

tempr/2(0) = tempr (1)

tempr /2(1) = tempr (2)

 tempr /2(2) = 0

 tempr /2(3) = 0

For the select in Figure 10.26 to satisfy the condition temp  7, tempr (3)
must be equal to 0. Accommodating the values of a, construct a truth table
as shown in Table 10.11.

TABLE 10.11 Truth Table for Figure 10.26 Select

Tempr(3) a(1) a(0) Select
0 0 0 00
0 0 1 01
0 1 0 10
0 1 1 11
1 0 0 11
1 0 1 11
1 1 0 11
1 1 1 11

Figure 10.27 shows the K-maps of Table 10.11. From the K-maps:

526 • HDL WITH DIGITAL DESIGN

Select(0) = temp(3) + a(0)
Select(1) = temp(3) + a(1)

Incorporating the gate-level logic of Logic 1, Logic 2, and Select in Figure
10.26, the synthesis diagram of Listing 10.26 is shown in Figure 10.28.

a(1)a(0)

tempr(3)

0

1

0

10110100

Select (0)

1 1 1

1

1

0 1

a(1)a(0)

tempr(3)

0

1

1

10110100

Select (1)

1 1 1

1

1

0 0

FIGURE 10.27 K-maps for Table 10.11.

tempr(0) tempr+4(0)

tempr(1) tempr/2(0)
tempr(2) tempr/2(1)

0 tempr/2(2)

0 tempr/2(3)

tempr(1) tempr+4(1)

tempr(2)
tempr(3)

a(0)

a(1)

tempr+4(2)

tempr+4(3)

Select (0)

Select (1)

Four
4x1

MUX
z

0

1

2

3

tempr

tempr

tempr+4Logic 1

Logic 2 tempr/2

15

Select

4

4

4

4

4

4

2

FIGURE 10.28 Synthesis of Listing 10.26.

SYNTHESIS BASICS • 527

10.3.5 Mapping the case Statement
Mapping the case statement is very similar to mapping the IF state-

ment. The case statement is treated as a group of IF statements. Consider
the case statement in Listing 10.27.

LISTING 10.27 Example of case Mapping

module case_nostr (a, b, ct, d);
input [3:0] a, b;
input ct;
output [4:0] d;
reg [4:0] d;
always @ (a, b, ct)
begin
case (ct)
1’b0 : d = a + b;

1’b1 : d = a - b;
endcase
end

endmodule

To synthesize the above code, construct a truth table. This table would
have (4 + 4 +1 = 9) nine bits input for a, b, and ct, and five bits for the
output d. This table would yield a minimum number of gates for the code
in Listing 10.27; however, the table would be very large and hard to ana-
lyze. Another approach is to logically analyze the code using RTL blocks.
Listing 10.27 includes two operations: four-bit addition and four-bit sub-
traction. The result is expressed in a five-bit output, d. Signal ct selects
whether to add or subtract. To add, use four one-bit ripple-carry adders.
To subtract, use four one-bit subtractors, but the number of components
can be reduced by noticing that the full adder can be used as a subtractor,
as shown below:

d = a – b = a + (–b) = a + b + 1
Figure 10.29 shows the RTL synthesis of Listing 10.27. The XOR gate is
implemented to generate the complement of signal b.

528 • HDL WITH DIGITAL DESIGN

4

d

a

b

ct

Adder/subtractor

4

4

5

FIGURE 10.29 RTL synthesis of Listing 10.27.

Now, slightly change the code of Listing 10.27 to that shown in
Listing 10.28.

LISTING 10.28 case Statement with Storage

module case_str (a, b, ct, d);
input [3:0] a, b;
input ct;
output [4:0] d;
reg [4:0] d;
always @ (a, b, ct)
begin
 case (ct)
 1’b0: d = a + b;
 1’b1: ; / This is a blank statement with
 no operation (null in VHDL)/
 endcase
end

endmodule

SYNTHESIS BASICS • 529

The case in Listing 10.28 does not specify an action when ct = 1, so
a latch is used to store the value of d when ct = 1. Figure 10.30 shows the
RTL synthesis of Listing 10.28.

Q d5
Da

ct

QQE

Five
D-Latches

Four-bit
adder

54

b 4

FIGURE 10.30 RTL synthesis of Listing 10.28.

As mentioned in Chapter 3, Verilog has a variation of the command
case, casex. Listing 10.29 shows a Verilog code using casex.

LISTING 10.29 Verilog casex

module Encoder_4 (IR, RA);
input [3:0] IR;
output [3:0] RA;
 reg [3:0] RA;
 always @ (IR)
 begin
 casex (IR)
 4’bxxx1 : RA = 4’d1;
 4’bxx10 : RA = 4’d2;
 4’bx100 : RA = 4’d4;
 4’b1000 : RA = 4’d8;
 default : RA = 4’d0;
 endcase
 end
endmodule

To synthesize the code in Listing 10.29, build a truth table as shown in
Table 10.12.

530 • HDL WITH DIGITAL DESIGN

TABLE 10.12 Truth Table for the Code in Listing 10.29

Input Output
IR RA

xxx1 0001
xx10 0010
x100 0100
1000 1000

Others 0000

Notice the input IR has explicit value for all of its entries, so synthesis does
not need storage. By inspecting Table 10.12, the Boolean function of the
output can be written as:

 RA(0) = IR(0)

 RA(1) = IR(0) IR(1)

 RA(2) = IR(0) IR(1) IR(2)

RA(3) = IR(0) IR(1) IR(2) IR(3)

Figure 10.31 shows the logic diagram of Listing 10.29.

RA(1)
IR(0)

IR(1)

RA(2)
IR(0)
IR(1)
IR(2)

RA(3)

IR(0)

IR(1)

IR(2)
IR(3)

RA(0)IR(0)

FIGURE 10.31 Logic diagram of Listing 10.29.

Now consider the code shown in Listing 10.30. This code is slightly differ-
ent from that of Listing 7.9 (see Chapter 7).

SYNTHESIS BASICS • 531

LISTING 10.30 Example of case with Storage

library IEEE;
use IEEE.STD_LOGIC_1164.all;
package types is
type states is (state0, state1, state2, state3);
end;
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use work.types.all;
entity state_machine is
 port (A, clk : in std_logic; pres_st : buffer states;
 Z : out std_logic);
end state_machine;

architecture st_behavioral of state_machine is

begin

FM : process (clk, pres_st, A)
variable present : states := state0;
begin
if (clk = ‘1’ and clk’event) then
--clock’event is an attribute to the signal clk;
--the above if Boolean expression means the positive
-- edge of clk
--
 case pres_st is
 when state0 =>
 if A ='1' then
 present := state1;
 Z <= '0';
 else
 present := state0;
 Z <= '1';
 end if;

 when state1 => if A ='1’ then
 present := state2;
 Z <= '0';
 else
 present := state3;

532 • HDL WITH DIGITAL DESIGN

 Z <= '0';
 end if;

 when state2 => if A ='1' then
 present := state3;
 Z <= '1';
 else
 present := state0;
 Z <= '0';
 end if;

 when state3 => if A ='1' then
 present := state0;
 Z <= '1';
 else
 present := state2;
 Z <= '1';
 end if;
 end case;

pres_st <= present;
end if;
end process FM;
end st_behavioral;

In Listing 10.30, the package types declares user-select types state0,
state1, state2, and state3. To decode these user-selected types into
the hardware domain, two bits are needed. So, state0 is decoded as 00,
state1 as 01, state2 as 10, and state3 as 11. The libraries are software
constructs that have no mapping into the hardware domain.

Now let us summarize the information collected from the entity. The
name of the system or entity is state-machine. The system has a one-bit
input A, a one-bit input clk, two-bit input/output states, and a one-bit out-
put Z. The architecture consists of case and IF statements. Let us see if we
need to use a storage element. Consider the case statement:

case pres_st is
 when state0 => if A ='1' then
 present := state1;
 Z <= '0';
 else
 present := state0;
 Z <= '1';
 end if;

SYNTHESIS BASICS • 533

In order to know to which state to go, we need to know the present state.
For example, if the present state is state0, then the next state can be
state1 or state0. The code implies that the current state must be remem-
bered, so, accordingly, storage elements are needed to synthesize the code.
The best approach here is to follow the same steps covered in Chapter 4 for
analyzing state machines. Write the excitation table of the machine and use
D flip-flops. Table 10.13 shows the excitation table for Listing 10.30.

TABLE 10.13 Excitation Table for Listing 10.30

Present State Input Next State Output D Flip-Flop
Q1 Q0 A Q1+ Q0+ Z D1 D0
0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 1
0 1 0 1 1 0 1 1
0 1 1 1 0 0 1 0
1 0 0 0 0 1 0 0
1 0 1 1 1 1 1 1
1 1 0 1 0 1 1 0
1 1 1 0 0 1 0 0

From Table 10.13, construct K-maps to minimize the outputs.
 Figure 10.32 shows the K-maps.

Q1Q0

A

0

1

0

10110100

D0

1 0 0

0

1

0 1

Q1Q0

A

0

1

0

10110100

D1

1 1 0

1

0

0 1

Q1Q0

A

0

1

1

10110100

Z

1 0 1

1

0

1 0

FIGURE 10.32 K-maps for Table 10.13.

534 • HDL WITH DIGITAL DESIGN

From the K-maps, find the Boolean function of the system as:

 D0 = A Q1 Q0 + A Q0

D1 = Q0 Q1 + A Q0 + AQ1 Q0

 Z = Q1 + A Q0

From the Boolean function, the logic diagram of the system is drawn. Fig-
ure 10.33 shows the logic diagram of Listing 10.30.

10.3.6 Mapping the Loop Statement
Loop in HDL description is an essential tool for behavioral modeling. It

is, however, easier to code than it is to synthesize in the hardware domain.
The problem is the repetition involved in the loop. For example, consider
the VHDL Loop statement shown in Listing 10.31.

LISTING 10.31 A For-Loop Statement: VHDL and Verilog

VHDL For-Loop Statement
for i in 0 to 63 loop
temp(i) := temp(i) + b(i);
end loop;
Verilog For-Loop Statement

Z
s5

s0s1

s4 s3 s2

A

Clock

Q0

Q0clk

D0

Q1

Q1clk

D1

FIGURE 10.33 RTL logic diagram of Listing 10.30.

SYNTHESIS BASICS • 535

for i = 0; i <= 63; i = i + 1
 begin
 temp[i] = temp[i] + b[i];
 end

As shown in Listing 10.31, the loop repeats the statement temp(i) =
temp(i) + b(i) 64 times. This statement can be synthesized using adders.
Each time the statement repeats, the index of the operands to be added is
incremented. So the three lines of code in Listing 10.31 result in 64 adders.
The straightforward approach to synthesizing a loop is to expand the loop
into statements and synthesize each statement individually. For example,
the loop in Listing 10.31 can be logically written as:

temp(0) = temp(0) + b(0)
temp(1) = temp (1) + b(1)
temp(2) = temp(2) + b(2)
……………………………

temp(63) = temp(63) + b(63)

Each statement is synthesized as a one-bit adder.

EXAMPLE 10.1 SYNTHESIS OF THE LOOP STATEMENT

Consider the VHDL behavioral code shown in Listing 10.32.

LISTING 10.32 VHDL Code Includes For-Loop

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Listing10_32 is

port (a : in std_logic_vector (3 downto 0);
 c : in integer range 0 to 15;
 b : out std_logic_vector (3 downto 0));
 end Listing10_32;
 architecture Listing10_32 of Listing10_32 is
 begin
 shfl : process (a, c)
 variable result, j : integer;
 variable temp : std_logic_vector (3 downto 0);
 begin

 result := 0;

536 • HDL WITH DIGITAL DESIGN

 lop1 : for i in 0 to 3 loop
 if a(i) = ‘1’ then
 result := result + 2i;
 end if;
 end loop;
 if result > c then
 lop2 : for i in 0 to 3 loop
 j := (i + 2) mod 4;
 temp (j) := a(i);
 end loop;
 else
 lop3 : for i in 0 to 3 loop
 j := (i + 1) mod 4;
 temp (j) := a(i);
 end loop;
 end if;
 b <= temp;
 end process shfl;
end Listing10_32;

The code in Listing 10.32 describes a system with one four-bit input a,
one integer input c, and a four-bit output b. In the hardware domain, there
are only bits, so the integer c (because its range is from 0 to 15), is repre-
sented by four bits. If you are using a vendor’s synthesizer, be sure to spec-
ify the integer range; otherwise, the synthesizer, because it does not know
the range, will allocate more than 32 bits for the integer. Figure 10.34
summarizes the information retrieved from the entity.

L
I
S
T
I
N
G
10
|

32

b
4

a

c

4

4

FIGURE 10.34 Information retrieved from entity Listing 10.32.

The simulation output of the system described by Listing 10.32 is shown in
Figure 10.35. From the figure, the system shuffles input a with two shuf-
fling patterns, depending on whether or not a is greater than c.

SYNTHESIS BASICS • 537

a 1011 1100 0100 0110 1110 0111

b 1110 0011 1000 1100 1011 1110

c 7 7 7 7 7 7
FIGURE 10.35 Simulation output of Listing 10.32.

The code in Listing 10.32 included a process labeled shfl . The process
has an IF statement and three For-Loops: lop1, lop2, and lop3. The
first For-Loop, lop1, converts the std_logic_vector a to an integer. This
conversion is ignored by the hardware domain; the main goal of this conver-
sion is to be able to compare a with the integer c. The hardware views the
variable result and a as the same signal. The IF statement that starts with

if result > c then

is complete; if result > c, then loop lop2 is executed. Otherwise, loop
lop3 is executed. Accordingly, latches are not needed to synthesize this IF
statement. For loop lop2, expand the loop as shown in Table 10.14.

TABLE 10.14 Expanding the Loop lop2

i j temp(j) = a(i)
0 2 temp(2) = a(0)
1 3 temp(3) = a(1)
2 0 temp(0) = a(2)
3 1 temp(1) = a(3)

Notice from Listing 10.32 that the variable temp is identical to signal b;
the hardware domain views b and temp as the same signal. For loop lop2,
expand the loop as shown in Table 10.15.

TABLE 10.15 Expanding Loop lop3

i j temp(j) = a(i)
0 1 temp(1) = a(0)
1 2 temp(2) = a(1)
2 3 temp(3) = a(2)
3 0 temp(0) = a(3)

538 • HDL WITH DIGITAL DESIGN

From Tables 10.14 and 10.15, the logic diagram of the system consists
of a four-bit magnitude comparator and four 2x1 multiplexers (see Fig-
ure 10.36). The four-bit comparator can be built from four-bit adders (see
Chapter 4).

10.3.7 Mapping Procedures or Tasks
As mentioned in Chapter 6, procedures, tasks, and functions are code

constructs that optimize HDL module writing. In the hardware domain,
there is no logic for procedures or tasks; they are incorporated in the entity
or the module that calls them. Consider the Verilog code for a task shown

4x4-bit
Comparator

2X1
MUX

2X1
MUX

2X1
MUX

2X1
MUX

a < c
C(2)

C(3)

C(1)

C(0)

a(2)

a(3)

a(1)

a(0)

a(0)

a(3)

a(2)

a(3) 0

1

0

1

0

1

0

1

a(2)

a(1)

a(0)

a(1)

a > c

b(0)

Select

b(1)

b(2)

b(3)

a = c

FIGURE 10.36 RTL synthesis of Listing 10.32.

SYNTHESIS BASICS • 539

in Listing 10.33.

Listing 10.33 A Verilog Example of a Task

module example_task (a1, b1, d1);
input a1, b1;
output d1;
reg d1;
always @ (a1, b1)
begin

xor_synth (d1, a1, b1);
end

task xor_synth;
output d;
input a, b;
begin
d = a ^ b;
end
endtask

endmodule

The task is performing a logical XOR operation on two operands, a and b.
By incorporating this information in the module example_task, the module
can be summarized as a system with two one-bit inputs, a1 and b1, and one
one-bit output, d1. The relationship between d1 and a1 and b1 is:

d1 = a1 Å b1

The synthesis of this module is shown in Figure 10.37.

d1
a1

b1

FIGURE 10.37 Synthesis of Listing 10.33.

Now consider the code shown in Listing 10.34.

LISTING 10.34 An Example of a Procedure

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

540 • HDL WITH DIGITAL DESIGN

entity Int_Bin is
generic (N : integer := 3);
port (X_bin : out std_logic_vector (N downto 0);
 Y_int : in integer;
 flag_even : out std_logic);
end Int_Bin;

architecture convert of Int_Bin is

procedure itb (bin : out std_logic_vector;
 signal flag : out std_logic;
 N : in integer; int : inout integer) is

begin
if (int MOD 2 = 0) then
 flag <= ‘1’;
 else
 flag <= ‘0’;
end if;
for i in 0 to N loop

 if (int MOD 2 = 1) then
 bin (i) := ‘1’;
 else
 bin (i) := ‘0’;
 end if;

 int := int / 2;

end loop;
end itb;

begin
process (Y_int)
variable tem : std_logic_vector (N downto 0);
variable tem_int : integer;

begin
 tem_int := Y_int;
 itb (tem, flag_even, N, tem_int);
 X_bin <= tem;
end process;
end convert;

SYNTHESIS BASICS • 541

Let’s analyze the procedure itb. This procedure has two outputs (fl ag
and bin), one input (N) and one inout (int). In the hardware domain, there
is no distinction between variables and signals: all are signals. Also, type inte-
ger has to be converted to binary. The signal flag checks to see if signal int is
divisible by two (even) or not (odd). This is done by the statements:

if (int MOD 2 = 0) then
 flag <= ‘1’;
 else
 flag <= ‘0’;
end if;

The procedure also includes a For-Loop:

for i in 0 to N loop

 if (int MOD 2 = 1) then
 bin (i) := ‘1’;
 else
 bin (i) := ‘0’;
 end if;

 int := int / 2;
end loop;

The loop is converting type integer int to binary bin. This conversion
is not mapped to the hardware domain. As mentioned above, all signals in
the hardware domain are binary; we cannot have an integer signal in the
hardware domain. So, for our synthesis, the procedure is performing a test
to see whether the signal is even or odd.

Now let’s analyze the entity Int_Bin. The entity has two outputs: a
four-bit signal X_bin (because N = 3) and a one-bit signal fl ag_even. The
entity has one input of type integer, Y_int. The entity has one process:

process (Y_int)
variable tem : std_logic_vector (N downto 0);
variable tem_int : integer;

begin
 tem_int := Y_int;
 itb (tem, flag_even, N, tem_int);
 X_bin <= tem;
end process;

542 • HDL WITH DIGITAL DESIGN

The process is calling the procedure itb, the integer Y_int is con-
verted to binary X_bin, and fl ag_even is assigned a value of 1 if Y_int is
even or 0 if it is odd. To find the hardware logic of fl ag_even, notice that if
a binary number is even, its least significant bit is 0. Otherwise, the num-

ber is odd. So, fl ag_even = X_bin(0) . That is all there is to the synthesis of
Listing 10.34. Figure 10.38 shows the synthesis of Listing 10.34; it is just a
single inverter.

X_bin(0) Flag_even
FIGURE 10.38 Synthesis of Listing 10.34.

10.3.8 Mapping the Function Statement
Functions, like procedures, are simulation constructs; they opti-

mize the HDL module writing style. Consider the Verilog code shown in
Listing 10.35.

LISTING 10.35 Verilog Example of a Function

module Func_synth (a1, b1, d1);
input a1, b1;
output d1;
reg d1;

always @ (a1, b1)
begin
d1 = andopr (a1, b1);
end

function andopr;
input a, b;
begin

andopr = a ^ b;
end
endfunction

endmodule

In the hardware domain, there is no distinction between the main mod-
ule and a function; we look to see what the function is performing and then
incorporate this information in the entity or module where the function

SYNTHESIS BASICS • 543

is being called. For example, in Listing 10.35, the function andopr is per-
forming an AND logical operation on two operands. The result is a single
operand. In the module Func_synth, this function is called to perform an
AND operation on the two inputs of the module, a1 and b1; the result is
stored in the output of the module d1. Listing 10.35 is synthesized as shown
in Figure 10.39; it has an AND gate with two one-bit inputs, a1 and b1, and
a one-bit output, d1.

x 011 000 100 001 101 0111

y 1011 0101 1101 0111 0111 0111
FIGURE 10.39 Synthesis of Listing 10.35.

Another example of function synthesis is shown in Listing 10.36.

LISTING 10.36 Example of Function Synthesis

module Function_Synth2 (x, y);

input [2:0] x;
output [3:0] y;
reg [3:0] y;
always @ (x)
begin
y = fn (x);
end

function [3:0] fn;
input [2:0] a;
begin

if (a <= 4)

fn = 2  a + 5;
end
endfunction

endmodule

The function in Listing 10.36 has one three-bit input a and one four-bit
output fn. If the value of the input is less than or equal to four, the output
is calculated as fn = 2  a + 5. If the input is greater than four, the func-
tion does not change the previous value of the output. Incorporating the
function into the module Function_Synth2, we summarize the module as

544 • HDL WITH DIGITAL DESIGN

representing a system with one three-bit input x and one four-bit output
y. If x is less than or equal to four, y = 2  a + 5. If x is greater than four,
y retains its previous value. This means that latches must be used to retain
the previous value.

Figure 10.40 shows the simulation output of the module Function_
Synth2. As is shown, if x is greater than four, y retains its previous value.
To synthesize this module, we use four high-level triggered D-latches be-
cause output y is four bits. If x is from zero to four, these latches should be
transparent; if x is from five to seven, these latches should be inactive. We
design a signal clk connected to the clock of the latches; if x is from zero to
four, the clk is high; otherwise, it is low. Table 10.16 shows the truth table
of signal clk.

x 011 000 100 001 101 0111

y 1011 0101 1101 0111 0111 0111
FIGURE 10.40 Simulation output of Listing 10.36.

TABLE 10.16 Truth Table for Signal clk

x(2) x(1) x(0) clk
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

From Table 10.16, the signal clk can be written as:

clk = x(2) x(0) x(1)

The truth table of output y when clk is high is shown in Table 10.17.

TABLE 10.17 Truth Table for Output y When clk is High

x(2) x(1) x(0) y(3) y(2) y(1) y(0)
0 0 0 0 1 0 1
0 0 1 0 1 1 1

SYNTHESIS BASICS • 545

x(2) x(1) x(0) y(3) y(2) y(1) y(0)
0 1 0 1 0 0 1
0 1 1 1 0 1 1
1 0 0 1 1 0 1
1 0 1 d d d d
1 1 0 d d d d
1 1 1 d d d d

By inspecting Table 10.17, we find:

 y(0) = 1
 y(1) = x(0)
 y(2) = x(1)

y(3) = x(1) + x(2)
Figure 10.41 shows the synthesis of Listing 10.36.

clk

X(0)

X(1)

X(2)

D0 y(0)1

D1 y(1)

D2 y(2)

D3 y(3)

FIGURE 10.41 Synthesis of Listing 10.36.

546 • HDL WITH DIGITAL DESIGN

As shown in Figure 10.41, the main components of the synthesis are
latches. These latches are for storing the previous values of y. If the IF
statement can be modified in Listing 10.36 to make it complete, all four
latches in Figure 10.41 can be avoided (see Exercise 10.8).

10.3.9 Mapping the Verilog User-Defined Primitive
In Chapter 8, Verilog user-defined primitive (UDP) was covered. List-

ing 10.37 shows a copy of Listing 8.15 where UDP was implemented.

LISTING 10.37 (same as Listing 8.15) Verilog Code 2x1 Multiplexer with
Active-Low Enable Using Combinational User-Defined Primitive

module Mux2x1Prmtv(A, B, SEL, Gbar,Y);
 input A,B,SEL,Gbar;

 output Y;

multiplexer MUX1 (Y, Gbar, SEL,A,B) ;

endmodule
primitive multiplexer (mux, enable, control, dataA, dataB) ;
output mux;
input enable, control, dataA, dataB;
table
// enable control dataA dataB mux
 1 ? ? ? : 0;
 0 0 1 ? : 1;
 0 0 0 ? : 0;
 0 1 ? 1 : 1;
 0 1 ? 0 : 0;
 0 x 0 0 : 0;
 0 x 1 1 : 1;
endtable
endprimitive

To synthesize the code of Listing 10.37, we follow the same steps
shown in Figure 10.1. The module can be summarized as a system with
four one-bit inputs A, B, SEL, Gbar, and one one-bit output Y. The rela-
tionship between the output and the inputs of the system is shown in the
statement table in Listing 10.37. To synthesize the code, a truth table is
built; it is very similar to the contents of the statement table except, due
to limitations of the hardware domain, the operator ? is replaced with the

SYNTHESIS BASICS • 547

“don’t care” operator x. Table 10.18 shows the truth table of representing
the module in the hardware domain.

TABLE 10.18 Truth Table for Listing 10.37

Gbar SEL A B Y

1 x x x 0
0 0 1 x 1
0 0 0 x 0
0 1 x 1 1
0 1 x 0 0
0 x 0 0 0
0 x 1 1 1

Table 10.18 is the same as Table 2.4, and the logic diagram of Listing 10.37
is the same as Figure 2.9.

10.4 Summary

This chapter covered the fundamentals of hardware synthesis. We
looked at synthesis as reverse engineering; HDL code was synthesized it
into gates and latches. The steps of synthesizing any system can be sum-
marized as follows:

1. Formulate the flowchart of the system.

2. Write the behavioral code of the system.

3. Simulate the behavioral code to verify the code.

4. Map the behavioral statements into hardware components and gates.

5. Write the structural code for the components and gates.

6. Simulate the structural code and compare it with the behavioral simula-
tion to verify the mapping.

7. Download the components and gates into an electronic chip.

8. Test the chip to verify that the download represents the system.

The hardware domain is very limited in comparison to the simulation
domain. For example, the hardware domain cannot distinguish between
VHDL variables and signals. We learned how to map behavioral statements

548 • HDL WITH DIGITAL DESIGN

such as IF, case, and For-Loop. Any signal that needs to retain a value must
be mapped using latches. Procedures, tasks, functions, and user-defined
primitives are simulation tools; they do not have explicit hardware map-
pings. The operations they perform should be incorporated in the entity or
in the module to be synthesized. Integers should be declared, if possible,
with a range. This reduces the number of bits the synthesizer allocates for
the integer. If the range is not specified, the synthesizer allocates at least 32
bits for integers.

10.5 Exercises

1. Synthesize the code in Listing 10.38, simulate it, write the structural
description, and verify it.

LISTING 10.38 Code for Exercise 10.1

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;

entity IF_sgned is
port (a : in signed (3 downto 0); Y : out Boolean);
end IF_sgned;

architecture IF_sgned of IF_sgned is

begin
IfB : process (a)
variable tem : Boolean;
begin
if (a < “1100”) then
tem := true;
else
tem := false;
end if;
Y <= tem;
end process;
end IF_sgned;

2. Synthesize the code in Listing 10.39. Simulate it, write the structural
description, and verify it.

SYNTHESIS BASICS • 549

LISTING 10.39 Code for Exercise 10.2

module elseif2 (inp, outp);
input [3:0] inp;
output [2:0] outp;
reg [2:0] outp;
always @ (inp)
begin
 if (inp[0] == 1’b1)
 outp = 3’d7;
 else if (inp[1] == 1’b1)
 outp = 3’d6;
 else if (inp[2] == 1’b1)
 outp = 3’d5;
 else
 outp = 3’d0;
end
endmodule

3. Verify the synthesis of Listing 10.26 by writing gate-level structural
VHDL code for Figure 10.26. Simulate the code and verify that the
simulation output is the same as that for Listing 10.26.

4. For the code of Listing 10.26, change the following lines:
else
 z_tem := 15;
 end if;

to just
 end if;

Synthesize the new code using multiplexers, gates, and flip-flops (if
needed).

5. Simulate the VHDL behavioral code of Listing 10.30. Write the VHDL
structural description of the logic diagram shown in Figure 10.33 and
simulate it. Verify that the two simulations are identical.

6. Synthesize the behavioral code shown in Listing 10.40 using RTL.

LISTING 10.40 Code for Exercise 10.6

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity exercise is

550 • HDL WITH DIGITAL DESIGN

port (a : in std_logic_vector (3 downto 0);
 c : in integer range 0 to 15;
 b : out std_logic_vector (3 downto 0));
 end exercise;
 architecture exercise of exercise is
 begin
 shfl : process (a, c)
 variable result, j : integer;
 variable temp : std_logic_vector (3 downto 0);
 begin

 result := 0;
 lop1 : for i in 0 to 3 loop
 if a(i) = ‘1’ then
 result := result + 2i;
 end if;
 end loop;
 if result > c then
 lop2 : for i in 0 to 3 loop
 j := (i + 3) mod 4;
 temp (j) := a(i);
 end loop;
 end if;
 b <= temp;
 end process shfl;
end exercise;

7. For Figure 10.41, write the structural code for the logic shown in the fig-
ure, simulate it, and verify that the figure is the synthesis of Listing 10.36.

8. We want to realize Figure 10.41 on a programmable device such as a
FPGA. Use the synthesis tools (provided in most cases with the HDL
package) to synthesize the code of Listing 10.36. Compare the outcome
of the synthesizer with Figure 10.41 and report the differences. Now,
use the tools provided in your HDL package to download the design
into a FPGA or compatible chip. Use the same test signals to compare
the software’s and hardware’s simulation. Report the differences and
suggest how to minimize these differences.

9. In Listing 10.36, if the statement inside function fn is written as:
function [3:0] fn;

SYNTHESIS BASICS • 551

input [2:0] a;
begin

if (a <= 4)

fn = 2  a + 5;
end
endfunction

endmodule

then it is likely that the code is intended to say that if a is greater than four,
the value of fn is unimportant. If this is true, can you modify the function’s
code to avoid using the four latches? Redraw the synthesis of your code.

10. Synthesize the code in Listing 8.18. Hint: use RTL, use a register to
synthesize the cpu address, and use a memory or group of registers to
synthesize the cache. After synhesizing, write the Verilog code of the
synthesis and verify it.

A P P E N D I X

CREATING A VHDL OR VERILOG
PROJECT USING CAD SOFTWARE
PACKAGE

A

In this appendix, the necessary steps to create a new project using Xilinx
ISE 13.1 or 14.1 software are covered. The steps include the source code
and its test bench code. Although these steps are for ISE 13.1, the same
concepts can be applied to other versions or to other vendors’ products.
These steps are for beginners. To find out more about these CAD packages,
visit the homepage of the vendor.

Step 1: Double click on the Xilinx Project Navigator icon. From the tool-
bar, select File ® New Project. A dialog box will open (see Figure A.1).

FIGURE A.1 New-project dialog box.

Step 2: In the new-project dialog box, type the desired location in the
“Project Location” field or browse to the directory under which you want
to create your new project directory using the browse button next to the
“Project Location” field.

554 • HDL WITH DIGITAL DESIGN

Step 3: Enter the name of the project. In Figure A.1, the name entered is
“AppndxDemo.”

Step 4: Click “Next,” and Figure A.2 appears. Enter the appropriate in-
formation as shown in Figure A.2. The device is the chip where the HDL
program, if desired, is downloaded after synthesis. The device in Figure A.2
is selected to be from the Spartan3E chip family.

FIGURE A.2 Project dialog box.

Step 5: Click “Next” until you see the screen depicted in Figure A.3. This
window summarizes the properties of the new project.

FIGURE A.3 Summary of entries to the project “AppndxDemo.”

Step 6: Click “Finish” (see Figure A.4). The screen now shows the name
of the project and the device.

CREATING VHDL OR VERILOG PROJECT USING CAD SOFTWARE PACKAGE • 555

FIGURE A.4 Simulation screen after clicking “Finish.”

Step 7: Attach the HDL module to your project. Click “Project” and select
“New Source” (see Figure A.5).

FIGURE A.5 Attaching a new source to the project.

Step 8: Because we are writing a VHDL module, select “VHDL Module”
and enter the name of the entity (VHDL) or module (Verilog) as the file
name in Figure A.5. The name of the file here is selected to be “DemoFul-
ladder.” It is preferable to leave the location as it is so the module and the
project are stored in the same directory. If writing Verilog, select “Verilog
Module” Instead of VHDL Module.

Step 9: Keep clicking “Next” until you can click “Finish.” You will then
have the windows shown in Figure A.6. The screen section of “Sources in
Project” shows the name of the project and the VHDL module. The right-
hand section of the screen shows a template for the VHDL module. Delete
any comments or libraries that you do not need in your module. Referring
to the left-hand side of Figure A.6, the “Processes for Source” panel shows
the tools for compiling, testing, and synthesizing the VHDL module. On
the bottom of the screen, the “Process View” panel accesses selected tools
to display reports (logs) on various activities.

556 • HDL WITH DIGITAL DESIGN

FIGURE A.6 The project and module screen.

Step 10: Enter the VHDL code for full adder. The VHDL module here
is the VHDL code for the full adder that was discussed in Chapter 2 (see
Figure 2.5). The copy, cut, and paste tools can be accessed via the “Edit”
menu on the toolbar. After finishing writing the module, click “Save.” The
screen will display the code along with tools for testing and simulating the
code (see Figure A.7).

FIGURE A.7 The full-adder module.

Step 11: Check the syntax of the VHDL program. This checking can be
done using various tools; one of these tools is the behavioral check syntax,
which appeared on the screen entitled “Processes,” as shown in Figure A.7.
To check the syntax, select the file “Demofulladder” and click on “Behav-
ioral Check Syntax.” The results of syntax checking, with detected errors (if
any), appear on the screen entitled “Console” at the bottom of Figure A.7.
If there are no errors, the VHDL code has been compiled successfully.

Step 12: After compiling the code, we need to simulate and test it. There
are several ways to simulate and test. Here, we use a test bench to simulate
and test the code. A test bench is a user-written code that assigns values
or wave forms to the input signals of the code being tested. To build a test
bench (see Figure A.8), select the file “Demofulladder” and click “Project-

CREATING VHDL OR VERILOG PROJECT USING CAD SOFTWARE PACKAGE • 557

New Source-VHDL Test Bench” and enter a name of the test bench. Here,
we assign the name “fulladTstBnch” as the name of our test bench.

FIGURE A.8 Building a test bench.

Keep clicking “Next” and then “Finish.” Figure A.9 shows the partial screen
after clicking “Finish.” Start cleaning up the template by deleting the com-
ments if wanted.

FIGURE A.9 Test-bench template.

The test-bench template declares the file “Demofulladder” (the VHDL
code) as a component and declares its associated signals, here the inputs
a, b, and c, and the output sum and carryout. The template instantiates the
signals of the full adder with the ports of the component. The template lists
several processes that can be used to instantiate values or waveforms to
each input signal. To test the full adder, we insatiate each input signal with
a clock waveform; the period of the clock is varying from one signal to the
other, so all possible values of signals a, b, and c are generated. Figure A.10
shows the test-bench code. The statements

Pa: process
 begin

558 • HDL WITH DIGITAL DESIGN

 wait for period;
 a <= not a;
 end process;

describe a process that generates a clock with a period of 20 ns. The state-
ment a <= not a; inverts signal a continuously; if a is 0, it will be inverted
to 1 and vice versa. The statement wait for period; will delay the inver-
sion of signal a for 10 ns because the period was declared to be 10 ns. This
delay and the inversion generate a clock with a period of 20 ns.


FIGURE A.10 The test-bench code.

Step 13: After checking that the test-bench code has no errors, select the
test-bench module and click on “Simulate Behavioral Model.” On the simu-
lation screen, adjust the scale to 10ns/division and click on “Run the Simu-
lation.” Figure A.11, which is a copy of Figure 2.7, shows the waveform that
should appear on the screen.

a

b

c

Sum

Carryout
FIGURE A.11 Waveform output for full adder.

