
Introduction to Embedded System Design Using
Field Programmable Gate Arrays

Rahul Dubey

Introduction to Embedded
System Design Using Field
Programmable Gate Arrays

123

Rahul Dubey, PhD
Dhirubhai Ambani Institute of Information
 and Communication Technology (DA-IICT)
Gandhinagar 382007
Gujarat
India

ISBN 978-1-84882-015-9 e-ISBN 978-1-84882-016-6

DOI 10.1007/978-1-84882-016-6

A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2008939445

© 2009 Springer-Verlag London Limited

ChipScope™, MicroBlaze™, PicoBlaze™, ISE™, Spartan™ and the Xilinx logo, are trademarks or
registered trademarks of Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124-3400, USA.
http://www.xilinx.com

Cyclone®, Nios®, Quartus® and SignalTap® are registered trademarks of Altera Corporation, 101
Innovation Drive, San Jose, CA 95134, USA. http://www.altera.com

Modbus® is a registered trademark of Schneider Electric SA, 43-45, boulevard Franklin-Roosevelt,
92505 Rueil-Malmaison Cedex, France. http://www.schneider-electric.com

Fusion® is a registered trademark of Actel Corporation, 2061 Stierlin Ct., Mountain View, CA 94043,
USA. http://www.actel.com

Excel® is a registered trademark of Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-
6399, USA. http://www.microsoft.com

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive,
Natick, MA 01760-2098, USA. http://www.mathworks.com

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case
of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing
Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free for
general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that
may be made.

Cover design: eStudio Calamar S.L., Girona, Spain

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

In memory of my father and grandmother

Preface

Overview
The realm of embedded systems is quite large and is predominantly carried out
around the general purpose processor and microcontrollers. The use of field
programmable gate array (FPGA) in microprocessor-based embedded systems is
often for glue logic or for off-loading the processor from tasks that require fast
updates. The motivation for writing this text is to present a single source of
information that can be used to understand how a FPGA and the Hardware
Description Language (HDL) can be used in the design of embedded digital
systems.

Digital design methodology has undergone several changes over the past three
decades. The use of FPGA and HDL for implementing digital logic has become
widespread in the last decade. The use of FPGA in embedded systems is still in its
nascent stage. The majority of the embedded applications are divided between an
8-bit microcontroller implementation and a 32-bit processor-based real time
operating system (RTOS) implementation. This text provides a starting point for
the design of embedded system using FPGA and HDL. To give the text a common
thread of thought from the application point of view, a design example of a
hypothetical industrial robot controller is taken up. Different chapters of the text
provide the necessary background on FPGA and HDL along with its use in
designing an industrial robot controller.

Coverage
The first FPGA, introduced in 1985, consisted of 2000 gates. Since then, gate
density has grown to tens of millions of gates. With increasing density of FPGAs,
varied hardware resources have become a standard feature of contemporary FPGA-
based devices. The text includes simulation of digital logic using Verilog HDL,
synthesis of HDL code for a given FPGA device and processor-based FPGA
devices. The focus of the HDL chapter is to emphasise the synthesizable area of
Verilog constructs and to provide a basis to understand the application examples
that follow in subsequent chapters. A chapter is devoted to the understanding of
hardware–software partitioning in a FPGA device. Proprietary 8-bit and a 32-bit
soft processors are discussed along with interfacing methodology using system-on-

viii Preface

chip interconnections. Basic technique for serial data communication, signal
conditioning, motor control and hardware prototyping is covered using FPGA and
HDL.

How to Use This Book
Moore’s law has kept the semiconductor business in a constant state of flux. It is
very difficult to write a book that uses FPGA and continues to be relevant despite
ongoing technological changes. The author has presented basic concepts and
techniques for using FPGA and hence should not change quickly. Since this book
covers vast areas of HDL and FPGAs, some sections are brief and sketchy. For this
the author recommends that the reader supplement the contents of each chapter
with additional available literature. The chapter on HDL coding and simulation
should be supplemented by standard textbooks on HDL coding and simulation. The
FPGA resources and synthesis topic should be supplemented by EDA tools
provided by different FPGA vendors and FPGA device datasheets. The contents on
FPGA embedded processors can be supplemented by application notes on
interfacing processors to custom codes and datasheets of soft processors.

FPGA Device and Tools Used
For purposes of illustration and consistency, Xilinx ISETM software and
SPARTANTM3E FPGA have been used throughout the book. Though the
exemplars are specific to this device, the concepts can be applied to FPGA devices
available from other FPGA vendors.

Gandhinagar Rahul Dubey
October 2008

Acknowledgements

Many people have contributed in the process of writing this text. First and
foremost, I wish to thank my PhD supervisors Professor Pramod Agarwal and
Professor M.K. Vasantha at IIT Roorkee, for the training they provided during my
research. Lots of impetus for being steadfast in my resolve to finish this book came
from Professor S.C. Sahasrabudhe, Director DA-IICT. I wish to thank the students
and faculty at DA-IICT for their help and support.

The synthesis reports attached with design examples were generated using
Xilinx ISETM software. I would like to thank Xilinx for letting me use their
software tool and FPGA to demonstrate various aspects of HDL and FPGA design.
I am also thankful to Doctor Parimal Patel, Xilinx, for providing valuable feedback
on the text. Certain equipment, used for hardware testing of examples in the text,
came through a research grant from the Department of Science and Technology of
the Indian Government.

This text would not have seen the light of day without the patience and support
of my family. No words can express the thoughtfulness of my wife Sulekha and
daughters Aditi and Avni for enduring the extra work hours. Toward the end of the
writing process, Sulekha helped out by proofreading large sections of the text. I
would also wish to thank my mother and younger brother Rohit for their
encouragement during the process of writing this book. My uncle Mr. Rama
Shankar Dubey has been a source of strength for all these years.

I thank Mr. Oliver Jackson and Springer for giving me the opportunity to write
this book. Also, I wish to thank Sorina Moosdorf and the team at le-tex for
meticulously checking the final draft of the manuscript.

Contents

Abbreviations.. xv

1 Introduction... 1
 1.1 Embedded System Overview... 1
 1.2 Hypothetical Robot Control System .. 2
 1.3 Digital Design Platforms ... 4
 1.3.1 Microprocessor-based Design .. 5
 1.3.2 Single-chip Computer/Microcontroller-based Design.................... 7
 1.3.3 Application Specific Standard Products (ASSPs)........................... 8
 1.3.4 Design Using FPGA ... 10
 1.4 Organization of the Book... 12
 Problems ... 14
 References ……………………………….. 15
 Further Reading………………….. .. 16

2 Hardware Description Language: Verilog.. 17
 2.1 Software and Hardware Description Languages...................................... 17
 2.2 Let’s Use Verilog as Our HDL!... 19
 2.3 Design Examples Using Verilog.. 19
 2.3.1 Gate Level Model ... 20
 2.3.2 Combinational Circuits Using Data Flow Modelling 21
 2.3.3 Behavioural Logic .. 24
 2.3.4 Finite State Machine (FSM) ... 27
 2.3.5 Arithmetic Using HDL ... 35
 2.4 Pipelining…… 40
 2.5 Module Instantiation and Port Mapping .. 40
 2.6 Use of Pre-designed HDL Codes... 45
 2.7 Simulating Digital Logic Using Verilog.. 47
 2.7.1 EDA Tool Flow for Simulation .. 47
 2.7.2 Creating a Test Bench for HDL-based Digital Logic 49
 2.7.3 Post Place and Route Simulation.. 49
 2.7.4 Simulation of Algorithm Using Pre-designed Codes.................... 51

xii Contents

 Problems ... 51
 Further Reading………………….. .. 51

3 FPGA Devices.. 53
 3.1 FPGA and CPLD ... 53
 3.2 Architecture of a FPGA ... 54
 3.2.1 FPGA Interconnect Technology ... 54
 3.2.2 Logic Cell ... 56
 3.2.3 FPGA Memory ... 61
 3.2.4 Clock Distribution and Scaling... 67
 3.2.5 I/O Standards .. 70
 3.2.6 Multipliers .. 71
 3.3 Floor Plan and Routing .. 72
 3.4 Timing Model for a FPGA... 74
 3.5 FPGA Power Usage ... 75
 Problems ... 79
 Further Reading……………. ... 80

4 FPGA-based Embedded Processor.. 81
 4.1 Hardware–Software Task Partitioning... 81
 4.2 FPGA Fabric Immersed Processors ... 82
 4.2.1 Soft Processors ... 82
 4.2.2 Hard Processors .. 84
 4.2.3 Tool Flow for Hardware–Software Co-design 84
 4.3 Interfacing Memory to the Processor... 85
 4.4 Interfacing Processor with Peripherals .. 86
 4.4.1 Types of On-chip Interfaces ... 88
 4.4.2 Wishbone Interface... 89
 4.4.3 Avalon Switch Matrix .. 90
 4.4.4 OPB Bus Interface.. 90
 4.5 Design Re-use Using On-chip Bus Interface ... 92
 4.6 Creating a Customized Microcontroller... 94
 4.7 Robot Axis Position Control.. 98
 Problems ... 100
 References…………………... 101
 Further Reading……………. ... 101

5 FPGA-based Signal Interfacing and Conditioning 103
 5.1 Serial Data Communication... 103
 5.2 Physical Layer for Serial Communication ... 106
 5.2.1 RS-232-based Point-to-Point Communication 106
 5.2.2 RS-485-based Multi-point Communication................................ 106
 5.3 Serial Peripheral Interface (SPI) .. 109
 5.4 Signal Conditioning with FPGAs .. 111
 Problems ... 113
 References……………………... 114

 Contents xiii

6 Motor Control Using FPGA... 115
 6.1 Introduction to Motor Drives ... 115
 6.2 Digital Block Diagram for Robot Axis Control..................................... 115
 6.2.1 Position Loop.. 116
 6.2.2 Speed Loop... 117
 6.2.3 Power Module .. 118
 6.3 Case Studies for Motor Control ... 119
 6.3.1 Stepper Motor Controller.. 119
 6.3.2 Permanent Magnet DC Motor .. 122
 6.3.3 Brushless DC Motor ... 125
 6.3.4 Permanent Magnet Rotor (PMR) Synchronous Motor 126
 6.3.5 Permanent Magnet Synchronous Motor (PMSM) 131
 Problems ... 135
 Further Reading…………… .. 136

7 Prototyping Using FPGA ... 139
 7.1 Prototyping Using FPGAs ... 139
 7.2 Test Environment for the Robot Controller ... 142
 7.3 FPGA Design Test Methodology... 143
 7.3.1 UART for Software Testing ... 143
 7.3.2 FPGA Hardware Testing Methodology...................................... 144
 Problems ... 151
 References…………………... 152

Index .. 153

Abbreviations

ABEL Advanced Boolean expression language
ADC Analogue-to-digital converter
ANSI American National Standards Institute
ASIC Application specific integrated circuit
ASSP Application specific standard product

BUFG Global clock buffer

CAD Computer aided design
CAN Controller area network
CE Clock enable
CLB Configurable logic block
CLK Clock signal
CMOS Complementary metal oxide Semiconductor
CPLD Complex programmable logic device

DAC Digital-to- analogue converter
DCI Digitally controlled impedance
DCM Digital clock manager
DRAM Dynamic random access memory
DSP Digital signal processor

EDA Electronic design automation
EDIF Electronic digital interchange format
EMI Electromagnetic interference
EPROM Erasable programmable read only memory

FF Flip flop
FIFO First in first out
FIR Finite impulse response (filter)
fMax Frequency maximum

xvi Abbreviations

FPGA Field programmable gate array
FSM Finite state machine

GPP General purpose processor
GPS Global Positioning System
GPIO General purpose I/O
GTL Gunning transceiver logic
GTLP Gunning transceiver logic plus
GUI Graphical user interface

HDL Hardware description language
HEX Hexadecimal
HSTL High-speed transceiver logic

I/O Inputs and outputs
ISR Interrupt service routine
IEEE Institute of Electrical and Electronics engineers
ILA Integrated logic analyzer
IOB Input output block
IP Intellectual property
ISA Instruction set architecture
ISP In system programming

JEDEC Joint Electron Device Engineering Council
JTAG Joint Test Advisory Group

LAN Local area network
LC Logic cell
LCD Liquid crystal display
LSB Least significant bit
LUT Look-up table
LVCMOS Low-voltage complementary metal oxide semiconductor
LVDS Low-voltage differential signaling
LVPECL Low-voltage positive emitter-coupled logic
LVTTL Low Voltage transistor to transistor logic

MAC Multiply and accumulate
MOSFET Metal oxide semiconductor field effect transistors
MSB Most significant bit
MUX Multiplexer

NAND Not and
NRE Non-recurring engineering (cost)
NRZ Non-return to zero

 Abbreviations xvii

OE Output enable
OTP One time programmable

PACE Pinout and area constraints editor
PCB Printed circuit board
PCI Peripheral component interconnect
PCMCIA Personal Computer Memory Card International Association
PLC Programmable logic controller
PI Proportional integral
PLD Programmable logic device
PWM Pulse width modulation

RAM Random access memory
RMS Root mean square
ROM Read only memory

SCR Silicon controlled rectifier
SDF Standard delay format
SOP Sum of product
SPI Serial peripheral interface
SRAM Static random access memory
SRL16 Shift register LUT
SSTL Stub series terminated transceiver logic

TTL Transistor-transistor logic
Tpd Time of propagation delay (though the device)

UART Universal asynchronous receiver transmitter
UCF User constraints file

VHDL VHSIC high level description language
VHSIC Very high speed integrated circuit
VREF Voltage reference

XOR Exclusive OR
XST Xilinx synthesis technology

1

Introduction

Digital systems and their design have evolved greatly over the last four decades.
Rising densities and speed have provided designers a huge canvas to create
complex digital systems. Present-day embedded systems use single-chip
microcontrollers. Contemporary microcontrollers are available with 8-, 16- and 32-
bit processing capability along with a peripheral set containing ADC, timer/counter
and networks (I2C, CAN, SPI, and UART). For most applications the
microcontroller-based board is adequate. For applications where there is a need to
integrate custom logic for faster control and additional peripherals, the
microcontroller or microprocessor board is augmented by a FPGA or an
application specific standard product (ASSP) device. The focus of this chapter is to
understand different digital design methodologies before embarking on a full
fledged description of the use of a custom digital design based on a FPGA.

1.1 Embedded System Overview

Embedded systems are usually single function applications. Various functional
constraints associated with embedded systems are low cost, single-to-fewer
components, low power, provide real-time response and support of hardware-
software co-existence. A general methodology used in designing an embedded
system is shown in Table 1.1.

The decision on the kind of digital platform to be used takes place during the
system architecture phase as each embedded application is linked with its unique
operational constraints. Some of the constraints of a digital controller of embedded
system hardware include (in no particular order) the following:

• Real-time update rate
• Power
• Cost
• Single chip solution
• Ease of programming
• Portability of code

2 Introduction to Embedded System Design Using Field Programmable Gate Arrays

• Libraries of re-usable code
• Programming tools.

Table 1.1. Embedded system design flow [1]

Design phase Design phase details

Requirements Functional requirements and non-functional requirements
(size, weight, power consumption and cost)

User specifications User interface details along with operations needed to
satisfy user request

Architecture Hardware components (processor, peripherals,
programmable logic and ASSPs), software components
(major programs and their operations)

Component design Pre-designed components, modified components and new
components

System integration
(hardware and software)

Verification scheme to uncover bugs quickly

1.2 Hypothetical Robot Control System

For understanding different digital design platforms, this text uses the design of a
digital controller for a robot as a case study. The robot is a hypothetical, vertically
articulated robot system for an automated assembly line. The process of designing
this controller will help in understanding various digital design concepts. Figure
1.1 shows the various components of an assembly line robot. Each robot consists
of five electric motors that work as actuators for different joints of the robot. A
programming pendant or workstation is used to program the movements of the
robot along with a communications network to link this robot to other robots on the
assembly line. Various sensors are interfaced to the robot control system.

Data
communications

Fig. 1.1. Vertically articulated robot system used in an assembly line environment

 Introduction 3

The typical requirements of an Industrial robot controller include

• Control method for point-to-point control using servomotors
• Position detection using incremental or absolute encoder system
• Return to origin using limit switches and encoder
• Trajectory control
• Programming using a personal computer.

Table 1.2. Tasks for robot digital controller

Task Subtask Update time

Gate Driver, protection and
current sensing

Fraction of a
microsecond

Dead time Microseconds

Closed-loop torque control Tens of
microseconds

Closed-loop speed control Hundreds of
microseconds

Position coordinate
interpolation

Milliseconds

Control of
joint motors

Host communications Tens of milliseconds

Sensor signal
processing

ADC, DAC Tens of milliseconds

Networking
applications

Low-speed network Milliseconds

Control Strategy for the Robot Controller

For implementing the robot controller on a digital system, a list of controller tasks
is created in Table 1.2 along with the update time requirements. The major tasks
for the robot controller for an articulated factory robot are

• Simultaneous control of five motors with details shown in Table 1.3.
• Signal processing of sensor inputs coming from robot environment —

encoders, limit switches, proximity sensors, vision sensor
• Communication of robot co-ordinates to other robots in the vicinity, using

CAN bus or Modbus®
• Communicating with host controller over serial port
• Computation of trajectory for robot movement.

4 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Table 1.3. Specifications of a micro articulated robot Mitsubishi Movemaster RV-M1 [2]

Axis Description Encoder pulses per
revolution (PPR)1

Gear ratio Working range in
degrees

J1 Waist 200 1:100 300°

J2 Shoulder 200 1:170 130°

J3 Elbow 200 1:110 110°

J4 Wrist pitch 96 1:180 90°

J5 Wrist roll 96 1:110 ± 180°

The tasks and their update times are shown graphically in Fig. 1.2.

Gate
driver
and

protec-
tion

Current
Sensing

Closed
loop

Torque
Control

Dead-
time

Position
Coordinate

and
Interpola-

tion

Programmable
Logic Controller

Interface

Networking.
RS-485 ,

CAN ,
GPS,Zigbee

Host
Communi-

cations

INTERFACES

USER I/O

HOST

text M

 NON-DETERMINISTIC
COMPUTATIONS

- MEMORY INTENSIVE
- FAST COMPUTATION
- NO DEDICATED HARDWARE

 REAL TIME DETERMINISTIC

COMPUTATION
 EXTERNAL HARDWARE

- DISCRETE COMPONENT

E

E
n
c
o
d
e
r

Power
Module

fraction s s10s of s100s of s1000s of smsecs μ μ μ μ μ

C
H

IP
 W

ID
E

 B
U

S

Speed
Control

Fig. 1.2. Update times needed for various control functions of a robot control system
[3]

1.3 Digital Design Platforms

Till the 1970s, electronic system designs were based on discrete analogue
components such as transistors, operational amplifiers, resistors, capacitors and
inductors. These circuits offered concurrent processing but had problems of
parameter drift with temperature and ageing. The coming of TTL-based

1 The encoder is used to find the position and speed of the robot joint. The working of the encoder
is explained in Chap. 2.

 Introduction 5

components laid the foundation of digital design. The Intel 4004 microprocessor
became the first digital platform which was configurable using software. Table 1.4
lists the major contemporary digital designs along with their relative merit.

Table 1.4. Digital design platforms

Digital design platform Merit

Microprocessors Reconfigurable using software. Good for
computations

Microcontrollers, digital signal
controllers

Combination of peripherals and CPU

Application specific standard product
(ASSP)

A specialized peripheral with the ability
to communicate with a host processor

Field programmable gate array (FPGA) Ability to combine the strengths of
processor, controller and ASSP

1.3.1 Microprocessor-based Design

The microprocessor has changed digital design methodology like no other digital
component. It started out as a 42 bit programmable CPU in 1971 and still continues
to be the digital controller of choice across several application areas. The
microprocessor brought the concept of instruction set architecture (ISA), assembler
and compiler. There are many real-time applications, with fast update rates require
programming the microprocessor in its native assembly language. This is usually
done when the size of available memory is a constraint. Even though most
commercial microprocessors used today cater to data-centric applications, there are
microprocessor cores embedded in microcontrollers for real-time control
applications.

Digital control systems, like the robot application use a processor by using
interrupts for real-time processing. There are interrupts for calculation of robot arm
trajectory, encoder and sensor feedback, control of motors and networks. Each
interrupt will occur based on the update time requirement of the given task. Figure
1.3 shows the generic nature of interrupt processing, where an interrupting device
seeks CPU attention. A microprocessor-based robot controller carries out the task
of arm positioning based on the flowchart shown in Fig. 1.4.

2 The early Intel 4004 and the 8086 processor had close to 2300 and 29000 transistors. A basic 2
input NAND gate consists of 4 transistors. Effectively the early Intel processors 4004 and 8086
used only 575 and 7250 gates. This helps to put in perspective the amount of digital logic that can
be accomodated in a 500,000 gate FPGA.

6 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Start

Hardware initialization

Software variables
initialization

Waiting loop

Interrupt service
routine (ISR)

Initialization Algorithm* Waiting time

Sampling Period T = 60 µs

Software Start

Timer
Count

 * On every interrupt, the CPU updates the results of the algorithm

Timer Interrupt

Fig. 1.3. Interrupt service routine (ISR) based processing scheme of processor-controller
control scheme

Because most single core general purpose processors (GPP) are single-
threaded (can process one instruction at a time), the processor use can become very
high when managing multiple interrupts from different tasks of the robot
controller. This can be seen from Fig. 1.5, where processor CPU use increases
linearly with each motor.

 Introduction 7

Start of position control
loop interrupt service

routine (ISR)

Read motion command
of J1–J5 axis from

operator pendant or
stored in memory

Calculation of each axis
movement based on

point-to-point trajectory

For axis 1

Read encoder
generated position and
speed value of Jx axis

Calculate speed
reference based on

position controller for Jx
axis

Calculate motor
command reference

(PWM) for Jx axis

Is update of
position and speed
loops done for all

axes?

Return to calling function

Fig. 1.4. Processor-interrupt-based flowchart needed for computing a control action
[4]

µs

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

µs

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

µs

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

µs

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

µs

Motor axis current loop at 10 kHz Motor axis speed loop at 1 kHz

CPU
utilization for

motor J1

CPU
utilization for

motor J2

CPU
utilization for

motor J3

CPU
utilization for

motor J4

CPU
utilization for

motor J5
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

CPU
utilization for

all motors

Fig. 1.5. CPU use for axis motor control for a single-threaded controller

1.3.2 Single-chip Computer/Microcontroller-based Design

The microcontroller represents the next generation of controllers for embedded
systems. It allows creating systems with fewer numbers of components by

8 Introduction to Embedded System Design Using Field Programmable Gate Arrays

incorporating peripherals that were earlier externally interfaced with the general
purpose processor. A block diagram of a typical single-chip controller, which is
used as a robot motor controller, is shown in Fig. 1.6.

Like the microprocessor, tasks in a microcontroller design environment are
divided as per the update rates required. For tasks requiring low update rates,
coding is accomplished using a software programming language such as C. Tasks
that need to have high deterministic update rates are coded using the native
assembly language for a particular microcontroller. In the robot application at
hand, many of the motor control routines require update rates of a few kilohertz.
Traditionally, these routines are written in assembly language. It is difficult to port
routines written in assembly language as they are tied to a CPU’s ISA. The other
constraint with a microcontroller-based system is the fixed number of available
peripherals. Though microcontroller vendors offer a wide range of devices with
different numbers and types of peripherals, it is not always possible to find one that
matches the application requirements perfectly.

P
ro

pr
ie

ta
ry

 p
er

ip
he

ra
l b

us

10-bit analogue-to-
digital converter

Serial peripheral
interface

Watchdog

Three 8-bit I/O ports

Status
Registers,Aux.

Registers

CPU Core

EEPROM

Data RAM

P
ro

gr
am

/D
at

a
bu

s

WorkstationPeripherals

M

~

Timers

PWM outputs

Compare outputs

Dead band logic

Quadrature encoder pulse
interface

Power interface

Fig. 1.6. Single-chip microcontroller environment for a motor control application

1.3.3 Application Specific Standard Products (ASSPs)

An ASSP is a configurable logic component for a specific application. The
functionality of an ASSP is tweaked by specifying its control word. ASSPs are
made in volumes and cater to the generic requirements of the application. Most of

 Introduction 9

the time, ASSP-based designs are used on a PCB. In the robot control application
at hand, an ASSP can be used for controlling the motor for each axis of the robot.
Based on the type of motor and control strategy used, a corresponding ASSP is
chosen. Two examples of ASSPs for motor control include LM629 from National
Semiconductor for control of a brushed DC motor and SA628 (see Fig. 1.7a and b)
for three-phase motor control. Configurable ASSPs provide address, data and
control bus connectivity for interfacing with the host processor.

Phasing and
control logic

Pulse
Width

Deletion

Pulse
Delay
Circuit

Driver

Pulse
Width

Deletion

Pulse
Delay
Circuit

Driver

Pulse
Width

Deletion

Pulse
Delay
Circuit

Driver

Waveform ROM

Address
generator

Amplitude
reference

table

Acceleration/
Deceleration

block

Speed
reference

table

Crystal
clock

generator

Trip latch

Reset

Direction

Set 1–4

Raccel

Rdecel

XTAL1

XTAL2

Vmonitor

Imonitor

Trip

Set trip

Upper Output
Red phase

Lower Output

Upper Output
Yellow phase
Lower Output

Upper Output
Blue phase

Lower Output

a

Position/velocity profile generator

Quadrature decoder

S

Host
interface

Digital PID filter
(16 bits)

+

 –

Direction

PWM

H-Bridge

Quadrature incremental
encoder

Sign

Magnitude

Control lines

Host I/O port

DC motor
LM629

b

Fig. 1.7. a ASSP chip SA628 for control of a three-phase AC Induction Motor
[5]; b ASSP chip LM629 for control of a DC motor

10 Introduction to Embedded System Design Using Field Programmable Gate Arrays

1.3.4 Design Using FPGA

The present-day FPGA provides a platform that supports both processor and
custom logic requirements. The microcontrollers currently have an edge over the
FPGA in terms of power and cost. But FPGAs are catching up by offering
portability of code across various FPGA vendors, libraries of re-usable code and
availability of low-cost programming tools. Programmable devices that were
traditionally low gate count devices are now in a position to support large parts of
digital system logic. The digital designer today has a viable option of using only
the FPGA device as the embedded system controller. The availability of high-
density, low-cost FPGA devices has given digital designers lots of flexibility to
design custom digital architectures using FPGA and HDLs. FPGA devices have
evolved from their glue logic predecessor to a device that now contains a large
variety of built-in digital components (memory, multipliers, transceivers and many
more). FPGA device density has risen over the years and at the same time its cost
has made it economically viable for use in several applications. Contemporary
FPGAs contain thousands of look up tables (LUTs) and FFs for implementing
complex digital logic.

Contemporary FPGAs offer

• Reconfigurability: Field programmable devices can be reconfigured at any
time. Designers can integrate modifications or do complete personality
changes.

• Software-defined design: The hardware is defined by software-like
languages (HDL). Designers can develop, simulate and test a circuit fully
before “running” it on a field programmable device.

• Parallelism: Circuits defined in an FPGA can be designed in a completely
parallel fashion. This is similar to using multi-path analogue circuits. A
user can instantiate multiple hardware implementations on the same chip
without cross-module interference or computation loading. An example of
FPGA-based concurrent processing is shown in Fig. 1.8.

Clock of processor, controller

Task update interval

Task 1 execution time

Task 2 execution time

Task 3 execution time

Clock PLD

Task update interval PLD

Task 1 execution time PLD

Task 2 execution time PLD

Task 3 execution time PLD

Fig. 1.8. Multi-tasking scheme using a GPP vis-à-vis a FPGA

 Introduction 11

• High speed: Because an FPGA is a hardware implementation running with
fast clock rates, designers can achieve very high speeds. Coupled with
parallelism, FPGA implementation can outperform processor-based
systems.

• Reliability: Designers can expect true hardware reliability from FPGAs
because there is no operating system or driver layer3 that can affect system
uptime.

• IP protection and re-use: Once compiled and downloaded to a FPGA,
hardware implementation is difficult to reverse engineer. A tested hardware
design can be re-used multiple times by instantiating.

FPGA-based systems are gaining acceptance because these systems integrate
digital logic design, processors and communication interface on a single chip. The
front end design flow of a FPGA is very similar to that of a custom logic design.
Almost all FPGA vendors offer a suite of software tools that allows a designer to
simulate, synthesize, place and route and program the FPGA. Table 1.5 shows the
different design tools offered by two leading vendors. Once a designer feels
comfortable in a particular design suite, it is easy to migrate to another vendor’s
design tools because they work in a similar fashion4.

Table 1.5. Common design tools provided by two leading FPGA Vendors

Functionality XILINX ALTERA

Design synthesis,
mapping, place and
route

Integrated Software
Environment
(ISE)TM

Quartus II®

FPGA embedded
processor design tool

Embedded Design
Kit (EDK)®

System on
Programmable Chip
(SoPC) builder®

Custom peripheral
support

Yes Yes

On-Chip signal logic
analyzer

ChipScopeTM Pro SignalTap®

MATLAB® co-
simulation and IP cores
library

System GeneratorTM DSP Builder®

3 Not applicable to FPGA-based processor systems.
4 One of the strengths of HDL and associated synthesis software is to make the implementation
option wider for the designer. For consistency, this book uses a contemporary Xilinx SPARTAN-
3ETM 500K gate FPGA along with the Xilinx ISETM for illustrating various examples. The author
feels strongly that if the designer is able to master one vendor’s specific design flow along with a
given FPGA architecture, the same concepts can be applied to understand quickly and implement
a digital design using FPGAs from other vendors.

12 Introduction to Embedded System Design Using Field Programmable Gate Arrays

From an implementation point of view, a robot controller using a FPGA device
can be considered a viable alternative5, as robots are usually low-volume
application-specific systems. The FPGA allows for customization of servo-motor
type for joint control, industrial communciation network, integration of custom
peripherals and control algorithms.

Software-based design flows are suited for applications which are data centric
and hardware design flow is suited for fast real-time applications.Table 1.6
provides a transition path for migrating from microprocessor/controller to FPGA-
based design. The FPGA design process consists of design entry, which is
accomplished by using either schematic or HDL. Following the design phase,
digital logic is synthesized, mapped and placed on a FPGA6.

Table 1.6. Transition path from a microcontroller-based system to a FPGA system

Existing
microprocessor/microcontroller code

Field programmable device

Target independent ‘C’ Code Embedded processor within the FPGA
device

Target dependent assembly constructs for
routines requiring fast update rates

Target independent HDL-based coding
for routines requiring very fast update
rates

1.4 Organization of the Book

The book is organized to weave together concepts, tools and techniques to help in
designing FPGA-based embedded systems. This book does assume that the reader
is versed in the basic concepts of embedded systems programming and interfaces.
There are references at the end of each chapter where the reader can get more
information on the topics covered in the chapter. This text is trying to put together
many components of a system, so certain sections are not covered in detail but are
used to convey the concept of system design.

The sequence of chapters is to introduce basic concepts and then build upon
them. Table 1.7 details the contribution of each chapter in building up a FPGA-
based digital system.

5 The purpose of this text is to explain embedded hardware design using FPGA. It is not the
intention of this text to prove that FPGA-based robot controller is the best digital platform for
implementing the robot controller.
6 The HDL design process is described in Chap. 2. The complete design flow of synthesis,
mapping, place and route is described in Chap. 3.

 Introduction 13

Table 1.7. Preview of FPGA-based digital design implementation

Chapter FPGA design

1 2 3 4 5 6 7

The case for using FPGAs ■

Hardware description language
(HDL)

 ■

Synthesis of HDL design using FPGA
as a target device

 ■

FPGA embedded processors ■

Serial communications and
interfacing

 ■

Motor control ■

Prototyping using FPGA ■

Broadly, Chaps. 1 to 4 of the book introduce the technology and tools for
implementing digital logic using a FPGA device. Chapters 5 to 7 discuss
interfacing, motor control and prototyping using FPGA.

As shown in Fig. 1.9, different aspects of robot controller design are covered in
chapter numbers mentioned in each component.

Workstation

Soft processor (4)

Drive Logic
(6)

Chip wide peripheral bus (4)

Drive Logic
(6)

Embedded
Memory (3)UART (5)

M

M

M

M

M

M

M

M

Motor axis
control

signals (7)

Motor axis
feedback
signals

FPGA(3) HDL
programming (2)

SPI, I2C
(5)

Fig. 1.9. Contribution of each chapter (shown in parentheses) for creating a robot controller

14 Introduction to Embedded System Design Using Field Programmable Gate Arrays

The second chapter is on simulation of digital systems using Verilog as the
hardware description language (HDL). It introduces basic concepts of how a
printed circuit board (PCB) containing digital components can be modelled using
HDL and how it can be tested using software simulators. A simulation
environment of an EDA tool is also explained.

Chapter 3 of the book introduces the architecture and resources of FPGA. Each
building block of the programmable device such as embedded memory, phase-
locked loops, logic blocks, multipliers and different interfacing I/O standards are
explained along with their HDL based instantiation template. The chapter ends
with examples of digital systems and their FPGA-based synthesis results.

FPGA-based embedded processors have made it possible to migrate from
microcontroller-based embedded system design to FPGA-based embedded system
design. FPGA-based designs give the designer an option to retain much of the skill
set of high-level software programming. Now instead of coding in a native
assembly language for a particular processor — deterministic tasks can be coded in
HDL. Chapter 4 provides methodology on bringing together the software and the
hardware worlds. FPGA immersed processors along with different interfacing
buses connect to external standard and custom peripherals. A system-on-chip is
created using this approach.
Chapter 5 discusses FPGA-based interfaces. It covers basic data communication
using HDL and FPGA and protocols. The chapter also discusses asynchronous and
synchronous serial data communications. The second section of the chapter
discusses basic signal conditioning of the acquired signal.

The actuator is the last component of the control loop. In the robot example
used in this book, the electric motor is the actuator for various joints of the robot.
Chapter 6 discusses digital design and control implementation of different motors
— stepper, permanent magnet DC motor, brushless DC motor, permanent magnet
synchronous motor (PMSM) and permanent magnet reluctance motor.

The last chapter of the text is on prototyping the different schemes discussed
using a FPGA-based board. It discusses various hardware verification and
interfacing techniques, which are useful for hardware system integration.

Problems

1. Give an example of a application suited for a microcontroller and for a
FPGA. Justify why one cannot replace the other.

2. What are the limitations of a FPGA-based system vis-à-vis a custom ASIC-
based system.

3. How is real-time processing done on a GPP or a microcontroller based
system by using interrupts?

4. What kind of power constraints are part of an articulated factory robot and
that of a robotic rover shown in Fig. 1.10?

5. The robotic rover application (shown in Fig. 1.10) involves travel along
terrains either by use of a remote link such as the Global Positioning
System (GPS). The rover collects information about its surroundings using

 Introduction 15

sensors and relays it to a base station or operator console. A list of tasks for
this rover includes

a. Power management for the rover
b. Control of six motors
c. Signal processing of sensor inputs coming from the robotic

environment using a vision sensor.
d. Determining the robot position using GPS
e. Communicating with the host controller using ZigBee
f. Ability to interface with various payloads — new sensors, new

actuators.

Partition the tasks as per their update time requirements and comment on
the suitability of putting the task on a FPGA or a GPP.

M1 M3 M5

M2 M4 M6M2
drive

FPGA based
controller

GPS

Ultrasonic
sensor

ZigBee
transceiver

M1
drive

M4
drive

M3
drive

M5
drive

M6
drive

Processor

Fig. 1.10. Diagram of a robotic rover

References

1. Wolf W (2005) Computers as Components: Principles of Embedded Computer Systems
Design. Morgan Kaufmann, San Francisco

2. Kung YS, Shu GS (2005) Development of a FPGA-based motion control IC for robot
arm. Paper presented at IEEE Industrial conference on Industrial Technology (ICIT
2005), City University of Hong Kong, Hong Kong, December 2005

3. Goetz J, Takahashi TT (2003) A design platform optimized for inner loop motor
control. Paper presented at power conversion and intelligent motion (PCIM 2003)
conference. http://www.irf.com/technical-info/whitepaper/pcimeur03innerloop.pdf.
Accessed 15 October 2008.

4. Kung YS, Shu GS (2005) Design and implementation of a control IC for vertical
articulated robot arm using SOPC technology. Paper presented at IEEE Mechatronics
ICM 2005, pp. 532–536

5. Mallinson N (1998) Plug and play single chip controllers for variable speed induction
motor drives in white goods and HVAC systems. Paper presented at IEEE applied
power electronics conference APEC 1998, 2:756–762

16 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Further Reading

1. Maxfield C (2004) The design warrior’s guide to FPGAs – devices, tools and flow.
Newnes

2. Vahid F, Givargis T (2002) Embedded system design – A unified hardware/software
introduction. John Wiley

3. Keramas JG (1999) Robot technology fundamentals. Thomson Delmar
4. Klafter RD et al (1989) Robotic engineering, an integrated approach. Prentice-Hall
5. Balch M (2003) Complete digital design, a comprehensive guide to digital electronics

and computer architecture. McGraw Hill
6. Slater M (1989) Microprocessor-Based Design, A Comprehensive Guide to Hardware

Design. Prentice-Hall
7. Monmasson E, Chapuis Y (2002) Contributions of FPGAs to the Control of Electrical

Systems, a Review. IEEE Industrial Electronics Society Newsletter, 49(4)
8. Newman KE, Hamblen JO, Hall TS (2002) An Introductory Digital Design Course

Using a Low-Cost Autonomous Robot. IEEE transactions on Education, 45(3):289–
296

9. Kung YS et al (2006) FPGA-Implementation of Inverse Kinematics and Servo
Controller for Robot Manipulator. Paper presented at IEEE Robotics and Biomimetics,
(ROBIO 2006) at Kunming China, December 2006

10. Navabi Z (2007) Embedded Core Design with FPGAs. McGraw Hill
11. Navabi Z (2004) Digital Design and Implementation with Field Programmable

Devices. Springer
12. Navabi Z (1999) Verilog Digital System Design. McGraw Hill

2

Hardware Description Language: Verilog

The technology of translating a given digital design task into digital logic has
undergone many changes. The 1970s and 1980s witnessed a schematic design
approach. From the mid-1990s onward, digital design has been done using
hardware description language (HDL). HDLs came into existence to help the
designer with the simulation of digital logic. The availability of synthesis tools that
convert HDL logic to FPGA primitives has made HDL the digital design entry
method of choice. Given the fact that HDLs started out primarily as a simulation
language, there are many HDL constructs that cannot be synthesized to digital
logic. This chapter will focus on the synthesizable subset of constructs of Verilog
HDL. Describing a digital design using HDL is usually the first step toward
prototyping the design using FPGA. The rest of the book will use Verilog
constructs introduced in this chapter to create digital designs for interfacing,
networking, signal conditioning and motor control applications. Verilog is a vast
language, and it is beyond the scope of this chapter and book to dwell on all the
nuances of the language.

2.1 Software and Hardware Description Languages

It helps to understand broadly how a general purpose software programming
language such as C compares with the hardware description language. Both
software and hardware description languages are target device independent
languages. A code written in C can be compiled for execution on an Intel,
Motorola or ARM microprocessor. It helps if the designer knows the processor
architecture and assembly constructs. This can lead to faster and more compact
programs. But for applications where memory and speed are not a constraint, the
designer can get by, without knowing the details of the underlying processor
architecture.

In the way software programming language shields the programmer from
getting caught up in the details of an individual processor’s assembly language, the

18 Introduction to Embedded System Design Using Field Programmable Gate Arrays

HDLs present a similar advantage. Here the digital designer writes a description
for a digital circuit using HDL, without worrying about the primitives7 of a target
device. For most high-level software description languages, the execution is single
–threaded because there is a single CPU core attending to the execution of logic8.
In HDL, the designer can model and construct different concurrent paths for
executing logic. This is why HDLs are said to model and aid in implementing the
concurrent behaviour of circuits.

Does it mean the end of software programming languages? No, these languages
continue to contribute to the design of digital and embedded systems. Chapter 4
will discuss more on the use of software programming languages when designing
FPGA-based processor systems.

Basic Concept of HDLs – Verilog and VHDL

With most digital design exceeding thousands of gates, the schematic design
approach has given way to more abstract descriptions of digital design. This more
abstract design methodolgy is based on hardware description language.
Contemporary HDL languages started out as simulation languages. Very high
speed integrated circuit hardware description language (VHDL) started out as a
U.S. Department of Defense initiative. It was primarily meant to integrate and
correlate simulation results of digitial circuits from various defense vendors.
Similarly, Verilog evolved as a tool for verifying logic in the digital domain. Both
VHDL and Verilog are defined by IEEE standards. Verilog has been through
revisions to cover deficiencies. Verilog is defined by the IEEE standard 1364. The
IEEE 1364-1995 and IEEE 1364-2001 refer to Verilog-95 and Verilog-2001.
Today with the help of EDA synthesis tools, code written in HDL can be
synthesized into target specific architectures. Both HDLs can be understood by the
way their design approach mirrors the use of discrete chips on a PCB.

Verilog divides its constructs into four levels of abstraction. The first level of
abstraction is the switch level, where individual MOS transistor-based switches are
interconnected to form gates and flip-flops. The second level of abstraction is the
gate level, where one can instantiate basic gates and interconnect them to form a
digital system. Both the switch level and gate level constructs are rarely used in
designing high density digital logic. The third level of abstraction, the data flow
provides interconnection of different combinational logic circuits using a single
statement. Behavioural modeling supports the most abstract level of construct
using HDL. Here the designer can code digital design in the format of a high-level
software language. For Verilog, behavioural constructs resemble the C
programming language constructs. Even though each abstraction layer defines
different keywords, signals between different abstraction layers can be
interconnected.

7 Primitives are the assembly level constructs of the hardware world. Chapter 3 discusses in detail
the commonly used primitives of the Xilinx field programmable gate array (FPGA)
8 Multi-core processors can execute several threads of logic independently!

 Hardware Description Language: Verilog 19

2.2 Let’s Use Verilog as Our HDL!

The case for a particular HDL (either Verilog or VHDL) cannot be argued9. Let us
say, we decided to use Verilog by tossing a coin. For the remainder of this text, we
will use Verilog 2001 for design examples.

One of the ways of understanding many concepts of HDL is to view its use
from the view point of a PCB. PCBs in the 1980s had lots of 74xx series chips that
were interconnected using copper tracks. If you happen to have an old computer
from the 1980s, you will notice discrete 74xx chips on the motherboard used for
address decoding and latching data/address buses. Increased gate densities made it
feasible to incorporate large quantities of combinational and sequential logic onto a
single programmable chip. It is difficult to spot those 74xx series chips on the
motherboard because they are now contained in a single chip.

te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt

te
xt
te
xt
te
xt
te
xt
te
xt
te
xt

te
xt
te
xt

te
xt
te
xt
te
xt
te
xt

te
xt

te
xtPopulated printed circuit board

Module_U1 (chip U1)

Module_U2 (chip U2)

Wires
Interconnecting modulesClock

Reset

Top module (the PCB containing several chips)

Module_U3 (chip U3)

Input A

Input B

Input C

Output X

Output Y

Output Z

Fig. 2.1. Populated printed circuit board analogy of Verilog HDL

The fundamental concept of Verilog module, port list and wires can be
explained by using basic PCB design terminology. As shown in Fig. 2.1, each chip
on the PCB is a module in Verilog HDL. The port list denotes the number and
type of I/O pins of the module. The interconnections between various chips on the
PCB are denoted as wires. If the PCB consists of a fixed number of IC chips, then
the entire PCB becomes a top module where the external world signals to the PCB
constitute the port list of this top module.

2.3 Design Examples Using Verilog

A HDL is better understood through examples that illustrate facets of designs. Let
us take different examples to demonstrate the use of Verilog by examples on

9 Both Verilog and VHDL have their own devout followers. For the functionality described in this
book, either of the HDLs can be used. Once one HDL is understood, it is easy to migrate to the
second using the same fundamental concepts.

20 Introduction to Embedded System Design Using Field Programmable Gate Arrays

combinational, sequential and finite state machine (FSM) based circuits. The
following section shows Verilog10 designs based on gate, data flow and
behavioural modelling.

2.3.1 Gate Level Model

The gate level constructs allow a designer to synthesize a digital circuit using basic
digital gates. Gates are synthesizable constructs supported by all synthesis tools.
The FPGA synthesis tool implements digital gates using a LUT.

Example 2.1. For safety, many sensors are used to protect a robot axis from self-
destructing. These sensors include limit switches, proximity switches and safety
interlocks. Convert the control scheme shown in Fig. 2.2, to digital logic by using
Verilog HDL.

Motor temperature
sensor

or2or1

Limit switches from
different axes

Safety interlock

Interlocks_ok

HDL
limit_sw

Fig. 2.2. Interlock circuit using basic gates

The port list of the example circuit consists of four inputs and one output. One
bit width is the default size for each I/O; hence the port size for 1-bit I/Os is not
explicitly mentioned. The code in Fig. 2.3 shows instantiation of two OR gates. To
instantiate a basic gate, the output is mentioned first followed by the inputs to the
gate. In the example, the wire limit_sw connects the output of the first OR gate
(or1) to the input of the second OR gate (or2).

module gate_1 (input lim_sw1, lim_sw2, motor_temp, safety, output interlocks_ok);

 wire limit_sw;

 or or1 (limit_sw , lim_sw1 , lim_sw2);
 or or2 (interlocks_ok , limit_sw , motor_temp , safety);

endmodule

Fig. 2.3. Verilog code for interlock circuit

10 In all HDL design examples, Verilog keyword is boldfaced. There are no accompanying test-
benches with the Verilog codes. The reader is encouraged to write test-benches to verify the codes
presented in the examples. The Verilog examples presented in the book are for illustration only.
They are neither complete nor extensively tested for use in a real system.

 Hardware Description Language: Verilog 21

Example 2.2. To hold the robot joint at the desired location after the axis has
positioned itself, a brake is often employed. This brake can be part of the motor
controlling the joint. For the robot joint to move, the brake has to be released
(usually by powering it, logic 1), when the joint has reached its pre-determined
position, the brake is set (logic 0). The diagram for this interlock is shown in
Fig. 2.4.

Input

Position_reached_1

Position_reached_n

Brake_1

Brake_n

……
……

HDL

Output

Fig. 2.4. Creating a brake interlock using digital gates

The input is a signal from a limit switch, which indicates that the desired
position is reached. A NOT gate sets the brake when this position_reached contact
is active. The inverter NOT gate is instantiated in a fashion similar tp the OR gate
in Example 2.1 (see Fig. 2.5).

module brake(input axis_position, output brake);

// Gate Instantiation

not (brake, axis_position);

endmodule

Fig. 2.5. Verilog code for brake interlock circuit

2.3.2 Combinational Circuits Using Data Flow Modelling

The data flow method is used to model asynchronous combinational logic designed
to work using the concept of transition on change. Any time an input changes, the
entire logic circuit is re-evaluated. Assign statements in Verilog are used for
modeling circuits governed by the transition of change concept. The output, which
is the left-side expression of the assign statement changes as soon as the input, the
right-side expression of the assign statement changes. The generic format for using
the assign statement,

assign output = input1 operator input2;

Table 2.1 lists the operators used for data flow modeling.

22 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Example 2.3. Create the logic for a single loop ON/OFF controller, much like the
one used in refrigerators and air-conditioners. The user sets the amount of control
action needed. The digital circuit computes the difference between the set point
and the actual temperature and turns on a relay. Figure 2.6 shows the control
scheme of the process.

Comparator
logic

AC

Set point

Process Control range

Relay

Fig. 2.6. ON/OFF controller control scheme

In this example, the inputs to the controller, set point and process values are
available from an 8-bit uni-polar ADC. The Verilog code of Fig. 2.7 uses an assign
statement to realize combination logic for computing error. A conditional operator
is used to actuate the relay.

module on_off (input [7:0] set_point, process, input [3:0] control_range, output relay);

wire [7:0] error; // Unsigned value

assign error = set_point - process; // Set point is always more than the process value

assign relay = (error > control_range) ? 1’b1 : 1’b0 ;

endmodule

Fig. 2.7. Verilog code for ON/OFF controller

 Hardware Description Language: Verilog 23

Table 2.1. Arithmetic and logic operators used for data flow design11

Operator Type Operator symbol Operation performed

* Multiply

/ Divide

+ Add

- Subtract

Arithmetic

% Modulus

! Logical negation

&& Logical and

Logical

|| Logical or

> Greater than

< Less than

>= Greater than or equal

Relational

<= Less than or equal

== Equality Equality

!= Inequality

~ Bit-wise negation

& Bit-wise and

| Bit-wise or

^ Bit-wise ex-or

Bit-wise

^~ or ~^ Bit-wise ex-nor

>> Right shift Shift

<< Left shift

Concatenation { } Concatenation

Conditional ?: Conditional

11 The Verilog arithmetic and logic operations mentioned in this table can be converted to
equivalent digital hardware, i.e. they are synthesizable. The exception is the divide (/) operation
which is supported only for powers of 2.

24 Introduction to Embedded System Design Using Field Programmable Gate Arrays

2.3.3 Behavioural Logic

The description of sequential circuits using the cyclic model is also at times
referred to as the behavioural model because it models the behaviour of the system
when an event occurs. Sequential circuits are used when register transitions are to
be modelled about a rising or falling edge of the clock. Much of the syntax of C is
seen within the behavioural model of Verilog HDL. Verilog models cyclic
behaviour based on either edge or level of clock or signal.

Verilog keyword for modelling cyclic processes is

always @ (posedge clk) // activates on the positive edge of clock
begin
…..
end

always @ (negedge clk) // activates on the negative edge of clock.
begin
…..
end

Shifting of digital data bits on a clock edge is a very common application in
digital signal processing and data communications. In digital signal processing,
data are shifted at every sample to implement a delay function designated by z–1

operation, and in data communications, the data word contents need to be serially
shifted out or serially accepted. The rate of shifting is important for both of these
applications. The clock of the shift register determines the shift rate. A shift
register is a good example to demonstrate the concept of blocking and non-
blocking statements in Verilog. Blocking assignment (=) statements execute in the
order they are specified in a sequential block (between begin and end). Non-
blocking statements (<=) allow execution of each statement without linkages to
results from previous sequential statements.

Example 2.4. Create a 4-bit shift register, where input bit stream x appears at the
output z after four rising edges of the clock.

The first model of the code is shown in Fig 2.8a. This uses the blocking style of
coding, which results in a single flip-flop, where the output is directly equated to
the input. Because the code in Fig. 2.8a uses a blocking style of coding, the four
equate statements execute in sequence. The output z is directly equated to input x.
Figure 2.8b shows the synthesis results of the code, which is an instantiation of one
flip-flop.

The second code shown in Fig. 2.8c is similar to that shown in Fig. 2.8a. The
Verilog code of Fig. 2.8c uses non-blocking statements to assign the input x to
output z in a four-stage shift register. The synthesized hardware of Fig. 2.8d shows
four FFs, which the design required. The statements in non-blocking code do not
execute sequentially. The right-hand side term of each statement executes
concurrently at every clock cycle.

 Hardware Description Language: Verilog 25

module shiftreg(input x, clock, rst, output reg z);

reg a,b,c;

always @ (posedge clock)
if (rst)
 begin
 a = 0;
 b = a;
 c = b;
 z = c;
 end

endmodule

a

D Q

C
R

FDR
x

Clock

z

rst

b

module shiftregb (input x, clock, rst, output reg z);

reg a,b,c;

always @ (posedge clock)
 if (rst)
 begin
 a <= 0;
 b <= 0;
 c <= 0;
 z <= 0;
 end
 else
 begin
 a <= x;
 b <= a;
 c <= b;
 z <= c;
 end

endmodule

c

Fig. 2.8. a Verilog code for a shift register using blocking statements; b synthesized
hardware for a shift register model using a blocking statement c Verilog code for a 4-bit
shift register model using non-blocking statements

26 Introduction to Embedded System Design Using Field Programmable Gate Arrays

D Q

C
R

FDR

D Q

C
R

FDR

D Q

C
R

FDR

D Q

C
R

FDR
X

Clock

Rst

Z

Fig. 2.8. d Synthesized hardware for a shift register model using a non-blocking statement

Example 2.5. Create a shift register to transmit bits of an input word in serial
fashion. The shift register is interfaced to a FIFO, where a read (rd) command from
the shift register is sent to get the new word from the FIFO (see Fig. 2.9).

FIFO

Shift register

Tx
Pin

rd

Input [7:0]
X

Fig. 2.9. Serial shift register connected to a FIFO

 A counter is used to shift the 8-bits of the word sequentially to the output (see
Fig. 2.10).

module shift_s(input [7:0] word, input clk, rst , output reg rd,x);

reg[2:0] count;

always @ (posedge clk)

begin
 if (rst)
 count <= 0;

 else if (count < 7)
 begin
 x <= word[count];
 count <= count +1;
 rd <= 1’b0;

 end

 else if(count == 7)
 begin
 x <= word[7];
 count <=0;
 rd <= 1’b1;
 end
 end

endmodule

Fig. 2.10. Shift register for shifting out 8 data bits

 Hardware Description Language: Verilog 27

2.3.4 Finite State Machine (FSM)

It is good design practice to breakup a given specification of digital design into
discrete pre-defined states. This ensures that all possible transitions are taken into
consideration and their response is pre-determined at the design stage. The design
of a FSM consists of a combinational logic section that determines the next state
and a sequential circuit that performs state transitions. Based on the type of circuit,
a FSM in Verilog can be coded in different ways. Finite state machines can either
transition synchronously or asynchronously. Because most digital systems are
synchronous, state transitions take place on the edge of a common clock.

The block diagram of a finite state machine, shown in Fig. 2.11, consists of
three processes with the following functionality:

• Combinational state change determining next state logic
• Sequential logic for synchronously changing states
• Combinational logic for changing output.

Next State Logic Present State Flip
Flop’s

Output logic

Combinational
logic

Sequential
Logic

Combinational
logic

Q

QSET

CLR

D

State

Clock

State
OutputsNext

Inputs

Fig. 2.11. Finite state machine model consisting of three processes

Example 2.6. Design a HDL finite state machine, which will control a car wash
process. The car wash process consists of five states (see Table 2.2). The controller
performs action for a particular state until the timer times out. The timer done bit
controls the state transition, once the car wash process has started.

Table 2.2. States of the car wash FSM

State Process description

S1 Wash_1

S2 Soap

S3 Scrub

S4 Wash_2

S5 Dry

28 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Idle

Wash1

Soap

Dry

Rst

Car/Sprinkler,
load timer

Timer_dn/
Soap,reload_timer

Timer_dn/
Scrub,

reload timer

Timer_dn /
Exit_flash

Scrub

Wash2 Timer_dn /
Sprinkler,

reload_timer

Timer_dn /
Dryer

reload_timer

Fig. 2.12. a FSM for a car wash controller

module fsm (input rst, clk, car, output reg soap,sprinkler,scrub,blower);

parameter wash1 = 3'b001; parameter dispense= 3'b010; parameter scrubber = 3'b011;
parameter wash2 = 3'b100; parameter dry = 3'b101; parameter idle =3'b110;

reg [2:0] state, next_state;
reg timer_start, timer_dn;
reg [7:0] timer, timer_ld;

always @ (state or timer_dn or car)
begin

timer_start = 0;
next_state = state;

case (state)

idle: begin
 sprinkler =0; soap =0 ; scrub =0; blower = 0;
 timer_start = 0;
 timer_ld = 8'h00;
 next_state = wash1;
 end

wash1: if (car)

 begin
 sprinkler = 1; soap =0 ; scrub =0; blower = 0;
 timer_start = 1;
 timer_ld = 8'h04;
 next_state = dispense;
 end

dispense: if (timer_dn) begin

 sprinkler = 0; scrub =0; soap = 1; blower = 0;
 timer_start = 1;
 timer_ld = 8'h01;
 next_state = scrubber;
 end

Fig. 2.12. b Finite state machine based code for a car wash controller

 Hardware Description Language: Verilog 29

scrubber: if (timer_dn) begin
 soap = 0; sprinkler = 0; blower = 0;
 scrub = 1;
 timer_start = 1;
 timer_ld = 8'h02;
 next_state = wash2;
 end

wash2: if (timer_dn) begin
 soap = 0; scrub = 0; blower = 0;
 sprinkler = 1;
 timer_start = 1;
 timer_ld = 8'h05;
 next_state = dry;
 end

dry: if (timer_dn) begin
 soap = 0; scrub = 0; sprinkler = 0; blower = 1;
 timer_start = 1;
 timer_ld = 8'h05;
 next_state = idle;
 end

default : next_state = idle;
endcase
end

always @ (posedge clk)
begin
if (timer_start)
 timer <= 0 ;
 else
 timer <= timer + 1;
end

always @ (posedge clk)
begin
 if (timer == timer_ld)
 timer_dn <= 1;
 else
 timer_dn <= 0;

end

always @(posedge clk)
begin : state_transitions
if (rst) state <= idle;
else state <= next_state;
end

endmodule

Fig. 2.12. b (continued)

30 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Determining Position and Speed of the Robot Axis
To move the robot from one set of co-ordinates to another, the current position of
the robot must be determined. The most commonly used device for detecting robot
axis position is the rotary encoder. The rotary encoder can be either an incremental
encoder shown in Fig. 2.13 or an absolute type of encoder. The quadrature encoder
is a common type of incremental encoder. Here two channels (A and B) are used to
sense position, velocity and direction of rotation. The two channels A and B are
positioned 90° out of phase, as shown in Fig. 2.13. Using the output of these two
channels, both position and direction of rotation can be determined. If A leads B,
the axis coupled to the encoder is rotating in one direction and if B leads A, then
the axis is rotating in the reverse direction. The resolution of the signal coming
from the quadrature encoder is improved to 2x if the positive edges of A and B are
counted, and it is further improved to 4x if both the active edges of the channels
are counted.12

Many application specific standard products (ASSPs) and microcontrollers
provide a built-in digital logic to decode a signal coming from a quadrature
encoder. For this purpose the quadrature encoder interface (QEI) is a standard
peripheral. A digital filter is used to remove noise signals from channels A and B.

Channel A

Channel A output

Channel B

Channel B output

Fig. 2.13. Pulse train generated by a quadrature incremental encoder

Example 2.7. Calculate the number of pulses recorded in the position counter for
the working range of Axis J1 of the robot. The encoder is mounted on the motor
shaft.

Using the parameters of axis J1 (from Table 1.2),
Encoder pulses per revolution (PPR) is 200.
Gear ratio: 1: 100
Working range: 300°

The encoder pulses obtained for the specified working range are determined by
the equation,

Position pulses = encoder PPR * gear ratio * (working range in degrees/360)
= 200 * 100 * (300/360)
= 16,666 pulses
= 411AH.

A 15-bit position register is needed to store the value of the axis movement.

12 Increasing the resolution of the pulse counting circuit provides greater positioning capability.

 Hardware Description Language: Verilog 31

Example 2.8. Calculate the speed of the motor shaft in rpm by the change in
position pulses and known PPR of the encoder.

Encoder PPR: 2000
Pulses recorded in time interval of 1 ms: 10

The speed in rpm is estimated by measuring the number of pulses in a pre-defined
time interval t_base (in ms). It is calculated by

 rpm =
PPR

k*60*pulses_Position , k =
base_t
1 .

 rpm =
2000

10*60*10 3
 = 300.

Example 2.9. Position and speed measurement of different axes in a robot
application is done using a dual channel incremental encoder. These encoders use
the phase difference between the signal to determine the direction and frequency of
a pulse train to determine speed. Convert the block diagram (see Fig. 2.14) to
digital logic using Verilog HDL.

Digital
filter

Quadrature
decoder

Position
counter

Position latch
with bus

interface logic

CLK

CHA

CHB

RST

Count

Up/Dn
[N:0]

Fig. 2.14. Block diagram for finding the robot axis position using incremental encoder
feedback

32 Introduction to Embedded System Design Using Field Programmable Gate Arrays

module filter (input clk, input in, input rst . output reg z);

reg a,b,c;

always @ (posedge clk)
begin
 if (rst)begin
 a <= 0;
 b <= 0;
 c <= 0;
 end
 else
 begin
 a <= in;
 b <= a;
 c <= b;
 end
end

always @ (posedge clk)
 begin
 if ((a == b) & (b == c))
 z = a;
 end

endmodule

Fig. 2.15. Verilog code for digital filter circuit

The function of the digital filter circuit is to ensure that the signal remains
constant for three clock pulses before it is sent to the output. Any noise less than
three clock cycles is ignored by the circuit. A three-stage shift register realised
using the HDL code in Fig. 2.15 is used to check if the output of the third stage (c)
matches the second (b) and the first (a) stages. HDL code for a single channel
encoder based position counter is shown in Fig. 2.16. A FSM is used to check for
transitions of the encoder output and the counter increments synchronously.

 Hardware Description Language: Verilog 33

module position (input clk, in,rst, output reg [7:0] position);

reg state, next_state;

parameter one = 1'b1;
parameter zero = 1'b0;

always @ (in or state or rst)
 begin
 if (rst)
 begin
 position = 0;
 end
 else
 begin
 case(state)

 one : if (in)
 begin
 position = position +1;
 next_state = zero;
 end
 zero :if (~in)
 next_state = one;
 default : next_state = zero;

 endcase
 end
 end

always @ (posedge clk)
 begin
 state <= next_state;
 end

endmodule

Fig. 2.16. Position counting register for one encoder channel

For a given encoder PPR, the resolution of the position measured can be
increased by counting the active edges of A and B channels of the encoder. The
resolution is increased four times (theta_4x) when both active edges of channels A
and B are counted (see Fig. 2.17).

34 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Clock

Channel A

Channel B

Theta_1x

Theta_2x

Theta_4x

Fig. 2.17. Increasing encoder resolution by pulse edge detection

Example 2.10. The position determined by an incremental encoder has to be made
part of the non-volatile memory of the robot controller. Many present-day robot
systems have shifted to absolute encoders, where the present position of the axis is
available on power up. A Gray coded absolute encoder is used for determining the
robot axis position. In Gray code, only 1 bit changes at the time of each transition.
The logic used for conversion of Gray to binary is shown in Fig. 2.19. A Verilog
code using blocking assignment is used for converting 5-bit Gray to 5-bit binary.

Gn

Gn–1

Gn–2

G1

G0

Bn

Bn–1

Bn–2

B1

B0

Fig. 2.18. Converting from Gray code to binary code

 Hardware Description Language: Verilog 35

module gray(input [4:0] gray, output reg[4:0] binary);

always @(gray)
begin
 binary[4] = gray[4];
 binary[3] = gray[3] ^ binary[4];
 binary[2] = gray[2] ^ binary[3];
 binary[1] = gray[1] ^ binary[2];
 binary[0] = gray[0] ^ binary[1];
end

endmodule

Fig. 2.19. Verilog code for Gray to binary conversion

2.3.5 Arithmetic Using HDL

Most arithmetic operations performed using HDL are either in terms of integers or
fixed-point arithmetic. Arithmetic operations using HDL-based logic provides
flexibility to choose the word size of the operation based on application
requirements. In arithmetic operations involving fixed-point arithmetic, it is upto
the designer to interpret the position of the decimal point. Most synthesis tools13
support the Verilog signed and unsigned data format for wire and register types.

As shown in Fig. 2.20a, the data range reduces by a factor of 2 in signed
representation because 1 bit is allotted for the sign bit.

2.3.5.1 Integer Data
Real world inputs and outputs are usually in the form of integer data. Digital data
from ADC or to a DAC are in the form of integers. The unsigned integer type
shown in Fig. 2.20b is used for presenting timer values, whereas the signed integer
type is used for representing the sine wave shown in Fig. 2.20c.

2.3.5.2 Fixed-point Data
For a fixed-point number represented as aaa.bbbbb, the integer part consists of
three bits of data and the fractional part is represented by five bits. These 8 bits (3
integer and 5 fractional) can represent unsigned binary integer values from 0 to 7,
having a fractional resolution of 1/2b.

Example 2.10. Choose a fixed-point representation for getting the maximum
resolution for a sine wave, whose peak amplitude varies from +2 to –2 volts. The
available bit range is 8 bits.

The maximum resolution is obtained by using a fixed-point data format (covering
+1.xxxx to –1.xxxx) , which has one sign bit, one integer bit and the rest are
fractional bits. The fixed-point notation for the above example is aa.bbbbbb. This
provides a fractional resolution of 1/26.

13 The Xilinx synthesis technology (XST) provides support for signed and unsigned data types.

36 Introduction to Embedded System Design Using Field Programmable Gate Arrays

wire signed [width-1 : 0] variable; // data in 2’s complement format
wire unsigned [width -1 : 0] variable ;

reg signed [width-1 : 0] variable; // data in 2’s complement format
reg unsigned [width -1 : 0] variable ;

a

t

Timer 255

b

Signed integer data — sine wave with amplitude +128 to –127

t+127

–128
c

Fig. 2.20. a Signed and unsigned representation using wire and register; b 8-bit unsigned
representation of a Timer signal; c 8-bit signed representation of a sine wave

If the data are represented as a fraction, it is best to represent the number in the Q
format by scaling all the numbers to a range of +–1. Q format specifies one sign bit
followed by a number of bits for fractions. Once the number is in Q format it
becomes easier to work with. For computations the input value is scaled to the
format giving maximum resolution and then scaled back to the original format at
the time of output.

2.3.5.3 Addition and Subtraction
In digital circuits, addition and subtraction operations are carried out using 2’s
complement arithmetic. As shown in Fig. 2.22, a common hardware circuit is used
for both addition and subtraction. Though Verilog HDL synthesis supports addition
and subtraction, the methodology may vary from one synthesis tool to another. The
implementation uses the logic block of the target FPGA technology to implement
arithmetic operations.

 Hardware Description Language: Verilog 37

Controlled
Inverter

C inC out

Exclusive-OR
gates.

Control bit
0 = add, 1 = subtract

Output, if control bit
0 = add (A + B)

1 = subtract (A – B)

Input A Input B

Full adder

Fig. 2.21. Common hardware for performing signed addition and subtraction

When the control bit becomes 1, input B takes its 2’s complement value, resulting
in A – B operation.

Table 2.3. Binary fixed value addition and subtraction

Operand Binary value Integer Scale factor Result — real
fixed-point value

A 00011.110 +30 2–3 = 1/8 +3.750

B 00110.011 +51 2–3 = 1/8 +6.375

A + B 01010.001 +81 2–3 = 1/8 +10.125

A – B 11101.011 –21 2–3 = 1/8 –2.625

As shown in Table 2.3, when adding or subtracting two fixed-point real numbers
that have a common scale factor, the result will also have the same scale factor.
When the scale factors are different, proper shifting of the binary point needs to be
done so that the scale factors become equal. The Q notation is helpful because it
scales all numbers to a common scale factor.

Example 2.11. Write HDL code for signed addition and subtraction using signed
arithmetic Verilog constructs.

The input variables a1, b1 and c1 are converted to 2’s complement
representation by the wire signed declaration (see Fig. 2.22). This instructs the
simulation and synthesis software to use 2’s complement arithmetic for the
addition operation.

38 Introduction to Embedded System Design Using Field Programmable Gate Arrays

module signed_arith (input [7:0] a,b, output [7:0] c);

wire signed [7:0] a1,b1,c1;

assign a1 = a;
assign b1 = b;

assign c1 = a1 + b1;

assign c = c1;

endmodule

Fig. 2.22. Verilog code for performing signed addition

2.3.5.4 Multiplication
Multiplication is supported by HDL simulation and synthesis software.
Multiplication and division operations do not require that the binary points of the
operands be aligned. The number of fractional bits in the product A * B, is equal to
the sum of the number of fractional bits of A plus the fractional bits of B. This is
demonstrated by the example in Table 2.4.

Table 2.4. Binary fixed value multiplication

Operand Binary value Integer Scale factor Result — real
fixed-point value

A 00111.110 62 2–3 = 1/8 +7.750

B 001100.11 +51 2–2 = 1/4 +12.750

A * B 1100010.11010 +3162 2–3–2 = 1/32 +98.8125

Many FPGA chips now contain hardware multipliers. In the absence of these
multipliers, signed multiplication algorithm such as the Booth multiplier can be
used.

Example 2.12. Write Verilog code to multiply14 two 8-bit unsigned and two signed
numbers A and B.

The inputs (a,b) to codes in Fig. 2.23 and 2.24 are the same. In Fig. 2.24, the
inputs are interpreted as signed numbers, because of the wire signed assignment.

14 Multiplication is supported by both simulation and synthesis tools. XST supports both signed
and unsigned multiplication. Details of the multiplier are given in Sect. 3.2.6

 Hardware Description Language: Verilog 39

module multiply (input [7:0] a , b , output [15:0] c);

assign c = a * b ;

endmodule

Fig. 2.23. Verilog code for unsigned multiplication

module signed_mult (input [7:0] a,b, output [15:0] c);

wire signed [7:0] a1,b1;
wire signed [15:0] c1;

assign a1 = a;
assign b1 = b;

assign c1 = a1 * b1;

assign c = c1;

endmodule

Fig. 2.24. Verilog code for signed multiplication

Division by a non-power of 2 is not supported by most synthesis tools. Division in
hardware is carried out by multiplying with the reciprocal of the divisor.

While performing arithmetic operations with pre-defined word size, conditions
such as overflow or loss of precision arise. It is up to the designer to correct such
conditions by truncation, rounding or saturation. Table 2.5 shows examples of
overflow, truncation and rounding errors arising during addition and
multiplication.

Table 2.5. Rounding, truncation, overflow and saturate

Input A Input B Operation True Result Conditioning

1111 1110
(25410)

0000 0011
(310)

Addition
(8-bit
result)

1 0000 0001
(25710)

0000 0001
(overflow - 110)
1111 1111
(saturate- 25510)

00111.111
(7.87510)

001100.11
(12.75010)

Multiply
(9-bit
result)

1100100.01101
(100.4062510)

1100100.01
(truncate - 100.2510)
1100100.10
(rounding - 100.5010)

40 Introduction to Embedded System Design Using Field Programmable Gate Arrays

2.4 Pipelining

Pipelining is used to divide a large section of logic into small parts. It is much like
the assembly line concept used in manufacturing. If a process can be broken down
into small equal time sections, the speed of the process will be equal to the time
taken by each section. The process of pipelining is akin to the process discussed as
that of the shift register. The information from one section of the pipeline flows to
the next section on the active edge of the clock controlling the pipeline. Thus non-
blocking statements in Verilog are used for modelling pipeline architectures.

2.5 Module Instantiation and Port Mapping

A robot system having five control joints needs five motor controllers. These
motor controllers are incorporated and interconnected using module instantiation
and port mapping. If the motor of a given type of AC/DC servomotor is the same,
the control scheme does not change with the rating of the joint motor. Thus, one
can clone the digital control circuit. The process of duplicating or cloning digital
logic is instantiation. Each instantiated piece of logic operates independently of the
other in a concurrent manner. The way the motor ports — consisting of encoder
feedback, speed reference and PWM output are connected is called port mapping
(see Fig. 2.25). The port list for control of one motor is shown in Fig. 2.26.

HDL code for single
motor control

M

Start

Stop

Encoder
feedback

6

2

Power bridge

Speed
reference

12

Clock

Reset

Fig. 2.25. Diagram showing HDL port map for a single motor control

 Hardware Description Language: Verilog 41

module motor_control (input start,stop,clk,rst,
 input [1:0] enc_fdbk,
 input [11:0] spd_ref,
 output [5:0] pwm_switches);

/* Code for performing control of one motor.
 Motor power circuit consists of 6 switches for control */

endmodule

Fig. 2.26. Verilog port list for control of one motor

A module port can be connected to external signals either by using the port names
in the order contained in the port list, or they can be connected using port names.
Instantiation for the port list (see Fig. 2.26) of the motor controller by name is
shown in Fig. 2.27. This is a practical approach, where there are numerous ports
and remembering the port list order is difficult.

motor_control m1 (
 .start(start),
 .stop(stop),
 .clk(clk),
 .rst(rst),
 .spd_ref(spd_ref),
 .enc_fdbk(enc_fdbk),
 .pwm_switches(pwm_switches)
);

Fig. 2.27. Verilog instance for creating a motor control module

Example 2.13. Show how one motor control module created using Verilog HDL
can be instantiated for simultaneous control of four motors. (see Fig. 2.28).

One advantage of using hardware-based design is the freedom of replicating a

given design many times (provided there are sufficient hardware resources to
support that many number of replications), without worrying about the increase in
CPU utilization. The instantiation scheme shown in Fig. 2.28, shows how a HDL
designed motor controller hardware similar to Fig. 2.26 is used four times for
controlling four different joints of the robot assembly. Each instantiation is
denoted by the module name (motor_control) followed by the instance name
(mx), where x denotes the motor number. The port list of the instantiated modules
consists of the port name of the HDL design followed by the signal it is connected
to. In this example the four motor modules have different start, stop, speed
reference, speed feedback and power bridge control signals. The Verilog top
module (robot_motors) has control signals for different motors coming from a
position controller (chapter 6 will discuss different types of controllers).

42 Introduction to Embedded System Design Using Field Programmable Gate Arrays

module robot_motors (input start1,start2,start3,start4,stop1,stop2,stop3,stop4,clk,rst,
 input [11:0] spd_ref1,spd_ref2,spd_ref3,spd_ref4,
 input [1:0] spd1,spd2,spd3,spd4,
 output [5:0] pwm_m1,pwm_m2,pwm_m3,pwm_m4);

 motor_control m1 (
 .start(start1),
 .stop(stop1),
 .clk(clk),
 .rst(rst),
 .spd_ref(spd_ref1),
 .spd_fdbk(spd1),
 .pwm_switches(pwm_m1)
);

 motor_control m2 (
 .start(start2),
 .stop(stop2),
 .clk(clk),
 .rst(rst),
 .spd_ref(spd_ref2),
 .spd_fdbk(spd2),
 .pwm_switches(pwm_m2)
);

 motor_control m3 (
 .start(start3),
 .stop(stop3),
 .clk(clk),
 .rst(rst),
 .spd_ref(spd_ref3),
 .spd_fdbk(spd3),
 .pwm_switches(pwm_m3)
);

motor_control m4 (
.start(start4),
.stop(stop4),
.clk(clk),
.rst(rst),
.spd_ref(spd_ref4),
.spd_fdbk(spd4),
.pwm_switches(pwm_m4)
);

endmodule

Fig. 2.28. Verilog top module code to control four motors

 Hardware Description Language: Verilog 43

Example 2.14. A programmable logic controller (PLC) based control is shown in
Fig. 2.29a. This is used to perform sequencing and interlocking of many industrial
control functions. A timer, counter and normally open (NO), normally closed (NC)
relays are part of the ladder logic instruction set library for programming a PLC.
Convert the ladder logic shown in Fig. 2.29b to digital logic by using Verilog
HDL.

Robot axis 1
control

Robot axis 2
control

Robot axis 3
control

Programmable logic controller (PLC)

I
O

I
O

I
O

I
O

P
R
O
C

P
S

a

R1

T1IN1

On delay
timer T1

T1

On delay
timer T2

IN2 T2

T2 R1

b

Fig. 2.29. a PLC based scheme for sequencing and interlocking of robot axes; b A section of
the ladder logic code running in the PLC

When Input 1 (IN1) turns high, an on-delay timer T1 turns on after a pre-defined
time interval. Timer T2 is enabled when Input 2 is high and T1 is on. After the
preset time interval of T2 is over, the contacts of relay R1 are turned on.

44 Introduction to Embedded System Design Using Field Programmable Gate Arrays

module plc_timer (input rst,clk,input [7:0] timer_set, input timer_en,output reg dn);

reg [7:0] timer;

always @ (posedge clk)
 begin
 if (rst)
 timer <= 0;
 else if (timer_en)
 timer <= timer +1;
 else
 timer <= timer;
 end

always @ (posedge clk)
 begin
 if (timer_set == timer)
 dn <= 1;
 else
 dn <= 0;
 end

endmodule

Fig. 2.30. Verilog code for on-delay timer implementation

module plc_top (input clk, rst,in1,in2, input [7:0] timer1,timer2,output r1);

 wire timer1_en = in1;
 wire timer1_dn;
 wire timer2_en = timer1_dn & in2 ;

 plc_timer T1 (
 .rst(rst),
 .clk(clk),
 .timer_set(timer1),
 .timer_en(timer1_en),
 .dn(timer1_dn)
);

 plc_timer T2 (
 .rst(rst),
 .clk(clk),
 .timer_set(timer2),
 .timer_en(timer2_en),
 .dn(timer2_dn)
);

 assign r1 = timer2_dn ;

endmodule

Fig. 2.31. Verilog code to implement the ladder logic consisting of two timer elements

 Hardware Description Language: Verilog 45

The implementation of ladder logic consists of two timer blocks and an
interlocking circuit. Figure 2.30 shows the timer module and 2.31 shows the entire
ladder logic circuit put together using HDL.

2.6 Use of Pre-designed HDL Codes

Several FPGA vendors provide a library of pre-designed HDL codes for re-use.
Each pre-designed piece of digital logic is either used as per the given port map by
the digital core vendor or can be connected to a standard chip-wide interface bus.
Some commonly available pre-designed codes include memory interface, serial
communications and arithmetic core.

Fig. 2.32. Configuration process for a sine look-up table

Example 2.16. Create a code that generates a sine wave using the pre-designed
sine-cosine look-up table15 shown in Fig. 2.32.

A HDL 4-bit counter module output connects with the Theta port of the
instance of the pre-designed LUT (see Fig. 2.33). The sine_lut is the instance of the
core that is connected to a variable count and output signal sine.

15 Trignometric functions such as the sine function are frequently used in embedded systems. This
example shows the use of a pre-designed sine LUT.

46 Introduction to Embedded System Design Using Field Programmable Gate Arrays

module sine_top (input clk,rst, output reg [7:0] sine);

reg [3:0] count;

always @(posedge clk)

begin
 if (rst)
 count <= 0;
 else
 count <= count + 1;
 end

sine_lut1 m1(
 .THETA(count),
 .CLK(clk),
 .SINE(sine));

endmodule

Fig. 2.33. Pre-designed sine LUT-based sine wave generator

Logic analyzer,
Oscilloscope

functionality to view
output

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t
t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

Copper tracks interconnecting different
digital integrated circuits

Clock

Reset

Test
function

Generator

I/P

O/P

PCB system under test

a

Clock

Reset

$monitor
$display

 Initial

Input

Reg

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

t
e
x
t

Wires interconnecting modules

Output

HDL based design under
test

Wire

b

Fig. 2.34. a Electronic test bench analogy of HDL simulation; b typical simulation
environment in Verilog HDL

 Hardware Description Language: Verilog 47

2.7 Simulating Digital Logic Using Verilog

The motivation behind HDL was to aid digital modeling and simulation. The
simulation environment is akin to a test bench with provision for stimulus to the
digital circuit and monitoring the circuit’s output. In hardware prototyping, this is
comparable to PCB-based logic surrounded by various pieces of electronic test
equipment. As shown in Fig. 2.34a a PCB under test has inputs from a function
generator and the output is analyzed using logic analyzers and oscilloscopes.
Similarly, the digital circuit shown in Fig. 2.34b is subjected to test vectors and the
output is displayed or monitored using waveforms. Test benches are written using
Verilog constructs or a test waveform tool is used.

2.7.1 EDA Tool Flow for Simulation

Simulation of HDL-based digital design is supported by a variety of EDA tools.
Tools from FPGA vendors give the user an option to choose the simulation
environment they wish to use. Figure 2.35 shows the various simulation
environment options.

Fig. 2.35. A partial view of simulator selection using a FPGA design tool

The majority of the electronic design automation (EDA) tools for HDL simulation
work along similar lines.

48 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Fig. 2.36. Test bench specifications for clock period, input setup time, output valid delay
and test bench length

Fig. 2.37. Generating a test waveform for testing the filter circuit given in Fig. 2.15

 Hardware Description Language: Verilog 49

2.7.2 Creating a Test Bench for HDL-based Digital Logic

HDL simulation tools provide different ways of specifying test bench
requirements. One way of checking HDL code quickly is to draw the desired test
inputs graphically, that are converted into equivalent Verilog test code (see Figs.
2.36 and 2.37).

As the design size becomes larger, it is not feasible to generate test waveforms
for testing all possible combinations of digital inputs. For this purpose a text-based
test waveform file can generate test vectors and also log output information from
digital logic.

A

B

C

D
Z

Fig. 2.38. Combinational circuit and its input, output truth table

To test the combinational circuit (see Fig. 2.38) that will have 16 possible
combinations of inputs, a self-checking test bench is created using a text file to
read vectors (containing stimulus and expected values).

The contents of the text file are read by the testbench using the $readmemb,
where the b specifies that the test inputs are in binary format. A sample test file
would consist of the inputs A–D, and the expected output Z shown in the table on
the right of Fig. 2.38.

2.7.3 Post Place and Route Simulation

The behavioural simulation model supports both synthesizable and non-synthesiz-
able constructs of HDL. A partial list of Verilog HDL constructs, which cannot be
realised in hardware by use of synthesis tools, is given in Table 2.6. To verify that
the HDL-coded behavioural model would work in the same manner after synthesis
and its placement in FPGA logic, post place and route simulation is used. The post
place and route simulation uses an .SDF file to estimate the interconnect path and
logic delays. Any change in the location of logic cells changes the post place and
route interconnect delay. The post and route simulation provides a realistic picture
of the timing, once the digital circuit is realised in hardware.

A B C D Z

0 0 0 0 0

0 0 0 1 1

: : : : :

1 1 1 0 1

1 1 1 1 0

50 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Table 2.6. Partial non-synthesizable constructs of Verilog16

Verilog constructs not supported or ignored by FPGA synthesis tools

Data types Wand, wor, triand, trior
real, realtime, tri0, tri1, trireg

Continuous assignment Drive strength, delay

Procedural assignments Force, release, forever, fork/join, delay (#),
event(@), wait, named events

Compiler directives Timescale, uselib, resetall, celldefine,
endcelldefine

Gate level primitives Pulldown, pullup, drive strength, delay

Switch level primitives Cmos, nmos, pmos, rcmos, rnmos, rpmos
rtran, rtranif0, rtranif1, tran, tranif0, tranif1

User defined primitives (UDPs) Both combinational and sequential

Fig. 2.39. Combinational circuit

16 These constructs are used for simulation. Synthesis tools do not generate a FPGA-based
hardware for these constructs.

 Hardware Description Language: Verilog 51

2.7.4 Simulation of Algorithm Using Pre-designed Codes

Simulation of a filter or any other DSP system is important to analyze before the
system is put in hardware. The MATLAB® Simulink® environment allows
simulating a system using standard input/output devices such as waveform
generators, oscilloscopes and FFT analyzers. Using this interface frees the designer
from writing cumbersome test benches and then converting the result to viewable
analogue format.

The pre-designed sine wave generator of Example 2.15 is simulated in the
MATLAB® Simulink® environment. A counter-based ramp signal is used to
increase the value of theta. In Fig. 2.39 Scope and Scope1 show waveforms of
generated sine waves and of corresponding counter values. Because the majority of
pre-designed cores are synthesizable, the designer also gets an estimate of the
resources used on the FPGA chip.

Problems

1. Write Verilog HDL code for an 8-bit Booth multiplier that works with and
without a clock. Write a self-testing test bench which can check the correct
working of the Booth multiplier.

2. Understand the working of a parallel-to-serial shift register chip 74LS165.
Write a Verilog HDL code that mimics the functionality of the chip. Verify
that it is working by comparing the simulated timing diagram of the HDL
code and that given in the 74LS165 data sheet.

3. A CNC lathe machine uses a 5000 PPR incremental encoder for
determining the speed of the cutting tool. Write a Verilog code to
determine the speed of the cutting tool using the encoder input. The
calculated speed is to be displayed on seven segment LEDs.

Further Reading

1. Chonnad SS, Balachander NB (2004) Verilog frequently asked questions, language,
applications and extensions. Springer

2. Ciletti M (2003) Advanced digital design with the Verilog HDL. Pearson Education
3. Palnikar S (1996) Verilog HDL – a guide to digital design and synthesis. Pearson

Education
4. Navabi Z (1999) Verilog digital system design. McGraw-Hill
5. Riesgo T et al (1999) Design methodologies based on hardware description languages.

IEEE Transactions on Industrial Electronics, 46(1): 3–12

3

FPGA Devices

FPGA devices have grown in density from a few thousand gates in the 1980s to
approximately 10 million gates in 2004. There are proven advantages in choosing a
FPGA-based implementation of digital logic over a fixed custom implementation
of digital logic. The advantages include cost economies when a product is
produced in low volume, in-system re-programmability and a shorter design cycle
from concept to silicon. Most of the contemporary FPGAs from various vendors
have common on-chip resources. The purpose of this chapter is to talk about
various on-chip resources or primitive devices of FPGAs and their use in
synthesising digital systems.

These device hardware primitives are comparable to assembly language
constructs of a general purpose processor, invoked by the compiler. Though one
may rarely use programming at the primitive device level using HDLs, it is good to
know the underlying hardware, used by the synthesis tool for realising digital
logic17. The idea is to try and understand how these hardware resources can be used
to implement a single-chip robot controller module that can support motor control
algorithms, processor and interfacing needs.

3.1 FPGA and CPLD

Programmable hardware basically consists of two widely used programmable
devices — FPGAs and CPLDs. These devices determine a hardwired circuit and
the programmability of a processor-based system. With several technologies
merging and overlapping, it is becoming increasingly difficult to label a
programmable device as a CPLD or FPGA. CPLDs are getting features of FPGAs

17 Many applications still use processor ISA dependent assembly language for compact code size
and fast execution. Similarly, many FPGA-based soft processors are coded using device
dependent primitives for a smaller silicon footprint.

54 Introduction to Embedded System Design Using Field Programmable Gate Arrays

and vice versa18. CPLD architecture consists of one or more programmable sum-of-
products logic arrays connected to a clocked register. Traditionally, the CPLD is
known to have lower logic cell density compared to a FPGA. Normally, CPLD
devices use flash memory technology for interconnecting different logic blocks on
the device.

3.2 Architecture of a FPGA

The contemporary FPGA is changing very fast. It is following Moore’s law in
speed and density and also incorporating lots of functionality along the way.
Though FPGAs from different leading vendors such as Xilinx, Altera, Actel, and
Lattice differ in some aspects, they all share some common architectural attributes.
These architectural attributes can be thought of as device specific primitives, which
will be discussed in detail. For illustration, a sample FPGA device, Xilinx
SPARTAN-3ETM is chosen, and its structure and device primitives along with the
Verilog instance for each primitive are discussed.

Following are the typical features of a contemporary FPGA, shown in Fig. 3.1:

• Logic cell resources, consisting of LUT and FFs
• Hard intellectual property(IP), comprising of dedicated multipliers and

embedded memory
• Clock distribution resources, digital clock manager (DCM) providing

frequency synthesis and phase shift
• I/O features — number of user available I/Os and I/O standards
• Hardware immersed and software configurable processors, along with logic

fabric in a single FPGA device.

Table 3.1 contains a comparison of high-volume FPGAs from three vendors.
Table 3.2 details the FPGA resources for the SPARTAN-3ETM FPGA used in the
text.

3.2.1 FPGA Interconnect Technology

Re-programmable interconnects make the FPGA device reconfigurable. FPGA
interconnect technology consists of switch boxes that route signals between various
logic blocks on a FPGA. Present-day FPGAs are based on one of the following
interconnect technologies:

18 HDL design examples mentioned in the text, can also be implemented on CPLD devices. Due
to lower density, contemporary CPLDs do not support primitives such as embedded memory and
hardware multipliers.

 FPGA Devices 55

D
C
M

IOBs

CLBs

B
lo

ck
 R

A
M

B
lo

ck
 R

A
M

M
ul

tip
lie

r
M

ul
tip

lie
r

B
lo

ck
 R

A
M

B
lo

ck
 R

A
M

M
ul

tip
lie

r
M

ul
tip

lie
r

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

D
C
M

D
C
M

D
C
M

Fig. 3.1. Architecture of a SPARTAN-3ETM FPGA

Table 3.1. Architectural features of contemporary FPGA families from leading vendors

Feature Xilinx
SPARTAN 3TM

Altera –
Cyclone III®

Actel Fusion®

Combinational and
sequential logic block

Logic cell (LC) Logic element
(LE)

Logic element

Embedded memory Block RAM RAM blocks RAM blocks

Phase-locked loop
(PLL)

Digital locked
loop (DLL)

PLL Clock conditioning
circuits (CCC)

Global clock lines Yes Yes Yes

Hardware multipliers Yes Yes Yes

Interconnect
technology

SRAM SRAM Flash

Integrated ADC and
MOSFET driver

NA NA Yes

56 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Table 3.2. Resources of the FPGA used in design examples

Device type Logic
cells

Block
RAM
(kbits)

Distributed
RAM
(kbits)

Multipliers Clock
conditioning

circuits

XC3S500E-
4FG320

10476 360 73 20 4

3.2.1.1 Static RAM (SRAM)
SRAM-based interconnect switches dominate the present-day FPGA market. This
technology is used by two of the largest vendors of FPGAs. As the technology type
suggests, SRAM-based switches are volatile and lose their configuration on power
reset. Because they need to be continuously powered up to maintain their
configuration, the quiescent power consumption is quite high. Usually these
devices need an extra memory device for loading the configuration to the SRAM
switches and registers in every power cycle.

3.2.1.2 Flash
FPGAs using electrically programmable and erasable Flash-based interconnect
switches, are non-volatile in their configuration. They use lesser quiescent power
than the SRAM interconnect-based devices.

3.2.1.3 Anti-fuse
Anti-fuse interconnect-based devices can be programmed only once. The
interconnect of an anti-fuse once programmed becomes permanent. As a result,
anti-fuse FPGAs are used mainly for defense and aerospace applications.

3.2.2 Logic Cell

A digital circuit can be broken down to combinational and sequential elements.
Combinational logic consists of basic gates, decoders, encoders and multiplexers.
Sequential logic elements consist of clock driven elements such as FFs that act as a
storage element for the circuit. With this background, one would expect the logic
cell of a FPGA to include elements of combinational and sequential logic for
digital circuit realisation. Figure 3.2a shows a logic cell of a FPGA. It consists of a
LUT followed by a FF. The LUT is used for realising various combinational
circuits such as basic gates, decoder, encoder and multiplexer. The LUT RAM is
initialised with the truth table of the desired logic. A four-input LUT contains 16
single bit RAM cells, followed by a multiplexer. These 16 RAM bits can also be
configured for use as a shift register or memory. When configured for use as a shift
register, the LUT is called a shift register LUT (SRL). Many designs can be
mapped directly to the SRL, such that the resource use is optimal.

As FPGA densities are increasing, the configurable logic block (CLB) becomes
the container for multiple logic cells. As shown in Fig. 3.2b, the SPARTAN-3ETM
CLB consists of two slices, and each slice has four logic cells.

 FPGA Devices 57

4 Input
 Look Up Table (LUT)

Q

QSET

CLR

D

I0

I1

I2

I3

CLOCK

MUX

SRL 16Clk
D

QA0

A1

A2

A3

a

L U T R e g

L U T R e g

L U T R e g

L U T R e g

L U T R e g

L U T R e g

L U T R e g

L U T R e g

X 0 Y 1

X 0 Y 0

X 1 Y 1

X 1 Y 0

C o n fig u ra b le lo g ic b lo c k (C L B)

S lice M S lic e L
b

Fig. 3.2. a Generic nature of one logic cell of a CLB; b diagram of the CLB of Xilinx
SPARTAN-3TM

Based on the structure of logic cell of the FPGA, certain basic elements are
referred to by the synthesis tool. Table 3.3 shows a list of such elements.

58 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Table 3.3. Partial list of FPGA primitives mentioned in synthesis report

 Element type Description

GND Ground , logic 0

VCC Power, logic 1

FDRSE D Type flip-flop with reset, set and enable

MUX F5 Multiplexer

LUT(x) (x) input look-up table

Basic
elements
(BELs)

SRL Shift register LUT (SRL 16)

IBUF Input buffer I/O buffer

OBUF Output buffer

Clock
buffers

BUFGP Global buffer used for clock

Table 3.4. A combinational circuit to be implemented using a LUT

Input A Input B Input C Desired
output E

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

module lut_prim (input a, input b, input c, output e);

 LUT3 #(
 .INIT(8'hA7) // LUT Contents
) LUT3_inst (
 .O(e), // LUT general output
 .I0(c), // LUT input
 .I1(b), // LUT input
 .I2(a) // LUT input
);
endmodule

Fig. 3.3. Verilog code using the Xilinx LUT primitive for realising combinational logic

 FPGA Devices 59

Example 3.1. Write Verilog code that uses Xilinx LUT primitive to realise the
combinational logic in Table 3.4. The value of the output need not be registered.

The Xilinx LUT primitive is used for realising combinational logic. As shown
in Fig. 3.3, the example uses a three input LUT for a function that has eight
possible outputs. The value of the output is initialised with the (.INIT) hexadecimal
value of A7 to get the desired output E. The eight-bit value 8h’A7 is transferred to
the SRAM of the LUT when the FPGA is configured.

The synthesis report shown in Fig. 3.4 shows one three input LUT used for
realising the logic of Example 3.1.

Fig. 3.4. Synthesis report of the LUT function

Example 3.2. The Verilog code (see Fig. 3.5) is used for transmitting ASCII
character “A” to the serial port. Which Xilinx primitives would be used to realize
this logic?

60 Introduction to Embedded System Design Using Field Programmable Gate Arrays

module uart_concate(input clk, output so);

reg [9:0] data = 10'b1010000010;

assign so = data[0];

always @ (posedge clk) // Baud rate clock

 begin
 data = {data[0], data[9:1]};
 end

endmodule

Fig. 3.5. Verilog code using the shift register logic primitive of Xilinx

FD
D Q
Clk

SRL16

D

Clk

A0

A1

A2

A3

Q

Clock Buffer

S0

Vcc

Fig. 3.6. Synthesised version of transmitter code of Fig. 3.5

The data frame for UART transmission consists of a start bit, ASCII data byte,
an optional parity bit and a stop bit. In the data frame, the LSB of the ASCII value
is positioned first. The data frame of 1010000010 denotes a start bit (0), ASCII
character “A” (41H) and a stop bit (1). The synthesized technology schematic
shown in Fig. 3.6 consists of a SRL followed by a FF. This entire logic is
contained within a single logic cell.

As pointed out in the synthesis report of Fig. 3.7 the logic delay is 3.492 ns, and
the interconnect route delay is zero, because the entire logic is contained in one
logic cell.

 FPGA Devices 61

Fig. 3.7. Timing report for SRL16-based logic

3.2.3 FPGA Memory

Besides logic capability, digital systems need memory to store intermediate results
of a computation or store pre-computed functions that are not realisable using
hardware logic. Present-day FPGA chips contain dedicated blocks of memory or
use un-used logic cells to double up as memory elements.

62 Introduction to Embedded System Design Using Field Programmable Gate Arrays

FPGA memory
(RAM or ROM)

Distributed in LCs
or

as dedicated block
RAM

Address

Data
Data (DP)

Address (DP)

Fig. 3.8. FPGA memory block diagram. The embedded block RAM memory is configurable
for either single or dual port (DP) use

3.2.3.1 Distributed Memory
The LUTs contained within the CLB can be used to store information. The LUT of
a logic cell can store 16 bits. From the application point of view, the four-input
LUT is designed to implement logic. The RAM bits of a LUT, used for storing
memory bits, are called distributed memory.

Table 3.5. Partial table containing values of theta for one axis

Theta axis
θ1 (Time)

Bit 3 Bit 2 Bit 1 Bit 0

T1 0 0 0 0

T2 0 0 0 1

T3 0 0 1 0

T4 0 0 1 1

T5 0 1 0 0

T6 0 1 0 1

T7 0 1 1 0

T8 0 1 1 1

T9 1 0 0 0

T10 1 0 0 1

T11 1 0 1 0

T12 1 0 1 1

T13 1 1 0 0

T14 1 1 0 1

T15 1 1 1 0

T16 1 1 1 1

 FPGA Devices 63

Example 3.3. Create digital logic that reads the co-ordinate locations of the robot
from distributed memory. The data is stored for one axis to repeat the trajectory
several times (see Table 3.5). The output from the memory location serves as a
position reference.

module learning (input clk,rst,run, output reg [3:0] theta_ref);

reg [3:0] address;
wire A3,A2,A1,A0,D3,D2,D1,D0,O3,O2,O1,O0;

always @ (posedge clk) // the value of clock is adjusted to real time update rate for run mode
begin
 if (rst)
 address <= 0;

 else if (run)
 begin
 address <= address + 1;
 theta_ref <= {O3,O2,O1,O0};
 end
end

 assign A3 = address[3];
 assign A2 = address[2];
 assign A1 = address[1];
 assign A0 = address[0];

 RAM16X4S #(
 .INIT_00(16'hAAAA), // INIT for bit 0 of RAM
 .INIT_01(16'hCCCC), // INIT for bit 1 of RAM
 .INIT_02(16'hF0F0), // INIT for bit 2 of RAM
 .INIT_03(16'hFF00) // INIT for bit 3 of RAM
) RAM16X4S_inst (
 .O0(O0), // RAM data[0] output
 .O1(O1), // RAM data[1] output
 .O2(O2), // RAM data[2] output
 .O3(O3), // RAM data[3] output
 .A0(A0), // RAM address[0] input
 .A1(A1), // RAM address[1] input
 .A2(A2), // RAM address[2] input
 .A3(A3), // RAM address[3] input
 .D0(D0), // RAM data[0] input
 .D1(D1), // RAM data[1] input
 .D2(D2), // RAM data[2] input
 .D3(D3), // RAM data[3] input
 .WCLK(clk), // Write clock input
 .WE(1’b0) // Write enable input
);
endmodule

Fig. 3.9. Verilog code to read from distributed RAM in run mode

64 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Fig. 3.10. Synthesis report of a distributed RAM , showing the use of four LUTs for
16 * 4 bit memory

A distributed RAM is used as a ROM by disabling the write mode. When a
run command is received, the address of the memory increases and the stored
contents are sent out as theta_ref. The synthesis report (see Fig. 3.10) of the code
shown in Fig. 3.9, indicates the use of four LUTs as a RAM that is needed to
realise 16 * 4 bit memory.

3.2.3.2 Block Memory
A FPGA contains silicon dedicated exclusively for memory applications. Such
memories are used for FIFOs to store constants, coefficients of filters and look-up
tables. Most of the dedicated memory provided in a FPGA is dual port. Each side
of the dual port memory can independently carry out read and write operations.
Dual port memory provides conflict resolution during read-write operations by
specifying which operation should succeed.

Example 3.4. Create a LUT-based sine function. The coefficients of the LUT are
to be stored in embedded memory.

The value of sine theta is calculated using a spread sheet, such as MSExcel®
and the values are exported to the memory editor using the comma-separated
values (.csv) format. As shown in Fig. 3.11 column C of the spreadsheet contains
8-bit binary values of sine theta from column A. The DEC2BIN function is used to
convert decimals to binary. Negative numbers are represented using the 2's-
complement notation.

 FPGA Devices 65

Fig. 3.11. Using Microsoft Excel® to generate coefficients of a look-up table. These
coefficients are stored in the embedded memory of a FPGA

The numbers generated by the spreadsheet are made part of a coefficient file
that is loaded into the memory of the FPGA. The coefficient file (.coe) format
consists of radix specification (decimal, hexadecimal or binary) followed by the
input variables to be embedded. In the FPGA tool flow, the initial contents for an
embedded memory specified by the coefficient file, are embedded in the EDIF
netlist, that is generated for implementation. For simulation purposes, a memory
initialisation file (.MIF) is generated.

The coefficient file is loaded using the “Load Init File” shown in Fig. 3.12.
Alternately, a memory editor shown in Fig. 3.13 is used to create values for storing
in memory.

66 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Fig. 3.12. Block memory initialisation with pre-calculated values

Fig. 3.13. Creation of a coefficient file

 FPGA Devices 67

3.2.4 Clock Distribution and Scaling

Clock distribution is an important design area of digital design. In a micro-
controller, clock distribution and scaling are used to provide a scaled clock to
different parts of the controller logic. This scheme is shown in Fig. 3.14. The clock
control unit provides the clock to the CPU core, memory and peripherals.

Timer/counter
and general I/O

CPU core RAM

Clock control
unit

Flash,EEPROM ADC

Clock source
multiplexer

External crystal oscillator
clock

CLKI/O

CLKCPU

CLKCPU

CLKFLASH

CLKADC

Fig. 3.14. Clock distribution circuit of a microcontroller, showing different clock domains
for different blocks of logic/memory.

The clock network on a FPGA consists of a clock spine that connects all flip-
flops of the FPGA. Contemporary FPGA devices can accept several global clock
inputs that are routed to sequential devices on the chip. A routing diagram of the
clock network is shown in Fig. 3.15.

Some sections of logic work at different clock frequencies. One way to provide
an accurate clock frequency to different sections is to use an on-chip digital phase-
locked loop or a digital clock manager (DCM). The use of a DCM provides a host
of functions. It eliminates clock skew, conditions a clock to provide clean output
with a 50% duty cycle, provides phase shift and can either multiply or divide an
incoming clock frequency (see Figs. 3.16 and 3.17). In the absence of a DCM, a
counter logic is used to get fractional clock frequency. This can lead to errors due
to skew induced in the clock and less fan-out capability of the logic buffer.

68 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Clock sources

Clock sources

Horizontal spine

T
op spine

B
ottom

 spine

DCM

DCM DCM

DCM

L
C

L
C

L
C

Fig. 3.15. Detail of a routing diagram for a FPGA clock network

CLKIN

CLKFB

RST

CLK0

CLK 90

CLK 180

CLK 270

CLK 2X

CLKDIV

LOCKED

CLK DLL

Fig. 3.16. Digital clock manager for creating phase-shifted, divided or multiplied clocks

 FPGA Devices 69

Clock

Clock divided 8

DLL Phase Shift 0

DLL Phase Shift 90

DLL Phase Shift 180

DLL Phase Shift 270

Clock

Clock divided 8

DLL Phase Shift 0

DLL Phase Shift 90

DLL Phase Shift 180

DLL Phase Shift 270

Fig. 3.17. Timing diagram to show the clock manager divide and phase shifting property

Example 3.5. Create a pre-scalar circuit for a timer using a DCM, such that the
clock to the timer logic is divided by a factor of 8.

module timer_dll(input clk, input [2:0] scaling, input rst, output reg [7:0] timer);

wire clk_timer ;

dcm_timer u1 (
 .CLKIN_IN(clk),
 .RST_IN(rst),
 .CLKDV_OUT(clk_timer),
 .CLKIN_IBUFG_OUT(CLKIN_IBUFG_OUT),
 .CLK0_OUT(clk_0),
 .LOCKED_OUT(LOCKED_OUT),
 .STATUS_OUT(STATUS_OUT)
);

always @ (posedge clk_timer or posedge rst)

begin
 if (rst)
 timer <= 0;
 else
 timer <= timer+1;
end

endmodule

Fig. 3.18. Verilog code showing the use of a DCM for generating a timer clock

The Verilog code, shown in Fig. 3.18 uses the DCM instance to provide a
clock divided by a factor of 8. This divided clock is used by the timer circuit
shown in Fig. 3.19.

70 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Fig. 3.19. Creation of a timer clock (clk_timer) using a digital clock manager (DCM)
component to divide the system clock

3.2.5 I/O Standards

PCB-based designs using a FPGA are interfaced with a variety of other
semiconductor devices. Each of these device types has a different voltage standard
for interfacing. Memory chips are interfaced to the FPGA using a HSTL or SSTL
I/O standard. If an off-chip processor exists, it is connected using the GTL+
interface. Many boards are designed to be compatible with the peripheral connect
interface (PCI) backplane, which requires a matching PCI voltage and bus
frequency I/O standard. The input and output pins of the FPGA can be configured
for different I/O standards (see Fig. 3.20 and Table 3.6), based on the interface
needed. Figure 3.20 is a typical PCI bus add-on card board design that uses a
FPGA.

Primary
processor Display

FPGA device
QDR SRAMS

SDRAM
memory

PCI backplane

`

PC based board using a FPGA
device controller

SSTL

2x CLK

GTL+
LVDS

HSTL

PCI

Fig. 3.20. Field programmable device supporting different digital interface standards

 FPGA Devices 71

Table 3.6. Voltage levels supported by FPGA I/O pins

I/O Standard and description Voltage level (volts) Interfaced with

LVTTL, low-voltage TTL 3.3 Pushbuttons

LVCMOS33, low-voltage CMOS 3.3 ADC, DAC

PCI, peripheral component interface 3.3 PC backplane bus

SSTL2 2.5 DDR SDRAM

GTL+ 0.65–1.5 Processor

HSTL 1.5 QDR SRAMS

LVDS 2.5 Display

Signals used as inputs to the FPGA connect to an input buffer (IBUF) via an
external input port. The default standard for an input port is LVTTL when the
buffer is not specified. An output buffer (OBUF) is used to drive outputs through
an external output port. When no I/O standard is specified, the OBUF I/O standard
is set to LVTTL with 12-mA drive strength (see Fig. 3.21).

Fig. 3.21. Pin constraint report showing selection of I/O standard, drive (mA) and slew rate

3.2.6 Multipliers

Increased use of FPGA for signal processing applications has made the multiplier
an important component of hardware design. Multipliers in a FPGA are
implemented in a number of ways. One of the most frequently used methodologies
is to let the synthesis software determine the kind of multiplier to be used. The
second is to specify a multiplication algorithm, the Booth multiplier. Another way
is to specifically instruct the synthesis software to use the multiplier primitive
available in the particular FPGA device family. Figure 3.22 shows the block
diagram of a FPGA immersed hardware multiplier that supports 18-bit
multiplication.

72 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Fig. 3.22. Multiplier block diagram

Example 3.6. Create logic for multiplying two 8-bit numbers.

module mult(input [7:0] a, input [7:0] b, output reg [15:0] c, input clock);

always @ (posedge clock)

 c <= a * b;

endmodule

Fig. 3.23. Verilog code for multiplication

The code of Fig. 3.23 instantiates one of the 20 available multipliers on the
target FPGA chip. The synthesis report is a quick way to ascertain the use of the
hardware multiplier (see Fig. 3.24).

3.3 Floor Plan and Routing

The floor plan of the FPGA provides a graphical view of the placement of various
elements mentioned in the synthesis report. Figure 3.25 shows a listing of basic
elements for a 4-bit shift register. These elements can be located on the FPGA
floor plan by selecting them. By default, the floor planner places elements at
locations determined by the tool. A definite area of the chip can be defined for
placement of logic by providing an area placement constraint. This area is defined
by slice locations of the logic matrix. Intuitively, logic placed close to its I/O pins
will have fewer interconnect delays.

 FPGA Devices 73

Fig. 3.24. Synthesis report showing use of the multiplier

Fig. 3.25. The floor plan design hierarchy for the shift register model of Fig. 2.8c

74 Introduction to Embedded System Design Using Field Programmable Gate Arrays

3.4 Timing Model for a FPGA

The timing model of the FPGA aids in understanding various delays, when a
digital circuit is implemented. For a design that is based entirely on combinational
logic, the delay path consists of input delay, internal delay associated with
combinational logic modules, routing delay and the output delay. Figure 3.26a
shows various components that are used for static timing analysis on a FPGA.

The FPGA tool generates a post place and route static timing after place and
route have been completed. The static timing analysis tool provides an estimate of
the interconnect delay between various sections of a digital design. Figure 3.26b
shows the options provided by the tool to analyze the timing delays of example 3.2.
The timing between input/output pads of a design or of a defined path in the
internal logic is determined by using the timing analysis tool19. For a real-time
application, where pre-defined timing has to be met, static timing analysis is used
for an estimate of the time delay in the logic.

Q

QSET

CLR

D

Combinational
logic modules,

LUTs

Input delays Internal delays
Predicted

routing delays

Sequential logic modules

Embedded
memory

Output delays

ENB

Q

QSET

CLR

D

Multipliers

Clock pin

Output pin

Registered output

Input pin

Q

QSET

CLR

D
Included

combinational
logic

Q

QSET

CLR

D
Included

combinational
logic

ENB

Q

QSET

CLR

D

Registered output

Fig. 3.26. a Timing model for a FPGA-based design

19 FPGA vendors provide a library of simulation timing models that provide an estimate of timing
details. The delay file in the standard delay format (.SDF) is used by post place and route
simulation.

 FPGA Devices 75

Fig. 3.26. b Timing model for SRL instantiation of Example 3.2

3.5 FPGA Power Usage

FPGA devices provide hardware reconfigurability. The technology that makes this
feasible, also extracts a price for it. The price is in terms of power consumed by the
FPGA. The majority of FPGAs use SRAM-based interconnect switches to offer
reconfigurability. The SRAM is a volatile switch and loses its configuration when
power is cycled. There is usually an external memory chip20 containing the
configuration file. This configuration is loaded in the FPGA every time on power
up. To keep the interconnect inside the FPGA alive, the SRAM switches are kept
powered up. This results in static power consumption. HDL coding techniques help
in reducing dynamic power, and use of non-volatile interconnect technology results
in static power reduction. The total power consumed in the FPGA can be broken

20 Some SRAM interconnect-based FPGAs now have built in flash memory to store the
configuration file.

76 Introduction to Embedded System Design Using Field Programmable Gate Arrays

down based on the components listed in Fig. 3.27. FPGA vendor provided software
tools estimate the power consumption by considering the average switching rate of
the components.

Fig. 3.27. Power consumption areas of a FPGA

Example 3.7. Design digital logic using HDL for controlling a single-phase
controlled rectifier. The silicon controlled rectifier (SCR) should trigger at varying
time delays α. The power and gate triggering circuits along with waveforms for
control are shown in Fig. 3.28a and b.

AC

CONTROLLED
RECTIFIER

GATE FOR
RECTIFIERACAC

INPUT AC
VOLTAGE LOAD

S1

+12
volts

g

k
egk

From
FPGA

output pin

TO SCR

Pulse train
for burst firing

Fig. 3.28. a Single-phase controlled rectifier trigger pulse generation

 FPGA Devices 77

Fig. 3.28. b Single-phase controlled rectifier trigger pulse generation

The SCR triggers in the positive cycle of the input power line. A derived
signal called the quantizer is used to sense the duration of the positive half cycle.
The edges of the quantizer are used to generate a zero crossing point. Verilog code
for zero crossing, shown in Fig. 3.29, senses the quantizer edge to start a counter
that determines the width of the zero crossing pulse.

module zcd (input quan, input clk, input rst, output reg zcd);

wire w1;

reg [2:0] count1 ;

always @(posedge quan or posedge w1)
begin
 if (w1)
 zcd <=0;
 else
 zcd <=1;
end

always @(posedge clk)
 begin
 if(zcd)
 count1 <=count1+1;
 else
 count1 <= 0;
 end

assign w1 = &(count1);

endmodule

Fig. 3.29. Verilog code to generate narrow width zero crossing signal by using a quantizer

78 Introduction to Embedded System Design Using Field Programmable Gate Arrays

always @
(.......

always @
(.......

te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt
te
xt

te
xt
te
xt
te
xt
te
xt
te
xt
te
xt

te
xt
te
xt

te
xt
te
xt
te
xt
te
xt

te
xt

te
xt

Quantizer signal

Control
voltage Vc

FPGA

S1

ADC interface

Timer module

Device LUT module

Wires interconnecting modules

ZCD - Zero crossing signal

always @
(.......

Block RAM
based delay

LUT

ZCD module

16-bit timer
value

Clock Clock

ADC

Fig. 3.30. Interconnection of different modules for controlled rectifier logic

Table 3.7. Partial look-up table (LUT) for loading counter value for a specified α angle
between 0 and 60°. LUT is implemented in the block memory of the FPGA

Triggering angle α °,
input frequency, 50 Hz

Delay count @ 1.5 MHz timer
clock - decimal

Hexadecimal value
for 16-bit timer

60 5000 1388

59 4917 1334

58 4833 12E1

57 4750 128E

56 4667 123A

55 4583 11E7

54 4500 1194

53 4417 1140

52 4333 10ED

51 4250 109A

Block Diagram of Converter Control

Digital architecture for implementing the block diagram of rectifier logic is shown
in Fig. 3.30. Here the functionality is divided into discrete modules that are
integrated together. The ADC interface module is used to obtain the value of the
reference voltage Vc and subsequently the controller firing angle α. Based on the
firing angle α, a timer is initialised that computes the SCR triggering delay after
every zero crossing. The delay angle is computed by a 16-bit timer, partially shown
in Table 3.7, which loads a pre-determined value based on system clock frequency.
The firing angle delay count is stored in the block RAM of the FPGA. A port map
for accessing the block RAM is shown in Fig. 3.31. The value of the firing angle is
the address of the block RAM memory, and the delay count is available on the data
bus of the memory.

 FPGA Devices 79

 firingangle UUT2 (
 .addr (m_add),
 .clk (xi_clk),
 .dout (alpha_load));

Fig. 3.31. Block RAM instance in top module

The timer module shown in Fig. 3.32 loads a new value based on the firing
angle and starts decreasing the value after a zero crossing. A timer_dn output is
generated, when the timer has reached zero, to turn on the SCR.

module timer (input clk, zcd, rst, input [15:0] timer_val, output timer_dn);

reg [15:0] count;

always @ (negedge clk)
 begin
 if (rst) count = 16'b0;
 else if (zcd)
 begin
 count [15:0] = timer_val [15:0];
 end
 else
 count = count - 1;
 end

assign timer_dn = (count == 0) ? 1'b1 : 1'b0; // on for one clock period

endmodule

Fig. 3.32. Verilog timer code for determining instance of SCR turn-on

Problems

1. Complete the code shown in Example 3.7 and check its working and
synthesis results.

2. Synthesize the 8-bit Booth multiplier and check the amount of
combinational delay for the un-clocked circuit and the maximum frequency
for a clocked circuit.

3. Create a digital function generator to generate a variable frequency sine,
ramp and triangular functions. The output is sent to a 12-bit unipolar DAC.

• Use the block RAM as LUT for the sine wave.
• Use a free running 12-bit counter for the ramp signal.

4. There are certain errors that are not flagged at simulation time but are
encountered when the design is being synthesized. One such error is the
multi-sourcing error. This error results when two or more independent
processes are trying to modify the contents of a particular register. In
Verilog, each process is modelled using an always statement. The Verilog

80 Introduction to Embedded System Design Using Field Programmable Gate Arrays

code discussed in Example 2.5 is split in two parts. Simulate and synthesize
the code given in Fig. 3.33 and determine which signal is causing the
multi-sourcing error.

module shift_s(input [7:0] word, input clk, rst, output reg x);

reg [2:0] count;

always @ (posedge clk)
begin
 if (rst)
 count <= 0;
 else if (count < 7)
 begin
 x <= word[count];
 count <= count +1;
 end
end

always @ (posedge clk)
begin
if (count == 7)
 begin
 x <= word[7];
 count <=0;
 end

end

endmodule

Fig. 3.33. An example of a multi-sourcing error

Further Reading

1. Maxfield C (2004) The design warrior’s guide to FPGAs — devices, tools and flow.
Newnes

2. Zeidman B (1999) Designing with FPGAs and CPLDs. Prentice-Hall
3. Xilinx (2007) SPARTAN-3 generation FPGA user guide UG 331

4

FPGA-based Embedded Processor

With rising gate densities of FPGA devices, many FPGA vendors now offer a
processor that either exists in silicon as a hard IP or can be incorporated within the
programmable device as a soft IP. The purpose of having a processor co-exist with
conventional digital logic components is to provide flexilibility of combining
software and hardware based control in one chip. Many algorithms that are
difficult to code in HDL and have update time requirements in milliseconds can
use the processor inside the FPGA. A whole suite of tools, consisting of compilers
and assemblers help the designer code in C or C++. The motivation of this chapter
is to introduce the use of FPGA embedded processors and to integrate custom
digitial logic with FPGA-based processors.

4.1 Hardware–Software Task Partitioning
Update time

Current and power device PWM control

Control of position and speed loop,
sequencing logic

Referencing
trajectory control

sμ

 1–10 ms

10–100 ms

Fig 4.1. Task update rates

A designer of a digital system identifies tasks and their update time requirements.
As shown in Fig. 4.1, a robot controller task pyramid consists of tasks that need
microsecond or millisecond update time. In our hypothetical robot control system,
the task of robot joint trajectory computation, which needs 10–100 ms update time,
is assigned to a processor. The processor is driven by a timer interrupt that updates

82 Introduction to Embedded System Design Using Field Programmable Gate Arrays

the trajectory profile every 10–100 ms. The task of motor current and power device
PWM control is part of hardware logic (designed using HDL) because it needs to
update every 50 μs.

4.2 FPGA Fabric Immersed Processors

The ability to support processor logic has brought a new dimension to the use of
FPGA devices. It has provided designers the freedom to partition their designs
either for single-threaded software flow or to use concurrent digital logic. A quick
search on the internet shows that several 8- and 32-bit proprietary processors are
offered by leading FPGA vendors along with established processors. The
motivation for using the time tested, established processor is to shorten the learning
curve of designers and build confidence in their use. Almost all major vendors of
field programmable devices provide processors, for use with their respective
devices. Table 4.1 shows a partial list of vendors and the processors they offer.

Table 4.1. Partial list of contemporary FPGA-based processors

Processor name Type/Bits Interface bus FPGA vendor

MicroBlazeTM Soft/32 IBM Coreconnect Xilinx

NIOS® Soft/32 Avalon Altera

LatticeMico32 Soft/32 Wishbone Lattice

CoreMP7 Soft/32 APB Actel

ARM Cortex-M1 Soft/32 AHB Vendor independent

LatticeMico8 Soft/8 Input/Output ports Lattice

Core8051 Soft/8 Nil Actel

Core8051s Soft/8 APB Actel

PicoBlazeTM Soft/8 Input/Output ports Xilinx

PowerPC Hard/32 IBM Coreconnect Xilinx

AVR Hard/8 Input/Output ports Atmel

4.2.1 Soft Processors

Soft processors exist as synthesized netlists incorporated in the FPGA using logic
block resources of a particular FPGA. FPGA vendors offer soft processors catering
to 8-bit and 32-bit applications. The 8-bit processor occupies a small footprint on
the FPGA device and it uses the FPGA embedded memory for program and data

 FPGA-based Embedded Processor 83

memory storage. Figure 4.2 shows the block diagram of PicoBlazeTM, an 8-bit soft
controller from Xilinx. The PicoBlazeTM controller consists of an 8-bit input and an
8-bit output port. It also supports interrupt. The embedded block RAM of the
FPGA serves as a location for program and data memory for the PicoBlazeTM. The
PicoBlazeTM assembler takes the program file and creates the coefficient (.coe) file,
loaded in the embedded memory of the FPGA.

Among the 32-bit soft processors, two of the leading 32-bit proprietary soft
processors are NIOS® from Altera and MicroBlazeTM from Xilinx. These
processors use a portion of the FPGA resources. The remaining part of the FPGA
can be used for incorporating other digital logic.

IN [7:0]

INT

RST

OUT_PORT [7:0]

PORT_ID [7:0]

READ_STB

WRITE_STB

INT_ACK

ADD [9:0]

INSTRUCTION [17:0]

ADD [9:0]

CLK

Realised using logic cells

PicoBlazeTM

8-bit soft processor

CLK

CLK

Embedded block RAM memory

Fig. 4.2. Realising an 8-bit soft controller on a FPGA

The MicroBlazeTM 32-bit soft processor, shown in Fig. 4.3 is a reduced instruction
set computer (RISC) based engine with a 32 * 32-bit LUT RAM-based register file
with separate instructions for data and memory access. It supports both on-chip
block RAM and external memory for program/data memory. All peripherals are
implemented on the FPGA fabric and interface to the MicroBlazeTM using the on-
chip peripheral bus (OPB) or processor local bus (PLB). The MicroBlazeTM
processor options include instantiation of additional hardware to implement IEEE
754 single precision floating point standards. With this option included, it can
support floating point addition, subtraction, multiplication, division and
comparison.

Soft processors listed in Table 4.1 can be customized by adding a barrel shifter
or modifying the size of the data and instruction cache. Additional processors can
also be added to provide a multi-processing option. Based on the results of
software profiling, certain resource intensive software algorithms can be moved to
the hardware fabric as coprocessors or as custom peripherals.

84 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Program
counter

Instruction
buffer

Special
purpose
registers

Instruction
decoder

Register File
32 X 32b

ALU

Shift

Barrel shift

Multiplier

Divider

FPU

Bus
IF

Block RAM — Local memory block (LMB)

D
LM

B

IL
M

B

D
ata bus side interface

FSL

D_OPB

D_PLB

A
_B

us

Fig. 4.3. MicroBlazeTM block diagram

4.2.2 Hard Processors

Many standard processors and microcontrollers are available as hard IP inside the
FPGA. Some of these include the AVR microcontroller offered by the Atmel
family and the PowerPC processor as part of Xilinx Virtex FPGAs. The design
chain for programming and debugging the FPGA-based processor system is quite
similar to their earlier model as stand-alone processors.

4.2.3 Tool Flow for Hardware–Software Co-design

To co-design a system, both hardware and software tasks need to be independently
coded and tested. The software flow shown in Fig. 4.4 combines the source and the
library files to create an executable file for the processor to use. The location of the
program and data code can either be in the internal memory of the FPGA device or
if the program code is large, an external memory device is used. In Fig. 4.4, the
program is stored within the memory of the FPGA device. The hardware design
flow takes the electronic design interchange format (EDIF) files of the soft
processor, merges them with the user written custom digital code and prepares a
complete system netlist after synthesis.

 FPGA-based Embedded Processor 85

Hardware design flow Software design flow

Design entry
tools

Processor core
configuration

tool

FPGA synthesis
tool

FPGA place and
route

User hardware
logic

HDL or
schematic

HDL or
netlist

Netlist

C/C++ compiler
for processor

Application
software source

code

Operating system
kernel and

libraries

Binary Program/
data files

Processor
configuration data

User
logic

Processor

Memory
 FPGA

Fig 4.4. Hardware–software design flow [1]

4.3 Interfacing Memory to the Processor

The use of a processor calls for memory, where the instructions are stored. As
discussed in Chap. 3, many FPGAs provide on-chip embedded memory. The size
of this memory depends on the density of the FPGA device in use. For the Xilinx
500 k gate FPGA, 360 kbits of memory are available. When this onboard memory
is used, a local memory bus (LMB) controller is configured to read and write
to/from this memory. For small codes that are meant for the PicoBlazeTM processor
or assembly coded codes for the 32-bit processors, the onboard memory fulfills the
requirements. When using this bus, memory accesses are much faster and are
handled by the memory controller. For larger programs, the compiled code needs
to be stored in an external memory chip. A memory controller is configured for
accessing the external memory chip. The linker script settings shown in Fig. 4.5
need to be modified for either using an external double data rate synchronous
dynamic random access memory (DDR SDRAM) or internal FPGA memory to
store program code, stack or heap.

86 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Fig. 4.5. Linker script settings for determining the type of memory to be used with
a MicroBlazeTM soft processor

4.4 Interfacing Processor with Peripherals

“Designers can also create their own custom peripherals and integrate
them into soft processor systems. For performance-critical systems that
spend most CPU cycles executing a specific section of code, it is a common
technique to create a custom peripheral that implements the same function
in hardware. This approach offers a double performance benefit: the
hardware implementation is faster than software; and the processor is free
to perform other functions in parallel while the custom peripheral operates
on data.”

Altera on using custom peripherals

From the digital design point of view, the shared bus interface approach is similar
to peripherals that are interfaced to a processor using tracks on a PCB. Many
backplane bus standards that provide basic interfacing capabilites for peripherals
have evolved over time. As shown in Fig. 4.6, signals such as address, data and
control bus are used by interconnect buses. Many proprietary interface bus
standards exist, with similar interfacing methodology. Tables 4.2 and 4.3 list
physical backplane bus standards and system-on-chip buses used for interfacing
processor and peripherals.

The hardware-software synergy available by use of a FPGA-based processor
makes sense only if customized coprocessors or peripherals are part of the design.
Otherwise it is much simpler and economical to go for a microcontroller or digital
signal processor implementation. There are many schemes for connecting user
defined custom logic to a FPGA processor. One way is to use industry standard
interconnect buses. The use of standard buses improves the re-use of IP core
because the bus interface logic provides the front-end connection to the IP core.

 FPGA-based Embedded Processor 87

Peripheral 4 Peripheral 5 Peripheral 6

Microprocessor

Peripheral 1 Peripheral 2 Peripheral 3

Data bus

Address bus

Control bus

Fig. 4.6. Processor connected to different peripherals on a PCB

Table 4.2. Partial list of physical backplane bus standards

Name Originator

IBM PC bus IBM

Multibus Intel

Multibus II Intel

VME bus Motorola

STD bus, IEEE 488 bus Hewlett-Packard

Q-bus Digital Equipment Corp.

Unibus Digital Equipment Corp.

Table 4.3. System on Chip buses

Bus name, originator Interconnection type

AMBA, ARM Shared bus architecture

Wishbone, Silicore Point-to-point, crossbar, data flow, shared bus

OPB CoreConnect bus, IBM Shared bus architecture

Fast serial link, Xilinx Point-to-point

Avalon bus, Altera Cross bar switch

88 Introduction to Embedded System Design Using Field Programmable Gate Arrays

4.4.1 Types of On-chip Interfaces

On-chip processor peripheral interface topology can be divided into point-to-point,
cross bar switch and shared bus interfaces.

4.4.1.1 Point-to-Point
The point-to-point interface consists of a dedicated link between the
communicating devices. An example is the fast simplex link (FSL)21. This point-to
-point link provides a unidirectional, non-arbitrated channel to perform fast
communication between the MicroBlazeTM processor and custom hardware
module. The MicroBlazeTM can be configured to support multiple FSL links to read
and write data or control signals to a peripheral.

4.4.1.2 Cross Bar Switch
The cross bar switch consists of an interconnection fabric, configured based on the
connections between various sections of the design. This is usually done at design
synthesis time. The transfer rate of a crossbar switch is higher than that of a shared
bus mechanism. But the crossbar switch requires more interconnection logic and
routing resources than a shared bus system.

4.4.1.3 Shared Bus
Shared buses are similar to their older backplane bus counterparts. The shared bus
interface defines an address for the slave or peripheral device. The address bus
originating from the microprocessor carries the address of the slave device to
which the microprocessor wishes to communicate. An address decoder in each
slave device determines whether that particular slave is being addressed. A bank of
registers within the slave device are written to or read from by the microprocessor
master device. Each of the registers in the slave device has a unique address sent
by the master device. A typical read and write to a particular register in the slave
device is illustrated by the timing diagrams of read and write cycles.

The peripheral logic periodically updates the feedback/status registers and reads
the configuration registers. If a peripheral seeks immediate attention, it generates
an interrupt for the microprocessor. If there is only one interrupt generating
peripheral in the system, it is connected to the interrupt port of the microprocessor.
But if there are many peripherals that can possibly interrupt the processor, there is
an interrupt controller peripheral that routes the interrupt signal to the
microprocessor based on the pre-assigned priorities of the interrupts.

21 The FSL link is a proprietary point-to-point link supported by Xilinx soft processor
MicroBlazeTM. It is used for streaming data from connected devices.

 FPGA-based Embedded Processor 89

The shared bus consists of

• a unidirectional Address Bus
• a bi-directional Data Bus
• control signals

- write/read enable
- acknowledge

• System control signals — clock, reset.

4.4.2 Wishbone Interface

Wishbone supports three kinds of interconnections. These include point-to-point,
shared bus and the crossbar switch. The interface defines the connection between
the processor (master) and the wishbone slave. As Fig. 4.7 shows, the
interconnections consist of address, data and handshaking signals. The
handshaking mechanism is used to adjust the data transfer rate. The acknowledge
[ACK_0] signal is mandatory, whereas error [ERR_o] and retry [RTY_o] are
optional handshaking signals. The signals defined for the point-to-point connection
are also used in the shared bus interface.

Wishbone supports single read/write, block read/write, and read-modify-write
operations. All signals between master and slave are either inputs or outputs, but
never bi-directional (using tri-state logic). Address and data bus widths can be
changed to fit the application. Possible widths supported are 8, 16, 32 and 64 bits.

SYS_CON

Wishbone
master

Wishbone
slave

RST_I

CLK_I

ADR_O()

DAT_I()

DAT_O()

WE_O

SEL_O()

STB_O()

ACK_I

CYC_O

RST_I

CLK_I

ADR_I()

DAT_O()

DAT_I()

WE_I

SEL_I()

STB_I()

ACK_O

CYC_I

Fig. 4.7. Wishbone interface configured for a point-to-point connection [2]

90 Introduction to Embedded System Design Using Field Programmable Gate Arrays

4.4.3 Avalon Switch Matrix

The Avalon switch fabric is an interconnect technology used by Altera. It is
generated using the system on a programmable chip (SOPC) builder tool of Altera.
It provides up to a 128-bit address and data path. There is support for multiple
masters, built-in address decoding, peripheral transfer support, read and write
transfers and fixed and variable length transfers. The FPGA switch fabric provides
for a fast configurable interconnect used to make memory mapped connections
between master and slave devices. A sample configuration of an Altera NIOS®
processor connected to three slaves is shown in Fig. 4.8.

Memory mapped
master

(NIOS® processor)

Interconnection fabric

Memory mapped
slave 3

Memory mapped
slave 2

Memory mapped
slave 1

Fig. 4.8. Interconnection of Avalon Bus using interconnection fabric

4.4.4 OPB Bus Interface

The on-chip peripheral bus (OPB) is a shared bus architecture. It is part of the
CoreConnect architecture developed by IBM for integrating on-chip “cores”.
Although the specifications allow for a 32- or 64-bit wide address and data bus, the
FPGA adaptation by Xilinx uses 32-bit as the word size. The OPB bus system uses
master-slave architecture. The master which is usually part of the microprocessor
can initiate a transaction by specifying a slave address. The slave responds to the
requests from the master. Both the OPB and the MicroBlazeTM soft processor use
big-endian form of data, where bit 0 is the most significant bit and bit 31 is the
least significant. The signals exchanged between an OPB master and slaves are
shown in Fig. 4.9a.

The OPB bus read cycle illustrated in Fig. 4.9b consists of the OPB_RNW
signal becoming high along with the OPB_SELECT signal. The address where the
OPB master (the processor in our case) wishes to read from, is sent on the
OPB_ABUS and after a latency of four cycles, the data from the peripheral are
available on the OPB_DATA bus.

The write cycle of the OPB works in a fashion similar to the read cycle. Instead
of the OPB_RNW becoming high along with OPB_SELECT, the address and data
bus contents are put on their respective buses. A transfer acknowledge signal from
the slave indicates the completion of the write cycle. The timing diagram for this
transaction is shown in Fig. 4.9c.

 FPGA-based Embedded Processor 91

OPB master device OPB slave device
(peripheral)

OPB_Abus

OPB_Dbus

OPB_CLK

OPB_RNW

OPB_Rst

OPB_Select

Sln_errAck

Sln_DBus

Sln_ToutSup

Sln_xferAck

a

 1 2 3 4 5 6 7 8 9 10 11 12 13 14
OPB_CLK

OPB_SELECT

OPB_RNW

OPB_ABUS

OPB_DATA

Sln_xferAck

b

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Address

Data

OPB_CLK

OPB_SELECT

OPB_RNW

OPB_ABUS

OPB_DATA

Sln_xferAck

c

Fig. 4.9. a OPB bus interface signals for master and slave devices; b OPB read cycle; c OPB
write cycle

92 Introduction to Embedded System Design Using Field Programmable Gate Arrays

4.5 Design Re-use Using On-chip Bus Interface

Many times, standard digital components are re-used for different applications.
Making a design compatible with an on-chip bus interface is one way to re-use a
design. Different IP cores developed independently can be tied together and tested
by standardizing the IP core interfaces. Many re-usable digital designs22 available
in the public domain are compatible with on-chip interfaces.

Table 4.4. List of peripherals needed for the robot controller

Name of peripheral Description Application

Communications RS-232 and RS-485
networks

Communicating with PC, multi-
drop networks

Motor controller Control of speed and
power module of motor

Five controllers – one for each
axis

Quadrature encoder
interface

Determination of position
and speed of each axis

Five peripherals – one for each
axis

Serial peripheral
interface(SPI)

Interfacing with ADC,
DAC and other sensors

Getting feedback from distance
sensors, proximity sensors of
robot workspace

Timer Fixed interval timer Providing interrupts to processor

SDRAM Memory controller Connecting extra memory

In the list of peripherals mentioned in Table 4.4, the motor controller and
Quadrature encoder interface are not available as microcontroller peripherals.23
These peripherals are also not included in a FPGA vendor supplied peripheral
library. In such cases a custom peripheral for motor control is called for.

Motor Drive as a Peripheral

The robot motor drive logic can be made as a custom peripheral that interfaces
with the system-on-chip bus (Fig. 4.10). This peripheral can be replicated or cloned
multiple times on a single FPGA chip without affecting the performance of each
individual drive (thanks to the independent concurrent threads that a FPGA device
can support!). Chapter 6 will discuss more on how to create HDL code for robot
motor drive control.

22 Re-use able digital designs from www.opencores.org use the Wishbone bus standard.
23 A microcontroller for motor control application does contain peripherals to aid in motor drive
design. Along with standard GPIO it contains a 16-bit rotor speed measurement counter, three-
phase PWM signal generator, 6-bit dead time generator, and interrupt generators that exchange
data with the CPU over a proprietary register bus.

 FPGA-based Embedded Processor 93

P
E

R
IP

H
E

R
A

L
B

U
S

AC Drive Peripheral

Triggering
signals

Current,
speed,
position
feedback

Peripheral
interface logic

FPGA memory

Robot
motor
drive

control
logic

(chap. 6)

Speed_ref (Cmd)

Acceleration (Cmd)

Kp, Ki

Start,Stop

Current_fdbk

Speed_fdbk

Robot drive data
and control/

status registers

Peri_select
ABus

 DBus

Drive_DBus
Drive_xferAck

Position_fdbk

Robot motor drive peripheral

Fig. 4.10. Details for robot motor drive peripheral

Design of Custom Peripheral
A peripheral is an independent device used to off-load the processor from
processes that require frequent attention. The peripheral takes input from the
processor and then interrupts the processor on completion of a given task.
Examples of common on-chip microcontroller peripherals include timers, UART
and interrupt controllers. The availability of high-density FPGA devices, with
built-in processors has made incorporation of custom peripherals feasible. A
FPGA-based processor system is configurable to create a customized
microcontroller. Additional user defined peripherals can be integrated with the
processor. The design of a custom peripheral requires a bus interfacing logic and
the custom code of the user peripheral. Based on the timing diagram of the read
and write cycles of the particular bus protocol, a finite state machine is designed to
interface a custom peripheral device. A typical port map of the slave device
consists of the following signals:

• Bus to slave peripheral

- Address bus
- Data bus
- Clock
- Read/Write

• Slave peripheral to bus

- Data bus
- Transfer acknowledge
- Time out suppression

The finite state machine would consist of idle, selected, read/write, transfer
acknowledge and then again idle state. The peripheral interface logic consists of
the shaded section shown in Fig. 4.11.

94 Introduction to Embedded System Design Using Field Programmable Gate Arrays

HDL based code for
custom peripheral

Peripheral select
logic (specific to

interface Bus)

Dual port memory
for use by custom

logic reference
and feedback

In
te

rf
ac

e
bu

s

Processor in FPGA
Address,

data,
control

Address

Data

Control

Peripheral interface logic

Fig. 4.11. Interface logic for connecting a peripheral to a chip interconnect bus

4.6 Creating a Customized Microcontroller

The FPGA allows the flexibility of creating a customized application-oriented
microcontroller. The programming flow of these processors is similar to that used
for programming a microcontroller-based system. A high-level programming
interface such as C is used. An architecture for a microcontroller designed for
motor control is shown in Fig. 4.12a. This architecture shows a 16-bit CPU, SPI,
ADC and timer/counter interfaces. There is a proprietary internal bus within the
controller that connects the processor with various peripherals.

If a similar architecture for multi-motor control were to be created using the
field programmable device, the architecture would not change much. A FPGA-
based hard or soft CPU is chosen, and various pre-designed peripherals offered, are
put together to form a system around a given interconnect bus. If the program
memory requirement is large, an external memory device is connected using a
memory controller IP. The typical environment of a single-chip controller consists
of general purpose input output (GPIO) devices, a communications terminal such
as the UART and memory. For the sake of equivalency with the microcontroller
environment, let us create a similar FPGA-based system.

Example 4.1. Create a customized microcontroller as shown in Fig. 4.12b. The
microcontroller contains among other peripherals, two custom motor drive
interfaces.

 FPGA-based Embedded Processor 95

O
N

 C
H

IP
 B

U
S

Analogue-to-

digital
converter-
External

UART

Watchdog timer

Programmable
I/O GPIORegister

file 256
bytes

32 bit CPU

External memory
— SDRAM, FLASH

On-chip RAM
memory

LO
C

A
L

M
E

M
O

R
Y

 B
U

S

Timer/counter

Workstation

M

Interrupt
controller

Serial
peripheral
interface

Logic for aiding
motor control

a

Workstation

Processor

Chip-wide peripheral bus

Embedded
memory

UART
Timer GPIO SPI

Interrupt
controller

FPGA

Int

Int

Int

Motor
drive 2

Motor
drive 1

b

Fig 4.12. a Architecture of a microcontroller for control applications; b architecture of
a FPGA-based system on chip customised for motor control application

96 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Fig. 4.13. Snapshot of peripherals available for design of an embedded system

Figure 4.13 shows a peripheral IP library available for use in the design of an
embedded system. The following peripherals are chosen from this list:

• UART: In this example the standard input and output port (STDIN and
STDOUT) are configured for RS232_DCE. This ensures that program
outputs using the print command are displayed on the serial port. An
interrupt is generated when any valid character is in the receive FIFO and
the interrupt stays active until the receive FIFO is empty.

• Timer: The timer provides an interrupt for real-time processing.

 FPGA-based Embedded Processor 97

Fig. 4.14. Configuring the UART peripheral for use with the OPB bus

• SPI bus: Provides communication with off-chip ADC and DAC chips.
• Interrupt controller: For managing multi-source interrupts.

The only peripheral not available from the IP library is the motor drive
peripheral. A customized peripheral discussed in Sect. 4.5 needs to be created. The
configurations of the UART and the timer are shown in Figs. 4.14 and 4.15.

98 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Fig. 4.15. Configuring the timer peripheral for use with the OPB bus and processor

4.7 Robot Axis Position Control

The architecture of a joint or axis position control scheme is shown in Fig. 4.16.
Each joint of the manipulator is controlled by a position servo loop. The joint
trajectory control algorithm uses a new joint set point, JN. Based on trajectory/
system parameters and constraints, a position profile is generated for each joint of
the manipulator.

Fig. 4.16. Robot joint axis control [3]

 FPGA-based Embedded Processor 99

The profile generator is usually implemented in software. The data sequence
[θn(nT)] for a particular joint is output in real time and is driven by an interrupt-
based update mechanism. The digital servo loop that accepts the set point for the
position is discussed in detail in Chap. 6.

A robotic manipulator is modelled as a chain of links, as seen in Fig. 4.17.
These links are interconnected to one another by joints. The last link has the tool or
end-effector attached to it. Denavit and Hartenberg have presented a systematic
procedure for assigning a co-ordinate frame to the links of a robotic manipulator.
The objective of the robot controller is to position the tool in three-dimensional
space. The tool is programmed to follow a planned trajectory so that it carries out
operations in the workspace.

Base

j1

j2

j3 j4

xo

Yo
Zo

Tool

Fig. 4.17. Links and joints of a robot

Inverse kinematics for a robot is computed by knowing the desired space co-
ordinate value x,y,z and then determining the motion angle for each robot arm axis
[θ1, θ2, θ3, θ4, θ5]. For a given robot arm of 5 degrees of freedom, an x,y,z co-
ordinate to motor angle transform is performed using the Denavit–Hartenberg(D-
H) method [4]. The D-H parameters for the five joint robot are mentioned in
Tables 4.5 and 4.6. A timer driven interrupt is used for calculating a new set of
motion angle commands every 100 ms (see Fig. 4.18).

Table 4.5. Robot joint and link parameters

Arm parameter Symbol

Joint angle θ

Joint distance d

Link length a

Link twist angle α

100 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Table 4.6. Denavit-Hartenberg parameters for a robot arm,Mitsubishi RV-M1 [5]

Joint θ d (mm) a (mm) α

1 θ 1 300 0 –π/2

2 θ 2 0 250 0

3 θ 3 0 160 0

4 θ 4 0 0 –π/2

5 θ 5 72 0 0

Fig. 4.18. Timer interrupt for calculating trajectory parameters every 100 ms

Problems

1. Timers and counters are omni-present components of embedded systems.
They are used for setting sampling rates, measuring speed and counting
external inputs. Develop HDL code for a timer (use the specifications for
Intel 8254 timer) peripheral that can interface with the on-chip interconnect
bus.

2. The Intel 8085 processor has multiple interrupt inputs, consisting of INT
5.5, 6.5, 7.5, NMI and TRAP. Modern processors support one interrupt line
connected to an interrupt controller. Develop an HDL-based Interrupt
controller (use the specifications for Intel 8259 interrupt controller) for
interfacing with the Interrupt pin of a processor.

 FPGA-based Embedded Processor 101

References

1. Hall TS, Hamblen JO (2004) System-on-a-programmable-chip development platforms
in the classroom.IEEE Transactions on Education: 47(4): 502–507

2. WISHBONE System-on-Chip (SoC) interconnection architecture for portable IP cores.
(2002) B.3. http://www.opencores.org/projects.cgi/web/wishbone/wishbone. Accessed
21 May 2008

3. Klafter RD et al (1989) Robotic engineering, an integrated approach. Prentice-Hall
4. Schilling RJ (1990) Fundamentals of robotics analysis and control. Prentice-Hall, New

Jersey
5. Kung Y, Shu G (2005) Development of a FPGA-based motion control IC for robot

arm. Paper presented at IEEE ICIT 2005,1397–1402

Further Reading

1. Slater M (1989) Microprocessor–based design, a comprehensive guide to hardware
design. Prentice-Hall

2. Mitsubishi Industrial Micro-Robot System Manual for Model RV-M1, MovemasterEx,
BFP-A5191E-B

3. Kung Y, Huang P, Chen C (2004) Development of a SOPC for PMSM Drives. Paper
presented at the 47th IEEE International Midwest Symposium on Circuits and Systems
2004

4. Kung Y, Shu G (2005) Development of a FPGA-based motion control IC for robot
arm. Paper presented at IEEE ICIT 2005, pp. 1397–1402

5. Navabi Z (2007) Embedded Core Design with FPGAs. McGraw Hill

5

FPGA-based Signal Interfacing and Conditioning

This chapter introduces ways to interface external world signals with a FPGA. In
our robot controller scheme, this would help the robot to sense information coming
from various analogue sensors and digital interfaces. A serial data communication
network is discussed that helps in interconnecting multiple robots. Using this
network and a protocol, command and feedback, data can be communicated from a
central controller to other robots on the assembly line.

5.1 Serial Data Communication

Modern sensors have a digital front end for transmitting measured parameters. The
signal acquired from the external world is formed into packets of digital data and
then serially transmitted. This reduces the amount of cabling required to bring in
data from various sensors of a robot’s surroundings. A typical sensor along with
electronics could transmit the acquired signals using one of the many standard
physical layers and protocol standards. Figure 5.1 shows different interfaces for
serial data communications.

Digital transducer
Signal acquisition,

conditioning and transmission

Sensor

Digital communications
(SPI,I2C,RS-232,RS-485)

Fig. 5.1. Interfacing sensors using different physical interfaces

Though there are buses that support parallel communication between digital
components, the majority of present-day digital systems use two or three-wire
serial communications. As shown in Fig. 5.2, the widely used serial buses can be
divided by their domain of operation into

• PCB-based communication links – synchronous
• Physically separated systems – asynchronous.

104 Introduction to Embedded System Design Using Field Programmable Gate Arrays

MOSI

MISO

CLK

SCK

SDA

SPI serial communications

I2C serial communications

MOSI

MISO

CLK

SCK

SDA

SPI serial communications

RX

TX

GND

RX

TX

GND

RS-232

PCB 1 PCB 2

PLD

PLD

PLD

PLD

PLDADC DAC

I2C serial communications

Fig. 5.2. Serial communications for inter PCB and intra PCB

Universal Asynchronous Receiver Transmitter (UART)

A UART24 is a serial communication circuit that uses the non-return to zero (NRZ)
code. As shown in Fig. 5.3, the data format of a UART consists of a high idle state,
a start bit, a character frame consisting of 8 bits, an optional parity bit and one stop
bit.

Data bit
0

Data bit
1

Data bit
2

Data bit
3

Data bit
4

Data bit
5

Data bit
6

Data bit
7

Parity
bit

Stop bit
(1)

Start bit
(0)

Fig. 5.3. Data frame of a UART

A UART communication pair consists of a transmitter and a receiver
exchanging data bits. Figure 5.4 shows the interconnection and internal diagram of
two UARTs.

Micro-
processor

In
te

rn
al

 P
er

ip
he

ra
l B

us

Transmit
FIFO

Transmit register

Parallel to serial

Receive register

Serial to parallel

Receive
FIFO

Micro-
processor

In
te

rn
al

 P
er

ip
he

ra
l B

us

Transmit
FIFO

Transmit register

Parallel to serial

Receive register

Serial to parallel

Receive
FIFO

Tx

Rx

Rx

Tx

Fig. 5.4. UART block diagram of transmitter and receiver

24 The UART is a standard peripheral available as a part of FPGA-based processor design tool. A
scaled-down version of UART is part of a Xilinx embedded development kit(EDK) and is also a
component of the Altera system on a programmable chip (SOPC) builder.

 FPGA-based Signal Interfacing and Conditioning 105

The FIFO is an important component of networks and signal processing
applications. It acts as a buffer between the transceiver and the processor. In the
transmitter the FIFO accepts the data byte to be transmitted from the internal bus,
and it stores the received data byte in the receiver.

Example 5.1. A student wrote a code (Example 3.2) for repeatedly transmitting
ASCII character “A” using the UART. The receiving serial communications port is
configured for no parity. The received character at times correctly showed “A” but
at times incorrectly showed “P”. Why is this happening, and how can it be
corrected?

1 01000001 0

1 01010000 0

Data Frame “A”
Stop Start

Data Frame “P”
Stop Start

Fig. 5.5. Illustration of a data framing error in the absence of a parity bit

As shown in Fig. 5.5, the UART forms two valid frames. The first frame is the
correct data for “A” and the second frame which is a shifted version of the first, is
the incorrect data “P”. This data framing error is due to the absence of a parity bit.

Manchester Encoding
Many of the communication interfaces are Manchester encoded rather than NRZ.
Non-return to zero (NRZ) and Manchester codes are used to represent binary
values “1” and “0” in digital systems. NRZ requires one level to represent a binary
value, whereas Manchester code requires two levels. Manchester coding defines a
positive transition for logic 1 and a negative transition for logic 0. The encoder of
the Manchester takes each bit of the code to be coded and performs an EX-OR
operation with the clock signal. The frame format is similar to that of a UART. The
functionality of the Manchester decoder is more complex, because it involves clock
recovery and centre sampling.

Example 5.2. Convert NRZ data to Manchester encoded data as shown in Fig.
5.6a.

The conversion from NRZ to Manchester encoded data is shown in Fig. 5.6b.
The NRZ data is ex-ored with the baud clock.

 1 2 3 4 5 6 7 8 9 10
Clock

NRZ (UART)

Manchester

Fig. 5.6. a Timing diagram of NRZ to Manchester code

106 Introduction to Embedded System Design Using Field Programmable Gate Arrays

module (input baud_clk, nrz, output manch)

assign manch = baud_clk ^ nrz;

endmodule

Fig. 5.6. b Verilog code for converting NRZ encoded data bits to Manchester code

5.2 Physical Layer for Serial Communication

The data frame created by the UART is transmitted by using different physical
standards. The concept of physical layer interface and protocol (both widely used
in digital data communications terminology) can be explained using the analogy of
human speech communication.25

5.2.1 RS-232-based Point-to-Point Communication

The RS-232 standard is slowly fading away from modern electronics. Present-day
personal computers classify the RS-232 as a legacy port that been superseded by
the universal serial bus (USB) port. Despite this, many interfaces around the world,
especially in the embedded domain, are still built around the RS-232 electrical
interface. RS-232 uses single ended communications, with a common ground
connecting both communicating devices. The clock signal is not exchanged
between communicating devices. Figure 5.2 shows a commonly used RS-232
connection, referred to as the null-modem configuration.

5.2.2 RS-485-based Multi-point Communication

The RS-485 standard continues to be used as a multi-point communication
standard. In RS-485, along with the original signal, its complement is also sent out
and received by the communicating devices. Any noise introduced in the
transmission path is cancelled out by cancelling the common voltage between both
the complemented and original bit-stream. As shown in Fig. 5.7, RS-485 is
implemented as a half-duplex, where a single twisted wire pair is used for both
transmitting and receiving. A full-duplex configuration consists of separate twisted
pairs for transmitting and receiving. The transmitting pin of the UART, Tx, is
connected to the data in (DI) pin of each RS-485, and the Rx pin is connected to
the receiver out (RO) pin.

25Human vocal cords generate frequencies in a bandwidth (~4 to 20 kHz) that the human ear
comprehends. The way a human ear recognizes human sound is akin to the physical layer
interface. In data communication, the physical layer interface defines the voltage level of
communication and the data rate. The concept of protocol has to do with human language.
Though the ear may be able to make out human sound, it may not be able to make sense of it , if
the spoken language (Hindi, Japanese…) is not known. Thus, a single physical layer supports
multiple protocols just the same way as humans communicate in different languages.

 FPGA-based Signal Interfacing and Conditioning 107

Tx

I/O

Rx

MAX 3483

Data In (DI)

 Enable (E)

Receiver out (RO)

D

R

RE

FPGA GPIO

RS-485
twisted pair

Fig. 5.7. RS-485 Differential signal generation

An example of a multi-point connection using RS-485 is shown in Fig. 5.8.
The RS-485 standard defines use of 32 transceivers on the RS-485 twisted wire
bus. The Modbus® protocol is a commonly used data communication protocol
using the RS-485 medium. Modbus® is a widely accepted protocol for
communication between devices of different vendors in industrial automation.
Though the original Modbus® standard has been superseded by various related
standards such as Modbus® Plus, the Modbus® protocol serves as a good example
for understanding master–slave communication using RS-485. The Modbus®
message structure consists of four fields. The first field consists of the device
address, followed by function code, data and error check bytes. Tables 5.1 and 5.2
show the Modbus® message structure and common functions.

D

R

`

Workstation

Tx

Rx

FPGA
GPIO

I/O

M

M

M

Tx

Rx
I/O

M

M

M

Tx

Rx
I/O

M

M

M

Tx

Rx
I/O

Serial
communication

for man-machine
interface

Fig. 5.8. Multi-point communication using RS-485

108 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Table 5.1. Modbus® message structure [1]

Field Description

Device address Address of receiver

Function code Code defining message type

Data Data block with additional information

Error check Numeric check value to check for communication errors

Table 5.2. Common Modbus® functions [1]

Code Description

01 Read coil status

02 Read input status

03 Read holding registers

04 Read input registers

05 Force single coil

06 Preset single register

07 Read exception status

: :

15 Force multiple coil

16 Preset multiple registers

17 Report slave ID

Device address

Function code

Eight-bit data bytes

Error check

Device address

Function code

Eight-bit data bytes

Error check

Query message from
master

Response message
from slave

Fig. 5.9. Modbus message transaction

A query message consisting of a slave device address, function code and data
is initiated by the Modbus® master. The addressed slave device responds with the
requested data. A generic Modbus® message transaction between master and slave
is shown in Fig. 5.9. The length of a message transaction depends on the size of the
data frame component of the message. A byte-by-byte transaction detail of

 FPGA-based Signal Interfacing and Conditioning 109

a Modbus® master reading a coil status from a slave is shown in Table 5.3.
A master robot controller uses read, force and preset functions to monitor and
command robots using the Modbus® protocol.

Table 5.3. Sample transaction of Modbus® master and slave [1]

Modbus function 1 query Modbus function 1 answer

Byte Value Description Byte Value Description

1 1..247 Slave address 1 1..247 Slave address

2 1 Function code 2 1 Function code

3 0..255 Starting address, high
byte

3 0..255 Data bytes ….N

4 0..255 Starting address low
byte

4
N+3

0.255 Bit pattern of coil values

5 0..255 N+4

6 0..255

Number of coils,

high & low Bytes

7
(..8)

LRC/
CRC

Error check LRC
CRC

Error check

5.3 Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) is a four-wire connection developed by
Motorola to provide an interface between a microcontroller and peripherals. SPI is
a synchronous protocol, where data transfer between the master and the slave is
referenced to a common clock. The clock is generated by the master, and the slave
uses it for synchronization.

Four ports are used by the master for SPI communication:

• MISO (master in slave out)
• MOSI (master out slave in)
• SCLK (serial clock)
• CS (chip select).

The ports of the slave for SPI are

• SDI (slave data in)
• SDO (slave data out)
• CLK (clock from master).

As shown in Fig. 5.10, there is a serial shift register in both master and slave.
Data transfer starts with the master writing data to be transmitted to its SPI data
register. The slave receives data from the MOSI on its SDI line and simultaneously
sends out the contents of its SPI data register to the MISO port of the master. Like
the UART, the SPI port is a standard peripheral in most microcontrollers.

110 Introduction to Embedded System Design Using Field Programmable Gate Arrays

A hardware instantiated SPI26 port gives the flexibility of having the desired
number of SPI ports as per the requirement of the application.

Master (processor) Slave (peripheral)

MOSI

MISO

SCLK

SDI

SDO

CLK
SPI data
register

SPI data
register

GPIO CS

Fig. 5.10. SPI communication detail between two devices

The data of SPI is centre sampled, at a point furthest from the signal transition. The
clock polarity bit (CPO) is used to set the active clock edge for sampling. Figure
5.11 shows the CPO bit set to “0”, for setting the clock positive edge for data
sampling. Similarly setting the CPO bit to “1” sets the clock negative edge for data
sampling.

 1 2 3 4 5 6 7 8 9 10 11

MSB 6 5 4 3 2 1 LSB

LSB123456MSB

SCK (CPO =0)

SCK (CPO = 1)

MISO PIN

MOSI PIN

CS

Fig. 5.11. SPI communication waveforms

Protocol Translator

Different protocols can co-exist in a robotic environment. Due to the proprietary
nature of data communication protocols, one protocol needs to be converted to
another for use by the control system. A protocol translator helps in converting
data from one protocol to another. The protocol translator consists of a memory
space where decoded data from protocols 1 and 2 are stored. Data from this
memory space are converted to the required protocol format and then re-
transmitted. Figure 5.12 shows the block diagram for the converter.

26 The SPI peripheral is also provided by PLD vendors to attach with the on board soft/hard
processor on the FPGA.

 FPGA-based Signal Interfacing and Conditioning 111

Protocol 1

Tx

Rx

Protocol 2

Tx

Rx

PHY for protocol 1 PHY for protocol 2

Protocol data
extractor

Frame
formation

Frame
formation

Protocol data
extractor

Dual port
memory

Fig. 5.12. Protocol 1 to protocol 2 translation using a FPGA

5.4 Signal Conditioning with FPGAs

Signal conditioning is needed to correctly decipher signals coming from the
outside world. It helps in extracting the right frequency content from a signal or
pattern from an image. Applying it to our hypothetical robot example, it is a useful
tool to find robot movements based on position and image sensors. A commonly
used signal conditioning block diagram is shown in Fig. 5.13.

ADC Signal conditioning DAC

FPGA

Fig. 5.13. Signal conditioning block diagram using a FPGA

Input wave

x[k]

 k

N-6
N-7
N

N-1
N-2
N-3
N-4

Moving window of n
samples

N

N-7

N-6

N-5N-4

N-3

N-2

N-1

N-5

Fig. 5.14. Moving average using a circular buffer

112 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Low-Pass Averaging Filter

A low-pass averaging filter takes the average of the last n samples of incoming k
samples of data. This is a primitive way of filtering out high-frequency noise. For
averaging digital data samples, the data samples are stored in buffers, as shown in
Fig. 5.14. When a new sample is received, data in the entire array of input registers
need not be shifted. A circular buffer is created, which is a wrapped around version
of the linear buffer shown. In a circular buffer, a modulo n counter is used as an
address pointer, which points to the location where the most recent sample is to be
stored. This pointer overwrites the last sample of the moving window of n samples.

A FPGA-based logic to average the last four samples of incoming ADC data is
shown in Fig. 5.15. The incoming data are passed through three delay blocks. The
summation of the data values in the memory is used to calculate the average of the
input samples. Figure 5.16 shows the Verilog code which uses a 12-bit register to
take input values. A non-blocking Verilog construct is used to create a data
pipeline for storing the last four data samples.

DelayDelay

Programmable logic

Sampling
frequency , fs

ADC

DAC

In

Delay

Fig. 5.15. Moving average filter using a FPGA [2]

Example 5.3. Write Verilog code for averaging the last four samples of the
incoming waveform, as shown in Fig. 5.15.

 FPGA-based Signal Interfacing and Conditioning 113

module filter (input clk, rst , input [11:0] adc_ip, output reg[11:0] dac_op);

reg [11:0] temp [3:0];

always @ (posedge clk)
begin
 if (rst)
 begin
 temp[0] <= 0;
 temp[1] <= 0;
 temp[2] <= 0;
 temp[3] <= 0;
 end
 else
 begin
 temp[0] <= adc_ip;
 temp[1] <= temp[0];
 temp[2] <= temp[1];
 temp[3] <= temp[2];
 dac_op <= ((temp[3] + temp[2] + temp[1] + temp[0]) / 4); // >>2 right shift by two
 end
end

endmodule

Fig. 5.16. Moving average filter using a FPGA

Problems

1. The local interconnection network (LIN) is a variation of the UART. It is
used for networking non-time-critical components in an automobile. The
network consists of one master node connected to 2–10 slave nodes.
Because there is only one master, no arbitration is needed. Develop a HDL-
based logic for a LIN bus master and slave device. Implement a multi-drop
LIN-based network using FPGA boards.

2. The Modbus® protocol is one of those long surviving protocols. Develop a
HDL code that can read the Modbus® master initiated function 1 query
frame and respond using the function 1 answer format (refer to Table 5.3
and the Modbus® reference guide).

3. One of the widely used distance measuring sensors is the GP2D02. The
output of the sensor is in the form of a byte of data synchronized with the
help of a Vin signal (see Fig. 5.17). Write a Verilog code that accesses the
distance information from the sensor.

4. Develop a Verilog code for calculating the root mean square (rms) value of
an input waveform. Use the block diagram given in Fig. 5.18. The logic
should use a moving window of 20 samples. The estimated square root
value can be obtained by using the equation shown in the block diagram.

114 Introduction to Embedded System Design Using Field Programmable Gate Arrays

70 ms or more

MSB LSB

Vin (from FPGA)

Output (to FPGA)

Fig. 5.17. Partial timing diagram of GP2D02 distance measuring sensor output (8-bit)

Vin

GND

Vref

B1

B8

Sign

ENB

A/D converter

Input voltage
wave

ADC interface
module

SQUARE ROOT
OPERATION

Es = ((No/Es) + Es
)/2

where initial Es =
Es/2,

SAMPLE (N-20)

SAMPLE (N-19)
SAMPLE (N-18)

SAMPLE (N-17)

SAMPLE (N-16)
SAMPLE (N-15)

SAMPLE (N)

SAMPLE (N-1)

..........

..........

Moving window of 20
samples

Squared values of 20
samples

Control logic

rms
value

Fig. 5.18. Block diagram for calculating a rms value using 20 input samples

References

1. Modicon Modbus protocol reference guide (1996).
http://www.modbustools.com/PI_MBUS_300.pdf. Accessed 23 May 2008.

2. Shuler M, Chugani M (2005) Digital signal processing, a hands-on-approach. Tata Mc-
GrawHill

6

Motor Control Using FPGA

For the robot controller application chosen in this book, the electric motor is the
actuator of the control scheme. There are many types of electric motors available
that can be used for robot applications. The control scheme used for each motor
type may be unique, but the overall control approach for motion control is similar
across motor drives.

6.1 Introduction to Motor Drives

Robots make extensive use of electric motor drives as actuators. Electric motors as
actuators for robot joint movement score over hydraulic and pneumatic actuators.
Electric motor based control schemes are cleaner and easier to implement. Early
robots used brushed DC motors as actuators. Though the control of DC motors is
simple, it is not preferred due to frequent maintenance and possible hazard because
of sparking of brushes. Many robot manufacturers now use AC servomotors in
place of DC motors. Fast digital circuits have made implementation of complex
algorithms feasible. They are needed for control of AC motors. For completeness,
this chapter includes FPGA-based control of DC motors along with control
techniques used for AC servomotors.

Each motor drive provides basic functionality for

• Setting of speed reference
• Control of motor direction (forward or reverse)
• Setting of acceleration/deceleration rate
• Run/Jog operating controls
• Emergency stop using dynamic or regenerative braking.

6.2 Digital Block Diagram for Robot Axis Control

Robot axis motion control consists of three control loops shown in Fig. 6.1. All
three loops work together to move the robot axis to the position commanded by the

116 Introduction to Embedded System Design Using Field Programmable Gate Arrays

profile generator. The output of the position controller becomes the reference for
the speed loop. In a similar way, the output of the speed controller is the reference
for the motor current/torque loop. The job of the controller for all loops is to
minimize the error between the reference and feedback values.

Fig. 6.1. Control loops of motor control system

6.2.1 Position Loop

The position loop is the outermost loop shown in Fig. 6.1. For the robot control
system, it indicates the position of each axis of the robot. The inverse kinematics
algorithm computes the desired value of rotation, θn needed for each axis, and this
becomes the reference to the position loop. The error of the position loop goes to a
controller that generates a reference for the speed loop. A commonly used
reference for the position loop is a profile generator. Because the time constant of
physical movement of the robot axis is of the order of milliseconds, a software-
based approach can be used for profile generation. The software code, shown in
Fig. 6.2, illustrates profile generation for one axis of the robot controller. A free
running timer peripheral is used to generate periodic interrupts, on which the
process can run the position control algorithm.

On interrupt /* from timer */
{
 Θ1 = encoder_counter1 /* current position of axis one*/
 Θ1S = setpoint_register1 /* set point Θ1S axis one*/

 /* error generating junction */
 e1 = Θ1S - Θ1

/* PID controller */
 i = i_old + (e1 + e1_old)/2; /* integrator*/
 i_old = i ;
 d = e1 - e1_old ; /* derivative term */
 e1_old = e1 ;
 c = (kp *e) + (ki * i) + (kd *d) ;
}

Fig. 6.2. Control loops of a motor control system

 Motor Control Using FPGA 117

6.2.2 Speed Loop

The job of the speed control loop is to correct the speed error by regularly
sampling the speed reference and measured speed variable. The speed error is fed
to a controller to generate a reference for the current loop, as shown in Fig. 6.3.

Controller digital filter
(described by

difference equation)

 +

-

Position, motor
speed/current
measurement

block

Sample timer

Position,speed
or current
reference Error

Fig. 6.3. Digital block diagram of control loop

Because the update time of a speed loop controller varies from 1–10 ms, both
software and hardware approaches can be used for this update time requirement.

6.2.2.1 Software Approach
The embedded processor in the FPGA device is used to implement the control
algorithm. An interrupt from the processor is used to run the proportional integral
derivative (PID) software routine. Because the speed loop sampling time of a
conventional servocontroller is of the order of milliseconds, processor-based
architecture is suitable.

6.2.2.2 Hardware Approach
Generally, a proportional integral (PI) controller is used for motor drives. The
exact equation of the PI controller transfer function is deduced using root locus or
frequency domain analysis in the continuous time domain. For the digital FPGA
domain, the PI controller transfer function is synthesised as a difference equation
using a bilinear transform. Ts is the sampling time of the control loop.

1z
1z

Ts
2s

+
−

= (6.1)

Substituting the value of “s” in terms of “z” and “Ts” results in a difference
equation. The terms u (k), u (k – 1), e (k) and e (k – 1) represent the controller
output and error values at present time (k) and a previous sample time (k – 1). The
output of the PI controller equation is then,

 u (k) = u(k – 1) + [c1e(k) – c2e(k – 1)] (6.2)

118 Introduction to Embedded System Design Using Field Programmable Gate Arrays

c1 and c2 are constants, that change when sampling time Ts changes. The block
diagram of the above PI controller difference equation reduces to a generic format
as given in Eq. 6.2 and shown in Fig. 6.4. The arithmetic discussed in Chap. 2 is
useful for computing Eq. 6.2. The timing diagram of the PI controller is shown in
Fig. 6.5.

z–1

z–1

c2

c1

Error
e (k)

Output
u (k)+

+

u (k – 1)

e (k – 1)

–

Fig. 6.4. Implementation of a PI digital controller

Clock

Speed controller sampler

Speed Reference

Speed Feedback

Speed error

Previous Error

Previous Output

PI Controller output

Sampling time Ts

 e

u (k)

Clock

Speed controller sampler

Speed reference

Speed feedback

Speed error

Previous error

Previous output

PI controller output

e (k –1)e

u (k – 1)

u (k)

Fig. 6.5. Timing diagram of digital speed controller, with sampling time Ts

The difference equation represented in Fig. 6.4, consists of two delay
elements, two coefficient multiplications and an addition/subtraction block.
Because delay, multiplication and addition/subtraction are synthesisable these
operations are implemented in FPGA fabric without consuming large logic
resources. A state machine ensures that the output of the PI controller is activated
in every sampling period and the controller is prevented from wind-up error.

6.2.3 Power Module

The output of the torque-current controller provides a set point to the power
module of the firing control circuit. The sampling period of the firing circuit varies
with the type of power module topology. For a single-phase rectifier circuit (see

 Motor Control Using FPGA 119

Example 3.7), the sampling period for each firing circuit update is calculated using
a zero crossing of the input waveform supplied by synchronizing transformer. For
a 50-Hz input voltage to the rectifier, this time is 3.33 ms. To generate a sinusoidal
PWM voltage using a three-phase bridge, the power devices of the bridge are
switched at a frequency around 20 kHz.

6.3 Case Studies for Motor Control

The type of motor used for robot joint axis control varies. Simple robots use the
stepper and DC motor for joint control. Contemporary industrial robots use AC
servomotors such as a permanent magnet synchronous motor (PMSM) for axis
control. This section describes different motors and their control techniques.

6.3.1 Stepper Motor Controller

A stepper motor is an electric machine that rotates in discrete angular increments.
A cross-sectional view of the motor is shown in Fig. 6.6. The angular increment is
used to calculate the number of steps needed to complete one revolution. Because
stepper motors move to a commanded number of steps, many stepper motor
applications do not require position sensing. This decreases the complexity of
stepper motor movements. Stepper motors are used in a variety of applications
such as printers, plotters, X–Y tables, image scanners, copiers, medical apparatus
and other devices.

N

 S

N

S

N

S

A

D

B

C

Fig. 6.6. Cross-sectional view of the stepper motor

From the digital control point of view, the stator poles of the stepper motor need to
be periodically excited to cause movement of the permanent magnet rotor. The
excitation table of a motor varies from options that give single step movement with
one or two winding excitation. Simultaneous excitation of two windings provides
greater torque than one winding. Tables 6.1 and 6.2 show half step excitation that
increases the resolution of the movement.

120 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Table 6.1. Stepper motor full step, single-phase excitation

 Winding
A

Winding B Winding
C

Winding D Rotor
position

Mode 1 1 0 0 0 0

Mode 2 0 1 0 0 θ

Mode 3 0 0 1 0 2θ

Mode 4 0 0 0 1 3θ

Table 6.2. Stepper motor full step, two-phase excitation

 Winding
A

Winding
B

Winding
C

Winding
D

Rotor
position

Mode 1 1 1 0 0 0

Mode 2 0 1 1 0 θ

Mode 3 0 0 1 1 2θ

Mode 4 1 0 0 1 3θ

Example 6.1. Write a Verilog HDL code that controls the speed and direction of a
stepper motor working in single-phase excitation, as given in Table 6.1.

The code listed in Fig. 6.7 provides excitation to two of the four coils of the stepper
motor stator. The FSM ensures that the correct sequence is followed for coil
excitation. The direction of rotation is varied by changing the sequence of coil
supply denoted by coil_supply_f and coil_supply_r.

 Motor Control Using FPGA 121

module stepper (input clk, rst, dir, output [3:0] coil_supply);

`define reset 3'd0 `define step1 3'd1 `define step2 3'd2 `define step3 3'd3
`define step4 3'd4

reg [2:0] ps, ns; // present state (ps) and next state (ns) registers
wire clk_spd;
reg [3:0] coil_supply_f, coil_supply_r;

assign clk_spd = clk; // Based on desired motor speed , the clk_spd is set

always @ (posedge rst or posedge clk_spd) // state transition

begin
if (rst)

ps <= `reset;
else ps <= ns;

end

always @ (ps) // selection of next state and change of output

begin
case (ps)
`reset : begin
 ns <= `step1;
 coil_supply_f <= 4'b0000;
 coil_supply_r <= 4'b0000;
 end
`step1 : begin
 ns <= `step2;
 coil_supply_f <= 4'b0011; // 4’b DCBA windings
 coil_supply_r <= 4'b1001;
 end
`step2 : begin
 ns <= `step3;
 coil_supply_f <= 4'b0110;
 coil_supply_r <= 4'b1100;
 end
`step3 : begin
 ns <= `step4;
 coil_supply_f <= 4'b1100;
 coil_supply_r <= 4'b0110;
 end
`step4 : begin
 ns <= `reset;
 coil_supply_f <= 4'b1001;
 coil_supply_r <= 4'b0011;
 end
default begin
 ns <= `reset;
 coil_supply_f <= 4'b0000;
 coil_supply_r <= 4'b0000;
 end
endcase
end

assign coil_supply = (dir == 1'b1) ? coil_supply_f : coil_supply_r;

endmodule

Fig. 6.7. Verilog code for control of a stepper motor

122 Introduction to Embedded System Design Using Field Programmable Gate Arrays

6.3.2 Permanent Magnet DC Motor

The permanent magnet DC motor is one of the most commonly used motors. Its
characteristic of providing a speed proportional to the applied voltage makes it
very simple to control. As shown in Fig. 6.8, an H-bridge configuration is used to
provide four-quadrant speed control to DC motors. The control scheme consists of
a free running counter that generates a ramp signal. This ramp is used for setting
the duty cycle of the PWM signal. As illustrated in Fig. 6.9, the counter value is
compared with a control voltage (Vc). The higher the value of Vc, the higher the
duty cycle of the PWM voltage. The voltage across the motor terminals is the
average value of the duty cycle of the PWM.

M

FPGA

GPIO

 To MOSFET gate driver
circuit

SPI

Signal conditioning
block and ADC

DC
volts Current

feedback

HDL code for PWM control

From FPGA
GPIO

From FPGA
GPIO

From FPGA
GPIO

From FPGA
GPIO

S1

S3

S2

S4

Fig. 6.8. Permanent magnet DC motor control using a field programmable device

Up counter,
(N+1 bits)

Clock

>

PWM
output

Control voltage
Vc

[N:0]

[N:0]

Rst

VcVc

PWM PWM

Counter
Ramp

Counter
Ramp

PWM = 1 when Vc > Counter value , PWM = 0 when Vc < Counter Value

Tpwm Tpwm

Fig. 6.9. Change in PWM duty cycle based on the value of the control voltage Vc

 Motor Control Using FPGA 123

module pwm (input wire [7:0] vc, input clk, input rst, output reg pwm);

reg [7:0] counter ;

always @ (posedge clk)
begin
 if (rst)
 counter = 8'h00;
 else if (counter < vc)
 begin
 pwm = 1'b1;
 counter = counter + 1;
 end
 else
 begin
 pwm = 1'b0;
 counter = counter + 1;
 end

 end

endmodule

Fig. 6.10. Verilog code for PWM control of a PMDC motor

The Verilog code of Fig. 6.10 shows a counter circuit along with comparator
logic. For values of Vc less than the counter value, the PWM output is set at logic
1, else it is set at logic 0. A section of the synthesis report in Fig. 6.11 shows
identification of an 8-bit counter, 8-bit comparator and a 1-bit register for the
PWM output signal.

Fig. 6.11. Synthesis report of a PWM controller for a PMDC motor

124 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Dead Time Control
The power device bridge is susceptible to shoot-through faults, when devices on
the same leg turn on together. To prevent shoot-through problems, a finite delay is
incorporated in the turn on and turn off of the upper and lower devices of a power
bridge. Many DSPs targeted for motor applications have dedicated hardware for
dead time control. A programmable dead time timer is interlocked with the drive
ok permissive. Figures 6.12 and 6.13 show dead time delay logic and HDL
implementation to provide delayed output of a device triggering signal.

A

dA

A & dA

B

dB

B & dB

Upper
output

Lower
output

SA – Input from
controller Delay

Delay

S1 – Upper
output

A

B

dA

dB S3 – Lower
output

Td Td (b)

(a)

Fig. 6.12. Logic for implementing a dead band for a PMDC motor H-bridge

The HDL code shown in Fig. 6.13 consists of the logic, to control the upper
device of a given leg. The input signal A is multiplied by a time (dead-time)
delayed signal dA to obtain the control signal of the upper device. Dead time for
the circuit can be modified by changing the constant (6’h3C), that is used for
comparison with the count value.

The reader is encouraged to write a HDL code that will control the upper and
lower devices of the three legs of a power bridge (since dead-time is a frequently
used component in motor control, try to design using a re-usable instance based
approach).

 Motor Control Using FPGA 125

module deadtime (input rst ,a ,clk , output upper_sw);

reg [5:0] count;
reg da ;

always @ (posedge clk or posedge rst)
 begin
 if (rst)
 begin
 da <= 0 ;
 count <= 0 ;
 end
 else if (a)
 begin
 count <= count +1 ;
 if (count == 6'h3C) // count based on clock frequency
 da <= 1'b1;
 end
 else if (~a)
 begin
 count <= 0 ;
 da <= 1'b0;
 end

 end

assign upper_sw = a && da;

endmodule

Fig. 6.13. Verilog code for setting dead time between devices on the same leg of an H-
bridge

6.3.3 Brushless DC Motor

A brushless DC motor has a rotor with permanent magnets and a stator with
windings. It is also referred to as a trapezoidal permanent magnet AC motor. The
working is similar to a DC motor, but here the rotor position is determined by
sensors, and the winding current is switched by control electronics. This eliminates
the need for brushes and commutators in conventional DC motors. The removal of
brushes leads to less noisy and more reliable operation. A Hall effect sensor is used
to provide information to synchronize stator excitation with rotor position. The
rotor magnets are used as triggers to the Hall sensor. The three Hall sensors are
placed 120° apart on the stator frame.

The energized stator field leads the rotor magnet and moves ahead as soon as
the rotor is about to align with it. As shown in Fig. 6.14, signals from the three Hall
sensors are processed by a logic circuit to determine the position of the rotor at any
time. This information is used by the driver circuit to energize appropriate motor
windings by turning on transistor switches of different legs of the transistor bridge.
With the help of the rotor position data, a six-step trapezoidal control is obtained
by turning on/off different transistors shown in Table 6.3.

126 Introduction to Embedded System Design Using Field Programmable Gate Arrays

FPGA

GPIO

 TO MOSFET gate driver
circuit

Input

Motor control logic

DC
VOLTS

M
~

Hall effect sensor for position
and speed feedback

From FPGA
GPIO

From FPGA
GPIO

From FPGA
GPIO

From FPGA
GPIO

From FPGA
GPIO

From FPGA
GPIO

T1 T2 T3

T6T5T4

U

V
W

Fig. 6.14. Brushless DC motor control circuit using a FPGA

Table 6.3. Six step changes for 120° difference in Hall sensor positive edges

Hall sensor feedback Transistor bridge

S1 S2 S3 T1 T2 T3 T4 T5 T6

1 0 1 1 0 0 0 1 0

1 0 0 1 0 0 0 0 1

1 1 0 0 1 0 0 0 1

0 1 0 0 1 0 1 0 0

0 1 1 0 0 1 1 0 0

0 0 1 0 0 1 0 1 0

1 0 1 1 0 0 0 1 0

6.3.4 Permanent Magnet Rotor (PMR) Synchronous Motor

A permanent magnet rotor synchronous motor provides synchronous operation
from no load to full load for applications requiring precise speed control. These
motors incorporate a permanent magnet in the rotor to form salient poles for
synchronous operation. PMR motors synchronize with the applied frequency with
zero slip. For synchronized applications requiring variable speed, these motors are
very well suited because they do not need feedback for speed regulation. A
conveyor belt like the one shown in Fig. 6.15 can use open-loop synchronized
drive operation. In this open-loop V/Hz control scheme, sudden changes in speed
reference can cause the motor to lose synchronism.

 Motor Control Using FPGA 127

M
M

M

M

M

M

M

M

PMR
~

PMR
~

PMR
~

Fig. 6.15. Synchronized conveyor belt operation using PMR motors

Many algorithms are available to generate three-phase variable frequency voltage
for controlling a PMR motor. The space vector pulse width modulation (SVPWM)
is one algorithm. SVPWM uses base vectors formed by the eight unique switching
vectors. The switching sequence for the inverter switches is mentioned in Table
6.4. Each combination is generated by six devices of the inverter circuit shown in
Fig. 6.16a. One 360° revolution of the space vector operation is divided into six
sectors of 60° each. For each sector, two base vectors are defined, and their
intermediate values are calculated by projecting the base vectors. The switching
intervals for one sampling interval Ts is shown in Figure 6.16b.

Table 6.4. Space vector voltage based on device switching

State On devices Space vector voltage

0 4 5 6 V0 (000)

1 1 5 6 V1 (100)

2 1 2 6 V2 (110)

3 2 4 6 V3 (010)

4 2 3 4 V5 (011)

5 3 4 5 V5 (001)

6 1 3 5 V6 (101)

7 1 2 3 V7 (111)

128 Introduction to Embedded System Design Using Field Programmable Gate Arrays

1 2 3
DC bus

VDC

4 5 6

Phase A
Phase B
Phase C

a

Phase A

Phase B

Phase C

Update Time - Ts

t0/4 ta/2 tb2 t0/2 tb2 ta/2 t0/4

V000 V100 V110 V111 V100V110 V000

b

Fig. 6.16. a Concept of SVPWM generation of switching signals for one sampling period
Ts;. b PWM counter resolution for different system clock frequencies

A reference voltage |Vref | is derived using the volts/hertz profile for the motor.
The value of |Vref | is used to calculate the dwell time Ta,Tb and T0 of the base
vectors. The time periods Ta and Tb are determined using Eqs. 6.3–6.5. VDC is
the DC link voltage to the inverter bridge.

3*V

sin*|refV|*Ts*2T
DC

a
θ

= . (6.3)

3*V

)60sin(*|Vref|*Ts*2T
DC

b
θ−

= . (6.4)

)TbTa(TsT0 +−= (6.5)

 Motor Control Using FPGA 129

A complete digital block diagram for the SVPWM is shown in Fig. 6.17. It
involves computation of Eqs. 6.3–6.5 using HDL.

Fig. 6.17. Digital data flow diagram of SVPWM logic block. Input to block is the reference
frequency, and output is the dead time compensated triggering signal for a three-phase
bridge.

6.3.4.1 Sine Look-up Table
The value of sine theta varies from zero to sixty so a block RAM-based LUT is
used for storing values of sin θ. The value of sin θ is multiplied by 255 to make it
an 8-bit integer value, stored in the LUT. The software simulation shown in Fig.
6.18 shows the working of sin LUT with variations of theta and sector.

Fig. 6.18. Simulation results of SVPWM sine LUT functioning with changing theta and
sectors

6.3.4.2 Variable Pulse Frequency Generator
Frequency for changing the speed of the motor is realised by using a variable pulse
frequency generator. The generator varies the incremental rate of theta for different
command speeds.

130 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Example 6.3. Calculate theta frequency in hertz for a four pole motor to rotate the
motor at 1500 rpm. The rate of theta change is given by Eq. 6.6.

 ()secondpersrevolutionrps*360
dt
d

=
θ (6.6)

 kHz. 9
60

1500*360 ==

The HDL code for the pulse generator takes a count proportional to the desired
speed and generates a pulse train for increasing angle theta. Every time the internal
counter equals the count to be reached, a bit is set for generating the pulse train.
The entire code is listed in Fig. 6.19.

module pulse_gen (input [16:0] count, clk , rst output pulse);

 reg [16:0] count_int;
 reg temp,dn ;

 assign pulse = dn;

 always @ (posedge clk or posedge rst)
 begin
 if (rst)
 begin
 count_int = 0;
 temp = 1'b1;
 end
 else if (count_int != count)
 begin
 count_int = count_int + 1;
 dn = 1'b0;
 temp = 1'b0;
 end
 else if (count_int == count && temp == 1'b0)
 begin
 count_int = 0;
 dn = 1'b1;
 temp = 1'b1;
 end

 end

endmodule

Fig. 6.19. Variable frequency pulse generator

 Motor Control Using FPGA 131

6.3.5 Permanent Magnet Synchronous Motor (PMSM)

A PMSM motor is also referred to as a sinusoidal permanent magnet AC motor. It
is widely used as a joint actuator for industrial robots. The control scheme for
PMSM, shown in Fig. 6.20, consists of two control loops: (i) an inner current
control loop and (ii) an outer speed control loop. The reference command speed
ωm* is compared with the actual speed of the drive, ωm and the speed error is
processed through the speed controller.

Fig. 6.20. Control scheme for a permanent magnet synchronous motor

At the kth sampling instant the motor speed error of the controller is given by

 () () ()kkk m
*
merror ω−ω=ω (6.7)

and the change in speed error is given by

 () () ().1kkk errorerrorerror −ω−ω=ωΔ (6.8)

The q-axis current command in terms of the torque command is,

 () ()
t

*
e*

q K
1kT1ki +

=+ (6.9)

A limiter is applied to saturate the controller output at a maximum inverter or
motor (whichever is small) current rating. The output of the limiter is written as

 () ()
()⎪⎩

⎪
⎨
⎧

−≤+−

≥+
=+ .

i1kifori
i1kifori

1ki *
maxq

*
q

*
maxq

*
maxq

*
q

*
maxq*

q (6.10)

132 Introduction to Embedded System Design Using Field Programmable Gate Arrays

The output of the speed controller is the torque command for the drive, Te*.
The electrical torque of the drive is directly proportional to the q-axis current
component of the PMSM. Dividing the torque command by the torque constant,
the q-axis current command is obtained. The scaling of the torque component of
current is motor specific and is obtained by dividing the torque command by the
PMSM torque constant, Kt. The rotor position and speed sensed with a resolver
coupled to the shaft of the PMSM. The speed/position measurement block
generates electrical shaft angle position Өe, which is used to get abc-axis reference
currents. The electrical angle Өe is equal to the mechanical angle Өm multiplied by
the motor pole pairs. The d-axis current component which decides the de-
magnetization current component of the PMSM is kept at zero. The reference
values of the q-axis and rotor position (angle) are used to calculate three-phase
reference currents *

asi , *
bsi and *

csi as shown in Eq. 6.11. The PMSM motor in this
discussion is assumed to have four pole pairs.

.
3

44sinii

3
24sinii

4sinii

m
*
q

*
cs

m
*
q

*
bs

m
*
q

*
as

⎟
⎠
⎞

⎜
⎝
⎛ π

−θ=

⎟
⎠
⎞

⎜
⎝
⎛ π

−θ=

θ=

 (6.11)

The current controller module compares the three-phase reference currents with
the actual currents and generates switching signals for power devices of the PWM
inverter. The controlled switching of the PWM inverter generates a variable
frequency, variable magnitude, three-phase sinusoidal motor current to achieve the
desired speed regulation.

 Motor Control Using FPGA 133

Resolver

RDC

 Rectifier
Three
phase

ac
{

S1

S6

S2 S3

S4 S5

U

V

WC

+
-

-
+

-
+

-
+

Gate drive circuitry

Hysteresis
current

controller

∗ωm

mω

errorω

∗
eT

Speed
controller

maxeT

maxeT

maxeT−

maxeT−

tK
1 dq0/abc

transformation

∗
qi

0id =∗

Speed and position
estimation

eθ

∗
asi ∗

bsi ∗
csi

asi

bsi

csi

errorai

errorbi

errorci

PMSM
as

bs
cs

Limiter

PWM Inverter

FPGA

- -

ADC

Fig. 6.21. Control scheme for a permanent magnet synchronous motor

Speed and
rotor position
measurement

Resolver
to digital
converter

Electrical angle
theta

Mechanical angle
theta * motor

pole pair

Error
Speed

controller
Dual port block RAM based

sine look-up table

Theta

Theta + 120°

Amplitude A
Speed

reference

Speed
feedback

Asine(theta)
Asine(theta +120°)

Asine(theta +240°)

Fig. 6.22. Digital block diagram of a hysteresis reference current generator

134 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Comparator 1

Comparator 2

FF

 +
+

 +
-

ias

i*as

 ias

S

R

Q
To

power
device

Fig. 6.23. Logic circuit for hysteresis controller

i*as

i*bs

i*cs

Theta

`

Fig. 6.24. Simulated current reference waveform

The FPGA implementation scheme for PMSM motor control is shown in Figs. 6.21
and 6.22. The digital block diagram of the code is shown in Fig. 6.22. Actual stator
currents ias and ics are sensed using two current sensors, and the third current ibs is
calculated as the negative sum of the two sensed currents. The actual currents are
compared with the reference currents and current errors are sent to respective
hysteresis current controllers (see Fig. 6.23). The switching pulses generated by
current errors iaerror, iberror and icerror, are applied to devices in the inverter legs of
phase a, phase b and phase c. A simulated current reference waveform using the
HDL model of the control scheme is shown in Fig. 6.24.

 Motor Control Using FPGA 135

Problems

1. Develop a FPGA-based three-phase sine wave generator, using the
sinusoidal PWM shown in Fig. 6.25. An isosceles triangular carrier wave is
compared with a fundamental frequency modulating wave. The points of
intersection determine switching instants for the power devices.

Fig. 6.25. Creating a sinusoidal PWM signal

2. Rapid deceleration of a motor drive feeds back voltage to the DC bus of the
inverter circuit. A dynamic braking circuit compares the DC bus voltage
against a preset reference and then turns on a switch through a resistor to
dissipate the excess voltage. The power circuit and the logic diagram are
shown in Fig. 6.26a and b. Write a Verilog code to sense the DC bus
voltage and control the switch of the braking resistor.

136 Introduction to Embedded System Design Using Field Programmable Gate Arrays

Inverter circuitDC bus

FPGA output
signal

Isolation
amplifier ADC

M
~

FPGA

Braking
resistor

a

Vdc , Reference

Vdc Feedback Vdc Feedback

Clock

DC Bus Reference

DC Bus actual value

error (Reference - Feedback)

Error > Threshold

Brake ON

b

Fig. 6.26. a Power circuit diagram for dynamic braking; b timing diagram for dynamic
braking

Further Reading

1. Bose BK (1987) Introduction to microcomputer control. In: Bose BK (ed)
Microcomputer Control of Power Electronics and Drives, IEEE Press, 3–22

2. Carrica D, Funes MA, Gonzalez SA (2003) Novel stepper motor controller based on
FPGA hardware implementation. IEEE/ASME Transactions on Mechatronics, 8(1):120
–124

3. Cirstea MN, Dinu A, Khor J, McCormick M (2002) Neural and fuzzy logic control of
drives and power systems. Elsevier Science, Oxford

4. Hall TS, Hamblen JO (2004) System-on-a-programmable-chip development platforms
in the classroom. IEEE Transactions on Education, 47(4):502–507

5. Hoang LH (1994) Microprocessors and digital IC’s for Motion Control. Proceedings of
the IEEE, 82(8):1140–1163

6. Jeon JK, Kim YK (2002) FPGA based acceleration and deceleration circuit for
industrial robots and CNC machine tools. Mechatronics 12(4):635–642

7. Lygouras JN et al (1998) High-Performance Position Detection and Velocity Adaptive
Measurement for Closed-Loop Position Control. IEEE transactions on instrumentation
and measurement, 47(4):978–985

 Motor Control Using FPGA 137

8. Pimentel J, Le-Huy H (2000) A VHDL library of IP cores for power drive and motion
control applications. Paper presented at Canadian conference on electrical and
computer Engineering, 1:184–188

9. Shireen W et al (2003) Controlling multiple motors utilizing a single DSP controller.
IEEE Transactions on Power Electronics, 18(1):124–130

10. Takahashi TT, Goetz J (2004) Implementation of Complete AC Servo Control in a low
cost FPGA and Subsequent ASSP Conversion. Paper presented at IEEE Applied Power
Electronics Conference (APEC 2004), Anahiem California

11. Xilinx (2005) Getting started: FPGAs in motor control. Xilinx Application Note
12. Zeidman B (1999) Verilog Designer’s Library. Prentice Hall 1999
13. Kung YS, Shu GS (2005) Development of a FPGA-based motion control IC for robot

arm. Paper presented at IEEE ICIT 2005 conference, pp. 1397–1402
14. Kung YS, Shu GS (2005) Design and implementation of a control IC for vertical

articulated robot arm using SOPC technology. Paper presented at IEEE Mechatronics
ICM 2005conference, pp. 532–536

15. Kung YS, et al (2006) FPGA-Implementation of Inverse Kinematics and Servo
Controller for Robot Manipulator. Paper presented at IEEE Robotics and Biomimetics,
(ROBIO 2006) at Kunming China, December 2006

7

Prototyping Using FPGA

FPGA provides a platform for rapidly prototyping digital systems. High-volume
digital systems are prototyped using FPGAs to avoid possible re-spins. FPGA-
based prototyping boards that incorporate necessary interfaces and memory chips
are used for this purpose. In this chapter we take a look at how a FPGA can be
used to develop and debug the hypothetical robot controller discussed in the
previous chapters.

7.1 Prototyping Using FPGAs

Prototyping a FPGA-based system involves creating a physical system that can be
tested using the FPGA as a controller. Before a digital system can be used for
prototyping, many functional checks need to be done. Just like other digital
systems, physical prototyping in a FPGA is preceded by functional simulation and
emulation. The book [1] on prototyping of digital systems using FPGA is a good
reference.

Behavioural simulation tests for functional requirements. Functional
requirements for a digital system are tested with the help of software test vectors.
The microprocessor simulator gives insight into digital logic functional simulation.
A microprocessor simulator provides data on internal registers of the processor
while stepping through the code or at pre-determined break points. The simulation
environment does not support the timing requirements of the digital system. Due to
this, the simulator cannot provide for real delays. The speed of the simulator is tied
to the microprocessor and the clock of the workstation on which the simulator is
running. Emulation helps overcome the constraints of functional simulation. In the
microprocessor world, the emulation environment allows access to the internal
registers of the ISA. Dedicated hardware operates at the same clock frequency as
that of the target chip and has equivalent ISA to test the system. This ensures
creating real-time delays and offers a realistic estimate of speed. Simulation of
digital design by including path delays and logic delays can be considered a
component of emulation.

140 Introduction to Embedded System Design Using Field Programmable Gate Arrays

The last check for any digital design is to make it work in silicon. A hardware
prototype tests the logic in silicon, and it also speeds up the process of verification.
In most real-time systems, the clock needs to be scaled-down by a factor of 10,000.
The clock requirement for stepper motor control described in Sect. 6.3.1 is of the
order of kilohertz. Checking the stepper motor logic (see Fig. 6.7) with a system
clock of megahertz takes lots of simulation cycles. Hardware test equipment such
as a logic analyzer or oscilloscope can be used to quickly test for functionality.
Table 7.1 describes simulation and physical verification on a FPGA-based system.

Table 7.1. Tools used for simulating and physically verifying FPGA-based digital designs

Simulation Physical Verification

Behavioural simulation:
Achieved using test benches and
simulation software. The simulation
model does not take into account
element and interconnect delays of the
circuit.

Post Place and Route Simulation:
A delay model is obtained after the
design has been placed and routed. An
estimate of the delay is available to
determine the speed of the circuit.

• Viewing internal and external
signals on an oscilloscope. The
signals need to be brought out
to the GPIO pins or to a DAC.

• Multiple digital channels can
be viewed using a logic
analyzer

• FPGA internal signals can be
viewed using the ChipScopeTM

tool
• A protocol analyzer for

checking communication
protocols

To check a digital design on a particular FPGA, an electronic ecosystem consisting
of ADC, DAC, memory chips, physical interfaces and display and input devices is
created on a board. This board is referred to by many vendors as the starter board27.
For all preceding examples in this book, the designs were targeted at a Xilinx
SPARTAN-3ETM FPGA. Figure 7.1 shows a board of a digital system built around
a SPARTAN-3ETM FPGA.

To implement digital logic inside an FPGA, constraints are used to lock pins to
particular signals within the HDL logic or to connect to chips on the prototyping
board. The most frequently used constraints are shown in Table 7.2.

27 A FPGA-based starter board consists of a FPGA surrounded by other peripheral devices.
FPGA vendors provide such boards to prototype systems around the target FPGA device. The
Xilinx SPARTAN-3ETM prototyping board consists of two RS232 serial ports, four DIP switches,
four push buttons, 8 LEDs, a VGA port, a character LCD display, a PS/2 port, a push-button
rotary encoder, a SPI analog to digital converter, a SPI digital to analog converter, a 10/100
Ethernet port, a 2-MB SPI flash, a 16-MB of parallel NOR flash and a 64-MB double data rate
synchronous dynamic random access memory (DDR SDRAM).

 Prototyping Using FPGA 141

FPGA

Xilinx
SPARTAN-3ETM

500,000 gate

texttext

8 discrete
user LEDs

DAC texttext

GPIO

Push
button

RS232

2 Channel

 SPI Interface

Clock

8

Analog
input

Analog
output

ADC MISO

AD_conv

Oscillator 50
MHz

LCD

 SPI Interface

MOSI

Clock

2

4

SDRAM, Flash
memory

Clock

2

Fig. 7.1. Partial diagram of Xilinx SPARTAN-3ETM based starter kit [2]

Table 7.2. Summary of typical FPGA constraints during design implementation

Constraint Use Example

Pin Lock I/O signal to FPGA pin NET “name” LOC = "F9";

Area Specify area on the floor-plan for
design placement

AREA_GROUP
“group_name” RANGE =
SLICE_X6Y6:
SLICE_X5Y5;

Global logic Specify use of particular block
RAM, multiplier or DCM

INST “mult_name” LOC =
MULT18X18_X0Y0;

The pin locking constraint is used to connect the FPGA pin to the external device
pin. A FPGA board consists of connections to switches, push buttons, a knob, LCD
and to expandable connectors. The LED output pin constraint shown in Fig. 7.2
provides the option to define the slew rate (fast or slow) and the current drive
capability in milliamperes.

NET "LED<7>" LOC = "F9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<6>" LOC = "E9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<5>" LOC = "D11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<4>" LOC = "C11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<3>" LOC = "F11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<2>" LOC = "E11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<1>" LOC = "E12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
NET "LED<0>" LOC = "F12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;

Fig. 7.2. Pin constraints for the LEDs onboard. The DRIVE parameter specifies a current of
8 mA [2]

142 Introduction to Embedded System Design Using Field Programmable Gate Arrays

To place a digital design in a pre-defined area on the FPGA chip, an area constraint
is used, where the row and column of the starting and ending slices are defined.
The area start and end points are diagonally opposite.

 INST design_d * LOC = SLICE_X1Y1: SLICE_X15Y5;

This places the logic in the area determined by slice (X1,Y1) and (X15,Y5). The
constraint is implemented provided the design fits in the specified area.

A timing constraint is used to specify timing closure requirements. The
constraints are defined for input pad to logic, logic to logic and logic to output pad.

7.2 Test Environment for the Robot Controller

For prototyping the robot controller, each individual block needs to be tested and
then integrated together. The design is divided into functional units. In the
preceding chapters, several components were discussed for the development of a
robot control system. Table 7.3 lists interfaces needed for the robot controller test
environment.

Table 7.3. Mapping the Robot controller to board resources for prototyping

Interface functionality needed Prototyping board support
feature

Start, stop switches, buttons, knob GPIO pins

Joint motor mounted incremental encoder
interface

GPIO pins

UART for serial communications interface
with workstation

RS-232

External memory chip containing processor
code for trajectory planning

DDR SDRAM, FLASH
PROM

Display of robot co-ordinates LCD screen

Programming of robot co-ordinates RS-232 port

Motor current feedback SPI-based ADC

Motor interface (control of power devices
using GPIO)

GPIO

Motor interface testing using a low-pass filter SPI-based ADC

Motor waveform testing using digital-to-
analogue converter (DAC)

SPI-based DAC

The architecture of a robot controller prototyping board consists of the following
components interconnected. Figure. 7.3 shows connections of the FPGA board-
based robot controller to different sections of the robot.

 Prototyping Using FPGA 143

To motor
axis J1 to J5

Operator/teach
mode pendant

LCD display

`

Sensor inputs
FPGA

XILINX
SPARTAN-3ETM

500,000 GATES

8 discrete
user LEDs

DAC

GPIO

RS232

2 Channels

SPI interface

Clock

8

Analog
outputs

ADC MISO

AD_Conv

50 MHz

SPI interface

MOSI

Clock

2

4

SDRAM,
Flash

memory

Clock

2

GPIO

Fig. 7.3. Interfacing a FPGA-based robot controller with robot signals

7.3 FPGA Design Test Methodology

It is difficult to have a formal description of various debugging techniques used for
physical verification of FPGA-based designs. Designers have their own test
methodology. This section contains guidelines for testing FPGA-based hardware
and software components of the robot controller. The processor-based environment
discussed in Chap. 4 is tested either by using a debugger or by bringing out various
parameters to a serial port. The hardware test environment can be tested using one
or more tools. These include oscilloscopes, logic analyzers and FPGA-integrated
logic analyzers.

7.3.1 UART for Software Testing

The UART-based serial protocol is a useful way of testing processor-based, high -
level code. The print command of C is used to display intermediate values of
software algorithms. From Chap. 4, a UART peripheral is configured for standard
input and output (STDIO). To use the RS-232 functionality, a RS-232 voltage
translator is connected to the FPGA I/O pin shown in Fig. 7.4a. The voltage
translator takes input from the FPGA pin and converts logic 0 to +12 volts and
logic 1 to –12 volts. The pin constraint for one of the RS-232 channels on the
board is given in Fig. 7.4b.

144 Introduction to Embedded System Design Using Field Programmable Gate Arrays

9-pin RS-232 connector

`
UART

Processor

Memory
 FPGA

a

NET "RS232_DTE_RXD" LOC = "U8" | IOSTANDARD = LVTTL ;
NET "RS232_DTE_TXD" LOC = "M13" | IOSTANDARD = LVTTL | DRIVE = 8 | SLEW = SLOW ;

b

Fig. 7.4. a Using the UART interface to debug processor code; b pin constraints for onboard
RS-232 [2]

7.3.2 FPGA Hardware Testing Methodology

The HDL code for PWM control of the permanent magnet DC motor in Fig. 6.10,
is used as an example to demonstrate the use of the internal logic analyzer. The
logic analyzer allows for simultaneous viewing of multiple signals on the chip.
Figure 7.5 shows the configuration of ChipScope28 software, where control voltage
Vc, counter signals, clock and PWM are selected for viewing. When triggered, the
on-chip logic analyzer stores a pre-defined number of sample values in the block
RAM. The number of samples that can be recorded by the logic analyzer is limited
by the amount of block RAM available on the FPGA chip.

28 Many times it is not feasible to bring out design registers and nets for debugging. ChipscopeTM

from Xilinx aids in capturing values of registers and wires from the FPGA device itself.

 Prototyping Using FPGA 145

Fig 7.5. Configuring the integrated logic analyzer (ILA) channels of a PMDC motor PWM.
(Refer to code of Fig. 6.10)

The use of ChipScopeTM is shown for testing the working of a timer circuit of a
single-phase controlled rectifier. The quantizer, zero crossing and timer done bit
are shown in Fig. 7.6a and b. Different timer values are used for illustration.

a

b

Fig. 7.6. a Timer loaded for zero time delay. The timer done signal appears immediately;
b timer loaded with a small number. The timer done signal is seen to appear after the
defined time interval

146 Introduction to Embedded System Design Using Field Programmable Gate Arrays

7.3.2.1 Viewing Real-time Signals on an Oscilloscope
The oscilloscope allows viewing real-time digital and analogue signals. The FPGA
setup shown in Fig. 7.7 is used to bring out signals to the oscilloscope. The
working of the dead time delay code from Fig. 6.13 is tested by bringing gate
signals of upper and lower device to an oscilloscope. In a similar fashion the zero
crossing code of Fig. 3.39 is tested with an oscilloscope. The oscilloscope
waveforms for dead time logic and zero crossing are shown in Figs. 7.8 and 7.9.

FPGA

DAC

Oscilloscope

GPIO

SPI

Fig. 7.7. Using the DAC to view an internal signal on an oscilloscope

Fig. 7.8. Dead time delay of 1.5 μs between upper and lower switch of an inverter bridge.
(Refer to code from Fig. 6.13).

Analogue representation of vectored digital values is done by bringing out the
signal to a DAC. Table 7.4 lists the signals for connecting a DAC to a FPGA using
the SPI port. Testing of time varying signals such as sine is accomplished in this
manner. Figure 7.10 shows the diagram of a sine wave generator, as discussed in
Sect. 6.3.4.

 Prototyping Using FPGA 147

Fig. 7.9. Generation of zero crossing pulses using sample quantizer waveform. (Refer to
code from Fig. 3.29).

Table 7.4. Connection details of DAC to FPGA SPI port

Signal Direction Description

SPI_MOSI FPGA to DAC Serial data (to be converted to analogue) from
master to slave

DAC_CS FPGA to DAC Chip select

SPI_SCK FPGA to DAC Clock

SPI_MISO DAC to FPGA Serial data from slave to master

Fig. 7.10. Generation of sine wave. The top wave is the counter for angle theta and the
bottom waveform is the generated sine wave. Both signals use a DAC for viewing

148 Introduction to Embedded System Design Using Field Programmable Gate Arrays

7.3.2.2 Quadrature Encoder Feedback
Position determination. The incremental encoder is used to determine the position
of the robot axis. A variable frequency square wave function generator can be used
to test the working of this module. A code similar to that given in Fig. 2.17 is used
to measure transitions in the input wave and accordingly.

Determination of speed. The physical equation for determining speed divides the
distance (in our case the position) covered by the time taken. The working of the
HDL speed estimation code in FPGA is ascertained by dividing the value in the
position register by a known time base. Figure 7.11 shows the block diagram of
logic to determine speed by using position data. On-chip verification (Fig. 7.12) for
determining the frequency of a 123-kHz pulse train is done using ChipScopeTM.

CLK Fixed time
base 1 ms

Scaling
Speed in

rpm

Spd

Encoder
signal

RST

A

Position
counter

Reset Int

Fig. 7.11. Speed estimation logic. A fixed time base of 1 ms is used for determining speed

Fig. 7.12. Physical verification of speed estimation using ChipScopeTM. The value of the
position counter is 123 in 1 ms time interval. The estimated encoder frequency is 123 kHz

 Prototyping Using FPGA 149

7.3.2.3 Signal Conditioning
To monitor motor current, the current signal measured by a current transducer is
fed to the FPGA by an ADC. The motor current is alternating between positive and
negative rated values, so the corresponding voltage from the current transducer is
bipolar. If a unipolar ADC is used on the FPGA board, an offset voltage equal to
the maximum negative voltage is added. Figure 7.13a and b show conversion of a
bipolar current input to unipolar for the correct interface to the ADC.

Current
transducer

AMP

2.5 volts
offset

Voltage from
transducer

ADC input
OP-AMP

output
voltage

2.5

0

–2.5

Volts

+Imax

5

2.5

0

Volts

+Imax

Volts

a

Current transducer

+V

-V

Output buffer

RL

Input buffer Amplifier

+V

–V

741
+V

 –V

R3

+

 –

R2

R4

741

-
+

741
741

Summer

Offset voltage for unipolar
conversion

b

Fig. 7.13. a Interfacing a motor current signal to a unipolar ADC b Op-amp based circuit for
getting unipolar current signal

7.3.2.4 Power Device Interface
Isolation between the FPGA-based control circuit and the power circuit is achieved
by using an opto-coupler. As shown in Fig. 7.14, a logic one on the FPGA GPIO
pin turns on the infrared LED of the opto-coupler through transistor T1 and resistor
R1. The opto-coupler photo-transistor conducts and cuts off transistor T2. At this
point, a voltage of 12 volts (determined by the 12-V Zener diode) is available for
driving the MOSFET gate circuit. When the FPGA output signal goes low, the
opto-coupler photo-transistor is cut off. Transistor T2 gets a base voltage through
resistor R2 and conducts through resistor R3. When this happens, there is no
voltage at the MOSFET gate.

150 Introduction to Embedded System Design Using Field Programmable Gate Arrays

10K

MCT2E

1

2 12VFrom FPGA
GPIO

4

5

6

+12V+5V

G

S

To MOSFET
gate

T2

T1

R1 R3R2

Fig. 7.14. Interfacing a FPGA GPIO and a MOSFET gate through an opto-coupler

For the three-phase bridge circuit as shown in Fig. 7.15, each of the six power
devices requires a separate driver circuit.

S1 D1 S2 D3 S3 D5

S6 D2S5 D6S4 D4

IRF 460

.

M
~

Opto-
Isolated

gate drive
circuit

interfaced
with

FPGA

Fig. 7.15. Interfacing FPGA GPIO pins to six MOSFET devices of a three-phase bridge

A high-pass RC filter circuit shown in Fig. 7.16a is used to view SVPWM
voltage.The output of the filter can be viewed on an oscilloscope (see Fig. 7.16b).

FPGA

GPIO

GPIO

GPIO

To Oscilloscope

Phase A

To Oscilloscope

To Oscilloscope
Phase C

Phase B

 a b

Fig. 7.16. a A high-pass filter circuit to view a SVPWM waveform; b the resultant filtered
waveform for one phase viewed on an oscilloscope. Details of SVPWM are discussed in
Sect. 6.3.4.

 Prototyping Using FPGA 151

Hardware-in-the-loop Testing
Hardware-in-the-loop allows testing FPGA-based signal processing algorithms. It
uses o MATLAB® Simulink® environment and Xilinx System GeneratorTM tool to
provide test vectors. These test vectors are routed through a JTAG port on the
FPGA-based hardware (see Fig. 7.17). The output from the FPGA is again brought
back to the same screen using the JTAG connection. This allows for cross-
verification of the simulation and the physical test results for an algorithm.

Matlab Simulink® and Xilinx System GeneratorTM environment

Simulink
source

Gateway in Gateway
out

Simulink
sink

Pre-designed
synthesizable HDL

logic

JTAG based hardware co-simulation
on FPGA

Hardware
Simulation

Software
Simulation

Fig 7.17. Hardware-in-the-loop test methodology [3]

Problems

1. Use the digital block diagram shown in Fig. 7.11 to estimate a range of
frequencies from a function generator. Comment on the limitations of using
a fixed time base.

2. Figure 7.18 is used for rotor position initialization of a permanent magnet
motor. Before the motor is started, the stator windings are given rated
current, so that the rotor can lock to a known position. Write logic for a
current regulator to measure current using a current sensor to limit the
switching of devices 1, 5 and 6 to rated value.

PMSM
~

1 2 3

4 5 6

FPGA based
current

controller

Drive DC bus

Switches 1,5 and 6 are on
and rated current flow is

controlled by FPGA
current controller

Fig. 7.18. PMSM motor rotor initialization

152 Introduction to Embedded System Design Using Field Programmable Gate Arrays

References

1. Hamblen JO, Hall TS, Furman MD (2006) Rapid prototyping of digital systems.
Springer 2006

2. Xilinx (2006) Spartan-3E Starter Kit Board User Guide. UG230 (v1.0) March 2006
3. Xilinx (2006) System Generator for DSP performing Hardware-in-the-loop with the

SPARTAN-3E Starter Kit, December 2006

Index

A
application specific standard product

(ASSP) 8

C
communication protocol
 LIN 113
 Modbus® 107
 protocol translator 110
complex programmable logic device

(CPLD) 53

D
design platforms 4
design re-use 92
digital-to-analogue converter (DAC)

146

E
embedded system 1
encoder 2, 4, 30, 148
encoder
 Gray code 34

F
field programmable gate array (FPGA)
 architecture 54
 block memory 61
 clock network 67
 configurable logic block (CLB) 56
 constraint 141
 design tools 11
 digital clock manager 67

 distributed memory 62
 floor plan 72
 I/O standards 70
 interconnect technology 54
 logic cell 56
 look-up table (LUT) 58
 memory 61
 multipliers 71
 place and route 49
 power 75
 power device interface 149
 processor
 hard 84
 soft 82
 prototyping 139
 prototyping board 140
 shift register logic 60
 test methodology 143
 timing model 74
finite state machine (FSM) 27

H
hardware description language (HDL)

17
 pre-designed HDL codes 45
 test bench 49
 Verilog 19

very high speed integrated circuit
hardware description language
(VHDL) 18

I
interconnect bus
 backplane bus 87

154 Index

 system on-chip bus 87
interrupt processing 6

M
memory
 coefficient file 65
microcontroller 7
 customised microcontroller 94
microprocessor 5
 peripheral 86
motor drive
 brushless motor 128
 dead time 124
 dynamic braking 135

permanent magnet DC motor 122
 PMR 126
 PMSM 131
 stepper motor 119
moving average filter 111

P
programmable logic controller (PLC)

43
pulse width modulation (PWM)
 sinusoidal PWM 135
 space vector 127

Q
quadrature encoder 30

R
robot 1, 2
 axis position control 98
 robotic rover 15

S
serial communications

universal asynchronous receiver
transmitter (UART) 104

 RS-232 106
 RS-485 106
 SPI 109
shift register LUT 60
soft processor
 MicroBlazeTM 82
 PicoBlazeTM 82
speed estimation logic 148
synthesis
 Multi-sourcing 80
system on-Chip bus
 Avalon switch matrix 90
 cross bar switch 88
 OPB bus 90
 Point-to-point 88
 shared bus 88
 Wishbone interface 89

T
test methodology
 hardware testing 144
 software testing 144

V
Verilog 18
 arithmetic 35

arithmetic and logic operators 23
 behavioural 24
 controlled rectifier 76
 data flow 241
 digital filter 32
 gate level 20
 instantiation 40
 ladder logic 43
 multiplication 38

non-synthesizable constructs 50
 shift register 24

signed arithmetic 37

	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	back-matter.pdf

