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Preface 

Overview 
The realm of embedded systems is quite large and is predominantly carried out 
around the general purpose processor and microcontrollers. The use of field 
programmable gate array (FPGA) in microprocessor-based embedded systems is 
often for glue logic or for off-loading the processor from tasks that require fast 
updates. The motivation for writing this text is to present a single source of 
information that can be used to understand how a FPGA and the Hardware 
Description Language (HDL) can be used in the design of embedded digital 
systems. 

Digital design methodology has undergone several changes over the past three 
decades. The use of FPGA and HDL for implementing digital logic has become 
widespread in the last decade. The use of FPGA in embedded systems is still in its 
nascent stage. The majority of the embedded applications are divided between an 
8-bit microcontroller implementation and a 32-bit processor-based real time 
operating system (RTOS) implementation. This text provides a starting point for 
the design of embedded system using FPGA and HDL. To give the text a common 
thread of thought from the application point of view, a design example of a 
hypothetical industrial robot controller is taken up. Different chapters of the text 
provide the necessary background on FPGA and HDL along with its use in 
designing an industrial robot controller. 

Coverage 
The first FPGA, introduced in 1985, consisted of 2000 gates. Since then, gate 
density has grown to tens of millions of gates. With increasing density of FPGAs, 
varied hardware resources have become a standard feature of contemporary FPGA-
based devices. The text includes simulation of digital logic using Verilog HDL, 
synthesis of HDL code for a given FPGA device and processor-based FPGA 
devices. The focus of the HDL chapter is to emphasise the synthesizable area of 
Verilog constructs and to provide a basis to understand the application examples 
that follow in subsequent chapters. A chapter is devoted to the understanding of 
hardware–software partitioning in a FPGA device. Proprietary 8-bit and a 32-bit 
soft processors are discussed along with interfacing methodology using system-on-
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chip interconnections. Basic technique for serial data communication, signal 
conditioning, motor control and hardware prototyping is covered using FPGA and 
HDL. 

How to Use This Book 
Moore’s law has kept the semiconductor business in a constant state of flux. It is 
very difficult to write a book that uses FPGA and continues to be relevant despite 
ongoing technological changes. The author has presented basic concepts and 
techniques for using FPGA and hence should not change quickly. Since this book 
covers vast areas of HDL and FPGAs, some sections are brief and sketchy. For this 
the author recommends that the reader  supplement the contents of each chapter 
with additional available literature. The chapter on HDL coding and simulation 
should be supplemented by standard textbooks on HDL coding and simulation. The 
FPGA resources and synthesis topic should be supplemented by EDA tools 
provided by different FPGA vendors and FPGA device datasheets. The contents on 
FPGA embedded processors can be supplemented by application notes on 
interfacing processors to custom codes and datasheets of soft processors. 

FPGA Device and Tools Used 
For purposes of illustration and consistency, Xilinx ISETM software and 
SPARTANTM3E FPGA have been used throughout the book. Though the 
exemplars are specific to this device, the concepts can be applied to FPGA devices 
available from other FPGA vendors. 

   
Gandhinagar  Rahul Dubey 
October 2008        
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Introduction 

Digital systems and their design have evolved greatly over the last four decades. 
Rising densities and speed have provided designers a huge canvas to create 
complex digital systems. Present-day embedded systems use single-chip 
microcontrollers. Contemporary microcontrollers are available with 8-, 16- and 32-
bit processing capability along with a peripheral set containing ADC, timer/counter 
and networks (I2C, CAN, SPI, and UART). For most applications the 
microcontroller-based board is adequate. For applications where there is a need to 
integrate custom logic for faster control and additional peripherals, the 
microcontroller or microprocessor board is augmented by a FPGA or an 
application specific standard product (ASSP) device. The focus of this chapter is to 
understand different digital design methodologies before embarking on a full 
fledged description of the use of a custom digital design based on a FPGA. 

1.1 Embedded System Overview 

Embedded systems are usually single function applications.  Various functional 
constraints associated with embedded systems are low cost, single-to-fewer 
components, low power,  provide real-time response and support of hardware-
software co-existence. A general methodology used in designing an embedded 
system is shown in Table 1.1. 

The decision on the kind of digital platform to be used takes place during the 
system architecture phase as each embedded application is linked with its unique 
operational constraints.  Some of the constraints of a digital controller of embedded 
system hardware include (in no particular order) the following: 

• Real-time update rate 
• Power  
• Cost  
• Single chip solution 
• Ease of programming 
• Portability of code 
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• Libraries of re-usable code 
• Programming tools. 

Table 1.1. Embedded system design flow [1] 

Design phase Design phase details 

Requirements  Functional requirements and non-functional requirements 
(size, weight, power consumption and cost) 

User specifications User interface details along with operations needed to 
satisfy user request 

Architecture Hardware components (processor, peripherals, 
programmable logic and ASSPs), software components 
(major programs and their operations) 

Component design  Pre-designed components, modified components and new 
components 

System integration 
(hardware and software) 

Verification scheme to uncover bugs quickly 

1.2 Hypothetical Robot Control System 

For understanding different digital design platforms, this text uses the design of a 
digital controller for a robot as a case study. The robot is a hypothetical, vertically 
articulated robot system for an automated assembly line. The process of designing 
this controller will help in understanding various digital design concepts. Figure 
1.1 shows the various components of an assembly line robot. Each robot consists 
of five electric motors that work as actuators for different joints of the robot. A 
programming pendant or workstation is used to program the movements of the 
robot along with a communications network to link this robot to other robots on the 
assembly line. Various sensors are interfaced to the robot control system. 

  

Data 
communications

 
Fig. 1.1. Vertically articulated robot system used in an assembly line environment 
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The typical requirements of an Industrial robot controller include 

• Control method for point-to-point control using servomotors 
• Position detection using incremental or absolute encoder system 
• Return to origin using limit switches and  encoder  
• Trajectory control  
• Programming using a personal computer. 

Table 1.2. Tasks for robot digital controller 

Task  Subtask  Update time 

Gate Driver, protection and 
current sensing 

Fraction of  a 
microsecond 

Dead time  Microseconds 

Closed-loop torque control Tens of 
microseconds 

Closed-loop speed control Hundreds of 
microseconds 

Position coordinate 
interpolation 

Milliseconds 

Control of 
joint motors 

Host communications Tens of milliseconds 

Sensor signal 
processing 

ADC, DAC Tens of milliseconds 

Networking 
applications 

Low-speed network  Milliseconds 

Control Strategy for the Robot Controller 

For implementing the robot controller on a digital system, a list of controller tasks 
is created in Table 1.2 along with the update time requirements. The major tasks 
for the robot controller for an articulated factory robot are 

• Simultaneous control of five motors with details shown in Table 1.3. 
• Signal processing of sensor inputs coming from robot environment — 

encoders, limit switches, proximity sensors, vision sensor  
• Communication of robot co-ordinates to other robots in the vicinity, using 

CAN bus or Modbus® 
• Communicating with host controller over serial port 
• Computation of trajectory for robot movement. 
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Table 1.3. Specifications of a micro articulated robot Mitsubishi Movemaster RV-M1 [2] 

Axis Description Encoder pulses per 
revolution (PPR)1 

Gear ratio Working range in 
degrees  

J1 Waist 200 1:100 300°   

J2 Shoulder 200 1:170 130°   

J3 Elbow 200 1:110 110°  

J4 Wrist pitch 96 1:180 90°  

J5 Wrist roll 96 1:110 ±  180°  

The tasks and their update times are shown graphically in Fig. 1.2. 
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Fig. 1.2. Update times needed for various control functions of a robot control system  
[3] 

1.3 Digital Design Platforms 

Till the 1970s, electronic system designs were based on discrete analogue 
components such as transistors, operational amplifiers, resistors, capacitors and 
inductors. These circuits offered concurrent processing but had problems of 
parameter drift with temperature and ageing. The coming of TTL-based 

                                                 
1 The encoder is used to find the position and speed of the robot joint. The working of the encoder 
is explained in Chap. 2. 
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components laid the foundation of digital design. The Intel 4004 microprocessor 
became the first digital platform which was configurable using software. Table 1.4 
lists the major contemporary digital designs along with their relative merit. 

Table 1.4. Digital design platforms 

Digital design platform Merit 

Microprocessors Reconfigurable using software. Good for 
computations  

Microcontrollers, digital signal 
controllers 

Combination of peripherals and CPU 

Application specific standard product 
(ASSP) 

A specialized peripheral with the ability 
to communicate with a host processor  

Field programmable gate array (FPGA) Ability to combine the strengths of 
processor, controller and ASSP 

1.3.1 Microprocessor-based Design 

The microprocessor has changed digital design methodology like no other digital 
component. It started out as a 42 bit programmable CPU in 1971 and still continues 
to be the digital controller of choice across several application areas. The 
microprocessor brought the concept of instruction set architecture (ISA), assembler 
and compiler. There are many real-time applications, with fast update rates require 
programming the microprocessor in its native assembly language. This is usually 
done when the size of available memory is a constraint.  Even though most  
commercial microprocessors used today cater to data-centric applications, there are 
microprocessor cores embedded in microcontrollers for real-time control 
applications. 

Digital control systems, like the robot application use a processor by using 
interrupts for real-time processing. There are interrupts for calculation of robot arm 
trajectory, encoder and sensor feedback, control of motors and networks. Each 
interrupt will occur based on the update time requirement of the given task. Figure 
1.3 shows the generic nature of interrupt processing, where an interrupting device 
seeks CPU attention. A microprocessor-based robot controller carries out the task 
of arm positioning based on the flowchart shown in Fig. 1.4. 

                                                 
2 The early Intel 4004 and the 8086 processor had close to 2300 and 29000 transistors. A basic 2 
input NAND gate consists of 4 transistors. Effectively the early Intel processors 4004 and 8086 
used only 575 and 7250 gates. This helps to put in perspective the amount of digital logic that can 
be accomodated in a 500,000 gate FPGA.  
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Start
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Initialization Algorithm* Waiting time

Sampling Period T = 60 µs

Software Start

Timer 
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Timer Interrupt

 
Fig. 1.3. Interrupt service routine (ISR) based processing scheme of processor-controller 
control scheme 

Because most single core general purpose processors (GPP) are single- 
threaded (can process one instruction at a time), the processor use can become very 
high when managing multiple interrupts from different tasks of the robot 
controller.  This can be seen from Fig. 1.5, where processor CPU use increases 
linearly with each motor. 
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Fig. 1.4. Processor-interrupt-based flowchart needed for computing a control action  
[4] 
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Fig. 1.5. CPU use for axis motor control for a single-threaded controller 

1.3.2 Single-chip Computer/Microcontroller-based Design 

The microcontroller represents the next generation of controllers for embedded 
systems. It allows creating systems with fewer numbers of components by 



8 Introduction to Embedded System Design Using Field Programmable Gate Arrays 

incorporating peripherals that were earlier externally interfaced with the general 
purpose processor. A block diagram of a typical single-chip controller, which is 
used as a robot motor controller, is shown in Fig. 1.6. 

Like the microprocessor, tasks in a microcontroller design environment are 
divided as per the update rates required. For tasks requiring low update rates, 
coding is accomplished using a software programming language such as C. Tasks 
that need to have high deterministic update rates are coded using the native 
assembly language for a particular microcontroller. In the robot application at 
hand, many of the motor control routines require update rates of a few kilohertz. 
Traditionally, these routines are written in assembly language. It is difficult to port 
routines written in assembly language as they are tied to a CPU’s ISA. The other 
constraint with a microcontroller-based system is the fixed number of available 
peripherals. Though microcontroller vendors offer a wide range of devices with 
different numbers and types of peripherals, it is not always possible to find one that 
matches the application requirements perfectly. 
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Fig. 1.6. Single-chip microcontroller environment for a motor control application 

1.3.3 Application Specific Standard Products (ASSPs) 

An ASSP is a configurable logic component for a specific application. The 
functionality of an ASSP is tweaked by specifying its control word. ASSPs are 
made in volumes and cater to the generic requirements of the application. Most of 
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the time, ASSP-based designs are used on a PCB. In the robot control application 
at hand, an ASSP can be used for controlling the motor for each axis of the robot.  
Based on the type of motor and control strategy used, a corresponding ASSP is 
chosen. Two examples of ASSPs for motor control include LM629 from National 
Semiconductor for control of a brushed DC motor and SA628 (see Fig. 1.7a and b) 
for three-phase motor control. Configurable ASSPs provide address, data and 
control bus connectivity for interfacing with the host processor. 
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Fig. 1.7. a ASSP chip SA628 for control of a three-phase AC Induction Motor  
[5]; b ASSP chip LM629 for control of a DC motor 
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1.3.4 Design Using FPGA 

The present-day FPGA provides a platform that supports both processor and 
custom logic requirements. The microcontrollers currently have an edge over the 
FPGA in terms of power and cost. But FPGAs are catching up by offering 
portability of code across various FPGA vendors, libraries of re-usable code and 
availability of low-cost programming tools.  Programmable devices that were 
traditionally low gate count devices are now in a position to support large parts of 
digital system logic. The digital designer today has a viable option of using only 
the FPGA device as the embedded system controller. The availability of high- 
density, low-cost FPGA devices has given digital designers lots of flexibility to 
design custom digital architectures using FPGA and HDLs. FPGA devices have 
evolved from their glue logic predecessor to a device that now contains a large 
variety of built-in digital components (memory, multipliers, transceivers and many 
more). FPGA device density has risen over the years and at the same time its cost 
has made it economically viable for use in several applications. Contemporary 
FPGAs contain thousands of look up tables (LUTs) and FFs for implementing 
complex digital logic. 

Contemporary FPGAs offer 

• Reconfigurability: Field programmable devices can be reconfigured at any 
time. Designers can integrate modifications or do complete personality 
changes. 

• Software-defined design: The hardware is defined by software-like 
languages (HDL). Designers can develop, simulate and test a circuit fully 
before “running” it on a field programmable device. 

• Parallelism: Circuits defined in an FPGA can be designed in a completely 
parallel fashion. This is similar to using multi-path analogue circuits. A 
user can instantiate multiple hardware implementations on the same chip 
without cross-module interference or computation loading. An example of 
FPGA-based concurrent processing is shown in Fig. 1.8. 

 

Clock of processor, controller

Task update interval

Task  1 execution time 

Task 2 execution time

Task 3 execution time

Clock PLD

Task update interval PLD

Task  1 execution time PLD

Task 2 execution time PLD

Task 3 execution time PLD
 

Fig. 1.8. Multi-tasking scheme using a GPP vis-à-vis a FPGA 
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• High speed: Because an FPGA is a hardware implementation running with 
fast clock rates, designers can achieve very high speeds. Coupled with 
parallelism, FPGA implementation can outperform processor-based 
systems. 

• Reliability: Designers can expect true hardware reliability from FPGAs 
because there is no operating system  or driver layer3 that can affect system 
uptime. 

• IP protection and re-use: Once compiled and downloaded to a FPGA, 
hardware implementation is difficult to reverse engineer. A tested hardware 
design can be re-used multiple times by instantiating. 

FPGA-based systems are gaining acceptance because these systems integrate 
digital logic design, processors and communication interface on a single chip. The 
front end design flow of a FPGA is very similar to that of a custom logic design. 
Almost all FPGA vendors offer a suite of software tools that allows a designer to 
simulate, synthesize, place and route and program the FPGA. Table 1.5 shows the 
different design tools offered by two leading vendors. Once a designer feels 
comfortable in a particular design suite, it is easy to migrate to another vendor’s 
design tools because they work in a similar fashion4. 

Table 1.5. Common design tools provided by two leading FPGA Vendors 

Functionality XILINX ALTERA 

Design synthesis, 
mapping, place and 
route 

Integrated Software 
Environment 
(ISE)TM 

Quartus II® 

FPGA embedded 
processor design tool 

Embedded Design 
Kit (EDK)® 

System on 
Programmable Chip 
(SoPC) builder® 

Custom peripheral 
support 

Yes Yes 

On-Chip signal logic 
analyzer 

ChipScopeTM Pro SignalTap® 

MATLAB® co-
simulation and IP cores 
library 

System GeneratorTM DSP Builder® 

                                                 
3 Not applicable to FPGA-based processor systems. 
4 One of the strengths of HDL and associated synthesis software is to make the implementation 
option wider for the designer. For consistency, this book uses a contemporary Xilinx SPARTAN-
3ETM 500K gate FPGA along with the Xilinx ISETM for illustrating various examples.  The author 
feels strongly that if the designer is able to master one vendor’s specific design flow along with a 
given FPGA architecture, the same concepts can be applied to understand quickly and implement 
a digital design using  FPGAs from other vendors.    
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From an implementation point of view, a robot controller using a FPGA device 
can be considered a viable alternative5, as robots are usually low-volume 
application-specific systems. The FPGA allows for customization of servo-motor 
type for joint control, industrial communciation network, integration of custom 
peripherals and control algorithms. 

Software-based design flows are suited for applications which are data centric 
and hardware design flow is suited for fast real-time applications.Table 1.6 
provides a transition path for migrating from microprocessor/controller to FPGA-
based design. The FPGA design process consists of design entry, which is 
accomplished by using either schematic or HDL. Following the design phase, 
digital logic is synthesized, mapped and placed on a FPGA6. 

Table 1.6. Transition path from a microcontroller-based system to a FPGA system 

Existing 
microprocessor/microcontroller code 

Field programmable device 

Target independent ‘C’ Code  Embedded processor within the FPGA 
device 

Target dependent assembly constructs for 
routines requiring fast update rates 

Target independent HDL-based coding 
for routines requiring very fast update 
rates 

1.4 Organization of the Book 

The book is organized to weave together concepts, tools and techniques to help in 
designing FPGA-based embedded systems. This book does assume that the reader 
is versed in the basic concepts of embedded systems programming and interfaces. 
There are references at the end of each chapter where the reader can get more 
information on the topics covered in the chapter. This text is trying to put together 
many components of a system, so certain sections are not covered in detail but are 
used to convey the concept of system design. 

The sequence of chapters is to introduce basic concepts and then build upon 
them. Table 1.7 details the contribution of each chapter in building up a FPGA-
based digital system. 

                                                 
5 The purpose of this text is to explain embedded hardware design using FPGA. It is not the 
intention of this text to prove that FPGA-based robot controller is the best digital platform for 
implementing the robot controller.  
6 The HDL design process is described in Chap. 2.  The complete design flow of synthesis, 
mapping, place and route is described in Chap. 3.  
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Table 1.7. Preview of FPGA-based  digital design implementation 

Chapter FPGA design  

1 2 3 4 5 6 7 

The case for using FPGAs ■       

Hardware description language 
(HDL) 

 ■      

Synthesis of HDL design using FPGA 
as a target device 

  ■     

FPGA embedded processors    ■    

Serial communications and 
interfacing 

    ■   

Motor control      ■  

Prototyping using FPGA       ■ 

Broadly, Chaps. 1 to 4 of the book introduce the technology and tools for 
implementing digital logic using a FPGA device. Chapters 5 to 7 discuss 
interfacing, motor control and prototyping using FPGA. 

As shown in Fig. 1.9, different aspects of robot controller design are covered in 
chapter numbers mentioned in each component. 
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Soft processor (4)

Drive Logic 
(6)

Chip wide peripheral bus (4)

Drive Logic 
(6)

Embedded 
Memory (3)UART (5)

M

M

M

M

M

M

M

M

Motor axis 
control 

signals (7)

Motor axis 
feedback 
signals

FPGA(3)  HDL 
programming (2)

SPI, I2C 
(5)

 
Fig. 1.9. Contribution of each chapter (shown in parentheses) for creating a robot controller 
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The second chapter is on simulation of digital systems using Verilog as the 
hardware description language (HDL). It introduces basic concepts of how a 
printed circuit board (PCB) containing digital components can be modelled using 
HDL and how it can be tested using software simulators. A simulation 
environment of an EDA tool is also explained. 

Chapter 3 of the book introduces the architecture and resources of FPGA.  Each 
building block of the programmable device such as embedded memory, phase- 
locked loops, logic blocks, multipliers and different interfacing I/O standards are 
explained along with their HDL based instantiation template. The chapter ends 
with examples of digital systems and their FPGA-based synthesis results.  

FPGA-based embedded processors have made it possible to migrate from 
microcontroller-based embedded system design to FPGA-based embedded system 
design. FPGA-based designs give the designer an option to retain much of the skill 
set of high-level software programming. Now instead of coding in a native 
assembly language for a particular processor — deterministic tasks can be coded in 
HDL. Chapter 4 provides methodology on bringing together the software and the 
hardware worlds.  FPGA immersed processors along with different interfacing 
buses connect to external standard and custom peripherals. A system-on-chip is 
created using this approach. 
Chapter 5 discusses FPGA-based interfaces. It covers basic data communication 
using HDL and FPGA and protocols. The chapter also discusses asynchronous and 
synchronous serial data communications. The second section of the chapter 
discusses basic signal conditioning of the acquired signal. 

The actuator is the last component of the control loop. In the robot example 
used in this book, the electric motor is the actuator for various joints of the robot.  
Chapter 6 discusses digital design and control implementation of different motors 
— stepper, permanent magnet DC motor, brushless DC motor, permanent magnet 
synchronous motor (PMSM) and permanent magnet reluctance motor.  

The last chapter of the text is on prototyping the different schemes discussed 
using a FPGA-based board. It discusses various hardware verification and 
interfacing techniques, which are useful for hardware system integration. 

Problems 

1. Give an example of a application suited for a microcontroller and for a 
FPGA. Justify why one cannot replace the other. 

2. What are the limitations of a FPGA-based system vis-à-vis a custom ASIC-
based system. 

3. How is real-time processing done on a GPP or a microcontroller based 
system by using interrupts? 

4. What kind of power constraints are part of an articulated factory robot and 
that of a robotic rover shown in Fig. 1.10? 

5. The robotic rover application (shown in Fig. 1.10) involves travel along 
terrains either by use of a remote link such as the Global Positioning 
System (GPS). The rover collects information about its surroundings using 
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sensors and relays it to a base station or operator console. A list of tasks for 
this rover includes 

a. Power management for the rover 
b. Control of six motors  
c. Signal processing of sensor inputs coming from the robotic 

environment using a vision sensor.  
d. Determining the robot position using GPS  
e. Communicating with the host controller  using ZigBee 
f. Ability to interface with various payloads — new sensors, new 

actuators. 

Partition the tasks as per their update time requirements and comment on 
the suitability of putting the task on a FPGA or a GPP. 

M1 M3 M5

M2 M4 M6M2 
drive

FPGA based   
controller

GPS

Ultrasonic
sensor  

ZigBee 
transceiver

M1 
drive

M4 
drive

M3 
drive

M5 
drive

M6 
drive

Processor

 
Fig. 1.10. Diagram of a robotic rover 
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Hardware Description Language: Verilog 

The technology of translating a given digital design task into digital logic has 
undergone many changes. The 1970s and 1980s witnessed a schematic design 
approach. From the mid-1990s onward, digital design has been done using 
hardware description language (HDL). HDLs came into existence to help the 
designer with the simulation of digital logic. The availability of synthesis tools that 
convert HDL logic to FPGA primitives has made HDL the digital design entry 
method of choice. Given the fact that HDLs started out primarily as a simulation 
language, there are many HDL constructs that cannot be synthesized to digital 
logic. This chapter will focus on the synthesizable subset of constructs of Verilog 
HDL. Describing a digital design using HDL is usually the first step toward  
prototyping the design using FPGA. The rest of the book will use Verilog 
constructs introduced in this chapter to create digital designs for interfacing, 
networking, signal conditioning and motor control applications. Verilog is a vast 
language, and it is beyond the scope of this chapter and book to dwell on all the 
nuances of the language. 

2.1 Software and Hardware Description Languages 

It helps to understand broadly how a general purpose software programming 
language such as C compares with the hardware description language. Both 
software and hardware description languages are target device independent 
languages. A code written in C can be compiled for execution on an Intel, 
Motorola or ARM microprocessor. It helps if the designer knows the processor 
architecture and assembly constructs. This can lead to faster and more compact 
programs. But for applications where memory and speed are not a constraint, the 
designer can get by, without knowing the details of the underlying processor 
architecture.  

In the way software programming language shields the programmer from 
getting caught up in the details of an individual processor’s assembly language, the 
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HDLs present a similar advantage. Here the digital designer writes a description 
for a digital circuit using HDL, without worrying about the primitives7 of a target 
device. For most high-level software description languages, the execution is single 
–threaded because there is a single CPU core attending to the execution of logic8. 
In HDL, the designer can model and construct different concurrent paths for 
executing logic. This is why HDLs are said to model and aid in implementing the 
concurrent behaviour of circuits. 

Does it mean the end of software programming languages? No, these languages 
continue to contribute to the design of digital and embedded systems. Chapter 4 
will discuss more on the use of software programming languages when designing 
FPGA-based processor systems. 

Basic Concept of HDLs – Verilog and VHDL 

With most digital design exceeding thousands of gates, the schematic design 
approach has given way to more abstract descriptions of digital design. This more 
abstract design methodolgy is based on hardware description language. 
Contemporary HDL languages started out as simulation languages. Very high 
speed integrated circuit hardware description language (VHDL) started out as a 
U.S. Department of Defense initiative. It was primarily meant to integrate and 
correlate simulation results of digitial circuits from various defense vendors. 
Similarly, Verilog evolved as a tool for verifying logic in the digital domain. Both 
VHDL and Verilog are defined by IEEE standards. Verilog has been through 
revisions to cover deficiencies. Verilog is defined by the IEEE standard 1364. The 
IEEE 1364-1995 and IEEE 1364-2001 refer to Verilog-95 and Verilog-2001. 
Today with the help of EDA synthesis tools, code written in HDL can be 
synthesized into target specific architectures. Both HDLs can be understood by the 
way their design approach mirrors the use of discrete chips on a PCB.  

Verilog divides its constructs into four levels of abstraction. The first level of 
abstraction is the switch level, where individual MOS transistor-based switches are 
interconnected to form gates and flip-flops. The second level of abstraction is the 
gate level, where one can instantiate basic gates and interconnect them to form a 
digital system. Both the switch level and gate level constructs are rarely used in 
designing high density digital logic. The third level of abstraction, the data flow 
provides interconnection of different combinational logic circuits using a single 
statement. Behavioural modeling supports the most abstract level of construct 
using HDL. Here the designer can code digital design in the format of a high-level 
software language. For Verilog, behavioural constructs resemble the C 
programming language constructs. Even though each abstraction layer defines 
different keywords, signals between different abstraction layers can be 
interconnected. 

                                                 
7 Primitives are the assembly level constructs of the hardware world. Chapter 3 discusses in detail 
the commonly used primitives of the Xilinx field programmable gate array (FPGA) 
8 Multi-core processors can execute several threads of logic independently! 
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2.2 Let’s Use Verilog as Our HDL! 

The case for a particular HDL (either Verilog or VHDL) cannot be argued9. Let us 
say, we decided to use Verilog by tossing a coin. For the remainder of this text, we 
will use Verilog 2001 for design examples.  

One of the ways of understanding many concepts of HDL is to view its use 
from the view point of a PCB. PCBs in the 1980s had lots of 74xx series chips that 
were interconnected using copper tracks. If you happen to have an old computer 
from the 1980s, you will notice discrete 74xx chips on the motherboard used for 
address decoding and latching data/address buses. Increased gate densities made it 
feasible to incorporate large quantities of combinational and sequential logic onto a 
single programmable chip. It is difficult to spot those 74xx series chips on the 
motherboard because they are now contained in a single chip. 
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Fig. 2.1. Populated printed circuit board analogy of Verilog HDL 

The fundamental concept of Verilog module, port list and wires can be 
explained by using basic PCB design terminology. As shown in Fig. 2.1, each chip 
on the PCB is a module in Verilog HDL. The port list denotes the number and 
type of I/O pins of the module. The interconnections between various chips on the 
PCB are denoted as wires. If the PCB consists of a fixed number of IC chips, then 
the entire PCB becomes a top module where the external world signals to the PCB 
constitute the port list of this top module. 

2.3 Design Examples Using Verilog 

A HDL is better understood through examples that illustrate facets of designs. Let 
us take different examples to demonstrate the use of Verilog by examples on 
                                                 
9 Both Verilog and VHDL have their own devout followers. For the functionality described in this 
book, either  of the HDLs can be used. Once one HDL is understood, it is easy to migrate to the 
second using the same fundamental concepts.  
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combinational, sequential and finite state machine (FSM) based circuits. The 
following section shows Verilog10 designs based on gate, data flow and 
behavioural modelling. 

2.3.1 Gate Level Model 

The gate level constructs allow a designer to synthesize a digital circuit using basic 
digital gates. Gates are synthesizable constructs supported by all synthesis tools. 
The FPGA synthesis tool implements digital gates using a LUT. 

Example 2.1. For safety, many sensors are used to protect a robot axis from self-
destructing. These sensors include limit switches, proximity switches and safety 
interlocks. Convert the control scheme shown in Fig. 2.2, to digital logic by using 
Verilog HDL. 

Motor temperature 
sensor

or2or1

Limit switches from 
different axes

Safety interlock

Interlocks_ok

HDL
limit_sw

 
Fig. 2.2. Interlock circuit using basic gates 

The port list of the example circuit consists of four inputs and one output. One 
bit width is the default size for each I/O; hence the port size for 1-bit I/Os is not 
explicitly mentioned. The code in Fig. 2.3 shows instantiation of two OR gates. To 
instantiate a basic gate, the output is mentioned first followed by the inputs to the 
gate. In the example, the wire limit_sw connects the output of the first OR gate 
(or1) to the input of the second OR gate (or2). 

module gate_1 (input lim_sw1, lim_sw2, motor_temp, safety, output interlocks_ok); 

 wire limit_sw; 

 or or1 ( limit_sw , lim_sw1 , lim_sw2); 
 or or2 (interlocks_ok , limit_sw , motor_temp , safety); 

endmodule 

Fig. 2.3. Verilog code for interlock circuit 

                                                 
10 In all HDL design examples, Verilog keyword is boldfaced. There are no accompanying test-
benches with the Verilog codes. The reader is encouraged to write test-benches to verify the codes 
presented in the examples. The Verilog examples presented in the book are for illustration only. 
They are neither complete nor extensively tested for use in a real system.  
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Example 2.2. To hold the robot joint at the desired location after the axis has 
positioned itself, a brake is often employed. This brake can be part of the motor 
controlling the joint. For the robot joint to move, the brake has to be released 
(usually by powering it, logic 1), when the joint has reached its pre-determined 
position, the brake is set (logic 0). The diagram for this interlock is shown in  
Fig. 2.4. 

Input

Position_reached_1

Position_reached_n

Brake_1  

Brake_n 

……
……

HDL

Output

 
Fig. 2.4. Creating a brake interlock using digital gates 

The input is a signal from a limit switch, which indicates that the desired 
position is reached. A NOT gate sets the brake when this position_reached contact 
is active. The inverter NOT gate is instantiated in a fashion similar tp the OR gate 
in Example 2.1 (see Fig. 2.5). 

module brake( input axis_position, output brake); 

// Gate Instantiation 

not (brake, axis_position); 

endmodule 

Fig. 2.5. Verilog code for brake interlock circuit 

2.3.2 Combinational Circuits Using Data Flow Modelling 

The data flow method is used to model asynchronous combinational logic designed 
to work using the concept of transition on change. Any time an input changes, the 
entire logic circuit is re-evaluated. Assign statements in Verilog are used for 
modeling circuits governed by the transition of change concept. The output, which 
is the left-side expression of the assign statement changes as soon as the input, the 
right-side expression of the assign statement changes. The generic format for using 
the assign statement, 

assign output = input1 operator input2; 

Table 2.1 lists the operators used for data flow modeling. 
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Example 2.3. Create the logic for a single loop ON/OFF controller, much like the 
one used in refrigerators and air-conditioners. The user sets the amount of control 
action needed. The digital circuit computes the difference between the set point 
and the actual temperature and turns on a relay. Figure 2.6 shows the control 
scheme of the process. 

Comparator 
logic

AC

Set point

Process Control range

Relay

 
Fig. 2.6. ON/OFF controller control scheme 

In this example, the inputs to the controller, set point and process values are 
available from an 8-bit uni-polar ADC. The Verilog code of Fig. 2.7 uses an assign 
statement to realize combination logic for computing error. A conditional operator 
is used to actuate the relay. 

 
module on_off (input [7:0] set_point, process, input [3:0] control_range, output relay); 

wire [7:0] error; // Unsigned value 

assign error = set_point - process; // Set point is always more than the process value 

assign relay = ( error > control_range ) ? 1’b1 : 1’b0 ; 

endmodule 

Fig. 2.7. Verilog code for ON/OFF controller 
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Table 2.1. Arithmetic and logic operators used for data flow design11 

Operator Type Operator symbol Operation performed 

* Multiply 

/ Divide 

+ Add 

- Subtract 

Arithmetic 

% Modulus 

! Logical negation 

&& Logical and 

Logical 

|| Logical or 

> Greater than 

< Less than 

>= Greater than or equal 

Relational 

<= Less than or equal 

== Equality Equality 

!= Inequality 

~ Bit-wise negation 

& Bit-wise and 

| Bit-wise or 

^ Bit-wise ex-or 

Bit-wise 

^~ or ~^ Bit-wise ex-nor 

>> Right shift Shift 

<< Left shift 

Concatenation { } Concatenation 

Conditional ?: Conditional 

 

                                                 
11 The Verilog arithmetic and logic operations mentioned in this table can be converted to 
equivalent digital hardware, i.e. they are synthesizable. The exception is the divide (/) operation 
which is supported only for powers of 2.  
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2.3.3 Behavioural Logic 

The description of sequential circuits using the cyclic model is also at times 
referred to as the behavioural model because it models the behaviour of the system 
when an event occurs.  Sequential circuits are used when register transitions are to 
be modelled about a rising or falling edge of the clock. Much of the syntax of C is 
seen within the behavioural model of Verilog HDL. Verilog models cyclic 
behaviour based on either edge or level of clock or signal. 

Verilog keyword for modelling cyclic processes is 

always @ ( posedge clk) // activates on the positive edge of clock 
begin  
….. 
end 

always @ ( negedge clk) // activates on the negative edge of clock. 
begin  
….. 
end 

Shifting of digital data bits on a clock edge is a very common application in 
digital signal processing and data communications. In digital signal processing, 
data are shifted at every sample to implement a delay function designated by z–1 

operation, and in data communications, the data word contents need to be serially 
shifted out or serially accepted. The rate of shifting is important for both of these 
applications. The clock of the shift register determines the shift rate. A shift 
register is a good example to demonstrate the concept of blocking and non-
blocking statements in Verilog. Blocking assignment (=) statements execute in the 
order they are specified in a sequential block (between begin and end). Non-
blocking statements (<=) allow execution of each statement without linkages to 
results from previous sequential statements. 

Example 2.4. Create a 4-bit shift register, where input bit stream x appears at the 
output z after four rising edges of the clock. 

The first model of the code is shown in Fig 2.8a. This uses the blocking style of 
coding, which results in a single flip-flop, where the output is directly equated to 
the input. Because the code in Fig. 2.8a uses a blocking style of coding, the four 
equate statements execute in sequence. The output z is directly equated to input x. 
Figure 2.8b shows the synthesis results of the code, which is an instantiation of one 
flip-flop. 

The second code shown in Fig. 2.8c is similar to that shown in Fig. 2.8a. The 
Verilog code of Fig. 2.8c uses non-blocking statements to assign the input x to 
output z in a four-stage shift register. The synthesized hardware of Fig. 2.8d shows 
four FFs, which the design required. The statements in non-blocking code do not 
execute sequentially. The right-hand side term of each statement executes 
concurrently at every clock cycle. 
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module shiftreg(input x, clock, rst, output reg z); 

reg a,b,c; 

always @ ( posedge clock) 
if (rst) 
 begin 
  a = 0; 
  b = a; 
  c = b; 
  z = c; 
 end  

endmodule 

a 

D Q

C
R

FDR
x

Clock

z

rst

  

 

 

 
b 

module shiftregb (input x, clock, rst, output reg z); 

reg a,b,c; 

always @ ( posedge clock) 
 if (rst) 
  begin 
   a <= 0; 
   b <= 0; 
   c <= 0; 
   z <= 0; 
  end 
 else 
  begin 
   a <= x; 
   b <= a; 
   c <= b; 
   z <= c; 
 end 

endmodule 

c 

Fig. 2.8. a Verilog code for a shift register using blocking statements; b synthesized 
hardware for a shift register model using a blocking statement c Verilog code for a 4-bit 
shift register model using non-blocking statements 
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Fig. 2.8. d Synthesized hardware for a shift register model using a non-blocking statement 

Example 2.5. Create a shift register to transmit bits of an input word in serial 
fashion. The shift register is interfaced to a FIFO, where a read (rd) command from 
the shift register is sent to get the new word from the FIFO (see Fig. 2.9). 

FIFO

Shift register

Tx 
Pin

rd

Input [7:0]
X

 
Fig. 2.9. Serial shift register connected to a FIFO 

 A counter is used to shift the 8-bits of the word sequentially to the output (see  
Fig. 2.10). 

module shift_s( input [7:0] word, input clk, rst , output reg rd,x); 

reg[2:0] count; 

always @ ( posedge clk ) 

begin 
 if (rst) 
 count <= 0; 

 else if (count < 7) 
 begin 
 x <= word[count]; 
 count <= count +1; 
 rd <= 1’b0; 

 end 

 else if(count == 7) 
  begin 
  x <= word[7]; 
  count <=0; 
  rd <= 1’b1; 
  end 
 end 

endmodule 

Fig. 2.10. Shift register for shifting out 8 data bits 
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2.3.4 Finite State Machine (FSM) 

It is good design practice to breakup a given specification of digital design into 
discrete pre-defined states. This ensures that all possible transitions are taken into 
consideration and their response is pre-determined at the design stage. The design 
of a FSM consists of a combinational logic section that determines the next state 
and a sequential circuit that performs state transitions. Based on the type of circuit, 
a FSM in Verilog can be coded in different ways. Finite state machines can either 
transition synchronously or asynchronously. Because most digital systems are 
synchronous, state transitions take place on the edge of a common clock. 

The block diagram of a finite state machine, shown in Fig. 2.11, consists of 
three processes with the following functionality: 

• Combinational state change determining next state logic 
• Sequential logic for synchronously changing states 
• Combinational logic for changing output. 

Next State Logic Present State Flip 
Flop’s 

Output logic

Combinational 
logic

Sequential 
Logic

Combinational 
logic

Q

QSET

CLR

D

State

Clock

State
OutputsNext

Inputs

 
Fig. 2.11. Finite state machine model consisting of three processes 

Example 2.6. Design a HDL finite state machine, which will control a car wash 
process. The car wash process consists of five states (see Table 2.2). The controller 
performs action for a particular state until the timer times out. The timer done bit 
controls the state transition, once the car wash process has started. 

Table 2.2. States of the car wash FSM 

State Process description 

S1 Wash_1 

S2 Soap 

S3 Scrub 

S4 Wash_2 

S5 Dry 
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Fig. 2.12. a  FSM for a car wash controller 

module fsm (input rst, clk, car, output reg soap,sprinkler,scrub,blower); 

parameter wash1 = 3'b001; parameter dispense= 3'b010; parameter scrubber = 3'b011; 
parameter wash2 = 3'b100; parameter dry = 3'b101; parameter idle =3'b110; 
 
reg [2:0] state, next_state;  
reg timer_start, timer_dn; 
reg [7:0] timer, timer_ld; 
 
always @ ( state or timer_dn or car) 
begin 

timer_start = 0; 
next_state = state; 
 
case (state) 

idle: begin  
 sprinkler =0; soap =0 ; scrub =0; blower = 0; 
 timer_start = 0; 
 timer_ld = 8'h00; 
 next_state = wash1; 
 end  

wash1: if ( car) 

 begin  
 sprinkler = 1; soap =0 ; scrub =0; blower = 0; 
 timer_start = 1; 
 timer_ld = 8'h04; 
 next_state = dispense; 
 end  

dispense: if (timer_dn) begin  

 sprinkler = 0; scrub =0; soap = 1; blower = 0; 
 timer_start = 1; 
 timer_ld = 8'h01; 
 next_state = scrubber; 
 end  

Fig. 2.12. b Finite state machine based code for a car wash controller 
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scrubber: if ( timer_dn ) begin  
 soap = 0; sprinkler = 0; blower = 0; 
 scrub = 1; 
 timer_start = 1;  
 timer_ld = 8'h02; 
 next_state = wash2; 
 end  

wash2: if ( timer_dn ) begin  
 soap = 0; scrub = 0; blower = 0; 
 sprinkler = 1; 
 timer_start = 1;  
 timer_ld = 8'h05; 
 next_state = dry; 
 end   

dry: if ( timer_dn ) begin  
 soap = 0; scrub = 0; sprinkler = 0; blower = 1; 
 timer_start = 1;  
 timer_ld = 8'h05; 
 next_state = idle; 
  end 

default : next_state = idle; 
endcase 
end 

always @ (posedge clk)  
begin 
if (timer_start) 
 timer <= 0 ;  
 else 
 timer <= timer + 1; 
end 

always @ (posedge clk )  
begin  
 if ( timer == timer_ld)  
 timer_dn <= 1; 
 else  
 timer_dn <= 0; 
  
end 

always @( posedge clk ) 
begin : state_transitions 
if ( rst ) state <= idle;  
else state <= next_state; 
end 

endmodule 

Fig. 2.12. b (continued) 
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Determining Position and Speed of the Robot Axis 
To move the robot from one set of co-ordinates to another, the current position of 
the robot must be determined. The most commonly used device for detecting robot 
axis position is the rotary encoder. The rotary encoder can be either an incremental 
encoder shown in Fig. 2.13 or an absolute type of encoder. The quadrature encoder 
is a common type of incremental encoder. Here two channels (A and B) are used to 
sense position, velocity and direction of rotation. The two channels A and B are 
positioned 90° out of phase, as shown in Fig. 2.13. Using the output of these two 
channels, both position and direction of rotation can be determined. If A leads B, 
the axis coupled to the encoder is rotating in one direction and if B leads A, then 
the axis is rotating in the reverse direction. The resolution of the signal coming 
from the quadrature encoder is improved to 2x if the positive edges of A and B are 
counted, and it is further improved to 4x if both the active edges of the channels 
are counted.12 

Many application specific standard products (ASSPs) and microcontrollers 
provide a  built-in digital logic to decode a signal coming from a quadrature 
encoder. For this purpose the quadrature encoder interface (QEI) is a standard 
peripheral. A digital filter is used to remove noise signals from channels A and B. 

Channel A

Channel A output

Channel B

Channel B output
 

Fig. 2.13. Pulse train generated by a quadrature incremental encoder 

Example 2.7. Calculate the number of pulses recorded in the position counter for 
the working range of Axis J1 of the robot. The encoder is mounted on the motor 
shaft. 

Using the parameters of axis J1 (from Table 1.2),  
Encoder pulses per revolution (PPR) is 200.  
Gear ratio: 1: 100 
Working range: 300° 

The encoder pulses obtained for the specified working range are determined by 
the equation,  

Position pulses = encoder PPR * gear ratio * (working range in degrees/360) 
= 200 * 100 * (300/360)  
= 16,666 pulses  
= 411AH. 

 
A 15-bit position register is needed to store the value of the axis movement. 
                                                 
12 Increasing the resolution of the pulse counting circuit provides greater positioning capability.  
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Example 2.8. Calculate the speed of the motor shaft in rpm by the change in 
position pulses and known PPR of the encoder. 

Encoder PPR: 2000 
Pulses recorded in time interval of 1 ms: 10 

The speed in rpm is estimated by measuring the number of pulses in a pre-defined 
time interval t_base (in ms). It is calculated by 

 rpm = 
PPR

k*60*pulses_Position  , k = 
base_t
1 . 

 rpm = 
2000

10*60*10 3
 = 300. 

Example 2.9. Position and speed measurement of different axes in a robot 
application is done using a dual channel incremental encoder. These encoders use 
the phase difference between the signal to determine the direction and frequency of 
a pulse train to determine speed. Convert the block diagram (see Fig. 2.14) to 
digital logic using Verilog HDL. 

Digital 
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Position latch 
with bus 

interface logic

CLK
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CHB

RST

Count

Up/Dn
[N:0]

 
Fig. 2.14. Block diagram for finding the robot axis position using incremental encoder 
feedback 
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module filter (input clk, input in, input rst . output reg z); 

reg a,b,c; 

always @ (posedge clk) 
begin 
 if (rst)begin 
   a <= 0; 
   b <= 0; 
   c <= 0; 
   end 
 else 
 begin 
   a <= in; 
   b <= a; 
   c <= b; 
 end 
end 

always @ (posedge clk) 
 begin 
 if (( a == b ) & ( b == c)) 
   z = a; 
 end 

endmodule 

Fig. 2.15. Verilog code for digital filter circuit 

The function of the digital filter circuit is to ensure that the signal remains 
constant for three clock pulses before it is sent to the output. Any noise less than 
three clock cycles is ignored by the circuit. A three-stage shift register realised 
using the HDL code in Fig. 2.15 is used to check if the output of the third stage (c) 
matches the second (b) and the first (a) stages. HDL code for a single channel 
encoder based position counter is shown in Fig. 2.16. A FSM is used to check for 
transitions of the encoder output and the counter increments synchronously. 
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module position (input clk, in,rst, output reg [7:0] position ); 

reg state, next_state; 

parameter one = 1'b1; 
parameter zero = 1'b0; 

always @ ( in or state or rst) 
 begin 
  if (rst) 
  begin 
   position = 0; 
  end 
 else 
  begin 
  case(state) 

  one : if (in) 
   begin 
    position = position +1; 
    next_state = zero; 
   end 
  zero :if (~in) 
    next_state = one; 
  default : next_state = zero; 

  endcase 
  end 
 end 

always @ ( posedge clk) 
 begin 
  state <= next_state; 
 end 

endmodule 

Fig. 2.16. Position counting register for one encoder channel 

For a given encoder PPR, the resolution of the position measured can be 
increased by counting the active edges of A and B channels of the encoder. The 
resolution is increased four times (theta_4x) when both active edges of channels A 
and B are counted (see Fig. 2.17). 
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Fig. 2.17. Increasing encoder resolution by pulse edge detection 

Example 2.10. The position determined by an incremental encoder has to be made 
part of the non-volatile memory of the robot controller. Many present-day robot 
systems have shifted to absolute encoders, where the present position of the axis is 
available on power up. A Gray coded absolute encoder is used for determining the 
robot axis position. In Gray code, only 1 bit changes at the time of each transition. 
The logic used for conversion of Gray to binary is shown in Fig. 2.19. A Verilog 
code using blocking assignment is used for converting 5-bit Gray to 5-bit binary. 
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Fig. 2.18. Converting from Gray code to binary code 
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module gray(input [4:0] gray, output reg[4:0] binary); 

always @(gray) 
begin 
 binary[4] = gray[4]; 
 binary[3] = gray[3] ^ binary[4]; 
 binary[2] = gray[2] ^ binary[3]; 
 binary[1] = gray[1] ^ binary[2]; 
 binary[0] = gray[0] ^ binary[1]; 
end 

endmodule 

Fig. 2.19. Verilog code for Gray to binary conversion 

2.3.5 Arithmetic Using HDL 

Most arithmetic operations performed using HDL are either in terms of integers or 
fixed-point arithmetic. Arithmetic operations using HDL-based logic provides 
flexibility to choose the word size of the operation based on application 
requirements. In arithmetic operations involving fixed-point arithmetic, it is upto 
the designer to interpret the position of the decimal point. Most synthesis tools13 
support the Verilog signed and unsigned data format for wire and register types. 

As shown in Fig. 2.20a, the data range reduces by a factor of 2 in signed 
representation because 1 bit is allotted for the sign bit. 

2.3.5.1 Integer Data 
Real world inputs and outputs are usually in the form of integer data. Digital data 
from ADC or to a DAC are in the form of integers. The unsigned integer type 
shown in Fig. 2.20b is used for presenting timer values, whereas the signed integer 
type is used for representing the sine wave shown in Fig. 2.20c. 

2.3.5.2 Fixed-point Data 
For a fixed-point number represented as aaa.bbbbb, the integer part consists of 
three bits of data and the fractional part is represented by five bits. These 8 bits (3 
integer and 5 fractional) can represent unsigned binary integer values from 0 to 7, 
having  a fractional resolution of  1/2b.  

Example 2.10. Choose a fixed-point representation for getting the maximum 
resolution for a sine wave, whose peak amplitude varies from +2 to –2 volts. The 
available bit range is 8 bits. 

The maximum resolution is obtained by using a fixed-point data format (covering 
+1.xxxx to –1.xxxx) , which has one sign bit, one integer bit and the rest are 
fractional bits. The fixed-point notation for the above example is aa.bbbbbb. This 
provides a fractional resolution of 1/26. 

                                                 
13 The Xilinx synthesis technology (XST) provides support for signed and unsigned data types.  
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wire signed [ width-1 : 0] variable; // data in 2’s complement format 
wire unsigned [ width -1 : 0] variable ; 

reg signed [ width-1 : 0] variable; // data in 2’s complement format 
reg unsigned [ width -1 : 0] variable ; 

a 

t

Timer 255

 
b 

Signed integer data  — sine wave with amplitude +128 to –127 

t+127

–128  
c 

Fig. 2.20. a Signed and unsigned representation using wire and register; b 8-bit unsigned 
representation of a Timer signal; c 8-bit signed representation of a sine wave 

If the data are represented as a fraction, it is best to represent the number in the Q 
format by scaling all the numbers to a range of +–1. Q format specifies one sign bit 
followed by a number of bits for fractions. Once the number is in Q format it 
becomes easier to work with. For computations the input value is scaled to the 
format giving maximum resolution and then scaled back to the original format at 
the time of output. 

2.3.5.3 Addition and Subtraction 
In digital circuits, addition and subtraction operations are carried out using 2’s 
complement arithmetic. As shown in Fig. 2.22, a common hardware circuit is used 
for both addition and subtraction. Though Verilog HDL synthesis supports addition 
and subtraction, the methodology may vary from one synthesis tool to another. The 
implementation uses the logic block of the target FPGA technology to implement 
arithmetic operations. 
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Fig. 2.21. Common hardware for performing signed addition and subtraction 

When the control bit becomes 1, input B takes its 2’s complement value,  resulting 
in A – B operation.  

Table 2.3. Binary fixed value addition and subtraction 

Operand  Binary value Integer  Scale factor Result — real 
fixed-point value 

A 00011.110 +30 2–3 = 1/8 +3.750 

B 00110.011 +51 2–3 = 1/8 +6.375 

A + B 01010.001 +81 2–3 = 1/8 +10.125 

A – B 11101.011 –21 2–3 = 1/8 –2.625 

As shown in Table 2.3, when adding or subtracting two fixed-point real numbers 
that have a common scale factor, the result will also have the same scale factor. 
When the scale factors are different, proper shifting of the binary point needs to be 
done so that the scale factors become equal. The Q notation is helpful because it 
scales all numbers to a common scale factor. 

Example 2.11. Write HDL code for signed addition and subtraction using signed 
arithmetic Verilog constructs. 

The input variables a1, b1 and c1 are converted to 2’s complement 
representation by the wire signed declaration (see Fig. 2.22). This instructs the 
simulation and synthesis software to use 2’s complement arithmetic for the 
addition operation. 
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module signed_arith (input [7:0] a,b, output [7:0] c); 

wire signed [7:0] a1,b1,c1; 

assign a1 = a; 
assign b1 = b; 

assign c1 = a1 + b1; 

assign c = c1; 

endmodule 

Fig. 2.22. Verilog code for performing signed addition 

2.3.5.4 Multiplication 
Multiplication is supported by HDL simulation and synthesis software. 
Multiplication and division operations do not require that the binary points of the 
operands be aligned. The number of fractional bits in the product A * B, is equal to 
the sum of the number of fractional bits of A plus the fractional bits of B. This is 
demonstrated by the example in Table 2.4. 

Table 2.4. Binary fixed value multiplication  

Operand   Binary value  Integer  Scale factor Result  — real 
fixed-point value 

A 00111.110  62 2–3 = 1/8 +7.750 

B 001100.11 +51  2–2 = 1/4 +12.750 

A * B 1100010.11010 +3162 2–3–2 = 1/32 +98.8125 

Many FPGA chips now contain hardware multipliers. In the absence of these 
multipliers, signed multiplication algorithm such as the Booth multiplier can be 
used. 

Example 2.12. Write Verilog code to multiply14 two 8-bit unsigned and two signed 
numbers A and B. 

The inputs (a,b) to codes in Fig. 2.23 and 2.24 are the same. In Fig. 2.24, the 
inputs are interpreted as signed numbers, because of the wire signed assignment. 

                                                 
14 Multiplication is supported by both simulation and synthesis tools. XST supports both signed 
and unsigned multiplication. Details of the multiplier are given in Sect. 3.2.6 
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module multiply ( input [7:0] a , b , output [15:0] c ); 

assign c = a * b ; 

endmodule 

Fig. 2.23. Verilog code for unsigned multiplication 

module signed_mult (input [7:0] a,b, output [15:0] c); 

wire signed [7:0] a1,b1; 
wire signed [15:0] c1; 

assign a1 = a; 
assign b1 = b; 

assign c1 = a1 * b1; 

assign c = c1; 

endmodule 

Fig. 2.24. Verilog code for signed multiplication 

Division by a non-power of 2 is not supported by most synthesis tools. Division in 
hardware is carried out by multiplying with the reciprocal of the divisor. 

While performing arithmetic operations with pre-defined word size, conditions 
such as overflow or loss of precision arise. It is up to the designer to correct such 
conditions by truncation, rounding or saturation. Table 2.5 shows examples of 
overflow, truncation and rounding errors arising during addition and 
multiplication. 

Table 2.5. Rounding, truncation, overflow and saturate 

Input A Input B Operation True Result Conditioning 

1111 1110 
( 25410) 

0000 0011 
( 310) 

Addition 
(8-bit 
result) 

1 0000 0001 
( 25710) 

0000 0001 
(overflow - 110) 
1111 1111  
(saturate- 25510 ) 

00111.111 
( 7.87510) 

001100.11 
( 12.75010) 

Multiply 
(9-bit 
result)  

1100100.01101 
( 100.4062510) 

1100100.01  
(truncate - 100.2510) 
1100100.10  
(rounding - 100.5010) 
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2.4 Pipelining 

Pipelining is used to divide a large section of logic into small parts. It is much like 
the assembly line concept used in manufacturing. If a process can be broken down 
into small equal time sections, the speed of the process will be equal to the time 
taken by each section. The process of pipelining is akin to the process discussed as 
that of the shift register. The information from one section of the pipeline flows to 
the next section on the active edge of the clock controlling the pipeline. Thus non-
blocking statements in Verilog are used for modelling pipeline architectures. 

2.5 Module Instantiation and Port Mapping 

A robot system having five control joints needs five motor controllers. These 
motor controllers are incorporated and interconnected using module instantiation 
and port mapping. If the motor of a given type of AC/DC servomotor is the same, 
the control scheme does not change with the rating of the joint motor. Thus, one 
can clone the digital control circuit. The process of duplicating or cloning digital 
logic is instantiation. Each instantiated piece of logic operates independently of the 
other in a concurrent manner. The way the motor ports — consisting of encoder 
feedback, speed reference and PWM output are connected is called port mapping 
(see Fig. 2.25). The port list for control of one motor is shown in Fig. 2.26. 
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Fig. 2.25. Diagram showing HDL port map for a single motor control 
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module motor_control (input start,stop,clk,rst, 
   input [1:0] enc_fdbk, 
   input [11:0] spd_ref, 
   output [5:0] pwm_switches); 

/* Code for performing control of one motor. 
 Motor power circuit consists of 6 switches for control */ 

endmodule 

Fig. 2.26. Verilog port list for control of one motor 

A module port can be connected to external signals either by using the port names 
in the order contained in the port list, or they can be connected using port names. 
Instantiation for the port list (see Fig. 2.26) of the motor controller by name is 
shown in Fig. 2.27. This is a practical approach, where there are numerous ports 
and remembering the port list order is difficult. 

motor_control m1 ( 
 .start(start), 
 .stop(stop), 
 .clk(clk), 
 .rst(rst), 
 .spd_ref(spd_ref), 
 .enc_fdbk(enc_fdbk), 
 .pwm_switches(pwm_switches) 
 ); 

Fig. 2.27. Verilog instance for creating a motor control module 

Example 2.13. Show how one motor control module created using Verilog HDL 
can be instantiated for simultaneous control of four motors. (see Fig. 2.28).  

 
One advantage of using hardware-based design is the freedom of replicating a 

given design many times (provided there are sufficient hardware resources to 
support that many number of replications), without worrying about the increase in 
CPU utilization.  The instantiation scheme shown in Fig. 2.28, shows how a HDL 
designed motor controller hardware similar to Fig. 2.26 is used four times for 
controlling four different joints of the robot assembly.  Each instantiation is 
denoted by the module name (motor_control) followed by the instance name 
(mx), where x denotes the motor number. The port list of the instantiated modules 
consists of the port name of the HDL design followed by the signal it is connected 
to. In this example the four motor modules have different start, stop, speed 
reference, speed feedback and power bridge control signals. The Verilog top 
module (robot_motors) has control signals for different motors coming from a 
position controller (chapter 6 will discuss different types of controllers). 
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module robot_motors  ( input start1,start2,start3,start4,stop1,stop2,stop3,stop4,clk,rst, 
  input [11:0]   spd_ref1,spd_ref2,spd_ref3,spd_ref4, 
  input [1:0]     spd1,spd2,spd3,spd4, 
  output [5:0]   pwm_m1,pwm_m2,pwm_m3,pwm_m4 ); 

 motor_control m1 ( 
 .start(start1), 
 .stop(stop1), 
 .clk(clk), 
 .rst(rst), 
 .spd_ref(spd_ref1), 
 .spd_fdbk(spd1), 
 .pwm_switches(pwm_m1) 
 ); 

 motor_control m2 ( 
 .start(start2), 
 .stop(stop2), 
 .clk(clk), 
 .rst(rst), 
 .spd_ref(spd_ref2), 
 .spd_fdbk(spd2), 
 .pwm_switches(pwm_m2) 
 ); 

 motor_control m3 ( 
 .start(start3), 
 .stop(stop3), 
 .clk(clk), 
 .rst(rst), 
 .spd_ref(spd_ref3), 
 .spd_fdbk(spd3), 
 .pwm_switches(pwm_m3) 
 ); 

motor_control m4 ( 
.start(start4), 
.stop(stop4), 
.clk(clk), 
.rst(rst), 
.spd_ref(spd_ref4), 
.spd_fdbk(spd4), 
.pwm_switches(pwm_m4) 
); 

endmodule 

Fig. 2.28. Verilog top module code to control four motors 
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Example 2.14. A programmable logic controller (PLC) based control is shown in 
Fig. 2.29a. This is used to perform sequencing and interlocking of many industrial 
control functions. A timer, counter and normally open (NO), normally closed (NC) 
relays are part of the ladder logic instruction set library for programming a PLC. 
Convert the ladder logic shown in Fig. 2.29b to digital logic by using Verilog 
HDL. 
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T1IN1

On delay 
timer T1

T1

On delay 
timer T2

IN2 T2

T2 R1
 

b 

Fig. 2.29. a PLC based scheme for sequencing and interlocking of robot axes; b A section of 
the ladder logic code running in the PLC 

When Input 1 (IN1) turns high, an on-delay timer T1 turns on after a pre-defined 
time interval. Timer T2 is enabled when Input 2 is high and T1 is on. After the 
preset time interval of T2 is over, the contacts of relay R1 are turned on. 
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module plc_timer (input rst,clk,input [7:0] timer_set, input timer_en,output reg dn); 

reg [7:0] timer; 

always @ ( posedge clk) 
 begin 
  if (rst) 
   timer <= 0; 
  else if (timer_en) 
   timer <= timer +1; 
  else 
   timer <= timer; 
 end 

always @ (posedge clk) 
 begin 
  if ( timer_set == timer ) 
   dn <= 1; 
  else 
   dn <= 0; 
 end 

endmodule 

Fig. 2.30. Verilog code for on-delay timer implementation 

module plc_top (input clk, rst,in1,in2, input [7:0] timer1,timer2,output r1); 

 wire timer1_en = in1; 
 wire timer1_dn; 
 wire timer2_en = timer1_dn & in2 ; 

  plc_timer T1 ( 
   .rst(rst), 
   .clk(clk), 
   .timer_set(timer1), 
   .timer_en(timer1_en), 
   .dn(timer1_dn) 
   ); 

  plc_timer T2 ( 
   .rst(rst), 
   .clk(clk), 
   .timer_set(timer2), 
   .timer_en(timer2_en), 
   .dn(timer2_dn) 
   ); 

 assign r1 = timer2_dn ; 

endmodule 

Fig. 2.31. Verilog code to implement the ladder logic consisting of two timer elements 
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The implementation of ladder logic consists of two timer blocks and an 
interlocking circuit. Figure 2.30 shows the timer module and 2.31 shows the entire 
ladder logic circuit put together using HDL. 

2.6 Use of Pre-designed HDL Codes 

Several FPGA vendors provide a library of pre-designed HDL codes for re-use. 
Each pre-designed piece of digital logic is either used as per the given port map by 
the digital core vendor or can be connected to a standard chip-wide interface bus. 
Some commonly available pre-designed codes include memory interface, serial 
communications and arithmetic core. 

 
Fig. 2.32. Configuration process for a sine look-up table 

Example 2.16. Create a code that generates a sine wave using the pre-designed 
sine-cosine look-up table15 shown in Fig. 2.32. 

A HDL 4-bit counter module output connects with the Theta port of the 
instance of the pre-designed LUT (see Fig. 2.33). The sine_lut is the instance of the 
core that is connected to a variable count and output signal sine. 
                                                 
15 Trignometric functions such as the sine function are frequently used in embedded systems. This 
example shows the use of a pre-designed sine LUT. 
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module sine_top (input clk,rst, output reg [7:0] sine); 

reg [3:0] count; 

always @(posedge clk) 

begin 
 if (rst) 
  count <= 0; 
  else 
  count <= count + 1; 
 end 

sine_lut1 m1( 
  .THETA(count), 
  .CLK(clk), 
  .SINE(sine)); 

endmodule 

Fig. 2.33. Pre-designed sine LUT-based sine wave generator 
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Fig. 2.34. a Electronic test bench analogy of HDL simulation; b typical simulation 
environment in Verilog HDL 
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2.7 Simulating Digital Logic Using Verilog 

The motivation behind HDL was to aid digital modeling and simulation. The 
simulation environment is akin to a test bench with provision for stimulus to the 
digital circuit and monitoring the circuit’s output.   In hardware prototyping, this is 
comparable to PCB-based logic surrounded by various pieces of electronic test 
equipment. As shown in Fig. 2.34a a PCB under test has inputs from a function 
generator and the output is analyzed using logic analyzers and oscilloscopes. 
Similarly, the digital circuit shown in Fig. 2.34b is subjected to test vectors and the 
output is displayed or monitored using waveforms. Test benches are written using 
Verilog constructs or a test waveform tool is used. 

2.7.1 EDA Tool Flow for Simulation 

Simulation of HDL-based digital design is supported by a variety of EDA tools.  
Tools from FPGA vendors give the user an option to choose the simulation 
environment they wish to use.  Figure 2.35 shows the various simulation 
environment options. 

 
Fig. 2.35. A partial view of simulator selection using a FPGA design tool 

The majority of the electronic design automation (EDA) tools for HDL simulation 
work along similar lines. 



48 Introduction to Embedded System Design Using Field Programmable Gate Arrays 

 
Fig. 2.36. Test bench specifications for clock period, input setup time, output valid delay 
and test bench length 

 
Fig. 2.37. Generating a test waveform for testing the filter circuit given in Fig. 2.15 
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2.7.2 Creating a Test Bench for HDL-based Digital Logic 

HDL simulation tools provide different ways of specifying test bench 
requirements. One way of checking HDL code quickly is to draw the desired test 
inputs graphically, that are converted into equivalent Verilog test code (see Figs. 
2.36 and 2.37). 

As the design size becomes larger, it is not feasible to generate test waveforms 
for testing all possible combinations of digital inputs. For this purpose a text-based 
test waveform file can generate test vectors and also log output information from 
digital logic. 

A

B

C

D
Z

 
Fig. 2.38. Combinational circuit and its input, output truth table 

 
To test the combinational circuit (see Fig. 2.38) that will have 16 possible 
combinations of inputs, a self-checking test bench is created using a text file to 
read vectors (containing stimulus and expected values). 

The contents of the text file are read by the testbench using the $readmemb, 
where the b specifies that the test inputs are in binary format.  A sample test file 
would consist of the inputs A–D, and the expected output Z shown in the table on 
the right of Fig. 2.38. 

2.7.3 Post Place and Route Simulation 

The behavioural simulation model supports both synthesizable and non-synthesiz-
able constructs of HDL. A partial list of Verilog HDL constructs, which cannot be 
realised in hardware by use of synthesis tools, is given in Table 2.6. To verify that 
the HDL-coded behavioural model would work in the same manner after synthesis 
and its placement in FPGA logic, post place and route simulation is used. The post 
place and route simulation uses an .SDF file to estimate the interconnect path and 
logic delays. Any change in the location of logic cells changes the post place and 
route interconnect delay. The post and route simulation provides a realistic picture 
of the timing, once the digital circuit is realised in hardware. 

 

A B C D Z 

0 0 0 0 0 

0 0 0 1 1 

: : : : : 

1 1 1 0 1 

1 1 1 1 0 
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Table 2.6. Partial non-synthesizable constructs of Verilog16 

Verilog constructs not supported or ignored by FPGA synthesis tools 

Data types Wand, wor, triand, trior 
real, realtime, tri0, tri1, trireg 

Continuous assignment Drive strength, delay 

Procedural assignments Force, release, forever, fork/join, delay (#), 
event(@), wait, named events 

Compiler directives Timescale, uselib, resetall, celldefine, 
endcelldefine 

Gate level primitives Pulldown, pullup, drive strength, delay 

Switch level primitives Cmos, nmos, pmos, rcmos, rnmos, rpmos 
rtran, rtranif0, rtranif1, tran, tranif0, tranif1 

User defined primitives (UDPs) Both combinational and sequential 

 
Fig. 2.39. Combinational circuit 

                                                 
16 These constructs are used for simulation. Synthesis tools do not generate a FPGA-based 
hardware for these constructs.  
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2.7.4 Simulation of Algorithm Using Pre-designed Codes 

Simulation of a filter or any other DSP system is important to analyze before the 
system is put in hardware. The MATLAB® Simulink® environment allows 
simulating a system using standard input/output devices such as waveform 
generators, oscilloscopes and FFT analyzers. Using this interface frees the designer 
from writing cumbersome test benches and then converting the result to viewable 
analogue format. 

The pre-designed sine wave generator of Example 2.15 is simulated in the 
MATLAB® Simulink® environment. A counter-based ramp signal is used to 
increase the value of theta. In Fig. 2.39 Scope and Scope1 show waveforms of 
generated sine waves and of corresponding counter values. Because the majority of 
pre-designed cores are synthesizable, the designer also gets an estimate of the 
resources used on the FPGA chip. 

Problems 

1. Write Verilog HDL code for an 8-bit Booth multiplier that works with and 
without a clock. Write a self-testing test bench which can check the correct 
working of the Booth multiplier. 

2. Understand the working of a parallel-to-serial shift register chip 74LS165. 
Write a Verilog HDL code that mimics the functionality of the chip. Verify 
that it is working by comparing the simulated timing diagram of the HDL 
code and that given in the 74LS165 data sheet. 

3. A CNC lathe machine uses a 5000 PPR incremental encoder for 
determining the speed of the cutting tool. Write a Verilog code to 
determine the speed of the cutting tool using the encoder input. The 
calculated speed is to be displayed on seven segment LEDs. 

Further Reading 

1. Chonnad SS, Balachander NB (2004) Verilog frequently asked questions, language, 
applications and extensions. Springer   

2. Ciletti M (2003) Advanced digital design with the Verilog HDL. Pearson Education   
3. Palnikar S (1996) Verilog HDL – a guide to digital design and synthesis. Pearson 

Education   
4. Navabi Z (1999) Verilog digital system design. McGraw-Hill  
5. Riesgo T et al (1999) Design methodologies based on hardware description languages. 

IEEE Transactions on Industrial Electronics, 46(1): 3–12 
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FPGA Devices 

FPGA devices have grown in density from a few thousand gates in the 1980s to 
approximately 10 million gates in 2004. There are proven advantages in choosing a 
FPGA-based implementation of digital logic over a fixed custom implementation 
of digital logic. The advantages include cost economies when a product is 
produced in low volume, in-system re-programmability and a shorter design cycle 
from concept to silicon. Most of the contemporary FPGAs from various vendors 
have common on-chip resources. The purpose of this chapter is to talk about 
various on-chip resources or primitive devices of FPGAs and their use in 
synthesising digital systems. 

These device hardware primitives are comparable to assembly language 
constructs of a general purpose processor, invoked by the compiler. Though one 
may rarely use programming at the primitive device level using HDLs, it is good to 
know the underlying hardware, used by the synthesis tool for realising digital 
logic17. The idea is to try and understand how these hardware resources can be used 
to implement a single-chip robot controller module that can support motor control 
algorithms, processor and interfacing needs. 

3.1 FPGA and CPLD 

Programmable hardware basically consists of two widely used programmable 
devices — FPGAs and CPLDs. These devices determine a hardwired circuit and  
the programmability of a processor-based system. With several technologies 
merging and overlapping, it is becoming increasingly difficult to label a 
programmable device as a CPLD or FPGA. CPLDs are getting features of FPGAs 

                                                 
17 Many applications still use processor ISA dependent assembly language for compact code size 
and fast execution. Similarly, many FPGA-based soft processors are coded using device 
dependent primitives for a smaller silicon footprint. 
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and vice versa18. CPLD architecture consists of one or more programmable sum-of-
products logic arrays connected to a clocked register. Traditionally, the CPLD is 
known to have lower logic cell density compared to a FPGA. Normally, CPLD 
devices use flash memory technology for interconnecting different logic blocks on 
the device. 

3.2 Architecture of a FPGA 

The contemporary FPGA is changing very fast. It is following Moore’s law in 
speed and density and also incorporating lots of functionality along the way. 
Though FPGAs from different leading vendors such as Xilinx, Altera, Actel, and 
Lattice differ in some aspects, they all share some common architectural attributes. 
These architectural attributes can be thought of as device specific primitives, which 
will be discussed in detail. For illustration, a sample FPGA device, Xilinx 
SPARTAN-3ETM is chosen, and its structure and device primitives along with the 
Verilog instance for each primitive are discussed. 

Following are the typical features of a contemporary FPGA, shown in Fig. 3.1: 

• Logic cell resources, consisting of LUT and FFs 
• Hard intellectual property(IP), comprising of dedicated multipliers and 

embedded memory 
• Clock distribution resources, digital clock manager (DCM) providing 

frequency synthesis and phase shift 
• I/O features — number of user available I/Os and I/O standards 
• Hardware immersed and software configurable processors, along with logic 

fabric in a single FPGA device. 

Table 3.1 contains a comparison of high-volume FPGAs from three vendors. 
Table 3.2 details the FPGA resources for the SPARTAN-3ETM FPGA used in the 
text. 

3.2.1 FPGA Interconnect Technology 

Re-programmable interconnects make the FPGA device reconfigurable. FPGA 
interconnect technology consists of switch boxes that route signals between various 
logic blocks on a FPGA. Present-day FPGAs are based on one of the following 
interconnect technologies: 

                                                 
18 HDL design examples mentioned in the text, can also be implemented on CPLD devices. Due 
to lower density, contemporary CPLDs do not support primitives such as embedded memory and 
hardware multipliers. 



 FPGA Devices 55 

D
C
M

IOBs

CLBs

B
lo

ck
 R

A
M

B
lo

ck
 R

A
M

M
ul

tip
lie

r
M

ul
tip

lie
r

B
lo

ck
 R

A
M

B
lo

ck
 R

A
M

M
ul

tip
lie

r
M

ul
tip

lie
r

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

D
C
M

D
C
M

D
C
M

 
Fig. 3.1. Architecture of a SPARTAN-3ETM FPGA 

Table 3.1. Architectural features of contemporary FPGA families from leading vendors 

Feature Xilinx 
SPARTAN 3TM 

Altera – 
Cyclone III® 

Actel Fusion® 

Combinational and 
sequential logic block 

Logic cell (LC) Logic element 
(LE) 

Logic element 

Embedded memory  Block RAM RAM blocks RAM blocks 

Phase-locked loop 
(PLL) 

Digital locked 
loop (DLL) 

PLL Clock conditioning 
circuits (CCC) 

Global clock lines Yes Yes Yes 

Hardware multipliers Yes Yes Yes 

Interconnect 
technology 

SRAM SRAM Flash 

Integrated ADC and 
MOSFET driver 

NA NA Yes 
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Table 3.2. Resources of the FPGA used in design examples 

Device type Logic 
cells 

Block 
RAM 
(kbits) 

Distributed 
RAM 
(kbits) 

Multipliers Clock 
conditioning 

circuits 

XC3S500E-
4FG320 

10476 360 73 20 4 

3.2.1.1 Static RAM (SRAM) 
SRAM-based interconnect switches dominate the present-day FPGA market. This 
technology is used by two of the largest vendors of FPGAs. As the technology type 
suggests, SRAM-based switches are volatile and lose their configuration on power 
reset. Because they need to be continuously powered up to maintain their 
configuration, the quiescent power consumption is quite high. Usually these 
devices need an extra memory device for loading the configuration to the SRAM 
switches and registers in every power cycle. 

3.2.1.2 Flash 
FPGAs using electrically programmable and erasable Flash-based interconnect 
switches, are non-volatile in their configuration. They use lesser quiescent power 
than the SRAM interconnect-based devices. 

3.2.1.3 Anti-fuse 
Anti-fuse interconnect-based devices can be programmed only once. The 
interconnect of an anti-fuse once programmed becomes permanent. As a result, 
anti-fuse FPGAs are used mainly for defense and aerospace applications. 

3.2.2 Logic Cell 

A digital circuit can be broken down to combinational and sequential elements. 
Combinational logic consists of basic gates, decoders, encoders and multiplexers. 
Sequential logic elements consist of clock driven elements such as FFs that act as a 
storage element for the circuit. With this background, one would expect the logic 
cell of a FPGA to include elements of combinational and sequential logic for 
digital circuit realisation. Figure 3.2a shows a logic cell of a FPGA. It consists of a 
LUT followed by a FF. The LUT is used for realising various combinational 
circuits such as basic gates, decoder, encoder and multiplexer. The LUT RAM is 
initialised with the truth table of the desired logic. A four-input LUT contains 16 
single bit RAM cells, followed by a multiplexer. These 16 RAM bits can also be 
configured for use as a shift register or memory. When configured for use as a shift 
register, the LUT is called a shift register LUT (SRL). Many designs can be 
mapped directly to the SRL, such that the resource use is optimal. 

As FPGA densities are increasing, the configurable logic block (CLB) becomes 
the container for multiple logic cells. As shown in Fig. 3.2b, the SPARTAN-3ETM 
CLB consists of two slices, and each slice has four logic cells. 
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Fig. 3.2. a Generic nature of one logic cell of a CLB; b diagram of the CLB of Xilinx 
SPARTAN-3TM 

Based on the structure of logic cell of the FPGA, certain basic elements are 
referred to by the synthesis tool. Table 3.3 shows a list of such elements. 
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Table 3.3. Partial list of FPGA primitives mentioned in synthesis report 

 Element type Description 

GND Ground , logic 0 

VCC Power, logic 1 

FDRSE D Type flip-flop with reset, set and enable 

MUX F5 Multiplexer 

LUT(x) (x) input look-up table  

Basic 
elements 
(BELs) 

SRL Shift register LUT (SRL 16) 

IBUF Input buffer I/O buffer 

OBUF Output buffer 

Clock 
buffers 

BUFGP Global buffer used for clock 

Table 3.4. A combinational circuit to be implemented using a LUT 

Input A Input B Input C Desired 
output E 

0 0 0 1 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 

 
module lut_prim (input a, input b, input c, output e); 

 LUT3 #( 
 .INIT(8'hA7 ) // LUT Contents 
   ) LUT3_inst ( 
    .O(e), // LUT general output 
    .I0(c), // LUT input 
    .I1(b), // LUT input 
    .I2(a) // LUT input 
  ); 
endmodule 

Fig. 3.3. Verilog code using the Xilinx LUT primitive for realising combinational logic 
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Example 3.1. Write Verilog code that uses Xilinx LUT primitive to realise the 
combinational logic in Table 3.4. The value of the output need not be registered. 

The Xilinx LUT primitive is used for realising combinational logic. As shown 
in Fig. 3.3, the example uses a three input LUT for a function that has eight 
possible outputs. The value of the output is initialised with the (.INIT) hexadecimal 
value of A7 to get the desired output E. The eight-bit value 8h’A7 is transferred to 
the SRAM of the LUT when the FPGA is configured. 

The synthesis report shown in Fig. 3.4 shows one three input LUT used for 
realising the logic of Example 3.1. 

 
Fig. 3.4. Synthesis report of the LUT function 

Example 3.2. The Verilog code (see Fig. 3.5) is used for transmitting ASCII 
character “A” to the serial port. Which Xilinx primitives would be used to realize 
this logic? 
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module uart_concate(input clk, output so); 

reg [9:0] data = 10'b1010000010; 

assign so = data[0]; 

always @ ( posedge clk ) // Baud rate clock 

 begin 
  data = {data[0], data[9:1]}; 
 end 

endmodule 

Fig. 3.5. Verilog code using the shift register logic primitive of Xilinx 
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Fig. 3.6. Synthesised version of transmitter code of Fig. 3.5 

The data frame for UART transmission consists of a start bit, ASCII data byte, 
an optional parity bit and a stop bit. In the data frame, the LSB of the ASCII value 
is positioned first. The data frame of 1010000010 denotes a start bit (0), ASCII 
character “A” (41H) and a stop bit (1). The synthesized technology schematic 
shown in Fig. 3.6 consists of a SRL followed by a FF. This entire logic is 
contained within a single logic cell. 

As pointed out in the synthesis report of Fig. 3.7 the logic delay is 3.492 ns, and 
the interconnect route delay is zero, because the entire logic is contained in one 
logic cell. 
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Fig. 3.7. Timing report for SRL16-based logic 

3.2.3 FPGA Memory 

Besides logic capability, digital systems need memory to store intermediate results 
of a computation or store pre-computed functions that are not realisable using 
hardware logic. Present-day FPGA chips contain dedicated blocks of memory or 
use un-used logic cells to double up as memory elements. 
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(RAM or ROM) 
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Data
Data (DP)

Address (DP)

 
Fig. 3.8. FPGA memory block diagram. The embedded block RAM memory is configurable 
for either single or dual port (DP) use 

3.2.3.1 Distributed Memory 
The LUTs contained within the CLB can be used to store information. The LUT of 
a logic cell can store 16 bits. From the application point of view, the four-input 
LUT is designed to implement logic. The RAM bits of a LUT, used for storing 
memory bits, are called distributed memory. 

Table 3.5. Partial table containing values of theta for one axis  

Theta axis 
θ1 (Time ) 

Bit 3 Bit 2 Bit 1 Bit 0 

T1 0 0 0 0 

T2 0 0 0 1 

T3 0 0 1 0 

T4 0 0 1 1 

T5 0 1 0 0 

T6 0 1 0 1 

T7 0 1 1 0 

T8 0 1 1 1 

T9 1 0 0 0 

T10 1 0 0 1 

T11 1 0  1 0 

T12 1 0 1 1 

T13 1 1 0 0 

T14 1 1 0 1 

T15 1 1 1 0 

T16 1 1 1 1 
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Example 3.3. Create digital logic that reads the co-ordinate locations of the robot 
from distributed memory. The data is stored for one axis to repeat  the trajectory 
several times (see Table 3.5). The output from the memory location serves as a 
position reference. 

module learning (input clk,rst,run, output reg [3:0] theta_ref ); 

reg [3:0] address; 
wire A3,A2,A1,A0,D3,D2,D1,D0,O3,O2,O1,O0; 

always @ ( posedge clk) // the value of clock is adjusted to real time update rate for run mode 
begin 
 if (rst) 
  address <= 0; 

 else if ( run ) 
  begin 
  address <= address + 1; 
  theta_ref <= {O3,O2,O1,O0}; 
  end 
end 

 assign A3 = address[3]; 
 assign A2 = address[2]; 
 assign A1 = address[1]; 
 assign A0 = address[0]; 

 RAM16X4S #( 
 .INIT_00(16'hAAAA), // INIT for bit 0 of RAM 
 .INIT_01(16'hCCCC), // INIT for bit 1 of RAM 
 .INIT_02(16'hF0F0), // INIT for bit 2 of RAM 
 .INIT_03(16'hFF00) // INIT for bit 3 of RAM 
 ) RAM16X4S_inst ( 
  .O0(O0), // RAM data[0] output 
  .O1(O1), // RAM data[1] output 
  .O2(O2), // RAM data[2] output 
  .O3(O3), // RAM data[3] output 
  .A0(A0), // RAM address[0] input 
  .A1(A1), // RAM address[1] input 
  .A2(A2), // RAM address[2] input 
  .A3(A3), // RAM address[3] input 
  .D0(D0), // RAM data[0] input 
  .D1(D1), // RAM data[1] input 
  .D2(D2), // RAM data[2] input 
  .D3(D3), // RAM data[3] input 
  .WCLK(clk), // Write clock input 
  .WE(1’b0) // Write enable input 
 ); 
endmodule 

Fig. 3.9. Verilog code to read from distributed RAM in run mode 
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Fig. 3.10. Synthesis report of a distributed RAM , showing the use of four LUTs for  
16 * 4 bit memory 

A distributed RAM is used as a ROM by disabling the write mode. When a 
run command is received, the address of the memory increases and the stored 
contents are sent out as theta_ref. The synthesis report (see Fig. 3.10) of the code 
shown in Fig. 3.9, indicates the use of four LUTs as a RAM that is needed to 
realise 16 * 4 bit memory. 

3.2.3.2 Block Memory 
A FPGA contains silicon dedicated exclusively for memory applications. Such 
memories are used for FIFOs to store constants, coefficients of filters and look-up 
tables. Most of the dedicated memory provided in a FPGA is dual port. Each side 
of the dual port memory can independently carry out read and write operations. 
Dual port memory provides conflict resolution during read-write operations by 
specifying which operation should succeed. 

Example 3.4. Create a LUT-based sine function. The coefficients of the LUT are 
to be stored in embedded memory. 

The value of sine theta is calculated using a spread sheet, such as MSExcel® 
and the values are exported to the memory editor using the comma-separated 
values (.csv) format. As shown in Fig. 3.11 column C of the spreadsheet contains 
8-bit binary values of sine theta from column A. The DEC2BIN function is used to 
convert decimals to binary. Negative numbers are represented using the 2's-
complement notation. 
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Fig. 3.11. Using Microsoft Excel® to generate coefficients of a look-up table. These 
coefficients are stored in the embedded memory of a FPGA 

The numbers generated by the spreadsheet are made part of a coefficient file 
that is loaded into the memory of the FPGA. The coefficient file (.coe) format 
consists of radix specification (decimal, hexadecimal or binary) followed by the 
input variables to be embedded. In the FPGA tool flow, the initial contents for an 
embedded memory specified by the coefficient file, are embedded in the EDIF 
netlist, that is generated for implementation. For simulation purposes, a memory 
initialisation file (.MIF) is generated. 

The coefficient file is loaded using the “Load Init File” shown in Fig. 3.12. 
Alternately, a memory editor shown in Fig. 3.13 is used to create values for storing 
in memory. 
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Fig. 3.12. Block memory initialisation with pre-calculated values 

 
Fig. 3.13. Creation of a coefficient file 
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3.2.4 Clock Distribution and Scaling 

Clock distribution is an important design area of digital design. In a micro-
controller, clock distribution and scaling are used to provide a scaled clock to 
different parts of the controller logic. This scheme is shown in Fig. 3.14. The clock 
control unit provides the clock to the CPU core, memory and peripherals. 
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CPU core RAM

Clock control 
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Flash,EEPROM ADC

Clock source 
multiplexer

External crystal oscillator 
clock

CLKI/O

CLKCPU

CLKCPU

CLKFLASH
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Fig. 3.14. Clock distribution circuit of a microcontroller, showing different clock domains 
for different blocks of logic/memory. 

The clock network on a FPGA consists of a clock spine that connects all flip-
flops of the FPGA. Contemporary FPGA devices can accept several global clock 
inputs that are routed to sequential devices on the chip. A routing diagram of the 
clock network is shown in Fig. 3.15. 

Some sections of logic work at different clock frequencies. One way to provide 
an accurate clock frequency to different sections is to use an on-chip digital phase- 
locked loop or a digital clock manager (DCM). The use of a DCM provides a host 
of functions. It eliminates clock skew, conditions a clock to provide clean output 
with a 50% duty cycle, provides phase shift and can either multiply or divide an 
incoming clock frequency (see Figs. 3.16 and 3.17). In the absence of a DCM, a 
counter logic is used to get fractional clock frequency. This can lead to errors due 
to skew induced in the clock and less fan-out capability of the logic buffer. 
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Fig. 3.15. Detail of a routing diagram for a FPGA clock network 
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Fig. 3.16. Digital clock manager for creating phase-shifted, divided or multiplied clocks 
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Fig. 3.17. Timing diagram to show the clock manager divide and phase shifting property 

Example 3.5. Create a pre-scalar circuit for a timer using a DCM, such that the 
clock to the timer logic is divided by a factor of 8. 

module timer_dll(input clk, input [2:0] scaling, input rst, output reg [7:0] timer); 

wire clk_timer ; 

dcm_timer u1 ( 
 .CLKIN_IN(clk), 
 .RST_IN(rst), 
 .CLKDV_OUT(clk_timer), 
 .CLKIN_IBUFG_OUT(CLKIN_IBUFG_OUT), 
 .CLK0_OUT(clk_0), 
 .LOCKED_OUT(LOCKED_OUT), 
 .STATUS_OUT(STATUS_OUT) 
 ); 

always @ (posedge clk_timer or posedge rst) 

begin 
 if (rst) 
 timer <= 0; 
 else 
 timer <= timer+1; 
end 

endmodule 

Fig. 3.18. Verilog code showing the use of a DCM for generating a timer clock 

The Verilog code, shown in Fig. 3.18 uses the DCM instance to provide a 
clock divided by a factor of 8. This divided clock is used by the timer circuit 
shown in Fig. 3.19. 
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Fig. 3.19. Creation of a timer clock (clk_timer) using a digital clock manager (DCM) 
component to divide the system clock 

3.2.5 I/O Standards 

PCB-based designs using a FPGA are interfaced with a variety of other 
semiconductor devices. Each of these device types has a different voltage standard 
for interfacing. Memory chips are interfaced to the FPGA using a HSTL or SSTL 
I/O standard. If an off-chip processor exists, it is connected using the GTL+ 
interface. Many boards are designed to be compatible with the peripheral connect 
interface (PCI) backplane, which requires a matching PCI voltage and bus 
frequency I/O standard. The input and output pins of the FPGA can be configured 
for different I/O standards (see Fig. 3.20 and Table 3.6), based on the interface 
needed. Figure 3.20 is a typical PCI bus add-on card board design that uses a 
FPGA. 
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Fig. 3.20. Field programmable device supporting different digital interface standards 
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Table 3.6. Voltage levels supported by FPGA I/O pins 

I/O Standard and description Voltage level (volts) Interfaced with 

LVTTL, low-voltage TTL 3.3 Pushbuttons 

LVCMOS33, low-voltage CMOS 3.3 ADC, DAC 

PCI, peripheral component interface 3.3 PC backplane bus 

SSTL2 2.5 DDR SDRAM 

GTL+ 0.65–1.5 Processor 

HSTL 1.5 QDR SRAMS 

LVDS 2.5 Display 

Signals used as inputs to the FPGA connect to an input buffer (IBUF) via an 
external input port. The default standard for an input port is LVTTL when the 
buffer is not specified. An output buffer (OBUF) is used to drive outputs through 
an external output port. When no I/O standard is specified, the OBUF I/O standard 
is set to LVTTL with 12-mA drive strength (see Fig. 3.21). 

 
Fig. 3.21. Pin constraint report showing selection of I/O standard, drive (mA) and slew rate 

3.2.6 Multipliers 

Increased use of FPGA for signal processing applications has made the multiplier 
an important component of hardware design. Multipliers in a FPGA are 
implemented in a number of ways. One of the most frequently used methodologies 
is to let the synthesis software determine the kind of multiplier to be used. The 
second is to specify a multiplication algorithm, the Booth multiplier. Another way 
is to specifically instruct the synthesis software to use the multiplier primitive 
available in the particular FPGA device family. Figure 3.22 shows the block 
diagram of a FPGA immersed hardware multiplier that supports 18-bit 
multiplication. 
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Fig. 3.22. Multiplier block diagram 

Example 3.6. Create logic for multiplying two 8-bit numbers. 

module mult(input [7:0] a, input [7:0] b, output reg [15:0] c, input clock); 

always @ (posedge clock) 

 c <= a * b; 

endmodule 

Fig. 3.23. Verilog code for multiplication 

The code of Fig. 3.23 instantiates one of the 20 available multipliers on the 
target FPGA chip. The synthesis report is a quick way to ascertain the use of the 
hardware multiplier (see Fig. 3.24). 

3.3 Floor Plan and Routing 

The floor plan of the FPGA provides a graphical view of the placement of various 
elements mentioned in the synthesis report. Figure 3.25 shows a listing of basic 
elements for a 4-bit shift register. These elements can be located on the FPGA 
floor plan by selecting them. By default, the floor planner places elements at 
locations determined by the tool. A definite area of the chip can be defined for 
placement of logic by providing an area placement constraint. This area is defined 
by slice locations of the logic matrix. Intuitively, logic placed close to its I/O pins 
will have fewer interconnect delays. 
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Fig. 3.24. Synthesis report showing use of the multiplier 

 
Fig. 3.25. The floor plan design hierarchy for the shift register model of Fig. 2.8c 
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3.4 Timing Model for a FPGA 

The timing model of the FPGA aids in understanding various delays, when a 
digital circuit is implemented. For a design that is based entirely on combinational 
logic, the delay path consists of input delay, internal delay associated with 
combinational logic modules, routing delay and the output delay. Figure 3.26a 
shows various components that are used for static timing analysis on a FPGA. 

The FPGA tool generates a post place and route static timing after place and 
route have been completed. The static timing analysis tool provides an estimate of 
the interconnect delay between various sections of a digital design. Figure 3.26b 
shows the options provided by the tool to analyze the timing delays of example 3.2. 
The timing between input/output pads of a design or of a defined path in the 
internal logic is determined by using the timing analysis tool19. For a real-time 
application, where pre-defined timing has to be met, static timing analysis is used 
for an estimate of the time delay in the logic. 
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Fig. 3.26. a Timing model for a FPGA-based design 

                                                 
19 FPGA vendors provide a library of simulation timing models that provide an estimate of timing 
details. The delay file in the standard delay format (.SDF) is used by post place and route 
simulation.  
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Fig. 3.26. b Timing model for SRL instantiation of Example 3.2 

3.5 FPGA Power Usage 

FPGA devices provide hardware reconfigurability. The technology that makes this 
feasible, also extracts a price for it. The price is in terms of power consumed by the 
FPGA. The majority of FPGAs use SRAM-based interconnect switches to offer 
reconfigurability. The SRAM is a volatile switch and loses its configuration when 
power is cycled. There is usually an external memory chip20 containing the 
configuration file. This configuration is loaded in the FPGA every time on power 
up. To keep the interconnect inside the FPGA alive, the SRAM switches are kept 
powered up. This results in static power consumption. HDL coding techniques help 
in reducing dynamic power, and use of non-volatile interconnect technology results 
in static power reduction. The total power consumed in the FPGA can be broken 
                                                 
20 Some SRAM interconnect-based FPGAs now have built in flash memory to store the 
configuration file.  
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down based on the components listed in Fig. 3.27. FPGA vendor provided software 
tools estimate the power consumption by considering the average switching rate of 
the components. 

  
Fig. 3.27. Power consumption areas of a FPGA 

Example 3.7. Design digital logic using HDL for controlling a single-phase 
controlled rectifier. The silicon controlled rectifier (SCR) should trigger at varying 
time delays α. The power and gate triggering circuits along with waveforms for 
control are shown in Fig. 3.28a and b. 
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Fig. 3.28. a Single-phase controlled rectifier trigger pulse generation 
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Fig. 3.28. b Single-phase controlled rectifier trigger pulse generation 

The SCR triggers in the positive cycle of the input power line. A derived 
signal called the quantizer is used to sense the duration of the positive half cycle. 
The edges of the quantizer are used to generate a zero crossing point. Verilog code 
for zero crossing, shown in Fig. 3.29, senses the quantizer edge to start a counter 
that determines the width of the zero crossing pulse. 

module zcd (input quan, input clk, input rst, output reg zcd ); 

wire w1; 

reg [2:0] count1 ; 

always @(posedge quan or posedge w1 ) 
begin 
  if (w1) 
   zcd <=0; 
  else 
   zcd <=1; 
end 

always @(posedge clk) 
 begin 
  if(zcd) 
   count1 <=count1+1; 
 else 
   count1 <= 0; 
 end 

assign w1 = &(count1); 

endmodule 

Fig. 3.29. Verilog code to generate narrow width zero crossing signal by using a quantizer 
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Fig. 3.30. Interconnection of different modules for controlled rectifier logic 

Table 3.7. Partial look-up table (LUT) for loading counter value for a specified α angle 
between 0 and 60°. LUT is implemented in the block memory of the FPGA 

Triggering angle α °, 
input frequency, 50 Hz 

Delay count @ 1.5 MHz timer 
clock - decimal 

Hexadecimal value 
for 16-bit timer 

60 5000 1388 

59 4917 1334 

58 4833 12E1 

57 4750 128E 

56 4667 123A 

55 4583 11E7 

54 4500 1194 

53 4417 1140 

52 4333 10ED 

51 4250 109A 

Block Diagram of Converter Control 

Digital architecture for implementing the block diagram of rectifier logic is shown 
in Fig. 3.30. Here the functionality is divided into discrete modules that are 
integrated together. The ADC interface module is used to obtain the value of the 
reference voltage Vc and subsequently the controller firing angle α. Based on the 
firing angle α, a timer is initialised that computes the SCR triggering delay after 
every zero crossing. The delay angle is computed by a 16-bit timer, partially shown 
in Table 3.7, which loads a pre-determined value based on system clock frequency. 
The firing angle delay count is stored in the block RAM of the FPGA. A port map 
for accessing the block RAM is shown in Fig. 3.31. The value of the firing angle is 
the address of the block RAM memory, and the delay count is available on the data 
bus of the memory. 
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 firingangle UUT2 ( 
  .addr (m_add), 
  .clk (xi_clk), 
  .dout (alpha_load)); 

Fig. 3.31. Block RAM instance in top module 

The timer module shown in Fig. 3.32 loads a new value based on the firing 
angle and starts decreasing the value after a zero crossing. A timer_dn output is 
generated, when the timer has reached zero, to turn on the SCR. 

module timer (input clk, zcd, rst, input [15:0] timer_val, output timer_dn); 

reg [15:0] count; 

always @ ( negedge clk ) 
 begin 
  if (rst) count = 16'b0; 
 else if ( zcd ) 
  begin 
  count [15:0] = timer_val [15:0]; 
  end 
 else 
  count = count - 1; 
 end 

assign timer_dn = (count == 0) ? 1'b1 : 1'b0; // on for one clock period 

endmodule 

Fig. 3.32. Verilog timer code for determining instance of SCR turn-on 

Problems 

1. Complete the code shown in Example 3.7 and check its working and 
synthesis results. 

2. Synthesize the 8-bit Booth multiplier and check the amount of 
combinational delay for the un-clocked circuit and the maximum frequency 
for a clocked circuit. 

3. Create a digital function generator to generate a variable frequency sine, 
ramp and triangular functions. The output is sent to a 12-bit unipolar DAC. 

• Use the block RAM as LUT for the sine wave. 
• Use a free running 12-bit counter for the ramp signal. 

4. There are certain errors that are not flagged at simulation time but are 
encountered when the design is being synthesized. One such error is the 
multi-sourcing error. This error results when two or more independent 
processes are trying to modify the contents of a particular register. In 
Verilog, each process is modelled using an always statement. The Verilog 
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code discussed in Example 2.5 is split in two parts. Simulate and synthesize 
the code given in Fig. 3.33 and determine which signal is causing the 
multi-sourcing error. 

module shift_s(input [7:0] word, input clk, rst, output reg x ); 

reg [2:0] count; 

always @ ( posedge clk ) 
begin 
 if (rst) 
 count <= 0; 
 else if (count < 7) 
 begin 
  x <= word[count]; 
  count <= count +1; 
 end 
end 

always @ (posedge clk) 
begin 
if (count == 7) 
 begin 
 x <= word[7]; 
 count <=0; 
 end 

end 

endmodule 

Fig. 3.33. An example of a multi-sourcing error 

Further Reading 

1. Maxfield C (2004) The design warrior’s guide to FPGAs — devices, tools and flow. 
Newnes 

2. Zeidman B (1999)  Designing with FPGAs and CPLDs. Prentice-Hall   
3. Xilinx (2007) SPARTAN-3 generation FPGA user guide UG 331 
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FPGA-based Embedded Processor 

With rising gate densities of FPGA devices, many FPGA vendors now offer a 
processor that either exists in silicon as a hard IP or can be incorporated within the 
programmable device as a soft IP. The purpose of having a processor co-exist with 
conventional digital logic components is to provide flexilibility of combining 
software and hardware based control in one chip. Many algorithms that are 
difficult to code in HDL and have update time requirements in milliseconds can 
use the processor inside the FPGA. A whole suite of tools, consisting of compilers 
and assemblers help the designer code in C or C++. The motivation of this chapter 
is to introduce the use of FPGA embedded processors and to integrate custom 
digitial logic with FPGA-based processors. 

4.1 Hardware–Software Task Partitioning 
Update time 

Current and power device PWM control

Control of position and speed loop, 
sequencing logic

Referencing 
trajectory control

sμ

 1–10 ms

10–100 ms

 
Fig 4.1. Task update rates 

A designer of a digital system identifies tasks and their update time requirements. 
As shown in Fig. 4.1, a robot controller task pyramid consists of tasks that need 
microsecond or millisecond update time. In our hypothetical robot control system, 
the task of robot joint trajectory computation, which needs 10–100 ms update time, 
is assigned to a processor. The processor is driven by a timer interrupt that updates 
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the trajectory profile every 10–100 ms. The task of motor current and power device 
PWM control is part of hardware logic (designed using HDL) because it needs to 
update every 50 μs. 

4.2 FPGA Fabric Immersed Processors 

The ability to support processor logic has brought a new dimension to the use of 
FPGA devices. It has provided designers the freedom to partition their designs 
either for single-threaded software flow or to use concurrent digital logic. A quick 
search on the internet shows that several 8- and 32-bit proprietary processors are 
offered by leading FPGA vendors along with established processors. The 
motivation for using the time tested, established processor is to shorten the learning 
curve of designers and build confidence in their use. Almost all major vendors of 
field programmable devices provide processors, for use with their respective 
devices. Table 4.1 shows a partial list of vendors and the processors they offer. 

Table 4.1. Partial list of contemporary FPGA-based processors 

Processor name Type/Bits Interface bus FPGA vendor 

MicroBlazeTM Soft/32 IBM Coreconnect Xilinx 

NIOS® Soft/32 Avalon Altera 

LatticeMico32 Soft/32 Wishbone Lattice 

CoreMP7 Soft/32 APB Actel 

ARM Cortex-M1 Soft/32 AHB Vendor independent 

LatticeMico8 Soft/8 Input/Output ports Lattice 

Core8051 Soft/8 Nil Actel 

Core8051s Soft/8 APB Actel 

PicoBlazeTM Soft/8 Input/Output ports Xilinx 

PowerPC Hard/32 IBM Coreconnect Xilinx 

AVR Hard/8 Input/Output ports Atmel 

4.2.1 Soft Processors 

Soft processors exist as synthesized netlists incorporated in the FPGA using logic 
block resources of a particular FPGA. FPGA vendors offer soft processors catering 
to 8-bit and 32-bit applications. The 8-bit processor occupies a small footprint on 
the FPGA device and it uses the FPGA embedded memory for program and data 
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memory storage. Figure 4.2 shows the block diagram of PicoBlazeTM, an 8-bit soft 
controller from Xilinx. The PicoBlazeTM controller consists of an 8-bit input and an 
8-bit output port. It also supports interrupt. The embedded block RAM of the 
FPGA serves as a location for program and data memory for the PicoBlazeTM. The   
PicoBlazeTM assembler takes the program file and creates the coefficient (.coe) file, 
loaded in the embedded memory of the FPGA. 

Among the 32-bit soft processors, two of the leading 32-bit proprietary soft 
processors are NIOS® from Altera and MicroBlazeTM from Xilinx. These 
processors use a portion of the FPGA resources. The remaining part of the FPGA 
can be used for incorporating other digital logic. 
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Fig. 4.2. Realising an 8-bit soft controller on a FPGA 

The MicroBlazeTM 32-bit soft processor, shown in Fig. 4.3 is a reduced instruction 
set computer (RISC) based engine with a 32 * 32-bit LUT RAM-based register file 
with separate instructions for data and memory access. It supports both on-chip 
block RAM and external memory for program/data memory. All peripherals are 
implemented on the FPGA fabric and interface to the MicroBlazeTM using the on-
chip peripheral bus (OPB) or processor local bus (PLB). The MicroBlazeTM 
processor options include instantiation of additional hardware to implement IEEE 
754 single precision floating point standards. With this option included, it can 
support floating point addition, subtraction, multiplication, division and 
comparison. 

Soft processors listed in Table 4.1 can be customized by adding a barrel shifter 
or modifying the size of the data and instruction cache. Additional processors can 
also be added to provide a multi-processing option. Based on the results of 
software profiling, certain resource intensive software algorithms can be moved to 
the hardware fabric as coprocessors or as custom peripherals. 
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Fig. 4.3. MicroBlazeTM block diagram 

4.2.2 Hard Processors 

Many standard processors and microcontrollers are available as hard IP inside the 
FPGA. Some of these include the AVR microcontroller offered by the Atmel 
family and the PowerPC processor as part of Xilinx Virtex FPGAs. The design 
chain for programming and debugging the FPGA-based processor system is quite 
similar to their earlier model as stand-alone processors. 

4.2.3 Tool Flow for Hardware–Software Co-design 

To co-design a system, both hardware and software tasks need to be independently 
coded and tested. The software flow shown in Fig. 4.4 combines the source and the 
library files to create an executable file for the processor to use. The location of the 
program and data code can either be in the internal memory of the FPGA device or 
if the program code is large, an external memory device is used. In   Fig. 4.4, the 
program is stored within the memory of the FPGA device. The hardware design 
flow takes the electronic design interchange format (EDIF) files of the soft 
processor, merges them with the user written custom digital code and prepares a 
complete system netlist after synthesis. 
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Fig 4.4. Hardware–software design flow [1] 

4.3 Interfacing Memory to the Processor 

The use of a processor calls for memory, where the instructions are stored. As 
discussed in Chap. 3, many FPGAs provide on-chip embedded memory. The size 
of this memory depends on the density of the FPGA device in use. For the Xilinx 
500 k gate FPGA, 360 kbits of memory are available. When this onboard memory 
is used, a local memory bus (LMB) controller is configured to read and write 
to/from this memory. For small codes that are meant for the PicoBlazeTM processor 
or assembly coded codes for the 32-bit processors, the onboard memory fulfills the 
requirements. When using this bus, memory accesses are much faster and are 
handled by the memory controller. For larger programs, the compiled code needs 
to be stored in an external memory chip. A memory controller is configured for 
accessing the external memory chip. The linker script settings shown in Fig. 4.5 
need to be modified for either using an external double data rate synchronous 
dynamic random access memory (DDR SDRAM) or internal FPGA memory to 
store program code, stack or heap. 
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Fig. 4.5. Linker script settings for determining the type of memory to be used with  
a MicroBlazeTM soft processor 

4.4 Interfacing Processor with Peripherals 

“Designers can also create their own custom peripherals and integrate 
them into soft processor systems. For performance-critical systems that 
spend most CPU cycles executing a specific section of code, it is a common 
technique to create a custom peripheral that implements the same function 
in hardware. This approach offers a double performance benefit: the 
hardware implementation is faster than software; and the processor is free 
to perform other functions in parallel while the custom peripheral operates 
on data.” 

Altera on using custom peripherals 

From the digital design point of view, the shared bus interface approach is similar 
to peripherals that are interfaced to a processor using tracks on a PCB. Many 
backplane bus standards that provide basic interfacing capabilites for peripherals 
have evolved over time. As shown in Fig. 4.6, signals such as address, data and 
control bus are used by interconnect buses. Many proprietary interface bus 
standards exist, with similar interfacing methodology. Tables 4.2 and 4.3 list 
physical backplane bus standards and system-on-chip buses used for interfacing 
processor and peripherals. 

The hardware-software synergy available by use of a FPGA-based processor 
makes sense only if customized coprocessors or peripherals are part of the design. 
Otherwise it is much simpler and economical to go for a microcontroller or digital 
signal processor implementation. There are many schemes for connecting user 
defined custom logic to a FPGA processor. One way is to use industry standard 
interconnect buses. The use of standard buses improves the re-use of IP core 
because the bus interface logic provides the front-end connection to the IP core. 



 FPGA-based Embedded Processor 87 

Peripheral 4 Peripheral 5 Peripheral 6

Microprocessor

 

Peripheral 1 Peripheral 2 Peripheral 3

 

 

Data bus

Address bus

Control bus

 
Fig. 4.6. Processor connected to different peripherals on a PCB 

Table 4.2. Partial list of physical backplane bus standards  

Name Originator 

IBM PC bus  IBM 

Multibus Intel 

Multibus II Intel 

VME bus Motorola 

STD bus, IEEE 488 bus Hewlett-Packard 

Q-bus Digital Equipment Corp. 

Unibus Digital Equipment Corp. 

Table 4.3. System on Chip buses  

Bus name, originator  Interconnection type 

AMBA, ARM Shared bus architecture 

Wishbone, Silicore Point-to-point, crossbar, data flow, shared bus 

OPB CoreConnect bus, IBM Shared bus architecture 

Fast serial link, Xilinx Point-to-point  

Avalon bus, Altera Cross bar switch 
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4.4.1 Types of On-chip Interfaces 

On-chip processor peripheral interface topology can be divided into point-to-point, 
cross bar switch and shared bus interfaces. 

4.4.1.1 Point-to-Point 
The point-to-point interface consists of a dedicated link between the 
communicating devices. An example is the fast simplex link (FSL)21. This point-to 
-point link provides a unidirectional, non-arbitrated channel to perform fast 
communication between the MicroBlazeTM processor and custom hardware 
module. The MicroBlazeTM can be configured to support multiple FSL links to read 
and write data or control signals to a peripheral. 

4.4.1.2 Cross Bar Switch 
The cross bar switch consists of an interconnection fabric, configured based on the 
connections between various sections of the design. This is usually done at design 
synthesis time. The transfer rate of a crossbar switch is higher than that of a  shared 
bus mechanism. But the crossbar switch requires more interconnection logic and 
routing resources than a shared bus system. 

4.4.1.3 Shared Bus 
Shared buses are similar to their older backplane bus counterparts. The shared bus 
interface defines an address for the slave or peripheral device. The address bus 
originating from the microprocessor carries the address of the slave device to 
which the microprocessor wishes to communicate. An address decoder in each 
slave device determines whether that particular slave is being addressed. A bank of 
registers within the slave device are written to or read from by the microprocessor 
master device. Each of the registers in the slave device has a unique address sent 
by the master device. A typical read and write to a particular register in the slave 
device is illustrated by the timing diagrams of read and write cycles. 

The peripheral logic periodically updates the feedback/status registers and reads 
the configuration registers. If a peripheral seeks immediate attention, it generates 
an interrupt for the microprocessor. If there is only one interrupt generating 
peripheral in the system, it is connected to the interrupt port of the microprocessor. 
But if there are many peripherals that can possibly interrupt the processor, there is 
an interrupt controller peripheral that routes the interrupt signal to the 
microprocessor based on the pre-assigned priorities of the interrupts. 
 
 
 
 
 
 

                                                 
21 The FSL link is a proprietary point-to-point link supported by Xilinx soft processor 
MicroBlazeTM. It is used for streaming data from connected devices.  
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The shared bus consists of 

• a unidirectional Address Bus 
• a bi-directional Data Bus 
• control signals 

- write/read enable 
- acknowledge 

• System control signals  — clock, reset. 

4.4.2 Wishbone Interface 

Wishbone supports three kinds of interconnections. These include point-to-point, 
shared bus and the crossbar switch. The interface defines the connection between 
the processor (master) and the wishbone slave. As Fig. 4.7 shows, the 
interconnections consist of address, data and handshaking signals. The 
handshaking mechanism is used to adjust the data transfer rate. The acknowledge 
[ACK_0] signal is mandatory, whereas error [ERR_o] and retry [RTY_o] are 
optional handshaking signals. The signals defined for the point-to-point connection 
are also used in the shared bus interface. 

Wishbone supports single read/write, block read/write, and read-modify-write 
operations. All signals between master and slave are either inputs or outputs, but 
never bi-directional (using tri-state logic). Address and data bus widths can be 
changed to fit the application. Possible widths supported are 8, 16, 32 and 64 bits. 

SYS_CON

Wishbone 
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Wishbone 
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RST_I

CLK_I

ADR_O( )

DAT_I( )

DAT_O( )

WE_O

SEL_O( )
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RST_I

CLK_I

ADR_I( )

DAT_O( )
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STB_I( )

ACK_O

CYC_I

 

 
Fig. 4.7. Wishbone interface configured for a point-to-point connection [2] 
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4.4.3 Avalon Switch Matrix 

The Avalon switch fabric is an interconnect technology used by Altera. It is 
generated using the system on a programmable chip (SOPC) builder tool of Altera. 
It provides up to a 128-bit address and data path. There is support for multiple 
masters, built-in address decoding, peripheral transfer support, read and write 
transfers and fixed and variable length transfers. The FPGA switch fabric provides 
for a fast configurable interconnect used to make memory mapped connections 
between master and slave devices. A sample configuration of an Altera NIOS® 
processor connected to three slaves is shown in Fig. 4.8. 

Memory mapped 
master 

(NIOS® processor)

Interconnection fabric

Memory mapped 
slave 3

Memory mapped 
slave 2

Memory mapped 
slave 1

 
Fig. 4.8. Interconnection of Avalon Bus using interconnection fabric 

4.4.4 OPB Bus Interface 

The on-chip peripheral bus (OPB) is a shared bus architecture. It is part of the 
CoreConnect architecture developed by IBM for integrating on-chip “cores”. 
Although the specifications allow for a 32- or 64-bit wide address and data bus, the 
FPGA adaptation by Xilinx uses 32-bit as the word size. The OPB bus system uses 
master-slave architecture. The master which is usually part of the microprocessor 
can initiate a transaction by specifying a slave address. The slave responds to the 
requests from the master. Both the OPB and the MicroBlazeTM soft processor  use 
big-endian form of data, where bit 0 is the most significant bit and bit 31 is the 
least significant. The signals exchanged between an OPB master and slaves are 
shown in Fig. 4.9a. 

The OPB bus read cycle illustrated in Fig. 4.9b consists of the OPB_RNW 
signal becoming high along with the OPB_SELECT signal. The address where the 
OPB master (the processor in our case) wishes to read from, is sent on the 
OPB_ABUS and after a latency of four cycles, the data from the peripheral are 
available on the OPB_DATA bus. 

The write cycle of the OPB works in a fashion similar to the read cycle. Instead 
of the OPB_RNW becoming high along with OPB_SELECT, the address and data 
bus contents are put on their respective buses. A transfer acknowledge signal from 
the slave indicates the completion of the write cycle. The timing diagram for this 
transaction is shown in Fig. 4.9c. 
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Fig. 4.9. a OPB bus interface signals for master and slave devices; b OPB read cycle; c OPB 
write cycle 
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4.5 Design Re-use Using On-chip Bus Interface 

Many times, standard digital components are re-used for different applications. 
Making a design compatible with an on-chip bus interface is one way to re-use a 
design. Different IP cores developed independently can be tied together and tested 
by standardizing the IP core interfaces. Many re-usable digital designs22 available 
in the public domain are compatible with on-chip interfaces. 

Table 4.4. List of peripherals needed for the robot controller 

Name of peripheral Description Application 

Communications RS-232 and RS-485 
networks 

Communicating with PC, multi-
drop networks 

Motor controller Control of speed and 
power module of motor 

Five controllers – one for each 
axis 

Quadrature encoder 
interface 

Determination of position 
and speed of each axis 

Five peripherals – one for each 
axis 

Serial peripheral 
interface(SPI) 

Interfacing with ADC, 
DAC and other sensors 

Getting feedback from distance 
sensors, proximity sensors of 
robot workspace 

Timer Fixed interval timer Providing interrupts to processor 

SDRAM Memory controller Connecting extra memory  

In the list of peripherals mentioned in Table 4.4, the motor controller and 
Quadrature encoder interface are not available as microcontroller peripherals.23 
These peripherals are also not included in a FPGA vendor supplied peripheral 
library. In such cases a custom peripheral for motor control is called for. 

Motor Drive as a Peripheral 

The robot motor drive logic can be made as a custom peripheral that interfaces 
with the system-on-chip bus (Fig. 4.10). This peripheral can be replicated or cloned 
multiple times on a single FPGA chip without affecting the performance of each 
individual drive (thanks to the independent concurrent threads that a FPGA device 
can support!). Chapter 6 will discuss more on how to create HDL code for robot 
motor drive control. 

                                                 
22 Re-use able digital designs from www.opencores.org use the Wishbone bus standard.  
23 A microcontroller for motor control application does contain peripherals to aid in motor drive 
design. Along with standard GPIO it contains a 16-bit rotor speed measurement counter, three- 
phase PWM signal generator, 6-bit dead time generator, and interrupt generators that exchange 
data with the CPU over a proprietary register bus.  
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Fig. 4.10. Details for robot motor drive peripheral 

Design of Custom Peripheral 
A peripheral is an independent device used to off-load the processor from 
processes that require frequent attention. The peripheral takes input from the 
processor and then interrupts the processor on completion of a given task. 
Examples of common on-chip microcontroller peripherals include timers, UART 
and interrupt controllers. The availability of high-density FPGA devices, with 
built-in processors has made incorporation of custom peripherals feasible. A 
FPGA-based processor system is configurable to create a customized 
microcontroller. Additional user defined peripherals can be integrated with the 
processor. The design of a custom peripheral requires a bus interfacing logic and 
the custom code of the user peripheral. Based on the timing diagram of the read 
and write cycles of the particular bus protocol, a finite state machine is designed to 
interface a custom peripheral device. A typical port map of the slave device 
consists of the following signals: 

• Bus to slave peripheral 

- Address bus 
- Data bus 
- Clock 
- Read/Write 

• Slave peripheral to bus 

- Data bus 
- Transfer acknowledge 
- Time out suppression 

The finite state machine would consist of idle, selected, read/write, transfer 
acknowledge and then again idle state. The peripheral interface logic consists of 
the shaded section shown in Fig. 4.11. 
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Fig. 4.11. Interface logic for connecting a peripheral to a chip interconnect bus 

4.6 Creating a Customized Microcontroller 

The FPGA allows the flexibility of creating a customized application-oriented 
microcontroller. The programming flow of these processors is similar to that used 
for programming a microcontroller-based system. A high-level programming 
interface such as C is used. An architecture for a microcontroller designed for 
motor control is shown in Fig. 4.12a. This architecture shows a 16-bit CPU, SPI, 
ADC and timer/counter interfaces. There is a proprietary internal bus within the 
controller that connects the processor with various peripherals. 

If a similar architecture for multi-motor control were to be created using the 
field programmable device, the architecture would not change much. A FPGA-
based hard or soft CPU is chosen, and various pre-designed peripherals offered, are 
put together to form a system around a given interconnect bus. If the program 
memory requirement is large, an external memory device is connected using a 
memory controller IP. The typical environment of a single-chip controller consists 
of general purpose input output (GPIO) devices, a communications terminal such 
as the UART and memory. For the sake of equivalency with the microcontroller 
environment, let us create a similar FPGA-based system. 

Example 4.1. Create a customized microcontroller as shown in Fig. 4.12b. The 
microcontroller contains among other peripherals, two custom motor drive 
interfaces. 
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Fig 4.12. a Architecture of a microcontroller for control applications; b architecture of  
a FPGA-based system on chip customised for motor control application 
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Fig. 4.13. Snapshot of peripherals available for design of an embedded system 

Figure 4.13 shows a peripheral IP library available for use in the design of an 
embedded system. The following peripherals are chosen from this list: 

• UART: In this example the standard input and output port (STDIN and 
STDOUT) are configured for RS232_DCE. This ensures that program 
outputs using the print command are displayed on the serial port. An 
interrupt is generated when any valid character is in the receive FIFO and 
the interrupt stays active until the receive FIFO is empty. 

• Timer: The timer provides an interrupt for real-time processing. 
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Fig. 4.14. Configuring the UART peripheral for use with the OPB bus 

• SPI bus: Provides communication with off-chip ADC and DAC chips. 
• Interrupt controller: For managing multi-source interrupts. 

The only peripheral not available from the IP library is the motor drive 
peripheral. A customized peripheral discussed in Sect. 4.5 needs to be created. The 
configurations of the UART and the timer are shown in Figs. 4.14 and 4.15. 
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Fig. 4.15. Configuring the timer peripheral for use with the OPB bus and processor 

4.7 Robot Axis Position Control 

The architecture of a joint or axis position control scheme is shown in Fig. 4.16. 
Each joint of the manipulator is controlled by a position servo loop. The joint 
trajectory control algorithm uses a new joint set point, JN. Based on trajectory/ 
system parameters and constraints, a position profile is generated for each joint of 
the manipulator. 

 

 
Fig. 4.16. Robot joint axis control [3] 
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The profile generator is usually implemented in software. The data sequence 
[θn(nT)] for a particular joint is output in real time and is driven by an interrupt- 
based update mechanism. The digital servo loop that accepts the set point for the 
position is discussed in detail in Chap. 6. 

A robotic manipulator is modelled as a chain of links, as seen in Fig. 4.17. 
These links are interconnected to one another by joints. The last link has the tool or 
end-effector attached to it. Denavit and Hartenberg have presented a systematic 
procedure for assigning a co-ordinate frame to the links of a robotic manipulator. 
The objective of the robot controller is to position the tool in three-dimensional 
space. The tool is programmed to follow a planned trajectory so that it carries out 
operations in the workspace. 

Base

j1

j2

j3 j4

xo

Yo
Zo

Tool

 
Fig. 4.17. Links and joints of a robot 

Inverse kinematics for a robot is computed by knowing the desired space co-
ordinate value x,y,z and then determining the motion angle for each robot arm axis 
[θ1, θ2, θ3, θ4, θ5]. For a given robot arm of 5 degrees of freedom, an x,y,z co-
ordinate to motor angle transform is performed using the Denavit–Hartenberg(D-
H) method [4]. The D-H parameters for the five joint robot are mentioned in 
Tables 4.5 and 4.6. A timer driven interrupt is used for calculating a new set of 
motion angle commands every 100 ms (see Fig. 4.18). 

Table 4.5. Robot joint and link parameters 

Arm parameter Symbol 

Joint angle θ 

Joint distance d 

Link length a 

Link twist angle α 
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Table 4.6. Denavit-Hartenberg parameters for a robot arm,Mitsubishi RV-M1 [5] 

Joint  θ d (mm) a (mm) α  

1 θ 1 300  0 –π/2 

2 θ 2 0 250 0 

3 θ 3 0 160 0 

4 θ 4 0 0 –π/2 

5 θ 5 72 0 0 

 
Fig. 4.18. Timer interrupt for calculating trajectory parameters every 100 ms 

Problems 

1. Timers and counters are omni-present components of embedded systems. 
They are used for setting sampling rates, measuring speed and counting 
external inputs. Develop HDL code for a timer (use the specifications for 
Intel 8254 timer) peripheral that can interface with the on-chip interconnect 
bus. 

2. The Intel 8085 processor has multiple interrupt inputs, consisting of INT 
5.5, 6.5, 7.5, NMI and TRAP. Modern processors support one interrupt line 
connected to an interrupt controller. Develop an HDL-based Interrupt 
controller (use the specifications for Intel 8259 interrupt controller) for 
interfacing with the Interrupt pin of a processor. 
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5 

FPGA-based Signal Interfacing and Conditioning 

This chapter introduces ways to interface external world signals with a FPGA. In 
our robot controller scheme, this would help the robot to sense information coming 
from various analogue sensors and digital interfaces. A serial data communication 
network is discussed that helps in interconnecting multiple robots. Using this 
network and a protocol, command and feedback, data can be communicated from a 
central controller to other robots on the assembly line. 

5.1 Serial Data Communication 

Modern sensors have a digital front end for transmitting measured parameters. The 
signal acquired from the external world is formed into packets of digital data and 
then serially transmitted. This reduces the amount of cabling required to bring in 
data from various sensors of a robot’s surroundings. A typical sensor along with 
electronics could transmit the acquired signals using one of the many standard 
physical layers and protocol standards. Figure 5.1 shows different interfaces for 
serial data communications. 

Digital transducer
Signal acquisition, 

conditioning and transmission

Sensor

Digital communications
(SPI,I2C,RS-232,RS-485)

 
Fig. 5.1. Interfacing sensors using different physical interfaces 

Though there are buses that support parallel communication between digital 
components, the majority of present-day digital systems use two or three-wire 
serial communications. As shown in Fig. 5.2, the widely used serial buses can be 
divided by their domain of operation into 

• PCB-based communication links – synchronous   
• Physically separated systems – asynchronous. 
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Fig. 5.2. Serial communications for inter PCB and intra PCB 

Universal Asynchronous Receiver Transmitter (UART) 

A UART24 is a serial communication circuit that uses the non-return to zero (NRZ) 
code. As shown in Fig. 5.3, the data format of a UART consists of a high idle state, 
a start bit, a character frame consisting of 8 bits, an optional parity bit and one stop 
bit. 

Data bit 
0

Data bit 
1

Data bit 
2

Data bit 
3

Data bit 
4
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Stop bit  
(1)
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Fig. 5.3. Data frame of a UART 

A UART communication pair consists of a transmitter and a receiver 
exchanging data bits. Figure 5.4 shows the interconnection and internal diagram of 
two UARTs. 
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Fig. 5.4. UART block diagram of transmitter and receiver 

                                                 
24 The UART is a standard peripheral available as a part of FPGA-based processor design tool. A 
scaled-down version of UART is part of a Xilinx embedded development kit(EDK) and is also a 
component of the Altera system on a programmable chip (SOPC) builder.  
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The FIFO is an important component of networks and signal processing 
applications. It acts as a buffer between the transceiver and the processor. In the 
transmitter the FIFO accepts the data byte to be transmitted from the internal bus, 
and it stores the received data byte in the receiver. 

Example 5.1. A student wrote a code (Example 3.2) for repeatedly transmitting 
ASCII character “A” using the UART. The receiving serial communications port is 
configured for no parity. The received character at times correctly showed “A” but 
at times incorrectly showed “P”. Why is this happening, and how can it be 
corrected? 

1     01000001     0 

1     01010000     0 

Data Frame “A”
Stop Start

Data Frame “P”
Stop Start

 
Fig. 5.5. Illustration of a data framing error in the absence of a parity bit 

As shown in Fig. 5.5, the UART forms two valid frames. The first frame is the 
correct data for “A” and the second frame which is a shifted version of the first, is 
the incorrect data “P”. This data framing error is due to the absence of a parity bit. 

Manchester Encoding 
Many of the communication interfaces are Manchester encoded rather than NRZ. 
Non-return to zero (NRZ) and Manchester codes are used to represent binary 
values “1” and “0” in digital systems. NRZ requires one level to represent a binary 
value, whereas Manchester code requires two levels. Manchester coding defines a 
positive transition for logic 1 and a negative transition for logic 0. The encoder of 
the Manchester takes each bit of the code to be coded and performs an EX-OR 
operation with the clock signal. The frame format is similar to that of a UART. The 
functionality of the Manchester decoder is more complex, because it involves clock 
recovery and centre sampling. 

Example 5.2. Convert NRZ data to Manchester encoded data as shown in Fig. 
5.6a. 

The conversion from NRZ to Manchester encoded data is shown in Fig. 5.6b. 
The NRZ data is ex-ored with the baud clock. 

 1  2  3  4  5  6  7  8  9  10 
Clock

NRZ (UART)

Manchester

 
Fig. 5.6. a Timing diagram of NRZ to Manchester code 
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module ( input baud_clk, nrz, output manch ) 

assign manch = baud_clk ^ nrz; 

endmodule 
 

Fig. 5.6. b Verilog code for converting NRZ encoded data bits to Manchester code 

5.2 Physical Layer for Serial Communication 

The data frame created by the UART is transmitted by using different physical 
standards. The concept of physical layer interface and protocol (both widely used 
in digital data communications terminology) can be explained using the analogy of 
human speech communication.25 

5.2.1 RS-232-based Point-to-Point Communication 

The RS-232 standard is slowly fading away from modern electronics. Present-day 
personal computers classify the RS-232 as a legacy port that been superseded by 
the universal serial bus (USB) port. Despite this, many interfaces around the world, 
especially in the embedded domain, are still built around the RS-232 electrical 
interface. RS-232 uses single ended communications, with a common ground 
connecting both communicating devices. The clock signal is not exchanged 
between communicating devices. Figure 5.2 shows a commonly used RS-232 
connection, referred to as the null-modem configuration. 

5.2.2 RS-485-based Multi-point Communication 

The RS-485 standard continues to be used as a multi-point communication 
standard. In RS-485, along with the original signal, its complement is also sent out 
and received by the communicating devices. Any noise introduced in the 
transmission path is cancelled out by cancelling the common voltage between both 
the complemented and original bit-stream. As shown in Fig. 5.7, RS-485 is 
implemented as a half-duplex, where a single twisted wire pair is used for both 
transmitting and receiving. A full-duplex configuration consists of separate twisted 
pairs for transmitting and receiving. The transmitting pin of the UART, Tx, is 
connected to the data in (DI) pin of each RS-485, and the Rx pin is connected to 
the receiver out (RO) pin. 

                                                 
25Human vocal cords generate frequencies in a bandwidth (~4 to 20 kHz) that the human ear 
comprehends. The way a human ear recognizes human sound is akin to the physical layer 
interface. In data communication, the physical layer interface defines the voltage level of 
communication and the data rate. The concept of protocol has to do with human language. 
Though the ear may be able to make out human sound, it may not be able to make sense of it , if 
the spoken language (Hindi, Japanese…) is not known. Thus, a single physical layer supports 
multiple protocols just the same way as humans communicate in different languages. 
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Fig. 5.7. RS-485 Differential signal generation 

An example of a multi-point connection using RS-485 is shown in Fig. 5.8. 
The RS-485 standard defines use of 32 transceivers on the RS-485 twisted wire 
bus. The Modbus® protocol is a commonly used data communication protocol 
using the RS-485 medium. Modbus® is a widely accepted protocol for 
communication between devices of different vendors in industrial automation. 
Though the original Modbus® standard has been superseded by various related 
standards such as Modbus® Plus, the Modbus® protocol serves as a good example 
for understanding master–slave communication using RS-485. The Modbus® 
message structure consists of four fields. The first field consists of the device 
address, followed by function code, data and error check bytes. Tables 5.1 and 5.2 
show the Modbus® message structure and common functions. 
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Fig. 5.8. Multi-point communication using RS-485 



108 Introduction to Embedded System Design Using Field Programmable Gate Arrays 

Table 5.1. Modbus®  message structure [1] 

Field  Description 

Device address Address of receiver 

Function code Code defining message type 

Data Data block with additional information 

Error check Numeric check value to check for communication errors 

Table 5.2. Common Modbus® functions [1] 

Code  Description 

01 Read coil status 

02 Read input status 

03 Read holding registers 

04 Read input registers 

05 Force single coil 

06 Preset single register 

07 Read exception status 

: : 

15  Force multiple coil 

16 Preset multiple registers 

17 Report slave ID 

Device address

Function code

Eight-bit data bytes

Error check

Device address

Function code

Eight-bit data bytes

Error check

Query message from 
master

Response message 
from slave  

Fig. 5.9. Modbus message transaction 

A query message consisting of a slave device address, function code and data 
is initiated by the Modbus® master. The addressed slave device responds with the 
requested data. A generic Modbus® message transaction between master and slave 
is shown in Fig. 5.9. The length of a message transaction depends on the size of the 
data frame component of the message. A byte-by-byte transaction detail of  
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a Modbus® master reading a coil status from a slave is shown in Table 5.3.  
A master robot controller uses read, force and preset functions to monitor and 
command robots using the Modbus® protocol. 

Table 5.3. Sample transaction of Modbus® master and slave [1] 

Modbus function 1 query Modbus function 1 answer 

Byte Value Description Byte Value Description 

1 1..247 Slave address 1 1..247 Slave address 

2 1 Function code 2 1 Function code 

3 0..255 Starting address, high 
byte 

3  0..255 Data bytes ….N 

4 0..255 Starting address low 
byte 

4 
N+3 

0.255 Bit pattern of coil values 

5 0..255 N+4   

6 0..255 

Number of coils, 

high & low Bytes    

7 
(..8) 

LRC/ 
CRC 

Error check  LRC 
CRC 

Error check  

5.3 Serial Peripheral Interface (SPI) 

The serial peripheral interface (SPI) is a four-wire connection developed by 
Motorola to provide an interface between a microcontroller and peripherals. SPI is 
a synchronous protocol, where data transfer between the master and the slave is 
referenced to a common clock. The clock is generated by the master, and the slave 
uses it for synchronization. 

Four ports are used by the master for SPI communication: 

• MISO (master in slave out) 
• MOSI (master out slave in) 
• SCLK (serial clock) 
• CS (chip select). 

The ports of the slave for SPI are 

• SDI (slave data in) 
• SDO (slave data out) 
• CLK (clock from master). 

As shown in Fig. 5.10, there is a serial shift register in both master and slave.  
Data transfer starts with the master writing data to be transmitted to its SPI data 
register. The slave receives data from the MOSI on its SDI line and simultaneously 
sends out the contents of its SPI data register to the MISO port of the master. Like 
the UART, the SPI port is a standard peripheral in most microcontrollers.  
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A hardware instantiated SPI26 port gives the flexibility of having the desired 
number of SPI ports as per the requirement of the application. 

Master (processor) Slave (peripheral)

MOSI

MISO

SCLK

SDI

SDO

CLK
SPI data 
register

SPI data 
register

GPIO CS

 
Fig. 5.10. SPI communication detail between two devices 

The data of SPI is centre sampled, at a point furthest from the signal transition. The 
clock polarity bit (CPO) is used to set the active clock edge for sampling. Figure 
5.11 shows the CPO bit set to “0”, for setting the clock positive edge for data 
sampling. Similarly setting the CPO bit to “1” sets the clock negative edge for data 
sampling. 

 1  2  3  4  5  6  7  8  9  10  11 

MSB 6 5 4 3 2 1 LSB

LSB123456MSB

SCK (CPO =0)

SCK (CPO = 1)

MISO PIN

MOSI PIN

CS

 
Fig. 5.11. SPI communication waveforms 

Protocol Translator 

Different protocols can co-exist in a robotic environment. Due to the proprietary 
nature of data communication protocols, one protocol needs to be converted to 
another for use by the control system. A protocol translator helps in converting 
data from one protocol to another. The protocol translator consists of a memory 
space where decoded data from protocols 1 and 2 are stored. Data from this 
memory space are converted to the required protocol format and then re-
transmitted. Figure 5.12 shows the block diagram for the converter. 

                                                 
26 The SPI peripheral is also provided by PLD vendors to attach with the on board soft/hard 
processor on the FPGA.  
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Fig. 5.12. Protocol 1 to protocol 2 translation using a FPGA 

5.4 Signal Conditioning with FPGAs 

Signal conditioning is needed to correctly decipher signals coming from the 
outside world. It helps in extracting the right frequency content from a signal or 
pattern from an image. Applying it to our hypothetical robot example, it is a useful 
tool to find robot movements based on position and image sensors. A commonly 
used signal conditioning block diagram is shown in Fig. 5.13. 

ADC Signal conditioning DAC

FPGA

 
Fig. 5.13. Signal conditioning block diagram using a FPGA 
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Fig. 5.14. Moving average using a circular buffer 
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Low-Pass Averaging Filter 

A low-pass averaging filter takes the average of the last n samples of incoming k 
samples of data. This is a primitive way of filtering out high-frequency noise. For 
averaging digital data samples, the data samples are stored in buffers, as shown in 
Fig. 5.14. When a new sample is received, data in the entire array of input registers 
need not be shifted. A circular buffer is created, which is a wrapped around version 
of the linear buffer shown. In a circular buffer, a modulo n counter is used as an 
address pointer, which points to the location where the most recent sample is to be 
stored. This pointer overwrites the last sample of the moving window of n samples. 

A FPGA-based logic to average the last four samples of incoming ADC data is 
shown in Fig. 5.15. The incoming data are passed through three delay blocks. The 
summation of the data values in the memory is used to calculate the average of the 
input samples. Figure 5.16 shows the Verilog code which uses a 12-bit register to 
take input values. A non-blocking Verilog construct is used to create a data 
pipeline for storing the last four data samples. 

DelayDelay

Programmable logic

Sampling 
frequency , fs

ADC

DAC

In

Delay

 
Fig. 5.15. Moving average filter using a FPGA [2] 

Example 5.3. Write Verilog code for averaging the last four samples of the 
incoming waveform, as shown in Fig. 5.15. 
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module filter ( input clk, rst , input [11:0] adc_ip, output reg[11:0] dac_op); 

reg [11:0] temp [3:0]; 

always @ ( posedge clk ) 
begin 
 if (rst) 
  begin 
  temp[0] <= 0; 
  temp[1] <= 0; 
  temp[2] <= 0; 
  temp[3] <= 0; 
  end 
 else 
  begin 
  temp[0] <= adc_ip; 
  temp[1] <= temp[0]; 
  temp[2] <= temp[1]; 
  temp[3] <= temp[2]; 
  dac_op <= ((temp[3] + temp[2] + temp[1] + temp[0]) / 4); // >>2 right shift by two 
  end 
end 

endmodule 

Fig. 5.16. Moving average filter using a FPGA 

Problems 

1. The local interconnection network (LIN) is a variation of the UART. It is 
used for networking non-time-critical components in an automobile. The 
network consists of one master node connected to 2–10 slave nodes. 
Because there is only one master, no arbitration is needed. Develop a HDL- 
based logic for a LIN bus master and slave device. Implement a multi-drop 
LIN-based network using FPGA boards. 

2. The Modbus® protocol is one of those long surviving protocols. Develop a 
HDL code that can read the Modbus® master initiated function 1 query 
frame and respond using the function 1 answer format (refer to Table 5.3 
and the Modbus® reference guide). 

3. One of the widely used distance measuring sensors is the GP2D02. The 
output of the sensor is in the form of a byte of data synchronized with the 
help of a Vin signal (see Fig. 5.17). Write a Verilog code that accesses the 
distance information from the sensor. 

4. Develop a Verilog code for calculating the root mean square (rms) value of 
an input waveform. Use the block diagram given in Fig. 5.18. The logic 
should use a moving window of 20 samples. The estimated square root 
value can be obtained by using the equation shown in the block diagram. 
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Fig. 5.17. Partial timing diagram of GP2D02 distance measuring sensor output (8-bit) 
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Fig. 5.18. Block diagram for calculating a rms value using 20 input samples 
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6 

Motor Control Using FPGA 

For the robot controller application chosen in this book, the electric motor is the 
actuator of the control scheme. There are many types of electric motors available 
that can be used for robot applications. The control scheme used for each motor 
type may be unique, but the overall control approach for motion control is similar 
across motor drives. 

6.1 Introduction to Motor Drives 

Robots make extensive use of electric motor drives as actuators.  Electric motors as 
actuators for robot joint movement score over hydraulic and pneumatic actuators. 
Electric motor based control schemes are cleaner and easier to implement. Early 
robots used brushed DC motors as actuators. Though the control of DC motors is 
simple, it is not preferred due to frequent maintenance and possible hazard because 
of sparking of brushes. Many robot manufacturers now use AC servomotors in 
place of DC motors. Fast digital circuits have made implementation of complex 
algorithms feasible.  They are needed for control of AC motors. For completeness, 
this chapter includes FPGA-based control of DC motors along with control 
techniques used for AC servomotors. 

Each motor drive provides basic functionality for 

• Setting of speed reference 
• Control of motor direction (forward or reverse) 
• Setting of acceleration/deceleration rate 
• Run/Jog operating controls 
• Emergency stop using dynamic or regenerative braking. 

6.2 Digital Block Diagram for Robot Axis Control 

Robot axis motion control consists of three control loops shown in Fig. 6.1. All 
three loops work together to move the robot axis to the position commanded by the 
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profile generator. The output of the position controller becomes the reference for 
the speed loop. In a similar way, the output of the speed controller is the reference 
for the motor current/torque loop. The job of the controller for all loops is to 
minimize the error between the reference and feedback values.  

 

 
Fig. 6.1. Control loops of motor control system 

6.2.1 Position Loop 

The position loop is the outermost loop shown in Fig. 6.1. For the robot control 
system, it indicates the position of each axis of the robot. The inverse kinematics 
algorithm computes the desired value of rotation, θn needed for each axis, and this 
becomes the reference to the position loop. The error of the position loop goes to a 
controller that generates a reference for the speed loop. A commonly used 
reference for the position loop is a profile generator. Because the time constant of 
physical movement of the robot axis is of the order of milliseconds, a software- 
based approach can be used for profile generation. The software code, shown in 
Fig. 6.2, illustrates profile generation for one axis of the robot controller. A free 
running timer peripheral is used to generate periodic interrupts, on which the 
process can run the position control algorithm. 

On interrupt /* from timer */ 
{ 
 Θ1 = encoder_counter1 /* current position of axis one*/ 
 Θ1S = setpoint_register1 /* set point Θ1S axis one*/ 

 /*  error generating junction */ 
 e1 =  Θ1S  -  Θ1 

/* PID controller */ 
 i = i_old + (e1  +  e1_old)/2; /* integrator*/ 
 i_old = i ; 
 d =  e1  -  e1_old ; /* derivative term */ 
 e1_old = e1 ; 
 c = (kp *e ) + (ki * i) + (kd *d ) ; 
} 

Fig. 6.2. Control loops of a motor control system 
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6.2.2 Speed Loop 

The job of the speed control loop is to correct the speed error by regularly 
sampling the speed reference and measured speed variable. The speed error is fed 
to a controller to generate a reference for the current loop, as shown in Fig. 6.3. 

Controller digital filter 
(described by 

difference equation)

 +
 

-

Position, motor 
speed/current 
measurement 

block

Sample timer

Position,speed 
or current 
reference Error

 
Fig. 6.3. Digital block diagram of control loop 

Because the update time of a speed loop controller varies from 1–10 ms, both 
software and hardware approaches can be used for this update time requirement. 

6.2.2.1 Software Approach 
The embedded processor in the FPGA device is used to implement the control 
algorithm. An interrupt from the processor is used to run the proportional integral 
derivative (PID) software routine.  Because the speed loop sampling time of a 
conventional servocontroller is of the order of milliseconds, processor-based 
architecture is suitable. 

6.2.2.2 Hardware Approach 
Generally, a proportional integral (PI) controller is used for motor drives. The 
exact equation of the PI controller transfer function is deduced using root locus or 
frequency domain analysis in the continuous time domain. For the digital FPGA 
domain, the PI controller transfer function is synthesised as a difference equation 
using a bilinear transform. Ts is the sampling time of the control loop. 

                                                   
1z
1z

Ts
2s

+
−

=  (6.1) 

Substituting the value of “s” in terms of “z” and “Ts” results in a difference 
equation. The terms u (k), u (k – 1), e (k) and e (k – 1) represent the controller 
output and error values at present time (k) and a previous sample time (k – 1). The 
output of the PI controller equation is then, 

                                      u (k) = u(k – 1) + [c1e(k) – c2e(k – 1)] (6.2) 
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c1 and c2 are constants, that change when sampling time Ts changes.   The block 
diagram of the above PI controller difference equation reduces to a generic format 
as given in Eq. 6.2 and shown in Fig. 6.4. The arithmetic discussed in Chap. 2 is 
useful for computing Eq. 6.2. The timing diagram of the PI controller is shown in 
Fig. 6.5. 
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Fig. 6.4. Implementation of a PI digital controller 
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Fig. 6.5. Timing diagram of digital speed controller, with sampling time Ts 

The difference equation represented in Fig. 6.4, consists of two delay 
elements, two coefficient multiplications and an addition/subtraction block. 
Because delay, multiplication and addition/subtraction are synthesisable these 
operations are implemented in FPGA fabric without consuming large logic 
resources. A state machine ensures that the output of the PI controller is activated 
in every sampling period and the controller is prevented from wind-up error. 

6.2.3 Power Module 

The output of the torque-current controller provides a set point to the power 
module of the firing control circuit. The sampling period of the firing circuit varies 
with the type of power module topology. For a single-phase rectifier circuit (see 
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Example 3.7), the sampling period for each firing circuit update is calculated using 
a zero crossing of the input waveform supplied by synchronizing transformer. For 
a 50-Hz input voltage to the rectifier, this time is 3.33 ms. To generate a sinusoidal 
PWM voltage using a three-phase bridge, the power devices of the bridge are 
switched at a frequency around 20 kHz. 

6.3 Case Studies for Motor Control 

The type of motor used for robot joint axis control varies. Simple robots use the 
stepper and DC motor for joint control. Contemporary industrial robots use AC 
servomotors such as a permanent magnet synchronous motor (PMSM) for axis 
control. This section describes different motors and their control techniques. 

6.3.1 Stepper Motor Controller 

A stepper motor is an electric machine that rotates in discrete angular increments. 
A cross-sectional view of the motor is shown in Fig. 6.6. The angular increment is 
used to calculate the number of steps needed to complete one revolution. Because 
stepper motors move to a commanded number of steps, many stepper motor 
applications do not require position sensing. This decreases the complexity of 
stepper motor movements. Stepper motors are used in a variety of applications 
such as printers, plotters, X–Y tables, image scanners, copiers, medical apparatus 
and other devices. 
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Fig. 6.6. Cross-sectional view of the stepper motor 

From the digital control point of view, the stator poles of the stepper motor need to 
be periodically excited to cause movement of the permanent magnet rotor.  The 
excitation table of a motor varies from options that give single step movement with 
one or two winding excitation. Simultaneous excitation of two windings provides 
greater torque than one winding. Tables 6.1 and 6.2 show half step excitation that 
increases the resolution of the movement. 
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Table 6.1. Stepper motor full step, single-phase excitation 

 Winding 
A 

Winding B Winding 
C 

Winding D Rotor 
position 

Mode 1 1 0 0 0 0 

Mode 2 0 1 0 0 θ 

Mode 3  0 0 1 0 2θ 

Mode 4 0 0 0 1 3θ 

Table 6.2. Stepper motor full step, two-phase excitation 

 Winding 
A 

Winding 
B 

Winding 
C 

Winding 
D 

Rotor 
position 

Mode 1 1 1 0 0 0 

Mode 2 0 1 1 0 θ 

Mode 3  0 0 1 1 2θ 

Mode 4 1 0 0 1 3θ 

Example 6.1. Write a Verilog HDL code that controls the speed and direction of a 
stepper motor working in single-phase excitation, as given in Table 6.1. 

The code listed in Fig. 6.7 provides excitation to two of the four coils of the stepper 
motor stator. The FSM ensures that the correct sequence is followed for coil 
excitation. The direction of rotation is varied by changing the sequence of coil 
supply denoted by coil_supply_f and coil_supply_r. 
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module stepper (input clk, rst, dir, output [3:0] coil_supply); 
 
`define reset 3'd0   `define step1 3'd1   `define step2 3'd2  `define step3 3'd3 
`define step4 3'd4 

reg [2:0] ps, ns;  // present state (ps) and next state (ns) registers 
wire clk_spd; 
reg [3:0] coil_supply_f, coil_supply_r; 
 
assign clk_spd = clk;   // Based on desired motor speed , the clk_spd is set 
 
always @ (posedge rst or posedge clk_spd)  // state transition 

begin 
if (rst) 

ps <= `reset; 
else  ps <= ns; 

end 

always @ ( ps )    // selection of next state and change of output 

begin 
case  (ps) 
`reset : begin 
  ns <= `step1; 
  coil_supply_f <= 4'b0000; 
  coil_supply_r <= 4'b0000; 
 end 
`step1 : begin 
   ns <= `step2; 
   coil_supply_f <= 4'b0011;  //  4’b DCBA windings 
   coil_supply_r <= 4'b1001; 
 end 
`step2 : begin 
   ns <= `step3; 
   coil_supply_f <= 4'b0110; 
   coil_supply_r <= 4'b1100; 
 end 
`step3 : begin 
   ns <= `step4; 
   coil_supply_f <= 4'b1100; 
   coil_supply_r <= 4'b0110; 
  end 
`step4 : begin 
   ns <= `reset; 
   coil_supply_f <= 4'b1001; 
   coil_supply_r <= 4'b0011; 
  end 
default begin 
   ns <= `reset; 
   coil_supply_f <= 4'b0000; 
   coil_supply_r <= 4'b0000; 
  end 
endcase 
end 

assign coil_supply = ( dir == 1'b1) ? coil_supply_f : coil_supply_r; 

endmodule 

Fig. 6.7. Verilog code for control of  a stepper motor 
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6.3.2 Permanent Magnet DC Motor 

The permanent magnet DC motor is one of the most commonly used motors. Its 
characteristic of providing a speed proportional to the applied voltage makes it 
very simple to control. As shown in Fig. 6.8, an H-bridge configuration is used to 
provide four-quadrant speed control to DC motors. The control scheme consists of 
a free running counter that generates a ramp signal. This ramp is used for setting 
the duty cycle of the PWM signal. As illustrated in Fig. 6.9, the counter value is 
compared with a control voltage (Vc). The higher the value of Vc, the higher the 
duty cycle of the PWM voltage. The voltage across the motor terminals is the 
average value of the duty cycle of the PWM. 
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Fig. 6.8. Permanent magnet DC motor control using a field programmable device 
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Fig. 6.9. Change in PWM duty cycle based on the value of the control voltage Vc 
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module pwm (input wire [7:0] vc, input clk, input rst, output reg pwm); 

reg [7:0] counter ; 

always @ ( posedge clk) 
begin 
 if (rst) 
  counter = 8'h00; 
 else if (counter < vc ) 
  begin 
   pwm = 1'b1; 
   counter = counter + 1; 
  end 
 else 
  begin 
   pwm = 1'b0; 
   counter = counter + 1; 
  end 

 end 

endmodule 

Fig. 6.10. Verilog code for PWM control of a PMDC motor 

The Verilog code of Fig. 6.10 shows a counter circuit along with comparator 
logic. For values of Vc less than the counter value, the PWM output is set at logic 
1, else it is set at logic 0. A section of the synthesis report in Fig. 6.11 shows 
identification of an 8-bit counter, 8-bit comparator and a 1-bit register for the 
PWM output signal. 

 
Fig. 6.11. Synthesis report of a PWM controller for a PMDC motor 
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Dead Time Control 
The power device bridge is susceptible to shoot-through faults, when devices on 
the same leg turn on together. To prevent shoot-through problems, a finite delay is 
incorporated in the turn on and turn off of the upper and lower devices of a power 
bridge. Many DSPs targeted for motor applications have dedicated hardware for 
dead time control. A programmable dead time timer is interlocked with the drive 
ok permissive. Figures 6.12 and 6.13 show dead time delay logic and HDL 
implementation to provide delayed output of a device triggering signal. 
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Fig. 6.12. Logic for implementing a dead band for a PMDC motor H-bridge 

The HDL code shown in Fig. 6.13 consists of the logic, to control the upper 
device of a given leg. The input signal A is multiplied by a time (dead-time) 
delayed signal dA  to obtain the control signal of the upper device.  Dead time for 
the circuit can be modified by changing the constant (6’h3C), that is used for 
comparison with the count value.  

The reader is encouraged to write a HDL code that will control the upper and 
lower devices of the three legs of a power bridge (since dead-time is a frequently 
used component in motor control, try to design using a re-usable instance based 
approach). 
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module deadtime (input rst ,a ,clk , output upper_sw ); 

reg [5:0] count; 
reg da ; 

always @ (posedge clk or posedge rst) 
 begin 
  if (rst) 
   begin 
    da <= 0 ; 
    count <= 0 ; 
   end 
  else if (a) 
   begin 
    count <= count +1 ; 
    if (count == 6'h3C)  // count based on clock frequency 
           da <= 1'b1; 
   end 
  else if ( ~a) 
   begin 
   count <= 0 ; 
   da <= 1'b0; 
   end 

 end 

assign upper_sw = a && da; 

endmodule 

Fig. 6.13. Verilog code for setting dead time between devices on the same leg of  an H-
bridge 

6.3.3 Brushless DC Motor 

A brushless DC motor has a rotor with permanent magnets and a stator with 
windings. It is also referred to as a trapezoidal permanent magnet AC motor. The 
working is similar to a DC motor, but here the rotor position is determined by 
sensors, and the winding current is switched by control electronics. This eliminates 
the need for brushes and commutators in conventional DC motors. The removal of 
brushes leads to less noisy and more reliable operation. A Hall effect sensor is used 
to provide information to synchronize stator excitation with rotor position. The 
rotor magnets are used as triggers to the Hall sensor. The three Hall sensors are 
placed 120° apart on the stator frame. 

The energized stator field leads the rotor magnet and moves ahead as soon as 
the rotor is about to align with it. As shown in Fig. 6.14, signals from the three Hall 
sensors are processed by a logic circuit to determine the position of the rotor at any 
time. This information is used by the driver circuit to energize appropriate motor 
windings by turning on transistor switches of different legs of the transistor bridge. 
With the help of the rotor position data, a six-step trapezoidal control is obtained 
by turning on/off different transistors shown in Table 6.3. 
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Fig. 6.14. Brushless DC motor control circuit using a FPGA 

Table 6.3. Six step changes for 120° difference in Hall sensor positive edges 

Hall sensor feedback Transistor bridge  

S1 S2 S3 T1 T2 T3 T4 T5 T6 

1 0 1 1 0 0 0 1 0 

1 0 0 1 0 0 0 0 1 

1 1 0 0 1 0 0 0 1 

0 1 0 0 1 0 1 0 0 

0 1 1 0 0 1 1 0 0 

0 0 1 0 0 1 0 1 0 

1 0 1 1 0 0 0 1 0 

6.3.4 Permanent Magnet Rotor (PMR) Synchronous Motor 

A permanent magnet rotor synchronous motor provides synchronous operation 
from no load to full load for applications requiring precise speed control. These 
motors incorporate a permanent magnet in the rotor to form salient poles for 
synchronous operation. PMR motors synchronize with the applied frequency with 
zero slip. For synchronized applications requiring variable speed, these motors are 
very well suited because they do not need feedback for speed regulation. A 
conveyor belt like the one shown in Fig. 6.15 can use open-loop synchronized 
drive operation. In this open-loop V/Hz control scheme, sudden changes in speed 
reference can cause the motor to lose synchronism. 
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Fig. 6.15. Synchronized conveyor belt operation using PMR motors 

Many algorithms are available to generate three-phase variable frequency voltage 
for controlling a PMR motor. The space vector pulse width modulation (SVPWM) 
is one algorithm. SVPWM uses base vectors formed by the eight unique switching 
vectors. The switching sequence for the inverter switches is mentioned in Table 
6.4. Each combination is generated by six devices of the inverter circuit shown in 
Fig. 6.16a. One 360° revolution of the space vector operation is divided into six 
sectors of 60° each. For each sector, two base vectors are defined, and their 
intermediate values are calculated by projecting the base vectors. The switching 
intervals for one sampling interval Ts is shown in Figure 6.16b. 

Table 6.4. Space vector voltage based on device switching 

State On devices Space vector voltage 

0 4 5 6 V0 (000) 

1 1 5 6 V1 (100) 

2 1 2 6 V2 (110) 

3 2 4 6 V3 (010) 

4 2 3 4 V5 (011) 

5 3 4 5 V5 (001) 

6 1 3 5 V6 (101) 

7 1 2 3 V7 (111) 
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Fig. 6.16. a Concept of SVPWM generation of switching signals for one sampling period 
Ts;. b PWM counter resolution for different system clock frequencies 

A reference voltage |Vref | is derived using the volts/hertz profile for the motor. 
The value of |Vref | is used to calculate the dwell time Ta,Tb and T0 of the base 
vectors. The time periods Ta and Tb are determined using Eqs. 6.3–6.5. VDC is 
the DC link voltage to the inverter bridge. 

                      
3*V

sin*|refV|*Ts*2T
DC

a
θ

= . (6.3) 

                  
3*V

)60sin(*|Vref|*Ts*2T
DC

b
θ−

= . (6.4) 

                                 )TbTa(TsT0 +−=  (6.5) 
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A complete digital block diagram for the SVPWM is shown in Fig. 6.17. It 
involves computation of Eqs. 6.3–6.5 using HDL. 
 

 
Fig. 6.17. Digital data flow diagram of SVPWM logic block. Input to block is the reference 
frequency, and output is the dead time compensated triggering signal for a three-phase 
bridge. 

6.3.4.1 Sine Look-up Table 
The value of sine theta varies from zero to sixty so a block RAM-based LUT is 
used for storing values of sin θ. The value of sin θ is multiplied by 255 to make it 
an 8-bit integer value, stored in the LUT. The software simulation shown in Fig. 
6.18 shows the working of  sin LUT with variations of theta and sector. 

 
Fig. 6.18. Simulation results of SVPWM sine LUT functioning with changing theta and 
sectors 

6.3.4.2 Variable Pulse Frequency Generator 
Frequency for changing the speed of the motor is realised by using a variable pulse 
frequency generator. The generator varies the incremental rate of theta for different 
command speeds. 
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Example 6.3. Calculate theta frequency in hertz for a four pole motor to rotate the 
motor at 1500 rpm. The rate of theta change is given by Eq. 6.6. 

 ( )secondpersrevolutionrps*360
dt
d

=
θ  (6.6) 

 kHz. 9
60

1500*360 ==  

The HDL code for the pulse generator takes a count proportional to the desired 
speed and generates a pulse train for increasing angle theta. Every time the internal 
counter equals the count to be reached, a bit is set for generating the pulse train. 
The entire code is listed in Fig. 6.19. 

module pulse_gen ( input [16:0] count, clk , rst output pulse  ); 

 reg [16:0] count_int; 
 reg temp,dn ; 

 assign pulse = dn; 

 always @ ( posedge clk  or posedge rst ) 
  begin 
   if (rst) 
    begin 
     count_int = 0; 
     temp = 1'b1; 
    end 
   else if ( count_int != count   ) 
    begin 
     count_int = count_int  + 1; 
     dn = 1'b0; 
     temp = 1'b0; 
    end 
   else if ( count_int == count  && temp == 1'b0 ) 
    begin 
     count_int = 0; 
     dn = 1'b1; 
     temp = 1'b1; 
    end 

  end 

endmodule 

Fig. 6.19. Variable frequency pulse generator 
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6.3.5 Permanent Magnet Synchronous Motor (PMSM) 

A PMSM motor is also referred to as a sinusoidal permanent magnet AC motor.  It 
is widely used as a joint actuator for industrial robots. The control scheme for   
PMSM,  shown in Fig. 6.20, consists of two control loops:  (i) an inner current 
control loop and (ii) an outer speed control loop.  The reference command speed 
ωm* is compared with the actual speed of the drive, ωm and the speed error is 
processed through the speed controller. 

 

 
Fig. 6.20. Control scheme for a permanent magnet synchronous motor 

At the kth sampling instant the motor speed error of the controller is given by 

                ( ) ( ) ( )kkk m
*
merror ω−ω=ω  (6.7) 

and the change in speed error is given by 

           ( ) ( ) ( ).1kkk errorerrorerror −ω−ω=ωΔ  (6.8) 

The q-axis current command in terms of the torque command is, 

 ( ) ( )
t

*
e*

q K
1kT1ki +

=+  (6.9) 

A limiter is applied to saturate the controller output at a maximum inverter or 
motor (whichever is small) current rating. The output of the limiter is written as 

 ( ) ( )
( )⎪⎩

⎪
⎨
⎧

−≤+−

≥+
=+ .

i1kifori
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1ki *
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*
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*
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*
q

*
maxq*

q  (6.10) 
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The output of the speed controller is the torque command for the drive, Te*. 
The electrical torque of the drive is directly proportional to the q-axis current 
component of the PMSM. Dividing the torque command by the torque constant, 
the q-axis current command is obtained. The scaling of the torque component of 
current is motor specific and is obtained by dividing the torque command by the 
PMSM torque constant, Kt. The rotor position and speed sensed with a resolver 
coupled to the shaft of the PMSM. The speed/position measurement block 
generates electrical shaft angle position Өe, which is used to get abc-axis reference 
currents. The electrical angle Өe is equal to the mechanical angle Өm multiplied by 
the motor pole pairs. The d-axis current component which decides the de-
magnetization current component of the PMSM is kept at zero. The reference 
values of the q-axis and rotor position (angle) are used to calculate three-phase 
reference currents *

asi , *
bsi  and *

csi  as shown in Eq.  6.11. The PMSM motor in this 
discussion is assumed to have four pole pairs.  

 

.
3

44sinii
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24sinii
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 (6.11) 

The current controller module compares the three-phase reference currents with 
the actual currents and generates switching signals for power devices of the PWM 
inverter. The controlled switching of the PWM inverter generates a variable 
frequency, variable magnitude, three-phase sinusoidal motor current to achieve the 
desired speed regulation. 
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Fig. 6.21. Control scheme for a permanent magnet synchronous motor 
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Fig. 6.22. Digital block diagram of a hysteresis reference current generator 
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Fig. 6.23. Logic circuit for hysteresis controller 
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Fig. 6.24. Simulated current reference waveform 

The FPGA implementation scheme for PMSM motor control is shown in Figs. 6.21 
and 6.22. The digital block diagram of the code is shown in Fig. 6.22. Actual stator 
currents ias and ics are sensed using two current sensors, and the third current ibs is 
calculated as the negative sum of the two sensed currents. The actual currents are 
compared with the reference currents and current errors are sent to respective 
hysteresis current controllers (see Fig. 6.23). The switching pulses generated by 
current errors iaerror, iberror and icerror, are applied to devices in the inverter legs of 
phase a, phase b and phase c. A simulated current reference waveform using the 
HDL model of the control scheme is shown in Fig. 6.24. 
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Problems 

1. Develop a FPGA-based three-phase sine wave generator, using the 
sinusoidal PWM shown in Fig. 6.25. An isosceles triangular carrier wave is 
compared with a fundamental frequency modulating wave. The points of 
intersection determine switching instants for the power devices. 

 
Fig. 6.25. Creating a sinusoidal PWM signal 

2. Rapid deceleration of a motor drive feeds back voltage to the DC bus of the 
inverter circuit. A dynamic braking circuit compares the DC bus voltage 
against a preset reference and then turns on a switch through a resistor to 
dissipate the excess voltage. The power circuit and the logic diagram are 
shown in Fig. 6.26a and b. Write a Verilog code to sense the DC bus 
voltage and control the switch of the braking resistor. 
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Fig. 6.26. a Power circuit diagram for dynamic braking; b timing diagram for dynamic 
braking 
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Prototyping Using FPGA 

FPGA provides a platform for rapidly prototyping digital systems. High-volume 
digital systems are prototyped using FPGAs to avoid possible re-spins. FPGA-
based prototyping boards that incorporate necessary interfaces and memory chips 
are used for this purpose. In this chapter we take a look at how a FPGA can be 
used to develop and debug the hypothetical robot controller discussed in the 
previous chapters. 

7.1 Prototyping Using FPGAs 

Prototyping a FPGA-based system involves creating a physical system that can be 
tested using the FPGA as a controller. Before a digital system can be used for 
prototyping, many functional checks need to be done. Just like other digital 
systems, physical prototyping in a FPGA is preceded by functional simulation and 
emulation. The book [1] on prototyping of digital systems using FPGA is a good 
reference. 

Behavioural simulation tests for functional requirements. Functional 
requirements for a digital system are tested with the help of software test vectors. 
The microprocessor simulator gives insight into digital logic functional simulation. 
A microprocessor simulator provides data on internal registers of the processor 
while stepping through the code or at pre-determined break points. The simulation 
environment does not support the timing requirements of the digital system. Due to 
this, the simulator cannot provide for real delays. The speed of the simulator is tied 
to the microprocessor and the clock of the workstation on which the simulator is 
running. Emulation helps overcome the constraints of functional simulation. In the 
microprocessor world, the emulation environment allows access to the internal 
registers of the ISA. Dedicated hardware operates at the same clock frequency as 
that of the target chip and has equivalent ISA to test the system.  This ensures 
creating real-time delays and offers a realistic estimate of speed. Simulation of 
digital design by including path delays and logic delays can be considered a 
component of emulation. 
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The last check for any digital design is to make it work in silicon. A hardware 
prototype tests the logic in silicon, and it also speeds up the process of verification. 
In most real-time systems, the clock needs to be scaled-down by a factor of 10,000. 
The clock requirement for stepper motor control described in Sect. 6.3.1 is of the 
order of kilohertz. Checking the stepper motor logic (see Fig. 6.7) with a system 
clock of megahertz takes lots of simulation cycles. Hardware test equipment such 
as a logic analyzer or oscilloscope can be used to quickly test for functionality. 
Table 7.1 describes simulation and physical verification on a FPGA-based system. 

Table 7.1. Tools used for simulating and physically verifying FPGA-based digital designs 

Simulation Physical Verification 

Behavioural simulation: 
Achieved using test benches and 
simulation software. The simulation 
model does not take into account 
element and interconnect delays of the 
circuit. 

Post Place and Route Simulation: 
A delay model is obtained after the 
design has been placed and routed. An 
estimate of the delay is available to 
determine the speed of the circuit. 

• Viewing internal and external 
signals on an oscilloscope. The 
signals need to be brought out 
to the GPIO pins or to a DAC. 

• Multiple digital channels can 
be viewed using a logic 
analyzer 

• FPGA internal signals can be 
viewed using the ChipScopeTM 

tool 
• A protocol analyzer for 

checking communication 
protocols 

To check a digital design on a particular FPGA, an electronic ecosystem consisting 
of ADC, DAC, memory chips, physical interfaces and display and input devices is 
created on a board. This board is referred to by many vendors as the starter board27. 
For all preceding examples in this book, the designs were targeted at a Xilinx 
SPARTAN-3ETM FPGA. Figure 7.1 shows a board of a digital system built around 
a SPARTAN-3ETM FPGA. 

To implement digital logic inside an FPGA, constraints are used to lock pins to 
particular signals within the HDL logic or to connect to chips on the prototyping 
board. The most frequently used constraints are shown in Table 7.2. 

                                                 
27 A FPGA-based starter board consists of a FPGA surrounded by other peripheral devices.  
FPGA vendors provide such boards to prototype systems around the target FPGA device. The 
Xilinx SPARTAN-3ETM prototyping board consists of two RS232 serial ports, four DIP switches, 
four push buttons, 8 LEDs, a VGA port, a character LCD display, a PS/2 port, a push-button 
rotary encoder, a SPI analog to digital converter, a SPI digital to analog converter, a 10/100 
Ethernet port, a 2-MB SPI flash, a 16-MB of parallel NOR flash and a 64-MB double data rate 
synchronous dynamic random access memory (DDR SDRAM).  
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Fig. 7.1. Partial diagram of Xilinx SPARTAN-3ETM based starter kit [2] 

Table 7.2. Summary of typical FPGA constraints during design implementation 

Constraint Use Example 

Pin Lock I/O signal to FPGA pin NET “name” LOC = "F9"; 

Area Specify area on the floor-plan for 
design placement  

AREA_GROUP 
“group_name” RANGE = 
SLICE_X6Y6: 
SLICE_X5Y5; 

Global logic Specify use of particular block 
RAM, multiplier or DCM 

INST “mult_name” LOC = 
MULT18X18_X0Y0; 

The pin locking constraint is used to connect the FPGA pin to the external device 
pin. A FPGA board consists of connections to switches, push buttons, a knob, LCD 
and to expandable connectors. The LED output pin constraint shown in Fig. 7.2 
provides the option to define the slew rate (fast or slow) and the current drive 
capability in milliamperes. 

NET "LED<7>" LOC = "F9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ; 
NET "LED<6>" LOC = "E9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ; 
NET "LED<5>" LOC = "D11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ; 
NET "LED<4>" LOC = "C11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ; 
NET "LED<3>" LOC = "F11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ; 
NET "LED<2>" LOC = "E11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ; 
NET "LED<1>" LOC = "E12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ; 
NET "LED<0>" LOC = "F12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ; 

Fig. 7.2. Pin constraints for the LEDs onboard. The DRIVE parameter specifies a current of 
8 mA [2] 
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To place a digital design in a pre-defined area on the FPGA chip, an area constraint 
is used, where the row and column of the starting and ending slices are defined. 
The area start and end points are diagonally opposite. 

 INST design_d * LOC = SLICE_X1Y1: SLICE_X15Y5; 

This places the logic in the area determined by slice (X1,Y1) and (X15,Y5). The 
constraint is implemented provided the design fits in the specified area. 

A timing constraint is used to specify timing closure requirements. The 
constraints are defined for input pad to logic, logic to logic and logic to output pad. 

7.2 Test Environment for the Robot Controller 

For prototyping the robot controller, each individual block needs to be tested and 
then integrated together. The design is divided into functional units. In the 
preceding chapters, several components were discussed for the development of a 
robot control system. Table 7.3 lists interfaces needed for the robot controller test 
environment. 

Table 7.3. Mapping the Robot controller to board resources for prototyping 

Interface functionality needed Prototyping board support 
feature 

Start, stop switches, buttons, knob GPIO pins 

Joint motor mounted incremental encoder 
interface 

GPIO pins 

UART for serial communications interface 
with workstation 

RS-232  

External memory chip containing processor 
code for trajectory planning 

DDR SDRAM, FLASH 
PROM 

Display of robot co-ordinates  LCD screen 

Programming of robot co-ordinates RS-232 port 

Motor current feedback SPI-based ADC 

Motor interface (control of power devices 
using GPIO)  

GPIO 

Motor interface testing using a low-pass filter SPI-based ADC  

Motor waveform testing using digital-to-
analogue converter (DAC) 

SPI-based DAC 

The architecture of a robot controller prototyping board consists of the following 
components interconnected. Figure. 7.3 shows connections of the FPGA board- 
based robot controller to different sections of the robot. 
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Fig. 7.3. Interfacing a FPGA-based robot controller with robot signals 

7.3 FPGA Design Test Methodology 

It is difficult to have a formal description of various debugging techniques used for 
physical verification of FPGA-based designs. Designers have their own test 
methodology. This section contains guidelines for testing  FPGA-based hardware 
and software components of the robot controller. The processor-based environment 
discussed in Chap. 4 is tested either by using a debugger or by bringing out various 
parameters to a serial port. The hardware test environment can be tested using one 
or more tools. These include oscilloscopes, logic analyzers and FPGA-integrated 
logic analyzers. 

7.3.1 UART for Software Testing 

The UART-based serial protocol is a useful way of testing processor-based, high -
level code. The print command of C is used to display intermediate values of 
software algorithms.  From Chap. 4, a UART peripheral is configured for standard 
input and output (STDIO). To use the RS-232 functionality, a RS-232 voltage 
translator is connected to the FPGA I/O pin shown in Fig. 7.4a. The voltage 
translator takes input from the FPGA pin and converts logic 0 to +12 volts and 
logic 1 to –12 volts. The pin constraint for one of the RS-232 channels on the 
board is given in Fig. 7.4b. 
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NET "RS232_DTE_RXD" LOC = "U8" | IOSTANDARD = LVTTL ; 
NET "RS232_DTE_TXD" LOC = "M13" | IOSTANDARD = LVTTL | DRIVE = 8 | SLEW = SLOW ; 

b 

Fig. 7.4. a Using the UART interface to debug processor code; b pin constraints for onboard 
RS-232 [2] 

7.3.2 FPGA Hardware Testing Methodology 

The HDL code for PWM control of  the permanent magnet DC motor in Fig. 6.10, 
is used as an example to demonstrate the use of  the internal logic analyzer. The 
logic analyzer allows for simultaneous viewing of multiple signals on the chip. 
Figure 7.5 shows the configuration of ChipScope28 software, where control voltage 
Vc, counter signals, clock and PWM are selected for viewing.  When triggered, the 
on-chip logic analyzer stores a pre-defined number of sample values in the block 
RAM. The number of samples that can be recorded by the logic analyzer is limited 
by the amount  of block RAM available on the FPGA chip. 

                                                 
28 Many times it is not feasible to bring out design registers and nets for debugging. ChipscopeTM 

from Xilinx aids in capturing values of registers and wires from the FPGA device itself.  
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Fig 7.5. Configuring the integrated logic analyzer (ILA) channels of a PMDC motor PWM. 
(Refer to code of Fig. 6.10) 

The use of ChipScopeTM is shown for testing the working of a timer circuit of a 
single-phase controlled rectifier. The quantizer, zero crossing and timer done bit 
are shown in Fig. 7.6a and b. Different timer values are used for illustration. 

 
a 

 
b 

Fig. 7.6. a Timer loaded for zero time delay. The timer done signal appears immediately;  
b timer loaded with a small number. The timer done signal is seen to appear after the 
defined time interval 
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7.3.2.1 Viewing Real-time Signals on an Oscilloscope 
The oscilloscope allows viewing real-time digital and analogue signals. The FPGA 
setup shown in Fig. 7.7 is used to bring out signals to the oscilloscope. The 
working of the dead time delay code from Fig. 6.13 is tested by bringing gate 
signals of upper and lower device to an oscilloscope. In a similar fashion the zero 
crossing code of Fig. 3.39 is tested with an oscilloscope. The oscilloscope 
waveforms for dead time logic and zero crossing are shown in Figs. 7.8 and 7.9. 

FPGA

DAC

 

Oscilloscope

GPIO

SPI

 
Fig. 7.7. Using the DAC to view an internal signal on an oscilloscope 

 
Fig. 7.8. Dead time delay of 1.5 μs between upper and lower switch of an inverter bridge. 
(Refer to code from Fig. 6.13). 

Analogue representation of vectored digital values is done by bringing out the 
signal to a DAC. Table 7.4 lists the signals for connecting a DAC to a FPGA using 
the SPI port. Testing of time varying signals such as sine is accomplished in this 
manner. Figure 7.10 shows the diagram of a sine wave generator, as discussed in 
Sect. 6.3.4. 
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Fig. 7.9. Generation of zero crossing pulses using sample quantizer waveform. (Refer to 
code from Fig. 3.29). 

Table 7.4. Connection details of DAC to FPGA SPI port 

Signal Direction Description 

SPI_MOSI FPGA to DAC Serial data (to be converted to analogue) from 
master to slave 

DAC_CS FPGA to DAC Chip select 

SPI_SCK FPGA to DAC Clock 

SPI_MISO DAC to FPGA Serial data from slave to master 

 
Fig. 7.10. Generation of sine wave. The top wave is the counter for angle theta and the 
bottom waveform is the generated sine wave. Both signals use a DAC for viewing 
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7.3.2.2 Quadrature Encoder Feedback 
Position determination. The incremental encoder is used to determine the position 
of the robot axis. A variable frequency square wave function generator can be used 
to test the working of this module. A code similar to that given in Fig. 2.17 is used 
to measure transitions in the input wave and accordingly. 

Determination of speed. The physical equation for determining speed divides the 
distance (in our case the position) covered by the time taken. The working of the 
HDL speed estimation code in FPGA is ascertained by dividing the value in the 
position register by a known time base. Figure 7.11 shows the block diagram of 
logic to determine speed by using position data. On-chip verification (Fig. 7.12) for 
determining the frequency of a 123-kHz pulse train is done using ChipScopeTM. 

CLK Fixed time 
base 1 ms

Scaling 
Speed in 

rpm

Spd

Encoder 
signal

RST

A

 

 

Position 
counter

Reset  Int

 
Fig. 7.11. Speed estimation logic. A fixed time base of 1 ms is used for determining speed 

 
Fig. 7.12. Physical verification of speed estimation using ChipScopeTM. The value of the 
position counter is 123 in 1 ms time interval. The estimated encoder frequency  is 123 kHz 
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7.3.2.3 Signal Conditioning 
To monitor motor current, the current signal measured by a current transducer is 
fed to the FPGA by an ADC. The motor current is alternating between positive and 
negative rated values, so the corresponding voltage from the current transducer is 
bipolar. If a unipolar ADC is used on the FPGA board, an offset voltage equal to 
the maximum negative voltage is added. Figure 7.13a and b show conversion of a 
bipolar current input to unipolar for the correct interface to the ADC. 
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Fig. 7.13. a Interfacing a motor current signal to a unipolar ADC b Op-amp based circuit for 
getting unipolar current signal 

7.3.2.4 Power Device Interface 
Isolation between the FPGA-based control circuit and the power circuit is achieved 
by using an opto-coupler. As shown in Fig. 7.14, a logic one on the FPGA GPIO 
pin turns on the infrared LED of the opto-coupler through transistor T1 and resistor 
R1. The opto-coupler photo-transistor conducts and cuts off transistor T2. At this 
point, a voltage of 12 volts (determined by the 12-V Zener diode) is available for 
driving the MOSFET gate circuit. When the FPGA output signal goes low, the 
opto-coupler photo-transistor is cut off. Transistor T2 gets a base voltage through 
resistor R2 and conducts through resistor R3. When this happens, there is no 
voltage at the MOSFET gate. 
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Fig. 7.14. Interfacing a FPGA GPIO and a MOSFET gate through an opto-coupler 

For the three-phase bridge circuit as shown in Fig. 7.15, each of the six power 
devices requires a separate driver circuit. 
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S6 D2S5 D6S4 D4

IRF 460

.
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gate drive 
circuit 

interfaced 
with
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Fig. 7.15. Interfacing FPGA GPIO pins to six MOSFET devices of a three-phase bridge 

A high-pass RC filter circuit shown in Fig. 7.16a is used to view SVPWM 
voltage.The output of the filter can be viewed on an oscilloscope (see Fig. 7.16b). 

FPGA

GPIO

GPIO

GPIO
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 a b 

Fig. 7.16. a A high-pass filter circuit to view a SVPWM waveform; b the resultant filtered 
waveform for one phase viewed on an oscilloscope. Details of SVPWM are discussed in 
Sect. 6.3.4. 
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Hardware-in-the-loop Testing 
Hardware-in-the-loop allows testing FPGA-based signal processing algorithms. It 
uses o MATLAB® Simulink® environment and Xilinx System GeneratorTM tool to 
provide test vectors. These test vectors are routed through a JTAG port on the 
FPGA-based hardware (see Fig. 7.17). The output from the FPGA is again brought 
back to the same screen using the JTAG connection. This allows for cross-
verification of the simulation and the physical test results for an algorithm. 
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Software
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Fig 7.17. Hardware-in-the-loop test methodology [3] 

Problems 

1. Use the digital block diagram shown in Fig. 7.11 to estimate a range of 
frequencies from a function generator. Comment on the limitations of using 
a fixed time base. 

2. Figure 7.18 is used for rotor position initialization of a permanent magnet 
motor. Before the motor is started, the stator windings are given rated 
current, so that the rotor can lock to a known position. Write logic for a 
current regulator to measure current using a current sensor to limit the 
switching of devices 1, 5 and 6 to rated value. 
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Fig. 7.18. PMSM motor rotor initialization 
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