Microprocessor Design

Principles and Practices
With VHDL

Enoch O. Hwang

© Brooks / Cole 2004

To my wife and children Windy, Jonathan and Michelle

1.

Contents

DESIGNING @ IMICIOPIOCESSONvvvvtseereateteseatesteseeteseesessesseseabessesesbesseseesesseseebesees e b e b e s e abe st e s e ab et es e benben e abenbeneaneneenes 2
1.1 OVErVIEW OF @ IMIICTOPIOCESSOL ...vvveuieriiiesiesteeteseestesees e stestesteaseasaeseen e stesaesseasaeseaseeneeseessesseaseeseensensesennsensnasens 2
O B TS T | A o1 = Tod 1 o I T USSR 4
1.3 Examples for a 2-iNput MUIIPIEXETcviveieiee st ettt r e e e seenrenneaneas 4

131 BERAVIOTAl LEVEL.ottt et e et e et e e et e e s e e sreesraesreenreennas 5

1.3.2 (G I I SRS 6

1.3.3 TIANSISEON LEVEL ...ttt et te et e et e s aeesae e e beesbeeteesaeesteesbeebaesteereens 6
I Y 1 | OSSOSO PSP PSTPRIPRPRN 7
ST Y 01101 OO SOV UR SO UPUPTTTPRPRPRTO 8
LG o] [T T o] T Lo SO S U U TSSO UPPUTURPRPROS 9
O A TW 3 UV O =T T USSR 9
L4 =3 SO 11

DIGITAI CITCUILS ..ttt ettt sttt e s bt s bt s bt s b bRt bt st s bt bR bt s e bt s bt n b st e bt st et n et s 2
A = 11 0T TV AN 1103 o =T S 2
N = 11 0T 1 VA LT/ S 4
2.3 Basic Logic Operators and LOGIC EXPreSSIONSc.cvuerierereieeeeieestesiesieeseeseesseseestessessssseessessessessessessessenses 5
D 1 111 T I o 1= USSR 6
2.5 Boolean Algebra and BOOIEaN FUNCLIONciiiiiiiii ittt bbb e 6

251 BOO0IEAN ALGEDIA ... bbb bbbt bbbt e e bbb ans 6

252 DUBIIEY PIINCIPIE ...ttt b bbbt b ettt b et et e e e nn e b sbesbeenes 8

25.3 Boolean FUNCLION and the INVEISE.........cuiiiiiic ettt te e be et sraesre e reennas 9
2.6 MINErMS AN IMAXEEIMS ...ttt sttt sttt sttt bbb st et s b e st eb e s b e st et e sbeb e ebeseeseebeneeseebennes 12

2.6.1 Y T4] 10 TSSOSO PR 12

2.6.2 IMLBXEEIITIS ...ttt et bbbt s e e b bRt E Rt e b b e e e R Rt e Rt bt bt e b e n e b s bt b e beenren e 13
2.7 Canonical, Standard, and NON-Standard FOIMS..........coviiiiiiiine e sre e 15
2.8 Logic Gates and CirCUIT DIAQIaAMS.ccuivvieiireieeeeeeiesieseseseestesressesreeeeseeseessestessessesseesesseessessessesseessesenns 15
2.9 Example: Designing a Car SECUTILY SYSIEIMc..iiiiviieieieiieeie ettt e e aeseesresneeneas 17
b2 (O I a1 oo [0 Tod o g (o AV A | 5] TSRS 19

2.10.1 VHDL code for a 2-iNPUt NAND QAt.......ccieiuiiiirerie sttt be e se bbb s 19

2.10.2 VHDL code for @ 3-INPUt NOR GALEcceiieieiiiie ettt bbb e bbb enes 20

2 (O RSIR VA & | D] I oTolo (-1 (o] g W {1]91od 1 To] o PSSP 20
211 SUMMAEY CRECKIIST.ceieee ettt b e bbb e bt b e et eaeese e b e besbesbeeneeneenen 21
A -] (o £ SRR 23
L4 =3 OSSOSO TTTSTSPRTPR 26

COMDINALIONAT CIFCUILS ...ttt ettt bbbt b e st et b st e bt be bttt 2
3.1 Analysis of Combinational CirCUITS.........c.civiierieiire s sae e e e srenresneenes 2

3.1.1 WIth @ TEULN TADIE. ... et e et sa e ebe e 2

3.1.2 With @ BOOIEAN FUNCLIONcoviiiieiiiie ettt st b e e ebese e ebe e 4
3.2 Synthesis 0of ComMBINALIONAL CIFCUILSecvviieieiciecre et e e seeseesreeneenes 5
TR B I=Tot a0 (o] [oT0 VAN 1Y/ =T o o1 oo OSSOSO UUTT TR 6
3.4 Minimization of CombinatioNal CIFCUILSccuiiiiiiiiiie e re e e ee e s esne e 9

34.1 KarNQUGN (K) IMBDS ...ttt bbbt s e b e b et eb e et e e st e s b et e ene e b sbesbenreeneas 9

3.4.2 [T0] g CoF: 1SS PPRPROPRRN 13

343 * Quine-McCluskey (Tabulation) Method.............cooeiiiiiii e 14
3.5 *Timing Hazards and GHICHEScc.ciiiiiiiiiiceee sttt ste s e enaennens 15
Y =T [1o o DTt Lo . T 1] o SRS 16
3.7 VHDL Code for Combinational CIFCUILS........ciueiiirieiitiieicie ettt sbe e 19

3.7.1 Structural BCD t0 7-SegMENt DECOUEN.........eiiiiieerieiiiereste e e e e e eee sttt re e esee e esaeseesaesreeneas 19

3.7.2 Dataflow BCD t0 7-SegMENt DECOUETccvevueieieriereeieiesiesiesiestesieeseeseesse e see e sresseeseeseseessessessessessenns 22

3.7.3 Behavioral BCD t0 7-SegMENt DECOUEciuiiiiieireieieie e ste et ee e te st sra e aesaensesaeseenneens 22

3.8 SUMMAIY ChECKIIST......ecuieiiieiis sttt et e et e st e te s teatesteeneesae e e tesresbeeneeneenens 23

KR T =T (o - OO OO PSPPSRSO 24
40 =3 OO OSSPSR 26
CombiNAtioNal COMPONENES.ccuiiteiuietieiete ettt e e et besb ettt e et eseeseesbesbeebeebeeseeseeseebesbeabeabeaneanee e ebeneesbeneis 2
4.1 Signal Naming CONVENTIONSc.couiiuiitiiteitiatieee ettt sttt ettt be bt e st e e e b e sbesbe st e e st aneasee e ebesbeebesee e 2
A Yo (o [T SO TSSO UPT PR 2
421 Ao [0 L SO U SRRSO 2
4.2.2 RIPPIE-CATY AGUEN ...ttt bbb bt bt bt b e et st e e e nnesbesbesbeans 3
4.2.3 Carry-LOOKANEAA AGUEN ...ttt sb e bbbttt e e bbb sbeenes 4
4.3 Two’s-Complement Representation for Negative NUMDEIS...........ccccviiviieieice s 6
¥ o] (- Tod (o OO SO OTRTTORRPRRSPRO 8
441 Adder / Subtractor COMDINALIONc.cviiiiiiie ettt st et 8
I N)13 1= o oo o g S 10
O B <ol o[- OO OO URTTOO ORI 14
O = 1 ¢7o o T OO TTORTTPTRT 15
4.7.1 e o 1Y =l Teoo T TSROSO ST URRUR 16
I \V [V 1T o] 23 OO USSR UURTRURUR 17
4.8.1 Using Multiplexers to Implement @ FUNCHIONc.ooiiiiiiiiiiice e 20
T B N TS oL C= U i T SO SRR PRSPPSO 20
.10 COMPAIALOIS. .. teteeteete ettt e ste e bt e be e beeseesheesheeabe e bt e bees b e es b e eh e e sE e e e he e ebe e bt emb e eRE e eE s e eE e e ke bt et e e st e e nbeeReeeheeebeenreenis 21
o R a1 (=] g A 0] = (o] SRRSO UR PRSPPI 23
A |V 1T 1] T SOOI 25
4,13 SUMMAPY ChECKIISE.....veiuicieeic sttt re st e reese e e et e te s e e e e teseeseenneeneeneenes 26
O (o[- OSSR 27
INAEX ettt b s b e bR R R R AR R AR R bR AR bR R bt R re b r e 28
IMPlementation TECANOIOGIES ... c.vivevereiterieterte ettt sb e ettt b ettt b e et b et et e bt et e sbe st et e abeneebeane e 2
5.1 PRYSICAI ADSITACTIONitiiieieeiee ettt ettt b e bt bt et e s e e se e b e sbeebeeb e et e eeseeebesneeneenes 2
5.2 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)cccoiiiiiiiiiiie e 3
LT T O 1V 1@ S T 1o o oSSR 4
LR 011V (@ RS O [(ot U OSSP ROUP TP 5
54.1 CIMIOS INVEITET ...ttt ettt bbbt e bt ekt e a et ae e e bt e b e e a ke e s ke e b b e sb e e e b e e nbe e ebe e b e enbeenreeeee e 5
5.4.2 CIMOS NAND QLBeeveiviiiriitiiieietesiest sttt a e ste e s be st e st e be s beseabe st eseebesbeneabesbeseatesbesasentens 6
543 (O8O R N AN o T L S P 7
5.4.4 CMOS NOR N0 OR GALESvevveviiiieiiiterieiesie ettt bbbt bbbt bttt 9
545 TrANSMISSION GALE ...eveieiiiteiieieite ettt sttt ettt sttt s bt et s b et et sb e bt sk b e b e e be st et e e besbe b ebesbe e enentns 9
5.4.6 2-iNput MUItIPIEXEr CIMOS CIICUIL......cveiiiiieieesiese et ettt ne e seesresreenes 9
5.4.7 CMOS XOR aN0d XNOR GALES......cueveiiiteiriinieieiesieieieste sttt sbe st bbb s s st eeseesenee s 11
5.5 ANAlYSiS Of CIMOS CIICUILS ...viuviuieieiiiesiestiseeieie e ste st e et et testesressaese e e e e seestesseeneesaenseseeseesrenneaneas 12
5.6 Using ROMS to IMplement @ FUNCHIONouiiiiiiiie it e 13
5.7 Using PLAS to Implement & FUNCLIONooiiiiiiiiee ettt b 15
5.8 Using PALS to IMplement & FUNCLIONcooiiiiiiiiiieie ettt bbb 19
5.9 Complex Programmable LogiC DEVICE (CPLD)ccciiiiiiiiieiiiesie sttt sttt 21
5.10 Field-Programmable Gate Array (FPGA) ... ettt b e se b eneas 23
5,11 SUMMAEY ChECKIIST.ecuieiiieie sttt e et et s e e s te s reeseeseeneenee e e eestesneeneeneenens 24
B.12 RETEIBNCES ..viteietiite ettt ettt et b et h bbb b s ekt b st b e s bRt e b e bt ekt R ekt R Rt b e e R e bt e bt et e r e et e 24
513 EXEICISES .. uveteterietestesteteate et st eete et st ekt e bt et e eb et ekt eb et ekt eb e e e bt e b £ e bt e R e e Rt Rt e Rt b e Rt R R e Rt e b b e Rt e b et et re e ebe e 25
INAEX ettt b bR R R £ R R R AR R AR R R Rt R e bRt R bt Rt n e b b et e 26
LAtChES ANA FHP-FIOPS ... veutitiieieitiiteieete ettt bbbttt b et b bbbt b bbbttt b et 2
6.1 BISTADIE EIBMENT......cuiiiiiiiiiecee ettt bbb et e b et b e ettt bennes 2
8.2 SR LAICH oot b e et b et e bt et e R et eebena e tenbe e erenrs 4
6.3 SR LAtCh WIth BNADIE ..ottt bbbt e bbb b b 6
I B I I | (o o [OOSR TSRO UPUPTUPRTRTRTON 7

RS B I (o IR 1 g = = o] (R 7

ST T O o T 8

T A B 2 VT o (o] oSS 10
6.8 D FHP-FIOP With ENADIEcoecuieiecce sttt e r ettt e reene s e e et saeeneeneens 12
6.9 ASYNCRIONUS INPULS ...ttt ettt et b e bbb et e e b e e b e s b e bt e b e e e et sbesbesbeeneenens 13
6.10 DeSCription OF & FIIP-FIOPoiiieiiie e bttt bbb ene e 13
6.10.1 CharacteriStiC TaDIEoeie e et bbb bbb eneas 13
6.10.2 CharacteriStic EQUALTON........couiiiieie ittt bbbttt sbe b beeneas 14
6.10.3 STALE DIAGIAM ...eitiitietieiete ettt bbbttt e e et s b e e bt e bt e bt e b e e e e b se e b e e be Rt e b e et et saeebeereenean 14
6.10.4 EXCITALION TADIE...ceiiiiitiiiie et et b bbbttt st b et beebe et e besaeebesbeeneas 14
B.11 THMING ISSUEBS .e.uteteereeutetestestesteateeseesteseestestesseeseaseeseeseesesaeaaeeseesseseese e eesbeeseaseensesee e e nbeseeabeareaneeseeneenteneennenneans 15
6.12 Example: Car Security SYSIEM — VEISION 2.......cccviiiiieieeieieisie e stesese e seeie e srestessasseeseesee e sseseseessesneens 16
6.13 VHDL for Latches and FIP-FIOPS.......cciviiiiieicccsc sttt sne e enaenens 16
6.13.1 Implied MemOrY EIBMENT... ..ot a e se e resreenean 16
6.13.2 VHDL Code for a D Latch With ENabIecoiiiiiiiicee e 17
6.13.3 VHDL Code for @ D FHP-FIOP ..oveiiiiiiciceee sttt st enes 18
6.13.4 VHDL Code for a D Flip-Flop with Enable and Asynchronous Set and Clearcccoovveeieinnenn. 21
B.14 FLIP-FIOP TYPES -.eeteiteitieiiei ettt sttt ettt b e bkt s e e e b e s bt bt s b e e Rt e R e e b e be e bt eb e e b e ebeese et e besbesbeaneaneennens 22
S R o T o o SO 22
S0 SN | L = T o o o OSSPSR 23
S0 e T 1o o OSSOSO 23
6.15 SUMMAIY CRECKIIST. .. .cei ittt bbbttt bbbt ettt ebe e b e et e besbesbesneeneenens 25
B.168 EXEICISES ..vveeteteietesteste ettt sttt sttt sttt b et be bt be bt E e bt E e bR bt Re Rt R e b et e bRt b e bt b e b e ne et 26
INAEX ettt h bR R R R R R AR R ARt R R R AR bR R bt R b n e bt ee 27
SEAUENTIAT CHICUILS ..ttt sttt ettt b e et b et b et b etk s bt b e s b et e b e b et e b e s b et e be s b et et st e bt 2
7.1 Finite-State-Maching (FSIM) MOccueieiiieii sttt e e saesresneeneas 2
7.2 Analysis Of SEQUENTIAT CITCUITS.........viiieieeieriise st e e e e e e sre st e s reenaer e e s eneesresresneaneas 3
7.2.1 EXCItAtION EQUALION ..ottt bbbttt ee e bbbt et e n e e e e nn e b sbesbeens 4
7.2.2 NEXE-SEALE EQUALIONetiiiieeee ettt et b et bbbt s e s e b e b e b bt et e st e e e nbenbesbesbeanes 5
7.2.3 NEXE-SEALE TADIEttt e bbbt e b e b bt et e st e e e sbenbesbesbeanes 5
7.2.4 (@ U 11 o108 =To [V 14T F OO PP PRUROR 6
7.2.5 (O U1 o101 R 1= o] OO UP T RPRROR 6
7.2.6 Y1 (I B T 4 o SOOI 6
7.2.7 Example: Analysis 0Ff @ MOOIE FSMcoiiiioieiic st nre s 7
7.2.8 Example: Analysis 0f @ MEalY FSMcviiiiii st nre s 9
7.3 Synthesis of SEQUENTIAI CIFCUILSviiieiecie ettt re e s e e e aeneeenenneens 11
7.3.1 State Diagram, Next-state and OULPUL TabIES.........cccvvvriviriieiec e 11
7.3.2 IMPIEMENLALION TADIEviieiciieece e et e bt ereere e s 11
7.3.3 Examples: Synthesis 0f MOOIE FSIMS........cciiiiiiiiieicie et ne e 12
7.34 Example: Synthesis 0f @ Mealy FSIM ..o e 17
7.4 * ASM Charts and State ACtION TaADIEScuiiiiiii i et eens 19
A R N1V O3 g OSSPSR 19
7.4.2 StAte ACHION TADIESottt bbbt e e b sbe st b eneas 21
7.5 Example: Car Security SYSIEM — VEISION 3.......ooiiiiiiieiieie ettt bbb e e st sb bbb 22
7.6 VHDL fOr SEQUENLIAL CIFCUILSeiviiieiireieeieie sttt sttt sa e et e st st e resneesee e e naenreerenneens 23
7.7 * Optimization for Sequential CIrCUILScccoiiiiie st reene e 27
7.7.1 K] =L =T [0 104 T o OSSPSR 27
7.7.2 Y= (=0 = 1170 Lo 11 3o OSSPSR 28
7.7.3 (@8 a o] Torc o) T [T T o] oL OSSR 28
TR T =] (o T OO OO SO PSRRI 32
7.9 SEIECTEU ANSWETS.ieetieteeeete ettt ettt et b et beeb e bt e s et e eb e ke ebeeb e e be e Re e R e e e e be e beeb e e b e ebe e b e et e besbesbeeneeneanens 33
0T 1= TSSO UPTPURURURR 37
SEAUENTIAT COMPONENTS. ... vtetite sttt ettt sttt ettt e b e bbbt bt e b e e e e s be e e e eb e e b e ebeeh e e e e s benbeebesbeebeebe e e enbeseeebesee e 2
TN A -0 1) (] £ TR S TP URURTOR 2

8.2 REGISIEN FIIES ...ttt bbbttt b b e bt b e e b e Rt R e et ek Rt bt bt et et e e be b ebeenes 3

8.3 RANUOM ACCESS IMBIMOIYeviieitietieieie sttt e ettt e e aesae st e s testeereesees e se e tesbeaaeaseeneeseeseeseestesbesreeneeneeseeeenneaneenes 6

B I 10 1= gV T3] TSR 8
8.4.1 0 =1V =T o T YR 8
8.4.2 WVIOEE IMIBIMOIY.... ettt bbbkttt b e b bt e bt e st e m b e e e e b e s be e bt e b e e mbeb e e b e ensenbeseeabesbeaneas 8

e O 10 1 (< £ T OO U PSP PP PRTURPROT 9
8.5.1 BINAIY UDP COUNTEL ...ttt ettt ettt b et b e bt bt bt e b e e st e e e eb e et e s e e nbesbeseeebeene e 10
8.5.2 BiNAry UpP-DOWN COUNTET ..ottt ettt sttt sb et e et e besbesbesbeeneenens 11
8.5.3 Binary Up-Down Counter With Parallel LOAdccooiiiiiiiiiiieieieee e 13
854 BCD UP-DOWN COUNTET ...ttt ettt sttt ettt bbb e e sbe e nbe b e e e e sae e ebeenbeabeenbeanbesnneas 14

ST T () =T T 1] (=] SRS 15
8.6.1 Serial to Parallel Shift REGISIETcviiiiieiecce et sresre e eneas 15
8.6.2 Serial-to-Parallel and Parallel-to-Serial Shift REQISIErcovevviieiiiere e 17

40 =3 OSSPSR 19

O DALAPALNS. ...ttt h R R bR R bR R bRt R bRt R bR bt et b et et 2

9.1 GENEral DAIAPALNveviiecii et R e e et e Ee e Reer e et e aena e renreereenes 3

9.2 Using @ General Datapath..........cc.ooiiiiiiiieee et bt e b b eae s 4

0.3 THIMING ISSUBS. ...ttt ettt ettt ettt b e bt bt se e e e btk eb e e b e Rt e R e e e b e ekt £h e eb £ e bt e b e e e e ke e b e ebe e b e e ntebenbesbesbeaneenes 5

9.4 A MOre ComPIeX DAtAPAIN.......ccoiiiie et bbbt bt et ne bbb enes 8

9.5 VHDL for the ComplexX Datapath..........coeciiiiii et s sb et eneas 10

0.6 DediCated Datapath..........coiiiiiiiiiee ettt et e e bbb e 15
9.6.1 SEIECHING REGISIEIS. ...ttt ettt b e bbbt bt et e et e b s bt b e s b e bt e b e e e e besbesbeabeeneas 15
9.6.2 Selecting FUNCHIONAT UNIES.......c.voiiiie ettt seennenneeneas 15
9.6.3 Data Transfer METNOUSciiiiiiiec ettt be e ere e 16

9.7 Using a Dedicated Datapathc.cccviiiieiieiie ettt e e renneenes 17

9.8 Examples: Designing Dedicated Datapaths...........cccviiviiiieiiierieiirese st eneas 17

9.9 VHDL for a Dedicated Datapathc.ccvcveiiereiiiisisie e et nneenes 22

9.10 * Optimization fOr DataPathS.oiiiiiiiiiiee e e bbb e eneas 23
9.10.1 FUNCLIONAl UNIt SNATTNG ... c.iiiiiiiie e bbb bbb e bbb e s 23
9.10.2 REGISIEI SNAIING. ...teiuieeeiteite ettt bbbttt e bt b e b e bt eb et et e s b e b e b e st e b e e e b b ebeenes 23
9.10.3 BUS SNAIING. ...ttt ettt bttt bbbt bRt e R e e b e b e R bt b e e Rt e Rt e bt e e et b e ebenbeene e e neas 23

911 SUMMAEY CRECKIIST.ceieeee ettt ettt bt b e bt e bt et eaeeseenb e besbesbeereeneennens 23

0T 1= TR SO UPTU TR 24

L0 CONION UNIES ...ttt ettt bttt b e s bt s bt s bt s bt s ettt b e st et en e b s 2

L0, L EXEICISES cuveuveteiteieteatesteteateseetestesee bt sbe st e be e b et ebeebe e e ke e be e et e abe e e b e ebe e ekt e b e e eb e eb e e ekt eb e e e bt ek e e e b e e b e ne e R e e b s e e b e ebene et ete e 3

10.2 SEIECIEU ANSWETS......ueiteiietiite ettt sttt sttt et b e e bt b e s bbbt e b e e bt e e b e e b e e bt eb et et e ebene e s e ebesbeseebente e ebe e 4

Index 5

11 DediCAtEd MICIOPIOCESSOIS .. i.vevetereereatesteseatesseseasesseseasesseseesesseseasesseseasesseseabesseseabesteseabenseseabenbeseabenbeneabeneensanentenes 2

11.1 Manual Construction of a Dedicated MICTOPIOCESSONccvvireiieierieriestesreseeeeseessestesresseseeseeeesseseeseessessessens 3

11.2 FSM + D MOl USING VHDL ...ttt bbbttt bbbt bt et bt ne e 11

11,3 FSIMD MOGEL....eiiiiiiiiiieicti ettt sttt bttt be st et e b e se e s e e besb e s e e be st e s e ebesaeseebesbe e eteabeenrens 14

11,4 Beh@VIOral MOUE ...ttt e b bbbttt e b e e be et e bt e e et sbeebesbeeneenens 16

T T 1111 o] L= OSSPSR 18

0T (=) TSSO UTTUURRURR 25

12 General-PurpOSe IMICIOPIOCESSOIS .. .cuviuivereateeeseatesteseasesseseasessesesseseesessessesessesseseasesseseasenseseasensessesenteneasesaeneasensenes 2

12,1 OVErVIEW O the CPU DESIGN ...cvviuieieiieriesie sttt et e st e et et teeteasaesaeae s e tessaeseensenseneenrennenneas 2

12,2 INSEIUCTION SEL....c.viiiitiiietietiiteeete ettt b e bbbt h e bt e e bt e b e e b e e bt nb e bt eb e ne et e et e ne e s e et e nbe e ebe st e ebennes 2
12,21 TWO Operand INSLIUCTIONSecvveuieiirieiese st e ettt et e st e e sre st e neesae e esesae e e naenreereanes 3
12.2.2 ONe OPErand INSIIUCLIONScviviiieiiseseeeeee e see s et ste e e e e e e e tesresre e e eseeseetestesaesreaneesaeseenaesreereanes 3
12.2.3 Instructions Using a MemOry AQUIESScccveveriererieriesnseeieieesieseste e seesaeseesse e ssessessseseeseessessessenses 3
1224 JUMP INSEIUCTIONStitittiti ettt bbbt s e e e b e bbbt et e R e e e b e nbeeb e et e ent e st e eaenbenbeebeans 3

12,3 DALAPATN ...ttt bbb b e A b E e R e Ee R £ e Rt e b eRe bt Rt eReeR e et et naeebenbeeneas 5

12.3. 1 INPUE MUIIPIEXET ..o et bt bbbt ee bbbt et e et et e b e nbesbesbeens 6

20 T O 2 To 1 [a T L =T O 6
12.3.3 ACCUMUIABLON ...ttt bbbttt b e e bbbt bbbttt sttt 6
20 T S = (- o 1) (-1 gl |1 PR 6
12,35 ALU iRt E bRt E ARt E e bRt R Rt Ee bRttt reRe bt ne et 6
12.3.6 SRITIEE / ROTALOTeeeiiteeiieie ettt et bt bbbt h et b e bt eb e et e et et e e e nbesbesreenes 7
12.3.7 OULPUL BUFFEI ...t b bttt b e bt bt b et b e bt e e et e b e be b sbeans 7
12.3.8 CONEIOI WOKA ...ttt bttt h e bbbt bt bt et e b eb e b e s bt eb e et e e nt e st e ebenbesbesbeans 7
12.3.9 VHDL Code for the Datapath..........ccoiiiiiiiee e et 8
124 CONEIOL UNIT ...ttt ettt bbbt e b et e e b e eb e e bt e b e eb £ e R e e R beebe e b e e beebe e s e et e besbenbesneaneas 9
D241 RSB ittt h bR R R R R R R R R R R e Rt R et n e r bRt n s 10
L1242 FOECN o bbb bbbt r e 10
e T I =TT o - OSSOSO 10
L2414 EXECULE ..ottt etttk et bbb bbb et b e R e R Rt bR e bR R Rt n R bRt e s 10
12.45 VHDL Code for the CONtrol UNit........ccooiiiiiiiiieiieies st 11
12,5 CPU oot E R R R R AR R AR R AR bt R e bt b bt Rt b e ne et 20
12,6 TOP-IEVEI COMPULETottt bbbttt b e bt b e bt he e s e e e et e b e eb e e b e ebeebe e e e besbesbesneeneenens 22
T R 1 4 o LU | ST PO P TRV U OPTOPTPRTPRUTN 22
L2.8.2 OULPUL ...ttt ettt h e bt e bt e bt e s bt e a e eb e eE e e b e e e b2 e nb e e ke e mb e eR b e b e e bt e Rb e eabeen b e nb e e nreenrean 22
R T Y 11 oo VTP TSP U P PP ORI 22
I 30 S O (o T OSSP 23
12.6.5 VHDL Code for the COmMPIEte COMPULEToiuiitiitiieeiieie ettt e se e eneas 23
02 A 5 1111 o] =TSO 24
APPENAIX A VHDLSUMIMAIYeviviieiteeieeieiestesiestestestesseeseessessessessesseassaseessessessessessesseasesssesseseessessessessesssnnsessessessensens 2
Al BaSiC Language EIEMENLS.........uiiiieierie sttt sttt re e n et nrenrenne e 2
Y R o] 1114 T=T 0 | TSP ST PP PRSPPI 2
N [0 =T 1 1T £SO PRSP URPPRPRPPUPPRR 2
Y T B - - W @ o 1T £SO SRR PR 2

F N B T 1 Rl Y/ o2 U T OO T RO PTUPTUUTUPTURTUROON 2

F N T B - |- W O <] £ L0] £ T O OO T PR U TP PTUUTURTURTPROPN 4
N T = N I 1 I 2SSO PRTP SRRSO 5
ALT ARCHITECTURE ..ottt sttt sttt abe e et e sb et e te et et e s e ebesbesesbesa e et esaabesaeseatenaes 6
ALLB PACKAGE ..ottt ettt b e et b e et e bt b et E e bt R e b e R e bt Eeebe st e reebe st e reete e e e atenas 7
A.2 Dataflow Model CONCUITENE StALEMENTS......c.viiiiiiciriiicre ettt see 8
A2.1 Concurrent SIgNal ASSIGNMENTccviviieieiese e ste st e et st esbe s e are e e enteaeseesesresrenreens 8
A.2.2 Conditional Signal ASSIGNMENToiiiiiiieiieieee ettt sreere e tesresrenreens 9
A.2.3 Selected Signal ASSIGNMENT......c..oii ittt sresre e eree e et e saeneeaeneesreeneens 9
A2.4 Dataflow Model EXAMPIEcocviiiiiiecce sttt a e e sne e 10
A.3 Behavioral Model Sequential StateMENTSccveveieieie et aesresresreeneas 10
AL PROCESS .. .ottt b et s bt e bt Ee et et £ b et R bt Ee bRttt bt re et it ne et 10
A3.2 Sequential SIgNal ASSIGNIMENTcoiiiiiiiiiii et bbbt b e e bbb enes 10
A3.3 Variable ASSIGNMENT ... bbbt bttt e e e bbb e e 11
N 7N I TSSO PSPRRSN 11
AB5 TF THEN ELSE.. ..ottt sttt sttt sttt ettt bt e b st s e b st et e tenteaene et 11
ALB.6 CASE . bR b e Rt R bRt R e bt b e e Rt b ettt nre e ere s 12
ALBLT INULL. bbb bbb bbb bbbt E e b e bt bt be b ere s 12
ALB.8 FOR bbb e R bR R £ R bR Rt b e Rt bR r e b bt be b et 12
ALB.9 WHILE o e b bbb bt b e R b e bt b bt r e bt et b et 13
ALB.L0 LOOP. itttk b bk bRt h £kt b et b e bt R e bR r bbb nre e ere s 13
AL LD EXIT it bbb e R b e R R R R bR Rt b e Rt bR R e b bt ebe b ere s 13
N TN 2 N1 = [OOSR SO PSPPSR 13
A3 L3 FUNCTION Lottt sttt sttt stttk seebe et et e be s b et e te et e e e be e be s et st et etesbe s erentenaenentens 13
A.3.14 PROCEDURE......ccoitietitt ittt sttt sttt st s b ettt et st e st e be s bt e beebe st et e e be st e besbe st etesbe s e resbe s erentens 14
A.3.15 Behavioral Model EXAMPIEccoiiiiiiiiieese ettt 15
A4 Structural MOGE] SEATEMENTS. ..ottt et sb e bbbt b e e e e besbesbesbeeneas 16
A4l COMPONENT DECIArAIION ..ottt bbbttt e be b b 16

A2 PORT MAP et ettt r et R ettt R et r et r et nnn 16

A3 OPEN et bbb Rt b ekt E et bt bt bt b e e R et bt be bt 17
ALd GENERATE ..ottt st b etk b et b e e bt bt b e bt e bt s bttt s bt et et e re st 17
A4S Structural MOl EXAMPIEc.iiiieece e e bbb e 17
AL CONVEISION ROULINES......cuiiiiiieiie ittt b bbbt bt e s e e b et e sb e eb e s bt eb e e b e e e e besbesbesbeeneaneennas 18
AB5.L CONV_INTEGER() i vetitiiieeitesieeste sttt sttt sttt sttt sttt sttt et e st e eteebe e eteabeseesaetesaeearens 18
A5.2 CONV_STD_LOGIC VECTOR(,) ctiiertattrieriatesieriatesiertatesieestesseestessesessessssessessssessessasessessssessessssessens 19
0T (=) TSSO UTTUURURURRO 20
Appendix B MAXHPIUS TTTULOITALeiveitieiieee ettt et bttt sb e bbb et e s e e e be b sbennas 2
B.1 Creating a Project and Working With FileS.........ccccviiiiiiiiie e 2
2 00 I S v U [I 0 T2 o (o1 OSSR 2
B.1.2 Opening an eXiStiNG PrOJECEciviii e ii et ee ettt et te et e e esae st e tesresre e e e eesnenrenreaneas 3
B.1.3 Creating a project based on an existing VHDL SoUrce file........ccccoovviieiiniiie s 3
B.1.4 Importing existing VHDL source files into the Projectccocvvvviieiiicieicie e 3
B.1.5 Creating new VHDL source files for the Project ... 3
B.2 Synthesis for fuNCtional SIMUIALIONooiiiii bbb 4
B.2.1 Starting the COMPIIET........o bttt e bbbt et saesbesbeaneas 4
B.2.2 SEtUP INPUL SIGNALSueiuie ettt e e e bbbttt et e e b ek s bt e bt et e besbesbesbeeneas 4
B.2.3 Set up and view SImUIation tiMe FANQEcoiiiiiii ettt sre st eneas 6
B.2.4 ASSIgN VAIUES t0 INPUL SIGNAIS......couiiiiitiiiieee ettt b e bbb 6
B.2.5 SIMUIBTION. ...ttt ettt e bbb bt bt b et e n b eaeeb e s bt bt e R e e b et shesbeebeeneas 8
B.3 Synthesis for programming the FPGAcooi ettt et eenresrenne e 9
B.4 Programming the FPGAceoie ettt sttt sttt et e e se e s e ee st e s besneeteenseneeneenrenreeneenes 10
B.5 RETEIENCES ..ottt b bR R R e Rt bbbttt ne et 11
MEXHPIUS T TULOTTALcveeeseee ettt bbbkt sb bt b e e e bt e b sb e s e e b st e s e ebe st e s e ebe e 1
USING e VHDL EQIOFiiuiiiiiiciccsc sttt ettt teene e s e e et e s te et e sbeeneenae e eneeneeneenreanens
SYNENESIS .ttt bbbt E e e Rt E b e R b e R £ R £ e R £ e R oAb e Rt AR e SR e R £ e R e e R oAb e Re bt eE e e Rt e R e e e e be e ebenre e
STMUIBLION .ttt e bt bt bt b e R e h et e a b e be e h e e b e e R e 2R e e b e ke e b e ebeeb e entas e e e enbeseesbenre e
USING the FIOOIPIAN EQITOF.......ciuiiiiiiiieie ettt b e bbbt h e e e e s be s bt st e bt e b e e e e besbesbesbeaneas

Downloading @ CIFCUIT T0 FPGA ...ttt ettt bbb bbbt bt e he e s e e bt st e bt e s e e s e besbesbenbesneas

Chapter 1 — Designing a Microprocessor Page 1 of 11

Table of Content

TADIE OF CONTENT ...t b e et b etk b et bt e b et ek s b et e b e b et et e b et e be s b et e be s be e e benbe st e benbens 1
1. DESIGNING & MICIOPIOCESSOLvvuveriereiieseestestesseeseeseesteseesteseessesseaseeseessesseseessessesseaseeseessesaessesseaseasesssesenseessessessenses 2
L1 OVEIrVIEW OF @ IMIICTOPIOCESSONvvivveviiiesiesteeteeseestesee e stestesteaseaseeseesteseeasesseasaeseeseenseseessesseaneeseessenseseessessnssens 2
1.2 DeSign ADSITACTION LEVEIScviiiieiieiece ettt s e e e e see st e besne et eensenaeseenrenrenneas 4
1.3 Examples for a 2-inPUt IMUITIPIEXETeuiiii i bbb e bbb 4
131 BEAVIOTAL LEVENoecieeece ettt ettt e et e st e e s te e be e ste e ae e e e saeeaaeenre e e 5
132 (T I I SR 6
1.3.3 LIS (o] g =Y - PSPPSR 6

O Y | | OSSPSR PSPPSR 7
R V0114 1o LSO SO TPV URUPPRPTRTRTON 8
RGN €0 1o T o 4 U RSSO 9
L7 SUMMAEY ChECKIISE .. .cviiiiiiiceictcee sttt eese e s e e s e e seestesseeneereenseneeseeneenrenneas 9
4T =3 OSSOSO 11

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:23 PM

Chapter 1 — Designing a Microprocessor Page 2 of 11

1. Designing a Microprocessor

Being a computer science or electrical engineering student, you have probably assembled a PC. You have gone
out to purchase the motherboard, CPU, memory, disk drive, video card, sound card and other necessary parts. You
have assembled them together, and have made yourself a state-of-the-art working computer. But have you ever
wonder how the circuits inside those IC (integrated circuit) chips are designed? You know how the PC works at the
system level by installing the operating system and seeing your machine comes to life. But have you thought about
how your PC works at the circuit level? How is the memory designed or how is the CPU circuit designed?

In this book, 1 will show you from the ground up how to design the digital circuits inside the PC, or more
precisely, the circuitry inside those black IC chips. Specifically, I will show you how to design the logi¢circuit for a
microprocessor, which is at the heart of every electronic device. This may sound way too complicateh@:%. 't let
that scare you because it is really not all that difficult to understand the basic principles of how aﬂcro@@or is
designed. We are not trying to design the Pentium® microprocessor, but after you have I@i@yﬁe aterial
presented in this book, you will have the basic knowledge to understand how it is designed. E»Q:h}bgh the small
dedicated microprocessors are not as powerful, they are being sold and used in a lot more \Ig

general microprocessors that are used in PCs. AN

»
jﬁn the powerful

/
Dedicated microprocessors are used in every smart electronic device such as /mucwfﬂﬂ ting cards, electronic
toys, TVs, cell phones, microwave ovens, and the anti-lock break in your car. From-this shert list, I'm sure you can
think of many more devices that have a microprocessor inside it. /°\A

This book will show you in an easy to understand way, starting from the basiC‘\@p leading you through to the
building of larger components such as the register and memory, and finally to the building of our microprocessor.
Along the way, there will be lots of example circuits where you can actl{a}\lyf\@ut These circuits will be combined
together at the end to produce our working microprocessor. Yes, the excitil *mrt\cié that at the end, you can actually
implement your microprocessor circuit in an IC and see that it can reaIiQ(é%e\“LZ&é)a software program or make lights

flash. N
Q
1.1 Overview of a Microprocessor {\(\\)

output, the memory and the CPU (central processing urit) \Tt e> arts that you purchased for your computer can all
be categorized into one of these four groups. The key”bs\%dﬁr, mouse are examples of input devices. The CRT
(cathode ray tube) and speakers are examples of output devices. The different types of memory, cache, read-only
memory (ROM) and random-access memory (RAM},/and the disk drive are all consider as part of the memory box
in the model. In this book, the focus is not in the meéﬁa\@vﬁjl aspects of the input, output and storage devices. Rather,
the focus is in the design of the digital circuifWU (also referred to as the microprocessor), the memory and

other supporting logical circuits. V}l\\/

The circuit for the microprocessor ¢an b%@\:}?y@ into two parts: the datapath and the control unit as shown in
' Ie>
i

The Von Neumann model of a computer, picture mf@ure\‘l\\r jsists of four main components: the input, the
hepa
a

Figure 1 and Figure 2. The datapath is Fb.;,o\\om\iﬁ, for the actual execution of all operations performed by the
microprocessor such as the addition inﬂ@%t\mb&i etic logic unit (ALU). The datapath also includes the registers
for the temporary storage of your data “The functional units inside the datapath (ALU, shifter, counter, etc.) and the
registers are connected together wi;’h@ti jtexers and buses to form one unit, the datapath.

V\
/\
/x\\ Memory
(\ by
\) Control
Input Br;lirto Datapath Output
CPU

Figure 1. Von Neuman model of a computer.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:23 PM

Chapter 1 — Designing a Microprocessor Page 3 of 11

Control Data
Inputs Inputs
Y Y
- ol
Control unit Datapath
> —\
S
— State » Output > >
Next- y > >
state Memory Logic Control

register

Logic register B}D Slggals

> >
P >

AY

x <
Status &
v Signals v
Control Data
Outputs Outputs

Figure 2. Internal parts of a microprocessor.

Even though the datapath is capable of performing all the operations of the microprocessor, it cannot, however,
do it on its own. In order for the datapath to execute the operations automatically, the control unit is required. The
control unit, also known as the controller, controls the operations of the datapath, and therefore, the operations of the
entire microprocessor. The controller is a finite state machine (FSM) because it is a machine that executes by going
from one state to another, and the fact that there are only a finite number of states for the machine to go to. The
controller is made up of three parts: the next-state logic, the state memory, and the output logic. The purpose of
the state memory is to remember the current state that the FSM is in. The next-state logic is the circuit for
determining what the next state ought to be for the machine. And the output logic is the circuit for generating the
actual control signals for controlling the datapath.

Every digital logic circuit, regardless of whether it is part of the control unit or the datapath, is categorized as
either a combinational circuit or a sequential circuit. A combinational circuit is one where the output of the circuit
is dependent only on the current inputs to the circuit. For example, an adder circuit is a combinational circuit. It
takes two numbers as inputs. When given the two inputs, the adder outputs the sum of the two numbers as the
output.

A sequential circuit, on the other hand, is dependent not only on the current inputs but also on all the previous
inputs. In other words, a sequential circuit has to remember its past history. For example, the up-channel button on a
TV remote is part of a sequential circuit. Pressing the up-channel button is the input to the circuit. However, just by
having this input is not enough for the circuit to determine what TV channel to display next. In addition to the input,
the circuit must also know the current channel that is being displayed, that is, the history.

Since sequential circuits are dependent on the history, they must therefore contain memory elements for
remembering the history, whereas, combinational circuits do not have memory elements. Examples of
combinational circuits inside the microprocessor include the next-state logic and output logic in the control unit, and
the ALU, multiplexers, tri-state buffers and comparators in the datapath. Examples of sequential circuits include the
register for the state memory in the controller and the registers in the datapath. The memory in the Von Neuman
computer model is also a sequential circuit.

However, regardless of whether a circuit is combinational or sequential, they are all made up of the three basic
logic gates: AND, OR, and NOT gates. From these three basic gates, the most powerful computer can be made.
Furthermore, these basic gates are built using transistors — the fundamental building blocks for all digital logic
circuits. Transistors are just electronic binary switches that can be turned on or off. The on and off states of
transistors are used to represent the two binary values 1 and 0.

Figure 3 summarizes how the different parts and components fit together to form the microprocessor. From
transistors, logic gates are built. Logic gates are combined together to form either combinational circuits or
sequential circuits. The difference between these two types of circuits is only in the way the logic gates are
connected together. Latches and flip-flops are the simplest forms of sequential circuits and provide the basic
building blocks for more complex sequential circuits. There are combinational circuits and sequential circuits that
are used as standard building blocks for larger circuits such as the microprocessor. These standard combinational
and sequential components are usually found in standard libraries and serve as larger building blocks for the

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:23 PM

Chapter 1 — Designing a Microprocessor Page 4 of 11

microprocessor. Different combinational components and sequential components are connected together to form
either the datapath or the control unit of the microprocessor. Finally, combining the datapath and the control unit
together will produce the circuit for a microprocessor, which can be either a dedicated microprocessor or a general
microprocessor.

Transistors

Gates

T

Combinational :
Circuits 3 Flip-flops
Sequential
Circuits 7
Y Y
Combinational + Sequential

Components 4 Components g

Datapath Control Unit
9 10

\/

Dedicated
M icroprocessof;

_ General
Mlcroprocessq2

Figure 3. Summary of how the parts of a microprocessor fit together. The numbers in each box denote the chapter
number in which the topic is discussed.

1.2 Design Abstraction Levels

Digital circuits can be designed at any one of several abstraction levels. Designing at the transistor level, which
is the lowest level, you are dealing with discrete transistors and connecting them together to form the circuit. The
next level up in the abstraction is the gate level. At this level you are working with logic gates to build the circuit. At
the gate level, you can also specify the circuit using either a truth table or a Boolean equation. Using logic gates, a
designer usually creates combinational and sequential components to be used in building larger circuits. In this way
a very large circuit such as a microprocessor can be built in a hierarchical fashion. Design methodologies have
shown that solving a problem hierarchically is always easier than trying to solve the entire problem as a whole.
These combinational and sequential components are used at the register-transfer level in building the datapath and
the control unit in the microprocessor. At the register-transfer level, we are concerned about how the data is
transferred between the various registers and functional units to realize or solve the problem at hand. Finally, at the
highest level, which is the behavioral level, we construct the circuit by describing the behavior or operation of the
circuit using a hardware description language. This is very similar to writing a program using a programming
language.

1.3 Examples of a 2-input Multiplexer

As an example, let us look at the design of the 2-input multiplexer from the different abstraction levels. At this
point, don’t worry too much if you don’t understand how all these circuits are built. This is intended just to give you

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:23 PM

Chapter 1 — Designing a Microprocessor Page 5 of 11

an idea of what the description of the circuits look like at the different abstraction levels. We will get to the details in
the rest of the book.

The multiplexer is a component that is used a lot in the datapath. The analogy for the operation of the 2-input
multiplexer is like a railroad switch at a railroad station where two railroad tracks are to be merged into one track.
The switch controls which of two trains on the two tracks will move onto the one track. Similarly, the 2-input
multiplexer has two inputs, dy and d;, and a switch s. The switch determines which data from the two inputs will
pass to the output y.

Figure 4 shows the graphical symbol also referred to as the logic symbol for the 2-input multiplexer. From
looking at the logic symbol, you can immediately tell how many signal lines the 2-input multiplexer has, and the
name or function for each line.

Figure 4. Logic symbol for the 2-input multiplexer.

1.3.1 Behavioral Level

We can describe the operation of the 2-input multiplexer simply, using the same names as in the logic symbol,
by saying that

do passes to y when s = 0 and
d; passestoy whens=1

Or more precisely, the binary value that is at d, passes to y when s = 0, and the binary value that is at d; passes to y
whens=1.

When describing this circuit at the behavioral level, you would basically say exactly the same thing, except that
you have to use the correct syntax required by the hardware description language. Figure 5 shows the description for
the 2-input multiplexer using the hardware description language call VHDL.

ENTITY mul ti pl exer 1S PORT (
do, di, s: INBIT;
y: OQUT BIT);

END nul ti pl exer;

ARCHI TECTURE Behavi oral OF multiplexer IS

BEG N
PROCESS(s, d0, d1)
BEG N
y <= d0 WHEN s = '0' ELSE d1;
END PROCESS;

END Behavi or al ;

Figure 5. Behavioral level VHDL description for the 2-input multiplexer.

After all the preliminary stuff in the code, the actual description of the operation of the multiplexer is in the one
line

y <= d0O WHEN s = '0' ELSE di;

which says that the signal y gets the value of dy when s is equal to O, otherwise, y gets the value of d;. Almost
exactly word for word!

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:23 PM

Chapter 1 — Designing a Microprocessor Page 6 of 11

1.3.2 Gate Level

At the gate level, you can draw a schematic diagram showing how the logic gates are connected together as
shown in Figure 6 (a) and (b). In (a), the circuit uses three inverters (+), three 3-input AND gates (30-), and one 4-
input OR gate (2>-). Both of these circuits realize the same 2-input multiplexer even though one is larger (in terms
of the number of gates needed) than the other. From this, we see that there are many ways to create the same
functional circuit.

s d, d

v[Y|Y

dO

y
S y
dl

]

]

]

]

]
@ (b)
Figure 6. Gate level circuit diagram for the 2-input multiplexer: (a) circuit using eight gates; (b) circuit using four
gates.

At the gate level, you can also describe the 2-input multiplexer using a truth table or with a Boolean equation as
shown in Figure 7 (a) and (b) respectively. For the truth table, we list all possible combinations of the binary values
for the three inputs s, dy and dj, and then determine what the output value y should be based on the functional
description of the circuit. We see that for the first four rows of the table when s = 0, y has the same values as d,
while the last four rows when s = 1, y has the same values as d;.

The Boolean equation in (b) can be derived from either the circuit diagram or the truth table. The first equality
in (b) matches the truth table in (a) and also the circuit diagram in Figure 6 (a). The second equality in (b) matches
the circuit diagram in Figure 6 (b). To derive the equation from the truth table, we look at all the rows where the
output y is a 1. Each of these rows results in a term in the equation. For each term, the variable is primed when the
value of the variable is a 0, and unprimed when the value of the variable is a 1.

o
IS)

o
fly

y :S'dodl'+Sld0d1+sdold1+5d0d1
:5'd0+Sdl

(b)

NI G ====] %
N == ==}
N =I =1 ==
~lo|k|olr|k|lo|lolx

@

Figure 7. Gate level description for the 2-input multiplexer: (a) using a truth table; (b) using a Boolean equation.

1.3.3 Transistor Level

The 2-input multiplexer circuit at the transistor level is shown in Figure 8. It consists of six CMOS transistors,

of which three are p-MOS (f—il_) and three are n-MOS (_IJ—‘L). The pair of transistors on the left forms an inverter for
the signal s, while the two pairs of transistors on the right form two transmission gates. The transmission gate allows
or prevents the data signal dg (d,) to pass through or not depending on the control signal s. The top transmission gate
is turned on when s is 0, and the bottom transmission gate is turned on when s is 1.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:23 PM

Chapter 1 — Designing a Microprocessor Page 7 of 11

<
3

L o
T

Figure 8. Transistor circuit for the 2-input multiplexer.

1.4 VHDL

VHDL is one of two popular hardware description languages. You saw in section 1.3.1 how we used VHDL to
describe the 2-input multiplexer at the behavioral level. VHDL can also be used to describe a circuit at other levels.
Figure 9 shows the VHDL code for the multiplexer written at the dataflow level. The main difference between the
behavioral VHDL code shown in Figure 5 and the dataflow VHDL code is in the PROCESS block statement in the
behavioral code. Statements within a PROCESS block are executed sequentially like in a computer program while
statements outside a PROCESS block (including the PROCESS block itself) are executed concurrently or in parallel.

ENTITY mul ti pl exer 1S PORT(
do, di, s: INBIT;
y: QUT BIT);

END nul ti pl exer;

ARCHI TECTURE Dat afl ow OF nmul ti plexer IS
BEG N

y <= d0 WHEN s = '0' ELSE di;
END Dat af | ow,

Figure 9. Dataflow level VHDL description for the 2-input multiplexer.

Figure 10 shows the VHDL code for the multiplexer written at the structural level. The code is based on the
circuit shown in Figure 6 (b). The PORT MAP statements declare the instances of the require gates in the circuit while
the internal declared SIGNALS “connect” these gates together as in the circuit diagram.

ENTI TY myand2 1S PORT (
il, i2: INBIT;
o: QUT BIT);
END nyand2;
ARCHI TECTURE Dat af | ow OF nyand2 IS
BEG N
0 <=il AND i 2;
END Dat af | ow,

ENTITY nmyor2 IS PORT (
il, i2: INBIT;
o: QUT BIT);
END nyor 2;
ARCHI TECTURE Dat afl ow OF myor2 | S

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:23 PM

Chapter 1 — Designing a Microprocessor Page 8 of 11

BEG N
0<=il1lORIiZ2
END Dat af | ow;

ENTITY myinv IS PORT (
i: INBIT;
o: QUT BIT);
END nyi nv;
ARCHI TECTURE Dat afl ow OF nmyinv IS
BEG N
0 <= not i;
END Dat af | ow,

ENTITY mul ti pl exer 1S PORT (
do, di, s: INBIT;
y: QUT BIT);

END nul ti pl exer;

ARCHI TECTURE Structural OF nultiplexer IS
COVPONENT myand2 PORT (
il, i2: INBIT;
o: QUT BIT);
END COVPONENT;
COVPONENT myor2 PORT (
il, i2: INBIT;
o: QUT BIT);
END COVPONENT;
COVPONENT nyi nv PORT (
i: INBIT,;
o: QUT BIT);
END COVPONENT;

SI GNAL sn, asn, sh: BIT;

BEG N
Ul: nyinv PORT MAP(s, sn);
U2: nmyand2 PORT MAP(dO, sn, asn);
U3: myand2 PORT MAP(s, dl1, sb);
U4: myor2 PORT MAP(asn, sb, vy);
END Structural;

Figure 10. Structural level VHDL description for the 2-input multiplexer.

1.5 Synthesis

Given a gate level circuit diagram such as the one in Figure 6, you can actually get some discrete logic gates
and manually connect them together with wires on a breadboard. Traditionally, this is how engineers actually design
and implement digital logic circuits. But this is not how electrical engineers design circuits anymore. They write
programs such as the one in Figure 5 just like what computer programmers do. The question then is how does the
program that describes the operation of the circuit actually get converted to the physical circuit?

The problem here is similar to translating a computer program written in a high-level language to machine
language for a particular computer to execute. For a computer program, we use a compiler to do the translation. For
translating a description of a circuit to its netlist, which is a description of how the circuit is realized or connected
using basic gates, we use a synthesizer, and this translation process is referred to as synthesis. So a synthesizer is
like a compiler except that the output is a netlist of the circuit rather then machine code. The popularity of using
VHDL (or Verilog) for designing digital circuits began in the mid-1990s when commercial synthesis tools became
available.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:23 PM

Chapter 1 — Designing a Microprocessor Page 9 of 11

Furthermore, the netlist from the output of the synthesizer can be used directly to implement the actual circuit in
a field programmable gate array (FPGA) chip. With this final step, the creation of a digital circuit fully implemented
in an IC can be easily done. Appendix B gives a tutorial of the complete process from writing the VHDL code to
synthesizing the circuit and uploading the netlist to the FPGA chip using Altera’s development system.

1.6 Going Forward

We will now embark on a journey that will take you through from the transistor to the building of the
microprocessor and the computer. Figure 2 will serve as our guide and map. If you get lost on the way and don’t
know where a particular component fits in the overall picture, just refer to this map. At the beginning of each
chapter, | will refresh your memory with this map and highlighting the components in the map that the chapter will
cover.

Figure 11 is an actual picture of the circuitry inside the Intel P4 CPU. When you reach the end of this book, may
be you still would not be able to design this circuit for the P4, but you will certainly have the knowledge of how a
microprocessor is designed because you will actually have designed and implemented a working microprocessor.

Figure 11. The internal circuitry of the Intel P4 CPU.

1.7 Summary Checklist

Microprocessor

Datapath

Control unit

Finite state machine (FSM)
Next-state logic

State memory

Output logic
Combinational circuit
Sequential circuit
Transistor level design
Gate level design
Register-transfer level design
Behavioral level design
Logic symbol

Ooo0oo0oO0oDO0DO0OO0DO0ODDODDOCDODD

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:23 PM

Chapter 1 — Designing a Microprocessor Page 10 of 11

O VHDL
Q Synthesis
O Netlist

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:23 PM

Chapter 1 — Designing a Microprocessor

Index

A

Abstraction level. See Design abstraction levels.

B

Behavioral level (VHDL), 5
See also Design abstraction levels. .

C

Combinational circuit, 3
Control unit. See Finite state machine.

D

Dataflow level (VHDL), 8
See also Design abstraction levels.
Datapath, 2
Design abstraction levels, 5
behavioral level, 5
gate level, 5
register-transfer level, 5
RTL. See Register-transfer level.
transistor level, 5

=

Field programmable gate array, 9

Finite state machine, 3

FPGA. See Field programmable gate array.
FSM. See Finite state machine.

G

Gate, 3
Gate level, 5, 6
See also Design abstraction levels.

L

Logic gate, 3
Logic symbol, 5

Microprocessor Design — Principles and Practices with VHDL

M

Microprocessor, 2

N

Netlist, 9
Next-state logic, 3
See also Finite state machine.

@)

Output logic, 3
See also Finite state machine.

R

Register-transfer level, 5

See also Design abstraction levels.

RTL. See Register-transfer level.

S

Sequential circuit, 3
State memory, 3

See also Finite state machine.
Structural level (VHDL), 8

See also Design abstraction levels.

Synthesis, 9
Synthesizer, 9
T

Transistor, 3
Transistor level, 5, 7

See also Design abstraction levels.

Vv

VHDL, 7
behavioral level, 6
dataflow level, 8
structural level, 9

Page 11 of 11

Last updated 7/16/2003 12:23 PM

Chapter 2 — Digital Circuits Page 1 of 27

Table of Content

TADIE OF CONTENT ...ttt b et b e b et bt b et ekt s bt e b s b e e b e b et ek eb et e be e b et et e nbeneebenbens 1
B T T L O otV S 2
S = 10 LV VL1001 1T S SS 2
2.2 BINANY SWILCN ...ttt b bbbt et R bbbt bbb et et e b e eae e 4
2.3 Basic Logic Operators and LOgIC EXPreSSIONS.ccueiuiiiiiiiriiieie sttt sttt e sae e b s 5
N I 1110 IF: 1o OO RO TR 6
2.5 Boolean Algebra and BOOIEaN FUNCHIONccoiiiiiiiiiiiie sttt et b 6
251 BOOIEAN ALGEDIA. ...ttt bbb bbbt bt ettt nr b b eae e 6
252 DUATIEY PIINCIPIE ...ttt bbbt b e b b e bbb e et e e e b e bbb nes 8
253 Boolean FUNCtion and the INVEISE ... e 9

2.6 MINtErmMS and IMAXEEIINSecviiverietiiteiete sttt sttt sttt st et b e et s bt e b e s bttt st e e et e st et et e neebeebeneeseabe e 12
26.1 T C=] OO PRSPPI 12
2.6.2 IVIBXEEIITIS ...ttt b bbbt s bt b Rt b st e s e e et e bRt b e e bt e s e e e e e nr R b ene s 13

2.7 Canonical, Standard, and NON-StaNdard FOIMScoeiiiieiiierieene ettt 15
2.8 Logic Gates and CirCUIt DIaQramSccueuerueruerieresestesresreeeeseesseseessessessesseeseessesseseessessessessessesssessessesseasens 15
2.9 Example: Designing @ Car SECUMLY SYSIEM......coiiiiiiiiiiieie ettt see e e e be e b e eneas 17
2.10 INrOAUCTION T0 WHDL ...ttt bbbttt bt b e e bt e e e e e b e seesbesbeeneas 19
2.10.1 VHDL code for @ 2-iNPUE NAND QALEcceiiiiiiiiite ittt sttt se b e b 19
2.10.2 VHDL code fOor @ 3-INPUL NOR QALccueiuiiieieitiite ettt sttt sttt se et bbb ee bbbt ens 20
2.10.3 VHDL COE FOr @ FUNCLIONoveieiieie ettt sttt 21
2,11 SUMMANY ChECKIISEeveiieiiiseeicie ettt et s e seere e e e eeseesbesresneereeneeseeseesrenneaneas 21
212 EXEICISES cuveveeteteseetestes et ste ettt ebe st et s e s et st et eb e s b e s ekt e b e s ekt e bRt e bt e bR e Rt R e Rt Rt R R e bR e Rt b e e e Rt b neen et et ebe e 23
L0 OO RSO RTOPSTRTRSPRO 26

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 2 of 27

2 Digital Circuits

Our world is an analog world. Measurements that

we make of the physical objects around us are never G s

in discrete units but rather in a continuous range. We

talk about physical constants such as 2.718281828... Control unit 0" patapath
or 3.1415926535897932384626433832795.... To 1

build analog devices that can process these values S

accurately is next to impossible. Even building a Next [uemon] || Gt ool 1

simple analog radio requires very accurate Cogc register Signals |
adjustments of frequencies, voltages, and currents at — 3> .

each part of the circuit. If we were to use voltages to — > — T —1 lﬁ@
represent the constant 3.14159, we would have to A States L7 S)
build a component that will give us exactly 3.14159 v Signals (A

volts every time. This is again impossible; due to the Sﬁ{g{% NS oEtaptﬁts

imperfect manufacturing process, each component) \ (Qj

produced is slightly different from the others. Even if the manufacturing process can be,ﬁrc\ e as’perfect as perfect

can get, we still would not be able to get 3.14159 volts from this component every;im;%' e it. The reason being

that the physical elements used in producing the component behave differently 4?1;1 enb environments such as

temperature, pressure, and gravitational force, just to name a few. So even if e rr?m\‘ﬂrturing process is perfect,
e

using this component in different environments will not give us exactly 3.1415%3&\%\ time.

To make things simpler, we work with a digital abstraction of our analog Worlél./Instead of working with an
infinite continuous range of values, we use just two values! Yes, just tvww and 0, on and off, high and low,
true and false, black and white, or however you want to call it. It is certaWu&zﬁ easier to control and work with
two values rather than an infinite range. We call these two values a bilf valile for the reason that there are only
two of them. A single 0 or a single 1 is then a binary digit or bit. This &QU/A s great, but we do have to remember
that the underlining building block for our digital circuits is still basC\‘n\ nanalog world. We will not dwell on this
issue but you will be reminded of it in a later chapter when we discu-s\f!ﬁ;nalog properties of digital circuits.

o

2.1 Binary Numbers RN
78N N4
A bit, having either the value of 0 or 1 can reﬁr“eée\rfbrl two things or two pieces of information. It is,
therefore, necessary to group many bits together to represesit more pieces of information. By using different

encoding techniques, a group of bits can be used tc represent different information such as a number, a letter of the
alphabet, a character symbol or a command for the rrn\e.\\prj)cessor to execute.

The use of decimal numbers is quite fa%@us. However, since the binary digit is used to represent
information within the computer, we also needo b .\/familiar with binary numbers. The decimal number system is a
positional system. In other words, the value @{t} > digit is dependent on the position of the digit within the number.
For example, in the decimal number 48, tf%d\eﬁl@git 4 has a greater value than the decimal digit 8. The value of
the number is calculated as 4x10" + 8xmf\/ =

Like the decimal number systei'é,vth\e\ryi7nary number system is also a positional system. The only difference
between the two is that it is a base@ié m and so it uses only two digits instead of ten. The binary numbers from 0
to 15areshownin Figure 1. /—~>

A)ﬂ 2
The decimal value of a ml\a\p\ ber can be found just like for a decimal number except that we raise the base
number 2 to a power rziger G@e ﬁfyﬁber 10 to a power. For example, the binary number 1011011, has the value
N

101101Q ;i\?j +0x2% + 1x2% + 1x23 + 0x22 + 1x21 + 1x2° =64 + 16 + 8 + 2 + 1 = 91,

The least significant bit(in this case, the rightmost 1) is multiplied with 2°. The next bit to the left is multiplied
with 2%, and so on. Finally, they are all added together to give the value.

To prevent any confusion as to what base a particular number is in, we often use a subscript following the
number to denote the base that the number is in.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 3 of 27

Decimal | Binary | Octal | Hexadecimal

0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Figure 1. Numbers from 0 to 15 in binary, octal, and hexadecimal.

Converting a decimal number to its binary equivalent can be done by successively dividing the decimal number
by 2 and keeping track of the remainder at each step. Combining the remainders together (starting with the last one)
forms the equivalent binary number. For example, using the decimal number 91, we divide it by 2 to give 45 with a
remainder of 1. Then we divide 45 by 2 to give 22 with a remainder of 1. We continue in this fashion until the end as
shown below.

2191 1 least significant bit
2145 1

2122 0
2011 1 =1011011

2[5 1
2.2 0

1 most significant bit
Concatenating the remainders together starting from the last one give the binary number 1011011,.

Binary numbers usually consist of a long string of bits. A shorthand notation for writing out this lengthy string
of bits is to use either the octal or hexadecimal numbers. Since octal is base-8 and hexadecimal is base-16, both of
which are a power of 2, a binary number can be converted to an octal or hexadecimal number quickly and vice
versa.

Octal numbers use only the digits from 0 to 7 for the eight different combinations. When counting in octal, the
number after 7 is 10 as shown in Figure 1. To convert a binary number to octal, we simply group the bits into groups
of threes starting from the right. The reason for this is because 8 = 23. For each group of three bits, we write the
equivalent octal digit for it. For example, the conversion of the binary number 1 110 011, to the octal number 163g is
shown below.

01 110 011

1 6 3

Since the original binary number has seven bits, we need to extend it with two leading zeros to get three bits for
the leftmost group. Note that when we are dealing with negative numbers, we may require extending the number
with leading ones instead of zeros.

Converting an octal number to its binary equivalent is just as easy. For each octal number, we write down the
equivalent three bits. These groups of three bits are concatenated together to form the final binary number. For
example, the conversion of the octal number 57244 to the binary number 101 111 010 100, is shown below.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 4 of 27

5 7 2 4
101 111 010 100

The decimal value of an octal number can be found just like for a binary or decimal number except that we raise
the base number 8 to a power instead. For example, the octal number 57244 has the value

57245 = 5x8° + 7x8% + 2x8' + 4x8° = 2560 + 448 + 16 + 4 = 3028,

Hexadecimal numbers are treated basically the same way as octal numbers except with the appropriate changes
to the base. Hexadecimal (or hex in short) numbers use base-16 and so require 16 different digit symbols as shown
in Figure 1. Converting binary numbers to hexadecimal involves grouping the bits into groups of fours since 16 = 2*.
For example, the conversion of the binary number 110 1101 1011, to the hexadecimal number 6DB;g is shown
below. Again we need to extend it with a leading zero to get four bits for the leftmost group.

0110 1101 1011
6 D B

To convert a hex number to binary, we write down the equivalent four bits for each hex digit and then
concatenating them together to form the final binary number. For example, the conversion of the hexadecimal
number 5C4A s to the binary number 0101 1100 0100 1010, is shown below.

5 C 4 A
0101 1100 0100 1010

The following example shows how the decimal value of the hexadecimal number C4Ay; is evaluated.
C4As = Cx16° + 4x16" + Ax16° = 12x16° + 4x16" + 10x16° = 3072 + 64 + 10 = 3146,

2.2 Binary Switch

Besides the fact that we are working only with binary values, digital circuits are easy to understand because
they are based on one simple idea of turning a switch on or off to obtain either one of the two binary values. Since
the switch can be in either one of two states (on or off), we call it a binary switch, or just a switch for short. The
switch has three connections: an input, an output, and a control for turning the switch on or off as shown in Figure 2.
When the switch is opened as in (), it is turned off and nothing gets through from the input to the output. When the
switch is closed as in (b), it is turned on and whatever is presented at the input is allowed to pass through to the
output.

control
in - out in out
o——o0 o G © o)
(@ (b)

Figure 2. Binary switch: (a) opened or off; (b) closed or on.

Uses of the binary switch idea can be found in many real world devices. For example, the switch can be an
electrical switch with the input connected to a power source and the output connected to a siren S as shown in Figure
3.

Switch

— Q—m Sien

Battery —
L

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 5 of 27

Figure 3. A siren controlled by a switch.

When the switch is closed, the siren turns on. The usual convention is to use a 1 to mean “on” and a 0 to mean
“off”. Thus, when the switch is closed the output is a 1 and the siren will turn on. We can also use a variable, say X,
to denote the state of the switch. We can let x = 1 to mean the switch is closed and x = 0 to mean the switch is
opened. Using this convention, we can describe the state of the siren S in terms of the variable x using a simple logic
expression. Since S=1ifx=1and S =0 if x =0, we can write

S=x

This logic expression describes the output S in terms of the input variable x.

2.3 Basic Logic Operators and Logic Expressions

Two binary switches can be connected together either in series or in parallel as shown in Figure 4.
X
X y H/o—
o—@/o—@/ F F
o——o0 o—— ——oO
(@) (b)

Figure 4. Connection of two binary switches: (a) in series; (b) in parallel.

If two switches are connected in series as in (a), then both switches have to be on in order for the output F to be
a 1. In other words, F =1 if x =1 AND y = 1. If either x or y is off, or both are off then F = 0. Translating this into a
logic expression, we get
F=XANDY

Hence, two switches connected in series give rise to the logical AND operator. In a Boolean function (which we

will explain in more detail in section 2.5) the AND operator is either denoted with a dot (¢) or no symbol at all. Thus
we can rewrite the above expression as

F=X'y

or simply
F=xy
If we connect two switches in parallel as in (b), then only one switch needs to be on in order for the output F to
be a 1. In other words, F =1 ifx =1 ory = 1. F = 0 only if both x and y are off. Translating this into a logic

expression, we get
F=XORYy

and this gives rise to the logical OR operator. In a Boolean function, the OR operator is denoted with a plus symbol
(+). Thus we can rewrite the above expression as

F:X+y

In addition to the AND and OR operators, there is another basic logic operator — the NOT operator, also known as
the INVERTER. Whereas, the AND and OR operators have multiple inputs, the NOT operator has only one input and
one output. The NOT operator simply inverts its input, so a 0 input will produce a 1 output, and a 1 becomes a 0. In a
Boolean function, the NOT operator is either denoted with an apostrophe symbol (') orabarontop (~) asin

F=x
or

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 6 of 27

F=x

When several operators are used in the same expression, the precedence given to the operators are, from highest
to lowest, NOT, AND and OR. The order of evaluation can be changed by means of using parenthesis. For example,
the expression

F=xy+7
means (x and y) or (not z), and the expression

F=x(y+2)
means x and (not (y or z)).

2.4 Truth Tables

The operation of the AND, OR and NOT logic operators can be formally described by using a truth table as
shown in Figure 5. A truth table is a two-dimensional array where there is one column for each input and one
column for each output (a circuit may have more than one output). Since we are dealing with binary values, each
input can be either a 0 or a 1. We simply enumerate all possible combinations of 0’s and 1’s for all the inputs.
Usually, we want to write these input values in the normal binary counting order. With two inputs, there are 2°
combinations giving us the four rows in the table. The values in the output column are determined from applying the
corresponding input values to the functional operator. For the AND truth table in Figure 5 (a), F = 1 only when x and
y are both 1, otherwise, F = 0. For the OR truth table (b), F = 1 when either x or y is a 1, otherwise F = 0. For the NOT
truth table, the output F is just the inverted value of the input x.

X y F X y F
0 0 0 0 0 0 X F
0 1 0 0 1 1 0 1
1 0 0 1 0 1 1 0
1 1 1 1 1 1

(@ (b) (©

Figure 5. Truth tables for the three basic logical operators: (2) AND; (b) OR; (c) NOT.

Using truth tables is one method to formally describe the operation of a circuit or function. The truth table for
any given logic expression (no matter how complex it is) can always be derived. Examples on the use of truth tables
to describe digital circuits are given in the following sections. Another method to formally describe the operation of
a circuit is by using Boolean expressions or Boolean functions.

2.5 Boolean Algebra and Boolean Function

2.5.1 Boolean Algebra

George Boole in 1854 developed a system of mathematical logic, which we now called Boolean algebra. Based
on Boole’s idea, Claude Shannon in 1938 showed that circuits built with binary switches can easily be described
using Boolean algebra. The abstraction from switches being on and off to the use of Boolean algebra is as follows.
Let B = {0, 1} be the Boolean algebra whose elements is one of the two values, 0 and 1. We define the operations
AND (*), OR (+), and NOT (") for the elements of B by the axioms in Figure 6 (a). These axioms are simply the
definitions for the AND, OR, and NOT operators.

A variable x is called a Boolean variable if x takes on only values in B, i.e. either 0 or 1. Consequently, we
obtain the theorems in Figure 6 (b) for single variable and Figure 6 (c) for two and three variables.

Theorems in Figure 6 (b) can be proved easily by substituting the binary values into the expressions and using
the axioms. For example, to show that theorem 6a is true, we substitute 0 into x to get axiom 3a, and substitute 1 into
X to get axiom 2a.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 7 of 27

To prove the theorems in Figure 6 (c), we can use either one of two methods: 1) use a truth table, or 2) use
axioms and theorems that have already been proved. We show these two methods in the following two examples.

la. 0«0=0 1b. 1+1=1
2a. | 1.1=1 2b. | 0+0=0
3. | 0«1=1.0=0 3b. | 1+0=0+1=1
4a. 0'=1 4b. 1'=0
(@) R
(N
5a. | x+0=0 5b. | x+1=1 Null element””)
6a | xe1=1+x=x Bb. | x+0=0+x=x Identity) '
7a. | xex=x 7h. | x+x=x Idempotent
8a. | (x') =x Doupble complement
9. | xex'=0 | 9b. | x+x' =1 Zlnvrge
/
b R
10a. | xey=yex 10b. | X+y=y+X /L Commutative
11a. | (xey)ez=Xe(ye*2) 11b. | (x+y)+z=x+(y+ z)\ Associative
12a. | xe (y+2)=(Xey)+(x*2) 12b. | x+(yez) =(x+y)e (x+ 49/ Distributive
13a. | x= (x+y)=x 13b. | x+ (x*y) =% f\ Absorption
l4a. | (xey)+(Xey')=X 14b. | (x+y)e (x+ VM Combining
15a. | (xey)=x"+y' 15b. [(x+y)'=x<y DeMorgan’s
© my
Figure 6. Boolean algebra axioms and theorems: (a) A 0) Single variable theorems; (c) two and three

variable theorems.

f N/
Example 2.1: Proof of theorem using a truth tabi \Q }
Theorem 12a states that x » (y +2) = (xe.y) + (X ol). To prove that theorem 12a is true using a truth table, we

need to show that for every combination ofvv%'\ﬁg for the three variables x, y, and z, the left-hand side of the
expression is equal to the right-hand sw,@\T(f;\{{t ble below is constructed as follows:

x [y [z]yrz]l ry) [(xe2) [xe(y+2) | (xey)+(x+2)
ojlojodb 06V 0 0 0 0
0o|lo0]1fpra 1 0 0 0 0
01 opl 12 0 0 0 0
0 [1 [4\] 3 0 0 0 0
1104060 0 0 0 0 0
1601\ 0 1 1 1
NI 1 0 1 1
4 L 1 1 1 1 1
o~ \) “

We start \r{: th the first three columns labeled x, y, and z, and enumerate all possible combinations of values for
these three var able\s/é r each combination (row), we evaluate the intermediate expressions y+z, xey, and xez by
substituting the v of x, y, and z into the expression. Finally, we obtain the values for the last two columns,
which correspond to the left-hand side and right-hand side of theorem 12a. The values in these two columns are
identical for every combinations of x, y, and z, therefore, we say that theorem 12a is true. .

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 8 of 27

Example 2.2: Proof of theorem using axioms and theorems.

Theorem 13b states that x + (x ¢ y) = x. To prove that theorem 13b is true using axioms and theorems, we can
argue as follows:

X+t (Xey) =(xe1)+(Xey) by Identity Theorem 6a
=xe(1+y) by Distributive Theorem 12a
=xe (1) by Null element Theorem 5b
=X by Identity Theorem 6a .

Example 2.2 shows that some theorems can be derived from others that have already been proven with the truth
table. Full treatment of Boolean algebra is beyond the scope of this book and can be found in the references. For our
purposes, we simply assume that all the theorems are true and will just use them to show that two circuits are
equivalent as depicted in the next two examples.

Example 2.3: Use Boolean algebra to reduce the equation F,, = (X' +y' + X'y" + xy) (X' + yz) as much as possible.

F =X +y +xy +xy) (X' +yz)

=(X'e1+y' e 1l+XYy +xy) (X +y2) by Identity Theorem 6a
=(X'(Y+Y') +Yy (X +X')+ XY +xy) (X +Yy2) by Inverse Theorem 9b

= (XY + XY +yx+yX + XY +xy) (X' +y2) by Distributive Theorem 12a
= (XY + XY HYX Y+ +xy) (X +y2) by Idempotent Theorem 7b
=(X(Yy+y)+x(y+y)) X +y2) by Distributive Theorem 12a
=(X'e1l+xe1)(X'+y2) by Inverse Theorem 9b

= (X" +x) (X' +yz2) by Identity Theorem 6a
=1(x'+y2) by Inverse Theorem 9b

= (X' +yz) by Identity Theorem 6a

Since the expression (x' +y' + x'y' + xy) (X' + yz) reduces down to (x' + yz), therefore, we do want to implement
the circuit for the latter expression rather then the former because the circuit size for the latter is much smaller. .

Example 2.4: Show using Boolean algebra that the two equations F; = (xy' + X'y + X' +y' +z') (x + y' + z) and
F,=y"'+ X'z + xz' are equivalent.
Fo=(y +Xy+x +y +7") (x+y' +2)

SXY'XHXY'Y HXY'ZHXYXE XYY XYz XX EXY X2 YyX Y'Y Yz X+ Y + 22

=XY' + XY +XyZ+0+0+Xyz+ 0+ XY +XZ2+Xy' +Y +yz+x2+y7'+0

=XY' +Xy'zZ+HXYyzZ+XY +Xz2+Yy +yz+ X2 +y'7

Sy'(X+xz+x' +1+z+2)+xz(y + 1) +xz'

=y + X2+ x

= FZ ¢

2.5.2 Duality Principle

Notice in Figure 6 that we have listed the axioms and theorems in pairs. Specifically, we define the dual of a
logic expression as one that is obtained by changing all + operators with ¢ operators, and vice versa, and by
changing all 0’s with 1’s, and vice versa. For example, the dual of the logic expression

(xy'z) + (xyz') + (y2)

(X+y+Z) o (X'+y'+2) « (y'+7))

The duality principle states that if a Boolean expression is true, then its dual is also true. Be careful that it does
not say that a Boolean expression is equivalent to its dual. For example, theorem 5a in Figure 6 says that x « 0 = 0 is
true, thus by the duality principle, its dual x + 1 = 1 is also true. However, 0 is definitely not equal to 1.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 9 of 27

We will see in later sections that the duality principle is used extensively in digital logic design. Whereas one
expression might be complex, its dual might be simpler to implement, thus, reducing the circuit size.

2.5.3 Boolean Function and the Inverse

As we have seen, any digital circuit can be described by a logical expression, also known as a Boolean function.
Boolean functions are formed from binary variables and the Boolean operators ¢, + and ' (for AND, OR and NOT
respectively). For example, the following Boolean function uses the three variables or literals x, y, and z. It has three
AND terms (also referred to as product terms), and these AND terms are ored (sum) together. The first two AND
terms contain all three variables each, while the last AND term contains only two variables. By definition, an AND (or
product) term is either a single variable, or two or more variables ANDed together. Quite often we refer to functions
that are in this format as a sum-of-products or or-of-ands.

3 AND terms

F =XYy'z+Xxyz +yz

4

3 variables 2 variables

(xy,2)

The value of a function evaluates to either a 0 or a 1 depending on the given set of values for the variables. For
example, the above function evaluates to a 1 when any one of the three AND terms evaluate to a 1, since 1 OR
anything is a 1. The first AND term equals to a 1 if

x=1,y=0,andz=1

because if we substitute these values for x, y, and z into the first AND term xy'z, we get a 1. Similarly, the second AND
termequals to a 1 if

x=1,y=1andz=0.

The last AND term has only two variables. What this means is that the value of this term is not dependent on the
missing variable x. In other words x can be eithera 0 ora 1, but as longasy =1 and z = 1, this term will equal to a 1.

Thus, we can summarize by saying that F evaluatesto a 1 if

x=1,y=0,andz=1

or
x=1,y=1landz=0
or
y=1,z=1andx=0
or

y=1z=1andx=1.
Otherwise, F evaluates to a 0.

It is often more convenient to summarize the above verbal description of a function with a truth table as shown
in Figure 7 under the column labeled F. Notice that the four rows in the table where F = 1 match the four “or” cases
in the description above.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 10 of 27

m

RPIRP|RPOO|I0O|O|Xx

R |o|lolr|k|o|lolx
~|lo|rk|olr|lo|rk|lol~
NI ===k
o|lo|lo|r|olr|k|k

[N

Figure 7. Truth table for the function F = xy'z + xyz' +yz

The inverse of a function, denoted by F', can be easily obtained from the truth table for F by simply changing
all the 0’s to 1’s and 1’s to 0’s as shown in the truth table in Figure 7 under the column labeled F'. Thus, we can
write the Boolean function for F' in the sum-of-products format, where the AND terms are obtained from those rows
where F' = 1. Thus, we get

F' =XYy7Z + XYz +XYyz' +xy'z
To deduce F' algebraically from F requires the use of DeMorgan’s theorem (Theorem 15a) twice. For example,
using the same function

F =xy'z+xyz' +yz
we obtain F' as follows
F' =(xy'z+xyz' +yz)'
=(xy'z)'* (xyz)'* (y2)'
= (XHy+z') o (X+y'+2) © (Y'42')
There are three things to notice about this equation for F'. First, F' is just the dual of F as defined in section
2.5.2. Second, instead of being in a sum-of-products format, it is in a product-of-sums (and-of-ors) format where

three OR terms (also referred to as sum terms) are ANDed together. Third, from the same original function F, we
obtained two different equations for F'. From the truth table, we obtained

F' =xy7'+xy'z+xyz' +xy'?
and from applying DeMorgan’s theorem to F, we obtained
F' o= (Xy+z') o (X+y'+2) » (y'+2')

So we must conclude that these two expressions, where one is in the sum-of-products format and the other is in
the product-of-sums format, are equivalent. In general, all functions can be expressed in either the sum-of-products
or product-of-sums format.

Thus, we should also be able to express the same function F = xy'z + xyz' + yz in the product-of-sums format.
We can derive it using one of two methods. For method one, we can start with F' and apply DeMorgan’s theorem to
it just like how we obtained F' from F.
F =F"
= (XY + XYz +Xyz' +xy'z7')
= (Y2)"+ (Xy2)'s (XyZ')'s (xy'z')
= (xty+z) o (xty+z') o (xty'+z) « (X'+y+2)
For the second method, we start with the original F and convert it to the product-of-sums format using the
Boolean theorems.

F =xy'z+xyz'+yz
= (X+X+Y) o (X+X+2) o (XHy+y) o (X+y+z) o (X+2'+y) o {xk2'+Z) o by Theorem 12
ey%‘*y}' ° (y'+x+z) ° (y#y_-hy}' . ey#y*zé' . ey#z_-hﬂ' ! . ey#z_-hzé' ! .
(z+xty) o (z+x+2) o (ztyty) « (2ty+2) o H24y) © (2+2+2)

= (xty) o (x+2) « (xty) o (xty+2) o (x+Z'+y) ¢ (Y'+x+2) * (z4xHY) * (z4X) * (ztY) * (z+Y) eliminate

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 11 of 27

= (X+Yy) © (X+2) © (X+y+z) o (X+y+2') o (X+y'+2) (z+Y) duplicates
= (X+y+zz') o (XHyy'+2) o (X+y+z) o (X+y+Z') o (X+y'+2) o (XX'+y+2) by Theorem 6b and 9a
= (Xty+z) o (XHY+Z)) o ekyHz) o (XHY'HZ) o rbyz) o (eRyHT) o (kkyHZ) o kbyz) o (X HYHZ)

= (xty+z) o (xty+z') o (x+y'+2) ¢ (X'+y+2)

In the first step, we apply Theorem 12b (Distributive) to get every possible combination of sum terms. For
example, the first sum term (x+x+y) is obtained from getting the first x from xy'z, the second x from xyz', and the y
from yz. The second sum term (x+x+z) is obtained from getting the first x from xy'z, the second x from xyz', and the z
from yz. This is repeated for all combinations. In this step, the sum terms such as (x+z'+z) where it contains variables
of the form v + v' can be eliminated sincev+v'=1,and 1 ¢ x =X.

In the second and third steps, duplicate variables and terms are eliminated.

In the fourth step, every sum term with a missing variable will have that variable added back in by using
Theorems 6b and 9a which says that x + 0 = x and yy' = 0, therefore, x + yy' = x.

Step five uses the Distributive Theorem and the resulting duplicate terms are again eliminated to give us the
format that we want.

Functions that are in the product-of-sums format (such as the one shown below) are more difficult to deduce
when they evaluate to a 1. For example, using

F' = (X4+y+2) « (X+y'+2) « (y'+7)

F' evaluates to a 1 when all three terms evaluate to a 1. For the first term to evaluate to a 1, x can be 0, or y can be 1,
or z can be 0. For the second term to evaluate to a 1, x can be 0, or y can be 0, or z can be 1. And finally for the last
term, y can be 0, or z can be 0, or x can be either a 0 or a 1. As a result, we end up with a lot more combinations to
consider, even though many of the combinations are duplicates.

However, it is easier to determine when a product-of-sums format expression evaluates to a 0. For example,
using the same expression

F' = (XHy+Z) « (X'+y'+2) (y'+7)
F' evaluates to 0 when any one of the three OR terms is 0, since 0 AND anything is 0; and this happens when
x=1,y=0, and z = 1 for the first OR term,
or
x=1,y=1,and z = 0 for the second OR term,
or
y=1,z=1, and x can be either 0 or 1 for the last or term.

Similarly, for a sum-of-products format expression, it is easy to evaluate when it is a 1, but difficult to evaluate
whenitisaO.

These four conditions for which F' evaluates to a 0 match exactly those rows in the table shown in Figure 7
where F' = 0. So we see that in general, the unique algebraic expression for any Boolean function can be specified
by either (1) selecting the rows from the truth table where the function is a 1 and use the sum-of-products format, or
(2) selecting the rows from the truth table where the function is a 0 and use the product-of-sums format. Whatever
format we decide to use, the one thing to remember is that we are always interested in only when the function (or its
inverse) is equal to a 1. Figure 8 summarizes these two formats for the function F = xy'z + xyz' + yz and its inverse.
Notice that the sum-of-products format for F is the dual (i.e. by applying the duality principle) of the product-of-
sums format for F'. Similarly, the product-of-sums format for F is the dual of the sum-of-products format for F'.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 12 of 27

Sum-of-products Product-of-sums
F X'yzZ + Xy'z + Xyz' + xyz 4%» (X+y+z) o (x+y+2') o (x+y'+2) o (X'+y+2)
Y
G
F'o| XyZ +Xyz+Xyz +xy'7 <22 ual (X+y'+z") o (X'+y+Z') o (X'+Y'+2) o (X'+Yy'+2")

Figure 8. Relationships between the function F = xy'z + xyz' + yz and its inverse, and the sum-of-products and
product-of-sums formats.

2.6 Minterms and Maxterms

As you recall, a product term is a term with either a single variable, or two or more variables ANDed together.
And a sum term is a term with either a single variable, or two or more variables ORed together. To differentiate
between a term that contains any number of variables with a term that contains all the variables used in the function,
we use the words minterm and maxterm.

2.6.1 Minterms

A minterm is a product term that contains all the variables used in the function. For a function with n variables,
the notation m; where 0 < i < 2", is used to denote the minterm whose index i is the binary value of the n variables
such that the variable is complemented if the value assigned to it is a 0, and uncomplemented if it is a 1. For
example, for a function with three variables x, y, and z, the notation ms for the minterm (x'yz) is used to represent the
term in which the values for the variables xyz are 011. Figure 9 (a) shows the eight minterms and their notations for
n = 3 using the three variables x, y, and z.

When specifying a function, we usually start with product terms that contain all the variables used in the
function. In other words, we want the sum-of-minterms, and more specifically the sum of the one-minterms, that is
the minterms for which the function is a 1 (as opposed to the zero-minterms, that is the minterms for which the
function is a 0). We use the notation 1-minterm to denote one-minterm, and 0-minterm to denote zero-minterm.

X |y | z | Minterm | Notation X |y | z| Maxterm | Notation
0]0|0| xyZ mo 0]0|0| x+y+z Mo
010 |1| xvyz m; 0101 x+ty+7 M,
0|1|0| xyZ m, 0|10 x+y'+z M,
0|11 X'yz ms 0|11 x+y'+7 Ms
110|0] xy?Z my 110|0]| xX+y+z M,
1101 Xy'z ms 1|10|1] xX+y+7 Ms
111]0 Xyz Mg 111|0]| xX+y'+z Mg
1111 Xyz m; 1|11 X'+y'+7 M-
(@) (b)

Figure 9. (a) Minterms for three variables. (b) Maxterms for three variables.

The function from the previous section

F =xy'z+xyz' +yz
=X'yz + xy'z + xyz' + xyz

and repeated in the following truth table has the 1-minterms ms, ms, mg, and ms.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 13 of 27

Xx|yl|z|F]|F | Minterm | Notation
0]0j0]0]1 X'y'z My
ojof1j0]1 X'y'z m;
0Oj1(0j0]1 X'yz m,
Oj1(1(110 X'yz ms
10001 Xy'z' my
1011110 Xy'z ms
1110110 Xyz Mg
1111110 XYz my

Thus, a shorthand notation for the function is
F(X,y,Z)=m3+m5+m6+m7

By just using the minterm notations, we do not know how many variables are in the original function thus, we
need to explicitly specify the variables used. We can further simplify the notation by using the standard algebraic
symbol X for summation. Hence we have

F(x,y,2)=%(3,5,6,7)
These are just different ways of representing the same function.

Since a function is obtained from the sum of the 1-minterms, the inverse of the function, therefore, must be the
sum of the 0-minterms. This can be easily obtained by replacing the set of indices with those that were excluded
from the original set.

2.6.2 Maxterms

Analogous to a minterm, a maxterm is a sum term that contains all the variables used in the function. For a
function with n variables, the notation M; where 0 < i < 2", is used to denote the maxterm whose index i is the binary
value of the n variables such that the variable is complemented if the value assigned to it is a 1, and
uncomplemented if it is a 0. For example, for a function with three variables x, y, and z, the notation M; for the
maxterm (x + y' + z') is used to represent the term in which the values for the variables xyz are 011. Figure 9 (b)
shows the eight maxterms and their notations for n = 3 using the three variables x, y, and z.

We have seen that a function can also be specified as a product-of-sums; more specifically, a product of 0-
maxterms, that is, the maxterms for which the function is a 0. Just like the minterms, we use the notation 1-
maxterm to denote one-maxterm, and 0-maxterm to denote zero-maxterm. Thus, the function

F(X,y,2) =xy'z+xyz' +yz
=(X+ty+z)e (x+y+z)e (x+y +2z)e (X' +y+2)

and shown in the following table

Xx|yl|z]|F]|F | Maxterm | Notation
01000 | 1| x+y+z Mg
01020 | 1| x+y+Z M,
01200 | 1] x+ty+z M,
012111]|0|x+ty+7 M,
10|00 | 1] x+y+z M,
1{0]1)1]0|x+y+7 Ms
1[1]0)1]0|x+y+z Mg
1112110 |x+y+7 My

can be specified as the product of the 0-maxterms My, My, M,, and M,. The shorthand notation for the function is
F(X,y,Z) =M0° M]_' Mz‘ M4

Again, by using the standard algebraic symbol M for product, the notation is further simplified to

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 14 of 27

F(x,y,2) =N (0,1, 2, 4)

The following summarizes these relationships for the function F = xy'z + xyz' + yz and its inverse. Comparing
these equations with those in Figure 8, we see that they are identical.

F(X,y,2) =X'yz+Xy'z+xyz +xyz
=M+ M5+ Mg+ my;
=3(3,5,6,7)
= (XHy+2Z) o (X+y+2") o (x+y'+2) o (X'+y+2)
=Mo* M+ M; + My M 0-maxterms |

=1(0, 1, 2, 4) |
duals inverse

2 1-minterms |

equivalent

F(Xx,y,2) =Xy zZ+xyz+xyz +xy?Zz
=Mp+mg+my+my > 0-minterms | |
=2(0,1,2,4)

= (x+y'Hz) o (X+y+7) o (XHy'+2) o (X+y'+7)

:M30M50M60M7)
- N(3,5,6,7) M 1-maxterms — | J

equivalent

Notice that it is always the > of minterms and I of maxterms; you never have ~ of maxterms or I of minterms.

Example 2.5: Given the Boolean function F,, =y + X'z, use Boolean algebra to convert the function to the sum-
of-minterms format.

This function has three variables. In a sum of minterms format, all product terms must have all variables. To do
so, we need to expand each product term by ANDing it with (v + v') for every missing variable v in that term. Since
(v+Vv'") =1, therefore, ANDing a product term with (v + v') does not change the value of the term.

F =y+xtz
= y(x+X')(z+2') + X'z(y+y') expand 1% term by ANDing it with (x+x')(z+z'), and 2" term with (y+y")
=Xyz + Xyz' + X'yz + X'yz' + ¥yz + X'y'z
=m;+ Mg+ mMmzg+my,+m;
=2(1,2,3,6,7) sum of 1-minterms .

Example 2.6: Given the Boolean function F,, =y + x'z, use Boolean algebra to convert the function to the
product-of-maxterms format.

To change a sum term to a maxterm, we expand each term by oRring it with (vw') for every missing variable v in
that term. Since (vw') = 0, therefore, oring a sum term with (vw') does not change the value of the term.

F =y+xz
=y +(x7)
= (y+x')(y+2) use distributive theorem to change to product of sums format
= (y+x' +22')(y+z+xx') expand 1% term by oRing it with zz', and 2" term with xx’
= (X 4y+2) (X +y+2") (X+y+7) fey+2)
= |\/|4 . M5 . MO
=1(0, 4,5) product of 0-maxterms .

Example 2.7: Given the Boolean function Fy, =y + X'z, use Boolean algebra to convert the function to the sum-
of-minterms format.

F' =(y+x72)
=y'e (x2)' use DeMorgan
=y'e (x+Z') use DeMorgan

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 15 of 27

zyxX+y'7 use distributive theorem to change to sum of products format
=y'X(z+z') +y'Z' (x+x') expand 1% term by AnDing it with (z+z'), and 2™ term with (x+x")
=XY'Z+Xy'Z + %y + XYz

=Mms+ My + My

=2(0,4,5) sum of 0-minterms .

Example 2.8: Given the Boolean function F,, =y + x'z, use Boolean algebra to convert the function to the
product-of-maxterms format.

F=(y+x2)
=y'e(X'2) use DeMorgan
=y'e (x+2') use DeMorgan

= (y' +xx' +2z') * (x+z' +yy') expand 1% term by ORing it with xx' +zz', and 2™ term with yy'

= (XY 42) (xty' +7') (X +Y' +2) (X 4y +7") (x+y+2") eky—+23

=M, Mg Mg My M;

=MNn(,23,6,7) product of 1-maxterms .

2.7 Canonical, Standard, and non-Standard Forms

Any Boolean function that is expressed as a sum of minterms or as a product of maxterms is said to be in its
canonical form. As noted from the previous section, to convert a Boolean function from one canonical form to its
other equivalent canonical form, simply interchange the symbols X~ with 1, and list the index numbers that were
excluded from the original form. To convert a Boolean function from one canonical form to its dual (inverse),
simply interchange the symbols X with I, and list the same index numbers from the original form. For example, the
following two expressions are in its canonical form.

F=x'yz+xy'z+xyz +xyz
F=(xty'+z) » (X+y+Z) « (X'+y'+2) « (X'+y'+7)
A Boolean function is said to be in a standard form if a sum-of-products (product-of-sums) expression has at
least one term that is not a minterm (maxterm). In other words, at least one term in the expression is missing at least

one variable. For example, the following expression is in a standard form because the last term is missing the
variable x.

F=xyz+xyz +yz

Sometimes, common variables in a standard form expression can be factored out. The resulting expression is no
longer in a sum-of-products or product-of-sums format. These expressions are in a non-standard form. For
example, starting with the previous expression, if we factor out the common variable x from the first two terms, we
get the following expression, which is in a non-standard form.

F=x(y'z+yz) +yz

2.8 Logic Gates and Circuit Diagrams

Logic gates are the actual physical implementations of the logical operators discussed in the previous sections.
Transistors, acting as tiny electronic binary switches are connected together to form these gates. Thus, we have the
AND gate, the OR gate, and the NOT gate (also called the INVERTER) for the corresponding AND, OR, and NOT logical
operators. These gates form the basic building blocks for all digital logic circuits. The name “gate” comes from the
fact that these devices operate like a door or gate to let or not to let things (in our case, current) through.

In drawing digital circuit diagrams or schematics, we use special logic symbols to denote these gates as shown
in Figure 10.

The AND gate, or specifically, the 2-input AND gate, in Figure 10 (a) has two input connections coming in from
the left and one output connection going out on the right. Similarly, the 2-input or gate in (b) has two input
connections and one output connection. The INVERTER has one input from the left and one output going to the right.
The outputs from these gates, of course, are dependent on their inputs and as defined by their logical functions.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 16 of 27

- D= >
@) ©

Figure 10. Logic symbols for the three basic logic gates: (a) 2-input AND; (b) 2-input OR; (C) NOT.

-2 33> 1

(a) (b) (©) (d) (€)

- T - D

(® (@) (h) 0] 0)

Figure 11. Logic symbols for: (a) 3-input AND; (b) 4-input AND; (c) 3-input OR; (d) 4-input OR; () 2-input NAND; (f)
2-input NOR; (g) 3-input NAND; (h) 3-input NOR; (i) 2-input XOR; (j) 2-input XNOR.

2-NAND | 2-NOR | 2-XOR | 2-XNOR

X 1Yy | (ey) (x+y) | xOy x®y

010 1 1 0 1

0|1 1 0 1 0

110 1 0 1 0

111 0 0 0 1

3-AND 3-OR 3-NAND 3-NOR 3-XOR 3-XNOR

X |y | z Xeyez X+y+z (xeyez) | x+y+2)' | xOyOz | xOy©®©z
0|00 0 0 1 1 0 0
0|01 0 1 1 0 1 1
0|l1]0 0 1 1 0 1 1
0|11 0 1 1 0 0 0
1]01]0 0 1 1 0 1 1
11011 0 1 1 0 0 0
1]1]0 0 1 1 0 0 0
11111 1 1 0 0 1 1

Figure 12. Truth tables for: 2-input NAND; 2-input NOR; 2-input XOR; 2-input XNOR; 3-input AND; 3-input OR;
3-input NAND; 3-input NOR; 3-input XOR; 3-input XNOR.

Sometimes, an AND gate or an OR gate with more than two inputs are needed. So in addition to the 2-input AND
and OR gates, there are 3-input, 4-input, or as many inputs as are needed AND and OR gates. In practice, however, the
number of inputs is limited to a small number like five.

There are several other gates that are variants of the three basic gates that are also often used in digital circuits.
They are the NAND gate, the NOR gate, the XOR gate, and the XNOR gate. The NAND gate is derived from an AND gate
and the INVERTER connected in series so that the output of the AND gate is inverted. The name “NAND” comes from
the description “Not AND.” Similarly, the NOR gate is the OR gate with its output inverted. The XOR, or eXclusive OrR
gate is like the OR gate except that when both inputs are 1, the output is a 0 instead. The XNOR, or eXclusive NOR
gate is just the inverse of the XOR gate for when there are an even number of inputs. When there are an odd number
of inputs, the XOR is the same as the XNOR. The logic symbols and their truth tables for some of these gates are
shown in Figure 11 and Figure 12 respectively.

Notice in Figure 11 the use of the little circle or bubble at the output of some of the logic symbols. This bubble
is used to denote the inverted value of a signal. For example, the NAND gate is the inverse of the AND gate, thus, the
NAND gate logic symbol is the same as the AND gate logic symbol except that it has the extra bubble at the output.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 17 of 27

The notations used for these gates in a logical expression are: (xy)' for the 2-input NAND gate; (x+y)' for the 2-
input NOR gate; x [y for the XOR gate; and x ® y for the XNOR gate.

Looking at the truth table for the 2-input XOR gate, we can derive the equation for the 2-XOR gate as
xOy=xy+xy'

Similarly, the equation for the 2-input XNOR gate as derived from the 2-XNOR truth table is

XOy=xy +xy I
The equation for the 3-input XOR gate is derived as follows (C%
N
xOyQz N /
=(xOy)dz Y
=(Xy+xy') 0z N@/
= (XY + Xy)7+ (Xy +xy')2 A
= XYz + Xy + (Xy)' (5")2 &
=XYZ +Xy'7 + (x+y') (X'+y) z A A
=XYZ'+XY'Z + %z + XYz + XY'Z + yyz R
= XYy'z + XYz +Xy'Z + Xyz %/

The last four product terms in the above derivation are the four 1-minterms in U?e 3-input XOR truth table. For 3

or more inputs, the XOR gate has the value 1 when there is an odd nur@N in the inputs, otherwise, itisa 0.

I
Notice also that the truth tables for the 3-input XOR and XNOR g/a}‘\a»"\e idéntical. It turns out that for an even

number of inputs, XOR is the inverse of XNOR, but for an odd numberﬁif::;? S, XOR is equal to XNOR.
S

All these gates can be interconnected together to form Iargegff\rr. plex circuits which we call networks. These
networks can be described graphically using circuit diagrams, Wi&l @ean expressions or with truth tables.

X

2.9 Example: Designing a Car SecuripekQ“(gi}m?

In a car security system, we usually want to co/“%a%e}' % in such a way that the siren will come on when it
is triggered by one or more sensors or inputs. In adgir%m\bf e will be a master switch to turn on or off the system.
Let us assume that there is a car door switch D, a\'vjbration\ etector switch V, and the master switch M. We will use
the convention that when the door is opened D =11 ethe wise, D = 0. Similarly, when the car is being shaken, V = 1,
otherwise V = 0. Thus, we want the siren ‘W 1that is, set S = 1, when either D = 1 or V = 1, but this is only
for when the system is turned on, that is M= 1.V‘\J7’|’en M = 0 as in when we are entering the car or when we are
driving, we don’t want the siren to come Oil.p\\ \/

Given the above description of’a c&ﬁy{{rﬁ y system, we can build a digital circuit that has the required
functionality. We start by constructi %ﬁ\r’{\&&”ﬁab , Which is basically a precise way of stating the operations for the
device. The table will have three ir; i r‘\olu ns M, D, and V, and an output column S as shown below

KN
£

M[D[V]s
N/R)) ofoJofo

& 0o[ol1]o0
K(é\\\f 0[1]0]0

2 RN\ 0j]1)117]0
< 1[olo0]o
g) 1011
1101

1111

The values under the S column are obtained from interpreting the description of when we want the siren to
come on. When M = 0, it doesn’t matter what the values for D and V are, we don’t want the siren to come on. When
M = 1, we want the siren to come on when either or both D and Vis a 1.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 18 of 27

The truth table can be described formally with a logic expression written in words as
S = (M AND (NOT D) AND V) OR (M AND D AND (NOT V)) OR (M AND D AND V)
or preferably using the simpler notation of a Boolean function

S=(MD'V)+(MDV)+(MDV)

Again, what this equation is saying is that we want the siren to come on, S = 1, when the master switch is on
and the door is not opened and the vibration switch is on, or the master switch is on and the door is opened and the
vibration switch is not on, or the master switch is on and the door is opened and the vibration switch is on. Notice
that we are only interested in the situations when S = 1. We ignore the rows when S = 0. When we construct circuits
from truth tables, we always use only the rows where the output is a 1.

Finally, we can translate this equation into a circuit diagram. The translation is a simple one-to-one mapping of
changing the AND operator into the AND gate, the OR operator into the OR gate, and the NOT operator into the
INVERTER. Thus, we get the following circuit diagram for our car security system

M D

K4

A careful reader might notice that the above Boolean equation and circuit for specifying when the siren is to be

turned on can be simplified to
D
i~ D

S=M(D +V) M

This simplified equation says that the siren is to be turned on only when the master switch is on and either the door
switch or vibration switch is on. Just by using simple reasoning, we can see that this simplified circuit will do
exactly what the previous circuit does. In other words, both circuits are functionally equivalent.

Using the Boolean Theorems from section 2.5.1, we can show that these two equations are indeed equivalent as
follows:

S=(MD'V)+(MDV)+(MDV)

=M(D'V+DV'+DV) by Distributive Theorem 12a
=M(D'V+DV'+DV+DV) by Idempotent Theorem 7b
=M (D(V'+V)+V(D'+D)) by Distributive Theorem 12a
=M (D(1) + V(1)) by Inverse Theorem 9b

=M (D+V) by Identity Theorem 6a

Figure 13 shows a sample simulation trace of the car security system circuit. Between times 0 and 200ns, the
master switch M is a 0, so regardless of the values of D and V, the siren is off (Siren=0). Between times 200ns and
600ns, M = 1. During this time, whenever either D = 1 or V = 1, the siren is on. This is a functional trace of the
circuit and so all the signal edges line up exactly, i.e., the output signal edge changes at exactly the same time (with
no delay) as the input edge that caused it to change. For a timing trace, on the other hand, the output signal edge will
be delayed slightly after the causing input edge. An example of a timing trace is shown in Figure 6.17.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 19 of 27

Name: | 100 Ons 200 0ris 30 Ons 400 (ns 500.0ns B0 Ons 0
=M | [
w-0 [[
- | l
=L SEan | |

Figure 13. Sample simulation trace of the car security system circuit.

When building a circuit, besides having a functionally correct circuit, we also want to optimize it in terms of its
size, speed, heat dissipation, and power consumption. We will see in later sections how circuits are optimized.

2.10 Introduction to VHDL

VHDL is a hardware description language for modeling digital systems. In many respects, it is similar to a
regular computer programming language such as C++. For example, it has constructs for variable assignments,
conditional statements, loops, and functions, just to name a few. In a computer programming language, a compiler is
used to translate the high-level source code to machine code. In VHDL, however, a synthesizer is used to translate
the source code to a description of the actual hardware circuit that implements the code. From this description,
which we call a netlist, the actual physical digital device that realizes the source code can be made automatically.
Accurate functional and timing simulation of the code is also possible to test the correctness of the circuit.

Using VHDL to model a digital system can be done at different levels of abstraction, ranging from the structural
or gate level to the behavioral or algorithmic level. At the structural level, we specify the components needed in the
circuit and how these components are connected together. To write VHDL code at this level, you must manually
design the circuit first. This is analogous to writing programs in machine language. To use the power of VHDL, our
goal is to work at the behavioral level. At this level, we define the circuit using an algorithm written with high-level
statements and constructs. The synthesizer automatically translates this high-level code to the netlist or circuit that
implements the algorithm.

2.10.1 VHDL code for a 2-input NAND gate

Figure 14 shows the VHDL code for a 2-input NAND gate. It also serves as a basic template for all VHDL codes.
Lines starting with two hyphens are comments. The library and use statements specify that the IEEE library is
needed and that all the components in the library can be used. These two statements are equivalent to the “#include”
preprocessor line in C++. Every component defined in VHDL, whether it is a simple NAND gate or a complex
microprocessor, has two parts: an entity and an architecture. The entity is similar to a function declaration in C++
and serves as the interface between the component and the outside. Every entity must have a unique name; in the
example, the name NAND2gate is used. The entity contains a port list, which, like a parameter list, specifies the
data to be passed in and out of the component. In the example, there are two input signals call x and y of type
std_logic and an output signal call F of the same type. The std_logic type is like a bit but contains additional values
besides just 0 and 1. The architecture is the definition of the component and contains the code that realizes the
operation of the component. For every architecture you need to specify its name and which entity it is for; in the
example, the name is Dataflow and it is for the entity NAND2 gate. It is possible for one entity to have more than
one architecture since an entity can be implemented in more than one way. Within the body of the architecture, we
can have one or more concurrent statements. Unlike statements in C++ where they are executed in sequential order,
concurrent statements in the architecture body are executed in parallel. Thus, the ordering of these statements is
irrelevant. The symbol “<=""is used for a signal assignment statement. Just like a regular assignment statement, the
expression on the right-hand side is evaluated first and the result is assigned to the signal on the left-hand side. The
nand operator is a built-in operator.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 20 of 27

LI BRARY i eee;
USE ieee.std_logic_1164. all;

ENTI TY NAND2gate | S PORT (
x: IN STD_LCG G
y: IN STD _LCG G
f: OQUr STD LO4d O);

END NAND2gat e;

ARCHI TECTURE Dat af | ow OF NAND2gate IS
BEG N

f <= x NAND vy;
END Dat af | ow,

Figure 14. VHDL code for a 2-input NAND gate.

2.10.2 VHDL code for a 3-input NOR gate

Figure 15 (a) shows the VHDL code for a 3-input NOR gate. In additional to the three input signals x, y and z,
and one output signal F declared in the entity section, this example has two internal signals, xory and xoryorz, both
of which are of type std_logic. Internal signals are used for naming connection points (or nodes) within a circuit.
Three concurrent signal assignment statements are used. All the signal assignment statements are executed
concurrently so the ordering of the statements is irrelevant. Figure 15 (b) shows the simulation trace of the circuit.

LI BRARY i eee;
USE ieee.std logic 1164.all;

ENTI TY NOR3gate |I'S PORT (
x: I N STD_LOG C
y: IN STD_LCG C
z: IN STD _LOG G
f: OUT STD LOd O);
END NOR3gat e;

ARCHI TECTURE Dat af | ow OF NOR3gate | S
SIGNAL xory, xoryorz : STD LOQ G
BEG N
xory <= x ORYy;
xoryorz <= xory OR z;
f <= NOT xoryorz;
END Dat af | ow;

@

Marme: l 1EIEI.IEIns EIZIEI.IEIns SDD.IIIIns flEIIZI.IEIns EEIIZI.IEIns EEIEI.IEIns ?EIEI.IEIns E!EIEI.IEIns EIEIEI.IEIns

=X T |

=y | | | -
=z

> f |] L

(b)

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 21 of 27

Figure 15. 3-input NOR gate: (a) VHDL code; (b) simulation trace.

2.10.3 VHDL code for a function

Figure 16 shows the VHDL code and the simulation trace for the car security system circuit of section 2.9. The
function implemented isS=(MD'V) + (MDV") + (MDV).

This VHDL code (as well as the ones from the two previous sections) is written at the dataflow level, not
because the name of the architecture is “Dataflow”, but because we are describing how data signals are generated
within the circuit by using concurrent signal assignment statements.

LI BRARY i eee;
USE ieee.std logic 1164.all;

ENTITY Siren IS PORT (
M IN STD LOG C;
D: IN STD LG C;
V: IN STD LOG C;
S: QUT STD LOd ©);
END Siren;

ARCHI TECTURE Dat afl ow OF Siren IS

SIGNAL term 1, term2, term3: STD LOA G
BEG N

term1 <= M AND (NOT D) AND V;

term?2 <= M AND D AND (NOT V);

term3 <= M AND D AND V;

S<=terml ORterm2 ORtermJ3;
END Dat af | ow;

@

Marme: 'J, 1IIIIII.IEIns EEIIII.IEIns SDD.IIIIns 4EIIII.IEIns EDD.IIIIns EIIIIII.IEIns ?IIIIII.IEIns BIIIIII.IEIns BIIIIII.IEIns

m—-M | | L
D | | | L
= o s R S N S N e e e
- S |

(b)

Figure 16. The car security circuit of section 2.9: (a) dataflow VHDL code; (b) simulation trace.

2.11 Summary Checklist

Binary number

Hexadecimal number

Binary switch

AND, OR, and NOT

Truth table

Boolean algebra axioms and theorems
Duality principle

I Iy

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits

Ooo0oo0oO0oDO0OO0OO0DO0ODDO0ODDOCDODD

Microprocessor Design — Principles and Practices with VHDL

Boolean function and the inverse
Product term

Sum term

Sum-of-products, or-of-ands
Product of sums, and-of-ors
Minterm and maxterm

Sum-of minterms
Product-of-maxterms

Canonical, standard, and non-standard form
Logic gate, logic symbol

Circuit diagram

NAND, NOR, XOR, XNOR
Network

VHDL

Page 22 of 27

Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 23 of 27

2.12 Exercises

2.1 Derive the truth table for a 4-input NAND gate.

2.2 Derive the truth table for a 4-input XOR gate.

2.3 Draw the schematic circuit diagrams that implements the following expressions using as few basic gates as
possible:

a) F=xy' +xy'z+xyz

b) F=wZz"+w'xy +wx'z + wxyz

C) F=wXxy'z+wXxyz+wxy'z + wxyz

d) F =N3'N2'NiNo' + N3'N2'NiNg + NaNo'NiNo" + N3No"NiNo + N3NoN;'Ng' + N3N,N;Ng
e) F=[x@y)+(xyz2)TW +x+2)

f) F=xOyOz

g F=[wxyz+wzyOX)]

2.4 Draw the schematic circuit diagrams that implement the expressions in question 2.3 using only 2-input AND,
2-input OR and NOT gates.

2.5 Draw the schematic circuit diagrams that implement the expressions in question 2.3 using only 2-input NAND
gates.

2.6 Draw the schematic circuit diagrams that implement the expressions in question 2.3 using only 3-input NOR
gates.

2.7 Show using the Boolean algebra axioms and theorems that (x O y) = (x ®© y)'
2.8 Show using Boolean algebra that XOR = XNOR for three inputs.
Answer:

xOyOz=x0Oy)Oz
=(xy+xy) 0z
=(Xy +xy) z+ Xy +xy) Z
=(Xy) - () 2+ XYz +xy'7
=(x+y) (X +y)z+ Xy +xy'7
¥KZ + XYz + X'Y'Z + yyz + X'yz' + xy'7'
(xy +xy)z+ Xy +xy)z
=(xy +Xy)z+ (xy +xy) 7'
= (x®y) z + (x®y)' 7
=XxOy®z

2.9 Draw the schematic circuit diagrams that implements the following expressions:

a) F(xvy2)=20,1,6)

b) F(wx,vY,2z)=2(0,1,6)

c) F(wxy,z)=2(2,6,10,11, 14, 15)
d F(xy,2)=(0,1,6)

e) F(wxy,z)=M(0,1,6)

) Fwxy,z)=MN(2,6, 10,11, 14, 15)

2.10 Convert the functions in question 2.3 to the sum-of-minterms and product-of-maxterms notations.
2.11 Derive the truth tables for the expressions in question 2.3.
2.12 Derive the truth table for the logic expression Fyy» = [(x+y") (y2)'] (xy' + X'y).

Answer:

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 24 of 27

XYy lz X |y [x+y' |yz|(y2) [[(x+y') (y2)'] | xy' | Xy | (xy' +Xy) | [(x+y') (v2)'] (xy" + X'y)
0(0j0]1]1 1 0 1 1 0 0 0 0
o(oj1y1(1| 1 |0 1 1 00 0 0
o(1/0y1(0| 0 |O 1 0 0|1 1 0
o(1(1)J1(0| 0 |2] O 0 0|1 1 0
10|00]1 1 0 1 1 1 0 1 1
1{0]1]0]1 1 0 1 1 1 0 1 1
1/1/0[0]J0] 1 |O 1 1 00 0 0
1/1|/1]0]0] 1 1] 0 0 010 0 0
2.13 Derive the Boolean function from the following truth table:
a) b)
N3 | No [N [No | F WIX|Y|Z f
00| 0]|0]O 010|000
0|0]0]|1]0 0|0|0|1]0
0|0|1]|0]1 0/0|1]0])1
oj0|1|1]1 0|0|1|1]0
0|1]0]0]0O 0/1|0]0])1
0O|1]0]|1]0 0|1|0]1])1
O|1]1|0]1 0|1|1|0]0
O|1(1]11]0 Oj111(1}1
11]0]0]0]O0 1/0[0]|0]0
1]0]0]1]0 110(0]1]1
1(0]1]0]1 1(0]1]0|1
1(0]1]1]1 1(0]1]1]0
1(1]0]0]1 1(1]0]0|1
1(1]0]1]0 1(1]0]1)1
1(1]1]0]0 1(1]1]0(0
1]1]1]1]j1 111111
2.14 Derive the Boolean function for the following circuits:
a
) X z
—1 E
L]
b)
w
; F

z

2.15 Construct a digital circuit with 4 bits input and 1 bit output such that the circuit outputs a 1 if the 4-bit input is
any one of the following numbers: 2, 3, 10, 11, 12, and 15. Otherwise, it outputs a 0.

2.16 Construct a comparator circuit with a 4-bit input. The circuit outputs a 1 if the 4-bit input is a number greater
than or equal to 5. Otherwise, it outputs a 0.

2.17 Construct the following circuit. The circuit has five input and one output lines. The five input lines are labeled
W, X, Y, Z, and E, and the output line is labeled F. E is used to enabled (turn on) or disable (turn off) the
circuit, thus when E = 0, the circuit is disabled and F is always 0. When E = 1, the circuit is enabled and F is
determined by the value of the four input lines W, X, Y and Z where W is the most significant bit. If the value

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 25 of 27

2.18

a)
b)

c)
d)

e)
f)

2.19
2.20

2.21

2.22

2.23

is odd then F = 1, otherwise F = 0.
Use a truth table to show that the following expressions are true:

W'Z' + W'XY + WX'Z + WXyz = W'z' + Xyz + wX'y'z + wyz
z+y'+yr'=1

Xy'z'+x' +xyz' =x'+7'

Xy +X'z+yz=xy+x'z

w'X'yz' + w'x'yz + wx'yz' + wx'yz + wxyz = y(x' + wz)
W'XY'Z + W'XYZ + WXY'Z + WXyZ = Xz

Show using the Boolean algebra axioms and theorems that the expressions in question 2.18 are true.

Any function can be implemented directly as specified or as its inverted form with a not gate added at the
final output. Assume that the circuit size is proportional to only the number of AND gates and OR gates, i.e.
ignore the number of NOT gates in determining the circuit size. Determine which form of the function (the
inverted or un-inverted) will result in a smaller circuit size for the following function. Give your reason and
specify how many AND and OR gates are needed to implement the smaller circuit.

F=XYyZ' +X'y'z+xy'z+xy'z' +xyz
Given F' (x,y, 2) = 2(1, 3, 7), express the function F using a truth table.

Convert the function F(x, y, z) = 2(3, 4, 5) to its equivalent product-of-sum canonical form using the Boolean
algebra axioms and theorems.

Given F = xy'z' + xy'z + xyz' + xyz, write the expression for F ' using: (a) the AND-of-OR terms format and
(b) the OR-0f-AND terms format.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits Page 26 of 27

Index
-5
"'56 H
O, 17 .
Hex Number. See Hexadeciaml Number

., 5,_6. See Product-of-maxterms. See Sum-of- Hexadecimal Number, 4

minterms
©, 17 |
+,5,6
0-maxterm. See Maxterm Inverse. See Boolean inverse function.
0-minterm. See Minterm INVERTER. See NOT gate.
1-maxterm. See Maxterm
1-minterm. See Minterm L

A Literal. See Boolean variable.

Logic expression, 5

Algebra. See Boolean algebra. Logic gate, 15
AND AND, 15

gate, 15 INVERTER, 15

term. See Product term. NAND, 16
And-of-ors, 10 NOR, 16
Axioms. See Boolean axioms. NOT, 15

OR, 15
B XNOR, 16
XOR, 16

Binary digit. See Bit Logic operator, 5

Binary Number, 2

Binary switch, 4 AND, 5

Bit, 2 NOT, 5
o OR, 5

Boolean

precedence, 6

algebra, 6 Logic symbol, 15, 16
axioms, 6 -

. circle, 16
function, 9
inverse function, 10 M
theorems, 6, 7, 8
variable, 6, 9 Maxterm, 13

M, 13

C 0-maxterm, 13

1-maxterm, 13

Canonical form, 15 product-of-maxterms, 13

D Minterm, 12
312
Dataflow level, 20 0-minterm, 12
DeMorgan’s Theorem, 7 1-minterm, 12
Digital circuit, description sum-of-minterms, 12
Boolean function, 6
truth table, 6 N

Duality Principle, 8 NAND gate, 16

= Netlist, 19
Network, 17
Function. See Boolean function. Non-standard form, 15
NOR gate, 16
G NOT gate, 15

Gate. See Logic gate.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:25 PM

Chapter 2 — Digital Circuits

O

Octal Number, 3
OR

gate, 15

term. See Sum term.
Or-of-ands, 9

P

Product term, 9

Product-of-maxterms, 1, 13
Product-of-sums, 10

S

Standard form, 15

Sum term, 10
Sum-of-minterms, %, 12
Sum-of-products, 9
Switch. See Binary switch.
Synthesizer, 19

T

Theorems. See Boolean theorems.

Microprocessor Design — Principles and Practices with VHDL

Truth table, 6, 7, 16, 23

Vv

Variable. See Boolean variable.

VHDL, 19
<=, 19
architecture, 19
concurrent statement, 19, 20
dataflow level, 20
entity, 19
library, 19
port, 19
signal assignment, 19
std_logic, 19
use, 19

VHDL code
2-input NAND gate, 19
3-input NOR gate, 20
car security system, 20
simple function, 20

X

XNOR gate, 16
XOR gate, 16

Page 27 of 27

Last updated 7/16/2003 12:25 PM

Chapter 3 — Combinational Circuits Page 1 of 26

Table of Content

TADIE OF CONTENT ...t b e et b etk b et bt e b et ek s b et e b e b et et e b et e be s b et e be s be e e benbe st e benbens 1
3 COMDINALIONAT CIICUILS ...iuviviitiietieteees bbbt bbbt b bbb b st st b ettt 2
3.1 Analysis of ComMDINAtIONAl CIFCUILScuveieieie et ne e e e e e nnenrs 2
311 WIth @ TEULN TaBIE ...ttt ettt e 2
3.1.2 WIith @ BOOIEAN FUNCLION.ottt ettt bbbt sbe b b sne s 4

3.2 Synthesis of COMDINAIONAI CIFCUIS........c.eiiiiiiieii i bbbt sae s 5
TR B I-Tod o1 T oo VAN Y/ F- Vo o 11 Lo [OOSR URRT PR 6
34 Minimization of CombINALIONAL CIFCUILSceiuiiiiieie e 9
34.1 KArNAUGN (K) IMBPS. ...ttt bbbt b et e b et bt bt s bt ebe e e e b e sbesb e besbeeneens 9
3.4.2 Do) gl or: 1L TP TSRS PO UR U P UP PP 13
3.4.3 * Quine-McCluskey (Tabulation) Methodc.cceieiiiininir s 14

3.5 *Timing Hazards and GlITCHESccviieieice ettt se e nneeneas 15
3.6 7-Segment DeCOTer EXAMPIE......cvi it re e enes 16
3.7 VHDL Code for Combinational CiIFCUILScoveirieiiiieiee ettt sbe e 19
3.7.1 Structural BCD t0 7-SegmMENt DECOUETccuevviieeeierieieiereste e stesreeeee et e et sre e e e e saesreseesneans 19
3.7.2 Dataflow BCD t0 7-SegMENt DECOUETueiverieiireeereeieriesiesestestee e e e eseesees e sresre e sneereeeenseseessesresnens 22
3.7.3 Behavioral BCD t0 7-SegMENt DECOUENociiuiiuiriiriieieiierie ettt see bbbt se b e sne s 22

3.8 SUMMANY ChECKIISE ...ttt bbbttt e b e b e b e b e bt et e e e e sbeseesbesreaneas 23
3.9 T (o 1= OSSO PP URURUR 24
0T (=) OSSO UPURTRURR 26

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 2 of 26

3 Combinational Circuits

Digital circuits, regardless of whether they are
part of the control unit or the datapath, are classified
as either one of two types: combinational or

Control
Inputs

sequential. Combinational circuits are the class of Control unit

digital circuits where the outputs of the circuit are N

dependent only on the current inputs. They do not iy

remember the history of past inputs and, therefore, do Next- [uemon| || St Control

not require any memory elements. Sequential circuits ot regster Signals

on the other hand are circuits in which their outputs — > e ”

are dependent on not only the current inputs but also — > >0

on past inputs. Because of their dependency on past A SRS

inputs, sequential circuits must contain memory v 3{’9%'5\ v

elements in order to remember the past input values. Sontrol - xS @jﬁ Data
utputs 4L Outputs

A “large” digital circuit, however, may contain both 7
combinational circuits and sequential circuits. However, regardless of Wheth;{ it/is“\zx
sequential circuit, it is nevertheless a digital circuit, and so they use the same“basic

and NOT gates. What makes them different is in the way the gates are connea@ A

The car security system example from Section 2.9 is an example of a combinatisnal circuit. In the example, the
siren is turned on when the master switch is on and someone opens the door If you“éeose the door then the siren will
turn off immediately. With this setup, the output, which is the siren,/is.c ent only on the inputs, which are the
master and door switches. For the security system to be more useful, t T"\irer\ should remain on even after closing
the door after it is first triggered. In order to add this new feature to the- em,zi@y system, we need to modify it so that
the output is not only dependent on the master and door swnches but/also dependent on whether the door has
previously been opened or not. A memory element is needed i |n 0 remember whether the door was previously
opened or not, and this results in a sequential circuit. In this ch *mr, we will look at the design of combinational
circuits. We will leave the design of sequential circuits for a qutéf\"h pter.

mbinational circuit or a
ing blocks — the AND, OR

Yy

In addition to being able to design a funcuonalxﬂre%un we would also like to be able to optimize the
circuit in terms of size, speed, and power consumptisn:.L I)\ reducing the circuit size will also increase the speed
and reduce the power usage. In this chapter, we will oni ’\rQO at reducing the circuit size. Optimizing the circuit for
speed and power usage is beyond the scope of th.i\s gook.

3.1 Analysis of Comblnatlonalwfff%%f\s)

Very often we are given a digital Ioaﬁ; c t and we would like to know the operation of the circuit. The
analysis of combinational circuits is the p(\\r\ S WhICh we are given a combinational circuit and we want to derive
a precise description of the operation Mt\h‘e}g\ cuit. In general, a combinational circuit can be described precisely
either with a truth table or with a Bog((daln\ ic

\

3.1.1 With a Truth Tale

For example, given thmzﬁrﬁ\ at\ al circuit of Figure 1, we want to derive the truth table that describes the
circuit. We create the truth tal jﬂrst listing all the inputs found in the circuit, one input per column, followed by
all the outputs found in Qﬁ\ cun* ence, we start with a table with four columns; three columns (x, y, z) for the
inputs and one colyrn f;\je output as shown below

(J N

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 3 of 26

Z
)
— J
]
Sy
]
)
—— J
Figure 1. Sample combinational circuit.

The next step is to enumerate all possible combinations of 0’s and 1’s for all the input variables. In general, for
a circuit with n inputs there are 2" combinations from 0 to 2" — 1. Continuing on with the example, the table below
list the eight combinations for the three variables in order.

PP OO|IO|IO|X
R[OOI IR OO0
O IO O|FR|IO|N

[EEN
[N
[EEN

Now, for each row in the table, that is, for each combination of input values, determine what the output value is.
This is done by substituting the values for the input variables and tracing through the circuit to the output. For
example, using xyz = 000, the outputs for all AND gates are 0, and ORing all the zeros gives a zero, therefore, f = 0.
This is shown in the annotated circuit below.

X 'y oz
0

0 0
1 il

—\0

 —

0
|
0

0 f
0

——)

For xyz = 001, the output for the top AND gate gives a 1, and 1 orR with anything gives a 1, therefore, f = 1 as
shown in the annotated circuit below.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 4 of 26

o X
O <
N

Continuing in this fashion for all input combinations, we can complete the final truth table for the circuit as
shown below

Rk |lo|lolo|lo|x
FR|lo|lolk|lr|lolol
R olr|lolk|lo|r|lo|~
ook |lo|r|lo|—

3.1.2 W.ith a Boolean Function

To derive a Boolean function that describes a combinational circuit, we simply write down the Boolean logical
expressions at the output of each gate instead of substituting actual values of 0’s and 1’s for the inputs as we trace
through the circuit from the primary input to the primary output. Using the sample combinational circuit of Figure 1,
we note that the logical expression for the output of the top AND gate is X'y'z. The logical expressions for the
following AND gates are respectively x'yz, xy'z, and xyz. Finally, the outputs from these AND gates are all ored
together. Hence, we get the final expression

f=xy'z+x'yz +xy'z + xyz

To help keep tract of the expressions at the output of each logic gate, we can annotate the outputs of each logic
gate with the resulting logical expression. If we substitute all possible combinations of values for the variables, we
should obtain the same truth table as above.

Example 3.1
As another example, consider the combinational circuit below,

L f

Starting from the primary inputs x, y, and z, we annotate the outputs of each logic gate with the resulting logical
expression. Hence, we obtain the annotated circuit below

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 5 of 26

X z
Y y Xy'

__|>‘AFX'

=x (xy'+(y O 2)

The output of the circuit is the final function f = x' (xy' + (y O 2)). .

3.2 Synthesis of Combinational Circuits

Synthesis of combinational circuits is just the reverse procedure of the analysis of combinational circuits. In
synthesis, we start with a description of the operation of the circuit. From this description, we derive either the truth
table or the Boolean logical function that precisely describes the operation of the circuit. Once we have either the
truth table or the logical function, we can easily translate that into a circuit diagram.

For example, let us construct a 3-bit comparator circuit that outputs a 1 if the number is greater than or equal to
5, and O otherwise. In other words, a circuit that outputs a 0 if the input is a number between 0 and 4, and outputs a 1
if the input is a number between 5 and 7. Since we are working with decimal numbers in the range 0 to 7, we can use
three input bits (x,, X;, and Xo) to represent the number. From the description, we obtain the following truth table

x
IS

x
fie

x
S

PP OO|IO|IOoO|O|—

RPRPRFPRPRPOOIOIO
PP OO IF,IOIO
R[OOI IOk o

In constructing the circuit, we are only interested in when the output is a 1, i.e. when the function is a 1. Thus,
we need only consider the rows where the output function f = 1. From the above truth table, we see that there are
three rows where f = 1 which give the three AND terms x,X;'Xo, XoX1Xo', @nd X,X1Xo. Notice that the variables in the AND
terms are such that it is inverted if its value is a 0, and not inverted if its value is a 1. In the case of the first AND
term, we want f =1 when x, = 1 and x; = 0 and xo = 1, and this is satisfied in the expression x,x;'X,. Finally, we want
f = 1 when either one of these three AND terms is equal to 1. So we oOred the three AND terms together giving us our
final expression

f= XoX1'Xo + XoX1Xg' + X2X1Xo

In drawing the schematic diagram, we simply convert the AND operators to AND gates and OR operators to OR
gates. The equation is in the sum-of-product format, meaning that it is summing (ORing) the product (AND) terms. A
sum-of-product equation translates to a two level circuit with the first level being made up of AND gates and the
second level made up of OR gates. Each of the three AND terms contain three variables, so we use a 3-input AND gate
for each of the three AND terms. The three AND terms are ORed together, so we use a 3-input OR gate to connect the
output of the three AND gates. For each inverted variable, we need an inverter. The schematic diagram derived from
the above equation is shown below

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 6 of 26

X2 X

3.3 Technology Mapping 2

To reduce implementation cost and turnaround time, designers often make use of off-the- shel\/p\ze}f ystom
gate arrays. Many gate arrays are ICs that have only NAND gates or NOR gates built in them, hytith EN«\/ and
output connections are not yet connected. To use these gate arrays, a designer simply has to spe@\%l@@re 0 make
these connections between the gates. The problem in using these gate arrays to implement ourﬁkc\:n\r that we need
to convert all AND gates, OR gates, and inverters in our circuit to use only NAND gates or l\@lg/zjjs depending on
what is available in the gate array. More over, these NAND and NOR gates usually have u.<h me number of fixed

t Ily 3-input.
inputs; usually 3-inpu /A

The conversion of any given circuit to use only NAND or NOR gates is possible cbserving the following
equalities as obtained from the Boolean algebra theorems: /7\
Rule 1: x''=x \

Rule 2: xy = ((xy))' \\
Rule3: x+y=((x+y))'=(X'y') J

Rule 4: xy = ((xy))' = (X' +y")' (\\)

Rule5: x+y=((x+Yy)")'
Rule 1 simply says that a double inverter can bﬁé‘;:/?d/altogether Rule 2 applies Rule 1 to the AND

operator. The resulting expression, however, gives us a NAND gate followed by an inverter. Rule 3 changes an oR
gate to use two inverters and a NAND gate by first applying the double inverter rule and then De Morgan’s Theorem.
Similarly, Rule 4 converts an AND gate to use two m\\/urt{s and a NOR gate, and Rule 5 converts an OR gate to a NOR
gate followed by an inverter.

Rules 2 and 3 are used if we want to corﬁr\?(\uﬁ OR circuit to use only NAND gates, whereas, rules 4 and 5
are used if we want to use only NOR gates.

In a circuit diagram, these rules tran%lafe\ten ﬁ lowing equivalent circuits

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 7 of 26

Finally, to replace inverters with either the NAND gate or the NOR gate, we note that by simply connecting all the
inputs of either the NAND or the NOR gate together, the resulting operation of the gate is like the inverter. Take the 2-
input NAND gate for example, we connect the two inputs together so that there is only one input and one output as

follows
EE}

Since x and y will always have the same value, we can simplify the NAND gate truth table by eliminating the two
rows where x # y as shown in the truth table below. The two resulting columns for x and y are now identical and
therefore, can be combined into just one column for the one input. As a result, we get a truth table that is exactly the
same as that for the inverter.

NAND Inverter
x|y | f
001 X f
0|11 = 0 1
1]10(1 1 0
111]0

Similarly, we can get the same functional result by connecting together the two inputs for a NOR gate as shown
below.

NOR Inverter
x|y | f
0|01 X f
0|10 = 0 1
10| 0 1 0
111]0

The inverter function can also be obtained from a 2-input NAND gate by connecting one of its inputs to 1. As
shown in the truth table below, by connecting the input x to 1, the first two rows of the table where x = 0 can never
occur. This way, with only the last two rows, whatever the second input y is, the output f is always the inverted value
of y.

NAND Inverter
x|y | f
0|01 X f
0|11 = 0 1
1101 1 0
1110

Another thing that we might want is to get the functionality of a 2-input NAND or NOR gate from a 3-input NAND
or NOR gate respectively. The following circuit shows how you can get a 2-input NAND/NOR gate from a 3-input
NAND/NOR gate respectively. You may want to check with a truth table that they are indeed equivalent.

s 1D e —

2-input NAND gate 2-input NOR gate

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 8 of 26

The reverse is to get the functionality of a 3-input NAND or NOR gate from 2-input NAND or NOR gates
respectively. These two transformations make use of the following two equalities:

(abc)' = ((ab) ¢)' = ((ab)" c)’
(at+b+c) = ((a+b) +)’ = ((a+b)" +c)'

Hence, the circuits for the 3-input NAND and NOR gates using 2-input NAND and NOR gates respectively are

shown in Figure 2.
D - DD
D - DD

Figure 2. 3-input NAND and NOR gates using 2-input NAND and NOR gates respectively.

Example 3.2
As an example, let us convert the following circuit to use only 3-input NAND gates.

X pA

Nab4
1 —

First, we need to change the 4-input OR gate to a 3- and 2-input OR gates.

V|V

Z
—
—)
—)
— |_L/ f
——)

Then we will use Rule 2 to change all the AND gates to 3-input NAND gates with inverters, and Rule 3 to change
all the oR gates to 3-input NAND gates with inverters. The 2-input NAND gates are replaced with 3-input NAND gates
with two of its inputs connected together.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 9 of 26

X Z

v|Y

Finally, we eliminate all the double inverters, and replace the remaining inverters with NAND gates with their
inputs connected together

X

®

3.4 Minimization of Combinational Circuits

When constructing digital circuits, in addition to obtaining a functionally correct circuit, we like to optimize it
in terms of circuit size, speed and power consumption. In this section, we will focus on the reduction of circuit size.
Usually, by reducing the circuit size, we will also have improved on the speed and power consumption. We have
seen in the previous sections that any combinational circuit can be represented using a Boolean function. The size of
the circuit is directly proportional to the size or complexity of the functional expression. In fact, it is a one to one
correspondence between the functional expression and the circuit size. By using the Boolean algebra theorems, we
can transform an expression to another equivalent expression. If the resulting expression is simpler than the original,
then we want to implement the circuit based on the simpler expression since that will give us a smaller circuit size.

Using Boolean algebra to transform an expression to one that is simpler is not an easy task, especially for the
computer. There is no formula that says which is the next theorem to use. Luckily, there are easier methods for
reducing Boolean expressions. The Karnugh map (K-map) method is an easy way for reducing an equation
manually and is discussed in section 3.4.1. The Quine-McCluskey or tabulation method for reducing an equation is
ideal for programming the computer and is discussed in section 3.4.3.

3.4.1 Karnaugh (K) Maps

To minimize a Boolean equation in the sum-of-products form, we need to reduce the number of product terms
by applying the combining Boolean Theorem (Theorem 14) from Section 2.5.1. In so doing we will also have
reduced the number of variables used in the product terms. For example, given the following 3-variable function

F =xy'z' + xyz'

we can reduce it to
F=xz'(y'+y)
=xz'1
=xz'
In other words, two product terms that differ by only one variable whose value is a 0 (primed) in one term and a
1 (unprimed) in the other term, can be combined together to form just one term with that variable omitted as shown

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 10 of 26

in the example above. Thus, we have reduced the number of product terms and the resulting product term has one
less variable. By reducing the number of product terms, we reduce the number of OR operators required, and by
reducing the number of variables in a product term, we reduce the number of AND operators required.

Looking at a logic function’s truth table, it is sometimes difficult to see how the product terms can be combined
and minimized. A Karnaugh map or K-map for short provides a simple and straight forward procedure for
combining these product terms. A K-map is just a graphical representation of a logic function’s truth table where the
minterms are grouped in such a way that it allows one to easily see which of the minterms can be combined. It is a
2-dimensional array of squares, each of which represents one minterm in the Boolean function. Thus, the map for an
n-variable function is an array with 2" squares.

Figure 3 shows the K-maps for functions with 2, 3, 4, and 5 variables. Notice the labeling of the columns and
rows are such that any two adjacent columns or rows differ in only one bit change. This condition is required
because we want minterms in adjacent squares to differ in the value of only one variable or one bit, and so these
minterms can be combined together. This is why the labeling for the third and fourth columns and the third and
fourth rows are always interchanged. When we read K-maps, we need to visualize it as such that the two end
columns or rows wrap around so that the first and last columns and the first and last rows are really adjacent to each
other because they differ in only one bit also.

In Figure 3 the K-map squares are annotated with its minterm and its minterm number for easy reference only.
When we are actually using K-maps to minimize an equation, we will not write these in the squares. Instead, we will
be putting 0’s and 1’s in the squares.

Given a Boolean function, we set the value for each K-map square to either a 0 or a 1 corresponding to whether
that minterm for the function is a 0-minterm or a 1-minterm. However, since we are only interested in the 1-
minterms, the 0’s are sometimes not written in the 0-minterm squares.

0 1 yz 00 01 11 10 YZ 00 01 11 10
X X WX
0 1 0 1 3 2 i 0 1 .3 .2
0 Xy Xy 0 Xyz | xyz | xyz | xyz 00 wx wx wx wx
yz yz yz yz
2 3 4 5 7 6 W 4) o 7 W 6
1 Xy Xy 1 w2 | wz | xyz | xyz 01 wx wX WX wx
yz yz yz yz

" VY}IZ w}a W}S W%A
@) (b) G L A

10

yz y'z yz yz'

v o0 01 11 10 | 00 o1 11 10 (c)

VWX [VWX | VWX v'w’x'2 vw'>3‘6 vw'>g'7 vw'>3‘9 vw'>g'8
yz yz yz yz yz yz yz yz

00

V'WX V'WX v'vv‘x7 v'vv‘x6 vw'>g0 vw‘)g1 vw'>g3 vw‘)g2
¥z y'z yz yz' Yz y'z yz yz'
V'V\;S(Z v'V\&3 V'V\;S(r) v'\n}x4 WX 2 vvv><29 vvv><3 1 vvv><3 0
y'z y'z yz yz' y'z' y'z yz yz'
v'wx'8 v'wx'9 v'W}Zl v'W}Zo vwx24 vwx25 vwx27 vwx26
yz yz yz yz' yz y'z yz yz'

01

11

10

(d)
Figure 3. Karnaugh maps for: (a) 2 variables; (b) 3 variables; (c) 4 variables; (d) 5 variables.
For example, the K-map for the 2-variable function

F=xy +Xy+xy

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 11 of 26

F yZ
yz
F X' F 7
yz , vz W 00 01/ 11 10
S w0 vy N0 o1/ 11 1T y
X 00 01 / 11 10 X 00 01 11 10 00 1
[[
ofit |1 11 0 1|1
o1 1
1 1 1|1
11 1
10 1
(a) ® m |

y X
X 0o/ 1
%0 1
oli1 |I1
2 3
1 1< ,,,,,,,,,, y

The 1-minterms mq (x'y") and m; (x'y) are adjacent to each other, which means that they differ in the value of
only one variable. In this case, x is 0 for both minterms, but y is 0 for one and 1 for the other. Thus, variable y is
dropped and the two terms are combined together giving just x'. This reasoning corresponds to the expression

XYy + Xy =X (y+y) =x
Similarly, the 1-minterms m; (x'y) and mg (xy) are also adjacent and y is the variable having the same value for
both minterms, and so they can be combined to give

Xy+txy=y

We use the term subcube to refer to a rectangle of adjacent 1-minterms. These subcubes must be rectangular in
shape and can only have sizes that are the powers of two. Formally, for an n-variable K-map, an m-subcube is
defined as that set of 2™ minterms in which n — m of the variables will have the same value in every minterm while
the remaining variables will take on the 2™ possible combinations of 0’s and 1’s. Thus, a 1-minterm all by itself is
called a 0-subcube, and two adjacent 1-minterms is a 1-subcube. In the above 2-variable K-map, there are two 1-
subcubes: one label with x' and one with y. A 2-subcube will have four adjacent 1-minterms and can be in the shape
of any one of those in Figure 4 (a) to (e).

Notice that Figure 4 (d) and (e) also form 2-subcubes even though the four 1-minterms are not physically
adjacent to each other. They are adjacent, however, because the first and last rows, and first and last columns wrap
around in a K-map. In Figure 4 (f), the four 1-minterms cannot form a 2-subcube because they do not form a
rectangle. However, they can form three 1-subcubes —y'z, x'y" and x'z.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 12 of 26

We say that a subcube is characterized by the variables having the same values for all the minterms in that
subcube. In general, an m-subcube for an n-variable K-map will be characterized by n — m variables. If the value that
is similar for all the variables is a 1, that variable is unprimed, whereas, if the value that is similar for all the
variables is a 0, that variable is primed. In an expression, this is equivalent to the resulting smaller product term
when the minterms are combined together. For example, the 2-subcube in Figure 4 (d) is characterized by z' since
the value of z is O for all the minterms, whereas the values for x and y are not all the same for all the minterms.
Similarly, the 2-subcube in Figure 4 (e) is characterized by x'z'

For a 5-variable K-map as in Figure 3 (d), we need to visualize the right half of the array where v = 1 to be on
top of the left half where v = 0. Thus, for example, minterm 20 is adjacent to minterm 4, and minterm 31 is adjacent
to minterm 15.

The K-map method reduces a Boolean function from its canonical form to its standard form. The goaljor the K-
map method is to find as few subcubes as possible to cover all the 1-minterms in the given function. Tl rsn turaIIy
implies that the subcube size should be as big as possible. The reasoning is that each subcube gives a mw @
and all the subcubes (or product terms) must be ored together to give the function. Larger subcuh(ﬁe\ er
AND gates because of fewer variables in the product term, and fewer subcubes will require fewer ORgm\

The procedure for using the K-map method is as follows: (5\[\})
\

1. Draw the appropriate K-map for the given function and place a 1 in the squares that co«»e nd to the function’s

1-minterms. /7

2. For each 1-minterm, find the largest subcube that covers this 1-minterm. Tﬂ]g\\xlb;/ge\stfubcube is known as a
prime implicant (PI). By definition, a prime implicant is a subcube that is no ;jgntalned within any other
subcube. If there are more than one subcube that is the same size as the largest subctibe, then they are all prime

implicants.
W

3. Look for 1-minterms that are covered by only one prime mphcan({Sﬁn*eXNs prime implicant is the only
subcube that covers this particular 1-minterm, this prime implicant.is.a-must have in the final solution. This
prime implicant is referred to as an essential prime implicant (EPI{ f|n|t|on an essential prime implicant
is a subcube that includes a 1-minterm that is not included in any others ~ bcube.

(\\

4. Create a minimal cover list by selecting the smallest p&ss blé\" er of prime implicants such that every 1-
minterm is contained in at least one prime implicanf. Thi er list must include all the essential prime
implicants plus zero or more of the remaining pri %}‘ icgnts. It is alright that a particular 1-minterm is
covered in more than one prime implicant, but all 1 minterms,must be covered.

5. The final minimized function is obtained by ORIP"' a rime implicants from the minimal cover list.

Note that the final minimized function obtam ﬂ(map method may not be in its most reduced form. It is
only in its most reduced standard form. Some*ﬁ td?s possible to reduce the standard form further into a non-

standard form. = @
Example 3.3 A(Hv\/

Use the K-map method to minim%-v iable (w, x, y and z) function F with the 1-minterms: mg, m,, ms, my,
Myg, My3, M4, and mys. We start wﬂf;ﬂé\\fem wing 4-variable K-map

v& vz
(ﬁ \ k Z/ WX 00 01 11 10

N 00| 1 1

12 13 15] 14
11 1 1 1

8| 9| 11] 10
10 1

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 13 of 26

The prime implicants for each of the 1-minterms are shown in the following K-map and table:

. 1-minterm | Prime Implicant
mg w'x'z'
" m, wx'z', x'yz'
ms Xz
m; Xz
Mig x'yz', wyz'
My3 Xz
Myq Wwyz', WXy
XZ ny Mis XZ

Thus, there are five prime implicants: w'x'z', x'yz', xz, wyz', and wxy. Of these five prime implicants, w'x'z' and
xz are essential prime implicants since mq is covered only by w'x'z', and ms, m;, and my5 are covered only by xz.

We start the cover list by including the two essential prime implicants w'x'z" and xz. These two subcubes will
have covered minterms mg, my, ms, m;, my3 and mys. To cover the remaining two uncovered minterms m;y and myy,
we want to use as few prime implicants as possible. Hence, we select the prime implicant wyz' which covers both of
them.

Finally, our reduced standard form equation is obtained by oring these three prime implicants

F=w'X'z"+ xz + wyz".

Notice that we can reduce this standard form equation even further by factoring out the z' from the first and last
term to get the non-standard form equation

F=2"(wx +wy) +xz .
Example 3.4

Use the K-map method to minimize a 5-variable function F (v, w, x, y and z) with the 1-minterms: v'w'x'yz",

V'WX'YzZ, V'W'XY'Z, V'W'Xyz, vW'X'YZ', vW'X'yZ, YW'XYyZ', vW'Xyz, VWX'Y'Z, VWX'yZ, VWXy'Z, and vwxyz.

wx'y w'yz
F yz v=0 A A v=1
wx _00 01 11 " 10
00 1
01 ‘ a1
VW'XZ €] s
11] 1| a Wy
10 1 10
; g
wz vyz

The list of prime implicants is: v'w'xz, w'x'y, w'yz, vw'y, vyz, and vwz. From this list of prime implicants, w'yz
and vyz are not essential. The four remaining essential prime implicants are able to cover all the 1-minterms. Hence
the solution in standard form is

F =v'w'xz + w'x'y + vw'y + vwz .
3.4.2 Don't-cares

There are times when a function is not fully specified. In other words, there are some minterms for the function
where we do not care whether their values are a 0 or a 1. When drawing the K-map for these “don’t-care”
minterms, we assign an “X” in that square instead of a 0 or a 1. Usually, a function can be reduced even further if we

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 14 of 26

remember that these x’s can be either a 0 or a 1. As you recall when drawing K-maps, enlarging a subcube reduces
the number of variables for that term. Thus, in drawing subcubes, some of them may be enlarged if we treat some of
these x’s as 1’s. On the other hand, if some of these x’s will not enlarge a subcube, then we want to treat them as 0’s
so that we do not need to cover them. It is not necessary to treat all x’s to be all 1’s or all 0’s. We can assign some
x’s to be 0’s and some to be 1’s.

For example, given a function having the following 1-minterms and don’t-care minterms:
1-minterms: mg, My, My, M3, M4, M7, Mg and my.

X-minterms: My, Myg, Mo, My3, Mys and mMys.

we obtain the following K-map with the prime implicants x', yz and y'z'.

yz

Notice that in order to get the 4-subcube characterized by x' the two don’t-care minterms m;, and my; are taken
to have the value 1. Similarly with the minterms m;, and m;s. On the other hand, the don’t-care minterms m; and
m,, are taken to have the value 0 so that they do not need to be covered in the solution. The reduced standard form
function as obtained from the K-map is, therefore

F=x'+yz+y'7z.

Again, this equation can be reduced further by recognizing thatyz + y'z' =y ® z. Thus,
F=x'+(y®2).

3.4.3 * Quine-McCluskey (Tabulation) Method

K-maps are useful for manually obtaining the minimized standard form Boolean function for may be up to at
most six variables. However, for functions with more than six variables, it becomes very difficult to visualize how
the minterms should be combined into subcubes. Moreover, the K-map algorithm is not as straight forward to
program the computer with. There exist tabulation methods, one of which is the Quine-McClusky method that are
better suited for programming the computer, and thus can solve any function having any number of variables.

Example 3.4

We now illustrate the Quine-McClusky algorithm using the same four-variable function as in example 3.2 and
repeated here

f(w,x,y,z) = 2(0,2,5,7,10,13,14,15)

To construct the initial table, the minterms are grouped according to the number of 1’s in that minterm
number’s binary representation. For example, my (0000) has no 1’s; m, (0010) has one 1; ms (0101) has two 1’s; etc.
Thus, the initial table of 0-subcubes (i.e. subcubes having only one minterm) as obtain from the above function is

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 15 of 26

Group SL_chube Subcube Value | Subcube
Minterms | w | x | y | z | Covered
Gy mg 0|0|0]|O v
G, m 0 0(11|0 4
G, Mg 0 11011 4
M1g 1 0(11|0 4
G; my 0 1(1]1 4
M13 1 11011 4
M1y4 1 111]0 4
Gy Mg 1 1(1]1 4

The “Subcube Covered” column is filled in from the next step.

In the second step, we construct a second table by combining those minterms in adjacent groups from the first
table that differ in only one bit position. For example, my and m, differ in only the y bit. Thus, this table lists all the
1-subcubes. A hyphen (=) is used in the bit position that is different in the two minterms. Since this 1-subcube
covers the two individual minterms, we make a note of it by checking the two minterms in the “Subcube Covered”
column in the previous table. The 1-subcube table is shown next

Group Sl_chube Subcube Value | Subcube
Minterms | w | x | y | z | Covered
Gy Mo, My 0 0(-10
G, My, M1g -10(11]0
G, ms,m; 0O|1|-11 v
Ms,M13 -|11]0]|1 v
Myg,My4 1(-11]0
G; m7,Mys -|11]1]|1 v
Mmams | 1 (1] -1 v
My4,My5 1(1/|1]-

We repeat the second step as long as there are adjacent subcubes that differ in only one bit position including
the hyphen. These subcubes are combined to give the next subcube table. From the above 1-subcube table, we get
the following 2-subcube table

Grou Subcube Subcube Value | Subcube
P Minterms w | x|y]| z| Covered
G, Ms,Mz,MizMys | — [1 | -] 1

We stop when there are no more subcubes that can be combined. The prime implicants are those subcubes that
are not covered, i.e. those without a check mark in the Subcube Covered column. For example, from the last table
(2-subcube table) the only subcube in this table has the value x = 1 and z = 1, thus we get the prime implicant xz.
From the 1-subcube table, we have the four prime implicants w'x'z', x'yz', wyz', and wxy. Note that these prime
implicants may not necessary be all in the last table. These five prime implicants are exactly the same as those

obtained in example 3.2.

3.5 *Timing Hazards and Glitches

As you probably know, things in practice don’t always work according to what you learn in school. Hazards and
glitches in circuits are such examples. In our analysis of combinational circuits, we have only been performing a
functional analysis. A functional analysis assumes that there is no delay for signals to pass from the input to the
output of a gate. In other words, we look at a circuit only with respect to its logical operation as defined by the
Boolean Theorems. We have not considered the timing of the circuit. When a circuit is actually implemented, the
timing of the circuit, that is, the time for the signals to pass from the input of a logic gate to the output, is very
critical and must be treated with care. Otherwise, an actual implementation of the circuit may not work according to
the functional analysis of the same circuit. Timing hazards are problems in a circuit as a result of timing issues.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 16 of 26

These problems can be observed only from a timing analysis of the circuit or from an actual implementation of the
circuit. A functional analysis of the circuit will not reveal timing hazard problems.

A glitch is when a signal is expected to be stable (from a functional analysis) but it changes value for a brief
moment and then goes back to what it is expected to be. For example, if a signal is expected to be at a stable 0, but
instead, it goes up to a 1 and then drops back to a 0 very quickly. This sudden unexpected transition of the signal is a
glitch, and the circuit having this behavior contains a hazard.

Take, for example, the simple 2-to-1 multiplexer circuit shown in Figure 5 (a). If both dy and d; are at a constant
1, and lets assume that s goes from a 1 to a 0. For a functional analysis of the circuit, the output y should remain at a
constant 1. However, if we perform a timing analysis of the circuit, we will see something different in the timing
diagram. Let as assume that all the logic gates in the circuit have a delay of one time unit. The resulting timing trace
is shown in Figure 5 (b). At time to, s drops to a 0. Since it takes one time unit for s to be inverted through the
inverter, s' changes to a 1 after one time unit at time t;. At the same time, it takes the bottom AND gate one tirpe unit
for the output to change to a 0 at time t;. However, the top AND gate will not see any input change until tinleft]pand
when it does, it takes another one time unit for its output s'dg to rise to a 1 at time t,. Starting at time ty, borﬁ@
of the OR gate is a 0, so after one time unit, the OR gate outputs a 0 at time t,. At time t, when the M{p\ﬁguw
outputs a 1, the or gate will take this 1 input and outputs a 1 after one time unit at t;. So between times t,%nd t;,
output y unexpectedly drops to a 0 for one time unit and then rises back to a 1. Hence, the output si%p%N\héf a glitch
and the circuit has a hazard. S (O

/
1%
As you may have noticed, glitches in a signal are caused by multiple sources having p%@ ifferent delays
driving that signal. To prevent glitches from occurring, one method is to add redundantgﬂc“ &igure 5 (c) shows
a functionally correct 2-to-1 multiplexer. However, with the extra AND gate, no glit(;gles\‘t;a occur. These types of

simple glitches can be easily solved using K-maps. x\ﬂ/
%

i \ /\%\:ﬁ

S)

d, s'd, o . R ~
! \ \\ ﬁ;/ d1 y
S y y < /\ \/
d, sd, A A N 2 3
\
{hY

(a) b (©)
Figure 5. Example of a glitch: (a) 2-to-1 multiplexer ci”ﬁi\t,\l‘))timing trace; (c) 2-to-1 multiplexer circuit with no
\K\

glitches. (¥
AY
3.6 7-Segment Decoder Example (\\f//\

~
—

We will now synthesize the circuit formg)v%\segﬁ]\ent decoder for driving a 7-segment LED display. The 7-
segment decoder converts a 4-bit input t04~%\ tput lines for turning on the seven lights in a 7-segment LED
display. The 4-bit input encodes the binapy-representation of a decimal digit. Given the decimal digit input, the seven
output lines are turned on in such a Wﬂm\t the LED displays the corresponding digit. The 7-segment LED
display schematic with the names of e@sg ment labeled is shown below

o

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 17 of 26

a

AR

e| e
d

The operation of the 7-segment decoder is specified in the truth table in Figure 6. The four inputs to the decode
are Is, I, 13, and |y, and the seven outputs for each of the seven LEDs are labeled seg a, seg b, ..., seg g. For each
input combination, the corresponding digit to display on the 7-segment LED is shown in the Display column. The
segments that need to be turned on for that digit will have a 1 while the segments that need to be turned off for that
digit will have a 0. For example, for the 4-bit input 0000, which corresponds to the digit 0, segments a, b, c, d, e and
f need to be turned on while segment g needs to be turned off.

Notice that the input combinations 1010 to 1111 are not used and so don’t care values are assigned to all the
segments for these six combinations.

Inputs Decimal sega | segb | segc | segd | sege | segf | segg
[t [o | ot oy [T | E
ojofo]o 0 H 1 1 1 1 1 1 0
olo0]o0]1 1 0 1 1 0 0 0 0
olo|1]o0 2 a 1 1 0 1 1 0 1
o011 3 H 1 1 1 1 0 0 1
ol1]0]o0 4 0 1 1 0 0 1 1
0|l1]0]1 5 H 1 0 1 1 0 1 1
o|1[1]o0 6 H 1 0 1 1 1 1 1
0111 7 - 1 1 1 0 0 0 0
1{o0fo]o 8 H 1 1 1 1 1 1 1
10|01 9 . 1 1 1 0 0 1 1
rest of the combinations x x x x x x x

Figure 6. Truth table for the 7-segment decoder.

From the truth table, we are able to specify seven equations that are dependent on the four inputs for each of the
seven segments. For example, the canonical form equation for segment a is

a= 13111 + 151500+ 15 g + 15l o + 151051 + 15" Llalg + 151"l + 151",

Before implementing this equation directly in a circuit, we want to simplify it first using the K-map method.
The K-map for the equation for segment a is

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 18 of 26

From evaluating the K-map, we derive the simpler equation for segment a as
a=lh+L+L1l+blg=Il3+1; + (|2 ®© |0)
Proceeding in a similar manner, we get the following remaining six equations

b =1+ (1, ®ly)

c = |2 + Il' + Io

d = Ilg + L'l + 1l + Lly'l
e = Illol + Izllol

f = |3 + |2|:|_I + |2|0I + Il'lol

g =lz+(I;01)+ Ly

From these seven simplified equations, we can now implement the circuit as shown in Figure 7.

I3l It o

vy
=D
DD
D—c
1 —
—5 D
%
|) 9

Figure 7. Circuit for the 7-segment decoder.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 19 of 26

3.7 VHDL Code for Combinational Circuits

Writing VHDL code to describe a circuit, whether combinational or sequential, can be done at any one of three
levels: structural, dataflow, or behavioral. At the structural level, which is the lowest level, you have to first
manually design the circuit. Having drawn the circuit, you use VHDL to specify the components and gates that are
needed by the circuit and how they are connected together by following your circuit exactly. Synthesizing a
structural VHDL description of a circuit will, of course, produce a netlist that is exactly like your original circuit.
The advantage of working at the structural level is that you have full control as to what components are used and
how they are connected. On the other hand, you need to first come up with the circuit and so the full capabilities of
the synthesizer are not utilized.

At the dataflow level, you use the built-in logical functions of VHDL in signal assignment statements to
describe a circuit, which again you have to first design manually. Boolean functions that describe a circuit can be
easily converted to signal assignment statements using the built-in logical functions. The only drawback is that the
built-in logical functions such as the AND and ©OR function only take two operands. This is like having only 2-input
gates to work with.

All the statements use in the structural and dataflow level are executed concurrently. As oppose to statements in
a computer program, which are usually executed in a sequential manner. In other words, the ordering of the VHDL
statements written in the structural or dataflow level does not matter — the result would be exactly the same.

Describing a circuit at the behavioral level is most similar to writing a computer program. You have all the
standard high-level programming constructs such as the FOR LOOP, WHILE LOOP, IF THEN ELSE, CASE, and variable
assignments. The statements are enclosed in a process block and are executed sequentially.

3.7.1 Structural BCD to 7-Segment Decoder

The structural VHDL description of the BCD to 7-segment decoder is shown in Figure 8.

ENTI TY myxnor2 | S PORT(
il, i2: INBIT;
o: QUT BIT);
END nyxnor 2;
ARCHI TECTURE Dat af | ow OF nmyxnor2 | S
BEA N
0 <=not(il XORi2);
END Dat af | ow;

ENTITY myxor2 IS PORT(
il, i2: INBIT;
o: QUT BIT);
END nyxor 2;
ARCHI TECTURE Dat afl ow OF nyxor2 IS
BEG N
0 <= il XOR i2;
END Dat af | ow,

ENTITY myand2 | S PORT(
il, i2: INBIT;
o: QUT BIT);
END nyand2;
ARCHI TECTURE Dat af | ow OF nyand2 IS
BEG N
0 <=il AND i 2;
END Dat af | ow,

ENTI TY myand3 1S PORT(

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits

Page 20 of 26

il, i2, i3 INBIT,
o: QUT BIT);
END nmyand3;
ARCHI TECTURE Dat af | ow OF nmyand3 IS
BEA N
0 <= (il ANDi2 AND i 3);
END Dat af | ow;

ENTITY myor2 |I'S PORT(
il, i2: INBIT;
o: QUT BIT);
END nyor 2;
ARCHI TECTURE Dat af |l ow OF myor2 IS
BEG N
0<=il ORIiZ2
END Dat af | ow,

ENTITY myor3 |I'S PORT(
il, i2, i3 INBIT;
o: QUT BIT);
END nyor 3;
ARCHI TECTURE Dat afl ow OF myor3 | S
BEG N
0<=il1ORiI2ORIgGZ
END Dat af | ow,

ENTITY myor4 IS PORT(
il, i2, i3, i4: INBIT;
o: QUT BIT);
END nyor 4;
ARCHI TECTURE Dat afl ow OF myor4 | S
BEG N
0<=il1ORIiI2ORI3ORI4
END Dat af | ow,

ENTITY inv IS PORT(
i: INBIT,
o: QUT BIT);
END i nv;
ARCHI TECTURE Dataflow OF inv IS
BEG N
0 <= not i;
END Dat af | ow;

LI BRARY i eee;
USE i eee.std logic _1164.all;
ENTITY bcd |'S PORT(

i0, il, i2, i3 INBIT;

a, b, ¢, d, e, f, g QUT BIT);
END bcd;

ARCHI TECTURE Structural OF bcd IS
COVPONENT i nv PORT(
i: INBIT;
o: QUT BIT);
END COMPONENT;

Microprocessor Design — Principles and Practices with VHDL

Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits

Page 21 of 26

COVPONENT nyand2 PORT(
il, i2: INBIT;
o: QUT BIT);

END COVPONENT;
COVPONENT myand3 PORT(
il, i2, i3 INBIT,;

o: QUT BIT);
END COVPONENT;
COVPONENT nyor 2 PORT(
il, i2: INBIT;
o: QUT BIT);
END COVPONENT;
COVPONENT nyor 3 PORT(
il, i2, i3 INBIT;
o: QUT BIT);
END COVPONENT;
COVPONENT myor 4 PORT(
il, i2, i3, i4: INBIT;
o: QUT BIT);
END COVPONENT;
COVPONENT myxnor 2 PORT(
il, i2: INBIT;
o: QUT BIT);
END COVPONENT;
COVPONENT myxor 2 PORT(
il, i2: INBIT;
o: QUT BIT);
END COVPONENT;

SIGNAL j,k,I,mn,o0,p,q,r,s,t,u,v,w,x,y,z: BIT;
BEG N

Ul: INV port map(i2,j);

U2: INV port map(il,k);

U3: INV port map(iO,l);

U4: nyXNOR2 port map(i2, i0, z);

Us: nyOR3 port map(i3, il, z, a);

U6: nyXNOR2 port map(il, i0, y);

U7: nmyOR2 port map(j, y, b);

Ug: nmyOR3 port map(i2, k, i0, c);

U9: nmyAND2 port map(il, |, x);

U10: nyAND2 port map(j, |, w;

Ull: nyAND2 port map(j, i1, v);

Ul2: nyAND3 port map(i2, k, i0, t);

U13: nyOR4 port map(x, w, v, t, d);

Ul4: nyAND2 port map(il, |, s);

Ul5: nyAND2 port map(j, |, r);

Ul6: nyOR2 port map(s, r, €);

U17: nyAND2 port map(i2, k, Qq);

U18: nyAND2 port map(i2, |, p);

U19: nyAND2 port map(k, |, 0);

U20: nyOR4 port map(i3, g, p, o, f);

U21: nyXOR2 port map(i2, il, n);

U22: nyAND2 port map(il, |, m;

U23: nyOR3 port map(i3, n, m Q@);
END Structural;

Figure 8. Structural VHDL description of the BCD to 7-segment decoder.

Microprocessor Design — Principles and Practices with VHDL

Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 22 of 26

3.7.2 Dataflow BCD to 7-Segment Decoder

The dataflow VHDL description of the BCD to 7-segment decoder is shown in Figure 9. In the architecture
section, seven concurrent signal assignment statements are used; one for each of the seven Boolean functions, which
corresponds to the seven segments. For example, the equation for segment a was given as

a=lz+l+ (Ol
This is converted to the signal assignment statement

Segs(1) <= I(3) OR I(1) OR NOT (I(2) XOR I(0));

LI BRARY i eee;
USE ieee.std logic 1164.all;

ENTITY bcd 1S PORT (
I: IN STD _LOG C_VECTOR (3 DOANTO 0);
Segs: QUT std_logic_vector (1 TO 7));

END bcd;
ARCHI TECTURE Dat af | ow OF bcd 1S
BEA N
Segs(1l) <= 1(3) ORI(1) OR NOT (I(2) XOR 1(0)); -- seg a
Segs(2) <= (NOT 1(2)) OR NOT (I(1) XOR 1(0)); -- seg b
Segs(3) <= 1(2) OR(NOT I1(1)) ORI1(0); -- seg c
Segs(4) <= (1(1) AND NOT I(0)) OR (NOT 1(2) AND NOT 1(0)) -- seg d
OR (NOT 1(2) AND I (1)) OR (1(2) AND NOT 1(1) ANDI(O))
Segs(5) <= (1(1) AND NOT |(0)) OR (NOT 1(2) AND NOT 1(0)); seg e
Segs(6) <= 1(3) OR (1(2) AND NOT 1(1)) -- seg f
OR (1 (2) AND NOT 1(0)) OR (NOT I(1) AND NOT 1(0));
Segs(7) <= 1(3) OR (1(2) XOR1(1)) OR (I(1) AND NOT 1(0)); -- seg g

END Dat af | ow;

Figure 9. Dataflow VHDL description of the BCD to 7-segment decoder.

3.7.3 Behavioral BCD to 7-Segment Decoder

The behavioral VHDL description of the BCD to 7-segment decoder. is shown in Figure 10. In the architecture
section, a process block is used. All the statements inside the process block are executed sequentially. The process
block itself, however, is treated as a single concurrent statement. Thus, the architecture section can have two or more
process blocks together with other concurrent statements, and these will all execute concurrently.

The parenthesized list of signals after the PROCESS keyword is referred to as the sensitivity list The purpose of
the sensitivity list is that when a value for any of the listed signals changes, the entire process block is executed from
the beginning to the end.

In the example, there is only one CASE statement inside the process block. Depending on the value of I, one of
the wHEN part will be executed. A string of seven bits, which matches the on-off values of the seven segments as
discussed in Figure 6, will be assigned to the output signal Segs. If the value of I does not match any of the WHEN
part, then the WHEN OTHERS part will be chosen.

LI BRARY i eee;
USE ieee.std logic 1164.all;

ENTITY bcd 1S PORT (
I: IN STD LOG C_VECTOR (3 DOANTO 0);
Segs: QUT std_logic_vector (1 TO7));

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits

Page 23 of 26

END Behavi or al

Segs
Segs
Segs
Segs
Segs
Segs
Segs
Segs
Segs
Segs
Segs

END bcd;
ARCHI TECTURE Behavi or a
BEG N
PROCESS(|)
BEG N
CASE | 1S
VWHEN " 0000" =>
WHEN " 0001" =>
WHEN " 0010" =>
VWHEN "0011" =>
VWHEN " 0100" =>
VWHEN "0101" =>
WHEN "0110" =>
WHEN "0111" =>
VWHEN " 1000" =>
VWHEN "1001" =>
VWHEN OTHERS =>
END CASE;
END PROCESS;

OF bcd IS

<=

<=
<=
<=
<=
<=

<=
<=
<=

"1111110"
"0110000"
"1101101";
"1111001"
"0110011"
"1011011"
"1011111"
"1110000";
"1111111"
"1110011"
"0000000"

Figure 10. Behavioral VHDL description of the BCD to 7-segment decoder.

Marne: J1 1DD]Dn5 EDD]DHS 3DD]DHS 4DD]DHS EDD]DHS EDD]DHS ?DD]DHS BDD]DHS BDD]DHS 1.C
&1 | 0 Y 1 ¥ 2 ¥ 3 ¥ 4 ¥ s ¥ § 7 Va8 ¥ g
S Segs | 1111110}40110000 $1101101 1111001 0110011 §1011011 1011111 §1110000§1111111§1110011

3.8 Summary Checklist

Q Binary number

Microprocessor Design — Principles and Practices with VHDL

Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 24 of 26

3.9 Exercises

3.1 Use atruth table to showthat (WO x) ® (yd z2) = (w ® X) ® (y ® 2) = (WOX)®@y)®2).

Answer
w | x|y|z|wlx|ydz | (wOx)® (ydz) | wOX | y®z | (WOX) © (yOz) | ((WOX)®Y)®7)
0/0]J0]0] O 0 1 1 1 1 1
0/0J0]1] O 1 0 1 0 0 0
0/0]1]0] O 1 0 1 0 0 0
0J0J1]1] O 0 1 1 1 1 1
0l1]0]0] 1 0 0 0 1 0 0
0J1]0]1] 1 1 1 0 0 1 1
0l1]1]0] 1 1 1 0 0 1 1
0J1]1]1] 1 0 0 0 1 0 0
1]0/0J0]| 1 0 0 0 1 0 0
1]0/0]1] 1 1 1 0 0 1 1
1]0/1]0]| 1 1 1 0 0 1 1
1]0]1]1] 1 0 0 0 1 0 0
1]1/0/0] O 0 1 1 1 1 1
1]1/0]1] O 1 0 1 0 0 0
1]1]1/0] O 1 0 1 0 0 0
1]1]1]1] 0 0 1 1 1 1 1

3.2 Use Boolean algebra to derive the 1-minterms for the equation F=w ® x @y ® z.

Answer
F=wOXx@y®z
=(wx+wx')Oy©z

= [(wx +wX')y + (wx +w'x')"y]z + [(wx +wx')y + (wx +wx')'
= wxyz + wx'yz + (wx)' (W'x')'y'z + [(wx + wx')y + (wx + w'x')'y']'
-

y17
]

= Mys + Mg+ (WX)(WHX)Y'Z + [(wx +wx)y + (wx + wx')'y' |
=Mys + Mg + WXY'Z + Wx'y'z + [(wx + w'x')y + (wx +w'x') y'] 2

=Mys + Mg+ M5 + Mg + [(Wx + W'X") y]' [(Wwx +w'x'")"y]' 2’

=Mys + M3 + Mg + Mg + [(Wx + WX)" +y] [(Wx + WX)+y]Z
=Mgs + M3+ M5+ Mg+ [(Wx)' (WX) +y'][wxz' +w'X' z' +yz']
=Mys + M3 + Mg + Mg + [(W+X")(W+X) +y'] [wxz' + WX’ 2' +yz']

=M+ M3+ Mg+ Mg+ [WX+wx' +y'] [wxz'+wx' z' +yz']

= M5+ M3 + Mg + Mg + W'Xyz' + wx'yz' + wxy'z' + w'x'y'z'

=Mgs + M3 + Mg + Mg + Mg + Mg + Mz + My

3.3 Use Boolean algebra to show that the following circuit is equivalent to a 2-input XOR gate.

X

Answer
From the circuit, we get F = ((xy)'x)' ((xy)'y)")".

F=[((y)%)" (9)Y)' T

= ((y)%) +((xy)'y)

=X Y X+ (XY)y

=X+ Xy + XY+ Yy

=xy' +x'y

=x0y

Microprocessor Design — Principles and Practices with VHDL

Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits Page 25 of 26

3.4 Convert the following full adder circuit to use only eleven 2-input NAND gates.

| J
Cout
Gn
Answer:

Recall that wx + yz = ((wx)' (y2)")". Furthermore, x Oy 0 z=x @y ® zand x ® y = (X'y" + xy).

X y
C.
e dn jf E "
S

3.5 Perform a timing analysis of the circuit shown in Figure 5(c) to see that the circuit does not produce any
glitches.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/17/2003 5:56 PM

Chapter 3 — Combinational Circuits

Index
x, See Don’t cares.

7-segment decoder, 15
A

Analysis
combinational circuits, of, 2
C

Characterize, 11
Combinational circuit
analysis. See Analysis of.

minimization. See Minimization of.

synthesis. See Synthesis of.
Combinational circuits, 2

D

Don’t cares, 13

E

Essential prime implicant, 11

G
Glitch, 15

H
Hazard, 15

K
Karnaugh-map. See K-map.
K-map, 8

M
Minimal cover, 11
Minimization

combinational circuits, of, 8

Microprocessor Design — Principles and Practices with VHDL

Page 26 of 26

Minterms, 9

N

NAND gate, 5
NOR gate, 5

P

Prime implicant, 11
Process block. See VHDL :statement:process block.
Product term, 11

Q
Quine-McCluskey method, 13

S

Sensitivity list. See VHDL:sensitivity list.
Subcube, 10
Synthesis

combinational circuits, of, 4

T

Tabulation method, 13
See also Quine-McCluskey method.
Technology mapping, 5

\Y,

VHDL, 18
behavioral level, 18, 21
dataflow level, 18, 21
sensitivity list, 21
structural level, 18
VHDL code
7-segment decoder, 18, 21
VHDL statement
Process block, 18, 21

Last updated 7/17/2003 5:56 PM

Chapter 4 — Combinational Components Page 1 of 28

Table of Content

TADIE OF CONTENT ...t b e et b etk b et bt e b et ek s b et e b e b et et e b et e be s b et e be s be e e benbe st e benbens 1
4 CombiNAtioNal COMPONENTS.....ccuierieeiieiesierte st et e et e see s e esreere e e et e seestestesaeatesreaseeseeseeeseesaeaseaneeseenseneeseeseesresnens 2
4.1 Signal Naming CONVENTIONS.cc.ciueiuiriieireeeieesestesesreereese e e saeste e sseaseeseeseeseessessesseaseaseesseseessensessessessenns 2
O Vo [0 (-] SO SO 2
421 L Ao [0 L SO RSP 2
422 RIPPIE-CATY AGUEN ...ttt b bbbt s e e e bbbt e b e bt e s b e b e nbeseeebenee e 3
423 Carry-LOOKANEAA AGUENottt bbbttt b e bbb e et e st e b nbesbe b 4
4.3 Two’s-Complement Representation for Negative NUMDEIScocoiiiiiiiiiiie e 6
O ¥] 1o (0 SOV U PP 8
441 Adder / Subtractor COMDINGLIONc..oviiiiii e 8
4.5 Arithmetic LOGIC UNIT.....iiiiiie ettt se e et e e st e tesaeenae e eneeseennenneeneas 10
O B LT oo - TSRO 14
A = 0o o T OO 15
4.7.1 o]) Y20 = o0 o T S 16
I V11111 o] (=] SRS 17
4.8.1 Using Multiplexers to Implement @ FUNCLION.........cccoviiviiiiiecie e 20
4.9 THI-SEALE BUFFEI ..ottt b e b b e bbb e bt e s e e e e be b e sbenbeeneas 20
O O] 141 0T 221 (o] £ T T TP PP U S UUPT PP PP 21
A1 SRITEEE / ROTAION ...ttt bbbt bt ekt et e bt et e b e nbesbe s beebeese e b e besbesbenneaneas 23
o A V1] T o] 1T RSSO RTP PRSI 25
413 SUMMANY CRECKITST ...ttt b e eb et bbb e bt e b e e e e besbesbesbeaneas 26
O (o] LTRSS 27
4T =3 OSSOSO 28

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 2 of 28

4 Combinational Components

In constructing large digital circuits, instead of starting Control Data
with the basic gates as building blocks each time, we often Inputs Inputs
start with larger building blocks. As with many construction Y Y
problems, it is much easier to build in a hierarchical fashion.

Control unit Datapath

In this chapter, we describe some combinational logic —TH

components that are often used as building blocks for large o el Output

. . . . - d Logic Control

digital circuits. These components are usually available in i regiter o Signals p T
2N

standard libraries and so they can be reused each time they

are needed. A
#\ 4«)

Combinational components are combinational circuits. Y N als
. . . Control Data
Standard combinational components are used in the Outputs Outputs
construction of the datapath. Even though the next-state logic (
N) idered as standard

and output logic circuits in the control unit are combinational circuits, they are dg
combinational components available in libraries since they are designed umquely @artlcular control unit to
solve a specific problem. Standard combinational components include but non lithited\to adder/subtractor, ALU,
multiplexer, tri-state buffer, decoder, encoder, comparator, shifter/rotator, an mUlc' olier.

%
4.1 Signal Naming Conventions \

So far in our discussion, we have always used the words “hlgh’m\(fh\h\ to mean a 1 or O, or “on” or “off”
respectively. However, this is somewhat arbitrary and there is no reason '\n\wgcan tsay aQisahigh, ora 1 is off.
In fact, many standard off-the-shelve components use what we call nggét' Q/TOQIC where a 0 is for on and 1 for off.
Using negative logic is usually more difficult to understand because \g‘\@used to a 1 for on and O for off. In all our
discussions, we will use the more natural positive logic that we (Kg:;ej iar with.

Nevertheless, in order to prevent any confusion as to wk are using positive logic or negative logic, we
often use the words “assert,” “de-assert,” “active- hmh r\égﬂve low.” Regardless of whether we are using
positive or negative logic, active-high always mear*'v/fﬁét% is a 1 and that this 1 will cause the signal to be
active or enabled, and a O will cause the signal to ‘*/ ',adl\\;. or disabled. For example, if there is an active-high
signal called add, and we want to enable it, i.e. to make itdo what it is intended of doing, which in this case is to add
something, then we need to set this signal line:to toa 1. Setting this signal to a 0, on the other hand, will cause this
signal to be disabled or inactive. An active-low %n the other hand, means that a O will cause the signal to be
active or enabled and a 1 will cause the SW abled. So if the signal add is an active-low signal, then we
N4

=~

need to set it to 0 to make it add somethin

We use the word “assert” to mean tg rm}}e mggnal active or to enable the signal, and to de-assert a signal is to
disable the signal or to make it macu% (am le, to assert the active-high add signal line means to set the add
signal to a 1. To de-assert an active-io 'w émr means to set the line to a 1 since a 0 will enable the line (active-
low) and we want to disable it (de -2 rt)

4.2 Adder /6

4.2.1 Full Adder m)

To construct der\fw ddlng two binary numbers, X = Xp.1 ... Xgand Y = y,.1 ... Yo, we need to first consider
the addition of a {ng e bit\slice x; with y;, together with the carry-in blt c; from the preV|ous bit position. The result
from this addition .\q;p)blt s; and a carry-out bit c;; for the next bit position. Hence, s; = X; +y; + ¢;, and ¢j.y = 1 if
there is a carry from ddition to the next bit. The circuit for the addition of this single bit slice is known as a full
adder (FA) and its truth table is shown in Figure 1 (a). The equations for s; and c;.; are derived as follows:

Si = X'i'Ci+ X'YiC' + XiYi'Ci' + XiYiCi
= (Xi'Y; + Xy + (X3 + Xiyi)Ci
= (x Oyei' + (x O yi)'ci

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 3 of 28

XiDyiDCi

Cirr = Xi'YiCi + Xi¥i'Ci + Xi¥iCi" + XiyiCi
= Xiyi(Ci' + ¢i) + Ci(Xi'Yi + Xiyi')
= Xiyi + ci(xi O i)

From these two equations, we get the circuit for the full adder as shown in Figure 1 (b). Figure 1 (c) shows the
logic symbol for the full adder. The dataflow VHDL code for the full adder is shown in Figure 2.

4.2.2 Ripple-Carry Adder

The full adder is for adding two operands that are only one bit wide. To add two operands that are, say eight bits
wide we connect eight full adders together in series. The resulting circuit, shown in Figure 3, is called a ripple-
carry adder for adding two eight-bit operands.

Since the FA adds the three bits x;, y; and c; together, we need to set ¢, to be 0 in order to perform the addition
correctly. Moreover, coy is set to a 1 when there is an overflow for an unsigned addition.

The structural VHDL code for the 4-bit ripple-carry adder is shown in Figure 4. Since we need to duplicate the
full adder component four times, we can either use the PORT MAP statement four times or by using the FOR-
GENERATE statement as shown in the code to automatically generate the four components. The statement FOR k
IN 3 DOWNTO 0 GENERATE determines how many times to repeat the PORT MAP statement and the values

used for k.
Xj i
Xi | i Ci | Civa | Si
0 0 0 0 0 J y o4
0|01 0 1 § Xi Y
0|10 0 1
ol1[1] 170 “C.FA Ce—
11010 0 1 Cisg
101 1o G j
1 1 0 1 0
1 1 1 1 1 ?
| ©
(@) "

(b)

Figure 1. Full adder: (a) truth table; (b) circuit; (c) logic symbol.

ENTITY FA IS PORT (
ci, xi, yi: INBIT,
co, si: QUT BIT);

END FA;

ARCHI TECTURE Datafl ow OF FA IS

BEG N
co <= (xi AND yi) OR (ci AND (xi XOR yi));
Si <= xi XORyi XOR ci;

END Dat af | ow;

Figure 2. Dataflow VHDL code for a 1-bit full adder.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 4 of 28

C c C C C C C c

2 FA e FA }«— FA [« FA |«—] FA |« FA [« FA |« FA l«—c,
v v v v v v v v
s, S, S, S, s, s, s, S,

Figure 3. Ripple-carry adder.

ENTI TY Adder4 |S PORT (
Cin: INBIT;
A, B: INBIT_VECTOR(3 DOMANTO 0);
Cout: QUT BIT,;
SUM QUT BI T_VECTOR(3 DOWNTO 0));
END Adder 4;

ARCHI TECTURE Structural OF Adder4 IS
COVPONENT FA PORT (
ci, xi, yi: INBIT,;
co, si: QUT BIT);
END COVPONENT;

SIGNAL Carryv: Bl T_VECTOR(4 DOWNTO 0);

BEA N
Carryv(0) <= Cn;

Adder: FOR k IN 3 DOANTO O GENERATE
Ful | Adder: FA PORT MAP (Carryv(k), A(k), B(k), Carryv(k+l), SUMK));
END GENERATE Adder :

Cout <= Carryv(4);
END Structural;

Figure 4. VHDL code for a 4-bit ripple-carry adder using a FOR-GENERATE statement.

4.2.3 Carry-Lookahead Adder

The ripple carry adder is slow because the carry-in for each bit slice is dependent on the carry-out signal from
the previous bit slice. So before bit slice i can output valid data, it must wait for bit slice i - 1 to have valid data. In
the carry-lookahead adder each bit slice eliminates this dependency on the previous carry-out signal, and instead
uses the values of the two operands X and Y directly to deduce the needed signals. This is possible from the
following observations regarding the carry-out signal. For each bit slice i, the carry-out signal c;.; is set to a 1 if
either one of the following two conditions is true:

xi=landy;=1
or

(x;=1ory;=1)andc¢;=1
In other words,

Civr = (Xi yi) + [(xi +yi) ci]. (4.1)
If we let

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components

gi = XiYi
and
Pi=Xi tVi
then equation 4.1 can be rewritten as

Civx1 =i T PiCi.

Page 5 of 28

(4.2)

Using this general equation for c;.;, we can recursively expand it to get the equation for any bit slice c; that is
dependent only on the two input operands X and Y, and c,. Using this technique, we get the following carry

equations for the first four bit slices:
Ci =Jo+ PoCo

C; =0g+picl
=01 + P1(go + PoCo)
=01+ P19o + P1PaCo

Cs3 =02t P20
=02 + P2 (91 + P19o + P1PeCo)
=02+ P2 91+ P2P19o + P2P1 PoCo

C4 =03+ PsC3
=03 + P3(02 + P21 + P2P1G0 + P2P1PoCo)
=03+ P3dz2 + P3P201 + P3P2P190 + P3P2P1PeCo

(4.3)

(4.4)

(4.5)

(4.6)

Note that each equation is translated to a three level combinational logic — one level for generating the g; and p;,
and two levels (sum-of-products) for generating the c; expression. The circuit for generating the carry-lookahead

signals up to ¢, is shown in Figure 5 (a).

The full adder (FA) for the carry-lookahead adder can also be made simpler since it is no longer required to
generate the coy signal for the next bit slice. In other words, the c;, signal for the FA now comes from the new carry-
lookahead circuit rather than from the ¢, signal of the previous bit slice. Thus, this full adder is only required to
generate the sum; signal. Figure 5 (b) shows one bit slice of the carry-lookahead adder. For an n-bit carry-lookahead
adder, we use n bit slices. These n bit slices are not connected in series as with the ripple-carry adder.

X3 Y3 X2

C4

(@)

Xi ¥Yi XoX1 Yo¥ia

carry-
lookahead
circuit

v

sum;

(b)

Figure 5. (a) Circuit for generating the carry-lookahead signals c; to c,. (b) One bit slice of the carry-lookahead

adder.

Microprocessor Design — Principles and Practices with VHDL

Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 6 of 28

4.3 Two’s-Complement Representation for Negative Numbers

Before introducing the subtraction circuit, we need to review how negative numbers are encoded using two’s-
complement representation. The most significant bit in a signed number tells whether the number is positive or
negative. If the most significant bit is a 1, then the number is negative, otherwise, the number is positive. The value
of a positive signed number is obtained exactly as for unsigned numbers. For example, the value for the positive
signed number 01101001, is just 1x2°+1x2°+1x2°+1x2° = 105 in decimal.

However, to determine the value of a negative signed number, we need to perform a two-step process: 1) flip all
the 1 bits to 0’s and all the 0 bits to 1’s, and 2) add a 1 to the result obtained from step 1. The number obtained from
applying this two-step process is evaluated as an unsigned number for its value. The negative of this resulting value
is the value of the original negative signed number.

Example 4.1

For example, given the 8-bit signed number 11101001,, we know that it is a negative number because of the
leading 1. To find out the value of this negative number, we perform the two-step process as follows:

11101001 original number
00010110 flip bits
00010111 add a 1 to the previous number

The value for the resulting number 00010111 is 1x2*+1x2°+1x2'+1x2° = 23. Therefore, the value of the original
number 11101001 is negative 23.

Example 4.2

As another example, given the 4-bit signed number 1000, we apply the two-step process to the number.

1000 original number
0111 flip bits
1000 add a 1 to the previous number

The resulting number 1000 is exactly the same as the original number! This however, should not confuse us if
we follow the instructions for the conversion process exactly. We need to interpret the resulting number as an
unsigned number to determine the value. Interpreting the resulting number 1000 as an unsigned number gives us the
value 8. Therefore, the original number, which is also 1000, is — 8. .

4-bit Binary | 2’s Complement
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Clefefe]
I—‘Nw-h(ﬂoﬁ\lm\lo’mhwml_\o

Figure 6. 4-bit two’s complement numbers.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 7 of 28

Figure 6 shows the two’s complement numbers for four bits. The range goes from — 8 to 7. In general, for an n-
bit two’s complement number, the range is from — 2"* to 2™ - 1.

The nice thing about using two’s-complement to represent negative numbers is that when we add a number with
the negative of the same number, the result is zero as expected without having to add extra logic to handle this
special situation as shown in the next example.

Example 4.3

Use 4-bit signed arithmetic to perform the following addition.

3 = 0011
+ (=3) = +1101
0 = 10000

The result 10000 has five bits. But since we are using 4-bit arithmetic, that is, the two operands are 4-bits wide,
the result must also be in 4-bits. The leading 1 in the result is, therefore an overflow bit. By dropping the leading
one, the remaining result 0000 is the correct answer for the problem. .

Example 4.4

Use 4-bit signed arithmetic to perform the following addition.

6 = 0110
+3 = +0011
9 # 1001

The result 1001 is a 9 if we interpret it as an unsigned number. However, since we are using signed numbers,
we need to interpret the result as a signed number. Interpreting 1001 as a signed number gives — 7, which of course
is incorrect. The problem here is that the range for a 4-bit signed number is from — 8 to + 7, and + 9 is outside of this
range. .

In order to correct the problem in Example 4.4, we need to add (at least) one extra bit by sign extending the
number. The corrected arithmetic is shown in Example 4.5.

Example 4.5

Use 5-bit signed arithmetic to perform the following addition.

6 = 00110
+3 = + 00011
9 = 01001
The result 01001 when interpreted as a signed number is 9. .

To extend a signed number, we need to add leading 0’s or 1’s depending on whether the original most
significant bit is a 0 or a 1. If the most significant bit is a 0, we sign extend the number by adding leading 0’s. If the
most significant bit is a 1, we sign extend the number by adding leading 1’s. By performing this sign extension, the
value of the number is not changed as shown in Example 4.6.

Example 4.6
Sign extend the numbers 10010 and 0101 to 8 bits.

Original number Sign extended Original number Sign extended
10010 11110010 0101 00000101
Flip bits 01101 00001101
Add 1 01110 00001110
Value -14 -14 5 5

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 8 of 28

4.4 Subtractor

We can construct a one-bit subtractor circuit similar to the method used for constructing the full adder.
However, instead of the sum bit s; from the addition, we have a difference bit d; from the subtraction, and instead of
having a carry-in and carry-out signals, we have a borrow-in (b;) and borrow-out (b;.;) signals. Hence, d; = x; —y; —
b;, and b;.; = 1 if we need to borrow for the subtraction, otherwise b;;; = 0. The truth table for the 1-bit subtractor is
shown in Figure 7 (a), from which the equations (4.7) for d; and (4.8) for b;,; are derived.

di =X'Y"bi +X'yibi' + Xiyi'bi' + Xiyibi

= (Xi'yi + Xiyi)bi' + (Xi'yi" + Xiyi)b;

= (X O ypbi' + (x O yi)'b

= Xi O Yi O bi (47)
bisr = Xi'yi'bi + Xi'yibi" + Xi'yibi + Xiyib;

= x'bi(yi" +yi) + xi'yi(bi" + i) + yibi(xi" + X))

= Xi'bi + Xi'yi + yibi (4.8)

From these two equations, we get the circuit for the subtractor as shown in Figure 7 (b). Figure 7 (c) shows the
logic symbol for the subtractor.

Xi Yi
Xi | Vil bi] bis | di
010]O0 0 0 Vo
olo1] 1 |1 b, XY,
ol1]0] 1 |1 -
ol1]1] 1o <«—b,.FS bje—
1]olo0| o0 |1 '
1]ol1[0 |0 o d;
1110|000 _}L v
1111 |1
j (©
(@ ?
d;
(b)

Figure 7. 1-bit subtractor: (a) truth table; (b) circuit; (c) logic symbol.

4.41 Adder/ Subtractor Combination

It turns out that instead of having to build a separate adder and subtractor units, we can modify the ripple-carry
adder (or the carry-lookahead adder) slightly to perform both operations. The modified circuit performs subtraction
by adding the negated value of the second operand. Recall that to negate a value in two’s complement
representation, we simply invert all the bits from 0 to 1 and vice versa, and then add a 1.

In addition to the two input operands A and B, a select signal S is used to select which operation to perform
according to the truth table in Figure 8 (a). When the subtraction operation is selected, i.e. S = 1, the B operand
needs to be inverted. Recalling that x 0 1 = x', we can thus simply flip the bits in B by performing the operation B [
S since S = 1. Finally, the addition of a 1 is accomplished by setting the primary carry-in signal ¢, to 1. On the other
hand, when the addition operation is selected, i.e. S = 0, the B operand will not be inverted by the XOR operation. In
this case, we also want ¢, =S =0.

An 8-bit adder / subtractor combination circuit is shown in Figure 8 (b) and the logic symbol in (c). The
behavioral VHDL code for the adder / subtractor combination circuit is shown in Figure 9.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 9 of 28

A B
S | Function Operation l l
0 | Add F=A+B S—
1 | Subtract FoA+B +1 ¢ | Adder/Subtractor
(a) ,£
©
a, b, a b, a b, a b, a b, a b, a b a b,
> | | | | | | | |
S—>
c c c c c c c c c
“{ FA | FA [« FA [« FA {«— FA [« FA [« FA [« FA [«
¥ ¥ v v ¥ ¥ v ¥
f, fy fy f, f, f, f, f,
(b)

Figure 8. Adder/subtractor combination: (a) truth table; (b) circuit; (c) logic symbol.

LI BRARY i eee;

USE ieee.std_logic_1164. ALL;

USE ieee.std_logic_arith. ALL;
USE i eee.std_| ogi c_unsigned. ALL;

ENTI TY AddSub IS
GENERI C(n: NATURAL :=8); -- default nunber of bits = 8
PORT(A: IN std_|l ogic_vector(n-1 downto 0);
B: INstd |ogic_vector(n-1 downto 0);
subtract: IN std_| ogic;
carry: QUT std_| ogic;
sum OUT std_logic_vector(n-1 downto 0));
END AddSub;

ARCHI TECTURE Behavi oral OF AddSub IS
-- tenporary result with one extra bit for carry
SIGNAL result: std_logic_vector(n downto 0);

BEGA N
PROCESS(subtract, A, B)
BEA N
IF (subtract = '0'") THEN -- addition

--add the two operands with one extra bit for carry
result <= ('0" & A+('0" & B);

sum <= result(n-1 downto 0); -- extract the n-bit result

carry <= result(n); -- extract the carry bit fromresult
ELSE -- subtraction

result <= (‘0" & A-('0 & B);

sum <= result(n-1 downto 0); -- extract the n-bit result

carry <= result(n); -- extract the borrow bit fromresult
END | F;

END Behavi or al ;

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 10 of 28

Figure 9. Behavioral VHDL code for an 8-bit adder / subtractor combination component.

4.5 Arithmetic Logic Unit

The arithmetic logic unit (ALU) is one of the main component inside a microprocessor that is responsible for
performing arithmetic and logic operations such as addition, subtraction, logical AND, and logical OR. It turns out
that in constructing the circuit for the ALU, we can use the same idea as for constructing the adder/subtractor
combination circuit discussed in the previous section. Again, we will use the ripple-carry adder as the building block
and then insert some combinational logic circuitry in front of the two input operands to each full adder. This way,
the primary inputs will be modified accordingly depending on the operations being performed before belng passed
to the full adder. The general overall circuit for a 4-bit ALU is shown in Figure 10.

As we can see in the figure, the two combinational circuits in front of the full adder (FA) are Iaheleu @ AE
The LE (for logic extender) is for manipulating all logical operations, whereas, the AE (for arlthn ticex

for manipulating all arithmetic operations. The LE performs the actual logical operations on-ihe, two prlmary
operands a; and b; before passing the result to the first operand x; of the FA. On the other han \. only modifies
the second operand b; and passes it to the second operand y; of the FA where the actua d)‘!u gtic operation is
performed.

as b3
SZ >
Sl »-
SU >
YVY Y
HLe | [HAE 4
X3 Y3
Unsigned Cq G
Overflow FA CE
Signed
Overflow \
v
fa ~
Figure 10. 4-bit ALU circuit. \(\N)
\(\\2/
We saw from the adder/subtractor cwcuvti"‘ Q)zerform additions and subtractions, we only need to modify y;,
the second operand to the FA, so that ai opél at =an be done with additions. Thus, the AE only takes the second

operand of the primary input b; as its mo'*\ﬂﬁr ifies the value depending on the operation being performed. Its
output is y; and is connected to the secnnd&o\e i put of the FA. As in the adder/subtractor circuit, the addition is
performed in the FA. When arithm |\ ratlons are being performed, the LE must pass the first operand
unchanged from the primary input <;o i for'the FA.

Unlike the AE where it on!"vﬁ?h the operand, the LE performs the actual logical operations. Thus, for

example, if we want to perforr ration A OR B, the LE for each bit slice will take the corresponding bits a; and
b;, and OR them together. Hence, onebit from both operands, a; and b;, are inputs to the LE. The output of the LE is
passed to the first operand >§. of the FA Slnce this value is already the result of the logical operation, we do not want
the FA to modify it, to sitnply pass it on to the primary output f;. This is accomplished by setting both the second
operand y; of the FAQA@ zero since adding a zero will not change the resulting value.

The combinational circuit labeled CE (for carry extender) is for modifying the primary carry-in signal ¢, so
that arithmetic operations are performed correctly. Logical operations do not use the carry signal, so ¢, is set to zero
for all logical operations.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 11 of 28

S, | S; | So | Operation Name | Operation X (LE) Y (AE) | ¢q (CE)
0 0 0 | Pass Pass A to output A 0 0
0 0 1 | AND A AND B A AND B 0 0
0 1 0 | OR AORB AORB 0 0
0 1 1 | NOT A A 0 0
1 0 0 | Addition A+B A B 0
1 0 1 | Subtraction A-B A B’ 1
1 1 0 | Increment A+1 A 0 1
1 1 1 | Decrement A-1 A 1 0
(@)
S, | S] So bi Yi
0 x x x 0
S | S | S Xi 1 0 0 0 0 S | S| S| G
0 0 0 a 1 0 0 1 1 0 x x 0
0 0 1 a; b; 1 0 1 0 1 1 0 0 0
0 1 0 | a+b; 1 0 1 1 0 1 0 1 1
0 1 1 a' 1 1 0 0 0 1 1 0 1
1 X X i 1 1 0 1 0 1 1 1 0
1 1 1 0 1
(b) 1 1 1 1 1 (d)
(c)

Figure 11. ALU operations: (a) function table; (b) LE truth table; (c) AE truth table; (d) CE truth table.

In the figure, three select lines, S,, S;, and Sy are used to select the operations of the ALU. The S, line selects
between the arithmetic operations and the logical operations. When S, = 1, arithmetic operations are selected, and
when S, = 0, logical operations are selected. The two select lines S; and S, allow the selection of one among four
possible arithmetic operations or four logical operations. Thus, our ALU circuit can implement eight different
operations.

Suppose that the operations that we want to implement in our ALU are as defined in Figure 11 (a). The X
column shows the values that the LE must generate for the different operations. The Y column shows the values that
the AE must generate. The ¢, column shows the carry signals that the CE must generate. For example, for the pass
through operation, the value of A is passed through without any modifications to X. For the AND operation, X gets
the result of A AND B. As mentioned before, both Y and c, are set to zero for all the logical operations because we do
not want the FA to change the results. The FA is only used to pass the results from the LE straight through to the
output F. For the subtraction operation, instead of subtracting B, we want to add —B. Changing B to —B in two’s
complement format requires flipping the bits of B and then adding a one. Thus, Y gets the inverse of B and the one is
added through the carry-in cq. To increment A, we set Y to all zeros and add the one through the carry-in ¢,. To
decrement A, we add a negative one instead. Negative one in two’s complement format is a bit string with all one’s.
Hence, we set Y to all one’s and the carry-in ¢ to zero. For all the arithmetic operations, we need the first operand A
unchanged for the FA. Thus, X gets the value of A for all arithmetic operations.

Figure 11 (b), (c) and (d) show the truth tables for the LE, AE and CE respectively. The LE circuit is derived
from the x; column of Figure 11 (b); the AE circuit is derived from the y; column of Figure 11 (c); and the CE circuit
is derived from the cq column of Figure 11 (d). Notice that x; is dependent on five variables, S,, S, So, &;, and b;,
whereas, y; is dependent on only four variables, S,, S;, Sp, and b;, and ¢, is dependent on only the three select lines
Sy, S1, and Sy. The K-maps, equations, and schematics for these three circuits are shown in Figure 12.

The behavioral VHDL code for the ALU is shown in Figure 13 and the simulation waveform for all operations
using the two inputs 5 and 3 is shown in Figure 14.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components

%; s,=0 s,=1
ab; 0o 01 11 10 00 01 11 10
S.S,) -
0 [— 3 2 16 17 19 1
00 1 1 1 1
4 5 v 6f 20 21 23 2
01 1 ! 1 1
A2 1 15| 142829 31 30
1|1 1 1 1
8 ¢] 11 1 24 25 27 2
10 1 1 1 1 1

Xi = S;ai + Soa; + S1'aib; + S5'S1Sea;" + S,'S1ay' by
= S,a; + Sp'a; + Si'aib; + S,'S1a;' (Sp + b))

Yi
Sobi 00 01 11 10
szsl
0 1 3 2
00
4 5 7 6
o1
12 13 | —15 3
11 1 1
8| 11 10
10 1

Yi = S,5:S + S;Sebi" + S,5:'So'h
= 5,50(S1 + by') + S,5,'Sp'h;

Co =S551'Sy + S»S:Sy’
=55(S1 U S)

@

(b)

(©

Page 12 of 28

LE

AE

S0 5152

CE

Figure 12. K-maps, equations, and schematics for: (a) LE; (b) AE; and (c) CE.

Microprocessor Design — Principles and Practices with VHDL

Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components

Page 13 of 28

LI BRARY i eee;
USE ieee.std_logic_1164. all;

-- A and B can be used in unsigned arithnmetic operations.
USE i eee.std_| ogi c_unsigned. al | ;

ENTITY alu IS PORT (

S: IN std_logic_vector(2 downto 0); -- select for operations
A, B: INstd logic vector(3 downto 0); -- input operands
F: QUT std _logic vector(3 dowmnto 0)); -- output
END al u;
ARCHI TECTURE Behavior OF alu IS
BEG N
PROCESS(S, A, B)
BEG N
CASE S IS
WHEN " 000" => -- pass A through
F<=A
VWHEN "001" => -- AND
F <= A AND B;
VWHEN "010" => -- OR
F <= A OR B
WHEN "011" => -- NOT A
F <= NOT A
VWHEN " 100" => -- add
F <= A+ B;
WHEN "101" => -- subtract
F <= A- B
VWHEN " 110" => ~-- increnent
F <= A+ 1;
VWHEN OTHERS => -- decrenent
F<=A- 1,
END CASE;
END PROCESS;

END Behavi or;

-- The foll owi ng package is needed so that the STD LOd C VECTOR si gnal s

Figure 13. Behavioral VHDL code for an ALU.

Pass A AND OR NOT A Add Subtract Increment

Name: | 200.0ns 400.0ns B00.0ns

Decrement

a00.

= A

- B

ﬁ-"S"T){1}(2}(3}I(4}(5}I(E}{F}(
5
3

s F 5 4 1 b7 oA d s b 2 f B

X

4

4

Figure 14. Waveform generated for the two input operands 5 and 3 for all of the eight operations.

Microprocessor Design — Principles and Practices with VHDL

Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 14 of 28

4.6 Decoder

A decoder, also known as a demultiplexer, asserts one out of n output lines depending on the value of an m-bit
binary input data. In general, an m-to-n decoder has m input lines, Ay.1, ..., Ag, and n output lines, Y4, ..., Yo, where
n =2". In addition, it has an enable line E for enabling the decoder. When the decoder is disabled with E set to 0, all
the output lines are de-asserted. When the decoder is enabled, then the output line whose index is equal to the value
of the input binary data is asserted. For example, for a 3-to-8 decoder, if the input address is 101, then the output line
Y5 is asserted (set to 1 for active high) while the rest of the output lines are de-asserted (set to 0 for active high).

A decoder is used in a system having multiple components and we want only one component to be selected or
enabled at any one time. For example, in a large memory system with multiple memory chips, only one memory
chip is enabled at a time. One output line from the decoder is connected to the enable input on each memory chip.
An address presented to the decoder will thus enable that corresponding memory chip. The truth table, circuit and
logic symbol for a 3-t0-8 decoder are shown in Figure 15.

A larger size decoder can be implemented using several smaller decoders. For example, Figure 16 uses seven 1-
to-2 decoders to implement a 3-to-8 decoder. The correct operation of this circuit is left as an exercise for the reader.

The behavioral VHDL code for the 3-t0-8 decoder is shown in Figure 17.

>
N
>
s
>
o
<
3
<
D
=<
ol
<
S
<
w
=<
N
<
=
<
o

N =]]

RPIRPIRPRPRPOIO|IO|O|X
PR |IO|ORIFLIO|IO|X
RP|IO|IFR O IO|FrL| O X
P OIO0O0|0(0|0O|O
O FRPIO0O0|00|0O|0O
O O|Rr|O0O|0O0|O0|O
[ellellel] llellelie]ie] o]
O 0O|00O|r|O|0O|O0|O
[ellellellellell Jielie] o]
O|0|I00|0|O0O(Fr|O|0O
O |0O|00|0|0(0O|—r|O

—~
=y
R

<

<
<

o
<

w
<

-
=<

o

PP L

Y; Yo Ys Y4 Y Yo Y1 Yo

(b) (c)

Figure 15. A 3-to-8 decoder: (a) truth table; (b) circuit; (c) logic symbol.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 15 of 28

Ii /T\z A Ao
Bl o
I
I
Ei o S
L L
I_ I 1)
El o 181 o] 1% 151
|| |] || |]

Figure 16. A 3-to-8 decoder implemented with seven 1-to-2 decoders

A 3-to0-8 decoder
LI BRARY i eee€;
USE | EEE. std_l ogic_1164. al | ;

ENTI TY Decoder |S PORT(
E: IN std_|ogic; -- enabl e
A: IN std logic vector(2 DOANTO 0); -- 3 bit address
Y: OUT std_logic_vector(7 DOANTO 0)); -- data bus out put
END Decoder;
ARCHI TECTURE Behavi oral OF Decoder |S
BEG N
PROCESS (E, A)
BEG N
IF (E="'0") THEN -- disabl ed
Y <= (OTHERS => '0'); -- 8-bit vector of 0
ELSE
CASE A IS -- enabl ed
WHEN " 000" => Y <= "00000001";
VWHEN " 001" => Y <= "00000010";
VWHEN " 010" => Y <= "00000100";
VWHEN " 011" => Y <= "00001000";
WHEN " 100" => Y <= "00010000";
WHEN " 101" => Y <= "00100000";
WHEN " 110" => Y <= "01000000";
WHEN " 111" => Y <= "10000000";
VWHEN OTHERS => NULL;
END CASE;
END | F;
END PROCESS;

END Behavi or al ;

Figure 17. Behavioral VHDL code for a 3-to-8 decoder.

4.7 Encoder

An encoder is almost like the inverse of a decoder where it encodes a 2"-bit input data into an n-bit code. The
encoder has 2" input lines and n output lines as shown by the logic symbol in Figure 18 (c) for n = 3. The operation
of the encoder is such that exactly one of the input lines should have a 1 while the remaining input lines should have
a 0. The output is the binary value of the input line index that has the 1. The truth table for an 8-to-3 encoder is

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 16 of 28

shown in Figure 18 (a). For example, when input |5 is a 1, the three output bits Y,, Yy, and Yy, are set to 011, which is
the binary number for the index 3. Entries having multiple 1’s in the truth table inputs are ignored since we are
assuming that only one input line can be a 1.

Looking at the three output columns in the truth table, we obtain the following three equations and the resulting
circuit shown in Figure 18 (b).

Y0:|l+|3+|5+|7
Yl:|2+|3+|6+|7
Y2:|4+|5+|6+|7

Encoders are used to reduce the number of bits needed to represent some given data either in data storage or in
data transmission. Encoders are also used in a system with 2" input devices, each of which may need to request for
service. One input line is connected to one input device. The input device requesting for service will assert the input
line that is connected to it. The corresponding n-bit output value will indicate to the system which of the 2" devices
is requesting for service. For example, if device 5 requests for service, it will assert the 15 input line. The system will
know that device 5 is requesting for service since the output will be 101 = 5. However, this only works correctly if it
is guaranteed that only one of the 2" devices will request for service at any one time.

If two or more devices request for service at the same time, then the output will be incorrect. For example, if
devices 1 and 4 of the 8-to-3 encoder request for service at the same time, then the output will also be 101 because 14
will assert the Y, signal and 1, will assert the Y, signal. To resolve this problem, a priority is assigned to each of the
input lines so that when multiple requests are made, the encoder outputs the index value of the input line with the
highest priority. This modified encoder is known as a priority encoder.

4.7.1 Priority Encoder

The truth table for an active-high 8-to-3 priority encoder is shown in Figure 19. The table assumes that input I,
has the highest priority and I, has the lowest priority. For example, if the highest priority input set is I3, then it
doesn’t matter whether the lower priority input lines, I, I, and Iy, are set or not, the output will be for that of I,
which is 011. Since it is possible that no inputs are asserted, there is an extra output Z that is needed to differentiate
between when no inputs are asserted and when one or more inputs are asserted. Z is set to a 1 when one or more
inputs are asserted, otherwise, Z is set to a 0. When Z is a 0, all the Y outputs are meaningless.

Iz [l [Is | la {03 [1ol [lo]Yo|VYs]Yo
0j|0]J]0O0OJOjO]J]O]O]J1]0O]0O]O
oj0jO0jOjO]jJO]1]0]JO]O] 1
oj0jJ]O0OjJOjO]1T]O0O]JO]JO]1]O
ojo0jojoj1jo0jo0ojojoj1]1
ojo0joO0j1j0]0O]J]0O]JO}J1]O0]O
oj0j1j0j0]jO]J]O]JO}J1]O] 1
oj1j]0jO0jO0OjO]J]OJ]O}J1]1]O
1]0][]0jJO0OJO]JO]JO]J]O]J1T]2 1
@)

Iz—l
:3 _D_ " ol s 1, 13 1 1 g
4
|5_| _D_ Yz
[, —— Y, Y. Y
|, —
(b) (©

Figure 18. An 8-to-3 encoder: (a) truth table; (b) circuit; (c) logic symbol.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 17 of 28

I | lg | Is | || L | li]|lo|Y|Ye|Ye| Z
0O|l0|O0O|O0O]|]O0O|O0O|O0O|O0]|x]|x|x|O
o|jo0o(0jO0jO|jO|]O]1}j0]|]0]|0]|12
ofo(o0fjo0}jO0O|O0O|1l|x]0]0]|1]|12
o|l0|O0O|O0O|O0O|1|x|x|O0O]1|0]|1
0Ol0|O0|O0|1|x|x]|x]O0O]1]|1]|1
0] 0|0 |1 |x|x]|x|x[]21]0]|O0 1
0] 0|1 | x|x|x]|x|x[]1]0]1 1
0|1 | x| x|x|x]|x]|x[|21]1|0]|1
1| x| x| x| x| x| x| x{21|1]|1 1

Figure 19. An 8-to-3 priority encoder truth table.

An easy way to derive the equations for the 8-to-3 priority encoder is to define a set of eight intermediate
variables, vy, ..., V7, such that v is a 1 if I is the highest priority 1 input. Thus, the equations for v, to v; are:

Vo=17"1g" 15" 15" 13" 15" 11" g
vi= 11" 15" 1 15 1 1y
Vo = |7' IG' |5I |4I |3' |2

V3 = |7' IG' |5I |4I |3

V4= |7' IG' |5I |4

Vg = |7' IG' |5
Vg = |7' |6
V7 = |7

Using these eight intermediate variables, the final equations for the priority encoder are similar to the ones for
the regular encoder, namely

Yo=Vi+V3+Vs+Vy
Yi=Vo+ Vs +Vg+Vy
Yy =Vs+ Vs + Vg +Vy

Finally, the equation for Z is simply

Z:|7+|6+|5+|4+|3+|2+|l+|0

4.8 Multiplexer

The multiplexer, or mux for short, allows the selection of one input signal among n signals, where n > 1 and is
a power of two. Select lines connected to the multiplexer determine which input signal is selected and passed to the
output of the multiplexer. In general, an n-to-1 multiplexer has n data input lines, s select lines where s = log, n, i.e.
2°=n, and one output line. For a 2-to-1 multiplexer, there is one select line s to select between the two inputs, dg and
d;. When s = 0, the input line d, is selected, and the data present on d, is passed to the output y. When s = 1, the
input line d; is selected and the data on d, is passed to y.

The truth table, circuit and logic symbol for a 2-to-1 mux are shown in Figure 20. In the truth table, y takes on
the value of dq for the first four rows when s = 0. For the last four rows in the table when s = 1, y takes on the value
of d;. The minimized circuit of Figure 20 (b) is derived as follows:

y = Sldlldo + S'dldo + Sdldo' + Sdldo
= S'do(dy" + dy) + sdi(do’ + do)
= Sldo + Sdl

Constructing a larger size mux such as the 8-to-1 mux can be done similarly. In addition to having eight data
input lines, the 8-to-1 mux has three select lines since 2° = 8. Depending on the value of the three select lines, one of
the eight input lines will be selected and the data on that input line will be passed to the output. For example, if the
value of the select lines is 101, then the input line ds is selected and so the data that is present on ds will be passed to
the output.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 18 of 28

The truth table, circuit, and logic symbol for the 8-to-1 mux are shown in Figure 21. The truth table is written in
a slightly different format. Instead of including the d’s in the input columns and enumerating all 2*! = 2048 rows
(the eleven variables come from eight d’s and three s’s), the d’s are written in the entry under the output column. So
for example, when the select line value is 101, the entry under the output column is ds, which means that y takes on
the value of the input line ds.

To understand the circuit in Figure 21 (b), notice that each AND gate acts as a switch and is turned on by one
combination of the three select lines. When a particular AND gate is turned on, the data at the corresponding d input
is passed through that AND gate. The outputs of the remaining AND gates are all 0’s.

Instead of using 4-input AND gates where three of its inputs are used by the three select lines to turn it on, we
can use 2-input AND gates as shown in Figure 22 (a). This way the AND gate is turned on with just one line. The eight
2-input AND gates can be individually turned on from the eight outputs of a 3-to-8 decoder. Recall from Sgction 4.6
that the decoder asserts only one output line at any time.

©
. . 1 /)
Larger multiplexers can also be constructed from smaller multiplexers. For example, an 8—t0f‘“m\ux§a/g)oe
constructed using seven 2-to-1 muxes as shown in Figure 22 (b). The four top-level 2-to-1 muxes wé\h@ﬂw ight
data inputs, and are all switched by the same least significant select line s,. This top level se!eefs\o‘:uyfrom each
group of two data inputs. The middle level then groups the four outputs from the top level agaitgir\m oups of two
and selects one from each group using the select line s;. Finally, the mux at the bOttQ{’é ex(eijﬁs?es the most
significant select line s, to select one of the two outputs from the middle level muxes. /”/Q
R

The VHDL code for an 8-bit wide 4-to-1 multiplexer is shown in Figure 23. }v%ﬁ}ﬁ‘qent implementations of
the same multiplexer are shown. The first implementation, written at the behavio Neyéhb@s a process statement.
The second implementation, written at the dataflow level, uses a concurrent selected si %yassignment statement.

BERERE Ny

LR ‘ Q7

o hi S O Ny

11010 % ﬁ\\/

L W)
(@) v

Figure 20. A 2-to-1 multiplexer: (a) truth table; (b) circwlogic symbol.

NQ

S2 |S1 S |Y (0/0\ \1: dy dg dy d; dy
0 |0 [0 |d A
0 |0 |1 di 51QLQ\ 1@
0 1 0 d, nﬁr& — I I O |
0 1 1 ds é\lﬁT_D 1 1 1 | d; dg dg d, dy d, d; dy
110 [0 |d & 1 Bini
1o |1 |ds A
T 1 [0 |de N\) 2
11 |1 [d (”\:\k

o~ (Q Y4 (©)

(@) < g))

Figure 21. An 8-to-1 multiplexer: (a) truth table; (b) circuit; (c) logic symbol.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 19 of 28

d; dg ds dy dy dp oy do

w
Decoder
~NOoOUARWNRO

(b)

(@)

Figure 22. An 8-to-1 multiplexer implemented using: (a) a 3-to-8 decoder; (b) seven 2-to-1 multiplexers.

-- A4-to-1 8-bit wide nultiplexer
LI BRARY i eee;
USE | EEE. std_l ogic_1164. al | ;

ENTITY Mul tiplexer IS

PORT(S: IN std | ogic_vector(1l DOANTO 0); -- select lines
DO, D1, D2, D3: IN std |ogic_vector(7 DOMNTO 0); -- data bus input
Y: OUT std_l ogic_vector(7 DOANTO 0)); -- data bus out put

END Mul ti pl exer;

-- Behavioral |evel code
ARCHI TECTURE Behavioral OF Multiplexer IS

BEG N
PROCESS ('S, DO, D1, D2, D3)
BEG N

CASE S IS

VWHEN " 00" => Y <= DO;
VWHEN " 01" => Y <= D1;
VWHEN " 10" => Y <= D2;
VWHEN " 11" => Y <= D3;
WHEN OTHERS => Y <= (OTHERS => 'U); -- 8-bit vector of U
END CASE;
END PROCESS;
END Behavi or al ;

-- Dataflow | evel code
ARCHI TECTURE Dat afl ow OF Mul tiplexer IS
BEG N
WTH S SELECT Y <=
DO VWHEN " 00",
D1 WHEN "O01",
D2 VWHEN " 10",
D3 WHEN " 11",
(OTHERS => 'U) WHEN OTHERS; -- 8-bit vector of U
END Dat af | ow,

Figure 23. VHDL code for an 8-bit wide 4-to-1 multiplexer.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 20 of 28

4.8.1 Using Multiplexers to Implement a Function

Multiplexers can be used to implement a Boolean function very easily. In general, for an n-variable function, a
2"-to-1 multiplexer, that is, a multiplexer with n select lines, is needed. An n-variable function has 2" minterms, and
each minterm corresponds to one of the 2" multiplexer inputs. The n input variables are connected to the n select
lines of the multiplexer. Depending on the values of the n variables, one data input line will be selected and the
value on that input line is passed to the output. So all we need to do is to connect all the data input lines to either a 1
or a 0 depending on whether we want that corresponding minterm to be a 1-minterm or a O-minterm respectively.

Figure 24 shows the implementation of the 3-variable function F (x, y, z) = X'y'z' + X'yz' + xy'z + xyz' + xyz. The
1-minterms for this function are mg, m,, ms, mg, and my, so the corresponding data input lines do, d,, ds, dg, and d; are
connected to a 1, while the remaining data input lines are connected to a 0. For example, the 0-minterm x'yz has the
value 011 and ds is selected, so a 0 passes to the output. On the other hand, the 1-minterm xy'z has the value 101 and
ds is selected, so a 1 passes to the output.

11100100

I
d,d, d,d,d, d, d, d,
S

2

Figure 24. Using an 8-to-1 multiplexer to implement the function F (X, y, z) = X'y'z' + X'yz' + xy'z + xyz' + xyz.

49 Tri-state Buffer

A tri-state buffer, as the name suggests, has three states: 0, 1 and a third state denoted by Z. The value Z
represents a high-impedance state, which for all practical purposes acts like a switch that is opened or a wire that is
cut. Tri-state buffers are used to connect several devices to the same bus. A bus is one or more wire for transferring
signals. If two or more devices are connected directly to a bus without using tri-state buffers, signals will get
corrupted on the bus because the devices are always outputting either a 0 or a 1. However, with a tri-state buffer in
between, devices that are not using the bus can disable the tri-state buffer so that it acts as if those devices are
physically disconnected from the bus. At any one time, only one active device will have its tri-state buffers enabled
and thus use the bus.

The truth table and symbol for the tri-state buffer is shown in Figure 25 (a) and (b). The active high enable line
E turns the buffer on or off. When E is de-asserted with a 0, the tri-state buffer is disabled and the output y is in its
high-impedance Z state. When E is asserted with a 1, the buffer is enabled and the output y follows the input d.

A circuit consisting of only logic gates cannot produce the high impedance state required by the tri-state buffer
since logic gates can only output a 0 or a 1. To provide the high impedance state, the tri-state buffer circuit uses two
discrete CMOS transistors in conjunction with logic gates as shown in Figure 25 (d). Section 5.3 discusses the
operations of these two CMQOS transistors in detail. For now, we will keep it simple. The top PMOS transistor is
enabled with a 0 at the node labeled A, and when it is enabled, a 1 signal from Vcc passes through to y. The bottom
NMOS transistor is enabled with a 1 at the node labeled B, and when it is enabled, a 0 signal from ground passes
through to y. When the transistors are disabled, the output has the high impedance Z value.

Having the two CMOS transistors, we need a circuit that will control these two transistors so that together they
realize the tri-state buffer function. The truth table for this control circuit is shown Figure 25 (c).

The truth table is derived as follows. When E = 0, we want both transistors to be disabled so that the output y
has the Z value. When E = 1 and d = 0, we want the output y to be a 0. To get a 0 on y, we need to enable the bottom
n-MOS transistor and disable the top p-MOS transistor so that a 0 will pass through the n-MQOS transistor to y. To
getalony for when E =1 and d =1, we need to do the reverse by enabling the top p-MOS transistor and disabling
the bottom n-MOS transistor. From this observation, we derive the truth table and the resulting circuit shown in
Figure 25 (c) and (d).

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 21 of 28

When E = 0, the output of the NAND gate is a 1 regardless of what the other input is, and so the top p-MOS
transistor is turned off. Similarly, the output of the AND gate is a 0, and so the bottom n-MQOS transistor is also
turned off. Thus, when E = 0, both transistors are off and so the output y is in the Z state.

When E = 1, the outputs of both the NAND and AND gates are equal to d'. So if d = 0, the output of the two gates
are 1 and so the bottom transistor is turned on while the top transistor is turned off. Thus y will have the value 0,
which is equal to d. On the other hand, if d = 1, the top transistor is turned on while the bottom transistor is turned
off, and y will have the value 1.

The behavioral VHDL code for an 8-bit wide tri-state buffer is shown in Figure 26.

E[dJA[B E Vee
E|Y E 0j0j1]o0 -:D_Acl
0]z dﬁy ol1]1]o0 d
1]d 1011 LtDL‘ y
1100
@ (b)
© (d)

Figure 25. Tri-state buffer: (a) truth table; (b) logic symbol; (c) circuit; (d) truth table for the control portion of the
tri-state buffer circuit.

LI BRARY i eee;
USE | EEE. std_l ogic_1164. ALL;

ENTITY Tri State Buffer IS PORT (
E: IN std_|ogic;
d: IN std_|ogic vector(7 DOANNTO 0);
y: QUT std_logic_vector(7 DOMANTO 0));
END Tri State Buffer;

ARCHI TECTURE Behavioral OF Tri State Buffer IS

BEA N
PROCESS (E, d)
BEA N
IF (E="1") THEN
y <=d;
ELSE
y <= (OTHERS => 'Z'); -- to get 8 Z val ues
END | F;
END PROCESS;

END Behavi or al ;

Figure 26. VHDL code for an 8-bit wide tri-state buffer.

4.10 Comparators

Quite often we need to compare two values for their arithmetic relationship (equal, greater, less than, etc.). A
comparator is a circuit that compares two binary words and indicates whether the relationship is true or not. To
compare whether a value is equal or not equal to a constant value, a simple AND gate can be used. For example, to
compare a 4-bit variable x with the constant 3, the circuit in Figure 27 (a) can be used. The AND gate outputs a 1
when the input is equal to the value 3.

The XOR and XNOR gates can be used for comparing for inequality and equality respectively between two
values. The XOR gate outputs a 1 when its two input values are different. So we can use one XOR gate for comparing
each bit pair of the two operands. A 4-bit inequality comparator is shown in Figure 27 (b). Four XOR gates are used,

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 22 of 28

with each one comparing the same bit from the two operands. The outputs of the XOR gates are ORrRed together so that
if any bit pair is different then the two operands are different and the resulting output is a 1. Similarly, an equality
comparator can be constructed using XNOR gates instead since the XNOR gate outputs a 1 when its two input values
are the same.

To compare for the greater-than or less-than relationships, we can construct a truth table and build the circuit
from it using the regular method. For example, to compare whether a 4-bit value X is less than five, we get the truth
table, equation and circuit shown in Figure 27 (c).

—~
&
~

(=)
~

>
w
x
N
=
2
>
o
>
(&)

X3 X2 X1 X

~|lo|lo|lo|lo|o|lo|lo|jo
X |||k~ |lolo|o|lo
X ||~ |o|lolk|k|lo|lo
X |—|lo|k|olr|o|r|o
o|lo|o|o|r k||| A

(X <5) = X3'%" + X3'XoX1"Xo'

(©

Figure 27. Simple 4-bit comparators for: (a) X =3; (b) X £Y; (c) X <5.

Instead of constructing a comparator for a fixed number of bits for the input values, we often prefer to construct
an iterative circuit by constructing a 1-bit slice comparator and then daisy chaining them together for as many bits
as is needed. The 1-bit slice comparator will have, in addition to the two input operand bits x; and y;, a p; bit that
keeps track of whether all the previous bit pairs compared so far are true or not for that particular relationship. The
circuit outputs a 1 if p; = 1 and the relationship is true for the current bit pair x; and y;. Figure 28 (a) shows a 1-bit
slice comparator for equality. If the current bit pair x; and y; are equal, the XNOR gate will output a 1. Hence, pj.; = 1
if the current bit pair is equal and the previous bit pair p; = 1. To obtain a 4-bit iterative equality comparator, we
connect four 1-bit equality comparators in series as shown in Figure 28 (b). The initial pg bit is set to a 1. Thus, if all
four bit-pairs are equal, then the last bit, p, will be a 1, otherwise, p, will be a 0.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 23 of 28
Xi Vi X3 Y3 X2 Y2 Xg Y1 Xo Yo
P N R T S B N
Pis1— b, P4 EQ P3 EQ P2 EQ P1 EQ Po oY
@) (b)

Figure 28. Iterative comparators: (a) 1-bit slice for x; = y;; (b) 4-bit X =Y.

4.11 Shifter / Rotator

The shifter and the rotator are used for shifting bits in a binary word one position either to the left or to the
right. The difference between the shifter and the rotator is in how the end bits are shifted in or out. The six different
operations for the shifter / rotator are summarized in Figure 29.

For each bit position, a multiplexer is used to move a bit from either the left or right to the current bit position.
The size of the multiplexer will determine the number of operations that can be implemented. For example, we can
use a 4-to-1 mux to implement the four operations as specified by the table in Figure 30 (a). Two select lines, s; and
So, are needed to select between the four different operations. For a 4-bit operand, we will need to use four 4-to-1
muxes as shown in Figure 30 (b). How the inputs to the muxes are connected will depend on the given operations.

Operation Comment Example
Shift bits to the left one position. The 10110100
Shift left with 0 leftmost bit is discarded and the rightmost LA A
bit is filled with a 0. ¥01101000«
. . Same as above except that the rightmost bit 10110100
Shitleftwith 1| i< filled with a 1. LSS
Shift bits to the right one position. The 10110100
Shift right with 0 rightmost bit is discarded and the leftmost OO
bit is filled with a 0. ~01011010K
— . Same as above except that the leftmost bit is 10110100
Shiftrightwith 1| &1 with a 1. BTSRRI
Shift bits to the left one position. The 10110100
Rotate left leftmost bit is moved to the rightmost bit 55884
Shift bits to the right one position. The 10110100
Rotate right rightmost bit is moved to the leftmost bit OO

Figure 29. Shifter and rotator operations.

Microprocessor Design — Principles and Practices with VHDL

Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 24 of 28

S; | So | Operation
0 | 0 | Passthrough
0 | 1 | Shiftleftand fill with 0
1 | 0 | Shiftright and fill with 0
1 | 1 | Rotate right
(@)
v ¥ ¥ 3
Sl Ing 1INy 1IN INg
3 s; 4-bit shifter/rotator
0Ut3 Outz Outl OUtO
vy v i
(b)
()

Figure 30. A 4-bit shifter / rotator: (2) operation table; (b) circuit; (c) logic symbol.

In the example, when s; = s, = 0, we want to pass the bit straight through without shifting, i.e. we want the value
for in; to pass to out;. Given s; = sy = 0, dy of the mux is selected, hence, in; is connected to dy of mux; which outputs
to out;. For s; = 0 and so = 1, we want to shift left, i.e. we want the value for in; to pass to out;,;. Withs; =0 and s, =
1, d; of the mux is selected, hence, in; is connected to d, of mux;.; which outputs to out;,;. For this selection, we also
want to shift in a 0 bit, so d; of mux, is connected directly to a 0.

The behavioral VHDL code for an 8-bit shifter / rotator having the functions as defined in Figure 30 () is
shown in Figure 31.

LI BRARY i eee;
USE ieee.std logic 1164.all;
USE i eee.std_Il ogi c_unsi gned. al | ;

ENTITY shifter IS PORT (

SHSel : IN std | ogic_vector(1 downto 0); -- select for operations
input: IN std |logic vector(7 dowto 0); -- input
output: OUT std_l ogic_vector(7 downto 0)); -- out put
END shifter;
ARCHI TECTURE Behavi or OF shifter IS
BEG N
process(SHSel , input)
begi n
CASE SHsel 1S
WHEN " 00" => -- pass through
out put <= input;
WHEN "01" => -- shift left with O
out put <= input(6 downto 0) & '0';
VWHEN " 10" => -- shift right with 0
output <= '0" & input(7 dowto 1);
WHEN OTHERS => -- rotate right
output <= input(0) & input(7 downto 1);
END CASE;
END PROCESS;

END Behavi or;

Figure 31. Behavioral VHDL code for an 8-bit shifter / rotator having the operations as defined in Figure 30(a).

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 25 of 28

4.12 Multiplier

In grade school, we were taught to multiply two numbers using a shift-and-add algorithm. Regardless of
whether the two operands are in decimal or binary, the same algorithm is used. In fact, multiplying with binary
numbers is even easier because you are always multiplying with either a 0 or a 1. Figure 32 (a) shows the manual
multiplication of two 4-bit unsigned binary numbers, the multiplicand M = msm,m;my with the multiplier

Q = 030201 to produce the resulting product P = pzpspsPaPspzP1Po.

The algorithm, as shown in Figure 32 (b), looks at the bits for Q from right to left in order. For each bit g, if it
is a 1 then M, shifted to the correct position, is added to the product, otherwise, a 0 is added. When the algorithm
terminates, the result is in P. Following this sequential algorithm to implement a multiplication circuit give rise to a
sequential circuit that is slow because only one 8-bit adder is used four times over to generate the product In
addition, a register is needed to store the intermediate and final product. We will look at this sequential circuit in a
later chapter.

Fortunately, a faster combinational multiplication circuit can be obtained based on this same algorithm. For this
combinational circuit, AND gates are used to multiply the individual bits to give the intermediate products and
multiple adders are used to sum the partial products. Observe that ANDing two bits gives the same result as
multiplying the two bits, and this ANDing of M with ¢; replaces the need to test whether q; is a 1 or not. Thus, each
intermediate product is obtained by ANDing the multiplicand M with one bit of the multiplier g;. For example (see
Figure 32 (a)), bit zero of the first intermediate product is obtained by ANDing m, with g, bit one is obtained by
ANDIng m; with o, and so on. So the four bits of the first intermediate product are msgo, MyQo, M1qg, and MgQo.

The final product is obtained by adding all the intermediate products with each one shifted over to the correct
position. For example, po is just mgQo, p; is the sum of myqg and moQqy, P, is the sum of myqe, M;q; and myQ,, and so
on. Figure 32 (c) shows the connections of the full adders to the bits of the intermediate products to produce the final
product. The four full adders in each row are connected as in the ripple-carry adder with each carry-out signal
connected to the carry-in of the next full adder. The carry-out of the last full adder is connected to the operand input
of the last full adder in the row below. The last carry-out from the last row of adders is the value for p, of the final
product. As in the ripple-carry adder, all the initial carry-in c, are set to a 0.

Multiplicand (M) 1101 m; m, m; mg
Multiplier (Q) x 1011 X0 Op Q1 Qo

1101 M3Qo M20o M1fo MoCo

Intermediate products 1101 M3Q; MyQ; Mgy Moy
1: 0000 M3Q2 M0z M1g2 Mol
+ 1101 + M3Qs Mygs_Migs_MeQds
Product (P) 10001111 Pz Ps Ps Ps Pz P2 P1 Po
(a)

P
F

=0
ORi =0TO3
q

IF g =1 THEN
P=P+ (M<<i) [/ the operation M<< i is to shift Mto the left by
i bit position
END | F
END FOR

// result isinP

(b)

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components

Page 26 of 28

P

(©

P, Py Py

Figure 32. Multiplication: (a) manual method; (b) algorithm; (c) circuit.

4.13 Summary Checklist

Full adder
Ripple-carry adder
Carry-lookahead adder
Two’s complement
Sign extension
Subtractor

ALU

Arithmetic extender
Logic extender

Carry extender
Decoder

Encoder

Multiplexer

Building larger muxes using smaller muxes
Tri-state buffer

Z value

Comparator

Multiplier

| Iy N S Sy iy iy iy iy iy iy iy

Microprocessor Design — Principles and Practices with VHDL

Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components Page 27 of 28

4.14 Exercises

5.1. Derive the carry-lookahead equation and circuit for cs.
5.2. Draw the circuit for a 4-bit ALU that realizes the following operation table:

S, | S1 | Sy Operation

0 0 0 Pass A to output

0 0 1 Pass B to output via AE
0 1 0 A+B

0 1 1 A'

1 0 0 A XORB

1 0 1 A NAND B

1 1 0 A-1

1 1 1 A-B

5.3. Draw the circuit for an 8-to-1 multiplexer using only 4-to-1 multiplexers.

5.4. Use one 8-to-1 multiplexer to implement the function F, , = 2(0,3,4,6,7).

5.5. Use 2-to-1 multiplexers to implement the function F, , = 2(0,2,4,5).

5.6. Derive the truth table for a 3-to-8 decoder using negative logic.

5.7. Draw the circuit for an 8-to-3 priority encoder.

5.8. Draw the circuit for an 8-to-3 priority encoder using only 4-to-2 priority encoders.

5.9. Write the behavioral VHDL code for the 8-to-3 priority encoder.

5.10. Draw the circuit diagram for a 4-bit iterative comparator that tests for the greater-than-or-equal-to relationship.

5.11. Derive the truth table for comparing two 4-bit operands for the less-than-or-equal-to relationship. Derive the
equation and circuit from this truth table.

5.12. Draw the circuit for a 4-bit shifter/rotator that realizes the following operation table:

S, | S; | Sp | Operation

0 |0 | O | Passthrough

0 |0 | 1 | Rotate left

0 |1 | O | Shiftrightand fill with 1
0 |1 |1 |notused

1 |0 | 0 | Shiftleftand fill with 0
1 |0 |1 | Passthrough

1 |1 |0 | Rotateright

1 |1 |1 | Shiftrightand fill with0

5.13. Draw the complete detail circuit diagram for the 4-bit multiplier based on the circuit shown in Figure 32 (c).
5.14.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:27 PM

Chapter 4 — Combinational Components

Index

A

Active-high, 2
Active-low, 2
Adder, 2, 8
carry-lookahead, 4
full, 2
ripple-carry, 3
AE. See Arithmetic logic unit.
ALU. See Arithmetic logic unit.

Arithmetic extender. See Arithmetic logic unit.

Arithmetic logic unit, 10
AE arithmetic extender, 10
CE carry extender, 10
LE logic extender, 10
Assert, 2

C

Carry extender. See Arithmetic logic unit.

Carry-lookahead adder, 4
CE. See Arithmetic logic unit.
Combinational components, 2
Comparator, 21

D

De-assert, 2
Decoder, 14
Demultiplexer, 14
E
Encoder, 15
priority, 16
F
FA. See Full adder.
Full adder, 2
|

Iterative circuit, 22

Microprocessor Design — Principles and Practices with VHDL

L
LE. See Arithmetic logic unit.

Logic extender. See Arithmetic logic unit.

M

Multiplexer, 17
Multiplier, 25
Mux. See Multiplexer.

N

Negative logic, 2
Negative numbers, 6

P

Positive logic, 2
Priority encoder, 16

R

Ripple-carry adder, 3
Rotator, 23

S

Shifter, 23
Sign extension, 7
Subtractor, 2, 8

T

Tri-state buffer, 20
Two’s-complement, 6

Vv

VHDL code
3-to-8 decoder, 15
4-to-1 multiplexer, 19
adder/subtractor, 10
arithmetic logic unit (ALU), 13
full adder, 3
shifter/rotator, 24
tri-state buffer, 21

Last updated 7/16/2003 12:27 PM

Page 28 of 28

Chapter 5 — Implementation Technologies Page 1 of 27

Table of Content

TADIE OF CONTENT ...t b e et b etk b et bt e b et ek s b et e b e b et et e b et e be s b et e be s be e e benbe st e benbens 1
5 Implementation TECANOIOGIESciuviiiieeii ettt e e st e et e tesresreeneenae e eteneesrenre e 2
LTS A £ Tor: LAY 1) £ - Ut 4 T) o S 2
5.2 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)cccoovvveiivirienn et 3
LT R 1Y/ (@ 1S3 I | OSSOSO 4
LR O |V [1 R O 1 o1 £SO O UURUSOURTT TR 5
54.1 (0110 (@RI 1Y ¢ (=] T T T ST P O P UP PR PR 5
5.4.2 CIMOS NAND QAL ...vivereiteiierestesiee st e st eteste e teste e s te st e seeteseeseebesaesesbeseeteabeseetesbeseetesbeseesesbeseesanseneas 6
5.4.3 CIMOS AND QLB ...veiveieieiteiieieste sttt ste e te st e este st e s e ste st e e ste e e tesbeseeteabeseetesbe s eateabeseebeseeseabesbesesaeabeseesantenens 7
5.4.4 CMOS NOR N0 OR GAIES....c.ecuiieriiierieriitesieesiesestesteseeessesestesseassessesessessesessessesessessasessessssessessssessesses 9
5.4.5 TEANSIMISSION GALE ...ttt sttt sttt ettt a et b ettt b st b et b et s b bt b et ne e s 9
5.4.6 2-input MUItipleXer CMOS CIFCUIL.......oiveiieiticese et e et sre st sne e e e eneesnennesreaneas 9
5.4.7 CMOS XOR @N0 XNOR GALEScueiteieiiiterieienierieiesie sttt sttt sttt sttt sttt sttt bt sbe b et nnens 11
5.5 ANAlYSiS OF CIMOS CIICUILS ...uveuieeiiiiesiesteseeeeiesies e steste s e seeree e e seestestessesreeseeseeseessestesaestesneeneeseessenneanens 12
5.6 Using ROMS to IMpIeMENt @ FUNCLIONcviiiiiieie et st ene s 13
5.7 Using PLAS to IMPIemMENt @ FUNCLIONviieieiecs et st ene s e e nneenes 15
5.8 Using PALS to IMPIEMENt @ FUNCHIONc.oiuiiiiiieie et et 19
5.9 Complex Programmable LOgiC DEVICE (CPLD)cociiuiiiiiiiieiieie ettt e 21
5.10 Field-Programmable Gate Array (FPGA) ..ottt et sbe sttt be bbb sneas 23
5.11 SUMMAY CRECKIISEc.viieieiiieiee ettt st b et b et sb e b e b e bt et e e e e sbesaesbesreaneas 24
512 RETBIBINCES ... ittt bbbt et R e bR R £ R £ e e Rt e Rt he Rt Rt e b e e e e benaeebenneeneas 24
TN B T (o[- SO PSPPSRI 25
4T =3 OSSOSO 26

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 2 of 27

5 Implementation Technologies

In this chapter, we will look at how digital circuits are implemented. As you know, transistors are the
fundamental building blocks for all digital circuits. They are the actual physical devices that implement the binary
switch. Figure 1 (a) shows a single discrete transistor with its three connections for signal input, output and control.
Above the transistor is a lump of silicon, which of course is the main ingredient for the transistor. Figure 1 (b) is a
picture of transistors inside an IC taken with an electron microscope. Figure 1 (c) is a higher magnification of the
rectangle area in (b).

(@) (b) ({)

Figure 1. Transistors: (a) A lump of silicon and a transistor; (b) transw an EPROM as seen through an
electron microscope; (c) higher magnification of the rectangle area in (b) (Q h\/
)
There are many different transistor technologies for creating a d?ﬁaf*"’uit. Some of these technologies are the
diode-transistor logic (DTL) , transistor-transistor logic (TTL) ,(u@a logic, and complementary metal oxide
semiconductor (CMOS) logic. Among them, the most widely use /‘.\ eCMOS technology.

We will first look at how digital circuits are design {»atﬁni\\ sistor level, after which we will look at how
digital circuits are actually implemented in various proc ‘5 gic devices (PLDs) such as read-only memories
(ROMs), programmable logic arrays (PLAS), program r\r.. y logic (PALO) devices, complex programmable
logic devices (CPLDs), and field-programmable gate arrays AS).

N4
\
5.1 Physical Abstraction \(\

Physical circuits deal with physical properties *u:‘f’és voltages and currents. Digital circuits use the abstraction
0 and 1 to represent the presence or absence 1ﬂk swg hysical properties. In fact, a range of voltages is interpreted as
the logic 0, and another, non- overlapplr?c ran«c ﬁ rpreted as the logic 1. Traditionally, digital circuits operate
with a 5-volt power supply. In such a ca ﬁa“h\" g ary to interpret the voltages in the range 0 — 1.5V as a logic 0
while voltages in the range 3.5 — 5V as.a 'oglc . This is shown in Figure 2. VVoltages in the middle range from 1.5 —
3.5V are undefined and should nq ¢ cu‘ﬁn the circuit except during transitions from one state to the other.
However, they may be interpreted Mak logic 0 or a weak logic 1.

A

In our discussion of transist rs, \.j wb not get into the technical details of voltages and currents, but simply use
the abstraction of 0 and 1 to desc eir operations.

e

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 3 of 27

5V
Logic 1

3.5V
Weak 1

undefined

Weak 0

1.5V
Logic 0

ov

Figure 2. Voltage levels for logic 0 and 1.

5.2 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)

The metal-oxide-semiconductor field-effect transistor (MOSFET) acts as a voltage-controlled switch with three
terminals: source, drain, and gate. The gate controls whether current can pass from the source to the drain or not.
When the gate is asserted or activated, the transistor is turned on and current flows from the source to the drain.
When looking at the transistor by itself, there is no physical difference between the source and the drain terminals.
They are distinguished only when connected with the rest of the circuit by the differences in the voltage levels.

There are two variations of the MOSFET: the n-channel and the p-channel MOSFET. The physical structures of
these two transistors are shown in Figure 3 (a) and (b) respectively. The name metal-oxide-semiconductor comes
from the three layers of material that make up the transistor. The n stands for negative and represents the electrons
while p stands for positive and represents the holes that flow through a channel in the semiconductor material
between the source and the drain. For the n-channel MOSFET, see Figure 3 (a), a p-type silicon semiconductor
material, called the substrate, is doped with n-type impurities at the two ends. These two n-type regions form the
source and the drain of the transistor. An insulating oxide layer is laid on top of the two n regions and the p substrate
except for two openings leading to the two n regions. Finally, metal is laid in the two openings in the oxide to form
connections to the source and the drain. Another deposit of metal is laid on top of the oxide between the source and
the drain to form the connection to the gate. The structure of the p-channel MOSFET shown in Figure 3 (b) is
similar except that the substrate is of n-type material and the doping for the source and drain is of p-type impurities.

Bl Metal

[1 Oxide layer

[Doping of impurities
[] Silicon semiconductor

Source Gate Drain Source Gate Drain
. n-channel . D p-channel D
p n
Substrate Substrate
@ (b)

Figure 3. Physical structure of the MOSFET: (a) n-channel; (b) p-channel.
The n-channel and p-channel MOSFETS work in opposite of each other. For the n-channel MOSFET, only an n-

channel between the source and the drain is created under the control of the gate. This n-channel (n for negative)
only allows negative charge electrons (logic 0) to move from the source to the drain. On the other hand the p-

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 4 of 27

channel MOSFET can only create a p-channel between the source and the drain under the control of the gate, and
this p-channel (p for positive) only allows positive charge holes (logic 1) to move from the source to the drain.

5.3 CMOS Logic

In CMOS (complementary MOS) logic, only the two complementary MOSFET transistors, (n-channel also
known as NMOS and p-channel also known as PMOS)?, are used to create the circuit. The logic symbols for the
NMOS and PMOS transistors are shown in Figure 4 (a) and Figure 5 (a) respectively. In designing CMOS circuits,
we are only interested in the three connections, source, drain and gate, of the transistor. The substrate for the NMOS
is always connected to ground while the substrate for the PMOS is always connected to Vec?, s0 it is ignored in the
diagrams for simplicity. Notice that the only difference between these two logic symbols is that one has a circle at
the gate input while the other does not. Using the convention that the circle denotes active low (i.e., a 0 activates the
signal), the NMOS gate input (with no circle) is, therefore, active high, while the PMOS gate input (with a circle) is
active low.

For the NMOS transistor, the source is the terminal with the lower voltage with respect to the drain. You can
intuitively think of the source as the terminal that is supplying the 0 value, while the drain consumes the 0 value.
When the gate is a 1 (active high), the NMQOS transistor is turned on or enabled, and the source input that is
supplying the 0 can pass through to the drain output through the connecting n-channel. However, if the source has a
1, the 1 will not pass through to the drain even if the transistor is turned on because the NMOS does not create a p-
channel. Instead, only a weak 1 will pass through to the drain. If the transistor is turned off with a 0 on the gate, the
connection between the source and the drain is disconnected and the drain will always have a high-impedance Z
value independent of the source value The x in the Input Signal column means “don’t care,” which means that it
doesn’t matter what the input value is, the output will be Z. The high-impedance value, denoted by Z, means no
value or no output. This is like having an insulator with an infinite resistance or a break in a wire so that whatever
the input is will not pass over to the output. The operation of the NMOS transistor is shown in Figure 4 (b).

(@)

drain
Gate Switch Input Signal | Output Signal
0 0
gate —{ ! On (Closed) 1 weak 1
0 Off (Open) x z
source (b)
(@)
Figure 4. NMOS transistor: (a) logic symbol; (b) truth table.
drain
Gate Switch Input Signal | Output Signal
0 weak 0
gate 0 On (Closed) 1 1
1 Off (Open) X z
source (b)

Figure 5. PMOS transistor: (a) logic symbol; (b) truth table.

! In electrical data sheets, these two transistors are also referred to as NPN and PNP respectively.
% V¢ is power or 5-volts in a 5V circuit, while ground is OV.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 5 of 27

The PMOS transistor works exactly the opposite of the NMQOS transistor. For the PMOS transistor, the source is
the terminal with the higher voltage with respect to the drain. You can intuitively think of the source as the terminal
that is supplying the 1 value, while the drain consumes the 1 value. When the gate is a 0, the PMQOS transistor is
turned on or enabled, and the source input that is supplying the 1 can pass through to the drain output through the
connecting p-channel. However, if the source has a 0, the 0 will not pass through to the drain even if the transistor is
turned on because the PMOS does not create an n-channel. Instead, only a weak 0 will pass through to the drain. If
the transistor is turned off with a 1 on the gate, the connection between the source and the drain is disconnected and
the drain will always have a high-impedance Z value independent of the source value. The operation of the PMOS
transistor is shown in Figure 5 (b).

5.4 CMOS Circuits

CMOS circuits are built using only the NMOS and PMOS transistors. Because of the inherent properties of the
NMOS and PMOS transistors, CMOS circuits are always built with two halves. One half will use one transistor type
while the other half will use the other type, and when combined together to form the complete circuit, they will work
in complements of each other. The NMOS transistor is used to output the 0 half of the truth table while the PMOS
transistor is used to output the 1 half of the truth table.

Furthermore, notice that the truth tables for these two transistors shown in Figure 4 (b) and Figure 5 (b) suggest
that CMOS circuits must essentially deal with five logic values instead of two. These five logic values are 0, 1, Z
(high-impedance), weak 0 and weak 1. So when two halves of a CMOS circuit is combined together, there is a
possibility of mixing any combinations of these five logic values.

Figure 6 summarizes the result of combining these logic values. A 1 plus a 1 does not give you a 2, but rather
just a 1! A short circuit results from connecting a 0 directly to a 1, that is, connecting ground directly to V¢c. This is
like sticking two ends of a wire into the two holes of an electrical outlet in the wall. You know the result and you
don’t want to do it. Connecting a O with a weak 1, or a 1 with a weak 0 is also a short, but it may take a longer time
before you start to see smoke coming out. Any value combined with Z is just that value since Z is nothing.

A properly designed CMOS circuit should always output either a 0 or a 1. The other three values should not
occur in any part of the circuit. We will now show the construction of several basic gates using the CMOS
technology.

0 1 Z weak 0 | weak 1
0 0 short 0 0 short
1 short 1 1 short 1
Z 0 1 Z weak 0 | weak 1
weak 0 0 short | weak O | weak O | short
weak 1 | short 1 weak 1 | short | weak 1

Figure 6. Result of combining the five possible logic values.

5.4.1 CMOS Inverter

Half of the inverter truth table says that given a 1, the circuit needs to output a 0. The question to ask is which
CMOS transistor (NMOS or PMOS) when given a 1 will output a 0? Looking at the two truth tables for the two
transistors, we find that only the NMOS transistor outputs a 0. The PMOS transistor outputs either a 1 or a weak 0.
A weak 0, as you recall from Section 5.1, is an undefined or an unwanted value. The next question to ask is how do
we connect the NMOS transistor so that when we input a 1, the transistor outputs a 0? The answer is shown in
Figure 7 (a) where the source of the NMOS transistor is connected to ground (to provide the 0 value), the gate is the
input, and the drain is the output. When the gate is a 1, the 0 at the source will pass through to the drain output.

The complementary half of the inverter circuit is to output a 1 when given a 0. Again, from looking at the two
truth tables, we find that the PMOS transistor will do the job. This is expected since we have used the NMOS for the
first half, the complementary second half of the circuit must use the other transistor. This time the source is
connected to V¢c to supply the 1 value as shown in Figure 7 (b). When the gate is a 0, the 1 at the source will pass
through to the drain output.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 6 of 27

To form the complete inverter circuit, we simply combine the two complementary halves together as shown in
Figure 7 (c). When combining two halves of a CMOS circuit together, the one thing to be careful of is not to create
any possible shorts in the circuit. We need to make sure that for all possible combinations of 0’s and 1’s to all the
inputs, there are no places in the circuit where both a 0 and a 1 can occur at the same node.

When the gate input to the inverter circuit is a 1, the bottom NMOS transistor is turned on while the top PMOS
transistor is turned off. With this configuration, a 0 from ground will pass through the bottom NMOS transistor to
the output while the top PMOS transistor will output a high-impedance Z value. A Z combine with a 0 is still a 0
because a high-impedance is no value. Alternatively, when the gate input is a 0, the bottom NMOS transistor is
turned off while the top PMOS transistor is turned on. In this case, a 1 from V¢ will pass through the top PMOS
transistor to the output while the bottom NMOS transistor will output a Z. The resulting output value is a 1. Since
the gate input can never be both a 0 and a 1 at the same time, therefore, the output can only have either a 0 or a 1,
and no short can result.

Vce
1 | source

Vce C{ |:
drain 1 | source gate drain

'input output i
gate +(3|

gate —»—{ _{ [
0 | source drain 0 | source

(@ (b) (c)

Figure 7. CMOS inverter circuit: (a) NMOS half; (b) PMOS half; (c) complete circuit.

5.4.2 CMOS NAND gate

Figure 8 shows the truth table for the NAND gate. Half of the truth table consists of the one 0 output while the
other half of the truth table consists of the three 1 outputs. For the 0 half of the truth table, we want the output to be a
0 when both A =1 and B = 1. Again, we ask the question which CMOS transistor when given a 1 will output a 0? Of
course the answer is again the NMOS transistor. This time, however, since there are two inputs A and B, we need
two NMOS transistors. We need to connect these two transistors so that a 0 is outputted only when both are turned
on with a 1. Recall from Section 2.3 that the AND operation results from two binary switches connected in series.
Figure 9 (a) shows the two NMOS transistors connected in series with the source of one connected to ground to
provide the 0 value, and the drain of the other providing the output 0. The two transistor gates are connected to the
two inputs A and B so that only when both inputs are a 1 will the circuit outputs a 0.

The complementary half of the NAND gate is to output a 1 when either A = 0 or B = 0. This time two PMOS
transistors are used. To realize the OR operation, the two transistors are connected in parallel with both sources
connected to V¢ and both drains to the output as shown in Figure 9 (b). This way, only one transistor needs to be
turned on for the circuit to output the 1 value.

The complete NAND gate circuit is obtained by combining the two halves together as shown in Figure 9 (c).
When both A and B are 1, the two bottom NMOS transistors are turned on while the two top PMOS transistors are
turned off. In this configuration, a 0 from ground will pass through the two bottom NMOS transistors to the output
while the two top PMOS transistors will output a high-impedance Z value. Combining a 0 with a Z will result ina 0.
Alternatively, when either A = 0 or B = 0 or both equal to O, at least one of the bottom NMOS transistor will be
turned off, thus outputting a Z. On the other hand, at least one of the top PMOS transistors will be turned on and a 1
from V¢ will pass through that PMOS transistor. The resulting output value will be a 1. From this discussion, we
can conclude that no short circuit can occur.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 7 of 27

>

o

[

[
>

o

QRIS

)

1] 110 1 0
(@) (b)
Figure 8. NAND gate truth table: (a) the 0 half; (b) the 1 half.
Vce Vce

1 | source 1 | source

o[sed[and[e[

output
—> L

>
output output

o[o[

s [

s [

| source | source

(@) (b) (©

Figure 9. CMOS NAND circuit: (a) the 0 half using two NMOS transistors; (b) the 1 half using two PMOS
transistors; (c) the complete NAND gate circuit.

5.4.3 CMOS AND gate

Figure 10 shows the 0 half and 1 half of the truth table for the AND gate. We can proceed to derive this circuit in
the same manner as we did for the NAND gate. For the O half of the truth table, we want the output to be a 0 when
either A = 0 or B = 0. This means that we need a transistor that outputs a 0 when it is turned on also with a 0. This
being one of the main differences between the NAND gate and the AND gate causes a slight problem. Looking again
at Figure 4 and Figure 5, we see that neither transistor fits this criterion. The NMOS transistor outputs a 0 when the
gate is enabled with a 1, and the PMOS transistor outputs a 1 when the gate is enabled with a 0. If we pick the
NMOS transistor, then we need to invert its input. On the other hand, if we pick the PMOS transistor, then we need
to invert its output.

For this discussion, let us pick the PMOS transistor. To obtain the A or B operation, two PMOS transistors are
connected in parallel. The output from these two transistors is inverted with a single NMQOS transistor as shown in
Figure 11 (a). When either A or B has a 0, that corresponding PMOS transistor is turned on and a 1 from the V¢
source passes down to the gate of the NMOS transistor. With this NMQOS transistor turned on, a 0 from ground is
passed through to the drain output of the circuit.

For the 1 half of the circuit, we want the output to be a 1 when both A =1 and B = 1. Again we have the
dilemma that neither transistor fits this criterion. To be complimentary with the 0 half, we will use two NMOS
transistors connected in series. When both transistors are enabled with a 1, the output 0 needs to be inverted with a
PMOS transistor as shown in Figure 11 (b).

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 8 of 27

Combining the two halves produce the complete AND gate CMOS circuit shown in Figure 11 (c). Instead of
joining the two halves at the point of the output, the circuit connects together before inverting the signal to the
output. The resulting AND gate circuit is simply the circuit for the NAND gate followed by that of the INVERTER.
From this discussion, we understand why in practice that NAND gates are preferred over AND gates.

B B

01 01
Ao(o_@ L 000
t|lo] 1 10D

(@) (b)
Figure 10. AND gate truth table: (a) the 0 half; (b) the 1 half.

Vce
1 | source

Vce

sd [ed[] o
vd [ed[]

0=
—L e
ottt i
@ | output
OM’ _C| |: 1Vcc

Vce

[U

-l

(©

| source

(b)

Figure 11. CMOS AND circuit: (a) the 0 half using two PMOS transistors and a NMOS transistor; (b) the 1 half
using two NMOS transistors and a PMOS transistor; (c) the complete AND gate circuit.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 9 of 27

5.4.4 CMOS NOR and OR Gates

The CMOS NOR gate and OR gate circuits can be derived similarly to that of the NAND and AND gate circuits.
Like the NAND gate, the NOR gate circuit uses four transistors whereas the OR gate circuit uses six transistors.

5.45 Transmission Gate

The NMOS and PMOS transistors when used alone as a control switch can pass only a 0 or a 1 respectively.
Very often we like a circuit that is able to pass both a 0 and a 1 under a control signal. The transmission gate is such
a circuit that allows both a 0 and a 1 to pass through when it is enabled. When it is disabled, it outputs the Z value.

The transmission gate uses the two complimentary transistors connected together as shown in Figure 12. Both
ends of the two transistors are connected in common. The top PMOS transistor gate is connected to the inverted
control signal C', while the bottom NMOS transistor gate is connected directly to the control signal C. Hence, both
transistors are enabled when the control signal C = 1, and the circuit is disabled when C = 0.

When the circuit is enabled, if the input is a 1, the 1 signal will pass through the top PMQOS transistor while the
bottom NMOS transistor will pass through a weak 1. The final combined output value will be a 1. On the other
hand, if the input is a 0, the 0 signal will pass through the bottom NMOS transistor while the top PMOS transistor
will output a weak 0. The final combined output value this time will be a 1. So in both cases, the output value is the
same as the input value.

When the circuit is disabled with C = 0, both transistors will output the Z value. So regardless of the input, there
will be no output.

input output

C
C
Figure 12. CMOS transmission gate circuit.

5.4.6 2-input Multiplexer CMOS Circuit

CMOS circuits for larger components can be derived by replacing each gate in the circuit with the
corresponding CMOS circuit for that gate. Since we know the CMOS circuit for the three basic gates, AND, OR and
NOT gates, this is a simple “copy and paste” operation.

For example, we can replace the gate level 2-input multiplexer circuit shown in Figure 13 (a) with the CMOS
circuit shown in Figure 13 (b). For this circuit, we simply replace the two AND gates with the two 6- transistor circuit
for the AND gate, another 6-transistor circuit for the Or gate, and the 2-transistor circuit for the INVERTER, giving a
total of 20 transistors for this version of the 2-input mux.

However, since the NAND gate uses two less transistors than the AND gate, we can first convert the two level or-
of-ands circuit in Figure 13 (a) to a two level NAND gate circuit shown in Figure 13 (c). This conversion is based on
the technology mapping technique discuss in Section 4.3. We will leave the details of this conversion until the next
chapter. For now, we will just take it as it is that these two circuits are equivalent in function. Performing the same
“cut-and-paste” operation on this NAND circuit produces the CMOS circuit in Figure 13 (d) that uses only 14
transistors.

We can do much better in terms of the number of transistors needed for the 2-input mux circuit. From the
original gate level mux circuit in Figure 13 (a), we want to ask the question, what is the purpose of the two AND
gates? The answer is that each AND gate is acting like a control switch. When it is turned on by the select signal s,

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 10 of 27

the input passes through to the output. Well, the operation of the transmission gate is just like this, and it uses only
two transistors. So we can replace the two AND gates with two transmission gates. Furthermore, the AND gate
outputs a O when it is disabled. In order for this 0 from the output of the disabled AND gate not to corrupt the data
from the output of the other enabled AND gate, the OR gate is needed. If we connect the two outputs from the AND
gates directly without the OR gate, a short circuit will occur when the enabled AND gate outputs a 1 because the
disabled AND gate always outputs a 0. However, this problem disappears when we use two transmission gates
instead of the two AND gates because when a transmission gate is disabled, it outputs a Z value and not a 0. Hence,
we can connect the outputs of the two transmission gates directly without the need of the OrR gate. The resulting
circuit is shown in Figure 13 (e) using only six transistors. The two-transistor inverter is needed just like in the gate
level circuit for turning on only one switch while turning off the other switch at any one time.

Vcce Vce

[

|

1
d Vce |

1
AND

e
dl R i Sl

(@ Fd — o | 1

Vce

Vce

AND =

Vce

AND

S|
Vce ! d
N ,
T

AND

OQ
OQ.
<
8
L
<
8

7]
<

1

T

(©

\\H—l__l—l__L
1|

~~
o
~

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 11 of 27

<
3

L o
T

©

Figure 13. 2-input multiplexer circuits: (2) gate level circuit using AND and OR gates; (b) transistor level circuit for
(@); (c) gate level circuit using NAND gates; (d) transistor level circuit for (c); (e) transistor level circuit using
transmission gates.

5.4.7 CMOS XOR and XNOR Gates

The XOR circuit can be constructed using the same reasoning as for the 2-input multiplexer above. Firstly, we
recall that the equation for the XOR gate is AB' + A'B. For the first AND-term, we want to use a transmission gate to
pass the A value. This transmission gate is enabled with the value B'. The resulting circuit for this first term is shown
in Figure 14 (a). For the second AND-term, we want to use another transmission gate to pass the A" value and have
the transmission gate enabled with the value B, resulting in the circuit shown in Figure 14 (b). Combining the two
partial circuits together gives us the complete XOR circuit shown in Figure 14 (c). Again, as with the 2-input
multiplexer circuit, it is not necessary to use an OR gate to connect the outputs of the two transmission gates
together.

4

A
3 B
A—+——{1— output A——>— }— output B output

—

(©

Figure 14. CMOS XOR gate circuit: (a) partial circuit for the term AB'; (b) partial circuit for the term A'B; (c)
complete circuit.

€Y (b)

The CMOS XoR circuit shown in Figure 14 (c) uses eight transistors; four transistors for the two transmission
gates and another four transistors for the two inverters. However, with some ingenuity, we can construct the XOR
circuit with only six transistors as shown in Figure 15 (a). Similarly, the XNOR circuit is shown in Figure 15 (b). In
the next section, we will perform an analysis of this XOR circuit to see that it indeed has the same functionality as the
XOR gate.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 12 of 27

Figure 15. CMOS circuit using only six transistors for: (a) XOR gate; (b) XNOR gate.

5.5 Analysis of CMOS Circuits

The analysis of a CMOS circuit follows the same procedure as with the analysis of a combinational circuit
discussed in Section 3.1. First we must assume that the inputs to the circuit must have either a logic 0 or logic 1
value, that is, the input value cannot be a weak 0, a weak 1 or a Z. Then, for every combination of 0 and 1 to the
inputs, trace through the circuit based on the operations of the two CMOS transistors to determine the value obtain
at every node in the circuit. When two different values are merged together at the same point in the circuit, we will
use the table in Figure 6 to resolve the values.

Example 5.1

IL T}

Analyze the CMOS circuit shown in Figure 15. For this discussion, the words “top right,
“bottom middle,” and “bottom right” are used to refer to the four transistors in the circuit.

top middle,”

Figure 16 (a) shows the analysis of the circuit with the inputs A=0 and B=0. The top right PMOS transistor is
enabled with a 0 from input A, however, the 0 from B at the source produces a weak 0 at the output of this transistor.
In the figure, the arrow denotes that the transistor is enabled and the label “w 0” at its output denotes that the output
value is a weak 0. For the top middle PMOS transistor, it is also enabled, but with the 0 from B. The source for this
transistor is a 0 from A and so the output is again a weak 0. The bottom middle NMOS transistor is enabled with a 1
from B'. Since the source is a 0 from A, this transistor outputs a 0. For the bottom right NMOS transistor, the 0 from
A disables it and so a Z value appears at its output. The outputs of these four transistors are joined together at the
point of the circuit output. At this common point, two weak 0’s, a 0 and a Z are combined together, which results in
an overall value of a 0. Hence the circuit outputs a 0 for the input combination A=0 and B=0.

Figure 16 (b), (c), and (d) show the analysis of the circuit for the remaining three input combinations. The
outputs for all four input combinations match exactly those of the 2-input XOR gate. .

0 B— 1B
L B
w
o
0 A @(‘(’)\'O output 0 0 A D; output 1
z z
% I

1 0

(@) (b)

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 13 of 27

0 B—y 1B
Z ’ I:“Z
i 1 =z
1A le output 1 1A Q > output 0
wl 0
) %{ |

1 0

(c) (d)

Figure 16. Analysis of the CMOS XOR gate circuit. (a) shows the analysis for the inputs A=0 and B=0. All the
transistor outputs are annotated with the resulting output value. The letter “w” is used to signify that it is a weak
value. (b) to (d) show the analysis for the remaining input combinations.

Example 5.2

The CMOS circuit in Example 5.1 is that of an XOR gate. If we change just the top right transistor in that circuit
from a PMOS to a NMOS transistor, and perform an analysis for the inputs A=1 and B=0, the result is a short circuit
at the output as shown below.

output short

w1l

5.6 Using ROMs to Implement a Function

Memories are used for storing binary data. This stored data, however, can be interpreted as being the
implementation of a combinational circuit. A combinational circuit expressed as a Boolean function in canonical
form is implemented in the memory by storing data bits in appropriate memory locations. Any types of memory
such as ROM (read-only memory), RAM (random access memory), PROM (programmable ROM), EPROM
(erasable PROM), EEPROM (electrically erasable PROM), and so on, can be used to implement combinational
circuits. Of course, non-volatile memory is preferred since you do want your circuit to stay intact even after power is
removed.

In order to understanding how combinational circuits are implemented in ROMs, we need to first understand the
internal circuitry of the ROM. ROM circuit diagrams are drawn more concisely by the use of a new logic symbol to
represent a logic gate. Figure 17 shows the new logic symbol for an AND gate and an OR gate with multiple inputs.
Instead of having multiple input lines drawn to the gate, the input lines are replaced with just one line going to the
gate. The multiple input lines are drawn perpendicular to this one line. To actually connect an input line to the gate,
an explicit connection point (*) must be drawn at where the two lines cross. For example, in Figure 17 (a) the AND
gate has only two inputs, whereas, in (b) the OR gate has three inputs.

(@) (b)
Figure 17. Array logic symbol for: (2) AND gate; (b) OR gate.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 14 of 27

OR array OR array

4-t0-16
decoder

4-t0-16
A, — decoder

>
©CONORDAWNREO
>
w
©CONORDAWNREO

(@) (b)

Figure 18. Internal circuit for a 16 x 4 ROM: (a) with no connections made; (b) with connections made.

The circuit diagram for a 16 x 4 ROM having 16 locations, each being 4-bits wide, is shown in Figure 18 (a). A
4-to-16 decoder is used to decode the four address lines, As, A,, A;, and Ay, to the 16 unique locations. Each output
of the decoder is a location in the memory. Recall that the decoder operation is such that when a certain address is
presented, the output having the index of the binary address value will have a 1 while the rest of the outputs will
have a 0.

Four OR gates provide the four bits of data output for each memory location. The area for making the
connections between the outputs of the decoder with the inputs of the OR gates is referred to as the OR array. When
no connections are made, the OR gates will always output a 0 regardless of the address input. With connections made
as in Figure 18 (b), the data output of the OR gates depends on the address selected. For the circuit in Figure 18 (b), if
the address input is 0000, then the decoder output line 0 will have a 1. Since there are no connections made between
the decoder output line 0 and any of the four OR gate inputs, the four OR gates will output a 0. So the data stored in
location 0 is 0000 in binary. If the address input is 0001, then the decoder output line 1 will have a 1. Since this line
is connected to the inputs of the two OR gates for D; and Dy, therefore, D; and Dy, will both have a 1 while D3 and
D, will both have a 0. So the data stored in location 1 is 0011. In the circuit of Figure 18 (b) the value stored in
location 2 is 1101.

A 16 x 4 ROM can be used to implement a 4-variable Boolean function as follows. The four variables are the
inputs to the four address lines of the ROM. The 16 decoded locations become the 16 possible minterms for the 4-
variable function. For each 1-minterm in the function, we make a connection between that corresponding decoder
output line that matches that minterm number with the input of an OR gate. It does not matter which OR gate is used
as long as one OR gate is used to implement one function. Hence, up to four functions with a total of four variables
can be implemented in the ROM circuit of Figure 18 (a).

From Figure 18 (b), we can conclude that the function associated with the OR gate output Dg is F = 2(1,2). That
is, minterms 1 and 2 are the 1-minterms for this function while the rest of the minterms are the O-minterms.
Similarly, the function for D, has only minterm 1 as its 1-minterms. And the functions for D, and D5 both have only
minterm 2 as its 1-minterms.

ROMs are programmed during the manufacturing process and cannot be programmed afterwards. So using
ROMs to implement a function is only cost effective if a large enough quantity is needed. For small quantities,
EPROMs or EEPROMs are preferred. Both EPROMs and EEPROMSs can be programmed individually using an
inexpensive programmer connected to the computer. The memory device is inserted into the programmer. The bits
to be stored in each location of the memory device are generated by the development software. This data file is then

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 15 of 27

transferred to the programmer, which then actually writes the bits into the memory device. Furthermore, both
EPROMs and EEPROMs can be erased and re-programmed with different data bits.

Example 5.3

Implement the following two Boolean functions using the 16 x 4 ROM circuit shown in Figure 18.

Fi (W,x,y,2) = w'X'yz + w'xyz' + w'xyz + wx'y'z' + wx'yz' + wxyz'

Fy (W,X,y,2) = WX'y'Z' + W'X

For F,, the 1-minterms are ms, mg, m;, Mg, Myo, and my4. For Fy, the 1-minterms are mgy, My, Ms, Mg, and m.
Notice that in F,, the term w'x expands out to four minterms. The implementation is shown in the circuit connection
below. We arbitrary pick Dg to implement F; and D; to implement F,.

OR array
0
1
2
3
w A, — 4
3 5
X A,—] 6
4-10-16 7
y A, — decoder 8
9
z Ay 10
11
12
13
14
15

5.7 Using PLAs to Implement a Function

Using ROMs or EPROM s to implement a combinational circuit is very wasteful because usually many locations
in the ROM are not used. Each storage location in a ROM represents a minterm. In practice, only a small number of
these minterms are the 1-minterms for the function being implemented. As a result, the ROM implementing the
function is usually quite empty.

Programmable logic arrays (PLAS) are designed to reduce this waste by not having all the minterms “built-
in” as in ROMs, but rather allowing the user to specify only the minterms needed. PLAs are designed specifically
for implementing combinational circuits.

The internal circuit for a4 x 8 x 4 PLA is shown in Figure 19. The main difference between the PLA circuit and
the ROM circuit is that in the PLA circuit an AND-array is used instead of a decoder. The input signals are available
both in the inverted and non-inverted forms. The AND-array allows the user to specify only the product terms
needed by the function; namely the 1-minterms. The OR-array portion of the circuit is similar to that of the ROM,
allowing the user to specify which product terms to sum together. Having four oR gates allow up to four functions to
be implemented in a single device.

In addition, the PLA has an output array which provides the capability to either invert or not invert the value at
the output of the OR gate. This is accomplished by connecting one input of the XOR gate to either a 0 or a 1. By
connecting one input of the XOR gate to a 1, the output of the XOR gate is the inverse of the other input.
Alternatively, connecting one input of the XOR gate to a 0, the output of the XOR gate is the same as the other input.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 16 of 27

This last feature allows the implementation of the inverse of a function in the AND/OR-arrays and then finally
getting the function by inverting it.

The actual implementation of a combinational circuit into a PLA device is similar to writing data bits into a
ROM or other memory device. A PLA programmer connected to a computer is used. The development software
allows the combinational circuit to be defined and then transferred and programmed into the PLA device.

A3 A2 Al A0
X‘7 v :‘7 :‘7 OR array

—

L/

M)

L/

M)

L/

M)

L/

M)

L/

M)

L/

M)

L/

M)

L/

AND array VAVAVAW,

output JJ
array L | _l LI

_n
-
-
-

Figure 19. Internal circuit for a 4 x 8 x 4 PLA.

Example 5.4

Implement the full adder circuit in a 4 x 8 x 4 PLA. The truth table for the full adder from Section 5.2.1 is
shown below.

Xi Yi Ci Ci+1 Si
00| O 0 0
0|01 0 1
0|10 0 1
0|11 1 0
1100 0 1
1101 1 0
1110 1 0
1111 1 1

In the PLA circuit shown below, the three inputs x;, y;, and c;, are connected to the PLA inputs A,, A, and Aq
respectively. The first four rows of the AND-array implement the four 1-minterms of the function c;.;, while the
next three rows of the AND-array implement the first three 1-minterms of the function s;. The last minterm, m,, is
shared by both functions and so need not be duplicated. The two functions, c;.; and s; are mapped to the PLA outputs

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 17 of 27

F. and F,. Since the two functions are implemented directly (i.e. not the inverse of the functions), the XOR gates for
both functions are connected to 0.

VIvYly onew

OUUUUUUU

AND array WAVAVAN

output J l
array | _l LI
VYV e
F3 FZ I:l I:0
Cisr i R

Example 5.5

Implement the following function ina 4 x 8 x 4 PLA.
F (wxy,z) =2(0,1,3,4,56,9, 10, 11, 15)

This four variable function has ten 1-minterms. Since the 4 x 8 x 4 PLA can accommodate only eight minterms,
we need to implement the inverse of the function, which will have only six 1-minterms (16 — 10 = 6). The inverse of
the function can then be inverted back to the original function at the output array by connecting one of the X0oR input
to a 1 as shown below.

F =3(2 7,8, 12, 13, 14)

=wX'yz' + w'xyz + wx'y'z' + wxy'z' + wxy'z + w'x'y'z

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 18 of 27

VIV iy oneo

QUDUUUUU

AND array AVAWAN,

oupt ||| [T
EvVivVivEE

F

Another way to implement the above function in the PLA is to first minimize it. The K-map below shows that
the function reduces to

F=wy' +X7z+wxz'+wyz +wx'y

WX
00

ull

11

10

With only five product terms, the function can be implemented directly without having to be inverted as shown
in the circuit below

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 19 of 27

VIV iy oneo

QUDUUUUU

AND array AVAWAN,

output J ‘J
array U {J
F

—
C

w 0 1

5.8 Using PALs to Implement a Function

Programmable array logic (PAL®) devices are similar to PLAs except that the OR array for the PALS is not
programmable but rather fixed by the internal circuitry. Hence, they are not as flexible in terms of implementing a
combinational circuit. However, because of this fixed OR array, PALSs are easier to program.

The internal circuit for a four input, four output PAL is shown in Figure 20. The OR gate inputs are fixed,
whereas the AND gate inputs are programmable. Each output section is from the OR of the three product terms. This
means that each function can have at most three product terms. To make the device a little bit more flexible, the
output F5 is fed back to the programmable inputs of the AND gates. With this connection, up to five product terms is
possible for one function.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 20 of 27

T

Figure 20. Internal circuit for a four input, four output PAL device.

Example 5.4

Implement the following three functions given in sum-of-minterms format using the PAL circuit of Figure 20.
Fi (w,x,y,2) =wX'yz + wx'yz'

Fy (W,X,y,2) =w'X'yz + wx'yz' + W'xy'z' + wxyz

Fz (W,X,y,2) =wW'X'y'z' + W'X'y'z + W'X'yz' + w'x'yz

Function F; has two product terms and can be implemented directly in one PAL section. F, has four product
terms, and so cannot be implemented directly. However, we note that the first two product terms are the same as F;.
Hence, by using F4, it is possible to reduce F, from four product terms to three as shown below.

Fo (W,X,y,2) =W'X'yz + wx'yz' + W'Xy'z' + wxyz
=F; +w'xy'z' + wxyz

F3 also has four product terms, but these four product terms can be reduced to just one by minimizing the
equation as shown below.

Fs (W,X,y,2) =w'X'y'z' + W'X'y'z + wX'yz' + w'x'yz
=WX (yZ' +yz+yz +yz)
=w'x'
The connections for these three functions are shown in the PAL circuit below. Notice that for functions F; and
Fa, there are unused AND gates. Since there are no inputs connected to them, they output a 0, which do not affect the
output of the OR gate.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 21 of 27

T

5.9 Complex Programmable Logic Device (CPLD)

Using ROMs, PLAs, and PALs to implement a combinational circuit is fairly straight forward and easy to do.
However, to implement a sequential circuit or a more complex combinational circuit may require more sophisticated
and larger programming devices. The complex programmable logic device (CPLD) is capable of implementing a
circuit with upwards of 10,000 logic gates.

The CPLD contains many PAL-like blocks connected together using a programmable interconnect to form a
matrix. The PAL-like blocks in the CPLD are called macrocells as shown in Figure 21. Each macrocell has a
programmable-AND-fixed-OR array similar to a PAL device for implementing combinational logic operations. The
XOR gate in the macrocell circuit shown in Figure 21 will either invert or not invert the output from the
combinational logic. Furthermore, a flip-flop is included to provide the capability of implementing sequential logic
operations. The flip-flop can be bypassed for combinational logic operations.

Groups of 16 macrocells are connected together to form the logic array blocks. Multiple logic array blocks are
linked together using the programmable interconnect array as shown in Figure 22. Logic signals are routed between
the logic array blocks on the programmable interconnect array. This global bus is a programmable path that connects
any signal source to any destination on the CPLD.

The 1/O control block allows each 1/O pin to be individually configured for input, output, or bi-directional
operation. All 1/0 pins have a tri-state buffer that is individually controlled. The I/O pin is configured as an input
port if the tri-state buffer is disabled, otherwise, it is an output port.

Figure 23 shows some of the main features of the Altera MAX 7000 CPLD. Instead of needing a separate
programmer to program the CPLD, all MAX devices support in-system programmability through the IEEE JTAG
interface. This allows designers to program the CPLD after it is mounted on a printed circuit board. Furthermore, the
device can be reprogrammed in the field. CPLDs are non-volatile, so once they are programmed with a circuit, the
circuit remains implemented in the device even when power is removed.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 22 of 27

> le
—>Clk
e 2
—>Clk
Figure 21. Circuit for the logic array block with two macrocells.
1/0 1/0
Block Block
A A
Y Y
1/0 1/0
Block >] Programmablelnterco‘rznect < Block
Y Y
Logic - Logic - *
Array S Array S .
«Q «Q
Block 3 Block 3
3 3 *
S S
() ()
= =
o |)) | lo
Block . é . é Block
o o
v g v g
> > °
Logic 3 Logic 3
Array Array .
Block Block .
A A
Y Y
1/0 110
Block Block

Figure 22. Internal circuit for a complex programmable logic device (CPLD).

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 23 of 27

Feature MAX7000 CPLD FLEX10K FPGA
Usable logic gates 10,000 250,000
Macrocells 512 N/A
Logic array blocks 32 1,520
User 1/0O pins 212 470

Figure 23. Features of the Altera MAX 7000 CPLD and the FLEX10K250 FPGA.

5.10 Field-Programmable Gate Array (FPGA)

Field-programmable gate arrays (FPGAs) are complex programmable logic devices that are capable of
implementing up to 250,000 logic gates and up to 40,960 RAM bits as featured by the Altera FLEX10K250 FPGA
chip. See Figure 23. The internal circuitry of the FLEX10K FPGA is shown in Figure 24. The device contains an
embedded array and a logic array. The embedded array is used to implement memory functions and complex logic
functions such as microcontroller and digital signal processing. The logic array is used to implement general logic
such as counters, arithmetic logic units, and state machines.

1/0 1/0 1/10 1/0
Block Block Block Block

Embedded
S

BII/OC():k <—+ Row Interconnect / ‘ }4—» BII/OC():k

==~ Qf-———- N T e B e .

I =] = 11 |§ [— —

LogicArray: — = — ! = | | : — — !

LAB- = taed ! | 5 W ErB | | tAB Lagd !

— @ —— | | @ | — — |

| — 5] —— 113 | | — —

L= |s —11 |35 ! | N — —1 |

I 2 3] : I |
) ! = L=]! : ! ! 110
Block 4—»{ I Row Interconnect I ‘ }4—» Block

|) . |

I | : | | I

LogicArray: — — | | | :] — |

Block — 1 | : . — 1 |

\ll\ LAB LAB | | | : LAB LAB |

—] — I : ! — — I

|| =] X : || =]
| : ! ! | :
I S = . . I o
Embedded
Array Block
1/0 1/0 1/0 1/0
Block Block Block Block

Figure 24. FLEX 10K FPGA circuit.

The embedded array consists of a series of embedded array blocks (EABs). When implementing memory
functions, each EAB provides 2,048 bits, which can be used to create RAM, dual-port RAM, or ROM. EABs can be
used independently, or multiple EABs can be combined to implement larger functions.

The logic array consists of logic array blocks (LABs). Each LAB contains eight logic elements (LE) and a local
interconnect. The LE shown in Figure 25 is the smallest logical unit in the FLEX 10K architecture. Each LE consists
of a 4-input look-up table (LUT) and a programmable flip-flop. The 4-input LUT is a function generator made from
a 16-to-1 multiplexer that can quickly compute any function of four variables. Refer to section 4.8 on how
multiplexers are used to implement Boolean functions. The four input variables are connected to the four select lines

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 24 of 27

of the multiplexer. Depending on the values of these four variables, the value from one of the 16 multiplexer inputs
is passed to the output. There are 16 1-bit registers connected to the 16 multiplexer inputs to supply the multiplexer
input values. Depending on the function to be implemented, the content of the 1-bit registers issetto a0 ora 1. Itis
set to a 1 for all the 1-minterms of the four variable function, and to a 0 for all the 0-minterms. The LUT in the
figure implements the four variable function F(w,x,y,z) = 2(0, 3, 5, 6, 7, 12, 13, 15). The programmable flip-flop can
be configured for D, T, JK, or SR operation, and is used for sequential circuits. For combinational circuits, the flip-
flop can be bypassed.

4-input LUT
Clof i ofof of ol i i o[1o o[1]

0

VarlaBIe]2- — 1514131211109 8 7 6 54 3 2 1 % Reqlster bypass
variable 2 — |
variable 3 16-to-1 mux 3
variable 4 — 3 |
[o Set 0 To interconnect

Clock —

A\

Register bypass
Clear select

Programmable
flip-flop

Figure 25. Logic element circuit with a 4-input LUT and a programmable register.

All the EABs and LABs, along with the 1/0 elements are connected together via the FastTrack Interconnect,
which is a series of fast row and column buses that run the entire length and width of the device. The interconnect
contains programmable switches so that the output of any block can be connected to the input of any other block.

Each 1/O pin in an 1/O element is connected to the end of each row and column of the interconnect and can be
used as either an input, output, or bi-directional port.

5.11 Summary Checklist

Voltage levels

weak-0, weak-1

NMOS

NMOS truth table

PMOS

PMOQOS truth table
High-impedance Z
Transistor circuits for basic gates
PLD

ROM circuit implementation
PLA circuit implementation
PAL circuit implementation
CPLD

FPGA

I Iy B iy Iy

5.12 References

www.altera.com

www.xilinx.com

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 25 of 27

5.13 Exercises

5.1. Draw the CMOS circuit for the AND gate by using two NMOS transistors for the 0 half of the circuit and two
PMOS transistors for the 1 half of the circuit.

Answer
Vce
A # I |
i Output
1 qd
Vce CI
Vce
B
5.2.d

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies

Index

Analysis

CMOS circuits, of, 12
AND

CMOS circuit, 7

CMOS, 2, 4
AND gate, 7
circuit, 5
inverter, 5
logic, 4
multiplexer, 10
NAND gate, 6
NOR gate, 9
OR gate, 9
Transmission gate, 9
XNOR gate, 12
XOR gate, 12
Combinational circuit
PAL implementation of, 19
PLA implementation of, 16
ROM implementation of, 13
Complementary metal oxide semiconductor. See
CMOS
Complex programmable logic device, 21
CPLD. See Complex programmable logic device

E

EPROM. See Erasable programmable read-only
memory
Erasable programmable read-only memory, 14

F

Field-programmable gate array, 23
FPGA. See Field-programmable gate array

H
High impedance, 4, 5
M
MOSFET, 3
Multiplexer
CMOS circuit, 10
N

NAND
CMOS circuit, 6

Microprocessor Design — Principles and Practices with VHDL

Page 26 of 27

n-channel, 3, 4
NMOS, 4
NOR

CMOS circuit, 9
NOT

CMOS circuit, 5

OR
CMOS circuit, 9

P

PAL. See Programmable array logic
p-channel, 3, 4

PLA. See Programmable logic array

PMOS, 4,5

Programmable array logic, 19

Programmable logic array, 16

Programmable read-only memory, 14

PROM. See Programmable read-only memory

R

Read-only memory, 13
ROM. See read-only memory

S
Short. See Short circuit
Short circuit, 5, 6
T
Transistor technologies, 2
bipolar logic, 2
complementary metal oxide semiconductor logic
(CMOS), 2

diode-transistor logic, 2
transistor-transistor logic (TTL), 2
Transmission gate, 9

W
weak 0, 2, 5
weak 1, 2, 4,5
X
XNOR
CMOS circuit, 12
XOR

CMOS circuit, 12

Last updated 7/16/2003 12:29 PM

Chapter 5 — Implementation Technologies Page 27 of 27

Z Z. See High impedance

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:29 PM

Chapter 6 — Latches and Flip-Flops Page 1 of 27

Table of Content

TADIE OF CONTENT ...t b e et b etk b et bt e b et ek s b et e b e b et et e b et e be s b et e be s be e e benbe st e benbens 1
LT I (o] TC T3 T o T o R (oSS 2
6.1 BIStADIE EIBMENTc.iiiiiiiiieee bbbt b et b e et b e e e b e 2
8.2 SR LAICI . it b bbb e b et b e e e b e 4
6.3 SR LAtCh With ENGDIE. ...ttt bttt ettt sb et e e e b saenbesbe b 6
6.4 D I 1 (o o OO S U SOUT YU 7
6.5 D LatCh With ENADIE.......c..oeieee ettt e bbbttt et ee et e b e 7
6.6 (0 [0 ot OO OSSR URO PR UOTUTRURRO 8
T O B o 1o T (] OSSOSO PSP 10
6.8 D FLp-FIop With ENADIE.......c.oii e bbb e be e 12
6.9 ASYNCHIONUS INPULS....c.eiiiieiieetiee ettt ettt te e e s et e e e te st e e teeseesae e e eesteatenreeneereeeenteneennenneens 13
6.10 DeSCription OF @ FHP-FIODccviiiiiie ettt re s e ne e b seenrenne e 13
6.10.1 CharaCteriStiC TaBIEcoiiiiiieicie bbbt bbbt ee s 13
6.10.2 CharaCteriStiC EQUALIONccecvieiieieieiie e ste e ste e ee et et e e steste e saesee e e aeseestestesnearesneeneeseenresrennens 14

ST O TS | (= DT To - o S ST 14
6.10.4 EXCHALION TADIE ...ocviieiiciec bbbt bbbt 14
B.11 THIMING ISSUBS ... vttt ettt ettt ettt sttt h et se e s e e b e bt bt e bt e Rt e s e e et e ke eb e e b e e b e e R e eb e e e e b e nbeebeebeebe e s e e b et seeebenne e 15
6.12 Example: Car SecUrity SYSLEM — VEISION 2cciiiiiiieiieie ettt sttt sttt sb et b b 16
6.13 VHDL for Latches and FHP-FIOPScoiiiiiiii et e 16
6.13.1 Implied MemOry EIBMENTooiiiiiiieee ettt e bbbt e b sreene s 16
6.13.2 VHDL Code for a D Latch With ENGDIE...........cccooiiiiiiiiiee e 17
6.13.3 VHDL Code fOr @ D FIIP-FIOPcecieieicie ettt ettt nreane s 18
6.13.4 VHDL Code for a D Flip-Flop with Enable and Asynchronous Set and Clear..........cc.ccocvvvvevcriereenn. 21
TNl o 1T o] o T Y 1SS 22
B.14.1 SR FIP-FIOD ittt et ae R re et nrenrenreeren 22
TN N | (G = VT o o] oSSR 23
SN T I o 1o o o SO STRR 23
6.15 SUMMAIY CRECKIIS ...ttt bbbt e e b e b e b e bt s b e e bt e st e b et sbesbesee e 25
B.16 EXEICHSES ...veieiuieeeet ettt ettt ettt bttt ettt b bbbt h e R e e R e b eE e AR e SRt AR £ e R e oA £ e R e e R e ke R e b e e R e e Rt e n e e ab e b nheebeene e 26
0T (= TSSO UPTUURPRURR 27

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 2 of 27

6 Latches and Flip-Flops

We have so far been looking at combinational

circuits in which their output values are computed Control
entirely from their current input values. We will now 'np+”ts
study the behavior of sequential circuits where their :
output values are dependent not only on their current Control unit
but also on their past input values. B};D [H

The car security system example from section 2.8 Next- _Mse‘ni‘:ry > ‘if;i‘;‘ Control
is an example of a combinational circuit. In the Coaie s Si%?],:i\
example, the siren is turned on when the master switch 1™ > 33 A
is on and someone opens the door. If you close the - R AN
door then the siren will turn off immediately. For a A .
more realistic car security system, we would like the T 7 ¢
siren to remain on even after you close the door back COntrr)Q
after it is first triggered. In order for this modified O”“’“&\ﬁr Outputs

system to work correctly, the siren must be dependent not only on the master switch and-the door switch, but also on
whether the siren is currently on or off. In other words, this modified systermﬁ{afe\\epe tial circuit that is dependent
on both the current and past inputs. \\

The dependence of past input values implies the need for memory elements m“grder to remember this history of
inputs. Sequential circuits, however, are just like combinational cir; .jllt, n.the sense that they are made up of the
same basic logic gates. What makes them different is in the way these qw/gates are connected. In order for the
circuit to “remember” its current value, we have to connect the 0u1{1 of afoglc gate directly or indirectly back to
the input of that same gate. We call this a feedback loop CII’CUIT it orms the basis for all memory elements.
Combinational circuits do not have any feedback loops. (m

Latches and flip-flops are the basic elements for storinc'/'rfo\ on. They are the fundamental building blocks
for all sequential circuits. A latch or flip-flop can store ong r\lvﬁformatlon The main difference between latches
and flip-flops is that for latches, their outputs are co! a tIv _affected by their inputs as long as the enable signal is
asserted. In other words, when they are enabled, th rt anges immediately when their inputs change. Flip-
flops, on the other hand, have their content change onI ert\e at the rising or falling edge of the enable signal. After
the rising or falling edge of the enable signal qnd durlng e time when the signal is at a constant 1 or 0, the flip-
flop’s content remains constant even if the i |npu 'm@fes This enable signal is usually the controlling clock signal.
In this chapter, we will look at how Iatches an \/‘lp\-ne?ps are designed and how they work. There are also different
variations of flip-flops that enhance their tlon\/

Historically, there are basically four rma tvzz%s of flip-flops: SR, D, JK, and T. The major differences between
them are the number of inputs they%eve ay their contents change. Any given sequential circuit can be built
using any of these types of flip- flope, \/JZJHS of them. However, selecting one type of flip-flop over another
type to use in a particular cwcwt (ffe the overall size of the circuit. Today, sequential circuits are designed
with only D flip-flops because Fase of use. We will thus focus only on the D flip-flop. Discussion on the
other types of flip-flops can be tthe end of this chapter.

6.1 Bistable Elemm%

Let us look at the nfw 'erteY If ygu provide the inverter input with a 1, the inverter will output a 0. If you remove
the input, the mY\ ter W" Aot output a value. If you want to construct a memory circuit using the inverter, you

would want the 0 continue to output a O even after you remove the input. In order for the inverter to
continue to output u need the inverter to self provide its own input. In other words, you want the output to
feed back the 0 to the input. However, you cannot connect the output of the inverter directly to its input because you
will have a 0 connected to a 1, and so creating a short circuit. The solution is to connect two inverters as shown in
Figure 1 (a). This circuit is called a bistable element and is the simplest memory circuit.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 3 of 27

Q
o
(@
stable
Voutl 5
=V, Vs metastable
Vs metastable
table stable
stable s -\ v
0 lf
0 _ 5
Vinl - VoutZ (C)
(b)

Figure 1. Bistable element: (a) circuit; (b) analog analysis; (c) ball and hill analogy for metastable behavior.

The bistable element has no primary inputs. It has two outputs labeled @ and Q’. Since the circuit has no inputs,
we cannot change the values of Q and Q’. However, Q will take on whatever value it happens to be when the circuit
is first powered up. Assume that @ = 0 when we switch on the power. Since Q is also the input to the bottom inverter,
Q’, therefore, is a 1. A 1 going to the input of the top inverter will produce a 0 at the output Q, which is what we
started off with. Similarly, if we start the circuit with Q = 1, we will get Q” = 0, and again we get a stable situation.

A bistable element has memory in the sense that it can remember the content (or state) of the circuit
indefinitely. Using the signal Q as the state variable, we say that the state of the circuit is the value that is stored in Q.
Thus, the circuit has two stable states: Q = 0, and @ = 1; hence the name “bistable.”

An analog analysis of a bistable element, however, reveals that it has three equilibrium points and not just two
stable states as found from the above digital analysis. Assuming again that Q = 1, and we plot the output voltage
(Voutr) Versus the input voltage (Viny) of the top inverter, we get the solid line in Figure 1 (b) The dotted line shows
the operation of the bottom inverter where V,, and Vi, are the output and input voltages respectively for that
inverter.

Figure 1 (b) shows that there are three intersection points, two of which correspond to the two stable states of
the circuit where Q is either 0 or 1. The third intersection point labeled metastable, is at a voltage that is neither a
logical 1 nor a logical 0 voltage. Nevertheless, if we can get the circuit to operate at this voltage, then it can stay at
that point indefinitely. Practically, however, we can never operate a circuit precisely at a certain voltage. A slight
deviation from the metastable point as cause by noise in the circuit or other stimulants will cause the circuit to go to
one of the two stable points. Once at the stable point, a slight deviation, however, will not cause the circuit to go
away from the stable point but rather back towards the stable point because of the feedback effect of the circuit.

An analogy of the metastable behavior is a ball on top of a symmetrical hill as depicted in Figure 1 (c). The ball
can stay indefinitely in that precarious position as long as there is absolutely no movement whatsoever. With any
slight force, the ball will roll down to either of the two sides. Once at the bottom of the hill, the ball will stay there
until an external force is applied to it. The strength of this external force will cause the ball to do one of three things.
If a small force is applied to the ball, it will go partly up the hill and then rolls back down to the same side. If a big
enough force is applied to it, it will go over the top and down the other side of the hill. We can also apply a force
that is just strong enough to push the ball to the top of the hill. Again at this precarious position, it can roll down
either side.

We will find that all latches and flip-flops have this metastable behavior. In order for the element to change
state, we need to apply a strong enough pulse satisfying a given minimum time requirement. Otherwise, the element
will either remain at the current state or go into the metastable state in which case unpredictable results can occur. A

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 4 of 27

study in the electrical characteristics of digital circuits is beyond the scope of this book. The interested reader is
referred to the references.

6.2 SR Latch

The bistable element is able to remember or store one bit of information. However, because it does not have any
external inputs, we cannot change the bit that is stored in it. Whatever value Q contains when power is first applied
to the circuit, the circuit will remain in that state indefinitely until power is removed. We cannot simply connect an
external input to one of the inverter inputs because we can create a short circuit by connecting a 0 to a 1. For
example, lets assume that the external input is connected to the input of the top inverter in Figure 1 (a) and that the
current state of the circuit is 1, i.e. Q = 1. This implies that the input to the top inverter must be a 0. If we want to
change the state to 0, then we must set the external input, which is connected to the input of the top inverter, to a 1.
By doing this, the input to the top inverter will be momentarily shorted.

In order to change the information bit, we need to add external inputs to the circuit. The simplest way to add
inputs is to replace the two inverters with two NAND gates as shown in Figure 2 (a). This circuit is called a SR
latch. In addition to the two outputs Q and Q’, there are two inputs s' and R' for set and reset respectively. The SR
latch can be in one of two states: a set state when Q = 1, or a reset state when Q = 0. Following the convention, the
primes in s and R denote that these inputs are active low, i.e. a 0 asserts them and a 1 de-asserts them.

To make the SR latch go to the set state, we simply assert the s' input by setting it to 0. It doesn’t matter what
the other NAND gate input is because 0 NAND anything gives a 1, hence Q = 1 and the latch is set. If ' remains at a
0 so that Q (which is connected to one input of the bottom NAND gate) remains at a 1, if we now de-assert R', i.e. R'
=1, then the output of the bottom NAND gate will be a 0, and so Q' = 0. This situation is shown in Figure 2 (d) at
time to. From this current situation, if we now de-assert s' so that s' = R' = 1, the latch will remain in the set state
because Q', the second input to the top NAND gate, is 0 which will keep Q = 1 as shown at time t;. At time t, we
reset the latch by making R' = 0. With R’ being a 0, Q" will go to a 1. At the top NAND gate, 1 NAND 1 is 0, thus
forcing Q to go to a 0. If we de-assert R' so that again we have s' = R' = 1, this time the latch will remain in the reset
state as shown at time ts.

Notice the two times (at t; and t;) when both s' and R' are de-asserted (' = R' = 1). At ty, Q is at a 1, whereas, at
t3, Q is at a 0. Why is this so? What is different between these two times? The difference is in the value of Q
immediately before those times. The value of Q right before t; is a 1, whereas the value of Q right before t; is a 0.
When both inputs are de-asserted, the SR latch remembers its previous state. Previous to t;, Q has the value 1, so at
t;, Q remains at a 1. Similarly, previous to ts, Q has the value 0, so at t;, Q remains at a 0.

SI >— Q SI RI Q Qnext Qnext'
0 0 X 1 1
0 1 X 1 0
1 0 X 0 1
, 110 0 1
R —Q 11 1] 1 0
(@) (b)
g
78' Q L = |
R Q— Q [Undefined |
' [Undefined |
() t, t ot ottt ts
(d)

Figure 2. SR latch: (a) circuit using NAND gates; (b) truth table; (c) logic symbol; (d) timing diagram.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 5 of 27

If both s’ and R' are asserted (set to a 0), then both @ and Q' are equal to a 1 as shown at time t,, since 0 NAND
anything gives a 1. Note that there is nothing wrong with having Q equals to Q'. It is just because we named these
two points Q and Q' that we don’t like them to be equal. But we could have used the name P instead of Q'.

If one of the input signals is de-asserted earlier than the other, the latch will end up in the state forced by the
signal that is de-asserted later as shown at time ts. At ts, R' is de-asserted first, so the latch goes into the set state with
o=land Q' =0.

A problem exists if both s and R are de-asserted at exactly the same time as shown at time tg. Let us assume for
a moment that both gates have exactly the same delay and that the two wire connections between the output of one
gate to the input of the other gate also have exactly the same delay. Currently, both Q and Q' are at a 1. If we set s'
and R' to a 1 at exactly the same time, then both NAND gates will perform a 1 NAND 1, and will both output a 0 at
exactly the same time. The two zeros will be fed back to the two gate inputs at exactly the same time because the
two wire connections have the same delay. This time round, the two NAND gates will perform a 1 NAND 0, and
will both produce a 1, again at exactly the same time. This time, two ones will be fed back to the inputs, which again
will produce a 0 at the outputs, and so on and on. This oscillating behavior, called the critical race, will continue
forever until one out paces the other. If the two gates do not have exactly the same delay then the situation is similar
to de-asserting one input before the other, and so the latch will go into one state or the other. However, since we do
not know which is the faster gate, therefore, we do not know which state the latch will end up in. Thus, the latch’s
next state is undefined.

Of course, in practice, it is next to impossible to manufacture two gates and make the two connections with
precisely the same delay. In addition, both s' and R' need to be de-asserted at exactly the same time. Nevertheless, if
this circuit is used in controlling the space shuttle, we don’t want even this slim chance to happen.

In order to avoid this non-deterministic behavior, we must make sure that the two inputs are never de-asserted at
the same time. Note that we do want the situation when both of them are de-asserted as in times t; and t; so that the
circuit can remember its current content. We want to de-assert one input after de-asserting the other, but just not de-
asserting both of them at exactly the same time. In practice, it is very difficult to guarantee that these two signals are
never de-asserted at the same time, so we relax the condition slightly by not having both of them asserted together.
In other words, if one is asserted, then the other one cannot be asserted. So if both of them are never asserted, then
they can’t be de-asserted at the same time. A minor side benefit for not having both of them asserted together is that
Q and Q' are never equal to each other. Recall that from the names that we have given these two nodes, we do want
them to be inverses of each other.

From the above analysis, we obtain the truth table in Figure 2 (b) for the NAND implementation of the SR latch.
In the truth table, Q and Qe actually represent the same point in the circuit. The difference is that Q is the current
state or the current content of the latch and Q. is the value to be updated in the next state or next time period. Q is
the input to a gate and Qe is the output from a gate. So the value of Q goes into a gate, and after this signal
propergates through the two gates and arrives back at Q then this new signal is referred to as Quey. Figure 2 (c) shows
the logic symbol for the SR latch.

The SR latch can also be implemented using NOR gates as shown in Figure 3 (a). The truth table for this
implementation is shown in Figure 3 (b). From the truth table, we see that the main difference between this
implementation and the NAND implementation is that for the NOR implementation, the s and R inputs are active
high, so that setting s to 1 will set the latch and setting R to 1 will reset the latch. However, just like the NAND
implementation, the latch is set when Q = 1 and reset when Q = 0. The latch remembers its previous state when s=R
=0. When s =R =1, both @ and Q" are 0. The logic symbol for the SR latch using NOR implementation is shown in
Figure 3 (c).

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 6 of 27

R S R Q Qnext Qnextl
— Q olo] o 0 1 s ol
00| 1 1 0
0| 1 | x 0 1 ,
110 | x 1 0 —R_ Q1
— Q' 1 1 X 0 0
S ©)
@ (b)

Figure 3. SR latch: (a) circuit using NOR gates; (b) truth table; (c) logic symbol.

6.3 SR Latch with Enable

The SR latch is sensitive to its inputs all the time. In other words, Q will always change when either s or R is
asserted. It is sometimes useful to be able to disable the inputs so that asserting them will not cause the latch to
change state, but to keep its current state. Of course, this is achieved by de-asserting both s and rR. So what we want
is just one enable signal that will de-assert both s and R. The SR latch with enable (also known as a gated SR
latch) shown in Figure 4 (a) accomplishes this by adding two extra NAND gates to the original NAND gate
implementation of the latch. These two new NAND gates are controlled by the enable input, E, which determines
whether the latch is enabled or disabled. When E = 1, the circuit behaves like the normal NAND implementation of
the SR latch except that the new s and R inputs are active high rather than active low. When E = 0, then s' = R' =1,
and the latch will remain in its previous state regardless of the s and R inputs. The truth table for the SR latch with
enable is shown in Figure 4 (b), and its logic symbol in Figure 4 (c).

A typical operation of the latch is shown in the timing diagram in Figure 4 (d). Between t, and t;, E = 0 so
changing the s and R inputs do not affect the output. Between t; and t,, E = 1 and the trace is similar to the trace of
Figure 2 (d) except that the input signals are inverted.

E S R Q Qnext Qnext'
0 X X 0 0 1
0 X X 1 1 0
1 0 0 0 0 1
1 0 0 1 1 0
1 0 1 x 0 1
1 1 0 x 1 0
1 1 1 X 1 1
(@)
E
s ol s - -
—E R [L1 LI 1
R Q= Q ‘ Undefined |
Q L | [[Undefined
(C) t t t
0 1 2
(d)

Figure 4. SR latch with enable: (a) circuit using NAND gates; (b) truth table; (c) logic symbol; (d) sample timing
diagram.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 7 of 27

6.4 D Latch

Recall from section 6.2 that the disadvantage with the SR latch is that we need to ensure that the two inputs, s
and R, are never de-asserted at exactly the same time and we said that we can guarantee this by not having both of
them asserted. This situation is prevented in the D latch by adding an inverter between the original s' and R' inputs.
This way, s' and R" will always be inverses of each other, and so they will never be both asserted. The circuit using
NAND gates and the inverter is shown in Figure 5 (a). There is now only one input D (for data). When D = 0, then s'
=1and R =0, so this is like resetting the SR latch by making @ = 0. Similarly, when D = 1, then s' =0 and R' = 1,
and Q will be set to a 1. From this observation, we see that Qe always gets the same value as the input D, and is
independent of the current value of Q. Hence, we obtain the truth table for the D latch as shown in Figure 5 (b).

Comparing the truth table for the D latch shown in Figure 5 (b) with the truth table for the SR latch shown in
Figure 2 (b), it is obvious that we have eliminated not just one, but three rows where s' = R". The reason for adding
the inverter to the SR latch circuit was to eliminate the row where s' = R' = 0. However, we still need to have the
other two rows where ' = R' = 1 in order for the circuit to remember its current value. By not being able to set both
s"and R' to 1, this D latch circuit has now lost its ability to remember. Quex cannot remember the current value of Q
but will always follow D.

D Q Qnext Qnextl —D Q *

0 X 0 1

1 | x 1 0 Q'
(b) ©

(@)
Figure 5. D latch: (a) circuit using NAND gates; (b) truth table; (c) logic symbol.

6.5 D Latch with Enable

In order to make the D latch remember the current value, we need to loop back the current value of Q to the D
input. Another way of looking at it is like adding the enable input to the SR latch so that when the latch is disabled,
the inputs will not affect the current value in Q, but rather the latch will maintain its current value. To achieve this,
we can use a 2-input multiplexer to select whether to pass the external D input or loop back the current value of Q to
the circuit at the point of the original D. The output of the multiplexer is connected to the original D input, and the
select line of the multiplexer is connected to the enable input E. The D latch with enable circuit is shown in Figure
6 (a).

When the enable input E is asserted (E = 1), the D input passes through the multiplexer and so the Q output
follows the D input. On the other hand, when E is de-asserted (E = 0), the current value of Q loops back as the input
to the circuit and so Qpey (i.€., the output Q) retains its last value independent of the D input.

When the latch is enabled, the latch is said to be open and the path from the input D to the output Q is
transparent. In other words, Q follows D. Because of this characteristic, the D latch with enable circuit is often
referred to as a transparent latch. When the latch is disabled, it is closed, and the latch remembers its current state.
The truth table and the logic symbol for the D latch with enable are shown in Figure 6 (b) and (c). A sample timing
diagram for the operation of the D latch with enable is shown in Figure 6 (d). Between t, and t;, the latch is enabled
with E = 1 so the output Q follows the input D. Between t; and t,, the latch is disabled, so @ remains stable even when
D changes.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 8 of 27

E D Q Qnext Qnext'
0| x 0 0 1
0| x 1 1 0
110 X 0 1
111 X 1 0
(b)
E
P Q- D] 1 1
o Q] 1
Q__ | [
(C) t t t, i
(d)

Figure 6. D latch with enable: (a) circuit; (b) truth table; (c) logic symbol; (d) sample timing diagram.

An alternative way for constructing the D latch with enable circuit is shown in Figure 7. Instead of using the 2-
input multiplexer as in Figure 6 (a), we start with the SR latch with enable circuit of Figure 4 (a) and connect the S
and R inputs together with an inverter. The functional operations of these two circuits are identical.

S

R R

Figure 7. D latch with enable circuit using four NAND gates.

6.6 Clock

Latch circuits are known as level-sensitive because their outputs are affected by their inputs as long as they are
enabled. Their memory state can change during this entire time when the enable signal is asserted. In a computer
circuit, however, we do not want the memory state to change at various times when the enable signal is asserted.
Instead we like to synchronize all the state changes to happen at precisely the same moment and at regular intervals.
In order to achieve this, two things are needed: 1) a synchronizing signal, and 2) a memory circuit that is not level-
sensitive. The synchronizing signal, of course, is the clock, and the non-level-sensitive memory circuit is the flip-
flop.

The clock is simply a very regular square wave signal as shown in Figure 8. We call the portion of the clock
signal when it changes from a 0 to a 1 the rising edge. Conversely, the falling edge of the clock is the portion when
the signal changes from a 1 to a 0. We will use the symbol A to denote the rising edge and \ for the falling edge. In
a computer circuit, either the rising edge or the falling edge of the clock is used as the synchronizing signal for
writing data into a memory element. This edge signal is referred to as the active edge of the clock. In all our
examples where needed, we will use the rising edge of the clock as the active edge. So at every rising edge, data will

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 9 of 27

be clocked or stored into the memory element.

A clock cycle is the time from one rising edge to the next rising edge or from one falling edge to the next falling
edge. The speed of the clock, measured in hertz (Hz), is the number of cycles per second. Typically, the clock speed
for a microprocessor in an embedded system runs between 4MHz to 20MHz, while the microprocessor in a personal
computer runs upwards of 2GHz. A clock period is the time for one clock cycle (seconds per cycle) so it is just the
inverse of the clock speed.

The speed of the clock is determined by how fast a circuit can produce valid results. For example, a two-level
combinational circuit will have valid result at its output much sooner than say an ALU can. Of course, we want the
clock speed to be as fast as possible, but it can only be as fast as the slowest circuit in the entire system. We want the
clock period to be the time it takes for the slowest circuit to get its input from a memory element, operate on the
data, and then writes the data back into a memory element. More will be said on this in section 8.3.

Figure 9 shows a VHDL description of a clock divider circuit that roughly cuts a 25MHz clock down to 1Hz.

one clock cycle

S
Falling edge Rising edge

Figure 8. Clock signal.

LI BRARY | EEE;
USE | EEE. STD LOG C 1164. al | ;

ENTITY cl ockdiv I'S PORT (
clock _25Mhz: IN STD LCA C;
clk: QUT STD LOG O);

END cl ockdi v;

ARCHI TECTURE Behavi or OF cl ockdiv IS
CONSTANT max: | NTEGER : = 25000000;
CONSTANT hal f: | NTEGER : = max/ 2;

SI GNAL count: | NTEGER RANGE 0 TO nuax;
SI GNAL toggle: STD LOG G

BEG N
PRCOCESS
BEG N

WAI T UNTIL cl ock_25Whz' EVENT and cl ock 25Mhz = '1';
I F count < max THEN
count <= count + 1;
ELSE
count <= 0O;
END | F;
IF count < half THEN
toggle <= '0";
ELSE
toggle <= "1';
END | F;
cl k <= toggle;
END PROCESS;
END Behavi or;

Figure 9. VHDL behavioral description of a clock divider circuit.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 10 of 27

6.7 D Flip-Flop

Unlike the latch, a flip-flop is not level-sensitive, but rather edge-triggered. In other words, data gets stored
into a flip-flop only at the active edge of the clock. An edge-triggered flip-flop achieves this by combining in series
a pair of latches. Figure 10 (a) shows a positive-edge-triggered D flip-flop where two D latches are connected in
series. A clock signal clk is connected to the E input of the two latches, one directly, and one through an inverter.

The first latch is called the master latch. The master latch is enabled when clk = 0 because of the inverter, and
so QM follows the primary input D. However, the value of QM cannot pass over to the primary output Q because the
second latch is disabled when clk = 0. When clk = 1, the master latch is disabled but the second latch, called the
slave latch, is enabled so that the output from the master latch QM is transferred to the slave latch at Q. The slave
latch is enabled all the while that clk = 1, but its content changes only at the rising edge of the clock because once
clk is 1, the master latch is disabled and so the input to the slave latch QM will be stable. So when clk = 1 and the
slave latch is enabled, the output Q will not change because the input QM is not changing.

The circuit of (a) is called a positive edge-triggered D flip-flop because the primary output Q on the slave latch
changes only at the rising edge of the clock. If the slave latch is enabled when the clock is low (i.e., with the inverter
output connected to the E of the slave latch), then it is referred to as a negative edge-triggered flip-flop. The circuit is
also referred to as a master-slave D flip-flop because of the two latches used in the circuit.

Figure 10 (b) shows the truth table for the D flip-flop. The A symbol signifies the rising edge of the clock.
When clk is either at a 0 or a 1, the flip-flop retains its current value, i.e., Qnext = Q- Qnext Changes and follows the
primary input D only at the rising edge of the clock. The logic symbol for the positive-edge-triggered D flip-flop is
shown in (c). The small triangle at the clock input indicates that the circuit is triggered by the edge of the signal and
so it is a flip-flop. Without the small triangle, the symbol would be for a latch. If there is a circle in front of the clock
line, then the flip-flop is triggered by the falling edge of the clock making it a negative-edge-triggered flip-flop.
Figure 10 (d) shows a sample trace diagram for the D flip-flop. Notice that when clk = 0, gm follows D and the
output of the slave latch Q remains constant. On that other hand, when clk = 1, Q follows QM and the output of the
master latch QM remains constant.

Clk D Q Qnext Qnext'
0 X 0 0 1
D p o™ ol—0 0 | x | 1 1 0
1 X 0 0 1
E Q E Qr—Q 1 X 1 1 0
g Master ’7 Slave N 0 X 0 1
Clk
N 1 X 1 0
(@)
(b)
Clki] L [1]
—D Qr o JLIU LIy oL
—>Clk Q'— oM
Q L
©) ty t L i
(d)

Figure 10. Master-slave positive-edge triggered D flip-flop: (a) circuit using D latches; (b) truth table; (c) logic
symbol; (d) trace diagram.

Another way of constructing a positive-edge-triggered flip-flop is to use three interconnected SR latches rather
than a master and a slave D latch. The circuit is shown in Figure 11. The advantage of this circuit is that it uses only
6 NAND gates (26 transistors) as opposed to 10 gates (46 transistors) for the master-slave D flip-flop of Figure 10
(a). The operation of the circuit is as follows. When clk = 0, the outputs of gates 2 and 3 are high (0 NAND x = 1).

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 11 of 27

Thus n, = n3 = 1, which keeps the output latch, comprising of gates 5 and 6, in its current state. At the same time n,
= D' since one input to gate 4 is nz whichisa 1 (1 NAND x = x'). Similarly, n; = D since n, = 1 and the other input to
gate 1 is n4 which is D'. When clk changes to 1, n, will be equal to n," which is equal to D', while n; will be equal to
D. So when clk = 1 and if D = 0, then n; (which is equal to D) will be 0, thus asserting R' and resetting the output
latch Q to 0. On the other hand, when clk = 1 and if D = 1, then n, (which is equal to D) will be 0, thus asserting s'
and setting the output latch Q to 1. Once clk is at a 1 and remains at a 1, changing D will not change n, or nz. Here is
the reason. First we note that n, and ns are always inverses of each other. If n, = 0 then ns, the output of gate 3 will
always be a 1 (since 0 NAND x = 1) regardless of what n,, the third input to gate 3 may be. So if n, will not affect it,
then D will not affect n, or n; either. If n, = 1 then nz = 0 and ny, the output of gate 4 will always be a 1 regardless of
what D is. As a result, the three inputs to gate 3 will all be 1’s and so n; will always be a 0. So as long as clk = 1, n,
and n; will remain stable and so @ will also remain stable for the entire time that clk is asserted.

Set latch

Clk

Reset latch

Figure 11. Positive-edge-triggered D flip-flop.

Figure 12 compares the different operations between a latch and a flip-flop. In Figure 12 (a), we have a D latch
with enable, a positive-edge-triggered D flip-flop and a negative-edge-triggered D flip-flop, all having the same D
input and controlled by the same clock signal. Figure 12 (b) shows a sample trace of the circuit’s operations. Notice
that the gated D latch Q, follows the D input as long as the clock is high (between times t, and t;, and times t, and t3).
The positive-edge-triggered flip-flop Q, follows the D input only at the rising edge of the clock at time t,. While the
negative-edge-triggered flip-flop Q. follows the D input only at the falling edge of the clock at times t; and ts.

D D Q—Q,
Clk E Q -
D] [L[1 [L 1
D Q= Q1 1|
>Clk Q' R
Q
D QFHQ, b 4 L 4
L CkQ (b)

()
Figure 12. Comparison of a gated latch, a positive-edge-triggered flip-flop, and a negative-edge-triggered flip-flop:

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 12 of 27

(@) circuit; (b) sample timing diagram.

6.8 D Flip-Flop with Enable

So far with the construction of the different memory elements, it seems like every time we add a new feature,
we have also lost a feature that we need. The careful reader will have noticed that in building the D flip-flop, we
have again lost the most important property of a memory element — it can no longer remember its current content!
At every active edge of the clock, the D flip-flop will load in a new value. So how do we get it to remember its
current value and not load in a new value? The answer, of course, is exactly the same as what we did with the D
latch, and that is by adding an enable input E through a 2-input multiplexer as shown in Figure 13 (a).

When E = 1, the primary D signal will pass to the D input of the flip-flop, thus updating the content of the flip-
flop at the active edge. When E = 0, the current content of the flip-flop Q, is passed back to the D input of the flip-
flop, thus, keeping its current value. Notice that changes to the flip-flop value occur only at the rising edge of the
clock. The truth table and the logic symbol for the D flip-flop with enabled is shown in Figure 13 (b) and (c)
respectively.

Clk E D Q Qnext Qnext'
0 x | x| 0 0 1
0 x | x| 1 1 0 D
5 ol o 1 [x|x]0l 0o | 1 -I° 9
b 1 | x| x[1] 1 0 —p>Clk
E N 10| x |0 0 1 ,
' ' — E -
- [R Ao (x[11 1 | o Q
N1 1|0 x 0 1
(a) Al1l1]x] 1 0 (c)
(b)
Figure 13. D flip-flop with enable: (a) circuit; (b) truth table; (c) logic symbol.
Set' |
S :
D— — 0 Set
—D Q—
E_
— E Q' —
L o Cleiar'
R
Clear'
(b)

(@)

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 13 of 27

Set'
I
Set’
L) Q T o
Clk —Clk Q'
. Q Cleiar'
(d)
D —
Clear'
(c)

Figure 14. Storage elements with asynchronous inputs: (a) D latch with active low set and clear; (b) logic symbol
for (a); (c) D edge-triggered flip-flop with active low set and clear; (d) logic symbol for (c).

6.9 Asynchronous Inputs

Flip-flops, as we have seen so far, change states only at the rising or falling edge of a synchronizing clock
signal. Many circuits require the initialization of flip-flops to a known state independent of the clock signal.
Sequential circuits that change states whenever a change in input values occurs independent of the clock are referred
to as asynchronous sequential circuits. Synchronous sequential circuits, on the other hand, change states only at the
active edge of the clock signal. Asynchronous inputs are usually available for both flip-flops and latches, and they
are used to either set or clear the storage element’s content independent of the clock.

Figure 14 (a) shows a gated D latch with asynchronous active low set' and clear' inputs, and (b) is the logic
symbol for it. Figure 14 (c) is the circuit for the D edge-triggered flip-flop with asynchronous set' and clear" inputs,
and (d) is the logic symbol for it. When set' is asserted (set to 0) the content of the storage element is set to a 1
immediately, and when clear" is asserted (set to 0) the content of the storage element is set to a 0 immediately.

6.10 Description of a Flip-Flop

Combinational circuits can be described with either a truth table or a Boolean equation. For describing the
operation of a flip-flop or any sequential circuit in general, we use a characteristic table, characteristic equation,
state diagram or excitation table as discussed in the following sub-sections.

6.10.1 Characteristic Table

The characteristic table is just the truth table for the flip-flop having its input signals and current state listed in
the input columns of the table, and the next state of the flip-flop listed in the output column. The table specifies the
functional behavior of the flip-flop. The characteristic table for the D flip-flop has, for its input columns, one input
signal D, and the current state Q. It has for its output column the next state Quex. As shown in Figure 15 (b), the next
state Qnex for the D flip-flop is always equal to the input D at the rising edge of the clock and independent of the
current state Q. Hence, by simplifying the truth table in Figure 10 (b), we obtain the characteristic table for the D
flip-flop shown in Figure 15 (a).

The characteristic table is used in the analysis of sequential circuits to answer the question of what is the next
state Qnext When given the current state Q and input signals (D in the case of the D flip-flop).

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 14 of 27

6.10.2 Characteristic Equation

The characteristic equation is simply the Boolean equation that is derived directly from the characteristic
table. Like the characteristic table, the characteristic equation specifies the flip-flop’s next state Qe as a function of
its current state Q and input signals. The D flip-flop characteristic table has only one 1-minterm which results in the
simple characteristic equation for the D flip-flop shown in Figure 15 (b).

6.10.3 State Diagram

A state diagram is a graph with nodes and directed edges connecting the nodes as shown in Figure 15 (c). The
state diagram graphically portraits the operation of the flip-flop. The nodes are labeled with the states of the flip-
flop, and the directed edges are labeled with the input signals that cause the transition to go from one state of the
flip-flop to the next. Figure 15 (c) shows the state diagram for the D flip-flop. It has two states, Q=0 and Q=1, which
correspond to the two values that the flip-flop can contain. The operation of the D flip-flop is such that when it is in
state 0, it will change to state 1 if the input D is a 1, otherwise, if the input D is a 0 then it will remain in state 0.
Hence there is an edge labeled D=1 that goes from state Q=0 to Q=1 and a second edge labeled D=0 that goes from
state Q=0 back to itself. Similarly, when the flip-flop is in state 1, it will change to state O if the input D is a 0,
otherwise, it will remain in state 1. These two conditions correspond to the remaining two edges that go out from
state Q=1 in the state diagram.

6.10.4 Excitation Table

The excitation table is like the mirror image of the characteristic table by exchanging the input signal
column(s) with the output (next state) column. The excitation table shows what the flip-flop’s inputs should be in
order to change from the flip-flop’s current state to the next state desired. In other words, the excitation table
answers the question of what the inputs should be when given the current state that the flip-flop is in and the next
state that we want the flip-flop to go to. This table is used in the synthesis of sequential circuits.

Figure 15 (d) shows the excitation table for the D flip-flop. As can be seen, this table can be obtained directly
from the state diagram. For example, using the state diagram of the D flip-flop from Figure 15 (c), if the current
state is Q=0 and we want the next state to be Q,e=0, then the D input must be a 0. On the other hand, if the current
state is Q=0 and we want the next state to be Qnex=1, then the D input must be a 1.

D Q Qnext
0 X 0 Qrexx =D
1 X 1
(b)
(a)
D=1 Q Qnext D
D=0 0 0 0
0 1 1
(=) (= —
D=1 1 1 1
D=0
(d)
(c)

Figure 15. Description of a D flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d)
excitation table.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 15 of 27

6.11 Timing Issues

So far in our discussion of latches and flip-flops, we have ignored timing issues and the effects of propagation
delays. In practice, timing issues are very important in the correct design of sequential circuits. Consider again the D
latch with enable circuit from Section 6.5 and redrawn in Figure 16 (a). Signals from the inputs require some delay
to propagate through the gates and finally reaching the outputs.

Assuming that the propagation delay for the inverter is one nanosecond (ns), and 2ns for the NAND gates, the
timing diagram would look like Figure 16 (b) with the signal delays taken into consideration. The arrows denote
which signal edge causes another signal edge. The number next to an arrow denotes the number of nanoseconds in
delay for the resulting signal to change.

At time t;, signal D drops to a 0. This causes R to rise to a 1 after 1ns through the inverter. The D edge also
causes S' to rise to a 1, but after a delay of 2ns through the NAND gate. After that, R' drops to a 0 2ns after R rises to a
1. This in turn causes Q' to rise to a 1 after 2ns, follow by Q dropping to a 0.

At time t,, signal E drops to a 0 disabling the circuit. As a result, when D rises to a 1 at time t3, both Q and Q'
are not affected.

At time t4, signal E rises to a 1 and re-enabling the circuit. This causes S' to drop to a 0 after 2ns. R' remains
unchanged at a 1 since the two inputs to the NAND gate, E and R are 1 and 0 respectively. With S' asserted and R' de-
asserted, the latch is set with Q rising to a 1 2ns after S’ drops to a 0. This is followed by Q' dropping to a O after
another 2ns.

@)
g
(%)
—“__/
[=
[N}
| —

) 4 L Lo

(b)
Figure 16. D latch with enable: (a) circuit; (b) timing diagram with delays.

Furthermore, for the D latch circuit to latch in the data from input D correctly, there is a critical window of time
right before and right after the falling edge of the enable signal E that must be observed. Within this time frame, the
input signal D must not change. As shown in Figure 17, the time before the falling edge of E is referred to as the
setup time, tewp, and the time after the falling edge of E is referred to as the hold time, tyo. The length of these two
times is implementation and manufacturing dependent, and can be obtained from the component data sheet.

E

D] [

tsetup thold

A
\ 4

Figure 17. Setup and hold times for the gated D latch.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 16 of 27

6.12 Example: Car Security System — Version 2

In section 2.8, we designed a combinational circuit for a car security system where the siren will come on when
the master switch is on and either the door switch or the vibration switch is also on. However, as soon as both the
door switch and the vibration switch are off, the siren will immediately turn off even though the master switch is still
on. In reality, what we really want is to have the siren remain on even after both the door and vibration switches are
off. In order to do so, we need to remember the state of the siren. In other words, for the siren to be on, it should be
dependent not only on whether the door or the vibration switch is on, but also on the fact that the siren is currently
on. We can use the state of a SR latch to determine the state of the siren, i.e. the output of the latch will drive the
siren. The state of the latch is driven by the conditions of the input switches. The modified circuit, as shown in
Figure 18, has in addition to its original combinational circuit, a SR latch for remembering the current state of the
siren. The latch is set from the output of the combinational circuit. The latch’s reset is connected to the master
switch so that the siren can be turned off immediately. A sample trace of the operation of this circuit is shown in
Figure 19. At time 300ns, the siren is triggered by the door switch. At time 500ns, both the door and the vibration
switches are off, but the siren is still on because it was turned on previously. The siren is turned off by the master
switch at time 600ns.

The trace in Figure 19 is a timing trace and not just a functional trace. As a result, the output signal Siren
changes shortly after the inputs have changed. The delay is caused by the signal propagation delay through the gates
from the input to the output.

Siren
R
Figure 18. Madified car security system circuit with memory.
Marne: l 1 IIIEI.IEInS EEIEI.IEIns 3EIEI.IEIn5 AEIEI.IEIn 5 EEIEI.IEIn 5 EDD.IDFIS 700

[

= I

s [B

=]
=g Siren |

Figure 19. Sample trace of the modified car security system circuit with memory.

6.13 VHDL for Latches and Flip-Flops

6.13.1 Implied Memory Element

VHDL does not have any explicit object for defining a memory element. Instead, the semantics of the language
provides for signals to be interpreted as a memory element. In other words, memory element is declared depending
on how these signals are assigned.

Consider the code in Figure 20. If Enable is 1 then Q gets the value of D, otherwise Q gets a 0. In this code, Q is
assigned a value for all possible outcomes of the test in the IF statement. With this construct, a combinational circuit
is produced.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 17 of 27

LI BRARY i eee;
USE ieee.std_logic_1164. ALL;

ENTITY no_nenory_el ement 1S PORT (
D, Enable: IN std_ | ogic;
Q OQUT std_logic);

END no_nenory_el ement ;

ARCHI TECTURE Behavi or OF no_nenory_el ement | S

BEGA N
PROCESS(D, Enabl e)
BEG N
| F Enable = '1' THEN Iy
ELSE (:;éi/“
Q< "0 N\
END | F; J\//
END PROCESS; N
END Behavi or; A @f\)yj

Figure 20. Sample VHDL description of a combinational circuit. A
72 /A
2N . .
If we remove the ELSE and the statement in the else part as shown in Figure 21,/tl;1en we-have a situation where
no value is assigned to Q if Enable is not 1. The key point here is that the VHDL s “ﬁamés\sﬁpulate that in cases
where the code does not specify a value of a signal, the signal should retain its current \an'J . In other words, the

signal must remember its current value, and in order to do so, a memory element is implied.

. O (\2/
6.13.2 VHDL Code for a D Latch with Enable /\\/

Figure 21 shows the VHDL code for a D latch with enable. If Enable |§1\(thenf\ gets the value of D. However, if
Enable is not 1, the code does not specify what Q should be, therefore, Q r@fa‘nﬁ its current value by using a memory
element. This code produces a latch and not a flip-flop because Q follows.3-as/long as Enable is 1, and not only at
the active edge of the Enable signal. The process sensitivity list ingﬂ@\é&f‘u th D and Enable because either one of
these signals can cause a change in the value of the Q output. F NN

AN
LI BRARY i eee; W/
USE i eee.std | ogic 1164. ALL; %

b

{/w

ENTITY D latch with_enable I'S PORT (
D, Enable: IN std_|logic; (7 YA

« §

Q OUT std_logic); 0N
END D | atch_with_enabl e; . (Fy 2
Al
ARCHI TECTURE Behavi or OF D _| atﬁﬁw& nable IS
BEG N
PROCESS(D, Enabl e) g\\/
BEG N /
|F Enable = '1' THEN /.
Q<= D NC) 2

END | F; AN\
END PROCESS; & (@ 4
END Behavi or; ((\7

Figure 21. VHDL code for W with enable.

=

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 18 of 27

6.13.3 VHDL Code for a D Flip-Flop

Figure 22 shows the behavioral VHDL code for a positive-edge-triggered D flip-flop. The only difference here
is that Q follows D only at the rising edge of the clock, and it is specified here by the condition “Clock' EVENT
AND Clock = '1"" The ' EVENT attribute refers to any changes in the qualifying Clock signal. So when this
happens and the resulting Clock value is a 1, we have in effect, a condition for a positive or rising clock edge. Again,
the code does not specify what is assigned to Q when the condition in the IF statement is false so it implies a
memory element. Note also that the process sensitivity list contains only the clock signal because it is the only signal
that can cause a change in the Q output.

LI BRARY i eee;
USE i eee.std | ogic 1164. ALL;

ENTITY D_flipflop IS PORT (
D, Cock: IN std_logic;
Q OQUT std_logic);

END D flipflop;

ARCHI TECTURE Behavior OF D flipflop IS
BEG N
PROCESS(d ock)
BEG N
I F Cock’ EVENT AND C ock = '1'" THEN
Q<= D
END | F;
END PROCESS;
END Behavi or;

Figure 22. Behavioral VHDL code for a positive-edge-triggered D flip-flop using an IF statement.

Another way to describe a flip-flop is to use the WAIT statement instead of the IF statement as shown in Figure
23. When execution reaches the WAIT statement, it stops until the condition in the statement is true before
proceeding. The WAIT statement, when used in a process block for synthesis, must be the first statement in the
process. Note also that the process sensitivity list is omitted because the WAIT statement implies that the sensitivity
list contains only the clock signal.

LI BRARY i eee;
USE i eee.std | ogic 1164. ALL;

ENTITY D_flipflop IS PORT (
D, Cock: IN std_logic;
Q OQUT std_logic);

END D flipflop;

ARCHI TECTURE Behavioral OF D flipflop IS
BEGA N
PROCESS
BEGA N
WAI T UNTIL C ock’ EVENT AND Cl ock = '0"; -- negative edge triggered
Q<=D
END PROCESS;
END Behavi or al ;

Figure 23. Behavioral VHDL code for a negative-edge-triggered D flip-flop using a WAIT statement.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 19 of 27

Alternatively, we can write a structural VHDL description for the positive-edge-triggered D flip-flop as shown
in Figure 24. This VHDL code is based on the circuit for a positive-edge-triggered D flip-flop as given in Figure 11.

The simulation trace for the positive-edge-triggered D flip-flop is shown in Figure 25. In the trace, before the
first rising edge of the clock at time 100ns, both Q and Q' (QN) are undefined because nothing has been stored in the
flip-flop yet. Immediately after this rising clock edge at 100ns, Q gets the value of D and QN gets the inverse. At
200ns, D changes to a 1, but Q does not follow it immediately but is delayed until the next rising clock edge at
300ns.

-- define the structural operation of the SR latch
LI BRARY i eee;
USE ieee.std logic 1164.all;

ENTITY SRlatch IS PORT (
SN, RN: IN std_I ogic;
Q QN BUFFER std_l ogic);
END SRl at ch;

ARCHI TECTURE Structural SRlatch OF SRlatch IS
COVPONENT NAND 2 PORT (
10, 11 : INSTD LOG G
O: OUT STD LOd ©O);
END COVPONENT;
BEG N
Ul: NAND 2 PORT MAP (SN, Q\, Q;
U2: NAND 2 PORT MAP (Q RN, Q\);
END Structural SRl atch;

-- define the operation of the 2-input NAND gate
LI BRARY i eee;
USE ieee.std_logic_1164. all;

ENTITY NAND 2 | S PORT (
10, 11: INstd |ogic;
O QUT std_logic);

END NAND_2;

ARCHI TECTURE Dat af | ow_NAND2 OF NAND 2 IS
BEG N

O <= 10 NAND I 1;
END Dat af | ow_NAND2;

-- define the operation of the 3-input NAND gate
LI BRARY i eee;
USE ieee.std_logic_1164.all;

ENTI TY NAND 3 | S PORT (
10, 11, 12: INstd_|logic;
O OQUT std_logic);

END NAND_3;

ARCHI TECTURE Dat af | ow_NAND3 OF NAND 3 IS
BEG N

O <= NOT (10 AND |1 AND 12);
END Dat af | ow_NAND3;

-- define the structural operation of the Dflip-flop

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 20 of 27

LI BRARY i eeeg;
USE ieee.std logic 1164.all;

ENTI TY positive_edge_triggered D flipflop IS PORT (
D, Cock: IN std_logic;
Q N BUFFER std_logic);

END positive_edge triggered D flipflop;

ARCHI TECTURE Structural DFF OF positive_edge_triggered D flipflop IS
SIGNAL N1, N2, N3, N4: std_logic;

COVPONENT SRl at ch PORT (
SN, RN: IN std_|ogic;

Q O\ BUFFER std_l ogic);

END COVPONENT;

COVPONENT NAND_2 PORT (
10, I'1l: INstd |ogic;

O QUT std_logic);

END COVPONENT;

COVPONENT NAND 3 PORT (
10, 11, 12: INstd_|ogic;
O QUT std_logic);

END COVPONENT;

BEG N
Ul: SRlatch PORT MAP (N4, Cock, N1, N2); -- set latch
U2: SRl atch PORT MAP (N2, N3, Q QN); -- output latch
U3: NAND 3 PORT MAP (N2, dock, N4, N3); -- reset latch
U4: NAND 2 PORT MAP (N3, D, M); -- reset latch

END St r uct ur al DFF;

Figure 24. Structural VHDL code for a positive-edge-triggered D flip-flop.

Farme: ‘v’alue:l 1EIEI.IEIns EEIIZI.IEIns SDD.IEIns flEIEI.IEIns EIZIEI.IEIns
= L=

5= Clock T 0

m—D 0 | |
>0 . | I_
— QN xR | [

Figure 25. Simulation trace for the positive-edge-triggered D flip-flop.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 21 of 27

6.13.4 VHDL Code for a D Flip-Flop with Enable and Asynchronous Set and Clear

Figure 26 shows the VHDL code for a positive-edge-triggered D flip-flop with enable and asynchronous active
high set and clear inputs. The two asynchronous inputs are checked for independently of the clock event. When
either the Set or the Clear input is asserted with a 1 (active high), Q is set to a 1 or 0 respectively immediately and
independent of the clock. If Enable is asserted with a 1 then Q follows D at the rising edge of the clock, otherwise Q
keeps its previous content. Figure 27 shows the simulation trace for this flip-flop. Notice in the trace that when
either Set or Clear is asserted at 100ns and 200ns respectively, Q changes immediately. However, when Enable is
asserted at 400ns, Q doesn’t follow D until the next rising clock edge at 500ns. Similarly, when D drops to O at
600ns, Q doesn’t change immediately, but drops at the next rising edge at 700ns. At 800ns when D changesto a 1, Q
did not follow the change at the next rising edge at 900ns because Enable is now de-asserted.

LI BRARY i eee;
USE ieee.std_logic_1164. ALL;

ENTITY d_flipflop_enable IS PORT (
Clock: IN STD LCGE C;
Enable: IN STD LCGQ C
Set: IN STD LCd G
Clear: IN STD LOd G;
D: IN STD_LCG C;
Q QUT STDh_LOA ©);
END d_fli pfl op_enabl e;

ARCHI TECTURE Behavioral OF d flipflop_enable IS
BEG N
PROCESS(Cl ock, Set, d ear)
BEG N
IF (Set ='1'") THEN
Q<="1%;
ELSIF (Clear = '1') THEN
Q<='0";
ELSIF (Enable = '0') THEN
NULL;
ELSIF (C ock' EVENT AND Cock = '1'") THEN
Q<=D
END | F;
END PROCESS;
END Behavi or al ;

Figure 26. VHDL code for a D flip-flop with active high enable and asynchronous set and clear inputs.

Marie 100D0ns 200.0Ons J000ns 400ns S000ns S000ns 700.0ns S0 0ns S00.0ns

= Clack 1 | | | | | | | | |

g~ Enable | | |

= Sl | |

P Cledr | |

=D | |

=g] | | | |

Figure 27. Simulation trace for the positive-edge-triggered D flip-flop with active high enable and asynchronous set
and clear.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 22 of 27

6.14 * Flip-Flop Types

There are basically four main types of flip-flops: D, SR, JK, and T. The major differences in these flip-flop
types are in the number of inputs they have and how they change states. Like the D flip-flop, each type can also have
different variations such as active high or low inputs, whether they change state at the rising or falling edge of the
clock signal, and whether they have any asynchronous inputs. Any given sequential circuit can be built using any of
these types of flip-flops or combinations of them. However, selecting one type of flip-flop over another type to use
in a particular circuit can affect the overall size of the circuit. Today, sequential circuits are designed primarily with
D flip-flops only because of its simple operation. Of the four flip-flop’s characteristic equations, the characteristic
equation for the D flip-flop is the simplest.

6.14.1 SR Flip-Flop

Like SR latches, SR flip-flops are useful in control applications where we want to be able to set or reset the data
bit. However, unlike SR latches, SR flip-flops change their content only at the active edge of the clock signal.
Similar to SR latches, SR flip-flops can enter an undefined state when both inputs are asserted simultaneously.
When the two inputs are de-asserted, then the next state is the same as the current state. The characteristic table,
characteristic equation, state diagram, circuit, logic symbol, and excitation table for the SR flip-flop are shown in
Figure 28.

The SR flip-flop truth table shown in Figure 28 (a) is for an active high set and reset signals. Hence the flip-flop
state Qnext is Set to a 1 when S is asserted with a 1, and Qe is reset to a 0 when R is asserted with a 1. When both S
and R are de-asserted with a 0, the flip-flop remembers its current state. From the truth table, we get the following
K-map for Qnex, Which results in the characteristic equation shown in Figure 28 (b).

Qne t

SR
Q 00 01 11 10

0 x 1

Notice that the SR flip-flop circuit shown in Figure 28 (d) uses the D flip-flop. The signal for asserting the D
input of the flip-flop is generated by the combinational circuit that is derived from the characteristic equation of the
SR flip-flop, namely D = Qpexe = S + R'Q.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 23 of 27

S R Q Qnext Qnext'
00O 0 1
0|01 1 0
0(1]0 0 1
0[1]1 0 1
1/0(0 1 0 _ .
1 0 1 1 0 Qnext—S+RQ
R
X X
@
SR=10
SR=00 or 01
R
ooy s
clk
SR=00 or 10
SR=01
(©
NI
— O.\ Qnext S R
—S QI ((J\nzf 0 Jofx
_ 0[] 1 J1]0
>Clk (6::>\ 1T 0 ol
—R Q' N 1] 1 [x|o0
e
Vo
(e) V& N4 ®
)

Figure 28. SR flip-flop: (a) characteristic table; (b) chara‘fer\~
symbol; and (f) excitation table.

¢ equation; (c) state diagram; (d) circuit; (e) logic

\\?

6.14.2 JK Flip-Flop \f\/

The operation of the JK flip-flop is very, (S'h"t‘\ Iaut% the SR flip-flop. The J input is just like the s input in the SR
flip-flop in that when asserted, it sets tne fllp\.., Similarly, the K input is like the R input where it resets the flip-

flop when asserted. The only difference is‘wien ioth'inputs J and K are asserted. For the SR flip-flop, the next state
is undefined, whereas, for the JK f||pv next state is the inverse of the current state. In other words, the JK
flip-flop toggles its state when bo é i J‘f are asserted. The characteristic table, characteristic equation, state
diagram, circuit, logic symbol, ancn cit ‘tion table for the JK flip-flop are shown in Figure 29.

/\
6.14.3 T Flip-Flop NC) S

TN

The T flip-flop h:gs\oné(ln\pu T m7add|t|on to the clock. T stands for toggle for the obvious reason. When T is
asserted (1 = 1), the flip-flop state toggles back and forth at each active edge of the clock, and when T is de-asserted,
the flip-flop keeps &w state. The characteristic table, characteristic equation, state diagram, circuit, logic
symbol, and excitation-tabie’for the T flip-flop are shown in Figure 30.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 24 of 27

J K Q Qnext Qnextl
010]0 0 1
0/0|1 1 0
0O[11(0 0 1
ol1]1] o 1 Qe =KQ+JQ
1/01]0 1 0
1fof1] 1 0 (b)
1/1]0 1 0
1111 0 1
@
SR=10
SR:OW\ |J< D Q Q
‘@ @, Clk >Clk Q' Q
SR=00 or 10
SR=01
© (d)
Q Qnext 'J K
—J Qr 0] o [olx
0 1 1| %
> Clk 1 0 1
—K Q= 1] 1 |[x]|o0

Figure 29. JK flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d) circuit; (e) logic
symbol; and (f) excitation table.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 25 of 27

9 @D —T

T Q Qnext Qnext'
0|0 0 1
0]1] 1 0 Qe =TQ'+TQ=TDQ
110 1 0
1)1 0 1 (b)
(a)
SR=10

SR=00 or 10 Clk >Clk Q'——Q'
SR=01
(d)
(c)
Q Qnext T
T QF 0 0 0
B 0 1 1
> Clk J 1 0 1
1 1 0
@)

Figure 30. T flip-flop: (a) characteristic table; (b) characteristic equation; (c) state diagram; (d) circuit; (e) logic
symbol; and (f) excitation table.

6.15

Iy oy iy iy iy iy Wiy

Summary Checklist

Bistable element
Latch
Flip-flop
Clock
Level-sensitive, active edge, rising / falling edge, clock cycle
SR latch
SR latch with enable
D latch
D latch with enable
D flip-flop
Asynchronus inputs
Characteristic table
Characteristic equation
State diagram
Excitation table
VHDL implied memory element
SR flip-flop
Characteristic table, characteristic equation, circuit, excitation table
JK flip-flop
Characteristic table, characteristic equation, circuit, excitation table
T flip-flop
Characteristic table, characteristic equation, circuit, excitation table

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops Page 26 of 27

6.16 Exercises

1. Draw the SR latch with enable similar to that shown in Figure 4 but using the NOR gate implementation of the
SR latch. Derive the truth table for this circuit.

Answer

R R

— Q
E

— Q'
S S
E S R Q Qnext Qnext'
0 X X 0 0 1
0 X X 1 1 0
1 0 0 0 0 1
1 0 0 1 1 0
1 0 1 X 0 1
1 1 0 X 1 0
1 1 1 X 0 0

2. Draw the D latch using NOR gates

Answer

D — —Q

3. Draw the D latch with enable similar to the circuit in Figure 6 (a) but use two extra NAND gates instead of the
multiplexer.

Answer

Microprocessor Design — Principles and Practices with VHDL Last updated 7/21/2003 12:48 PM

Chapter 6 — Latches and Flip-Flops

Index

A

Asynchronous inputs, 13

B

Bistable element, 2

C
Characteristic equation, 14
Characteristic table, 13

D
D flip-flop, 10

with enable, 12
D latch, 7

with enable, 7

E
Edge-triggered flip flop, 10
Excitation table, 14

F

Flip-flop, 2
D, 10
JK, 23
SR, 22
T,23
G

Gated SR latch, 6

H
Hold time, 15

Implied memory element, 16

Microprocessor Design — Principles and Practices with VHDL

J
JK flip-flop, 22, 23

L

Latch, 2
Level sensitive, 8
Loop back, 2

M
Metastable, 3

P

Positive edge-triggered flip flop, 10
Propagation delay, 15

S

Setup time, 15
SR flip-flop, 22
SR latch, 4

with enable, 6
State diagram, 14

T

T flip-flop, 22, 23
Timing issues, 15
Transparent latch, 7

Vv

VHDL, 16
Clock' EVENT, 18
Implied memory element, 16
WAIT, 18

VHDL code
D flip-flop (behavioral), 18
D flip-flop (structural), 20

Page 27 of 27

D flip-flop with asynchronous inputs, 21

D latch, 17

Last updated 7/21/2003 12:48 PM

Chapter 7 — Sequential Circuits Page 1 of 44

Contents

LT [0l a1 U O o1V P 2
7.1 Finite-State-Maching (FSM) MOGEL........cc.coeiiiiiiiieic e et sresresrenne s 3
7.2 Analysis Of SEQUENLIAT CITCUILS ...uiiviiiieiicie et e st e et sre st e s reesaesee s eneeseenresrenneas 4
7.2.1 (o] LA T T =T TU T L4 o o SRS 5
7.2.2 AN ot =L C= I o U 4o 6
7.2.3 INEXE-SEALE TADIE ...ttt b e bbbt bt bt et e st e b et sbe b nns 6
7.2.4 OULPUL EQUALION ...ttt b bbbt e e b e b bt b et eh e et et et sbe et e e e enbesbenbesbesbeas 7
7.2.5 OULPUE TADIE <.ttt bbb et b e b b e bt Rt e et e e et e b sbesbeeneenbesbesbesbeabeas 7
7.2.6 Y1 (I BT E: 1o 10 1 OO RUP PRSI 7
7.2.7 Example: Analysis 0f @ MOOIE FSM ... e 8
7.2.8 Example: Analysis 0f @ MEalY FSM ...t e 10
7.3 Synthesis 0f SEQUENTIAI CITCUITS.......ccviiiieie ettt st re e e e e e e aeneesnenneens 12
7.3.1 Y=L (=30 D T To [0SS 12
7.3.2 NEXE-SEALE TADIE ...t ettt sttt bbbt nbe s 13
7.3.3 IMPIEMENLALION TADIE ..o.viiiceieeeee ettt e e ee e e reseenrenneens 15
7.3.4 Excitation Equation and NeXt-State CirCUIL........c.covrvriviiinieir e 16
7.35 Output Table and EQUALIONccviiieieeie et sttt st sre e s e e e seeneeseenrenreens 16
7.3.6 L] YO ol S SOOI 16
7.3.7 Examples: Synthesis OF IMOOIE FSIMISoiiiiiiiiiiiieeee et 16
7.3.8 Example: Synthesis 0f @ MEalY FSIM ..o e 22
7.4 Unused State Encodings and the ENCoding Of Statescoooiiiiiiiiiiiiice e e 24
7.5 Example: Car Security SYSem — VEISION 3ccuiiiiiiiiieie ettt bbbttt b b 26
7.6 VHDL fOr SEQUENLIAT CIFCUILS. .. e uvitriieriiieiesiesteseste e ettt sre e e e ae e e stesrestesreaneeree e eteneesnenneens 27
7.7 *Optimization for SEqUENIAl CIFCUITS.........cciiviiieeieeece s et se e e srenne e 33
7.7.1 SEALE REAUCTION ...ttt ettt bbbttt et st be st 33
7.7.2 Y= (=0 = 070 o 11T PSR 34
7.7.3 (@8 aTo] Tor= o) T 11 T) o1 34
7.8 SUMMAIY ChECKIISE....cuiiiiieiceieee ettt st e e s e s e e e testeatesreeneesee e e teneennenneens 37
7.9 0] o] =T 1 1SR U U SOUT TPV PRI 38
0T (=) OSSO UPURTRURR 44

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 2 of 44

Chapter 7

Sequential Circuits

Control Data
Inputs Inputs
Y A 4
; IOI
Control unit Datapath
> > .
o1
— State Output > >
Next- .
state Memory Logic Control

Logic register B}_D Slg:nals

-
register

A\ 4

» >
> >

Q
—<H

Steftus
v Signals v
Control Data
Outputs Outputs

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 3 of 44

The main difference between combinational circuits and sequential circuits is that combinational circuits are
dependent only on current inputs, whereas in addition to the current inputs, sequential circuits are also dependent
on the past inputs. This history of past inputs is remembered in the state memory, which is made up of one or more
flip-flops. The contents of the state memory flip-flops at any instant of time represent the current state of the circuit.
The circuit changes from one state to the next when the contents of the state memory change.

A sequential circuit operates by stepping through a sequence of states. Since the state memory is finite,
therefore the total number of different possible states is also finite. For this reason, a sequential circuit is also
referred to as a finite-state machine (FSM). Although there is only a finite number of different states, the FSM can
go to any of these states as many times as necessary. Hence, the sequence of states that the FSM goes through can be
infinitely long.

In addition to the state memory, a finite-state machine contains two combinational parts: the next-state logic and
the output logic. Depending on the current state of the machine and the input signals, the next-state logic determines
what the next state ought to be by changing the contents of the state memory. Given the current state and inputs, the
next-state logic generates a new value that represents the next state of the machine. By changing the flip-flop input
values, the next-state circuit causes (or excites) the state memory to change to a new state. The new value for the
next state is written into the state memory at the next active edge of the clock.

The speed in which the finite-state machine sequences through the states is determined by the clock signal. At
each active edge of the clock signal, the state memory register is enabled and the next-state value is stored into the
flip-flops. The limiting factor for the clock speed is in the time that it takes to perform all the data operations
assigned to a particular state. All data operations assigned to a state must finish their operations within one clock
period so that the results can be written into the registers at the next active clock edge.

The second combinational part in a FSM is the output logic. The output logic generates the necessary output
signals for the FSM. The output signals are dependent on the current state of the machine and may or may not be
dependent on the input signals. Whether or not the output signal is dependent on the input gives rise to two types of
FSMs. A Moore FSM is one where the output of the machine is dependent only on the current state and not on the
input signals, whereas a Mealy FSM is one where the output is dependent on both the current state and the input
signals.

7.1 Finite-State-Machine (FSM) Model

Figure 7.1 (a) shows the general schematic for the Moore FSM where its outputs are dependent only on its
current state. Figure 7.1 (b) shows the general schematic for the Mealy FSM where its outputs are dependent on
both the current state of the machine and also the inputs. In both figures, we see that the inputs to the next-state logic
are the primary input signals and the current state of the machine. The next-state logic generates excitation values to
change the contents of the state memory. The one difference in the two figures is that for the Moore FSM, the output
logic only has the current state as its input, whereas, for the Mealy FSM, the output logic has both the current state
and the input signals as its inputs.

Figure 7.2 (a) and (b) show a sample circuit of a Moore and Mealy FSM respectively. The two circuits are
identical except for their outputs. For the Moore FSM, the output circuit is a 2-input AND gate that gets its input
value from the outputs of the two D flip-flops. Remember that the state of the FSM is represented by the content of
the state memory, which are the contents of the flip-flops. The content (or state) of a flip-flop is represented by the
value at the Q (or Q") output. Hence, this circuit is only dependent on the current state of the machine.

For the Mealy FSM, the output circuit is a 3-input AND gate. In addition to getting its two inputs from the flip-
flops, the third input to this AND gate is connected to the primary input C. With this one extra connection, this output
circuit is dependent on both the current state and the input.

For both circuits, the state memory consists of two D flip-flops. Having two flip-flops, four different
combinations of values can be represented. Hence, this finite-state machine can be in any one of four different states.
The state that this FSM will go to next depends on the value at the D inputs of the flip-flops.

Every flip-flop in the state memory requires a combinational circuit to generate a next-state value for its
input(s). Since we have two D flip-flops, each having one input (D), therefore, the next-state logic circuit consists of
two combinational circuits; one for input Dg and one for D;. The inputs to these two combinational circuits are the

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 4 of 44

Q’s, which represent the current state of the flip-flops, and the primary input C. Notice that it is not necessary for the
input C to be an input to all the combinational circuits. In the sample circuit, only the bottom combinational circuit
is dependent on the input C.

7.2 Analysis of Sequential Circuits

Very often we are given a sequential circuit and need to know its operation. The analysis of sequential circuits
is the process in which we are given a sequential circuit and we want to obtain a precise description of the operation
of the circuit. The description of a sequential circuit can be in the form of a next-state / output table, or a state
diagram. The steps for the analysis of sequential circuits are as follows:

1.
2.

o s w

Derive the excitation equations from the next-state logic circuit.

Derive the next-state equations by substituting the excitation equations into the flip-flop’s characteristic
equations.

Derive the next-state table from the next-state equations.

Derive the output equations (if any) from the output logic circuit.

Derive the output table (if any) from the output equations.

Draw the state diagram from the next-state table and the output table.

input signals»| Next-state State Output
Logic excitation Memory | current state Logic output signals
Circuit Clock —] register Circuit
(@)
input signals'| Next-state State Output
Logic excitation Memory | current state (I:__Oglt?t output signals
T ; ircui
Circuit Clock —| Fegister
(b)

Figure 7.1. Finite-state machine models: (a) Moore FSM; (b) Mealy FSM.

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 5 of 44

C <— Input

D—p: o [D—y
> Clk X Output
Clear Q1
> Clk
Clock — ClelarQO
Reset — C y C y
Next-state logic State memory Output logic
(a)
C <— Input
Y
[—no o . Y
> Clk \ Output
Clear Q1
> Clk
Clock — ClelarQO
Reset —
\) N) \)
Y Y
Next-state logic State memory Output logic
(b)

Figure 7.2. Sample finite-state machine circuits: (a) Moore; (b) Mealy.

7.2.1 Excitation Equation

The excitation equations are the equations for the next-state logic circuit in the FSM. In other words, they are
just the input equations to the state memory flip-flops in the FSM. Since the next-state logic is a combinational
circuit, therefore, deriving the excitation equations is just an analysis of a combinational circuit as discussed in
Section 3.1.2. The next-state circuit that is derived by these equations “excites” the flip-flops by causing them to
change states, hence the name “excitation equation”. These equations provide the signals to the inputs of the flip-
flops, and are expressed as a function of the current state and the inputs to the FSM. The current state is determined

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 6 of 44

by the current contents of the flip-flops, that is, the flip-flops’ output signal Q (and Q'). There is one equation for
each flip-flop’s input.

The following are two sample excitation equations for the two D flip-flops of Figure 7.2. The first equation
provides the next-state circuit for the D input for flip-flop 1, and the second equation provides the circuit for the D
input for flip-flop 0.

D; =Q1'Qq 1)
Do =Q1'Qo" + CQy' 2

7.2.2 Next-state Equation

The next-state equations specify what the flip-flops’ next state is going to be depending on three things: 1) the
current state of the flip-flops, 2) the functional behavior of the flip-flops, and 3) the inputs to the flip-flops. The
current state of the flip-flops is just the Q outputs of the flip-flops. The functional behavior of a flip-flop, as you
recall from Section 6.10.2, is described formally by its characteristic equation. The characteristic equation tells us
what Qe Ought to be, that is, what the next state ought to be. The inputs to the flip-flops are provided by the
excitation equations as discussed in Section 7.2.1 above. Thus, to derive the next-state equations, we substitute the
excitation equations into the corresponding flip-flop’s characteristic equations.

For example, the characteristic equation for the D flip-flop is
Qne =D

Therefore, substituting the two excitation equations (1) and (2) from the previous sub-section into the characteristic
equation for the D flip-flop will give us the following two next-state equations

Q1nexx = D1=Q1'Qo (3)
Qonext = Do = Q1'Q¢’" + CQy' (4)

7.2.3 Next-state Table

The next-state table is simply the truth table as derived from the next-state equations. It lists for every
combination of the current state (the Q) values and input values, what the next state (the Qe Values should be.
These next state values are obtained by substituting the current state and input values into the appropriate next-state
equations.

Figure 7.3 shows a sample next-state table with current states Q;Qo equals to 00, 01, 10, and 11, and one input
signal C. The entries in the table are the next state values Qinext Qonext- These next state values are obtained from
substituting the current state values Q;Qq and input value C into the next-state equations (3) and (4) from Section
7.2.2 above.

For example, the top left entry tells us that if the current state is 00 and the input condition C = 0 is true then the
next state that the FSM will go to is 01. Since 01 is also the next state from the current state 00 and the condition C
= 1 is true, this means that the transition from state 00 to 01 does not depend on the input condition C, so this is an
unconditional transition. From state 01, there are two conditional transitions: the FSM will transition to state 10 if
the condition C = 0 is true, otherwise if C = 1, it will transition to state 11. Both states 10 and 11 go to state 00
unconditionally.

Current State Next State

QlQO anext QOnext
cC=0|C=1

00 01 01

01 10 11

10 00 00

11 00 00

Figure 7.3. A next-state table with four states and one input signal C.

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 7 of 44

7.2.4 Output Equation

The output equations are the equations derived from the combinational output logic circuit in the FSM.
Depending on the type of FSM (Moore or Mealy), the output equations can be dependent on just the current state or
on both the current state and the inputs.

For the Moore circuit of Figure 7.2 (a), the output equation is

Y =Q:'Qo ()
For the Mealy circuit of Figure 7.2 (b), the output equation is
Y =CQ:'Qo (6)

A typical FSM will have many output signals, and so there will be one equation for every output signal.

7.2.5 Output Table

Like the next-state table, the output table is the truth table that is derived from the output equations. The output
tables for the Moore and Mealy FSMs are slightly different from each other. For the Moore FSM, the output table
lists for every combination of the current state what the output values should be. Whereas for the Mealy FSM, the
output table lists for every combination of the current state and input values what the output values should be. These
output values are obtained by substituting the current state and input values into the appropriate output equations.

Figure 7.4 (a) and (b) show sample output tables for the Moore and Mealy FSMs as derived from the output
equations (5) and (6) respectively from Section 7.2.4 above. For the Moore FSM, the output signal Y is dependent
only on the current state value Q;Q,, whereas, for the Mealy FSM, the output signal Y is dependent on both the
current state and input C.

Current State | Output Current State Ou\t(put
Q:1Qo Y 0:Qo e
00 0 00 0 0
01 1 01 0 1
10 0 10 0 0
11 0 11 0 0
(a) (b)

Figure 7.4. Output table: (a) for Moore FSM; (b) for Mealy FSM.

7.2.6 State Diagram

A state diagram is a graph with nodes and directed edges connecting the nodes. The state diagram graphically
portraits the operation of the FSM. There is one node for every state of the FSM and these nodes are labeled with the
state in which they represent. For every state transition of the FSM there is a directed edge connecting two nodes.
The directed edge originates from the node that represents the current state that the FSM is transitioning from, and
goes to the node that represents the next state that the FSM is transitioning to. Edges may or may not have labels on
them. Edges for unconditional transitions from one state to another will not have a label. In this case, only one edge
can originate from that node. Conditional transitions from a state will have two outgoing edges. The two edges from
this state have the corresponding input signal conditions labeled on them — one edge with the label for when the
condition is true and the other edge with the label for when the condition is false.

Figure 7.5 (a) shows a small state diagram with four states, 00, 01, 10, and 11, and one input signal C. This state
diagram is derived from the next-state table shown in Figure 7.3 and the output table from Figure 7.4 (a). There are
three unconditional transitions, 00 to 01, 10 to 00, and 11 to 00, and one conditional transition from 01 to 10 or 11.
For the conditional transition from 01, if the condition C = 0 is true then the transition from 01 to 10 is made.
Otherwise, if the condition C = 0 is false, that is C = 1 is true, then the transition from 01 to 11 is made.

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 8 of 44

The output signal Y in Figure 7.5 (a) is labeled inside each node denoting that the output is dependent only on
the current state. For example, when the FSM is in state 01, the output Y is 1, whereas, in state 11, Y is 0. Hence, this
state diagram is for the Moore FSM.

In Figure 7.5 (b), the output signal Y is labeled on the edges denoting that the output is dependent on both the
current state and the input signal C. For example, when the FSM is in state 01, if the FSM takes the left edge for C =
0 to state 10, then it will output a 0 for Y. However, if the FSM takes the right edge for C = 1 to state 11, then it will
output a 1 for Y. Hence, this state diagram is for the Mealy FSM.

(@) (b)

Figure 7.5. A state diagram with four states and one input signal: (a) Moore FSM using actual state encodings; (c)
Mealy FSM using actual state encodings.

7.2.7 Example: Analysis of a Moore FSM

We will now illustrate the complete process of analyzing a Moore FSM with an example.
Example 7.1

Figure 7.6 shows a simple sequential circuit. Comparing this circuit with the general FSM schematic in Figure
7.1, we conclude that this is a Moore type FSM since the output logic consists of a 2-input AND gate that is
dependent only on the current state Q;Q,. We will follow the above six steps to do a detail analysis of this circuit.

C <— Input
A\

bk

Dy Q E)_>

Y
{ > Clk §

—
|
b Clk

Qb

Output

Clock C'eiar
Reset C y C y

Y'Y

Next-state logic State memory Output logic

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 9 of 44

Figure 7.6. A simple Moore finite-state machine.

Step 1 is to derive the excitation equations, which are the equations for the next-state logic circuit. These
equations are dependent on the current state of the flip-flops Q; and Qg, and the input C. One equation is needed for
every data input of all the flip-flops in the state memory. Our sample circuit has two flip-flops having the two inputs
D;, and Dy, so we get the two excitation equations as shown in Figure 7.7 (a). These two equations are obtained
from analyzing the two combinational circuits that provide the inputs D; and Dq to the two flip-flops. For this
particular example, both of these combinational circuits are simple two level sum-of-products circuits.

Step 2 is to derive the next-state equations. These equations tell us what the next-state is going to be given the
current state of the state memory, the functional behavior of the flip-flops and the inputs to the flip-flops. One
equation is needed for every flip-flop. The functional behavior of the flip-flop is described by its characteristic
equation, which for the D flip-flop, is Quexx = D. The inputs to the flip-flops are just the excitation equations derived
from step 1. Hence, we simply substitute the excitation equation into the characteristic equation for each flip-flop to
obtain the next-state equation for that flip-flop. With two flip-flops in the example, we get two next-state equations,
one for Qupex and one for Qguex- Figure 7.7 (b) shows these two next-state equations.

Step 3 is to derive the next-state table. The next-state values in the table are obtained by substituting every
combination of current state and input values into the next-state equations obtained in step 2. In our example, there
are two flip-flops, Q; and Q,, and input c. Hence the table will have eight next-state entries. There are two bits for
every entry — the first bit for Qqpex, and the second for Qgnext.

For example, to find the Q1 Value for the current state Q;Q, = 00 and C = 1 (the blue entry), we substitute the
values Q; =0, Qy = 0 and C = 1 into the equation Qpe = C'Q; + Q1Q¢' + CQ1'Qg=(1'*0)+ (0« 0')+ (1 0"« 0)
to get the value 0. Similarly, we get Qgnext bY Substituting the same values for Qy, Qo, and C into the equation Qgnex; =
C'Qo+CQy =(1"+0) + (1 0") to get the value 1. The resulting next-state table for our example is shown in Figure
7.7 ().

Step 4 is to derive the output equations from the output logic circuit. One output equation is needed for every
output signal. For our example, there is only one output signal v that is dependent only on the current state of the
machine. The output equation for v as derived from the sample circuit diagram is shown in Figure 7.7 (d).

Step 5 is to derive the output table. Just like the next-state table, the output table is obtained by substituting all
possible combinations of the current state values into the output equation(s) for the Moore FSM. The output table for
our Moore FSM example is shown in Figure 7.7 (e).

Step 6 is to draw the state diagram, which is derived directly from the next-state and output tables. Every state
in the next-state table will have a corresponding node labeled with the state encoding in the state diagram. For every
next state entry in the next-state table, there will be a corresponding directed edge. This edge originates from the
node labeled with the current state and ends at the node labeled with the next state entry. The edge is labeled with
the corresponding input conditions.

For example, in the next-state table, when the current state Q;Q is 00, the next state Qinext Qonext IS 01 for the
input C = 1. Hence, in the state diagram, there is a directed edge from node 00 to node 01 with the label C = 1. For a
Moore FSM, the outputs are dependent only on the current state, thus the output values from the output table are
included inside each node of the state diagram. The complete state diagram for our example is shown in Figure 7.7

(0.

A sample timing diagram for the execution of the circuit is shown in Figure 7.7 (g). The two D flip-flops used
in the circuit are positive edge-triggered flip-flops so they change their states at each rising clock edge. Initially, we
assume that these two flip-flops are both in state 0. The first rising clock edge is at time t,. Normally, the flip-flops
will change state at this time, however, since C is a 0, the flip-flops’ values remain constant. At time t;, C changes to
a 1, so that at the next rising clock edge at time t,, the flip-flop values Q;Qq changes to 01. At the next two rising
clock edges, t; and t,, the value for Q;Qo changes to 10, then 11 respectively. At time t, when Q;Qo = 11, the output
Y also changes to a 1 since Y = Q; * Q,. At time ts, input C drops back down to a 0 but the output Y remains at a 1.
Q1Q, remains the same at 11 through the next rising clock edge since C is 0. At time ts, C changes back to a 1 and so
at the next rising clock edge at time t;, Q;Q, increments again to 00 and the cycle repeats.

When C = 1, the FSM cycles through the four states in order repeatedly. When C = 0, the FSM stops at the
current state until C is asserted again. If we interpret the four state encodings as a decimal number, then we can

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 10 of 44

conclude that the circuit of Figure 7.6 is for a modulo-4 up counter that cycles through the four values 0, 1, 2, and 3.

The input C enables or disables the counting. .
D; =C'Q1 + Q:1Q0" + CQ1'Qo
Do =C'Qo + CQyo'
@ Y=QuQ
Qe = D1 =C'Q1 + Q1Q¢" + CQ1'Qo (d)
Qonext = Do = C'Qp + CQy
(b)
Next State
Curr(gnéState Qunext Qonext Current State | Output
1o c=0 [c=1 Q:Qo Y
00 00 01 00 0
01 01 10 01 0
10 10 11 10 0
11 11 00 11 1
(©) (e)
Clk [] 1
C
Q L
Qq L
Y L
t, tt t, t, ot t, t,
U] (9)

Figure 7.7. Analysis of a Moore FSM: (a) excitation equations; (b) next-state equations; (c) next-state table; (d)
output equation; (e) output table; (f) state diagram; (g) timing diagram.

7.2.8 Example: Analysis of a Mealy FSM

Example 7.2 illustrates the process for performing an analysis on a Mealy FSM.

Example 7.2

Figure 7.8 shows a simple Mealy FSM. This circuit is exactly like the one in Figure 7.6 except that the output
circuit, which in this example is just one 3-input AND gate, is dependent on not only the current state Q;Qo, but also
on the input C.

The analysis for this circuit goes exactly like the one for the Moore FSM in Example 7.1 up to creating the next-
state table in step 3. The only difference is in deriving the output equation and output table for steps 4 and 5. For a
Mealy FSM, the output equation is dependent on both the current state and the input value. Since the circuit has only
one output signal, we obtain the output equation that is dependent on C as shown in Figure 7.9 (a). Figure 7.9 (b)
shows the resulting output table obtained by substituting all possible values for Q; Qp, and C into the output
equation.

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 11 of 44

For the state diagram, we cannot put the output value inside a node since the output value is dependent on the
current state and the input value. Thus, the output value is placed on the edge that corresponds to the current state
value and input value as shown in Figure 7.9 (c). Output signal Y is O for all edges except for the one originating
from state 11 having the input condition C = 1. On this one edge, Y is a 1.

C <— Input

7

D Q | Y
| > Clk x Output
Clear
I
Do Qo
> Clk
Clock —» C'eiar i
Reset — C y C y
Next-state logic State memory Output logic
Figure 7.8. A simple Mealy finite-state machine.
Y =CQ1Qo
(a)
Current State Output
QQ U
10 C=0 | C=1
00 0 0
01 0 0
10 0 0
11 0 1
(b)

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 12 of 44

= 8 Clk] 1
C
Q, L
Q l_
=
t, 4t t, t, t ty t,
(c) (d)

Figure 7.9. Analysis of a Mealy FSM: (a) output equation; (b) output table; (c) state diagram; (d) timing diagram.

A sample timing diagram is shown in Figure 7.9 (d). This diagram is exactly the same as the one for the Moore
FSM shown in Figure 7.7 (g) up to time ts. At time ts, input C drops to a 0, and so output Y also drops to a O since
Y=Ce Qp° Qo Attimets, C rises back up toa 1, and so Y also rises to a 1 immediately. Since the output circuit is a
combinational circuit, Y does not change at the active edge of the clock, but changes immediately when the inputs
change. At time t; when Q;Q, changes to 00, Y again changes back to a 0.

Except for the difference in how this circuit generates the output signal Y, this Mealy FSM behaves exactly the
same as the Moore FSM from Example 7.1 in the way that it changes from one state to the next. This, of course, is
due to the fact that both next-state tables are identical. Thus, this Mealy FSM circuit is also a modulo-4 up counter.+

7.3 Synthesis of Sequential Circuits

The synthesis of sequential circuits is just the reverse of the analysis of sequential circuits. In synthesis, we
start with what is usually an ambiguous functional description of the circuit that we want. From this description, we
need to come up with the precise operation of the circuit using a state diagram. The state diagram allows us to
construct the next-state and output tables. The circuit can then be derived from the next-state and output tables.

During the synthesis process, there are many possible circuit optimizations in terms of the circuit size, speed,
and power consumption that can be performed. Circuit optimization is discussed in Section 7.7. In this section, we
will focus only on synthesizing a functionally correct sequential circuit.

The steps for the synthesis of sequential circuits are as follows:

Produce a state diagram from the functional description of the circuit.

Derive the next-state table from the state diagram.

Convert the next-state table to the implementation table.

Derive the excitation equations for each flip-flop input from the implementation table.
Derive the output table from the state diagram.

Derive the output equations from the output table.

Draw the circuit diagram based on the excitation and output equations.

NogkrwphE

7.3.1 State Diagram

The first step in the sequential circuit synthesis process is to derive the state diagram for it. The circuit to be
built is usually described using an ambiguous natural language. Not only does the language itself create
uncertainties, in many cases the description of the circuit is also incomplete. This incomplete description arises
when not all possible situations of an event or behavior are specified. In order to translate an ambiguous description
into a precise state diagram, the designer must have a full understanding of the functional behavior of the circuit in
question. In addition, the designer may need some ingenuity and creativity to fill in the missing gaps. Meaningful
assumptions need to be made and stated clearly, and ambiguous situations need to be clarified. This is the one step

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 13 of 44

in the design process where there is no clear-cut answer for it. In this step, we rely on the knowledge and expertise
of the designer to come up with a correct and meaningful state diagram.

Instead of using a natural language to describe the circuit, a more precise method can be used. Other ways to
describe a circuit more precisely include the use of a hardware description language such as VHDL, a state action
table, or an ASM chart. The use of the ASM chart and the state action table are described in Chapter 10. In this
section, we will discuss the construction of the state diagram.

Before the state diagram can be drawn, we need to first determine from the circuit description the number of
states needed, what are the input signals, and what are the output signals. Usually, one action is assigned to one
state, unless the actions can be performed in parallel.

The state diagram is a deterministic directed graph. There is one node for every state. Figure 7.10 (a) shows a
simple state diagram with four states. Initially, the nodes are given logical state names such as Sq, S1, S», and Sa.
These state names must be translated to their actual encoding in a subsequent step.

The nodes in the state diagram are connected with directed edges. An edge connects from the current state that
the FSM is in, and connects to the next state that the FSM will go to. The edges may or may not have labels on
them. The edge labels are conditions of the input signals for when an edge is to be taken. Recall that the next state of
a FSM is dependent on the current state and the inputs. All outgoing edges from a state must be deterministic. In
other words, no two outgoing edges from the same state can have the same condition. Alternatively, all possible
input conditions must be labeled on the outgoing edges from any one state. If an edge is not labeled, or if not all
possible input conditions are labeled on the outgoing edges from the same state, then these missing conditions are
don’t care conditions.

In Figure 7.10 (a), there are two conditional edges labeled with the input B and B'. The remaining edges without
a label are unconditional edges. An edge having a condition is taken only if the condition on it is true. From state s,
if the input B is a 0, then the edge labeled B' is taken, and the next state will be s;. Otherwise, if the input B isa 1,
then the edge labeled B is taken, and the next state will be s,. An edge without a label is an unconditional edge, and
so it is always taken, regardless of the input values. The next state from either s, or s, is always ss, regardless of the
value of B.

There are two types of output signals: state only dependent, and state and input dependent. These, of course,
correspond to the Moore and Mealy FSMs respectively. Output signals that are dependent only on the current state
are labeled inside each node. The state diagram in Figure 7.10 (a) has one output signal Y that is dependent only on
the current state. In states s, and sy, Y is assigned the value 0. In states s, and sg, Y is assigned a 1. Output signals that
are dependent on both the current state and the input signal are labeled on the edges.

7.3.2 Next-state Table

Given a precise state diagram, it is easy to derive both the next-state and output tables from it. Since the next-
state and output tables, and the state diagram portrait the same information but depicted in a different format,
therefore, it requires only a straightforward translation from one to the other.

Figure 7.10 (b) shows the next-state table for the state diagram in (a). The row labels are the current state and
the column labels are the input conditions. The table entries are the next states. Translating directly from the state
diagram, from current state s, if B is a 0, then the next state is s;. Correspondingly, in the next-state table, the entry
for the intersection of the current state s, and input B =0 is s;.

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 14 of 44

(@
Current State Next State Current State Implementation
Q Q anext QOnext Q Q Dl DO
10 B=0 B=1 <0 B=0 B=1
So 00 501 s, 10 00 01 10
51 01 s311 s311 01 11 11
s, 10 s311 s311 10 11 11
s 11 Sp 00 Sp 00 11 00 00
(b) (c)
D D
! QlQo 0 QlQO
B 00 01 11 B 00 01 11 10
0 1 0|1 1
SAREFENREY 1 11
D; =(Q. 0 Q) + BQy' D, =(Q, 0 Qo) +B'Qy’
(d)
Current State Output
Q1Qo Y
So 00 0
51 01 0
s, 10 1
S311 1
(e)

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 15 of 44

A

[w)
[y
O
=

Y

=<

\4
Q
=~

\%
Q
=~

Clock Clelar
Reset

Y'Y

©

Figure 7.10. (a) A simple state diagram; (b) next-state table; (c) implementation table using D flip-flops; (d)
excitation equations; (e) output table; (f) FSM circuit.

In the next-state table, the actual encoding for the states is also given. To encode the four states, two flip-flops,
Q; and Q, are required. In the example, the encoding given to the four states, So, S, Sz, and ss, is just the four
different combinations of the two flip-flop values, 00, 01, 10, and 11 respectively. Using different encoding schemes
can give different results in terms of circuit size, speed, and power consumption. This optimization technique is
further discussed in Section 7.7.2.

7.3.3 Implementation Table

The implementation table is derived from the next-state table. Whereas, the next-state table is independent of
the flip-flop type used, the implementation table is dependent on the choice of flip-flop used. A FSM can be
implemented using any one of the four different types of flip-flops (as discussed in Section 6.11) or combinations of
them. Using different flip-flops or combinations of flip-flops can produce different size circuits but with the same
functionality. The current trend in microprocessor design is to use only D flip-flops because of their ease of use. We
will, likewise, use only D flip-flops in our synthesis of sequential circuits. Section 7.7.3 discusses how sequential
circuits are synthesized with other types of flip-flops.

The implementation table shows what the flip-flop inputs ought to be in order to realize the next-state table. In
other words, it shows the necessary inputs for the flip-flops that will produce the next states as given in the next-
state table. The next-state table answers the question of what is the next state of the flip-flop given the current state
of the flip-flop and the input values. The implementation table, on the other hand, answers the question of what
should the input(s) to the flip-flop be in order to realize the corresponding next state given in the next-state table.

The flip-flop inputs that we are concerned with are the synchronous inputs. For the D flip-flop, this is just the D
input. For the other flip-flop types, they are the S and R inputs for the SR flip-flop; the J and K inputs for the JK flip-
flop; and the T input for the T flip-flop. We do not consider the asynchronous inputs such as the Set and Clear
inputs, nor do we consider the clock input signal.

Hence, to derive the implementation table using D flip-flops, we need to determine the value that must be
assigned to the D input such that it will cause the corresponding Q. Value given in the next-state table. However,
since the characteristic equation for the D flip-flop (i.e. the equation that describes the operation of the D flip-flop as
given in Section 6.10.2) is

Qnexx =D

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 16 of 44

therefore, the values for Qe and D are the same.

Thus, the entries in the implementation table using D flip-flops are identical to the entries in the next-state table.
The only difference between the two tables is in the meaning of the entries. In the next-state table as shown in
Figure 7.10 (b), the label for the entries is Qe for the next state to go to, whereas, in the implementation table as
shown in Figure 7.10 (c), the label for the entries is D for the input to the D flip-flop. Since there are two flip-flops,
Q; and Q,, each having one input D, hence the implementation table has the two corresponding inputs D; and D,
The leftmost bit is for flip-flop 1 and the rightmost bit is for flip-flop 0. Note that if one of the other types of flip-
flops is used, the two tables will not be the same as discuss in Section 7.7.3.

7.3.4 Excitation Equation and Next-state Circuit

Recall that the excitation equations are the equations for the flip-flop’s synchronous inputs. There is one
excitation equation for every input of every flip-flop. Remember that we do not include the asynchronous inputs and
the clock input. The excitation equations are dependent on the current state encodings, i.e., the contents of the flip-
flops, and the input signals.

The excitation equations are what caused the flip-flops in the state memory to change state. The circuit that is
derived from these equations is the next-state circuit in the FSM. The next-state circuit is a combinational circuit,
and so deriving this circuit is the same as synthesizing any other combinational circuit as discussed in Section 3.2.

The implementation table derived from the previous step is just the truth table for the excitation equations. For
our example, we need two equations for the two flip-flop inputs, D; and D,. In the example, extracting the leftmost
bit in every entry in the implementation table will give us the truth table for D,;, and therefore, the excitation
equation for D;. Similarly, extracting the rightmost bit in every entry in the implementation table will give us the
truth table and excitation equation for Dy. The truth table, in the form of a K-map, and the excitation equations for
D, and Dy are given in Figure 7.10 (d).

7.3.5 Output Table and Equation

The output table and output equations are used to derive the output circuit in the FSM. The output table can be
obtained directly from the state diagram. In the state diagram of Figure 7.10 (a), the output signal Y is dependent
only on the state. In states s, and s;, Y is assigned the value 0. In states s, and ss, Y is assigned a 1. The resulting
output table is shown in Figure 7.10 (e).

The output equation as derived from the output truth table is simply

Y=0Q;
7.3.6 FSM Circuit

Using Figure 7.2 (a) as a template, our FSM circuit requires two D flip-flops for its state memory. The number
of flip-flops to use was determined when the states were encoded. The type of flip-flops to use was determined when
deriving the implementation table. The next-state circuit is drawn from the excitation equations, while the output
circuit is drawn from the output equation. Connecting these three parts, state memory, next-state circuit, and output
circuit, together produces the final FSM circuit shown in Figure 7.10 (e).

7.3.7 Examples: Synthesis of Moore FSMs

We will now illustrate the synthesis of Moore FSMs with two examples. Example 7.3 illustrates the synthesis of
a simple Moore FSM. Example 7.4 illustrates the synthesis of a Moore FSM that is more typical of what the control
unit of a microprocessor is like.

Example 7.3

For our first synthesis example, we will design a modulo-6 up counter using D flip-flops having a count enable
input C, and an output signal Y that is asserted when the count is equal to five. The count is to be represented
directly by the contents of the flip-flops.

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 17 of 44

Q,QiQ=000 Q,Q:Q,= 001

Y=0

QQ:Q= 101 Q,Q:Q=010

Q,QiQ=100 Q,Q:Q=011 C=0
Y=0 Y=0

Current State Next State Current State Implementation
QZQlQO Q2next anext QOnext QZQlQO D2 Dl DO
C=0 c=1 C=0 c=1
000 000 001 000 000 001
001 001 010 001 001 010
010 010 011 010 010 011
011 011 100 011 011 100
100 100 101 100 100 101
101 101 000 101 101 000
(b) (©)
D CQZIQ,?'QO D CQ,/Q, CQ,Q,
c Q2 1‘._\ CQ2 V ‘
QQ,\ 00 01 11 10 QQ\ 00 01 11 10
00 00 ENin
01 UINETIEY
11| 1] 11 |
16 10/
C'Qle' CQz'QlQo C'Q:'Q1 QZ'Q:QO' C'QVZ'QO C'dllQo

D, =Q:Q:'Qp" + C'Q:Q;" + CQ2'Q1Q0
D; =C'Q,'Q1 + Q2'Q1Q0" + CQ2'Q1'Qo
Dy =C'Q1'Qo + C'Q'Qp + CQ1'Qqy" + CQL'Qy’

(d)

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 18 of 44

Current State | Output
Q2Q1Qo Y

000
001
010
011
100
101

Y =Q2Q:1'Qo
(e)

R|O|O|0O|O0|Oo

(@)

D, Q7 E)_> y

> Clk

ClearQZ

Dy Q1
> Clk

Clear O

Do Qo
> Clk

e

QY

Clock Clelar
Reset

YVY

U

Figure 7.11. Synthesis of a Moore FSM for Example 7.3: (a) state diagram; (b) next-state table; (c) implementation
table; (d) K-maps and excitation equations; (e) output table and equation; (f) FSM circuit.

Step 1 is to construct the state diagram. From the above functional description, we need to construct a state
diagram that will show the precise operation of the circuit. A modulo-6 counter counts from zero to five, and then
back to zero. Since the count is represented by the flip-flop values and we have six different counts (from zero to
five), we will need three flip-flops (Q,, Q1, Qo) that will produce the sequence 000, 001, 010, 011, 100, 101, 000, ...
when C is asserted, otherwise, when C is de-asserted, the counting stops. In other words, from state 000, which is
count = 0, there will be an edge that goes to state 001 with the label C = 1. From state 001, there is an edge that goes
to state 010 with the label C = 1, and so on. For the counting to stop at each count, there will be edges at each state
that loop back to the same state with the label C = 0. Furthermore, we want to assert Y in state 101, so in this state,
we set Y to a 1. For the rest of the states, Y is set to a 0. Hence, we obtain the state diagram in Figure 7.11 (a) for a
modulo-6 up counter.

Step 2 is to derive the next-state table, which is a direct translation from the state diagram. We have three flip-
flops Q,, Q1, and Q, and one primary input C. The current states for the flip-flops are listed down the rows, while
the input is listed across the columns. The entries are the next states. For each entry in the next-state table, we need
to determine what the next state is for each of the three flip-flops, so there are three bit values, Qanext; Q1next» @nd
Qonext for each entry. For example, if the current state is Q,Q;Qq = 010 and the input is C = 1, then the next state
Q2nextQ1nextQonext 1S 011. The next-state table is shown in Figure 7.11 (b).

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 19 of 44

Step 3 is to convert the next-state table to its implementation table. Since for the D flip-flop, the implementation
table is the same as the next-state table, we can simply use the next-state table and just re-label the entry heading as
shown in Figure 7.11 (c).

Step 4 is to derive the excitation equations for all the flip-flop inputs in terms of the current state and the
primary input. These equations are obtained directly from the implementation table. In the example, there are three
flip-flops with the three inputs D,, D,, and Dy, which correspond to the three bits in the entries in the implementation
table. To derive the equation for D,, we consider just the leftmost bit in each entry for the truth table for D,. Looking
at all the leftmost bits, there are four 1-minterms giving the canonical equation

D, =C'Q2Q:'Qo" + C'Q2Q:'Qg + CQ2'Q1Q0 + CQ2Q1'Qy’

Similarly, the equation for Dy is derived from considering just the middle bit for all the entries, and the equation
for Dy from the rightmost bit. Since these equations will be used to construct the next-state circuit, they should be
simplified. The three K-maps and simplified excitation equations for D,, D,, and Dy are shown in Figure 7.11 (d).

Steps 5 and 6 are to derive the output table and equation. There is one equation for every output signal. Since
the value of v is labeled inside each node, it is therefore dependent only on the current state. From the state diagram,
Y is asserted only in state 101, so Y has a 1 only in that current state entry, while the rest of them are 0’s. The output
table and equation are shown in Figure 7.11 (e).

Finally, we can draw the circuit for the FSM. We know that the circuit is a Moore FSM that uses three D flip-
flops for its state memory having one primary input C and one output Y. The next-state function circuit is derived
from the three excitation equations for D,, D;, and Dy. The output function circuit is derived from the output
equation for Y. The full circuit is shown in Figure 7.11 (f). .

Example 7.4

In this example, we will synthesize a Moore FSM that is more typical of what the control unit of a
microprocessor is like. We start with the state diagram as shown in Figure 7.12 (a). Each state is labeled with a state
name, So, S1, S, and sz, and has two output signals x and y. There are also two conditional status signals Start and
(n=9) labeled on four of the edges, while the rest of the edges do not have any conditions. From state s, the
conditional edge labeled Start is taken when Start = 1, otherwise, the edge labeled Start' is taken. Similarly, from
state s,, the edge with the label (n = 9) is taken when the condition is true, that is, when the value of variable n is
equal to nine. If n is not equal to nine, then the edge with the label (n = 9)" is taken.

Two flip-flops Q, and Q, are needed in order to encode the four states. For simplicity, we will use the binary
value of the index of the state name to be the encoding for that state. For example, the encoding for state sy is Q;Qq
= 00 and the encoding for state s; is Q;Qq = 01, and so on.

From the above analysis, we are able to derive the next-state table as shown in Figure 7.12 (b). The four current
states for Q,Qo are listed down the four rows. The four columns are for the four combinations of the two conditional
signals Start and (n=9). For example, the column with the value Start, (n=9) = 10 means Start = 1 and (n=9) = 0.
The condition (n=9) = 0 means that the condition (n=9) is false which means (n=9)" is true. The entries in the table
are the next states, Q1next Qonext» for the two flip-flops.

For example, looking at the state diagram, from state s, we go back to state s; when the condition (n=9)" is true
independent of the Start condition. Hence, in the next-state table, for the current state row s, (10), the two next-state
entries for when the condition (n=9)" is true is s; (01). The condition “(n=9)" is true” means (n=9) = 0. This
corresponds to the two columns with the labels 00 and 10, that is, Start can be either 0 or 1, while (n=9) is 0.

Using D flip-flops to implement the FSM, we get the implementation table shown in Figure 7.12 (c). The
implementation table and the next-state table are identical when D flip-flops are used. The only difference between
them is the meaning given to the entries. For the next-state table, the entries are the next state of the flip-flops,
whereas for the implementation table, the entries are the inputs to the flip-flops. They are the input values necessary
to get to that next state. Again, since the next state is equal to the input value (Qnex = D) for a D flip-flop, therefore,
the entries in these two tables are the same.

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits

(@)

Start,(n=9)
QQ,\\ 00 01 11 10

Q'Q QQ(n=9)

D; = Q1'Qo + Q1Qq'(n=9)
(d)

Microprocessor Design: Principles and Practices with VHDL

Page 20 of 44

Current Next State

State anext QOnext

0,0 Start, (n=9)

10 00 01 10 11

Sp 00 So00 | 500 | 5,01 | 5,01

5,01 s, 10 s, 10 s, 10 s, 10

S, 10 s; 01 S3 11 s; 01 s3 11

S3 11 So 00 So 00 So 00 S0 00

(b)

Current

Implementation

D; Dy
(SgtaQte Start, (n=9)

o 00 [01 | 10 | 11
Sp 00 So00 | 500 | 5,01 | 5,01
5,01 s, 10 s, 10 s, 10 s, 10
s, 10 5,01 S3 11 5 01 s3 11
S3 11 So 00 So 00 S0 00 S0 00

(c)
D
Start,(n=9)
QQ;\ 00 01 11 10
00, ‘ ‘
01
11
10 (1 | 1 1

O
QQ, QStart

Do = Q1Qo" + StartQy'

Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 21 of 44

X Q, y Q,
Current State | Output 0 1 o 1
Q1Qo Xy % %
0| o 1 0] 1 1
00 01
01 11 1 1 1 1 1 0
10 11
11 10 X=Q1+ Qo y = (Q1Qo)’
(e) (f)
|
Start (n=9) s?gr?;ls
\ Y
) >—> x
| D; Qf | y
{ > Clk 'K Output
Clear QY signals
I
Do Q
| >Clk
Clock — Clear %°
Reset —»
Next-state logic State memory Output logic
(9

Figure 7.12. Synthesis of a Moore FSM for Example 7.4: (a) state diagram; (b) next-state table; (c) implementation
table; (d) excitation equations and K-maps for D; and Dg; (€) output table; (f) output equations and K-maps; (g)
FSM circuit.

The excitation equations are derived from the implementation table. There is one excitation equation for every
data input of every flip-flop used. Since we have two D flip-flops, therefore, we have two excitation equations; one
for D, and the second for D,. The equations are dependent on the four variables Qy, Qq, Start, and (n=9). We look at
the implementation table as one having two truth tables merged together, one truth table for D, and one for Dy. Since
the two bits in the entries are ordered D;D,, therefore, for the D, truth table, we look at only the leftmost D, bit in
each entry, and for the Dy truth table, we look at only the rightmost Dg bit. Extracting the two truth tables from the
implementation table in this manner, we obtain the two K-maps and corresponding excitation equations for D; and
Dy as shown in Figure 7.12 (d). The excitation equations allow us to derive the next-state combinational circuit.

The output table is obtained from the output signals given in the state diagram. The output table is just the truth
table for the two output signals x and y. The output signal equations derived from the output table are dependent on
the current state Q;Q,. The output table, K-maps and output equations are shown in Figure 7.12 (e) and ().

From the excitation and output equations, we can easily produce the next-state and output circuits, and the
resulting FSM circuit shown in Figure 7.12 (g). .

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 22 of 44

7.3.8 Example: Synthesis of a Mealy FSM

The next example illustrates the synthesis of a Mealy FSM. You will find that this process is almost identical to
the synthesis of a Moore FSM with the one exception of deriving the output equations. The outputs for a Mealy
FSM are dependent on both the current state and the input signals, whereas, for the Moore FSM, they are only
dependent on the current state.

Example 7.5

In this example, we will synthesize a Mealy FSM based on the state diagram shown in Figure 7.13 (a) using D
flip-flops. The four states are already encoded with the values of the two flip-flops. There are two conditional input
signals (x=0) and (x=y). Since these are conditions, the equal sign means the test for equality. There is one output
signal A, which can be set to either a 0 or a 1 value. The equal sign here means assignment. Notice that what makes
this a Mealy FSM state diagram is the fact that the outputs are associated with the edges and not the nodes.

Next State
Current State Q1nextQonext
Q1Qo x=0), (x=y
0001|1011
00 10|10 | 01 | 01
01 11 (111111
10 11 (111111
11 01|00]| 01|00
(b)
Implementation
Current State DDy
Q1Qo x=0), (x=y
0001|1011
00 10|10 | 01 | 01
01 11 (111111
10 11 (111111
11 01|00]| 01|00
(a) (c)
D, Do
(x=0), (x=y) (x=0), (x=y)
QQ,\ 00 01 11 10 QQ,\ 00 01 11 10
00 1 | 1 00 T 1]
011 [1]| 1] 1 011 [1 |1]2
11 11 1 1
1001 [1|1] 1 1000 [1 | 1] 1
D1 = Q1'Qo + Q:Qo" + Q1" (x=0)' Do = Q1'Qo + Q1Qo" + Q1" (x=0) + Qo(x=0)" (x=y)’
=(Q: 0 Qo) + Q1" (x=0)' = (Q: 0 Qo) + Q1" (x=0) + Qo(x=0)" (x=y)'

(d)

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 23 of 44

A
(x=0), (x=y)
QQ,\ 00 01 11 10
Output 00 |
Current State A
QiQo (x=0), (x=y ol
0001|1011 NN
00 olof1]1 N |
01 0Jofo]o Ll ol
10 1111
11 1/o0f1]o0 A =Q1Qo + Qi(x=y)" + Q1'Qqo’ (x=0)
(e) (f
(x=0) (x=y)

Y Y

V[V

)
D Q1
| > Clk
) A
ClearQl I
)
| Do Qo
I >Clk
Clock — CIearQU
Reset —» |
(9

Figure 7.13. Synthesis of a Mealy FSM for Example 7.5: (a) state diagram; (b) next-state table; (c) implementation
table; (d) excitation equations and K-maps for D; and Dy; (e) output table; (f) output equation and K-map; (g) FSM
circuit.

Deriving the next-state and implementation tables for a Mealy FSM is exactly the same as for a Moore FSM.
The next-state and implementation tables for this example are shown in Figure 7.13 (b) and (c). The excitation
equations and K-maps for D; and D, are shown in (d).

The output table as shown in Figure 7.13 (e) is slightly different from the output tables for Moore FSMs. In
addition to the output signal A being dependent on the current state Q;Q,, it is also dependent on the two input
signals (x=0) and (x=y). Hence the table has four columns for the four possible combinations of the two input
signals. The entries in the table are the values for A.

Looking at the state diagram in Figure 7.13 (a), we see that from state 00, output signal A is assigned the value 1
when the condition (x=0) is true, otherwise it is assigned a 0. Since the condition (x=y) is not labeled on these two
edges going out from state 00, therefore, the output is independent to this condition from state 00. Hence, in row 00,
the two entries under the two columns with the label 00 and 01, are both 0; whereas, the two entries under the two
columns 10 and 11 are both 1.

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 24 of 44

Using the output table as the truth table, we are able to derive the K-map and output equation for A as shown in
Figure 7.13 (f). Notice that the equation is also dependent on the two input signals.

Again, using the excitation and output equations, we are able to draw the final FSM circuit shown in Figure
7.13(g).

7.4 Unused State Encodings and the Encoding of States

In a real world situation, the number of states used in the state diagram is most likely not a power of two. For
example, the state diagram shown in Figure 7.11 (a) for the modulo-6 counter uses six states. To encode six states,
we need at least three flip-flops since two flip-flops can encode only four different combinations. However, three
flip-flops give eight different combinations. So two combinations are not used. The question is what do we do with
these unused encodings? In the next-state table, what next state values do we assigned to these unused states? Do we
just ignore them?

If the FSM can never be in any of the unused states, then it does not matter what their next states are. In this
case, we can put “don’t care” values for their next states. The resulting next-state circuit may be smaller because of
the “don’t care” values.

But what if, by chance, the FSM enters one of these unused states? The operation of the FSM will be
unpredictable because we do not know what the next state is. Well, this is not exactly true because even though we
started with the “don’t cares,” we have mapped them to a fixed excitation equation. So these unused states do have
definite next states. It is just that these next states are not what we wanted. Hence, the resulting FSM operation will
be incorrect if it ever enters one of the unused states. If this FSM is used in a mission critical control unit, we do not
want even this slight chance to occur.

One solution is to use the initialization or starting state as the next state for these unused state encodings. This
way, the FSM will restart from the beginning if it ever enters one of these unused states.

So far, we have been using the sequential binary value to encode the states in order, for example, state sy is
encoded as 00, state s; as 01, state s, as 10, and so on. However, there is no reason why we cannot use a different
encoding for the states. In fact, we do want to use a different encoding if it will result in a smaller circuit.

Example 7.6 shows a FSM with an unused state encoding, and the encoding of one state differently.

Example 7.6

In this example, we will synthesize a FSM for the one-shot circuit first discussed in Section 3.5.1. Recall that
the one-shot circuit outputs a single short pulse when given an input of arbitrary time length. In this FSM circuit, the
length of the single short pulse will be one clock cycle. The state diagram for this circuit is shown in Figure 7.14 (a).

State sq, encoded as 00, is the reset state, and the FSM waits for a key press in this state. When a switch is
pressed, the FSM goes to state s;, encoded as 01, to output a single short pulse. From s;, the FSM unconditionally
goes to state s,, encoded as 11, to turn off the one-shot pulse. Hence, the pulse only lasts for one clock cycle,
irregardless of how long the key is pressed. To break the loop, and wait for another key press, the FSM has to wait
for the release of the key in state s,. When the key is released, the FSM goes back to state s, to wait for another key
press.

This state diagram uses two bits to encode the three states, hence state encoding 10 is not used. The state
diagram shows that if the FSM enters state 10, it will unconditionally go to the reset state 00 in the next clock cycle.
Furthermore, we have encoded state s, as 11 instead of 10 for the index two.

The corresponding next-state table is shown in Figure 7.14 (b). Using D flip-flops to implement this FSM, the
implementation table, again, is like the next-state table. Therefore, we can use the next-state table directly to derive
the two excitation equations for D; and Dg as shown in (c). The output table and output equation is shown in (d), and
finally the complete FSM circuit in (e).

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 25 of 44
Keypressed'
800 Keypressed output Oneshot
@ Keypressed' Keypressed
(a)
Next State
Current State anextQOnext
Q:1Qo Keypressed
0 1
00 00 01
01 11 11
11 00 11
10 00 00
(b)
Dl DO
Keypressed Keypressed
QRN 0 1 QQ\ 0 1 QKeypressed
00 QllQo oo | QllQo
01 1 | 1 01 1
4 QyKeypressed 4 Q,Keypressed
11 1 11 1
10 10
D; = Q,'Qo + QoKeypressed Do = Q:'Keypressed + Q;'Qq + QoKeypressed
(©)
Current State | Output
Q:1Qq Oneshot
00 0
01 1
11 0
10 0
(d)

Microprocessor Design: Principles and Practices with VHDL

Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 26 of 44

Keypressed

Y

D Q4
> Clk

Clear O | Oneshot

Do Qo
> Clk

Clear

Clock
Reset

Y'Y

©

Figure 7.14. FSM for one-shot circuit: (a) state diagram; (b) next-state table; (c) excitation equations and K-maps
for D; and Dy; (d) output table and output equation; (e) FSM circuit.

7.5 Example: Car Security System — Version 3

We will revisit the car security system example from Chapters 2 and 6. Recall that in the first version (Chapter
2) the circuit is a combinational circuit. The problem with a combinational circuit is that once the alarm is triggered,
by lets say opening the door, the alarm can be turned off immediately by closing the door again. However, what we
want is that once the alarm is triggered, it should remain on even after closing the door, and the only way to turn it
off is to turn off the master switch.

This requirement suggests that we need a sequential circuit instead where the output is dependent on not only
the current input switch settings but also on the current state of the alarm. Thus, we are able to come up with the
state diagram as shown in Figure 7.15 (a). In addition to the three input switches M, D and V for Master, Door, and
Vibration, we need two states, 1 and 0, to depict whether the siren is on or off respectively. If the siren is currently
on, i.e. in the 1 state, then it will remain in that state as long as the master switch is still on, so it doesn’t matter
whether the door is now close or open. This is represented by the edge that goes from state 1 and loops back to state
1 with the label MDV=1xx. From the on state, the only way to turn off the siren is to turn off the master switch. This
is represented by the edge going from state 1 to state O with the label MDV=0xx. If the siren is currently off, it is
turned on when the master switch is on, and either the door switch or the vibration switch is on. This is represented
by the edge going from state O to state 1 with the labels MDV=101,110, or 111. Finally, from the off state, the siren
will remain off when either the master switch remains off, or if the master switch is on but none of the other two
switches are on. This is represented by the edge from state 0 looping back to state 0.

The state diagram is translated to the corresponding next-state table and implementation table using one D flip-
flop as shown in Figure 7.15 (b). Again the next-state table and implementation table are the same except that the
entries for the next-state table are for the next states, and the entries for the implementation table are for the inputs to
the flip-flop. Doing a 4-variable K-map on the implementation table gives us the excitation equation shown in
Figure 7.15 (c). The final circuit for this car security system is shown in Figure 7.15 (d). The circuit uses one D flip-
flop. The next-state circuit is derived from the excitation equation, which produces the signal for the D input of the
flip-flop. The output of the flip-flop directly drives the siren.

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 27 of 44

MDV=0xx, 100 MDV=1xx

101, 110, 111

Siren=0 Siren=1
MDV=0xx
(@)
Current Next State (D flip-flop Implementation)
State Quext (D)
Q M,D,V

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
off 0 0 0 1 1 1
onl 0 0 0 0 1 1 1 1

o
o
o

(b)
DO
DV
MQ,\ 00 01 11 10
00
01

11 |1 | 1)) 1

10 1 1 1

Do = QoM + MV + MD = QoM + M(V + D)

(c)
D—>— Do Qo >Siren
\—>—]| >Clk
M—>— ’7
Clock— Clear
Reset—>
(d)

Figure 7.15. Car security system — version 3: (a) state diagram; (b) next-state / implementation table; (c) K-map and
excitation equation; (d) circuit.

7.6 VHDL for Sequential Circuits

Writing VHDL code for sequential circuits is usually done at the behavioral level. The advantage of writing
behavioral VHDL code is that we do not need to manually synthesize the circuit. The synthesizer will automatically
produce the netlist for the circuit from the behavioral code.

In order to write the behavioral VHDL code for a sequential circuit, we need to use the information from the
state diagram for the circuit. The main portion of the code contains two processes: a next-state-logic process, and an
output-logic process. The edges (both conditional and unconditional) from the state diagram are used to derive the

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 28 of 44

next-state-logic process, which will generate the next-state logic circuit. The output signal information in the state
diagram is used to derive the process for the output logic.

We will now illustrate the behavioral VHDL coding of sequential circuits with several examples.

Example 7.7

In this example, we will write the behavioral VHDL code for the Moore FSM of Example 7.1. The state
diagram for the example from Figure 7.7 is repeated here in Figure 7.16. The behavioral VHDL code for this Moore
FSM based on this state diagram and output table is shown in Figure 7.17.

Figure 7.16. State diagram for Example 7.7.

The entity section declares the primary 1/0 signals for the circuit. There is the global input clock and reset
signals. The clock signal determines the speed in which the sequential circuit will transition from one state to the
next. The reset signal initializes all the state memory flip-flops to zero. Although the sequential circuit shown in
Figure 7.6 for Example 7.1 does not have a reset signal, it is always a good idea to include one. In addition to the
standard global clock and reset signals, the entity section also declares all the input and output signals. For this
example, there is an input signal C, and an output signal Y; both of which are of type STD_LOGIC.

The architecture section starts out with using the TYPE statement to define the four states, Sy, Si, Sz, and s, used
in the state diagram. The SIGNAL statement declares the signal state to store the current state of the FSM. There are
two processes in the architecture section that execute concurrently: the next-state-logic process, and the output-logic
process. As the name suggests, the next-state process defines the next-state logic circuit that is inside the control
unit, and the output logic process defines the output logic circuit inside the control unit. The main statement within
these two processes is the CASE statement that determines what the current state is.

In the next-state-logic process, the current state of the FSM is initialized to s, on reset. The CASE statement is
executed only at the rising clock edge because of the test (clockEVENT AND clock = '1") in the IF statement. Hence,
the state signal is assigned a new state value at every rising clock edge. The new state value is, of course, dependent
on the current state and input signals, if any. For example, if the current state is s, the case for s; is selected. From
the state diagram, we see that when in state s;, the next state is dependent on the input signal C. Hence, in the code,
an IF statement is used. If C is 1 then the new state s, is assigned to the signal state, otherwise, S, is assigned to state.
For the latter case, even though we are not changing the state value sp, we still make that assignment to prevent the
VHDL synthesizer from using a memory element for the state signal. Recall from Section 6.13.1 that VHDL
synthesizes a signal using a memory element if the signal is not assigned a value for all possible cases. The rest of
the cases in the CASE statement are written similarly based on the remaining edges in the state diagram.

In the output-logic process, all the output signals must be assigned a value in every case. Again, the reason is
that we do not want these output signals to come from memory elements. In the FSM model, the output circuit is a
combinational circuit, and so it should not contain any memory elements. For each state in the CASE statement in the
output process, the values assigned to each of the output signal are taken directly from the output table. For this
example, there is only one output signal Y.

A sample simulation trace of this sequential circuit is shown in Figure 7.18. In the simulation trace, between
times 100ns and 800ns when R is de-asserted and C is asserted, the state changes at each rising clock edge (at times
300ns, 500ns, and 700ns.) At time 700ns when the current state is sz, we see that the output signal Y is also asserted.

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 29 of 44

At time 800ns, input C is de-asserted, as a result, the FSM did not change state at the next rising clock edge at time
900ns.

LI BRARY | EEE;
USE | EEE. STD_LOGQ C_1164. ALL,

ENTI TY MooreFSM IS PORT (
clock: IN STD LOG C;
reset: IN STD LOd G,

C. IN STD_LOG G
Y: OQUT STD_LOA ©);
END Moor eFSM

ARCHI TECTURE Behavi oral OF MyoreFSM IS
TYPE state_type IS (s0O, sl1, s2, s3);
SIGNAL state: state_type;

BEG N
next state | ogic: PROCESS (clock, reset)
BEG N
IF (reset = '1') THEN

state <= sO0;
ELSIF (clock' EVENT AND clock = "1') THEN
CASE state IS
VWHEN sO0 =>
IF C="1 THEN
state <= si;
ELSE
state <= sO;
END | F;
VWHEN s1 =>
IF C="1 THEN
state <= s2;
ELSE
state <= sl1,;
END | F;
VWHEN s2=>
IF C="1 THEN
state <= s3;
ELSE
state <= s2;
END | F;
VWHEN s3=>
IF C="1 THEN
state <= sO;
ELSE
state <= s3;
END | F;
END CASE;
END | F;
END PROCESS;

out put | ogi c: PROCESS (state)
BEG N
CASE state IS
VWHEN s0 =>
Y <="'0";

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 30 of 44

WHEN s1 =>
Y <='0";
WHEN s2 =>
Y <='0;
WHEN s3 =>
Y <=1
END CASE;
END PROCESS;

END Behavi or al ;

Figure 7.17. Behavioral VHDL code of a Moore FSM for Example 7.7.

Marme 100 O 200.0n% 300, 0ns 400 Oris S00.0n= B0.Ong 700 Ons800 Ons 90000 1.0us 10w 1.2us 1.5us
|
wp— clock | ! | | I | I |
aF state 0l 5 s } " 1 53 I HEE

= reset

g ¥ | |

Figure 7.18. Simulation trace of a Moore FSM for Example 7.7.

Example 7.8

This example shows how a Mealy FSM is written using behavioral VHDL code. We will use the Mealy FSM
from Example 7.2. The state diagram for this FSM is shown in Figure 7.9. This FSM is very similar to the one from
the previous example except that the generation of the output signal Y is also dependent on the input signal C. The
VHDL code is shown in Figure 7.19. In this code, we see that the next-state-logic process is identical to the previous
FSM code. In the output-logic process, the only difference is in state s; where an IF statement is used to determine
the value of the input signal C. The output signal Y is assigned a value depending on the result of this test.

The simulation trace for this Mealy FSM is shown in Figure 7.20. Notice that the only difference between this
trace and the one from the previous example is in the Y signal between times 800ns and lus. During this time
period, the input signal C is de-asserted. In the previous trace, this has no effect on Y, however, for the Mealy FSM
trace, Y is also de-asserted.

LI BRARY | EEE;
USE | EEE. STD_LCGQ C_1164. ALL,

ENTI TY Meal yFSM IS PORT (
clock: IN STD LOG C;
reset: IN STD LOG C;

C. IN STD_LCGE G
Y: OUT STD LOd O);
END Meal yFSM

ARCHI TECTURE Behavi oral OF Meal yFSM I S
TYPE state_type IS (s0O, sl1, s2, s3);
SIGNAL state: state_type;

BEG N
next state | ogic: PROCESS (clock, reset)
BEG N
IF (reset = '1') THEN

state <= sO0;

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits

Page 31 of 44

ELSIF (clock' EVENT AND clock = '1') THEN
CASE state is

VWHEN sO =>
IF C="1 THEN
state <= sl1,;
ELSE
state <= sO;
END | F;
VWHEN s1 =>
IF C="1 THEN
state <= s2;
ELSE
state <= si;
END | F;
VWHEN s2=>
IF C="1 THEN
state <= s3;
ELSE
state <= s2;
END | F;
VWHEN s3=>
IF C="1 THEN
state <= sO0;
ELSE
state <= s3;
END | F;
END CASE;
END | F;
END PROCESS;

out put | ogi c: PROCESS (state, C
BEG N
CASE state IS
VWHEN s0 =>
Y <="'0";
VWHEN s1 =>
Y <="'0";
VWHEN s2 =>
Y <='0";
VWHEN s3 =>
IF (C="1") THEN
Y <="'1";
ELSE
Y <="'0";
END | F;
END CASE;
END PROCESS;

END Behavi or al ;

Figure 7.19. Behavioral VHDL code for the Mealy FSM of Example 7.8.

Microprocessor Design: Principles and Practices with VHDL

Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits

Page 32 of 44

Marme 100 Qs 200.0ns 300, Ons 400 Ores S00.Ons B0, Ons 700 0ns 800 Ons B000ns 1.0us 11w 12us 13us 14
= clock | I I S I I !

o stale =0 E &1 :E &2 I' &3 H sl 2_ 8
= ragat []

w-c L I
- ¥ [1 [

Figure 7.20. Simulation trace for the Mealy FSM of Example 7.8.

Example 7.9

This is another example of a Moore FSM written using behavioral VHDL code. This FSM is from Example 7.4,
and the state diagram for this example is shown in Figure 7.12. The behavioral VHDL code for this FSM is shown in

Figure 7.21, and the simulation trace in Figure 7.22.

LI BRARY | EEE;
USE | EEE. STD LOd C_1164. ALL;

ENTI TY MooreFSM | S PORT(
clock: IN STD LCA C;
reset: IN STD LOG C;
start, neg9: IN STD LOd C;
X,y: OUT STD LOd C);

END Moor eFSM

ARCHI TECTURE Behavi oral OF MboreFSM | S
TYPE state type IS (s0O, sl1, s2, s3);
SIGNAL state: state_type;

BEG N
next _state_l ogic: PROCESS (clock, reset)
BEG N

IF (reset = '1') THEN
state <= s0;
ELSIF (clock' EVENT AND cl ock = '1') THEN
CASE state | S
VWHEN sO =>
IF start = '1'" THEN
state <= sli;
ELSE
state <= sO0;
END | F;
VWHEN s1 =>
state <= s2;
VWHEN s2 =>
IF neq9 = '1' THEN
state <= s3;
ELSE
state <= sli;
END | F;
VWHEN s3 =>
state <= sO;
END CASE;
END | F;
END PRCCESS;

Microprocessor Design: Principles and Practices with VHDL

Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 33 of 44

out put | ogi c: PROCESS (state)
BEG N
CASE state IS
VWHEN s0O =>
X <="'0";
y <= "1°;
VWHEN s1 =>
X <="'1";
y <= "1°;
VWHEN s2 =>
X <="'1";
y <="'1";
VWHEN s3 =>
X <="'1";
y <='0%;
END CASE;
END PRCCESS;
END Behavi oral ;

Figure 7.21. Behavioral VHDL code for the Moore FSM of Example 7.9.

Marme 200 Oris 400 D5 &0 Ons BCD) . Ons 1 Ous 1 2us 1. dus
=

m— clock | L1 | L 1 I [| |

G state 50 H 51 1 57 H &1 H &2 i &3 H 4]

g rpsat |

-t | []
i |
- | L
- I

Figure 7.22. Simulation trace for the Moore FSM of Example 7.9.

7.7 *Optimization for Sequential Circuits

In designing any digital circuit, in addition to getting a functionally correct circuit, we like to optimize it for
size, speed, and power consumption. In this section, we will briefly discuss some of the issues involved. A full
treatment of optimization for sequential circuits is beyond the scope of this book.

Since sequential circuits also contain combinational circuit parts (the next-state logic and the output logic),
these parts should also be optimized following the optimization procedures for combinational circuits as discussed in
Section 4.4. Some basic choices for sequential circuit optimization include state reduction, state encoding, and
choice of flip-flop types.

7.7.1 State Reduction

Sequential circuits with fewer states most likely will result in a smaller circuit since the number of states
directly translates to the number of flip-flops needed. Fewer flip-flops imply a smaller state memory for the FSM.
Furthermore, fewer flip-flops also mean fewer flip-flop inputs, so the number of excitation equations needed is also
reduced. This of course means that the next-state circuit will be smaller.

Reducing the number of states needed by a FSM typically involves the removal of equivalent states. If two
states are equivalent, we can remove one of them and instead use the other equivalent state. The resulting FSM will
still be functionally equivalent. Two states are said to be equivalent if the following two conditions are true:

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 34 of 44

1. Both states produce the same output for every input.
2. Both states have the same next state for every input.

7.7.2 State Encoding

When initially drawing the state diagram for a sequential circuit, it is preferred to keep the state names
symbolic. However, these state names must be eventually encoded with a unique bit string. State encoding is the
process of determining how many flip-flops are required to represent the states in the next-state table or state
diagram, and to assign a unique bit string combination to each named state. In all the examples presented so far, we
have been using the straight binary encoding scheme where n flip-flops are needed to encode 2" states. For example,
for four states, state s, gets the encoding 00, state s; gets the encoding 01, s, gets 10, and s; gets the encoding 11.
However, this scheme does not always lead to the smallest FSM circuit. Other encoding schemes are minimum bit
change, prioritized adjacency, and one-hot encoding.

For the minimum bit change scheme, binary encodings are assigned to the states in such a way that the total
number of bit changes for all state transitions is minimized. In other words, if every edge in the state diagram is
assigned a weight that is equal to the number of bit change between the source encoding and the destination
encoding of that edge, this scheme would select the one that minimizes the sum of all these edge weights.

For example, given a four-state state diagram shown in Figure 7.23 (a), the minimum bit change scheme would
use the encoding shown in (b) and not the encoding shown in (c). In both (b) and (c), the number of bit change
between the encodings of two states joined by an edge is labeled on that edge. For example, in (b), the number of bit
change between state s; = 01 and s, = 11 is 1. The encoding used in (b) has a smaller sum of all the edge weights
than the encoding used in (c).

Notice that even though the encoding of Figure 7.23 (b) produces the smallest total edge weight, there are
several other ways to encode these four states that will also produce the same total edge weight. For example,
assigning 00 to s, instead of to sy, 01 to s, instead of s;, 11 to s3, and 10 to .

@ (b) ©

Figure 7.23. Minimum bit change encoding: (a) a four-state state diagram; (b) encoding with a total weight of 4; (c)
encoding with a total weight of 6.

For the prioritized adjacency scheme, adjacent states to any state s are given certain priorities. Encodings are
assigned to these adjacent states such that those with a higher priority will have an encoding that has fewer bit
change from the encoding of state s than those adjacent states with a lower priority.

In the one-hot encoding scheme, each state is assigned one flip-flop. A state is encoded with its flip-flop having
a 1 value while all the other flip-flops have a 0 value. For example, the one-hot encoding for four states would be
0001, 0010, 0100, and 1000.

7.7.3 Choice of Flip-Flops

A FSM can be implemented using any of the four types of flip-flops, SR, D, JK, and T (see Section 6.13) or any
combinations of them. Using different flip-flops can produce a smaller circuit but with the same functionality. The

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 35 of 44

decision as to what types of flip-flops to use is reflected in the implementation table. Whereas, the next-state table is
independent of the flip-flop types used, the implementation table is dependent on these choices of flip-flops.

The implementation table answers the question of what the flip-flop inputs should be in order to realize the
next-state table. In order to do this, we need to use the excitation table for the selected flip-flop(s). Recall that the
excitation table is used to answer the question of what the inputs should be when given the current state that the flip-
flop is in and the next state that we want the flip-flop to go to. So to get the entries for the implementation table, we
substitute the next-state values from the next-state table with the corresponding entry in the excitation table.

For example, if we have the following next-state table

Current Next State
State anext QOnext

QlQo C=0 C=1
00 00 00
01 10 10
10 01 11
11 00 00

and we want to use the SR flip-flop to implement the circuit, we would convert the next-state table to the
implementation table as follows. First, the next state column headings from the next-state table (QinextQonext) are
changed to the corresponding flip-flop input names (S;R1SoRo). Since the SR flip-flop has two inputs, therefore, each
next-state bit Qe is replaced with two input bits SR. This is done for all the flip-flops used as shown below

Current State Implementation
SlRlSORO
A c=0 | c=1
00
01 10
10
11

To derive the entries in the implementation table, we will need the excitation table for the SR flip-flop (from
Section 6.13.1) shown below

Q Qnext S R
0 0 0| x
0 1 110
1 0 01
1 1 x |0

For example, if the current state for flip-flop one is Q; = 0 and the next state Qqne = 1, We would do a table
lookup in the excitation table for QQ,e: = 01. The corresponding two input bits are SR = 10. Hence, we would
replace the 1 bit for Qe in the next-state table with the two input bits S;R; = 10 in the same entry location in the
implementation table. Proceeding in this same manner for all the next-state bits in the next-state table entries, we
obtain the complete implementation table below

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 36 of 44

Current State Implementation
SlRlSORO
A Cc=0 | C=1
00 0x0x | 0x0x
01 1001 1001
10 0110 | x010
11 0101 0101

Once we have the implementation table, deriving the excitation equations and drawing the next-state circuit are
identical for all flip-flop types.

The output table and output equations are not affected by the change in flip-flop types, and so they remain
exactly the same too.

Example 7.10

In this example, we will design a modulo-6 up counter using T flip-flops. This is similar to Example 7.3 but
using T flip-flops instead of D flip-flops. The next-state table for the modulo-6 up counter as obtained from
Example 7.3 is shown in Figure 7.24 (a). The excitation table for the T flip-flop as derived in Section 6.14.3 is
shown in Figure 7.24 (b).

The implementation table is obtained from the next-state table by substituting each next-state bit with the
corresponding input bit of the T flip-flop. This is accomplished by doing a table look-up from the T flip-flop
excitation table.

For example, in the next-state table for the current state Q,Q;Q, = 010 and the input C = 1, we want the next
state Qonext Qunext Qonext 10 be 011. The corresponding entry in the implementation table shown in Figure 7.24 (c)
using T flip-flops would be T,T;T, = 001 because for flip-flop, we want its content to go from Q; = 0 t0 Qpnext = 0.
The excitation table tells us that to realize this change, the T, input needs to be a 0. Similarly, for flip-flop; we want
its content to go from Q; = 1 to Qunex = 1, and again the T, input needs to be a 0 to realize this change. Finally, for
flip-flop, we want its content to go from Qg = 0 t0 Qgnext = 1, this time, we need T, to be a 1. Continuing in this
manner for all the entries in the next-state table, we obtain the implementation table shown in Figure 7.24 (c).

From the implementation table, we obtain the excitation equations just like before. For this example, we have
the three input bits T,, T, and To, which results in the three equations. These equations are dependent on the four
variables Q,, Q;, Qq, and C. The three K-maps and excitation equations for T,, T1, and T, are shown in Figure 7.24
(d). The output equation is the same as before (see Figure 7.11 (e)). Finally, the complete modulo-6 up counter
circuit is shown in Figure 7.24 (e).

Comparing this circuit with the circuit from Example 7.3 shown in Figure 7.11 (f) where D flip-flops are used,
it is obvious that using T flip-flops for this problem result in a much smaller circuit than using D flip-flops. .

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 37 of 44

Current Next State Current State Implementation
State Q2next anext QOnext Q Q Q T2 Tl TO
QQ0Q | C=0 | C=1 Quext | Quet [T 7"] c=0] c=1
000 000 001 0 0 0 000 000 001
001 001 010 0 1 1 001 000 011
010 010 011 1 0 1 010 000 001
011 011 100 1 1 0 011 000 111
100 100 101 100 000 001
101 101 000 (b) 101 000 101
(a) (©)
T, T, T,
cQ, cQ, cQ,
UQ 00 01 11 10 UQ 00 01 11 10 (oo} 00 01 11 10
00| 0 0 0 0 00| 0 0 0 0 00| 0 0 1 1

T, =CQxQo + CQ2Ql T1=CQ,'Qo To=C

(d)

{
{
|
i_\l Ty Q4

>Clk
QY

Clock Clear

Reset

YvY

©

Figure 7.24. Synthesis of a FSM for Example 7.6: (a) next-state table; (b) excitation table for the T flip-flop; (c)
implementation table using T flip-flops; (d) K-maps and excitation equations; (¢) FSM circuit.

7.8 Summary Checklist

O State diagram

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits

State encoding
Output signal
Conditional edge
Next-state table
Implementation table
Excitation equation
Output table

Output equation
Next-state logic

Page 38 of 44

State memory
Output logic
FSM circuit

ooo0oo0oo0oU0oo0oDO0oO0DO0D00O0DD0DDO0ODDO0DODD

7.9 Problems

Unused state encoding

Be able to derive the state diagram from an arbitrary circuit description
Be able to derive the next-state table from a state diagram

Be able to derive the implementation table from a next-state table

Be able to derive the excitation equations from an implementation table
Be able to derive the output table from a state diagram

Be able to derive the output equations from an output table

Be able to derive the FSM circuit from the excitation and output equations

7.1. Design a modulo-4 up/down counter using D flip-flops. The count is represented by the content of the flip-
flops. The circuit has a Count signal and an Up signal. The counter counts when Count is asserted, and stops
when Count is de-asserted. The Up signal determines the direction of the count. When Up is asserted, the
count increments by one at each clock cycle. When Up is de-asserted, the count decrements by one at each

clock cycle.

7.2. Design a modulo-

7.3. Design a modulo-

5 up counter using D flip-flops similar to Problem 7.1, but without the Up signal.

5 up/down counter using D flip-flops similar to Problem 7.1.

7.4. Design a modulo-4 up counter using T flip-flops.

Answer:

Next-state table:

Implementation table:

Current State Next State Current State Next State
anext QOnext Tl TO
QlQo C=0|C=1 QlQo cC=0|C=1
00 00 01 00 00 01
01 01 10 01 00 11
10 10 11 10 00 01
11 11 00 11 00 11

Circuit:

Microprocessor Design:

Excitation equations:

T,:=CQq
T0=C

Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits

C
_D—Tl Q1
—p Clk
Q1
To Qo
Clk >Clk
Qb

7.5. Design a FSM that counts the following decimal sequence

3,7,2,6,3,7,2,6, ...

Page 39 of 44

The count is to be represented directly by the contents of the D flip-flops. The counting starts when the control
input C is asserted and stops whenever C is de-asserted. Assume that the next-state from all unused states is the

state for the first count in the sequence, i.e. the state for 3.

Answer:

Since we’re using the flip-flop content to represent the count and the largest number is 7, therefore, we need

three (3) bits even though there are only four numbers in the sequence.

State diagram:

C=0 C=0

o%i/ c=1 > 111
A C: l
all unused
state c=1
1]3: KOlO
c=1
C=0 C=0

Next-state table and implementation table:

Next State / Implementation
Current State
Q Q Q Q2nexthnext QOnext/ D2D1DO
2o C=0 c=1
000 011 011
001 011 011

Microprocessor Design: Principles and Practices with VHDL

Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 40 of 44

010 010 110
011 011 111
100 011 011
101 011 011
110 110 011
111 111 010

Excitation equations:

D, =Q,'Q:C + Q,Q,C'
D]_:l
Do =0Q1"+ Q,'Qp + QoC' + Q.Q0'C

Circuit:

C

K4

D, Qo—
—p Clk

QY

—> Clk

Q1

| Do Qo
—b Clk

QY

Clk

7.6. Design a counter that counts in the following sequence:
1,4,6,7,1,4,6,7,

The count is to be represented directly by the contents of three D flip-flops. The counter is enabled by the input
C. The count stops when C = 0. The next-state from all unused states are undefined.

7.7. Repeat Example 7.6 but encode state s, as 10 instead of 11, and see if the resulting FSM circuit is larger or
smaller.

7.8. Repeat Problem 7.6, but use a JK flip-flop, a D flip-flop, and a SR flip-flop in this order starting from the
most significant bit for the three flip-flops.

Answer:

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 41 of 44

Next-state table:

Current State Next State
QZQlQO QZnext anext QOnext
C=0 Cc=1
001 001 100
100 100 110
110 110 111
111 111 001

Excitation tables for the three flip-flops:

Q| Qux |JIK]DJS]|R
0 0 0 X 0 0 X
0 1 1 X 1 1 0
1 0 x | 1 0| O 1
1 1 X 0 1 X 0

Implementation table:

Current State Implementation
J2 K3 D1 SRy

Q2Q:1Qq C=0 C=1

001 0x0x0 1x001

100 x000x x010x

110 x010x | x0110

111 x01x0 x10x0

K-maps and excitation equations:

J, K, b,
CQ, cQ, co,
Q% % oL 1 10 Q,Q, 00 01 11 10 Q,Q, 00 o1 1110
00 x| x| x| o x | 0] o | x w0 x o [l1]
,,,,,,,,,,,,,,,,,,,,,,,,,,, CQ .
01| o x x 1 o1l x § : -
C - cQ% X L1 ,
11 x X x x 1l x 0 N y
10f x x x x 10l x 0 0 y
B =C K2=CQo
So R,
cQ, ca,
A% L u 1 Q,Q, 00 01 11 10
00} x 0 0 x 0ol x T =
01| x X X 0 , o1l o R 1
CQl' R — CQi rrrrrrrrrrrrrrr
11| x x ™ x x 1l x 0 0 .
1o} x 0 ! x 10| x X 0 x
= — 1
Sp=CQ, R, = CQ;
Circuit:

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 42 of 44

C
J2 Q7
—p Clk
D Ky QY
D Qy
| >>j b cik
Q1
[—s0 Qo
— Clk
—D Ro Qb
Clk

7.9. Manually design and implement on the UP2 board the following FSM circuit. Make the LEDs in the 7-
segment display move in a clockwise direction around in a circle, i.e. turn on and off the LED segments in
this order: segment a, b, ¢, d, e, f, a, b, etc.

7.10. Manually design and implement on the UP2 board the following FSM circuit. Similar to Problem 7.9, but
make one 7-segment LED display in a clockwise direction, and the other in an anti-clockwise direction.

7.11. Manually design and implement on the UP2 board the following FSM circuit. Similar to Problem 7.9, but
make it so that each time when a push button switch is pressed, the display changes directions.

7.12. Manually design and implement on the UP2 board the following FSM circuit. Input from the eight DIP
switches. Output on the 7-segment the decimal number that represents the number of DIP switches that are in
the on position.

7.13. Manually design and implement on the UP2 board a FSM circuit for controlling three switches, T1, T2, and
T3, and three lights L1, L2, and L3. Each light is turned on by the corresponding switch, for example, T1 turns
on L1. Initially, all switches are off. The first switch that is pressed will turn on its corresponding light. When
the first light is turned on, it will remain on, while the other two lights remain off, and they are unaffected by
subsequent switch presses until reset.

Answer:

anext QOnext
T.T, Ty

Q:Qo | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
00 00 | 01 | 10 | OO | 11 | 00 | OO | 0O
01 01 |01 |01 |01)01]01]01 |01
10 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10
11 11 |11)11 |11 |11 | 11 |11 | 11

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits Page 43 of 44

Ts T, Ty
vIv]Y
| L,
—D_ L,
| L,

RCJ\zt

Clock:

7.14. Design a FSM circuit for controlling a simple home security system. The operation of the system is as
follows.

Inputs: - Front gate switch (FS)
- Motion detector switch (MS)
- Asynchronous Reset switch (R)
- Clear switch (C)

Outputs: - Front gate melody (FM)
- Motion detector melody (MM)

* When the reset switch (R) is asserted, the FSM goes to the initialization state (S_init) immediately. The
encoding for the initialization state is zeros for all the flip-flops.

» From state S_init, the FSM unconditionally goes to the wait state (S_wait).

* From state S_wait, the FSM waits for one of the four switches to be activated. All the switches are active
high so when a switch is pressed or activated, it sends out a 1. The following actions are taken when a
switch is pressed:

e When FS is pressed, the FSM goes to state S_front. In state S_front, the front gate melody is turned on by
setting FM = 1. The FSM remains in state S_front until the clear switch is pressed. Once the clear switch is
pressed, the FSM goes back to S_wait.

* When MS is activated, the FSM goes to state S_motion. In state S_motion, MM is turned on with a 1. MM
will remain on for two more clock periods and then it will go back to S_wait.

» From any state, as soon as the reset switch is pressed, the FSM immediately goes back to state S_init.

» Pressing the clear switch only affects the FSM when it is in state S_front. The clear switch has no effect on
the FSM when it is in any other states.

» Any unused state encoding will have S_init as their next state.

Microprocessor Design: Principles and Practices with VHDL Last updated 3/9/2004 1:20 PM

Chapter 7 — Sequential Circuits

Index

A

Analysis of sequential circuit, 4

C
Characteristic equation, 6
Choice of flip-flops, 35
E

Excitation equation, 5

F

Finite-state machine, 3
FSM. See Finite-state machine.

M

Mealy FSM, 3

Microprocessor
next-state logic, 3
state memory, 3

Moore FSM, 3

N

Next-state equation, 6
Next-state logic, 3
Next-state table, 6

Microprocessor Design: Principles and Practices with VHDL

Page 44 of 44

0]

One-shot circuit, 24

Optimization of sequential circuit, 33
choice of flip-flops, 35
state encoding, 34
state reduction, 33

Output equation, 7

Output table, 7

S

Sequential circuit
analysis, 4
optimization. See Optimization of sequential
circuit
synthesis, 12
State, 3
State diagram, 7
State encoding, 34
State memory, 3
State reduction, 33
Synthesis of sequential circuit, 12

Vv

VHDL
sequential circuits, 27

Last updated 3/9/2004 1:20 PM

Chapter 8 — Sequential Components Page 1 of 30

Contents

Lo [0l gL U O T3] oo T3 =T o] S 2
TS T 1 (=1 £ SS 3
ST o i A = (=T L1 (=T S 4
8.2.1 Serial-to-Parallel Shift REGISETccciiii et e e e saesresreane s 5
8.2.2 Serial-to-Parallel and Parallel-to-Serial Shift REQISIEr.......c.cvviiiiiiiiece e 7

8.3 (0001101 1=] £ T TSSO U O TR TS ROTOPTPP 8
8.3.1 BINAIY UP COUNTET ...ttt bttt bbbt bt bt s e b e eb e b eb e et e bt en e e sbenbesbesnenes 9
8.3.2 BiNary UP-DOWN COUNTETciuiitiiieitieiieieie ettt sttt sttt e et b e be st e bt et e e e e nbeseenbesbeaneas 11
8.3.3 Binary Up-Down Counter with Parallel LOAd...........coooiiiiiiiiiiice e 13
8.34 BCD U COUNTET ...ttt sttt ettt ettt ettt e b e b e e b e ekt e bt e ae e eh b e eb e e eb e e bt anb e e st e ehbesbeenbeesbeenbeeneas 14
8.35 BCD UP-DOWN COUNTET ...ttt ittt ettt ettt ettt st s te e sbe e sbe bt e b e ess e ebeesbeesbe et e e beasbesseesbeesaeenneaneas 16

ST 1o T 151 (<1 1 SO 17
8.5 Static RANAOM ACCESS IMEMOIY ..o.viiieiieeiieiiiese st st st ste e e e e et e e sreste s e eseeseessesteseestesseeseeseenseseeseessenreaneas 21
ST T I 14 =T |V [=T 0 Vo] g TSSO 25
8.6.1 Y o C Y (=T Yo o VA I o [SRS 25
8.6.2 WIAEE BIt WIAEN ...ttt 25

8.7 SUMMANY ChECKIISEeviiieiiiieeicie ettt et et s e s e e s e e e e e seestesreeneeraeneeseeseeseenreaneas 28
8.8 0] o] = 1 1O USRS SO TR TRPR 28
0T (= TSSO UPTUURPRURR 30

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 2 of 30

Chapter 8

Sequential Components

Control Data
Inputs Inputs
Y A\ 4
B IOI
Control unit Datapath
> > \.
o
—] State Output > >
Next- .
state Memory Logic g_ontrcl)l
Logi ; ignals T
oaie | register = 33) Q’ > register

Q
—<H

St:ftus
v Signals v
Control Data
Outputs Outputs

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 3 of 30

In a computer system, we usually want to store more than one bit of information. More over, we want to group
several bits together and consider them as one unit, such as an integer is made up of eight bits. In Chapter 6, we
presented the circuits for latches and flip-flops for storing one bit of information. In this chapter, we will look at
registers and memory circuits for storing multiple bits of information. Registers are also made more versatile by
adding functionalities such as counting and shifting to it. We will also look at the design of counters and shift
registers.

8.1 Registers

When we want to store a byte of data, we need to combine eight flip-flops together, and have them work as a
unit. A register is just a circuit with two or more D flip-flops connected together in such a way that they all work
exactly the same way, and are synchronized by the same clock and enable signals. The only difference is that each
flip-flop in the group is used to store a different bit of the data.

Figure 8.1 (a) shows a 4-bit register with parallel load and asynchronous clear. Four D flip-flops with active
high enable and asynchronous clear are used. Notice in the circuit that the control inputs CIk, E, and Clear for all the
flip-flops are respectively connected in common so that when a particular input is asserted, all the flip-flops will
behave in exactly the same way. The 4-bit input data is connected to Dy through D3, while Qq through Q3 serve as
the 4-bit output data for the register. When the active high load signal Load is asserted, i.e. Load = 1, the data
presented on the D lines is stored into the register (the four flip-flops) at the next rising edge of the clock signal.
When Load is de-asserted, the content of the register remains unchanged. The register can be asynchronously
cleared, i.e., setting all the Q;'s to 0, by asserting the Clear line. The content of the register is always available on the
Q lines, so no control line is required for reading the data from the register. Figure 8.1 (b) and (c) show the operation
table and the logic symbol respectively for this 4-bit register.

Figure 8.2 shows the VHDL code for the 4-bit register with active high Load and Clear signals. Notice that the
coding is very similar to that for the single D flip-flop. The main difference is that the data inputs and outputs are
four bits wide. A sample simulation trace for the register is shown in Figure 8.3. At time 100ns, even though Load is
asserted, the register is not written with the D input value 5, because Clear is asserted. Between times 200ns and
400ns, Load is de-asserted, so even though Clear is de-asserted, the register is still not loaded with the input value 5.
At time 400ns, Load is asserted but the input data is not loaded into the register immediately as can be seen by Q
being a 0. The loading occurs at the next rising edge of the clock at 500ns when Q changes to 5. At time 600ns,
Clear is asserted, and so Q is reset to 0 immediately without having to wait until the next rising clock edge at 700ns.

D3 D, Dy Do
Y A\ A\ Y
Clear - T T T |
Clear Clear Clear Clear
—D3 Q3 —D> Q2 —D1 Q1 —Do Qo
> Clk > Clk > Clk > Clk
—E —E —E —E
Clock =
Load —
Y A4 A4 Y
Q3 Q2 Q Qo
(@)

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 4 of 30

D3 DZ Dl DO
Clear | Load Operation —|Clear A-bit register
1 x | Reset register to zero immediately —lLoad with parallel load Clock<
0 0 No change
0 1 | Load in avalue at rising clock edge Qf (iz (il Qlo
(b) (©
Figure 8.1. A 4-bit register with parallel load and asynchronous clear: (a) circuit; (b) operation table; (c) logic
symbol.
LI BRARY i eee;

USE ieee.std_logic_1164. all;

ENTITY reg | S GENERIC (size: INTEGER := 3);-- size of the register
PORT (
Cl ock, Clear, Load: IN std_|ogic;
D: IN std_| ogic_vector(size DOANNTO 0);
Q OQUT std_| ogic_vector(size DONNTO 0));

END r eg;
ARCHI TECTURE Behavior OF reg IS
BEG N

PROCESS(Cl ock, d ear)

BEG N

IF Clear = "'1" THEN
Q <= (OTHERS => '0');
ELSI F d ock' EVENT AND Cl ock = '1'" THEN
IF Load = '"1' THEN
Q<=D
END | F;
END | F;
END PROCCESS;
END Behavi or;

Figure 8.2. VHDL code for a 4-bit register with active high Load and Clear signals.

Hame '|L|_'IU|IE é'_LII_'r'I:'- S Lng -1Ll.ll'_r'|‘.- ':-|.|.|IL|I'|*'.- HJ'JILll =

Lt

= Clock i | | | | |
E= laar |
= Load I] |

= 0 [

w0 : T

Figure 8.3. Sample simulation trace for the 4-bit register.

8.2 Shift Registers

Similar to the combinational shifter and rotator circuits, there are the equivalent sequential shifter and rotator
circuits. The circuits for the shift and rotate operations are constructed exactly the same. The only difference in the

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 5 of 30

sequential version is that the operations are performed on the value that is stored in a register rather than directly on
the input value. The main usage for a shift register is for converting from a serial data input stream to a parallel data
output or vice versa. For a serial to parallel data conversion, the bits are shifted into the register at each clock cycle,
and when all the bits (usually eight bits) are shifted in, the 8-bit register can be read to produce the eight bit parallel
output. For a parallel to serial conversion, the 8-bit register is first loaded with the input data. The bits are then
individually shifted out, one bit per clock cycle, on the serial output line.

8.2.1 Serial-to-Parallel Shift Register

Figure 8.4 (a) shows a 4-bit serial-to-parallel converter. The input data bits come in on the Serial_in line at a
rate of one bit per clock cycle. When Shift is asserted, the data bits are loaded in one bit at a time. In the first clock
cycle, the first bit from the serial input stream Serial_in gets loaded into Qs, while the original bit in Q3 is loaded
into Q,, Q, is loaded into Q4, and so on. In the second clock cycle, the bit that is in Qs (i.e., the first bit from the
Serial_in line) gets loaded into Q,, while Qs is loaded with the second bit from the Serial_in line. This continues for
four clock cycles until four bits are shifted into the four flip-flops, with the first bit in Qq, second bit in Q,, and so
on. These four bits are then available for parallel reading through the output Q. Figure 8.4 (b) and (c) show the
operation table and the logic symbol respectively for this shift register.

The structural VHDL code for a 4-bit serial-to-parallel shift register is shown in Figure 8.5. The code is written
at the structural level. The operation of a D flip-flop with enable is first defined. The architecture section for the
ShiftReg entity uses four PORT MAP statements to instantiate four D flip-flops. These four flip-flops are then
connected together using the internal signals NO, N1, N2, and N3 such that the output of one flip-flop is connected to
the input of the next flip-flop. These four internal signals also connect to the four output signals Q, to Qs for the
register output. Note that we cannot directly use the output signals, Q, to Qs, to directly connect the four flip-flops
together since output signals cannot be read.

A sample simulation trace of the serial-to-parallel shift register is shown in Figure 8.6. At the first rising clock
edge at time 100ns, the Serial_in bit is a 0, so there is no change in the four bits of Q, since they are initialized to
0’s. At the next rising clock edge at time 300ns, the Serial_in bit is a 1, and it is shifted into the leftmost bit of Q.
Hence Q has the value 1000. At time 500ns, another 1 bit is shifted in, giving Q the value 1100. At time 700ns, a 0
is shifted in, giving Q the value 0110. Notice that as bits are shifted in, the rightmost bits are lost. At time 900ns,
Shift is de-asserted, so the 1 bit in the Serial_in line is not shifted in. Finally, at time 1.1us, another 1 bit is shifted in.

Serial in »>——-1D; Q3 D, Q9 D, Q4 Do Qo
> Clk > Clk > Clk > Clk
—E —E —E E
Clock = ’7
Shift —»
Y Y Y Y
Qs Q2 Q Qo
(@)

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 6 of 30

—>Serial_in 4-bit
i i serial-to-parallel
Shift Operation —shift shift register Clock<e—
0 | Nochange
1 | One bit from Serial_in is shifted in (13 (iz (il (io
(b) (©)

Figure 8.4. A 4-bit serial-to-parallel shift register: (a) circuit; (b) operation table; (c) logic symbol.

-- Dflip-flop with enable
LI BRARY | EEE;
USE | EEE. STD LOd C_1164. ALL;
ENTITY D flipflop IS
PORT(D, Cock, E: IN STD LOG C
Q: OQUT STD_LOd ©);
END D flipflop;

ARCHI TECTURE Behavior OF D flipflop IS
BEG N
PROCESS(d ock)
BEG N
I F Cock' EVENT AND C ock = '1'" THEN
IF E="1 THEN
Q<=D
END | F;
END | F;
END PROCESS;
END Behavi or;

-- 4-bit shift register
LI BRARY | EEE;
USE | EEE. STD LOd C_1164. ALL;
ENTITY ShiftReg IS -
PORT(Serialin, Cock, Shift : IN STR LOG C
Q: QUT STD LOd C VECTOR(3 downto %

END shi ft Reg; \(ﬁ\
X 4

ARCHI TECTURE Structural OF Shi ftRe({fl
SIGNAL NO, NI, N2, N3 : STD.LOGC)
COVPONENT D flipflop PORT (l:,@&@l\\dc\((//\E : IN STD_LOG C;
Y4

Q: OUT STD LCd O);

END COVPONENT; 4 v\\/
/’>
BEGI N vg

UL: D flipflop PORT I\/Alq»h:}t}rik in, Oock, Shift, N3);
N

U2: D flipflop PORT MAP (N3, ock, Shift, N2);
Us: D flipflop PCRTQ@\(‘};% dock, Shift, NL);
U4: D flipflop P @(N, G ock, Shift, NO);
Q3) <= Ng;

Q2) <= N &J)

Q1) <= Ni;

Q0) <= No;
END Structural;

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 7 of 30

Figure 8.5. Structural VHDL code for a 4-bit serial-to-parallel shift register.

Hamg l 100.0ng AL Ong 300 O 300 Ors 50U Ons SO0 Uns (OO0 UrsB00 Ors 20000 1.0us 1.7us 1.2us 1.Jus 1.

iw— Clock 1 | | | | | . | |
= Shifl | |

= Senal_in |
&0 000 { w0y nom) 0110

'l

1071

Figure 8.6. Sample simulation trace for the 4-bit serial-in-parallel-out shift register of Figure 8.5.

8.2.2 Serial-to-Parallel and Parallel-to-Serial Shift Register

For both the serial-to-parallel and parallel-to-serial operations, we perform the same left to right shifting of bits
through the register. The only difference between the two operations is whether we want to perform a parallel read
after the shifting, or a parallel write before the shifting. For the serial-to-parallel operation, we want to perform a
parallel read after the bits have been shifted in. On the other hand, for the parallel-to-serial operation we want to
perform a parallel write first, and then shift the bits out as a serial stream.

We can implement both operations into the serial-to-parallel circuit from the previous section simply by adding
a parallel load function to the circuit as shown in Figure 8.7 (a). The four multiplexers work together for selecting
whether we want the flip-flops to retain the current value, load in a new value, or shift the bits to the right by one bit
position. The operation of this circuit is dependent on the two select lines SHSel; and SHSely, which controls which
input of the multiplexers is selected. The operation table and logic symbol are shown in Figure 8.7 (b) and (c)
respectively. The behavioral VHDL code and a sample simulation trace for this shift register is shown in Figure 8.8
and Figure 8.9 respectively.

D3 D, Dy
Serial_in Y Y Y —> Serial_out
3210 A 3210 A 3210 h
SHSel - - -
SHSel; —e l l
—D3 Qs —D2 Qo —D1
> Clk > Clk > Clk > Clk
Clock
Y Y Y Y
Qs Q2 Q1 Qo
(a)
D, D, D, D,
—(Serial_in 4-bit Serial_out—
SHSel; | SHSel, Operation lsHsel serial-to-parallel
0 0 No operation,_ i.e. retain current value —>SHSeI1 and Eﬁiﬁllgggt;e”al Clock<ge—
0 1 Parallel load in new value OQ Q Q 0
1 0 Shift right 3 2 1 0
1 1 Rotate right l l l l
(b) (c)

Figure 8.7. A 4-bit serial-to-parallel and parallel-to-serial shift register: (a) circuit; (b) operational table; (c) logic

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components

symbol.

Page 8 of 30

LI BRARY | EEE;
USE | EEE. STD_LCGQ C_1164. ALL,

ENTITY shiftreg I'S PORT (
C ock: IN STD LOG G;
SHSel : I N STD LOG C_VECTOR(1 DOANTO 0);
Serial _in: IN STD LCOGE C
D: IN STD LOG C_VECTOR(3 DOMNTO 0);
Serial _out: OUT STD LOd G;
Q QUT STD_LOd C VECTOR(3 DOMNTO 0));
END shiftreg;
ARCHI TECTURE Behavi or al
SI GNAL content:
BEG N
PROCESS(Cl ock)
BEG N
I F (d ock' EVENT AND d ock="1") THEN
CASE SHSel 1S
VWHEN " 01" => --
content <= D
WHEN "10" => -- shift right, pad with bit from Serial _in
content <= Serial _in & content(3 DOANTO 1);
VWHEN OTHERS =>
NULL;
END CASE;
END | F;
END PRCCESS;

OF shiftreg IS
STD_LOd C_VECTOR(3 DOWNTO 0);

| oad

Q <= content;
Serial _out <= content(0);
END Behavi or al ;

Figure 8.8. Behavioral VHDL code for a 4-bit serial-to-parallel and parallel-to-serial shift register.

00 IIIIr-s 2'.IIIIIIII'=..

= Clock | |

Mame ?IIII.'ﬂ': 400 Onsz T00.0ns

EII'IEII'-E. B .'IIIIZn=..

| |

ElZICIIIZII'-s

9 .'IIII'.-'-=.. il

—

10 H ol

e

I SHEel o0 1]

10

- senal in

= O

g conlen

W
¥ 0110

= Senal_out |
0000 1 1010 Y 110

ey
=

Figure 8.9. Sample trace for the 4-bit serial-to-parallel and parallel-to-serial shift register.

8.3 Counters

¥ 0110

Counters, as the name suggests, is for counting a sequence of values. However, there are many different types
of counters depending on the total number of count values, the sequence of values that it outputs, whether it counts
up or down, and so on. The simplest is a modulo-n counter that counts the decimal sequence 0, 1, 2, ... up to n-1,

and back to 0. Some typical counters are described next.

Microprocessor Design — Principles and Practices with VHDL

Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 9 of 30

Modulo-n counter: Counts from decimal 0 to n-1 and back to 0. For example, a modulo-5 counter sequence in
decimal is 0, 1, 2, 3, and 4.

Binary Coded Decimal (BCD) counter: Just like a modulo-n counter except that n is fixed at 10. Thus, the
sequence is always from 0 to 9.

n-bit binary counter: Similar to modulo-n counter but the range is from 0 to 2"-1and back to 0, where n is the
number of bits used in the counter. For example, a 3-bit binary counter sequence in decimal is 0, 1, 2, 3, 4,
5,6,and 7.

Gray-code counter: The sequence is coded so that any two consecutive values must differ in only one bit. For
example, one possible 3-bit gray-code counter sequence is 000, 001, 011, 010, 110, 111, 101, 100.

Ring counter: The sequence starts with a string of 0 bits followed by one 1 bit, as in 0001. This counter simply
rotates the bits to the left on each count. For example, a 4-bit ring counter sequence is 0001, 0010, 0100,
1000, and back to 0001.

We will now look at the design of several counters.

8.3.1 Binary Up Counter

An n-bit binary counter can be constructed using a modified n-bit register where the data inputs for the register
come from an incrementer (adder) for an up counter, and a decrementer (subtractor) for a down counter. Starting
with a value stored in a register, to get to the next up count sequence, we simply have to add a one to it. We can use
the full adder discussed in Section 4.2.1 as the input to the register, but we can do better. The full adder adds two
operands plus the carry. But what we want is just to add a one, so the second operand to the full adder is always a
one. Since the one can also be added in via the carry-in signal of the adder, therefore, we really do not need the
second operand input. This modified adder that only adds one operand with the carry-in is called a half adder (HA).
Its truth table is shown in Figure 8.10 (a). We have a as the only input operand, c;, and ¢, are the carry-in and
carry-out signals respectively, and s is the sum of the addition. In the truth table, we are simply adding a plus c;, to
give the sum s, and possibly a carry-out c,. From the truth table, we obtain the two equations for ¢, and s shown in
Figure 8.10 (b). The HA circuit is shown in Figure 8.10 (c), and its logic symbol in (d).

a | Cin | Cout | S
0| 0] 0O
0|10 |1 Cout = @ Cin
110} 0 |1
111110 s=alcp
(@) (b)
—<—C.
Cout <_<]_ < am <« Cout Cin <
s+ ((—_ s HA ale—
(c) (d)

Figure 8.10. Half adder: (a) truth table; (b) equations; (c) circuit; (d) logic symbol.

Several half adders can be daisy chained together, just like with the full adders to form an n-bit adder. The
single operand input a comes from the register. The initial carry-in signal ¢, is used as the count enable signal, since
a 1 on ¢y will result in incrementing a one to the register value, and a 0 will not. The resulting 4-bit binary up
counter circuit is shown in Figure 8.11 (a), along with its operation table and logic symbol in (b) and (c). As long as
Count is asserted, the counter will increment by one on each clock pulse until Count is de-asserted. When the count
reaches 2"-1, which is equivalent to the binary number with all 1’s, the next count will revert back to O because
adding a 1 to a binary number with all 1’s will result in an overflow on the Overflow bit, and all the original bits will
reset to 0. The Clear signal allows an asynchronous reset of the counter to zero.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 10 of 30

Count—»
C3 CZ Cl _+
Overflow——c,, ¢, Cost Cin Cot Cin Cout Cin

s HA a|— s HA al— s HA al— s HA a|—

D3 Q3 D, Q1 D; Q1 Do Qo

> Clk > Clk >Clk > Clk
|7 Clear |7 Clear |7 Clear |7 Clear

o
o

Clock—>
Clear—»
Y Y Y Y
Q3 Q2 Q1 QO
(@)
—>Clear 4-bit binary Overflow =
i counter
Cliar Count — Opetratlton —{Count up cou Clock<e—
x eset counter to zero
0 0 No change 9 % & O
0 1 Count up l l l l
(b) (©

Figure 8.11. A 4-bit binary up counter with asynchronous clear: (a) circuit; (b) operation table; (c) logic symbol.

The behavioral VHDL code for the 4-bit binary up counter is shown in Figure 8.12. The statement
USE IEEE.STD_LOGIC_UNSIGNED.ALL is needed in order to perform additions on STD_LOGIC_VECTORs. The
internal signal value is used to store the current count. When Clear is asserted, value is assigned the value “0000”
using the expression OTHERS => ‘0’. Otherwise, if Count is asserted, then value will be incremented by 1 on the next
rising clock edge. Furthermore, the count in value is assigned to the counter output Q using a concurrent statement
because it is outside the PROCESS block. A sample simulation trace is shown in Figure 8.13.

LI BRARY | EEE;
USE | EEE. STD LOd C_1164. ALL;
USE | EEE. STD_LOG C_UNSI GNED. ALL; -- need this to add STD_LOd C_VECTORs

ENTI TY counter |S PORT (

C ock: IN STD LOG G;

Clear: IN STD LOd G;

Count: IN STD LCG G

Q: QUT STD LOG C VECTOR(3 DOMNTO 0));
END counter;

ARCHI TECTURE Behavi oral OF counter IS
SI GNAL val ue: STD LOG C VECTOR(3 DOWTO 0);

BEG N
PROCESS (d ock, Cear)
BEG N
IF Clear = '1' THEN
val ue <= (OTHERS => '0"); -- 4-bit vector of 0, same as "0000"
ELSI F (C ock' EVENT AND Cl ock="'1") THEN
|F Count = '1'" THEN

val ue <= value + 1;

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 11 of 30

END | F;
END | F;

END PRCCESS;

Q <= val ue;
END Behavi or al ;

Figure 8.12. Behavioral VHDL code for a 4-bit binary up counter.

Narne l 5:Dl:n:- 1 E!JS 1.5us F I:!u-: 25ug J0us k| :':u: 41
o-cock [[T LT LT L e
L= Ll2ar I

= Counk : |

gy vaue O Fryzhayaey s Ye X7 a¥e) im¥nui HEER [
¥ 0 0 y1 ¥z Waya s ¥ey7s e ey falsy oz

Figure 8.13. Simulation trace for the 4-bit binary up counter.

8.3.2 Binary Up-Down Counter

We can design an n-bit binary up-down counter just like the up counter except that we need both an adder and a
subtractor for the data input to the register. The half adder-subtractor (HAS) truth table is shown in Figure
8.14 (a). The Down signal is to select whether we want to count up or down. Asserting Down (setting to 1) will
count down. The top half of the table is exactly the same as the HA truth table. For the bottom half, we are
performing a subtraction of a — c;,. s is the difference of the subtraction and ¢, is a 1 if we need to borrow. For
example, for 0 — 1, we need to borrow, so cqy is a 1. When we borrow, we geta2,and2-1=1,sosisalsoa 1. The
two resulting equations for ¢, and s are shown in Figure 8.14 (b). The circuit and logic symbol for the half adder-
subtractor is shown in Figure 8.14 (c) and (d).

Down | a | G || Cout | S
0 0|0 0|0
0 0|1 0 |1
0 110 0 |1
0 1717110 Cout = DoOwWN' a ¢i, + Down a' ¢i, = (Down O a) i,
1 0|0 0|0
1 j0j1}1]1 s =Down' (a [¢;,) + Down (a O ¢;)) = a O ¢y
1 110 0 |1
1 111 0|0
@ (b)
Down

O
FI+
A A
o O

5
3)

—
o

Down
<« out in
S < < ((1 «|s HAS gle—
(c) (d)

Figure 8.14. Half adder-subtractor (HAS): (a) truth table; (b) equations; (c) circuit; (d) logic symbol.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 12 of 30

We can simply replace the HA’s with the HAS’s in the up counter circuit to give the up-down counter circuit as
shown in Figure 8.15 (a). Its operation table and logic symbol are shown in (b) and (c). Again, the Overflow signal is
asserted each time the counter rolls over from 1111 back to 0000.

The VHDL code for the up-down counter, shown in Figure 8.16, is similar to the up counter code, but with the
additional logic for the Down signal. If Down is asserted, then value is decremented by 1, otherwise it is
incremented by 1. To make the code a little bit different, the counter output signal Q is declared as an integer that
ranges from O to 15. This range, of course, is the range for a 4-bit binary value. Furthermore, the storage for the
current count, value, is declared as a variable of type integer rather than a signal. Notice also, that the signal
assignment statement Q <= value is put inside the PROCESS block. Instead of being a concurrent statement (when it
was placed outside the PROCESS block), it is now a sequential statement. A sample simulation trace is shown in
Figure 8.17.

Count —»
Down —»
r r T |
Overflow . COllj?owncin = COllj?ownCin 2 Cogowncin : COllj?owncin _
_|s HAS | _|s HAS | _|s HAS 4| _ _|s HAS |
—Ds Qs —D, Qr— b1 QI Do Qo1
— Clk —b Clk —> Clk — Clk
Clear Clear Clear Clear
Clock—>
Clear—»
Y Y Y Y
Q3 QZ Ql QO
(@
- —>{Clear o L,
Clear | Count | Down Operation —lcount 4-bit binary Overflow
1 X X Reset counter to zero up-down counter Clock
— Down OCK<|e—
0 0 x No change 0 Q Q 0
0 1 0 Count up 3 2 1 0
0 1 1 Count down l l l l
(b) (c)

Figure 8.15. A 4-bit binary up-down counter with asynchronous clear: (a) circuit; (b) operation table; (c) logic
symbol.

LI BRARY | EEE;
USE | EEE. STD LOd C_1164. ALL;

ENTI TY udcounter IS PORT (

G ock: IN STD LOG G;

Clear: IN STD LCG G

Count: IN STD LOA G

Down: |IN STD LOG C

Q QUT I NTEGER RANGE 0 TO 15);
END udcount er;

ARCHI TECTURE Behavi oral OF udcounter |S
BEG N

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 13 of 30

PROCESS (d ock, Cear)
VARI ABLE val ue: | NTEGER RANGE 0 TO 15;

BEG N
IF dear ='1 THEN
val ue : = 0;
ELSIF (d ock' EVENT AND C ock="1"') THEN
IF Count = '1' THEN
IF Down = '0" THEN
val ue : = value + 1;
ELSE
value := value - 1;
END | F;
END | F;
END | F;
Q <= val ue;
END PROCESS;

END Behavi or al ;

Figure 8.16. VHDL code for a 4-bit binary up-down counter.

Hare l 5000 Duz 1.Eus 2 Du‘- 2.5us 3 0uz 3.5us 4L
= laar

= Count | |

= iorem | |

W value i y2Y3yay s Yef7yeyofaf7 e (s afsfaysis
=0 u,':1' Y3 Y4y 5 Yef7iaiaiaizieys {.1':'::'; ;:}’h

Figure 8.17. Simulation trace for the 4-bit binary up-down counter.

8.3.3 Binary Up-Down Counter with Parallel Load

To make the binary counter more versatile, we need to be able to start the count sequence with any number
other than zero. This is easily accomplished by modifying our counter circuit to allow it to load in an initial value.
With the value loaded into the register, we can now count starting from this new value. The modified counter circuit
is shown in Figure 8.18 (a). The only difference between this circuit and the up-down counter circuit shown in
Figure 8.15 (a) is that a 2-input multiplexer is added between the s output of the HAS and the D; input of the flip-
flop. By doing this, the input of the flip-flop can be selected from either an external input value, if Load is asserted,
or the next count value from the HAS output if Load is de-asserted. If the HAS output is selected, then the circuit
works exactly like before. If the external input is selected, then whatever value is presented on the input data lines
will be loaded into the register. The operational table and logic symbol for this circuit is shown in Figure 8.18 (b)
and (c).

We have kept the Clear line, so that the counter can still be initialized to zero at anytime. Notice that there is a
timing difference between asserting the Clear line to reset the counter to zero, as oppose to loading in a zero by
asserting the Load line and setting the data input to a zero. In the first case, the counter is reset to zero immediately
after the Clear is asserted, while the latter case will reset the counter to zero at the next rising edge of the clock.

This counter can start with whatever value is loaded into the register, but it will always count up to 2" — 1,
where n is the number of bits for the register. This is when the register contains all 1’s. When the counter reaches the
end of the count sequence, it will always cycle back to zero, and not to the initial value that was loaded in. However,
we can add a simple comparator to this counter circuit so that the count sequence can start or end with any number
in between, and cycle back to the new starting value as shown in the next section.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components

Page 14 of 30

D3 DZ DO
Y Y Y
Count >
Down —
I I [|
C C C C
Overflcw: : Cout P Cin : Cout P Cin Cout b Cin : Cout b Cin _
s HAS al— s HAS afj— s HAS al— s HAS al—
Load—> L L L
D3 Q34 D> Qo D Q1 1
> Clk > Clk > Clk ((\
ear Clear Clear /A NN S
Clock—» ﬁ o /
Cl >
ear v v \ /
3 QZ _) 0
(@
Clear | Load | Count | Down Operation D,
1 x x x Reset counter to zero —(Clear A b: bi Overflowl—
0 0 0 x__| No change 7 C% -O\Ilfln Icnglz%/ter
0 0 1 0 | Countup *Doﬂh\\yﬁ?’(ﬁparallel load Clock<«—
0 0 1 1 Count down — L?@d) (% Q Q Q
0 1 x x Load value L Qs 2 L 0
Sk
N~/
(b) Ny (©

Figure 8.18. A 4-bit up-down binary counter with parallej
table; (c) logic symbol.

8.3.4 BCD Up Counter \}\\)

A limitation with the binary up-down count@\@@llel load is that it always counts up to 2" — 1 for an n bit
register, and then cycles back to zero. If we wangfgi count sequence to end at a number less than 2" — 1, we need to
use an equality comparator to test for thimew‘g@g@}; umber. The comparator compares the current count value
that is in the register with this new end‘P’@\g\\Lfmhkr hen the counter reaches this new ending number, the
comparator asserts its output. Ar Y4

BN

The counter can start from a numbeérthat is initially loaded in. However, if we want the count sequence to cycle
back to this new starting number ea/z'hvm% e need to assert the Load signal at the end of each count sequence, and
reload this new starting number. Tﬂ'%a(aﬁ}; ut'cf the comparator is connected to the Load line so that when the counter
reaches the ending number, it v\.tiH\v%&o\r\the Load line, and loads in the starting number. Hence, the counter can end

at a new ending number, and c§,c|\e§4 ack:to a new starting number.

The binary coded &@?CD) up counter counts from 0 to 9, and then cycles back to 0. The circuit for it is
shown in Figure 8.19. Theiieaft of the circuit is just the 4-bit binary up-down counter with parallel load. A 4-input
AND gate is used to compare the count value with the number 9. When the count value is 9, the AND gate comparator
outputs a 1 to assert the Load line. Once the Load line is asserted, the next counter value will be the value loaded in

/

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 15 of 30

from the counter input D. Since D is connected to all 0’s, therefore, the counter will cycle back to 0 at the next rising
clock edge. The Down line is connected to a 0 since we only want to count up.

0 0 0 0
S T |
b, Db, D, D

Clear———>{Clear
Count——|Count 4-bit binary ~ Overflowf—
up-down counter
0—>Down with parallel load CJock<de—

Load Q, Q Q Q

Y Y Y Y

Y

QB Q Q4 Q
Figure 8.19. BCD up counter.

In order for the timing of each count to be the same, we must use the load operation to load in the value 0 rather
than using the clear operation. If we connect the output of the AND gate to the Clear input instead of the Load input,
we will still get the correct count sequence. However, when the count reaches 9, it will change to a 0 almost
immediately, because when the output of the AND gate asserts the asynchronous Clear signal, the counter is reset to
0 right away, and not at the next rising clock edge.

Example 8.1

Use the 4-bit binary up-down counter with parallel load to construct an up counter circuit that counts from 3 to
8 decimal, and back to 3.

The circuit for this counter, shown in Figure 8.20, is almost identical to the BCD up counter circuit. The only
difference is that we need to test for the number 8 instead of 9 as the last number in the sequence, and the first
number to load in is a 3 instead of a 0. Hence, the modification to the inputs of the AND gate for comparing with the

binary counter output 1000, and the number for loading in is 0011. .
L]
D D D D

3 2 0

4-bit binary ~ Overflow—
up-down counter
0—>Down with parallel load CJock<de—

Load Q, Q Q Q

Y Y Y Y

Clear———{Clear .

Count—————Count

Figure 8.20. Counter for Example 8.1.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 16 of 30

8.3.5 BCD Up-Down Counter

We can get a BCD up-down counter by modifying the BCD up counter circuit slightly. The counter counts from
0 to 9 for the up sequence, and 9 down to O for the down sequence. For the up sequence, when the count reaches 9,
the Load line is asserted to load in a 0 (0000 in binary). For the down sequence, when the count reaches 0, the Load
line is asserted to load in a 9 (1001 in binary).

The BCD up-down counter circuit is shown in Figure 8.21. Two 5-input AND gates acting as comparators are
used. The one labeled “up” will output a 1 when Down is de-asserted (i.e. counting up), and the count is 9. The one
label “dn” will output a 1 when Down is asserted, and the count is 0. The Load signal is asserted by either one of
these two AND gates. Four 2-to-1 multiplexers are used to select which of the two starting values, 0000 or 1001, is to
be loaded in when the Load line is asserted. The select lines for these four multiplexers are connected in cémmon to
the Down signal, so that when the counter is counting up, 0000 is loaded in when the counter wraps é@% d
1001 is loaded in when the counter wraps around while counting down. It should be obvious that p?n\w&\@/\ly\gs
0000 and 1001, can also be loaded in without the use of the four multiplexers. ﬁ\ Y/

10 00 00 10

1 0 1 0 1 0 _/
rfjs 7T
Y y y
D D D ol
Clear »Clear ° 2 0 74
Count > Count 4-bit binary Overflow >’\\/
Down——4—>{Down i saraliol Tosd
> Clock<te—
> Load m
Q, Q Q Q u
A\ 4 A\ 4 A\ 4 ‘Q
up b= ((\)
— _‘ ’
dn S
v / ‘: \ 20 v
Q0 R Q
Figure 8.21. BCD up-down counter. 2

Example 8.2 \(ﬁ\/

Use the 4-bit binary up-down counter with pata I\)@ad to construct an up-down counter circuit that outputs the
sequence 2, 5, 9, 13, and 14 repeatedly. ¢,

N9

The 4-bit binary counter can only c@ ,n\ﬂ\u”\.@e consecutively. In order to output numbers that are not

consecutive, we need to design an outpl \".i\rcu that maps from one number to another number. The required
. . A - . .

sequence has five numbers, so we wH!@zﬁgn a counter to count from 0 to 4. The output circuit will then map
the numbers 0, 1, 2, 3, and 4, to the reéa.;loutput numbers 2, 5, 9, 13, and 14 respectively.

The inputs to the output circuit(are g. e f> r output bits of the counter Qs, Q», Q4, and Qq. The outputs from this
circuit are the modified four bits-Qj, 1, and Oy, for representing the five output numbers. The truth table and the

resulting output equationsé@r t\@u@ﬁcuit are shown in Figure 8.22 (a) and (b) respectively. The easiest way to
see how the output equz‘ are-abtained is to do a K-map, and put in all the “don’t cares”. The complete counter

circuit is shown in Figu U .

/,

a

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 17 of 30

Decimal Decimal
mput | @ | @ [Q1| Q| iy | 05| Oz | O [Oo
0 o|0|0}|O 2 o|l0|11]0
1 o001 5 0Oo|1/|01]1 0,=0Q:+Q
2 o|0|11]0 9 110|011 OS:Qi'Qo'O
3 o|0|1]1 13 111011 0,=0Q,+Qq
4 0|1 |00 14 111110 0;=Q,+Q,;
rest of the combinations x | x| x| x
(@) (b)
L]
D D D D
Clear———{Clear ° 2 ! 0
Count——{Count 4-bit binary Overflow—
up-down counter
0———Down with parallel load CJock<de—
Load
Q Q Q Q
A\ \ 4 \ 4 A\
B
) 0,

(©

Figure 8.22. Counter for Example 8.2.

8.4 Register Files

When we want to store several numbers concurrently in a digital circuit, we can use several individual registers
in the circuit. However, there are times when we want to treat these registers as a unit, similar to addressing the
individual locations of an array or memory. So instead of having several individual registers, we want to have an
array of registers. This array of registers is known as a register file. In a register file, all the respective control
signals for the individual registers are connected in common. Furthermore, all the respective data input and output
lines for all the registers are also connected in common. For example, the Load lines for all the registers are
connected together, and all the d; data lines for all the registers are connected together. So the register file has only
one set of input lines, and one set of output lines for all the registers. In addition, address lines are used to specify
which register in the register file is to be accessed.

In a microprocessor circuit requiring an ALU, the register file is usually used for the source operands for the
ALU. Since the ALU usually takes two input operands, we like the register file to be able to output two values from
possibly two different locations of the register file at the same time. So a typical register file will have one write port
and two read ports. All three ports will have their own enable and address lines. When the read enable line is de-
asserted, the read port will output a 0. On the other hand, when the read enable line is asserted, the content of the
register specified by the read address lines is passed to the output port. The write enable line is used to load a value
into the register specified by the write address lines.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 18 of 30

The logic symbol for a 4 x 8 (four registers, each being 8-bits wide) register file is shown in Figure 8.23. WE is
the active high write enable line. To write a value into the register file, this line must be asserted. The WA; and WA,
are the two address lines for selecting the write location. Since there are four locations in this register file, therefore,
two lines are needed. The RAE line is the read enable line for port A. The two read address select lines for port A are
RAA; and RAA,. For port B, we have the port B enable line, RBE, and the two address lines, RBA; and RBA,.

is

—WE

—|WA, Clockqge—

— WA 4%x8 2N

RAIS register file RBE ((\9

—> [— Q\%\

—RAA, RBA, [«— /f\\} <

—RAA; port Port RBAg«— “\\/

ST &0
/>O
Figure 8.23. Logic symbol for a 4 x 8 register file. /7 A
The register circuit of Figure 8.1 does not have any control for the read ;/t%oféta to the output port. In

order to control the output of data, we can use 2-input AND gates to enable or dggﬁlb\ of the data output lines Q.
One input of all the AND gates are connected in common, since we want to control all their outputs at the same time.
When this common input is connected to a 0, the AND gates output a 0. Wheyythis. common input is connected to a 1,
the AND gates output follows the value of the other input. An alternative to KND gates to control the read ports

is to use tri-state buffers. When tri-state buffers are used, the read po (ts>vv </?1ave a high impedance state when
disabled.

Our register file has two read ports, that is, two output controlé ®ach register. So instead of having just one
AND gate per output line Q;, we need to connect two AND gatem[ﬂ\ tput line; one for port A, and one for port
B. An 8-bit wide register file cell circuit will have elght AND gates %ﬁport A, and another eight AND gates for port

B, as shown in Figure 8.24. AE and BE are the read ena g?ﬁlsh/ar port A and port B respectively. For each read
port, the enable signal is connected in common to one< ‘l tof e eight AND gates. The second input of the eight
AND gates connect to the eight output lines Qq to Q.

Write Port </ AE
f8 N} LD(B . _Read
—Load Do 7 (BE 8 Port_A
—> & b't({)ri g\; LD \ Read
*€glst x8 8 Port_B

”k
Figure 8.24. An 8-bit wide register fileﬁ‘@ dgone write port and two read ports.

For a 4 x 8 register file, we need-te-use four 8-bit register file cells. In order to select which register file cell we
want to access, three decoders N{@ ed to decode the addresses, WA;, WAy, RAA;, RAA,, RBA;, and RBA,; one
decoder for the write addresseuA’\A\CL§ WA, one for port A read addresses RAA; and RAA,, and one for port B read

addresses RBA; and RBA, 7S outputs are used to assert the individual register file cell’s write line Load,
and read enable lines &E, (aﬁ e complete circuit for the 4 x 8 register file is shown in Figure 8.25. The
respective read port@(rom eagh register file cell are connected to the external read port through a 4-input x 8-bit OR
gate. \)

For example, to read from register 3 through port B, the RBE line has to be asserted, and the port B address
lines RBAy and RBA; have to be set to 11, (for register 3). The value from register 3 will be available immediately
on port B. To write a value to register 2, the write address lines WA, and WA are set to 10,, and then the write
enable line WE is asserted. The data value at the input D is then written into register 2 at the next active (rising)

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 19 of 30

clock edge. Since all three decoders can be enabled at the same time, therefore, the two read and the write operations
can all be asserted together.

8,’
) AE
) < Y A [«—RAA
; 8 8 Port A YO AO RAAO
e
WA, —>{A, Y, Load Doz BE 8 1 2-to-4 P 1
8-bit Q,, Y < Y, decoder
WA —>A; 2.10-4 Yi[> —P register | 8 LI_\xs \ Port B
decodery |, — 3 —Ys E [«—RAE
2
AE
WE— E Y. b -
: f 8 I—st \ Port A
D 8
Load 8-%i7t Qo BE <
> register 8 I—I@ \ Port B
8
AE
f 8 Port A
X8
D 8
Load 8-%i7t Qo7 Y BE
> register 8 I—I@ \ Port B
8 Y A J—RBA
0 0 0
AE
fg Port A Y1 2-t0-4 A [<—RBA,
X8 y . decoder
Load EI;D bit e " Y2 E «—RBE
-bit Q. \ le—
> register | 8 H@ \ Port B, 3
Clock —— 8

8 +8

Port Port
A B

Figure 8.25. A 4 x 8 register file circuit with one write port and two read ports.

In terms of the timing issues, the data on the read ports are available immediately after the read enable line is
asserted, whereas, the write occurs at the next active (rising) edge of the clock. Because of this, the same register can
be accessed for both reading and writing at the same time, that is, the read and write enable lines can be asserted at
the same time using the same read and write address. When this happens, then the value that is currently in the
register is read through the read port, and then a new value will be written into the register at the next rising clock
edge. This timing is shown in Figure 8.26. The important point to remember is that when the read and write
operations are performed at the same time on the same register, the read operation always reads the current value
stored in the register, and never the new value that is to be written in by the write operation. The new value written
in is available only after the next rising clock edge.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 20 of 30

current value in register —x J_ new value in register

N

ong clock cycl

D

clock signal
WE and RAE _/ L Write register
asserted with new value

Read current
value in register

Figure 8.26. Read and write timings for a register file cell.

The VHDL code for the 4 x 8 register file is shown in Figure 8.27. The main code is composed of three
processes: the write process and the two read port processes. These three processes are similar to three concurrent
statements in that they are executed in parallel. The write process is sensitive to the clock, and because of the IF
clock statement in the process, a write occurs only at the rising edge of the clock signal. The two read port processes
are not sensitive to the clock but only to the read enable and read address signals. So the read data is available
immediately when these lines are asserted. The function CONV_INTEGER(WA) converts the STD_LOGIC_VECTOR
WA to an integer so that the address can be used as an index into the RF array.

A sample simulation trace is shown in Figure 8.28. In the simulation trace, both the write address WA and read
port A address RAA are set to register 3. At Ons, the input data D is 5. With write enable WE asserted, the data 5 is
stored into RF(3) at the next rising edge of the clock, which happens at 100ns. When RAE is asserted at 200ns, the
data 5 from RF(3) is available on port A immediately. At 400ns, both WE and RAE are asserted at the same time.
The current data 5 from RF(3) appears immediately on port A. However, the new data 7 is written into RF(3) at
500ns, the next rising clock edge. The new data 7 is available on port A only after time 500ns.

LI BRARY | EEE;
USE | EEE. STD LOd C _1164. ALL;
USE | EEE. STD _LOd C_UNSI GNED. ALL; -- needed for CONV_I NTEGER()
ENTITY regfile IS port(
clk: I'N STD LOd G; --cl ock
VWE: IN STD _LC4 C; --write enable
WA: IN STD LOd C VECTOR(1 DOAMNTO 0); --write address
D:. IN STD LOA C VECTOR(7 DOMNTO 0); - -i nput
RAE, RBE: IN STD LC4 C; --read enable ports A & B
RAA, RBA: IN STD LOG C VECTOR(1 DOANTO 0); --read address port A& B

Port A, PortB: OUT STD LOG C VECTOR(7 DOWNTO 0));--output port A & B
END regfile;

ARCHI TECTURE Behavioral OF regfile IS
SUBTYPE reg IS STD LOGd C _VECTOR(7 DOMNTO 0);
TYPE regArray IS array(0 to 3) OF reg;

SIGNAL RF: regArray; --register file contents
BEA N

WitePort: PROCESS (cl k)

BEA N

IF (cl k" EVENT AND clk = "1'") THEN
IF (WE ="'1") THEN
RF(CONV_I NTEGER(WA)) <= D; -- fn to convert fromvector to integer
END | F;
END | F;
END PROCESS;

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 21 of 30

ReadPort A: PROCESS (RAA, RAE)

BEG N
-- Read Port A
IF (RAE = '1') THEN
Port A <= RF(CONV_I NTEGER(RAA)); -- fn to convert fromvector to integer
ELSE
Port A <= (others => '0');
END | F;
END PROCESS;
ReadPort B: PROCESS (RBE, RBA)
BEG N
-- Read Port B
IF (RBE = '1') THEN
Port B <= RF(CONV_I NTEGER(RBA)); -- fn to convert fromvector to integer
ELSE
PortB <= (others => '0');
END | F;
END PROCESS;

END Behavi or al ;

Figure 8.27. VHDL code for a 4 x 8 register file with one write port and two read ports.

Mamse J_ 100, Oins 20 Ons ':ITII.' 11 400 Il'lns B0 Ons E000 Ons 700
T e | [st
= 5 i 7
= WA 3
B Has, 3

= RAE | | | |
@* RF3 [i g 7
& Porih, i H E H o i 3 7 H o

-~ = 1
d

Figure 8.28. Sample simulation trace for the 4 x 8 register file.

8.5 Static Random Access Memory

Another main component in a computer system is memory. This can refer to as either random access memory
(RAM) or read-only memory (ROM). We can make memory the same way we make the register file but with more
storage locations. However, there are several reasons why we don’t want to. One reason is that we usually want a lot
of memory and we want it very cheap, so we need to make each memory cell as small as possible. Another reason is
that we want to use a common data bus for both reading data from, and writing data to the memory. This implies
that the memory circuit should have just one data port and not two or three like the register file.

The logic symbol, showing all the connections for a typical RAM chip is shown in Figure 8.29 (a). There is a
set of data lines D;, and a set of address lines A;. The data lines serve for both input and output of the data to the
location that is specified by the address lines. The number of data lines is dependent on how many bits are used for
storing data in each memory location. The number of address lines is dependent on how many locations are in the
memorg chip. For example, a 512-byte memory chip will have eight data lines (8 bits = 1 byte) and nine address
lines (2° = 512).

In addition to the data and address lines, there are usually two control lines: chip enable (CE), and write enable
(WR). In order for a microprocessor to access memory, either with the read operation or the write operation, the

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 22 of 30

active high CE line must first be asserted. Asserting the CE line enables the entire memory chip. The active high WR
line selects which of the two memory operations is to be performed. Setting WR to a 0 selects the read operation, and
data from the memory is retrieved. Setting WR to a 1 selects the write operation, and data from the microprocessor is
written into the memory. Instead of having just the WR line for selecting the two operations read and write, some
memory chips have both a read enable and a write enable line. In this case, only one line can be asserted at any one
time. The memory location in which the read and write operation is to take place, of course, is selected by the value
of the address lines. The operation of the memory chip is shown in Figure 8.29 (b).

— An-l
A 2" m CE | WR Operation
= A RAM 0 | x | None
lce 1 0 | Read from memory location selected by address lines
—WR D__...D,D, 1 1 | Write to memory location selected by address lines
(@) (b)

Figure 8.29. A 2" x m RAM chip: (a) logic symbol; (b) operation table.

Notice in Figure 8.29 (a) that the RAM chip does not require a clock signal. Both the read and write memory
operations are not synchronized to the global system clock. Instead the data operations are synchronized to the two
control lines CE and WR. Figure 8.30 (a) shows the timing diagram for a memory write operation. The write
operation begins with a valid address on the address lines, followed immediately by the CE line being asserted.
Shortly after, valid data must be present on the data lines, and then the WR line is asserted. As soon as the WR line is
asserted, the data that is on the data lines is then written into the memory location that is addressed by the address
lines.

A memory read operation also begins with setting a valid address on the address lines, followed by CE going
high. The WR line is then pulled low, and shortly after, valid data from the addressed memory location is available
on the data lines. The timing diagram for the read operation is shown in Figure 8.30 (b).

Each bit in a static RAM chip is stored in a memory cell similar to the circuit shown in Figure 8.31 (a). The
main component in the cell is a D latch with enable. A tri-state buffer is connected to the output of the D latch so
that it can be selectively read from. The Cell enable signal is used to enable the memory cell for both reading and
writing. For reading, the Cell enable signal is used to enable the tri-state buffer. For writing, the Cell enable together
with the Write enable signals are used to enable the D latch so that the data on the Input line is latched into the cell.
The logic symbol for the memory cell is shown in Figure 8.31 (b).

Address >< Valid Address >< Address >< Valid Address ><

Data >< Valid Data >< Data >< Valid Data ><

e/ _ ceE__/ _
WR / \ WR \ /
(@) (b)

Figure 8.30. Memory timing diagram: (a) read operation; (b) write operation.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 23 of 30

Cell
enable
Y Cell
enable
Input — D Q4l£—> Output y
:D_E Input - MC > Output
?
1 Write
Write enable
enable
(@) (b)

Figure 8.31. Memory cell: (a) circuit; (b) logic symbol.

To create a 4 x 4 static RAM chip, we need sixteen memory cells forming a 4 x 4 grid as shown in Figure 8.32.
Each row forms a single storage location, and the number of memory cells in a row determines the bit width of each
location. So all the memory cells in a row are enabled with the same address. Again, a decoder is used to decode the
address lines Ag and A;. In this example a 2-to-4 decoder is used to decode the four address locations. The CE signal
is for enabling the chip, specifically to enable the read and write functions through the two AND gates. The internal
WE signal, asserted when both the CE and WR signals are asserted, is used to assert the Write enables for all the
memory cells. The data comes in from the external data bus through the input buffer and to the Input line of each
memory cell. The purpose of using an input buffer for each data line is so that the external signal coming in only
needs to drive just one device (the buffer) rather than having to drive several devices (i.e. all the memory cells in the
same column). Which row of memory cells actually gets written to will depend on the given address. The read
operation requires CE to be asserted, and WR to be de-asserted. This will assert the internal RE signal, which in turn
will enable the four output tri-state buffers at the bottom of the circuit diagram. Again, the location that is read from
is selected by the address lines.

The VHDL code for a 16 x 4 RAM chip is shown in Figure 8.33. The bi-directional data port D is declared as
BUFFER S0 that it can be read from and written to. The actual memory content is stored in the variable mem, which is
an array of size 16 of type STD_LOGIC_VECTOR.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 24 of 30

0 3 3 3 !
~» MC P = MC P&y = MC P&y = MC P
1 1 1)
! 3 3 3 !
A— 2-to-4 > MC [>¢ ¢> MC [5¢ ¢> MC ¢ $> MC [
A —| decoder
0 1 1 1)
2 3 3 3 !
> MC ¢ o> MC ¢ ¢> MC ¢ ¢> MC 4
1 1 1)
3 3 3 3 Y
WR— WE [¢> MC ¢ ¢> MC [>¢ ¢> MC [5¢ ¢ MC [
CE— by 1 1 i)
RE .
A Y A Y A Y A Y
input _ €_output
buffer buffer
D D D D

Figure 8.32 A 4 x 4 RAM chip circuit.

LI BRARY | EEE;
USE | EEE. STD_LCGQ C_1164. ALL,
USE | EEE. STD LOd C arith. ALL;

USE | EEE. STD_LOGQ C_UNSI GNED. ALL; -- needed for CONV_| NTEGER()
ENTITY menmory 1S PORT (

CE, WR IN STD LQG C; --chip enable, wite enable

A: IN STD_LOG C _VECTOR(3 DOWNTO 0); --address

D: BUFFER STD_LOG C_VECTOR(3 DOANTO 0) --data

)1
END nenory;

ARCHI TECTURE Behavi oral OF nmenory IS
BEA N
PROCESS (CE, WR)
SUBTYPE cell IS STD LOd C VECTOR(3 DOMTO 0);
TYPE memArray IS array(0 TO 15) OF cel | ;
VARI ABLE mem menmArray; --menory contents
VARI ABLE ctrl: STD LOG C_VECTOR(1 DOANTO 0);
BEA N
ctrl := CE & W, -- group signals for CASE decodi ng
CASE ctrl IS
WHEN " 10" =>-- read
D <= mem(CONV_I NTEGER(A));-- fn TO convert frombit vector TO integer
WHEN "11" => -- wite
men(CONV_I NTEGER(A)) := D;-- fn TO convert frombit vector TO integer
VHEN OTHERS => -- invalid or not enable
D <= (OTHERS => 'Z');

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 25 of 30

END CASE;
END PROCESS;

END Behavi or al ;

Figure 8.33. VHDL code for a 16 x 4 RAM chip

8.6 *Larger Memories

In general, there is always a need for larger memories. Because of product availability constraints, we need to
construct these larger memories from multiple smaller memory chips. Larger memory requirements can be for either
more memory locations, or wider bit widths for each location, or both.

8.6.1 More Memory Locations

For example, we may want to have 1K x 8-bit of memory built using multiple 256 x 8-bit memory chips. Using
such small numbers are archaic but you get the idea. In this case, we would need four of these 256 x 8-bit memory
chips since 1K = 4 x 256. A 256 x 8-bit memory chip has eight address lines since 2° = 256. To decode four chips,
we need an additional two address lines to enable which of the four chips we want to address. Thus, we need a total
of ten address lines, with the first eight, Ay to A;, connected respectively in common directly to the eight address
lines on the four chips, and the last two lines, Ag and Ag, connected to the address inputs of a 2-to-4 decoder. The
four outputs from the decoder are used to assert the chip enable CE line of the four memory chips RAM;, to RAM;.
The data lines and the write enable lines are all connected respectively in common. The circuit is shown in Figure
8.34 (a).

The 256-byte memory chip RAMy is enabled when the address bits Ag and Ag are 00. Hence, the address range
for RAMg is from 0 to 255 (0000000000 to 0011111111 in binary). Similarly, RAM; is enabled when the address
bits Ag and Ay are 01. Hence, the address range for RAM; is from 256 to 511 (0100000000 to 0111111111 in
binary). The address range for RAM, is from 512 to 767 (1000000000 to 1011111111 in binary), and the address
range for RAM; is from 768 to 1023 (1100000000 to 1111111111 in binary).

A particular memory location is accessed as follows. If we want to write to memory location 717, which is
binary 1011001101, the Y, line of the decoder would be asserted since bits 8 and 9 is “10.” This Y, line in turn
asserts the CE line of the third RAM chip from the top, while the remaining chips are disabled. Finally, within this
RAM chip that is enabled, location 205, which is binary 11001101 from bits O to 7 of the original address, is
selected. Location 205 in the third RAM chip is location 717 for the entire memory since 256+256+205 = 717.

8.6.2 Wider Bit Width

We may also want to have wider bit width for each memory location made from smaller ones. For example, we
may want to have a memory that is 512 locations x 16-bit wide made from 256 x 8-bit memory chips. Again, we
would need four 256 byte memory chips, but connected as shown in Figure 8.34 (b). For 512 locations, only nine
address lines are needed, with the first eight, Ay to A;, connected respectively in common directly to the eight
address lines on the four chips, and the last line Ag connected to the address input of a 1-to-2 decoder. For a 16-bit
wide data bus, we need to connect two 8-bit wide chips in parallel so that each two similar 8-bit wide locations in
the two chips can be combined together to form a 16-bit wide location. Since these two chips need to work together,
therefore, their chip enable CE lines are connected in common, and asserted by the same output from the decoder.

Memory chips RAMy and RAM, are for storing the data bits Dy to D7, while memory chips RAM; and RAM;
are for storing the data bits Dg to Dy5. The address range for RAMy and RAM; is from 0 to 255 (000000000 to
011111111 in binary), and the address range for RAM, and RAM; is from 256 to 511 (100000000 to 111111111 in
binary).

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components

Page 26 of 30
address: 0-255
| I
A CE VR
* RAM,
78L * 256 X8
Yo AO D7 Y DO
[)
é address: 0-255
address: 256-511 ? |
As—1Ao | A CE WR A CE WR
A—AL A, CE VR " RAM, © RAM,
W L v 7+ 256 x'8 * 256 x'8
* 256 x'8 0 8 1A DoeesD 8|a, D,eeeD
8 o “7*°** o o “7*** o
2-to-4 Ay DyeeeDy A—A
decoder I i 8 0 81__ Do
t L8
Yz address:|512—767| 1-to-2 Disg
decoder
A, CE WR afidress: 256-511
E—IE * RAM, | | L 16
"78L * 256 x°8 \(lJ A CE R A CE VR g
Ay DyeeeDy * RAM, * RAM,
Y, — E_lE "78L: 256 x°8 | [T[1 256 x'8
_ A A, D,eeeD, A, D,eeeD,
address: 768-1023
| 8 81 Dy,
A CE VR 4
s
+ RAM D
"78L * 256 x°8 o
AO D7 LN] DO
-0 A WR D,
I
8
A, WR D,
(@)

(b)
Figure 8.34. Larger memory made from smaller memory chips: (a) A 1K x 8-bit memory made from four 256 x 8-
bit memory chips; (b) A 512 x 16-bit memory made from four 256 x 8-bit memory chips.

Example 8.3

Build a 2M byte memory using 512K byte RAM chips.

A 512K RAM chip has 9 address lines, A, to Ag, because 2° = 512K. Since 4 x 512K = 2M, therefore, we need
to use four 512K RAM chips. In order to select from these four RAM chips, we need two more address lines, Aq and
Ayp. Hence, the system must have at least 11 address lines. The first 9 address lines, A, to Ag, are connected directly
to the four RAM chips. The last two address lines, Ag and A;, are connected to a 2-to-4 decoder. The four outputs of
the decoder are connected to the chip enables CE for the four RAM chips. The eight data lines, and the write enable
lines are all respectively connected in common. The circuit is shown in Figure 8.35.

¢

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 27 of 30

address: 0-511

A CE WR
8
< RAM,
-é— * 512 x°8
YO - AO D7 ce e DO
I /
T
address: 512-1023 8
As—1A | |
Alo Al A, CE WR
Y * RAM,
"'E/; * 512 x'8
2_to_4 AO D7 ce e DO
decoder | ,
T
address: 1024—15358
Y, |
A, CE VR
] . RAM
E—E "78L ° 512 x°8
AO D7 LN] DO
Y3 I /
address: 1536-2047°

A8
* RAM
'+8 * 512 x°8
AO D7 o e e DO
[)
I
8
As-o WR D7_0

Figure 8.35. A 2M byte memory circuit for Example 8.3.

Example 8.4

What is the address range for the Ys line in the following circuit?

Y I

A 1Ao 0
Ar—A Y. —

AlZ_ Az

A—1A, Yo —
4-to-§3 T

decoder
J—
Yo —
E—E Y —
Y. —

Y5 is asserted when the address lines Ajs, Asp, Aqg, and Ajy are 0101. The lowest address is when the ten low
order address bits Ag to A are all 0’s, and the highest address is when these ten bits are all 1’s. Hence, the address
range for Ys is from 01010000000000 to 01011111111111 in binary, or 5120 to 6143 in decimal. .

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 28 of 30

8.7 Summary Checklist

a

Registers

Q Operation

o Circuit

Serial-to-Parallel Shift Registers
Parallel-to-Serial Shift Registers
O Operation

a Circuit

Binary counters

Binary up-down counters
Q Operation
o Circuit

BCD counters

BCD up-down counters

a Circuit

Counters for random sequences

a Circuit

Register files

O Operation

a Circuit

Random access memories

Q Operation

a Circuit

Building more memory locations using smaller RAM chips
Building wider bit width memories using smaller RAM chips

8.8 Problems

8.1.

8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

The 4-bit binary up counter VHDL code shown in Figure 8.12 does not have the Overflow output signal.
Modify the code to include the Overflow signal.

For the BCD up counter circuit shown in Figure 8.19, what happens if the output of the AND gate comparator
is connected to the Clear signal instead of to the Load signal? Will it produce the same waveform? Explain
your observations.

In the BCD up-down counter circuit shown in Figure 8.21, four 2-input multiplexers are used to select the
correct value to be loaded in. Modify the circuit so that the multiplexers are not needed.

Write the behavioral VHDL code for the BCD up-down counter.

Use the 4-bit binary up-down counter with parallel load to construct an up-down counter circuit that counts
from 0 to 7 decimal, and back to 0.

Use the 4-bit binary up-down counter with parallel load to construct an up-down counter circuit that counts
from 5 to 13 decimal, and back to 5.

Use the 4-bit binary up-down counter with parallel load to construct an up-down counter circuit that outputs
the sequence 7, 12, 19, 36, 42, 58, and 57 repeatedly.

Use the 4-bit binary up-down counter with parallel load to construct an up-down counter circuit that outputs
the sequence 4, 8, 5, 3, 16, and 7 repeatedly.

Write the behavioral VHDL code for the BCD up-down counter.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components Page 29 of 30

8.10.

8.11.

8.12.

8.13.

8.14.

8.15.

Write the structural VHDL code for the BCD up-down counter based on the circuit diagram shown in Figure
8.21. Use the 4-bit binary up-down counter VHDL code as a component.

What are the valid address ranges for the Ys and Y5 lines in the following circuits?

Y. F— Y F— Y. F—
As —1A, 0 As — Ao 0 As —1A, 0
As — 1A Y. — Ag —1A Y. — Au—M Y. —
A7 _Az Ag _Az Ag _Az
Ag —1A; Yo — Ap—1A, Yo — Ap—A, Yo —
zl-to-g3 B 4-to-§3 B zl-to-g3 B
decoder decoder decoder
4 A 4
Yo— Ys— Yo—
E—E E—E A, —E
Yor— Yo— 3 Yor—
Y. — Y. — Y. —
(@) (b) (c)

Build a 32M byte memory using 4M byte RAM chips. Label all the signals clearly.
Build an 8M byte memory using 2M x 4-bit RAM chips. Label all the signals clearly.

Manually design and implement on the UP2 board a FSM circuit for writing the value 13 into location 2 of a
4 x 8 register file, then read location 2 through port A, and display the number as binary on the eight LEDs.

Manually design and implement on the UP2 board the following FSM circuit for controlling a 4 x 8 register
file. For input, use two DIP switches to specify the register file location, and another eight DIP switches to
specify the data input. Use a push button for the write enable signal. For output, use the eight LEDs. The
eight output LEDs continuously display the content of the current selected register file location. When the
push button is pressed, the data input is loaded into the selected location.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/9/2004 1:21 PM

Chapter 8 — Sequential Components

Index

B

BCD up counter, 14

BCD up-down counter, 14

Binary up counter, 9

Binary up-down counter, 11

Binary up-down counter with parallel load, 13

C

Counter, 8
BCD up counter, 14
BCD up-down counter, 14
binary up counter, 9
binary up-down counter, 11
binary up-down counter with parallel load, 13
H
Half adder, 9
Half adder-subtractor, 11
M

Memory. See Random access memory.

P

Parallel-to-serial shift register, 7

Microprocessor Design — Principles and Practices with VHDL

Page 30 of 30

R

RAM. See Random access memory.
Random access memory, 21
larger memory, 25
Register, 3
Register file, 17

S

Sequential components, 3

Serial-to-parallel shift register, 5

Shift register, 4
serial-to-parallel, 5

serial-to-parallel and parallel-to-serial, 7

V

VHDL
GENERIC, 4
VHDL code
binary up counter, 11
binary up-down counter, 13
memory, 25
RAM, 25
register, 4
register file, 21
shift register, 7, 8

Last updated 3/9/2004 1:21 PM

Chapter 9 — Datapaths Page 1 of 24

Table of Content

TADIE OF CONTENT ...t b e et b etk b et bt e b et ek s b et e b e b et et e b et e be s b et e be s be e e benbe st e benbens 1
ST I T - 7= L1 1P 2
LSS € 1= o - DT - - L1 o S 3
9.2 Using @ General DAtaPathcciiiiiiiieiieee e ettt e e e aennenrenren 4
0.3 THMING ISSUBS ..ttt ettt b et e e bbbt e b e e Rt e R e sb e b e e bt e b £ e b2 e Rt e R e e ee e b e e b e ebeeb e e Rt enb e e e beneeebeers 5
9.4 A MOre ComplexX Datapathco.ooiiiiiie bbbt e e e b s 8
9.5 VHDL for the Complex Datapath ..o bbb eneas 10
0.6 DediCated DAtAPALNciuieieieee et ettt e bbbt st e et e benreeneas 15
9.6.1 SBIECHING REGISTEIS ..ttt bbbt bttt e b e bt s b e bt eb e e bt e st et e e e beseesbesbe e 15
9.6.2 Selecting FUNCHIONAT UNIESc..oiiiiiie ettt bbbt see b 15
9.6.3 Data TranSter METNOGS.oiiieiiece bbbttt 16

9.7 Using a Dedicated Datapathccciviiieieiieieie st nneenes 17
9.8 Examples: Designing Dedicated Datapatisc.cccivireiiriereiisiese s eie et ne e aneas 17
9.9 VHDL for a Dedicated Datapath...........ccccoueriiiiiiiiieeeesee et enes 22
9.10 * Optimization fOr DAtAPAtNSciiiiereieie ettt renreenes 23
9.10.1 FUNCLIONAL UNIt SNATING ...veviieiieciisece et ettt r e e e e e e sbesaeeneereeeenrenneenes 23
9.10.2 REQISIEN SNAMNGeiteite ettt b e bbbt s e ebe b bt b e ae st e nn e b neeebeens 23
0.10.3 BUS SNAINQ ...ttt bbb bbb bbb b e e et e nr b b eneenes 23
9.11 SUMMANY CRECKIISE ...ttt et b ettt bt b e b e bt et e e e e b seesbesreaneas 23
0T (=) OSSO UPURTRURR 24

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 2 of 24

9 Datapaths

So far, we have learned how to design Control
functional units for performing single simple '”p+“t5
operations such as the ALU for adding two numbers :
or the comparator for comparing two values. The Control unit
next logical question to ask is how do we design a B+ >
circuit for performing more complex operations or o] ste »| output N
operations that involve multiple steps? For example, state Memory) Logic Control
how do we design a circuit for adding four numbers toge | feser] | | B Signals |, k
or a circuit for adding a million numbers? For adding L
four numbers, we can connect three adders together, — ~ « e
but for adding a million numbers, we really don’t ssutna}m: AN 7
want to connect a million minus one adders together. Control (’F\ Data
Instead, we want a circuit with just one adder but use Outputs /x|y @jﬁ Outputs
it a million times. A datapath circuit allows us to do />°
just that, that is, operations involving multiple steps. 2 78

In this chapter, we will look at the design of the datapath. You recall tha.totﬁémath is the second main part of
a microprocessor. The datapath is responsible for the manipulation of data-Itinclu gz? (1) functional units such as
adders, shifters, multipliers, ALUs, and comparators, (2) registers and other memory elements for the temporary
storage of data, and (3) buses and multiplexers for the transfer of data between‘the different components in the
datapath. External data can be entered into the datapath through the W ines. Results from the computation

are provided through the data output lines. /\\

In order for the datapath to function correctly, appropriate con@éls must be asserted at the right time.
Control signals are needed for all the select and control lines for-ati-th components used in the datapath. This
includes all the select lines for multiplexers, ALU and other ﬁ@m al units having multiple operations, all the
read/write enable signals for registers and register files, addres 'in&/' r register files, and enable signals for tri-state
buffers. The operation of the datapath is determined hy \/\/I“%ﬂ)ﬁrol signals are asserted and at what time. In a

microprocessor, these control signals are generated by Q\cm nit.
)
In return, the datapath needs to supply status 5|g\'~ll<{\Béc> to the control unit in order for it to operate correctly.

These status signals are usually from the output of compasators. The comparator tests for a given logical condition
between two values. These values can be obtained either from memory elements, directly from the output of
functional units, or hardwired as constants. Them'}ls signals provide input information for the control unit to
determine what operation to perform next.We, in a conditional loop situation, the status signal will tell the
control unit whether to repeat or exit the Io%). \/

Since the datapath performs ali-the h‘@?}%l operations of a microprocessor, and the microprocessor is for
solving problems, therefore the datapﬁh\?r:w\:@ able to perform all the operations required to solve the given
problem. For example, if the problerx(n%q\ifs ihe addition of two numbers, the datapath, therefore, must contain an
adder. If the problem requires tl"g;“s\tim. e of three temporary variables, the datapath must have three registers.
However, even with these requﬂ%‘nt\ { there are still many options as to what is actually implemented in the
datapath. For example, an adgeﬂtaﬁa° implemented as just a single adder circuit, or as part of the ALU. Registers
can be separate register un;ufo?g mbined in a register file. Furthermore, two temporary variables can share the
same register if they are noth %\att e same time.

Datapath design-is %@ re erfég to as the register-transfer level (RTL) design. In the register-transfer level
design, we look at/how da transferred from one register to another or back to the same register. If the same data
is written back to g@sr without any modifications, then nothing has been accomplished. So before writing the
data to a register, the-data’passes through one or more functional units and gets modified. The time from the reading
of the data to the modifying of the data by functional units and finally to the writing of the data back to a register
must all happen within one clock cycle.

When designing a datapath to solve a certain problem, there are two methods that can be used. You can start
with a general datapath and see if it contains all of the required functional units and enough registers for the problem
at hand. Or you can first look at the problem and determine what functional units and how many registers are

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 3 of 24

needed, and then create a dedicated or custom datapath just for solving this one problem. We will first look at
general datapaths and how to use them and then we will look at the design of dedicated or custom datapaths.

9.1 General Datapath

Figure 1(a) shows an example of a simple general datapath. It contains one functional unit, the ALU, and one
register for storing data. The input to the A operand of the ALU can be either an external input or the constant ‘1’ as
selected by the multiplexer select signal line IE. The B operand of the ALU is always from the content of the
register. The operation of the ALU is determined by the three control lines ALU,, ALU;, and ALU,, as defined in
Figure 1(b). The design of the ALU was discussed in section 5.2. The register provides a load capability for loading
the output of the ALU into the register. The register can also be reset to zero by asserting the Clear signal line. The
content of the register can be passed to the external output by asserting the output enable line OE of the tri-state
buffer. We assume here that the buses for transferring the data between components are eight bits wide. All the
control lines, of course, are one bit.

Input 1
1 0
6_IE mux
ALU, | ALU; | ALU, Operation
A B 0 0 0 [Pass through A
j LtJLZJ 0 0 1 |AANDB
3 ,_fJO 0 1 0 AORB
0 1 1 NOT A
1 0 0 A+B
1 0 1 A-B
2 coad 1 1 0 |A+1
Register _
- . 1 1 1 A-1
(b)
0 OE
Output
(a)

Figure 1. A simple datapath: (a) circuit; (b) ALU operations.

There are seven control lines (humber 0 to 6) for controlling the operations of this simple datapath. Various
operations can be performed by this simple datapath by asserting or de-asserting these control signals at different
times. These control lines are grouped together to form what is called a control word. One operation of the
datapath, therefore, is determined by the values set in one control word, and will take one clock cycle to perform. By
combining multiple control words together in a certain sequence, the datapath will perform the specified operations
in the order given.

For example, to load a value from the external input to the register, we would set the control word as follows

Control line |/EL ALU2 ALU1 ALUq | Load | Clear | OE
6 5-3 2 [1 [o
Valueset | 1 000 (pass) 1 0 0

By setting IE = 1, we select the external input to pass through the mux. From Figure 1(b), we see that setting the
ALU control lines ALU,, ALU4, and ALU, to 000 selects the pass through operation. Finally, setting Load = 1 loads

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 4 of 24

the value from the output of the ALU into the register. Thus, we have stored the input value into the register. We do
not want to output the value from the register so OE is set to 0.

Note that the writing of the register occurs at the next active edge of the clock. Thus, the new value is not
available to be read from the register until the next clock cycle. If we had set OE to 1 in the above control word, we
would be reading the register in the current clock cycle and thus outputting the original value found in the register
rather then the new value that was just entered in.

9.2 Using a General Datapath

A general datapath, such as the one described in the previous section, can be used to solve various problems as
long as it has all of the required functional units and has enough registers for storing all the temporary data. The idea
of using a general datapath is that we can use a “ready made” circuit to solve a given problem without having to
modify it. The trade off is a time versus space issue. On one hand, we do not need the extra time to design a custom
or dedicated datapath. On the other hand, the general datapath may contain more features than what the problem
requires, so it not only increases the size of the circuit, but also consumes more power. The following example
shows how we can use the general datapath from the previous section to solve a problem.

Example 9.1

To see how a datapath is used to perform a computation, let us write the control words for the datapath of
Figure 1(a) to generate and output the numbers from 1 to 10. The algorithm for doing this is shown in Figure 2(a).

To translate this algorithm to control words for our datapath, we need to look at all the instructions in the
algorithm that performs data operations (since this is what the datapath is responsible for); namely, lines 1, 3 and 4.
Line 2 is not a data operation instruction but rather a control instruction, even though it reads the value of i. The
condition is evaluated by the datapath and a status signal (telling whether the condition is true or false) is generated
and sent to the control unit. Depending on this status signal, the control unit will decide whether or not to loop again.
The control words for the three instructions are shown in Figure 2(b).

1 i =0
2 while (i < 10){
3 i =i +1
4 out put i
5 }
(a)
Control Instruction IE | ALU, ALU; ALU, | Load | Clear | OE
Word 6 5-3 2 1 0
1 i=0 x XXX 0 1 0
2 izi+1l 0 100 (add) 1 0 0
3 output i X XXX 0 0 1
(b)

Figure 2. Generate and output the numbers from 1 to 10: (a) algorithm; (b) control words for the datapath in Figure
1(a) using three control words.

Control word 1 initializes i to 0. The register in the datapath is used to store the value of i. Since the register has
a Clear feature, we can assert this Clear signal to zero the register. The ALU is not needed in this operation so it
doesn’t matter what the inputs to the ALU are, or the operation that is selected for the ALU to perform. Hence, the
four control lines IE (for selecting the input), and ALU,, ALU,, and ALU, (for selecting the ALU operation) are all
set to x’s (“don’t cares”). Load is de-asserted because we don’t need to store the output of the ALU to the register.
At this time, we also do not want to output the value from the register, so the output control line OE is also de-
asserted.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 5 of 24

Control word 2 increments i, so we need to add a one to the value that is stored in the register. Although, the
ALU has an increment operation, we cannot use it because the ALU was designed such that the operation
increments the A operand rather then the B operand (see Figure 1(b)), and our datapath is connected such that the
output of the register goes to the B operand. Now, we can modify the ALU to have an increment B operation, or we
can modify the datapath so that the output of the register can be routed to the A operand of the ALU. However, both
of these solutions require the modifications of the datapath, and this defeats the purpose of using a general datapath.
Instead, what we can do is to use the ALU add (100) operation to increment the value stored in the register by one.
We can get a one to the A operand by setting IE to 0 since the 0 input line of the mux is tied to the constant ‘1’. The
B operand will have the register value. Finally, we need to load the result of the ALU back into the register so the
Load line is asserted.

Control word 3 outputs the incremented value. Again, we don’t care about the inputs to the ALU and the
operation of the ALU, so there is no new value to load into the register. We definitely do not want to clear the
register. We simply want to output the value from the register, so we just assert OE by setting itto a 1.

Note that control words 2 and 3 must be executed ten times in order to output the ten numbers. The while loop
in the algorithm is implemented in the control unit and we will see in the next chapter how it is done.

The simulation trace of the control words is shown in Figure 3. Notice that two cycles are needed for each count
— the first cycle for control word 2 and the second cycle for control word 3. These two cycles are repeated ten times
for the ten numbers. For example, at 500ns (at beginning of the first of the two clock cycles), Load = 1 and OE = 0.
The current content of the register is 1. Since OE = 0, so the output is Z. At 700ns (the beginning of the second of
the two clock cycles), the register is updated with the value 2. Load is de-asserted and OE is asserted, and the
number 2 is outputted. .

The simulation trace shown in Figure 3 for example 8.1 was obtained by manually asserting and de-asserting
the datapath control signals at each clock cycle. This is only because we wanted to test out the datapath and we have
not yet constructed the control unit for generating these control signals. What we really need to do is to construct the
control unit based on the control words from Figure 2(b). The control unit will generate the appropriate control
signals for the datapath for each clock cycle.

The control unit will also have to determine whether to repeat control words 2 and 3 in the loop, or to terminate.
In order for the control unit to know this, we must add a comparator to the output of the register in the datapath to
test whether the count is ten or not. The output of this comparator is the status signal that the datapath sends to the
control unit.

In the following chapters, you will learn how to construct the control unit and then combine it with the datapath
together to form a microprocessor. The resulting microprocessor from example 8.1, of course, will do nothing more
than just count from 1 to 10. But with this microprocessor, you wouldn’t have to manually control the datapath
control signals as you did in the example.

9.3 Timing Issues

One control word is executed in one clock cycle. In one clock cycle, data from a register is first read, then it
passes through functional units and gets modified, and finally it is written back to a register. In example 8.1, two
control words are needed for the addition and the output operations. Control word 2 does the addition and writing of
the result into the register. Referring to Figure 4, we see that during this clock cycle for control word 2, the
operations start with the constant ‘1’ passing down through the mux, follow by the ALU performing the addition.
The resulting value from the addition is written to the register at the beginning of the next clock cycle. Recall that
this is how the D flip-flop from section 6.7 was constructed — a new value gets latched into the flip-flop at the active
(rising) edge of the clock. Therefore, the value that is available at the output of the register in the current clock cycle
is still the value before the write back, which is the value before the increment. If we assert the OE signal in the
same clock cycle to output the register value as shown in control word 2 of Figure 5, the output value would be the
value before the increment and not the result from after the increment. Because of this, example 8.1 uses control
word 3, starting at the next clock cycle, to do the output of the new value.

Performing both a read and a write from/to the same register in the same control word, i.e. same clock cycle, do
not create any signal conflict because the reading occurs immediately in the current clock cycle and is getting the
original value that is in the register. The writing occurs at the beginning of the next clock cycle after the reading.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 6 of 24

Hara J_' ':-Ll.IIUl'l'E- 1 s I ‘.:I.‘E- 2 g '_".:I.IE- AT 3 E:uE =
oo U UL
= inpard |

= |E

= susel [} 100 ooo
o | [|] L1 LJ LJ LJ LJ LT LT LT
= laar —l

- 0E = . L L L] | .

@F Register [O 4 1 F 2 f 3 ¥ 4 ¥ 5 ¥ & f 7T F @4 r 9 ¥ 10
R I A O 0 6 0 O D O

Figure 3. Simulation trace for using three control words as shown in Figure 2(b).

Figure 6 shows the simulation trace for the control words of Figure 5 where the increment and output are both
done in control word 2. There are two main differences between this simulation trace and the one from Figure 3. The
first is that each count now only requires one clock cycle rather than two. As a result, the time to count to ten is
about half (2.4ps versus 4.0us). The second thing is that the first output value is a zero and not a one as it should be.
The first time that control word 2 executes is the clock cycle between 100ns and 300ns. The incremented value (1)
does not get written into the register until at 300ns. So when OE is asserted before 300ns, the output value is 0.

We certainly like the fact that it only requires half the time, but outputting a zero at the beginning is not what
we wanted. There are several possible solutions, one of which is shown in Figure 7 and Figure 8. OE is not asserted
in control word 2 which is executed only once at the beginning. Subsequent executions of control word 3 will have
OE asserted together with the addition and this one we will repeat ten times.

Constant '1' passes
through mux. l C ALU performs A+B

one clock cycle
-

clock signal ‘

Start of control / \. Start of control
word 2. word 3.
Read Write register with

register ALU result
Figure 4. Read and write timings for a control word.

Control Instruction IE | ALU, ALU; ALU, | Load | Clear | OE

Word 6 5-3 2 1 0
1 i=0 x XXX 0 1 0
2 i=i+1&outputi | O 100 (add) 1 0 1

Figure 5. Counting algorithm using two control words for the datapath in Figure 1(a).

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 7 of 24
Marne l JIIII:Irr; -l-IIIII:In: E000 Ons EIIIII]n: 1 I:!us 1 2:u= 1 -l;u: 1 E."'= 1 EILE 2 I:!us 2 E:us 2 dlun
w-cock [[| [[T LT T TLTTTLTLILTIT T

AR inpeul i}

g |E

i susel [F 100 ¥ 000
g=load || |

= Clear _l

g (O | |

@¥ Register oy 1 2 %3 ¥4 31 a8 fE 17 payajy 0
S@ompn [IY 0 Y 1 ¥ 2 ¥ 3 Y a4 Y s Y Y7 ¥ ¥e Yw Yoz
Figure 6. Simulation trace for using the two control words from Figure 5.

Control Instruction IE | ALU, ALU; ALU, | Load | Clear | OE
Word 6 5-3 2 1 0
1 i=0 X XXX 0 1 0
2 izi+1 0 100 (add) 1 0 0
3 i=i+1&outputi| O 100 (add) 1 0 1
Figure 7. Optimized control words for the counting algorithm using the datapath in Figure 1(a).

Marme J_ 200ns 400005 B0Ons B000rs 1.0us 12us ldus 1Bus T8us J0us 22us 2dus
w-coce | [| [[T T LT LTI TLTT LTI
B inpul D
mw= |E
i el [F 100 ¥ om
g=load || |
= Clear _l
= E | |
@ Register g § 1t ;2 ¥ 3 p 4 1 a f 6§ 7 poa po9;j 10
S catput 2y 2 %3 N4 s ¥e ¥o7opoa ¥a o ¥owmyg oz

Figure 8. Corrected simulation trace for using the two control words from Figure 5.

Microprocessor Design — Principles and Practices with VHDL

Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 8 of 24

9.4 A More Complex Datapath

When a particular general datapath does not contain all the functional units and/or registers needed to perform
all the required operations specified in the algorithm that you are trying to solve, then you need to select a more
complex datapath. When working with general datapaths, the goal is to find the simplest and smallest one that
matches the requirements of the problem as close as possible. Example 8.2 shows the need for selecting a more
complex datapath.

Example 9.2

As another example, let us use the simple datapath of Figure 1(a) to generate and add the numbers from n down
to 1 where n is an input number, and output the sum of these numbers. The algorithm for doing this is shown in
Figure 9(a). The algorithm requires the use of two variables, n for the input that counts down to zero, and sum for
adding up the total. This means that we need two registers in the datapath, unless we want the user to enter the
numbers from n down to 1 manually and just use the one register to store the sum. Thus, we conclude that the
datapath of Figure 1(a) cannot be used to implement this algorithm. ¢

In order to implement the algorithm of Figure 9(a) we need a slightly more complex datapath that includes at
least two registers. One possible datapath is shown in Figure 10(a). The main difference between this datapath and
the previous one is that a register file (RF) with four locations is used instead of having just one register. The
register file, as discussed in section 7.2, has one write port and two read ports. To access a particular port, the enable
line for that port must be asserted and the address for the location set up. The designated lines are WE for write
enable, RAE for read port A enable, and RBE for read port B enable, WA for the write address, RAA for the read port
A address, and RBA for the read port B address. The read ports A and B can be read simultaneously, and they are
connected to the two input operands A and B of the ALU respectively. The result of the ALU is passed through a
shifter whose operations are specified in Figure 10(c). Although the shifter is not needed by the algorithm of Figure
9(a), it is available in this datapath. The output of the shifter is routed back to the register file via the mux or it can
be outputted externally by enabling the output tri-state buffer. The datapath width is again assumed to be eight bits
wide.

1 sum= 0
2 i nput n
3 while (n # 0){
4 sum = sum + n
5 n=n-1
6 }
7 out put sum
(@)
Control Instruction IE | WE | WA, | RAE | RAA;, | RBE | RBA 4 ALU, 10 SH,, | OE
Word 15| 14 | 13-12 | 11 10-9 8 7-6 5-3 21 |1 0
1 sum =0 0 1 00 1 00 1 00 101 (subtract) 00 0
2 input n 1 1 01 0 XX 0 XX XXX XX 0
3 sum=sum+n | O 1 00 1 00 1 01 100 (add) 00 0
4 n=n-1 0 1 01 1 01 0 XX 111 (decrement) | 00 0
5 output sum x | 0 XX 1 00 0 XX 000 (pass) 00 1
(b)

Figure 9. Generate and sum the numbers from n down to 1: (a) algorithm; (b) control words for the datapath in
Figure 10.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 9 of 24

Input
] : ALU, | ALU; | ALU, Operation
5 _E mux 0 0 0 Pass through A
0 0 1 A AND B
0 1 0 AORB
u WE 0 1 1 NOT A
13-12 WA 4x8 1 0 0O |A+B
11 RAE RF RBE[1 0 1 A-B
10-9 RAA RBA 1 1 0 |A+1
Clk > 1 1 1 A-1
: &
N
7-6 (b) (\\1)//\
ANE 3 E
5 LU, N Y4
4 Lo
3 LU (f\/
) PN Qﬂ
A9
SH; | SH Opération
2 S shifter 0 [0 [Passthrough >
! St 0 | 1 | Shiftleftand fill with 0
1 0 | shiftright ard fill with 0
, _OF 1 | 1 [Rotateright

W)
NN
@ ((J\ %

Figure 10. Complex datapath with register file: (a) circuit; (b) ALU@?‘(‘RX/S; (c) Shifter operations.
)

Example 9.3 f\\\/
——— T
The summation algorithm of Figure 9 (a) can be/ m‘n\msj, tad

words for manipulating the datapath are shown in Figu?%xh\"\zfj\.\>

using the datapath in Figure 10. The control

Control word 1 initializes sum to 0 by perferming a s igtraction where the two operands are the same. The
location of the register file (RF) used for the two or}”'*a!g? is arbitrary because it doesn’t matter what the value is as
long as both operands get the same value. We_usg “Mion 0 to store the value of variable sum. Thus, we assert
all three RF enable lines and set the RF writ%&ﬂocation 0 and the two RF read addresses also to location 0.
The shifter is not needed, so the pass through‘o \:rr n is selected. All the operations specified by a control word
are performed within one clock cycle. The ti(gﬁr§ fof the operations of this control word is as follows. At the active
edge of the clock, the FSM enters the smﬁ{cfgf%@ontrol word. The appropriate control signals for this control
word to the datapath are asserted. Datag@}n}nﬁ: loedtion 0 is read for both ports and passed to the ALU. Recall that
the register file is constructed such t.? the data from reading a port is available immediately and does not have to
wait until the next active clock eggeNSirice both the ALU and the Shifter are combinational circuits, they will
operate within the same clock cygcte, Thelresult is written back to RF location 0 at the next active clock edge. Thus,
the updated or new value in R ﬁ(:\la\\a n Q.is not available until the beginning of the next clock cycle.

Control word 2 inputs fr”‘%ﬁh&\ nd stores it in RF location 1. To read from the input, we set IE = 1. To write
n into RF location 1 \/\@\set(‘\, E =)1 aiid WA = 01. Both the ALU and the shifter are not used in this control word so

their select lines are <: to depy*teares.

Control word 3 t adis/)l through port A by setting RAE = 1 and RAA;, = 00, and n through port B by setting
RBE =1 and RBA; , = 01 These two numbers are added together by setting the ALU select lines to 100. The result
of the addition passes through the shifter and the mux, and is written back to RF location 00.

Control word 4 decrements n by 1 by using the decrement operation of the ALU (111). From RF location 01, n
is read through port A and passes to the A operand of the ALU. The result is written back to RF location 1.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 10 of 24

Control word 5 outputs the result that is stored in sum by reading from RF location 0 via port A and passing it
through the ALU and shifter. OE is asserted to enable the tri-state buffer for the output.

For the algorithm to be executed automatically, the looping of the control words 3 and 4 must be controlled by
the control unit. A comparator that tests for the condition (n # 0) is added to the datapath. This comparator generates
the status signal (of whether the condition (n # 0) is true or false) for the control unit to decide whether to repeat the
loop or not.

The simulation trace of the control words is shown in Figure 11. Again, the datapath control signals are
manually set until n (RF1) reaches 0 at which point OE is asserted and the summation value 55 appears on the

output. *
Mo ma _]_ 500 Ons . 0us 1.5 2 0us 2 5us 3.0us 15 40 4 Sus _
w-ceck [[[T UL
i@ rpn [0 JI0) O

— E I_

= E I—
= vin | 00) o oo o (00 Y1 (oo Yo Yoo (ot oo o1 {oo ¥on Yoo)01 f 00
a9 RAE L
_ GF GG CYER G 08 0 G 6 G S

et T e

9= RBE |
aw<Fps |00 o1 {00 (01 {0007 {00 {01 {00 {01 {00 {01 Y00 v {00 o1 o0 1) fﬂw_”._
= ALL S0 Fiad0 ¥aod 1 a0 n 1 faod i1 i :|'|||:|:|-}:':111@'ﬂ@nn:ﬂl:{-:mxlﬁxm T

i~ SH

- []
aF RFO] po1m f o1\ f X F M 3 a0 §p a5 f a9 f 52 f s] 55
a# RF1 n ¢y w ¥y 8 f B § 7 ¥ 6 3 5 §@ 4 ¥ 3 fp 2 31 1 31 0

S oulput I I:EI:Z

Figure 11. Simulation trace for the summation problem control words of Figure 9(b).

9.5 VHDL for the Complex Datapath

In modeling the datapath using VHDL, we need to work at the structural level. First, all the components used in
the datapath must be described individually. It doesn’t matter whether they are written at the behavioral, dataflow, or
structural level. These components are then connected together in an enclosing module using the structural level
method.

Figure 12 and Figure 13 show the complete VHDL code for modeling the complex datapath circuit from Figure
10. Figure 12 lists the definitions for all the components used in the datapath. The detail constructions of these
components are discussed in previous chapters. Figure 13 shows the enclosing module that combines these
components together at the structural level to form the datapath.

-- 2-to-1 MJUX
LI BRARY i eee;
USE i eee.std | ogic_1164.all;

ENTITY nmux2 IS PORT (

S: IN std_l ogi c; -- select line

D1, DO: IN std |ogic_vector(7 downto 0); -- data bus input

Y: QUT std | ogic_vector(7 downto 0)); -- data bus output
END mux2;

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 11 of 24

ARCHI TECTURE Behavi oral OF mux2 IS
BEG N

PROCESS(S, D1, DO0)
BEG N
IF(S ="'0")THEN
Y <= DO;
ELSE
Y <= D1;
END | F;
END PROCESS;
END Behavi or al ;

-- Register File

LI BRARY i eee;

USE i eee.std | ogic_1164.all;

USE i eee.std | ogi c_unsigned. all;
--USE ieee.std_logic_arith.all;

ENTITY regfile I'S PORT (

clk: IN std_|ogic; --cl ock

VE: IN std_ | ogic; --write enable

WA: I N std_l ogic_vector(1l DOANTO 0); --write address

input: IN std_|ogic_vector(7 DOANNTO 0); --i nput

RAE: IN std_| ogic; --read enable ports A &B
RAA: IN std | ogic_vector(1 DOANTO 0); --read address port A& B
RBE: IN std_| ogic; --read enable ports A & B
RBA: I N std_| ogic_vector(1 DOANTO 0); --read address port A& B
Aout, Bout: OUT std_logic_vector(7 DOANTO 0)); --output port A& B

END regfile;

ARCHI TECTURE Behavioral OF regfile IS
SUBTYPE reg IS std_| ogi c_vector (7 DOANTO 0);
TYPE regArray IS array(0 TO 3) OF reg;

SIGNAL RF: regArray; --register file contents
BEG N

WitePort: PROCESS (clk)

BEG N

IF (clk' EVENT AND clk = '1') THEN
IF (ME = '1') THEN
RF(CONV_| NTEGER(WA)) <= i nput ;
END | F;
END | F;
END PROCESS;

ReadPort A: PROCESS (RAE, RAA)
BEG N
IF (RAE = "1') then
Aout <= RF(CONV_I NTEGER(RAA)); -- convert bit VECTOR to integer
ELSE
Aout <= (others =>"'2Z2");
END | F;
END PRCCESS;

ReadPort B: PROCESS (RBE, RBA)
BEG N
IF (RBE = '1') then

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 12 of 24

SBout <= RF(CONV_I NTEGER(RBA)); -- convert bit VECTOR to integer
ELSE
Bout <= (others =>"'272");
END | F;
END PRCCESS;

END Behavi or al ;

-- ALU

LI BRARY i eee;

USE i eee.std | ogic_1164.all;

-- need the following to performarithnetics on std_|ogic_vectors
USE i eee.std_I| ogi c_unsigned. al | ;

ENTITY alu IS PORT (

ALUSel : IN std | ogic_vector(2 DOANTO 0); -- select for operations
A, B: INstd |ogic _vector(7 DOMNTO 0); -- input operands
F: OUT std_l ogic_vector(7 DOANTO 0)); -- out put
END al u;
ARCHI TECTURE Behavior OF alu IS
BEG N
PROCESS(ALUSel , A, B)
BEG N
CASE ALUSel IS
WHEN " 000" => -- pass A through
F<=A
VWHEN " 001" => -- AND
F <= A AND B;
VWHEN " 010" => -- OR
F <= AR B;
VWHEN " 011" => -- NOr
F <= NOT A
VWHEN " 100" => -- add
F <= A+ B
VWHEN " 101" => -- subtract
F <= A- B
VWHEN " 110" => -- increnent
F <= A+ 1;
VWHEN ot hers => -- decrenent
F<=A- 1,
END CASE;
END PRCCESS;

END Behavi or;

-- Shifter
LI BRARY i eee;
USE i eee.std_l ogic_1164.all;

ENTITY shifter IS PORT (

SHSel : IN std | ogic_vector(1 DOANTO 0); -- select for operations
input: IN std_|ogic_vector(7 DOMNNTO 0); -- input operands
output: OUT std_ | ogic_vector(7 DOANTO 0)); -- output

END shifter;

ARCHI TECTURE Behavi or OF shifter IS

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 13 of 24

BEG N
PROCESS(SHSel , i nput)
BEG N
CASE SHSel IS
WHEN " 00" => -- pass through
out put <= input;
VWHEN " 01" => -- shift right
out put <= input(6 DOANTO 0) & '0';
VWHEN " 10" => -- shift left
output <= '0" & input(7 DOMNTO 1);
WHEN OTHERS => -- rotate right
output <= input(0) & input(7 DOMNTO 1);
END CASE;
END PRCCESS;

END Behavi or;

-- Tri-state buffer
LI BRARY i eee€;
USE i eee.std | ogic_1164.all;

ENTITY Tri StateBuffer 1S PORT (
E: IN std_| ogic;
D: IN std_| ogic_vector(7 DOANNTO 0);
Y: QUT std | ogic_vector(7 DOMTO 0));
END Tri St at eBuffer;

ARCHI TECTURE Behavi oral OF Tri StateBuffer |S

BEG N
PROCESS (E, D) -- get error nessage if no d
BEG N
IF (E="1) THEN
Y <= D;
ELSE
Y <= (OTHERS => 'Z'); -- to get 8 Z val ues
END | F;
END PROCCESS;

END Behavi or al ;

Figure 12. Components for the datapath of Figure 10.

LI BRARY i eee;
USE i eee.std_l ogic_1164. all;

ENTI TY datapath 1S PORT (
clock: IN std | ogic;
input: INstd |ogic vector(7 DOANTO 0);
IE, WE: IN std | ogic;
WA: I N std_|ogic_vector (1 DOANTO 0);
RAE: IN std_| ogic;
RAA: IN std | ogic vector (1 DOMNTO 0);
RBE: IN std_| ogic;
RBA: IN std |ogic vector (1 DOMNTO 0);
aluSel: IN std_|logic_vector(2 DOMNTO 0);
shSel: IN std_| ogic_vector (1 DOMNNTO 0);
CE: IN std_logic;

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 14 of 24

output: OUT std_|l ogic_vector (7 DOANTO 0));
END dat apat h;

ARCHI TECTURE Structural OF datapath IS

COVPONENT nux2 PORT (

S: IN std_Ilogic; -- select lines
D1, DO: IN std_|ogic_vector(7 DOANTO 0); -- data bus input
Y: QUT std_l ogic_vector (7 DOANTO 0)); -- data bus out put

END COVPONENT;

COVPONENT regfile PORT (

clk: IN std_Ilogic; --cl ock

WE: I N std_I ogic; --wite enable

WA: IN std | ogic_vector(1l DOANTO 0); --write address

input: INstd |ogic vector(7 DOMTO 0); --i nput

RAE: IN std_| ogic; --read enable ports A & B
RAA: I N std_| ogic_vector(1 DOANTO 0); --read address port A& B
RBE: IN std_| ogic; --read enable ports A& B
RBA: IN std | ogic_vector(1 DOANTO 0); --read address port A& B
Aout, Bout: OQUT std | ogic vector(7 DOANTO 0)); --output port A& B

END COVPONENT,;

COVPONENT al u PORT (

ALUSel : IN std | ogic_vector(2 DOANTO 0); -- select for operations
A, B: IN std |ogic_vector(7 DOMNTO 0); -- input operands
F: OUT std_| ogic_vector(7 DOANTO 0)); -- out put

END COMPONENT;

COVPONENT shifter PORT (

SHSel : IN std | ogic_vector(1 DOMNTO 0); -- select for operations
input: INstd |ogic vector(7 DOMNTO 0); -- input operands
output: OUT std_ | ogic_vector(7 DOANTO 0)); -- output

END COMPONENT;

COVPONENT tri statebuffer PORT (
E: IN std | ogic;
D: IN std_|ogic_vector(7 downto 0);
Y: QUT std_| ogic_vector(7 downto 0));
END COVPONENT;

SI GNAL nuxout, rfAout, rfBout: std |ogic vector(7 DOANTO 0);
SI GNAL al uout, shiftout, tristateout: std_|logic_vector(7 DOANTO O);

BEG N
-- doing structural nodeling here
U0: nmux2 PORT MAP(I E, input, shiftout, nmuxout);
Ul: regfile PORT MAP(cl ock, IE, WA, muxout , RAE, RAA, RBE, RBA, r f Aout , r f Bout);
U2: alu PORT MAP(ALUsel, rfAout, rfBout, aluout);
U3: shifter PORT MAP(SHSel , al uout, shiftout);
U4: tristatebuffer PORT MAP(CE, shiftout, tristateout);
output <= tristateout;
END Structural;

Figure 13. Datapath of Figure 10 constructed at the structural level.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 15 of 24

9.6 Dedicated Datapath

When designing a dedicated microprocessor to perform a certain algorithm, there are times when we may not
want to use a general datapath and build a control unit to control it. The disadvantage of using a general datapath is
that there will usually be some parts in the datapath that are not needed in solving the problem. For example, the
shifter in the general datapath of Figure 10(a) was not needed in the summation algorithm of Figure 9(a). These
extra parts are not only wasted, but they increase the size and power consumption of the circuit. Furthermore, since a
custom datapath is smaller than a general datapath, they will also require fewer control signals. Because fewer
control signals need to be generated, the resulting control unit will also be simpler to design and smaller. Hence, we
benefit not only from a smaller datapath but also a smaller control unit, and so resulting in a much smaller
microprocessor. Thus, instead of using a general datapath, we may want to design a dedicated or custom datapath
just for solving the given algorithm.

Keep in mind that we are trying to build a circuit for executing a given algorithm, and that the datapath is
responsible for performing all the data manipulations specified by the algorithm. Therefore, the datapath must be
able to perform all the data manipulation statements and generate all the conditional status signals for the algorithm.
In a dedicated datapath or register-transfer level design, we are concerned with how data moves from a register to a
(same or different) register via some functional units where the data is modified. When constructing a datapath for
performing a specific algorithm, we need to decide on the following issues:

* How many and what kind of registers are needed?

* What kind of functional units and how many are needed?

» Can a certain functional unit be shared between two or more operations?

* How are the registers and functional units connected together so that all the data movements specified by
the algorithm can be realized?

9.6.1 Selecting Registers

In most situations, one register is needed for each variable used by the algorithm. However, if the lifetime of
two variables does not overlap then they can share using the same register. The lifetime of a variable is the time
between when the variable is first used to when it is last used.

If two or more variables share the same register, then the data transfer connections leading to the register and
out from the register are usually made more complex since the register now has more than one source and
destination. Having multiple destinations is not too big of a concern in terms of circuit size. However, having
multiple sources will require extra circuitry to select which one of the several sources is to be transferred to the
register.

After deciding how many registers are needed, we still need to determine whether to use a single register file or
separate registers or a combination of both for storing these variables in. Furthermore, registers with built-in special
functions such as the counters and shift registers discussed in Sections 7.5 and 7.6 can also be used. Decisions for
selecting the type of registers to use will affect how the data transfer connections between the registers and
functional units are connected.

9.6.2 Selecting Functional Units

It is fairly straight forward to decide what kind of functional units are required. For example, if the algorithm
requires the addition of two numbers, then the datapath must include an adder. However, we still need to decide
whether to use a dedicated adder, an adder/subtractor combination, or an ALU (which has the addition operation
implemented). Of course, these questions can be answered by knowing what other data operations are needed by the
algorithm. If the algorithm has only an addition and a subtraction, then you may want to use the adder/subtractor
combination unit. On the other hand, if the algorithm requires several addition operations, do we use just one adder
or several adders?

Using one adder may decrease the datapath size in terms of number of functional units, but it may also increase
the datapath size because more complex data transfer paths are needed. For example, if the algorithm contains the
following two addition operations:

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 16 of 24

a=b+c
d=e+f

Using two separate adders will result in the datapath shown in Figure 14(a), whereas, using one adder will require
the use of two extra 2-to-1 multiplexers to select which register will supply the input to the adder operands as shown
in Figure 14(b).

o] e] {]
5] {1 =] {7 W Y

+ + +
e e
(@) (b)

Figure 14. Datapaths for realizing two addition operations: (a) using two separate adders; (b) using one adder.

9.6.3 Data Transfer Methods

There are several methods in which the registers and functional units can be connected together so that the
correct data transfers between the units are made.

Multiple Sources

If the input to a unit has more than one source, then a multiplexer can be used to select which one of the
multiple sources to use. The sources can be from registers, constant values, or outputs from other functional units.
Figure 15 shows two such examples. In Figure 15(a), the left operand of the adder has four sources: two from
registers, one from the constant 1, and one from the output of an ALU. In Figure 15(b), register a has two sources:
one from the constant 1, and one from the output of an adder.

(@) (b)

Figure 15. Examples of multiple sources using multiplexers.

Multiple Destinations

A source having multiple destinations does not require any extra circuitry. The one source can be connected
directly to the different destinations, and all the destinations where the data is not needed would simply ignore the
data source. For example, in Figure 14(b), the output of the adder has two destinations: register a and register d. If
the output of the current addition is for register a, then the Load line for register a is asserted while the Load line for
register d is not, and if the output is for register d, then the Load line for register d is asserted while the Load line for
register a is not. In either case, only the correct register will take the data while the other units will simply ignore the
data.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 17 of 24

This also works if one of the destinations is a combinational functional unit. In this case, the functional unit will
take the source data and manipulates it. However, the output of the functional unit will not be used, that is not stored
in any register, so functionally it doesn’t matter that the functional unit worked on the source because the result is
not used by any unit. However, it does require power for the functional unit to manipulate the data, so if we want to
reduce power consumption, we would want the functional unit to not manipulate the data.

Tri-state Bus

Another scheme where multiple sources and destinations can be connected on the same data bus is through the
use of tri-state buffers. The point to note here is that when multiple sources are connected to the same bus, only one
source can output at any one time. If two or more sources output to the same bus at the same time, then there will be
data conflicts. One source can output a 0 while another source outputs a 1. By using tri-state buffers connected
between the sources and the common bus, only one tri-state buffer is enabled while the rest of them are all disabled.
Tri-state buffers that are disabled output high impedance Z values so no data conflicts can occur.

Figure 16 shows a tri-state bus with five units (three registers, an ALU, and an adder) connected to it. An
advantage of using a tri-state bus is that the bus is bi-directional so that data can travel in both directions on the bus.
Connections for data going from a component to the bus need to be tri-stated while connections for data going from
the bus to a component need not be. Notice also that data input and output of a register can both be connected to the
same tri-state bus, whereas, the input and output of a functional unit (such as the adder or ALU) cannot be both
connected to the same tri-state bus.

N/
a ALU b

common data bus

A 4 A 4 r

+
v
Figure 16. Multiple sources using tri-state buffers to share a common data bus.

9.7 Using a Dedicated Datapath

Using a dedicated datapath is exactly the same as using a general datapath. Once we have constructed a
dedicated datapath, we will then write the control words for controlling the datapath.

9.8 Examples: Designing Dedicated Datapaths

We will now illustrate the design of dedicated datapaths with several examples.

Example 9.4

For example, to construct a dedicated datapath for the counting problem of Example 8.1, we can start with the
simple general datapath of Figure 1 and see what we can eliminate. Well, we can replace the ALU with a simple
adder since all we need is to increment. We can also remove the multiplexer and connect the constant ‘1’ directly to
one of the operands of the adder, since no external input is required. The resulting datapath is shown in Figure 17(a).

Another approach in designing a custom datapath is to start from scratch and decide what components are
needed. We want to pick the best match components and as few as possible to solve the problem. For the counting
problem, since all we wanted to do is count from 1 to 10, we can just use a 4-bit up counter as shown in Figure
17(b). .

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 18 of 24

Example 8.5 shows a slightly more complicated dedicated datapath construction.

X
Adder
2 Load Count — o
1 Clear Register Clear —| 4-bit binary up counter
Clk > Clk —
14
0 OE OE
Output Output
(@) (b)

Figure 17. Dedicated datapath for solving the counting problem of Example 9.1: (a) modifications of the simple
datapath; (b) custom design from scratch.

Example 9.5

In this example, we want to construct a dedicated datapath for solving the following algorithm:

w=20
X =0
y =0
i nput z
while (z # 0) {
w=w-— 2
if (z is an odd nunber)
X =X + 2
el se
y=y+1
z =z -1
}

We first note that we need to have four registers with load and clear for storing the four variables used in the
algorithm. In addition, we need an adder/subtractor combination unit to be able to add and subtract either of the two
constants 1 and 2. The resulting dedicated datapath is shown in Figure 18. We assume that the data path widths are
all eight bits, while the control and select lines are all one bit.

For initializing the three variables w, x, and y to zero, we can simply assert the clear line on the respective
registers. The statement “input z” is done by asserting the load line to the register for storing z. For the statement
“w=w — 2", we need to connect the output of the w register to the left operand of the adder/subtractor unit and the
constant 2 to the right operand. The output of the adder/subtractor unit is connected back to the input of the w
register. Similar connections can be made for the next three data manipulation statements “x = x + 2”7, “y =y + 17,
and“z=z-1".

Since the left operand of the adder/subtractor unit has four sources (w, x, y, and z), we need to add a 4-to-1
multiplexer to select from one of the four sources. The output of the mux then goes to the left operand of the

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 19 of 24

adder/subtractor. Similarly, the right orperand of the adder/subtractor has two sources (the constants 1 and 2), we
need a 2-to-1 mux to route the correct constant to the adder/subtractor.

The comparator for the while loop condition (z # 0) is a NOR gate with as many inputs as the databus width. The
test for (z is an odd number) can simply extract the least significant bit of z since an odd number always has a 1 in
the least significant bit. .

Load_z
Clear_z :[Z
-8

-~

20— {

(z is odd)

L-LSB

Subtract— +/—

Figure 18. Dedicated datapath for Example 8.5.

When designing a datapath, all the components in the datapath do not have to be interconnected. The datapath
can consist of two or more totally disjoint circuits as shown in Example 8.6.

Example 9.6 — Count Zero-One

In this example, we want to construct a custom datapath for solving the following problem:

Input an 8-bit number. Output a 1 if the number has the same number of 0’s and 1’s, otherwise, output a 0.
e.g. the number 10111011 will produce a 0 output, whereas, the number 10100011 will produce a 1 output.

The algorithm for solving the problem is shown in Figure 19. The while loop is executed eight times using the
counteight variable for the eight bits in the input number n. For each bit in n, if it is a 1, the variable countbit is
incremented, otherwise, it is decremented. At the end of the while loop, if countbit is equal to O, then there are the
same number of 0’s and 1’sin n.

i nput n
counthit =0 /1 for counting the nunber of zero and one bits
counteight =0 /1 for |ooping eight tinmes

whil e counteight # 8 {

if LSB(n) =1 /1 least significant bit of n
countbhit = countbhit + 1
el se
countbit = countbit - 1
n=n>>1 /1 shift n right one bit
count ei ght = countei ght + 1;
}
if countbit = 0 then
output 1
el se
output O

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 20 of 24

assert Qut Done

Figure 19. Algorithm for solving the count zero-one problem of Example 8.6.

The functional units and registers required by the custom datapath are as follows:

» Asshifter with parallel load register for storing n.

» One 4-bit up counter for counteight.

e One 4-bit up/down counter for countbit.

e A*“not equal to 8” comparator for looping eight times.
e An “equal to 0” comparator for testing with countbit.

The dedicated datapath for implementing the algorithm is shown in Figure 20. Notice that there are no
connections between the shifter and the two counters; they are completely separate circuits. To extract the least
significant bit of n and test whether it is equal to a 1 or not, we only have to connect to the least significant bit (LSB)
of the shifter and no active component is necessary. To test for counteight # 8, we use a 4-input NAND gate with the
least three significant input bits inverted. When counteight is equal to eight, the NAND gate outputs a 0, which serves
as the ending loop condition. Since countbit is keeping track of the number of 0’s and 1’s, so if it is a O at the end, it
means that there are the same number of 0’s and 1’s in n. The NOR gate will output a 1 if countbit is a 0. Whether the
output of the NOR gate is actually outputted will depend on whether the tri-state buffer is enabled or not. When the
control unit asserts the OutDone line to enable the tri-state buffer, this 1 signal also serves as the Done signal to
inform the external user that the computation is completed. In other words, when the Done signal is asserted, the
output value is the result of the computation. .

Input
18

Load »~—— shifter with
Shift ~—— load

4+ LSB
(LSB=1) «——

Count_e ~——-/ 4-bitup
counter
Clear counteight |— Clock
(counteight # 8) (—J
Count_b 4-bit u/d
Down counter
L_| counthit | Clock

OutDone
Done Output

Figure 20. Dedicated datapath for solving the count zero-one problem of Example 8.6.

Example 9.7

This example designs a dedicated datapath for evaluating the factorial of n. The factorial of n is defined to be
the product of 1 x 2 x 3 x ... x n. Figure 21 shows the algorithm for solving the factorial of n where n is a user input
number.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths Page 21 of 24

From analyzing the algorithm, we conclude that the following registers and functional units are needed in the
datapath:

« One register for storing the variable product.

* One down counter with parallel load for storing the variable n and for decrementing n. The parallel load
feature will allow for the input of n.

e One multiply functional unit.

» One greater-than-one comparator for returning the status signal to the control unit.

» Atri-state buffer for output.

Having decided on what components are needed in the datapath, we need to connect them together so that the
functional units will get the correct data, and the outputs from the functional units will be stored in the correct
register.

The complete custom datapath is shown in Figure 22. For example, in line 4 of the algorithm, one operand of
the multiply function is the product and the other operand is n. Hence, the output of the register where product is
stored is connected to one input of the multiply unit. Since n is stored in the counter, therefore, the output of the
counter is connected to the second input of the multiply unit. The result of the multiply is assigned back into the
variable product. Thus, in the datapath, we needed a connection from the output of the multiply functional unit back
to the input of the register where product is stored. However, we cannot make this connection directly because we
also need to load the constant 1 into this register as required by line 2 of the algorithm. So a 2-to-1 multiplexer is
used to select whether the constant 1 or the output from the multiply unit gets stored in the register. The down
counter allows for the execution of line 5. Since the counter also serves as the register for the variable n, we don’t
need an extra register. The parallel load feature of the counter allows the execution of line 1. The tri-state buffer,
connected to the output of the product register, is needed for the final output of the result. Finally, the comparator
generates the status signal for the condition n > 1 to the control unit. One input to the comparator comes from the
counter where n is stored and the other input is the constant 1. .

i nput n
product =1
while n > 1
product = product * n
n=n-1
out put product

OO WNPRE

Figure 21. Algorithm for solving the factorial of n problem of Example 9.7.

Input "1
Load L -
down counter register for
Count — also for storing n storing product
nyn
> *

(n>1)

Done l Y

Done Output

Figure 22. Dedicated datapath for solving the factorial of n problem of Example 9.7.

Microprocessor Design — Principles and Practices with VHDL Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths

9.9 VHDL for a Dedicated Datapath

Figure 23 shows the VHDL code for the dedicated datapath of Figure 20.

Page 22 of 24

LI BRARY i eee;
USE i eee.std_| ogic_1164. ALL,;
USE ieee.std_logic_arith. ALL;

ENTI TY Datapath IS PORT (
Clock: IN STD LOG C;

-- primary datapath input
Input: IN STD LOd C_VECTOR(7 DOMTO 0);

-- control signals
Load: IN STD LCG C,
Shift: IN STD LOG G,
Count _e: IN STD_LQOG C,
Clear: IN STD LOd C;
Count _b: IN STD LOG G,
Down: |IN STD LOd C;
CQut Done: IN STD LOd C,

-- status signals
Eq8: QUT STD LCd C;
LSBegl: OUT STD LOA C

-- primary datapath out put

Done: OUT STD_LOd C;

Qut put: QUT STD LOG C);
END Dat apat h;

ARCHI TECTURE Structural OF Datapath IS
COVPONENT shiftreg PORT (
Clock: IN STD LOG C;
SHSel : IN STD _LOG C VECTOR(1 DOMNTO 0);
D. IN STD LOG C VECTOR(7 DOWTO 0);
Q@ QUT STD LOG C VECTOR(7 DOAMNTO 0));
END COVPONENT;

COVPONENT count er PORT (

Clock: IN STD LQG C,

Clear: IN STD LOd C;

Count: IN STD _LQOG C,

Down: I N STD_LOd C,

Q@ OUT I NTEGER RANGE 0 TO 15);
END COVPONENT;

SI GNAL SHSel : STD LOG C_VECTOR(1 DOWNTO 0) ;
SIGNAL ShiftOut: STD LOG C_VECTOR(7 DOANTO 0);
SI GNAL CountbitQut: | NTEGER RANGE 0 TO 15;

SI GNAL Count ei ght Qut: | NTEGER RANGE 0 TO 15;
SI GNAL Equal : STD LOG C

SIGNAL Up: STD LOG G

Microprocessor Design — Principles and Practices with VHDL

Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths

Page 23 of 24

BEG N

SHSel <= Shift & Load;
Uo: shiftreg PORT MAP(C ock, SHSel, I nput, ShiftQut);
LSBegl <= ShiftQut(0);

-- count ei ght

Up <= 'O :

Ul: counter PORT MAP(C ock, C ear, Count _e, Up, Count ei ght Qut) ;
EQ8 <= '1'" WHEN CounteightCQut = 8 ELSE '0';

-- countbit

U2: counter PORT MAP(C ock, d ear, Count _b, Down, Count bi t Qut);
Equal <= "'1" WHEN CountbitQut = 0 ELSE '0';

Qut put <= Equal WHEN CQut Done = '1' ELSE 'Z';

Done <= CQut Done;

END Structural;

Figure 23. VHDL code for the datapath of Example 9.6, Figure 20.

9.10

9.10.

* Optimization for Datapaths

1 Functional Unit Sharing

asd

9.10.

2 Register Sharing

asdf

9.10.

3 Bus Sharing

asdf

9.11

OoOooooon

Microprocessor Design — Principles and Practices with VHDL

Summary Checklist

Datapath

General datapath

Dedicated datapath

Control signals

Status signals

Register-transfer level design

Control word

Timing issues. When a register is updated

Last updated 7/16/2003 12:32 PM

Chapter 9 — Datapaths

Index

C

Control signal, 2, 3
Control word, 3

D

Data transfer methods, 16
multiple destinations, 16
multiple sources, 16
tri-state bus, 17

Datapath, 2
complex example, 8

dedicated. See Dedicated datapath.

general. See General datapath.
simple example, 3
timing issues, 5

Dedicated datapath, 15
data transfer methods, 16
examples, 17
selecting functional units, 15
selecting registers, 15

Microprocessor Design — Principles and Practices with VHDL

timing issues, 5
using a, 17
G

General datapath, 3
timing issues, 5
using a, 4

R

Register file, 8
Register transfer level, 2

RTL. See Register transfer level.

S
Status signal, 2, 5

T

Timing issues, 5
Tri-state bus, 17

Page 24 of 24

Last updated 7/16/2003 12:32 PM

Chapter 10 — Control Units Page 1 of 5

Table of Content

QLI 1] S0 O 0] 1) | 1
10 (0001 (o] L0 L4 £ 2
O TR R =T (o] =T 3
T =1 [<Tox (=0 [N 1 VLY £ 4
10 (= SRR 5

Principles of Digital Logic Design Enoch Hwang Last updated 3/18/2003 7:54 PM

Chapter 10 — Control Units Page 2 of 5

10 Control Units

Chapter 9 described how a datapath is designed

. . . Control
and how it is used to execute a particular algorithm by Inputs
specifying the control words to manipulate the Y
datapath at each clock cycle. In that chapter, we tested Control unit
the datapath by setting the control word signals T >
manually. However, to actually have the datapath
- - — State »| Output >
automatically operate according to the control words, a Next- 1 Memory Logic | | Control
control unit circuit is needed that will generate these Logic register 39 Signals
control signals automatically at each clock cycle.] >
The control unit is a sequential circuit in which LY ! Stﬁ(
its outputs are dependent on both its current and past ; w i)
inputs. This history of past inputs is stored in the state Control (g f / Data
memory and is said to represent the state of the Outputs ./ <Jj Outputs

circuit. Thus, the circuit changes from one state to the next when the content of the qfef:“ changes. Depending on
the current state of the circuit and the input signals, the next-state logic will dgfer% e-What the next state ought to
be by changing the content of the state memory. Hence, a sequential circuit execuigs-by going through a sequence of
states. Since the state memory is finite, therefore the total number of differ“/‘*%tatés\ﬁga? the circuit can go to is also
finite. This is not to be confused with the fact that the sequence length can be I ?’;i}ely long. However, because of
the reason of having only a finite number of states, a sequential circuit is also ref tred to as a finite-state machine
(FSM).

The control unit inside the microprocessor is thus an example om state machine. By stepping through a
sequence of states, the control unit controls the operations of the da(L pathj) For each state that the control unit is in,
the output logic that is inside the control unit will generate all Eh\ﬁ\wpriate control signals for the datapath to

perform one operation. \ ‘\\,

The speed in which the finite-state machine sequencesﬁr(rb\tl\glﬁ the states is determined by the clock signal. At
each active edge of the clock signal, the state memo;y/*mgistq\is @%abled and the next state value is stored in. The
limiting factor for the clock speed is whether all the/@*fa;iox. bAnits inside the datapath can finish their operations

/\>
NV

ON

within one clock period.

In this chapter, we will look at the design\oj finite-state machines in general. In the next chapter, we will
combine what we have learned about datapa\‘“\w. finite-state machines together to construct a complete

microprocessor. \(\
~

AN
Finite-state machines are classified in?}\t\i‘\Q m%r(n types: Moore and Mealy. A Moore type FSM is one where
the output of the machine is dependent orﬁm. the current state, whereas a Mealy type FSM is one where the output
is dependent on both the current staté’and m;@signals.

1_,

AN
4“{\\//

(f?))

A
QY

J

Principles of Digital Logic Design Enoch Hwang Last updated 3/18/2003 7:54 PM

Chapter 10 — Control Units Page 3 of 5

10.1 Exercises

Principles of Digital Logic Design Enoch Hwang Last updated 3/18/2003 7:54 PM

Chapter 10 — Control Units Page 4 of 5

10.2 Selected Answers

Principles of Digital Logic Design Enoch Hwang Last updated 3/18/2003 7:54 PM

Chapter 10 — Control Units Page 5 of 5

Index
state memory, 2
C Moore FSM, 2
Control unit, 2 N
F Next-state logic, 2
Finite-state machine, 2 o

FSM. See Finite-state machine.
Output logic, 2

M
S
Mealy FSM, 2
Microprocessor Sequential circuit, 2
control unit, 2 State, 2
next-state logic, 2 State memory, 2

output logic, 2

Principles of Digital Logic Design Enoch Hwang Last updated 3/18/2003 7:54 PM

Chapter 11 — Dedicated Microprocessors Page 1 of 25

Table of Content

TADIE OF CONTENT ...t b e et b etk b et bt e b et ek s b et e b e b et et e b et e be s b et e be s be e e benbe st e benbens 1
11 DEAICALE MICTOPIOCESSOIS ... vvvvereereerestesseatesseeseeseessestessessesseasseseesseseessessesseaseaseensessessestesseasessesnseseessessessessenses 2
11.1 Manual Construction of a DediCated MICIOPIOCESSONcviiererreriertesteseareeeeseesteseessessesseeseessessessessessessens 3
I 1 B Y oo T T oo ANV | 11
11,3 FSMD IMOUEI ..ottt ettt b et et s bt et sttt st e e be st e st e te st et re st e ene et 14
11,4 BehaVioral MOEL..........couviiieece et e e st s b e e s be e be et e eneesbeesbeeteesbeeseesreens 16
L1L5 EXAIMPIES ..ttt h et bbb bR AR R bR b £ R e R £ e R £ e R e bt R e b e b e Rt e h e e b e b bt ebeene e 18
g0 1= PSSR 25

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors Page 2 of 25

11 Dedicated Microprocessors

When you hear the word microprocessor, probably the Control
first thing that comes into your mind is the Intel Pentium ® 'np*uts

CPU that is at the heart of the PC. However, there are many .

more microprocessors that are not Pentiums, and many more Control unit
microprocessors that are used in areas other then PCs.

Microprocessors are the heart of all smart devices, whether Moo W T ool
they be electronic devices or otherwise. Their smartness regiter oo Signals ||
comes as a direct result of the decisions and controls that

microprocessors make. For example, we usually do not "

consider a car to be an electronic device. However, it ;;i{a[s\ \
certainly has many complex smart electronic systems, such Control NN

Outputs Z/ Outputs

”@af looks like a dried
r.

All microprocessors can be divided into two main categories: gengﬁal ‘?ﬁ*'& € microprocessors and
dedicated microprocessors also known as application specific integrated, ciM(A ICs). A general-purpose
microprocessor is capable of performing a variety of computations. In ordef-to-achie foe?this goal, each computation
is not hardwired into the processor, but rather is represented by a sequence of instrustions in the form of a program
that is stored in the memory and executed by the microprocessor. The program in \ emory can be easily changed so
that another computation can be performed. Because of the genergh.nature.of the processor, it is likely that in

performing a specific computation, not all of the resources available ins\m\fhe microprocessor are used.

An ASIC, on the other hand, is dedicated to performing only on@(t\;sm) Tfhe instructions for performing that one

task are, therefore, hardwired into the processor itself and once manufactured, cannot be modified again. In other

words, no program memory is required because the program (:;buﬂ right into the circuit itself. If the ASIC is

completely customized, then only those resources that are reﬁfm\\a\;ﬁ ‘the computation are included in the ASIC and
N

SO N resources are wasted.

The design of a microprocessor, whether it is & geﬁc\rasl &yr?pose or dedicated microprocessor, can be divided
into two main parts, the datapath and the control uni\ﬂs@)‘ yn in Figure 1. The datapath is responsible for all the
operations on the data. It includes (1) functional units such’as adders, shifters, multipliers, ALUs, and comparators,
(2) registers and other memory elements for thejtemporary storage of data, and (3) buses and multiplexers for the
transfer of data between the different componen%s\\\mye datapath. External data can be entered into the datapath

through the data input lines. Results from wmt tion can be returned through the data output lines.

The control unit (or controller) is r;m for controlling all the operations of the datapath by providing
appropriate control signals to the da@patl{@@propriate time. At any one time, the control unit is said to be in a
S

as the anti-lock break and the fuel injection systems built into
it. Each of these systems is controlled by a microprocessor. Yes, even the black harde@
up and pressed down piece of gum inside the musical greeting card is a dedicated micropre

certain state as determined by the conrfﬁﬁQM ate memory. The state memory is simply a register with one or
more (D) flip-flops. The control uni;@%&ﬁd@)y transitioning from one state to another — one state per clock cycle.
Depending on the current state, thg ‘contrel inputs and the status signals, the next-state logic in the control unit will
determine what state to go to next it the/next clock cycle. Thus, the control unit is also referred to as a finite-state
machine (FSM) because of/tﬁ@m very state, the output logic that is in the control unit generates all the
appropriate control signals fpﬂ%r\y ollb g the datapath. The datapath, in return, provides status signals for the next-
state logic. Upon completi/oxNJcomputation, the control output line is asserted to notify external devices that the
value on the data OLitgut {mé{ v&yd

In chapters 8/and 9, y\ ave learned how to design the datapath and the control unit separately. In this chapter,
you will learn ho 'w them together to form a dedicated microprocessor. There are several levels at which a
microprocessor can'i igned. At the lowest level, you manually construct the circuit for both the control unit and
the datapath and then connect them together. This method of construction uses the FSM+D (FSM plus datapath)
model since the FSM and the datapath are constructed separately. Section 11.1 illustrates this manual approach of
designing a microprocessor. This also ties together everything that you have learned so far from this book.

The next level of microprocessor design also uses the FSM+D model. As before, you manually construct the
datapath. However, instead of manually constructing the FSM, you synthesize the FSM from behavioral VHDL.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors Page 3 of 25

There will be a next-state process and an output process in the behavioral code. The next-state process will generate
the next-state logic and the output process will generate all the control signals for driving the datapath. The FSM and
the datapath are connected together in an enclosing entity module using the control and status signals. In practice,
this is probably the lowest level in which you would want to design a dedicated microprocessor. The advantage of
using the FSM+D model is that you have full control as to how the control unit and the datapath are built.

The third level of microprocessor design uses the FSMD (FSM with datapath) model. Using this model, you
would still design the FSM using behavioral VHDL code. However, instead of constructing the datapath manually
as a separate module, all the datapath operations are embedded within the FSM entity using the built-in VHDL
operators. During the synthesis process, the synthesizer will automatically generate a separate FSM and datapath.
The advantage of this model is that you do not have to design the datapath, but you still have full control as to what
operation is executed in what state or in what clock cycle. In other words, you have control over the timing of the
circuit.

Finally, a microprocessor can be described completely at the behavioral level using VHDL. This process
synthesizes the full microprocessor with its control unit and datapath automatically. Keep in mind that whether you
write VHDL code for a microprocessor using the FSM+D model, the FSMD model, or the behavioral model, after
synthesis, the resulting microprocessor circuit still contains both the FSM and the datapath as two separate
components and are connected together via the control and status signals as shown in Figure 1.

Control Data
Inputs Inputs
A4 A\ 4
Control unit 0 Datapath
> —\
S
— State » Output > >
Next Memory Logic Control

state

Logic register %}D Signals

Y

register

Iq >
>

AY

A <
Status &
v Signals v
Control Data
Outputs Outputs

Figure 1. Schematic of a microprocessor.

11.1 Manual Construction of a Dedicated Microprocessor

Chapter 8 described how a datapath is designed and how it is used to execute a particular algorithm by
specifying the control words to manipulate the datapath at each clock cycle. In that chapter, we tested the datapath
by setting the control word signals manually. However, to actually have the datapath automatically operate
according to the control words, a control unit is needed that will generate the control signals that correspond to the
control words at each clock cycle. Thus, we need to construct this control unit, and when combined with the
datapath, forms the complete dedicated microprocessor that will execute the algorithm. These two components are
connected together by the control signals and status signals as shown in Figure 1 using structural VHDL. The
control signals are generated by the control unit to control the operations of the datapath, while the status signals are
generated by the datapath to inform the next-state logic in the FSM in determining what the next state should be in
the execution of the algorithm. The control unit is constructed exactly using the FSM synthesis method described in
Section 9.3.

Having designed the datapath and the control words for solving a given problem, we are now ready to build the
control unit for it. We start by constructing the state diagram for the FSM. One control word is assigned to one state
in the state diagram. Every state is given a symbolic name for convenience. The sequence in which the states are
connected follows the sequence of the statements in the algorithm. Conditional branches in the algorithm will have
two edges going out of a state with the conditions labeled on the edges; one edge for when the condition is true and
the other for when the condition is false. These conditions are the status signals that are generated by the datapath
and passed to the next-state logic in the FSM. A general datapath will need additional combinational circuitry,

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors Page 4 of 25

comparators to be more precise, that checks for these conditions and when the condition is true, it will assert that
corresponding status signal to be used by the next-state logic. There are also conditions from external inputs such as
the Start signal for starting the execution of the algorithm/circuit. In addition, an external Reset signal is used to
reset the FSM to its starting state.

From the state diagram, we construct the next-state table, which has the same information as the state diagram
but with the actual bit encodings assigned to the states. The total number of states in the state diagram will determine
the number of flop-flops needed for the state memory. Assigning different encodings to the states may produce a
more optimized circuit. Optimizing the state encodings is discussed in Section 9.5.2. Like the state diagram, the
next-state table tells us what the next state of the FSM is to be, given the current state that the FSM is in and the
current values of the status and input signals.

Up until this point, the FSM design has been independent of what flip-flop type is used. However, a FSM can
be implemented using any of the four types of flip-flops (see Sections 6.13 and 9.5.3) or combinations of them, and
using different flip-flops can produce a smaller circuit. We will however, use only D flip-flops because of their ease
of use and because this is the current trend in microprocessor design. We need to convert the next-state table to the
implementation table for the D flip-flop. The implementation table shows the necessary inputs for the (D) flip-flops
that will produce the next states as given in the next-state table.

It turns out that the implementation table for the D flip-flop is identical to the next-state table except for the
labeling of the entries. In the next-state table (see Figure 3(b)), the label for the entries is Qe for the next state to go
to, whereas, in the implementation table (see Figure 3(c)), the label for the entries is D for the input to the flip-flop.
We want to assign to the input D the value that will cause the corresponding Qneq Value in the next-state table.
However, since the characteristic equation for the D flip-flop (i.e. the equation that describes the operation of the D
flip-flop) is

Qne =D

therefore, the entries in these two tables are the same. If one of the other types of flip-flops is used, the two tables
will not be the same. See Section 9.5.3 for an example.

The implementation table is used to derive the excitation equations (i.e. the equation that causes the flip-flop to
change state) for all the inputs of all the flip-flops. These equations are dependent on the current state encodings and
the values of the status signals (see Figure 3(d)). The next-state logic circuit, which is a combinational circuit, is
then constructed from these equations.

From each state of the FSM, control output signals are generated. These signals are the control word signals for
manipulating the datapath. Since each control word is executed in one state of the FSM, therefore, these control
signals are dependent only on the state. In other words, the output logic equations are dependent on the state value,
which is the content of the flip-flops. The truth tables for these control signals are, therefore, just the control word
table with the actual state encodings.

In the last state when the resulting data from the computation of the algorithm is outputted from the datapath, it
is common practice for the control unit to also output a Done signal to notify the external user that the operation is
completed and that the data outputted by the datapath is valid. Example 10.1 shows the entire process for manually
constructing the dedicated microprocessor for the summation algorithm of Example 8.3.

Example 11.1

We will manually construct the FSM for the summation algorithm of Example 8.3, which is based on the
general datapath shown in Figure 8.10. Recall that the problem is to generate and add the numbers from n down to 1
where n is an input number. The algorithm, control words and datapath used for solving the summation algorithm
are repeated here in Figure 2 for convenience.

Figure 2(b) shows that five control words are needed. In the state diagram as shown in Figure 3(a), we have six
states; five for the five control words and another one for the starting reset state. The states are given the symbolic
names Sy, S1, and so on, and are annotated with the control word that it is assigned to execute for easy reference. The
sequence in which the states are connected follows the sequence of the statements in the algorithm of Figure 2(a).
State s, is the starting reset state. On reset, the FSM goes to this state and waits for the Start signal. The FSM also
goes to this state if it ever happens to enter one of the unused states. An unused state is a combination of the contents

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors

Page 5 of 25

of the flip-flops that is not used as a valid encoding in the next-state table. In this example, the combinations 110 and
111 are not used. State s; initializes sum to 0. State s, executes control word 2 to input the number n. In state s,
control word 4 for the statement n = n — 1 is executed. This statement is at the end of the while loop in the algorithm.
The condition for whether to repeat the while loop is (n # 0). Hence, state s, has two outgoing edges; one labeled

(n#0), and the other (n £ 0)". The edge that is |

abeled (n # 0) means that if the condition (n # 0) is true then this

edge is followed and the loop is repeated by going back to state s; where control word 3 for the statement sum = sum
+ n is once again executed. On the other hand if the condition (n # 0)', i.e. (n = 0), is true then the edge that is

labeled (n # 0)' is followed and the loop is exited

by continuing on to state ss where the sum is outputted.

1 sum= 0
2 i nput n
3 while (n # 0){
4 sum = sum + n
5 n=n-1
6 }
7 out put sum
()
Control Instruction IE | WE WA]_,O RAE RAALO RBE RBALO ALUZ,].,O SH:L,O OE
Word 15| 14 11312 | 11 10-9 8 7-6 5-3 221 | 0
1 sum =0 0 1 00 1 00 1 00 101 (subtract) 00 0
2 input n 1 1 01 0 XX 0 XX XXX 00 0
3 sum=sum+n | O 1 00 1 00 1 01 100 (add) 00 0
4 n=n-1 0| 1 01 1 01 0 xx | 111 (decrement) | 00 0
5 output sum x| 0 XX 1 00 0 xx | 000 (pass) 00 1
(b)
Input
ALU, | ALU; | ALU, Operation
0 0 0 Pass through A
0 0 1 A AND B
0 1 0 AORB
0 1 1 NOT A
14 WE 1 0 0 A+B
13-12 WA 4x8 1 0 1 A-B
11 RAE RF RBE[— 1 1 0 A+1
10-9 RAA RBA 1 1 1 A1
Clk >
8
7-6 (d)
A B
; G SH; | SH, Operation
3 ALbo 0 0 | Pass through
0 1 | Shift left and fill with 0
T8 1 | 0 | Shift right and fill with 0
. 1 1 | Rotate right
i gn; Shifter oate ng
(e)
OE N\ /
0
18
Output

Microprocessor Design — Principles and Practices with VHDL

Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors Page 6 of 25

©

Figure 2. Algorithm, control words and datapath for the summation algorithm of Example 9.3.

A careful reader would have noticed that this state diagram in Figure 3(a) does not match the algorithm of
Figure 2(a) exactly. In the algorithm, the condition (n # 0) in the while loop is tested at the beginning of the loop
while the state diagram performs the test at the end of the loop. For now, we will ignore this slight discrepancy and
continue to work with the state diagram as drawn. We will come back to this issue when we look at how the status
signal (n # 0) is generated.

Next State
Start' Current State Qanext Qnext Qonext
Q2Q1Qo Start, (n # 0)
Siart 00 | o1 | 10 | 11
Control word 1 50000 | 5,000 [5,000 [s 001 [s; 001
sum = 0 s, 001 s,010 | 5,010 | 5,010 | s, 010
s, 010 S5 011 | 53011 | 55011 | s5011
Control word 2 S; 011 s, 100 | s, 100 | s, 100 | s, 100
input n s, 100 S5 101 | 53011 | 85101 | s5011
s5 101 S, 000 | s, 000 | s, 000 | S0 000
Control word 3 unused 110 | s, 000 | S, 000 | 5,000 | s, 000
unused 111 || sg 000 | s, 000 | s, 000 | sy 000
Control word 4
n=n-1 (b)
(n# 0)
Control word 5 Implementation
output sum Current State D,D; Dy,
Q,Q:Q0 Start, (n £ 0)
00 | 01 10 11
(@) 000 000 | 000 | 001 | 001
001 010 | 010 | 010 | 010
010 011 | 011 | 011 | 011
011 100 | 100 | 100 | 100
100 101 | 011 | 101 | 011
101 000 | 000 | 000 | 000
110 000 | 000 | 000 | 000
111 000 | 000 | 000 | 000
(c)

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors

D, start,(n#0
2 ’ — -
&2 =0 Qz =1
) 00 01 11 10

00

00 01 11 10

01

1M1 [1| 1 | 1]

10
Y 3
Q,Q,Q Q,Q,'Qy(n*0)
D, start,(nz0
0 (52=o Q,=1
QQ ™\ 00 01 11 10[00 01 11 10
00 1 11|11 17 1‘1
01 :
11
w01 111

Page 7 of 25

D, start,(n#0
1 ' -
&2 =0

QlQo
00

00 01 11 10

012 | 1 | 1 | 1}

11

1002 |1 |1 1

v
Q,9,Qy Q,Q,Q, Q,Q,'Q, (n%0)

D = Q,'Q:1Qo + Q2Q1'Qq'(n0)'
D; = Q2'Q:1Q0" + Q2'Q1'Qo + Q2Q41'Qq' (n20)
Do = Q,'Q1Q0" + Q1'Qp'Start + Q,Q1'Qq'

Q,'Q,Q Q,'Q,'Start Q,Q,'Qy
(d)
State IE | WE | WA; | WA, | RAE | RAA; | RAA, | RBE | RBA; | RBAy; | ALU, | ALU; | ALUp | SH; | SHy | OE
Q,Q:Qy | 15| 14 | 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0
000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
001 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0
010 1 1 0 1 0 X X 0 X X X x X 0 0 0
011 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0
100 0 1 0 1 1 0 1 0 x X 1 1 1 0 0 0
101 X 0 X X 1 0 0 0 x X 0 0 0 0 0 1
(e)
IE = Q,'Q1Q¢’ RBA; =0
WE =Q,'Qo+ Q;'Q1 + Q:Q:'Qy RBA; =Q,'Q;
WA; =0 ALU; = Q2'Qp + Q2Q1'Qq’
WA; =Q,'Q:1Q0" + Q2Q4' ALU; = Q2Q:'Qq'
RAE =Q;'Q + Q.Q/' ALUp =Q,'Q1'Qo + Q2Q:'Q¢’
RAA; =0 SH; =0
RAA; =Q,Q:'Q¢’ SHy, =0
RBE =Q,'Q, OE =Q2Q:'Qo
()

Microprocessor Design — Principles and Practices with VHDL

Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors Page 8 of 25

next-state state output logic and
logic memory control signaljt\o the datapath
Start ¢«—— F:ontrol (w
input
) > IE
I ! [—— RBE
: D> ' 0—» RBA,
— —p Clk
o | WE [)——— RBA,
]
. I
- 0— WA, F%:::D—» ALU,
= —P: Q |
— K WA, =) > ALU,
QY |
|
— | : ALU,
— —Po Qo %j:D—» RAE
| -4 Clk | 04> SH,
A) 0— RAA, SH,
Clk =D > RAA,) > OE
< (n#0)
Done
status signal from control .~
the datapath output
(9)
Start Input
\II\IEIZ
- wA—>)
——RAE—>|
—RAA—>
FSM |——RBE—>| datapath
—RBA—>]
——ALU—>|
——SH——>
——OE—>]
[e—(n # 0)—
D}ne Output
(h) (i)

Figure 3. FSM construction for the algorithm and control words shown in Figure 2: (2) state diagram; (b) next-state
table; (c) implementation table; (d) K-maps and excitation equations for D,, D;, and Dy; () control signals truth
table; (f) output equations; (g) FSM circuit; (h) circuit for generating the status signal (n # 0); (i) dedicated
microprocessor for the summation algorithm.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors Page 9 of 25

The next-state table as shown in Figure 3(b) is derived directly from the state diagram of Figure 3(a). Three flip-
flops, Q,, Q,, and Q,, are needed to encode the six states. The six rows represent these six states by the current
contents of these flip-flops. For simplicity, the straight binary encoding is used for encoding the states. In other
words, we will simply use the encoding 000 for sy, 001 for s;, and so on. In addition to the current states as listed
down the rows of the table, the next state is also dependent on the control input signal Start and the status signal
(n # 0), from which we get the four columns. For example, the column labeled 10 means that the input signal Start is
true (i.e. Start = 1) and the status signal (n # 0) is false (i.e. (n # 0) = 0), which implies that (n # 0)' is true. The three
flip-flops and two input/status signals give us a total of five variables or 2° different combinations to consider in the
next-state table. Each next-state entry is obtained by looking at the corresponding current state and input/status
signals in the state diagram and see what the next state is. For example, looking at the state diagram for the current
state s4, when the status signal (n # 0) is false, i.e. the condition (n # 0)' is true, the next state is ss. In the next-state
table, this corresponds to the column where (n # 0) = 0. Since the transition from state s, is independent of the Start
signal, therefore, Start can be either 0 or 1. Hence, the entries in row s, (100) and the two columns labeled 00 and 10
have ss (101) as the next state.

In normal circumstances, the FSM should never get to one of the unused states. In this example, the unused
state encodings are 110 and 111. However, due to noises or glitches in the circuit, the FSM may end up in one of
these unused states. Because of this, it is a good idea to set the next state for all the unused states to the reset state. In
this example, the reset state is 000. On the other hand, if you don’t care what the next state is for these unused states,
then don’t-care values can be used and thus may result in a simpler equation.

From the next-state table, we get the implementation table as shown in Figure 3(c). Using D flip-flops to
implement the FSM, the implementation table is the same as the next-state table because the characteristic equation
for the D flip-flop is Qnexx = D. The only difference between the two tables is that the bits in the entries mean
something different. In the next-state table, the bits in the entries (labeled Qonext Qnext Qonext) are the next state for the
FSM to go to. In the implementation table, the bits (labeled D,D;Dy) are the inputs necessary to result in that next
state.

From the implementation table, we derive the excitation equations. The excitation equations form the next-state
circuits for the inputs to the flip-flops. Since there are three D flip-flops used, there are three excitation equations;
one for D,, one for Dy, and one for Dy, as shown in Figure 3(d). The three corresponding K-maps for these three
excitation equations are obtained from extracting the corresponding bits from the implementation table. For
example, the leftmost bit in each entry in the implementation table is for the D, K-map and equation, the middle bit
in each entry is for the D; equation, and the rightmost bit is for the D, equation. All these equations are dependent
on the five variables Q,, Q;, Qq, Start, and (n # 0), which represent the current state, and input and status signals.
Having derived the excitation equations, it is trivial to draw the next-state circuit based on these equations.

The output logic circuit is constructed from the output table, which is just the control word table with the actual
state encoding information added in. Recall that the control word signals control the operation of the datapath, and
now we are constructing the control unit to control the datapath. So what the control unit needs to do is to generate
and output the appropriate control word signals at each state. To get the output table, we take the control word table
and replace all the control word numbers with the actual encoding of the state in which that control word is
performed. The output table is shown in Figure 3(e). For example, control word 1 is executed in state 001, so we put
in 001 in place of the control word number 1. 001 of course, represents the current state value of the three flip-flops
Q,, Q4, and Q,. Notice that we also had to add in state 000 for the reset state where all the control signals are set to a
value that reflects a reset operation. The output equations are the equations for all the control word signals as a
function of the current state values Q,, Qy, and Q,. These output equations, shown in Figure 3(f), are derived from
the output table — one equation for one control signal. For example, to derive the output signal equation for IE, we
look at the IE column in the output table, which in this example, contains only one 1-minterm. Hence, the equation
for IE is IE = Q,'Q:Qy'. We are assuming here that the output signal values for the unused states are all 0’s. Of
course, we can also assume that they are all don’t-cares instead, in which case the equations might be simpler. Since
we are the designer, we can decide on what we want to do.

Having derived the excitation equations for the next-state logic circuit and the output equations for the output
circuit, we can now draw the complete FSM circuit. The complete FSM circuit, with its next-state logic circuit, the
three D flip-flop state memory, and the output logic circuit, is shown in Figure 3(g).

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors Page 10 of 25

The status signal (n # 0) is generated by an inequality comparator. The question is where do we get the value for
n in the datapath? We have to remember that at different clock cycles, different values pass through different points
in the datapath. For example, in one clock cycle, the ALU may be outputting the result for the operation sum + n for
control word 3, and in another clock cycle, it may be outputting the result for the operation n — 1 for control word 4.
In determining where the comparator input should be connected to, we look at the state diagram to determine what
state the status signal is needed, and in that state, what data is available on the datapath. In the example, the status
signal (n # 0) is needed at the end of state s,. In state s4, the control word for n = n — 1 is executed. In order for the
datapath to execute n — 1, the value n must be present at the A operand of the ALU, and the result of n — 1 is
available at the output of the ALU. Since we want to test for n after the decrement, therefore, the comparator input
should be connected to the output of the ALU. A simple OR gate can be used to test for the inequality with zero. The
comparator circuit and how it is connected to the datapath is shown in Figure 3(h).

Finally, the FSM and the datapath circuits are connected together using the control and status signals to form
the complete dedicated microprocessor shown in Figure 3(i). This dedicated microprocessor, of course, does nothing
more then to sum the numbers from n down to 1. .

Generating Status Signals

We saw in the previous example how the status signal for (n # Q) is generated. The status signal is needed in
state s, and in state s4 the value of n after the decrement is available at the output of the ALU, so we tapped into the
datapath at the output of the ALU for the value of n needed by the comparator. Since the comparator is a
combinational circuit, it continuously outputs a value. At other times, that is, a state other than s,, the comparator
would be comparing another variable with 0. For instance, in state s, the output of the ALU is the result of sum + n,
so the comparator would be comparing the resulting sum with 0, and not n with 0.

The corrected state diagram for the previous example is shown in Figure 4. Since the beginning of the while
loop occurs immediately after control word 2, we need to also test for the condition (n # 0) after state s,. If the
condition (n # 0) is true, we will go to state s3, otherwise, we will go to state ss. This means that we also need to get
the value of n in state s,. The problem is that the value of n is not available at the output of the ALU in state s,. In
state s,, the instruction “input n” is executed and n is being stored in the register file. Remember that for a write
operation, the register file is updated with the value at the next active edge of the clock. So the value of n is not
going to be available at the output of the register file in that same clock cycle, let alone at the output of the ALU. As
a result, the output of the comparator during state s, will not be for the condition (n # 0).

In order to get the correct comparison for (n # 0) in state s,, we can tapped into the datapath at the output of the
mux. At this point, it is also correct for the comparison in state s, since the result of the operation n — 1 at the output
of the ALU will be routed back to the output of the mux in the same clock cycle.

There might be situations when no place in the datapath can be found for getting the correct value of a variable
during the correct clock cycle or state. In such a situation, an extra state must be added. This new state will do
nothing but to read the value from the register where this variable is stored so that the value is available throughout
the datapath.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors Page 11 of 25

Control word 1
sum=0

Control word 2
inputn

(n#0)

Control word 3
sum=sum+n

Control word 4
n=n-1

Control word 5
output sum

Figure 4. Corrected state diagram for the summation algorithm shown in Figure 2(a).

11.2 FSM + D Model Using VHDL
g /?\fﬂ

Y

In the previous section, we constructed the microprocessor by manually construc 'Whe FSM and the datapath
he

separately and then join them together. For the FSM, we started from the state diagram. The excitation equations and
the output equations were manually derived from the next-state table M\Wut table respectively. These
equations were then used to construct the next-state logic circuit and the outgﬁqﬂc\ ircuit in the FSM.

Instead of manually constructing the FSM, an alternative way is to aLiL({ngn cally synthesize it from behavioral
VHDL code. A separate general or dedicated datapath is still used as befare-ard is described in VHDL. The final
dedicated microprocessor is constructed by using an enclosing VHDL é. t@/\\ ritten at the structural level.

The behavioral VHDL code for the FSM follows the standarqﬁ\é&? for coding a state machine. There will be
two processes — one for the next-state logic and the other for the om,@% gic.

AN
Example 11.2 x\i}

Figure 5 shows the behavioral VHDL code for the FSM for the summation algorithm of Example 8.3. In the
entity section, the output signals include all the control*ﬁg\ﬂ\i@ for controlling the datapath. The input signals are the
status signals from the datapath. In the architecturg section, there are two processes, the next-state logic and the
output logic that execute concurrently. The maiE) 5t *emer{t within these two processes is the CASE statement that
determines what the current state is. For the n ;g?{tate/f)rocess, the State signal (variable) is assigned a new state
value at the next rising clock edge. The fiew @1{1}/{'{&1 e is, of course, dependent on the current state and input
signals, if any. In the output process, all co*émigfus re generated for every case, i.e. all the control signals must
be assigned a value in every case. Otherwiﬁ VHDL will synthesize these signals to memory elements instead (see

Section 6.10.1), and we do not want that/ V\\

Q
For the datapath, we are using fﬁé\s*a%‘“ general datapath as discussed in Section 8.5. The VHDL code for this
datapath is listed in Figure 8.12&/1(@?F'gu@ 8.13. Figure 8.12 describes the individual components used in the
datapath and Figure 8.13 combin *T’wﬁs;):omponents into the desired datapath.

N k
Finally, Figure 6 cor‘.}bi\neSMtapﬁh and the FSM together using VHDL structural level coding style to give

i

the microprocessor top--.s\/@fen

The simulation trac%;»\snlg)/n in Figure 7 for the input n = 10. After asserting the start signal in state sy, the
input value 10 is read in during state s,. The value 10 is written to RF1 at the next rising clock edge, which also

brings the FSM to state s;. RF1 is for storing n that counts from 10 down to 0. RFO0 is for storing sum and is updated
after each count of n. When RF1 reaches zero, the sum 55 from RFO is sent to the output, and the FSM stays in state
S waiting for another start signal. .

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors

Page 12 of 25

LI BRARY i eee;
USE i eee.std_l ogic_1164. all;

ENTITY fsm1S PORT (
clock, reset, start: IN std_|ogic;
| E: OUT std_| ogic;
WE: QUT std_Il ogic;
WA: QUT std_logic_vector (1 DOANNTO 0);
RAE: QUT std_I ogic;
RAA: QUT std | ogic_vector (1 DOANTO 0);
RBE: QUT std_lI ogic;
RBA: QUT std_Il ogic_vector (1 DOANTO 0);
aluSel : QUT std_logic_vector(2 DOANTO 0);
shSel: OQUT std_|ogic _vector (1 DOANTO 0);
CE: OUT std_| ogic;
done: QUT std_| ogic;
neq0: IN std_logic);

END fsm

ARCHI TECTURE fsmarc OF fsmIS
TYPE state_type IS (s0O, sl1, s2, s3, s4, s5);
SIGNAL state: state_type;

BEG N
next state | ogic: PROCESS(reset, clock)
BEG N
IF(reset = "'1") THEN

state <= sO;

ELSI F(cl ock' EVENT AND clock = "1") THEN
CASE state IS
VWHEN sO0 =>

VWHEN s1 =>
state <= s2;
VWHEN s2 =>
state <= s3;
VWHEN s3 =>
state <= s4;
VWHEN s4 =>

VWHEN s5 =>
state <= sO;
VWHEN OTHERS =>
state <= sO;
END CASE;
END | F;
END PROCESS;

out put _| ogi c: PROCESS(st at e)
BEG N
CASE state IS
VWHEN s1 =>
lE<='0"; WE<='1'; WA<="00"; RAE<='1';

WHEN s2 =>

RBA<="00"; al uSel <="101"; shSel <="00";

IF(start = "1'") THEN state <= sl1; ELSE state <= s0; END IF;

IF(neq0 = '1') THEN state <= s3; ELSE state <= s5; END I F;

RAA<="00"; RBE<='1';
OE<='0'; done<='0';

Microprocessor Design — Principles and Practices with VHDL

Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors Page 13 of 25

IlE<="1"; WE<="1'; WA<="01"; RAE<='0'; RAA<="00"; RBE<='0
RBA<="00"; al uSel <="000"; shSel <="00"; OE<='0'; done<='0'
VWHEN s3 =>
IE<="0"; WE<="1'; WA<="00"; RAE<="1'; RAA<="00"; RBE<="1';
RBA<="01"; al uSel <="100"; shSel <="00"; COE<='0'; done<='0'
VWHEN s4 =>
lE<="'0'; WE<='1'; WA<="01"; RAE<="1'; RAA<="01"; RBE<='0'
RBA<="00"; al uSel <="111"; shSel <="00"; CE<='0'; done<='0'
VWHEN s5 =>
IE<="0"; WE<='0'; WA<="00"; RAE<="1'; RAA<="00"; RBE<='O0'
RBA<="00"; al uSel <="000"; shSel <="00"; COE<='1l'; done<='1';
VWHEN ot hers =>
lE<="'0'; WE<='0'; WA<="00"; RAE<='0'; RAA<="00"; RBE<='0'
RBA<="00"; al uSel <="000"; shSel <="00"; COE<='0'; done<='0'
END CASE;
END PROCESS;
END fsm arc;

Figure 5. Behavioral VHDL code for the FSM for the summation algorithm. .

LI BRARY i eee;
USE i eee.std_l ogic_1164. all;

ENTITY sum IS PORT (
cl ock, reset, start: IN std_|ogic;
input: IN std_|ogic_vector(7 DOMNTO 0);
done: QUT std_| ogic;
output: OUT std_|l ogic_vector (7 DOANTO 0));
END sum

ARCHI TECTURE Structural OF sum|S

COVPONENT fsm PORT (
clock, reset, start: IN std_|ogic;
| E: OUT std_| ogic;
WE: QUT std_Il ogic;
WA: QUT std_logic_vector (1 DOANTO 0);
RAE: QUT std_I ogic;
RAA: QUT std | ogic_vector (1 DOANTO 0);
RBE: QUT std_I ogic;
RBA: QUT std_l ogic_vector (1 DOANTO 0);
aluSel : QUT std_logic_vector(2 DOANTO 0);
shSel: OUT std_l ogic_vector (1 DOANTO 0);
CE: OUT std_| ogic;
done: QOUT std_| ogic;
neq0: IN std_logic);

END COVPONENT;

COVPONENT dat apath PORT (
clock: IN std | ogic;
input: IN std_|ogic_vector(7 DOANTO 0);
IE, WE: IN std_|ogic;
WA: I N std_| ogic_vector (1 DOANTO 0);
RAE: IN std_| ogic;
RAA: IN std |l ogic _vector (1 DOANTO 0);
RBE: IN std_|ogic;

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors Page 14 of 25

RBA: IN std_|ogic_vector (1 DOANTO 0);
aluSel : IN std_|ogic_vector(2 DOANTO 0);
shSel: IN std_| ogic_vector (1 DOMNTO 0);
CE: IN std_|ogic;
output: OUT std | ogic_vector(7 DOANTO 0);
neq0: OUT std_logic);

END COVPONENT;

SIGNAL | E, WE: std_|ogic;

SIGNAL WA: std | ogic_vector (1 DOANTO 0);

SI GNAL RAE: std_l ogic;

SI GNAL RAA: std_logic_vector (1 DOANTO 0);
SI GNAL RBE: std_l ogic;

SI GNAL RBA: std_logic vector (1 DOMWTO 0);
SIGNAL al uSel : std_|ogic _vector(2 DOANTO 0);
SI GNAL shSel: std_logic_vector (1 DOANTO 0);
SIGNAL CE: std_logic;

SI GNAL neqO: std_| ogic;

BEG N
-- doing structural nodeling here

-- FSM control unit
Uo: fsm PORT MAP(cl ock, reset, start, | E, VE, WA, RAE, RAA, RBE, RBA,
al uSel , shSel , Cg, done, neq0) ;

-- Datapath
Ul: datapath PORT MAP (cl ock, i nput, | E, VE, WA, RAE, RAA, RBE, RBA,
al uSel , shSel , Cg, out put, neqO0) ;

END Structural;

Figure 6. FSM+D microprocessor entity for the summation algorithm. .

Mamia 1 Sl Ung LTS 1.5u= '.'IJII.IE 2 '::u‘i- K L!J‘.- | '::J‘.- L L!J? -H:u‘i 3 L!u‘E
e—-cock | [UL ULy g
P I3 €1 1 £ 21 (9 £ 61 € £ 01 6 03 (0 €3 £ 0 €1 €3 € 01 € 00 3 I
B reset I |

= zEari | |
1]

BB inpul EE:: i

a¥ RFO [Y o ¥ 19 ¥ 7 {3y a0 f 45 {49 ¥52 ¥54f 55
@ RF1 0 g 10y 8 y 8 f 7 p 6 1 6 F 4 p 3 F 231§ O
=g dong |
-_:juJIFu‘. I EF: 7

Figure 7. Simulation trace of the FSM+D summation algorithm with input n = 10.

11.3 FSMD Model

When writing VHDL code using the FSM+D model, we need to construct both the datapath component and the
FSM component. These two components are then joined together at the structural level using the control signals and
status signals from the two components. Using this method to build a microprocessor with a large datapath is a lot of
work because in addition to building the FSM, we need to first construct the datapath and then we need to connect
the numerous control and status signals together. The FSM of course, has to generate all the control signals.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors

Page 15 of 25

The FSMD (finite-state machine with datapath) model is an abstraction used when we write VHDL code for a
microprocessor. Instead of separating the FSM and the datapath entities, we combine the FSM and the datapath
together into the same entity. In other words, all the data operations that need to be performed by the datapath are
actually imbedded in the FSM coding itself as VHDL data manipulation statements. After all, there are built-in
VHDL operators to perform data manipulations. As a result, when writing VHDL code for the FSMD model, we do
not need to construct the datapath component at the structural level and, therefore, there are no control and status
signals to be connected. Thus, the FSMD model is an abstraction for simplifying the VHDL code for a

microprocessor.

Writing VHDL code using the FSM+D model allows a person to have full control as to what components are
used in the datapath and how these components are connected to the FSM. Whereas, writing VHDL code using the
FSMD model automates the datapath construction process. The synthesizer now decides what components are
needed by the datapath. However, since you are still writing the FSM process code manually, you still have full
control as to what instructions are executed in what state and how many states there are.

Example 10.3

Figure 8 shows the complete VHDL code using the FSMD model for the summation algorithm of Example 8.3.
Notice the simplicity of this code as compare to the code for the FSM+D model shown in the previous section. Here,
we have just one entity, which serves as both the top-level microprocessor entity and the FSMD entity. The
architecture section is written similar to a regular FSM with the different cases for each of the states. The main
difference is that there is no output process. Like before for the next-state process, the CASE statement selects the
current state and determines the next state. But in addition to setting the next state, each case (state) also contains
data operation statements such as sum = sum + n. This replaces the need for the output process for generating the

output signals.

LI BRARY i eee;
USE i eee.std | ogic_1164.all;
USE i eee.std_Il ogi c_unsigned. al | ;

ENTITY sum IS PORT (
clock, reset, start: IN std_|ogic;
input: IN std |ogic vector(7 DOANTO 0);
done: QOUT std_| ogic;
output: OUT std_| ogic_vector (7 DOANTO 0));
END sum

ARCHI TECTURE FSMD OF sum | S
TYPE state_type IS (s0O, sl1, s2, s3, s4, s5);
SIGNAL state: state_type;
BEG N
next state | ogic: PROCESS(reset, clock)
VARI ABLE sum std | ogic_vector (7 DOMNTO 0);
VARI ABLE n: std_| ogic_vector (7 DOANNTO 0);
BEG N
IF(reset = "'1") THEN
state <= sO0;
done <= '0';
output <= (others => "'0");
ELSI F(cl ock' EVENT AND clock = '1') THEN
CASE state IS

done <= '0';
output <= (others => "'0");
VWHEN s1 =>

VWHEN sO =>
IF (start = '1'") THEN state <= sl; ELSE state <= s0; END I F;
sum:= (others => '0');

Microprocessor Design — Principles and Practices with VHDL

Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors Page 16 of 25

state <= s2;

sum:= (others =>"'0");
done <= '0';

output <= (others => "'0");

VWHEN s2 =>
state <= s3;
n :=input;

done <= '0';
output <= (others => "'0");

VWHEN s3 =>
state <= s4;
sum : = sum + n;

done <= '0';
output <= (others => '0");

VWHEN s4 =>
-- reading n in the following statenent is BEFORE t he decrenent
-- therefore, we need to conpare with 1 and not O
IF (n /= 1) THEN state <= s3; ELSE state <= s5; END I F;
n:=n- 1;
done <= '0';
output <= (others => "'0");

VWHEN s5 =>
state <= s0;
done <= "'1';
out put <= sum

VWHEN OTHERS =>
state <= s0;

END CASE;

END | F;
END PRCCESS;
END FSMD;

Figure 8. VHDL code for the FSMD maodel of the summation algorithm.

Marne 500 . Ons 1.0us 1 Eus 2.0us 2.5us 3.0us 3.5us 4.0uz 4.5u% B 0us

G state | 50§51 352153 Nok 153 16 153§ 6§53 ok {63 ok 3 6d {53 sd {53 {58 {53 oA =3 (oajs5) o0
= reset

- ctart _|_|
B inpul i] :IEI: 1]
aF sum 0 i 18 f 7
@ n 0] 0 y 5 Yy a8 § 7 |

=g ong []
s o put 0 :I:E@

Figure 9. Simulation trace of the FSMD summation algorithm with input n = 10.

L=

e |
m

=15
L9 | Seal
=H=ﬁ"\.
=
=]
Lat | =
e | L3

11.4 Behavioral Model

The complete microprocessor can also be designed by writing VHDL code in a truly behavioral style so that
both the FSM and the datapath are synthesized automatically. Using the behavioral model to design a circuit is quite
similar to writing computer programs using a high-level language. The synthesizer, like the compiler, will translate
the VHDL behavioral description of the circuit automatically to a netlist. This netlist can then be programmed
directly to a FPGA chip.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors Page 17 of 25

Since the synthesizer automatically constructs both the FSM and the datapath, therefore, you have no control
over what parts are used in the datapath and what control words are executed in what state of the FSM. Not being
able to decide what components are used in the datapath is not too big of a problem because the synthesizer does do
a good job in deciding that for you. The issue is with not being able to say what control words are executed in what
state of the FSM. This is purely a timing issue. In some timing critical applications such as communication protocols
and real-time controls, we need to control exactly in what clock cycle a certain operation is performed. In other
words, we need to be able to assign a control word to a specific state of the FSM.

Behavioral VHDL code offers all the basic language constructs that are available in most computer
programming languages such as variable assignments, FOR LOOPS and IF-THEN-ELSES. These statements are
executed sequentially.

Example 11.4

Figure 10 shows the VHDL code using the behavioral model for the summation algorithm of Example 8.3. Note
that some VHDL synthesizers such as MaxPlus+I1 do not allow the use of loops that cannot be unrolled, i.e. loops
with variables for their starting or ending value whose values are unknown at compile time. Hence, in the code, the
value for the variable n cannot be from a user input.

LI BRARY i eee;
USE i eee.std_l ogic_1164. all;

ENTITY sum S PORT (
start: IN STD LOG C,
done: OUT STD LQG C,
out put: OUT | NTECER);

END sum

ARCHI TECTURE Behavi oral OF sum|1S
BEG N
PRCOCESS
VARI ABLE n: i nteger;
VARI ABLE sum i nteger;
BEG N
IF (start = '0'") THEN
done <= '0';
out put <= 0;

ELSE
sum := 0;
n := 10; -- cannot be user input
FOR i in n DOANTO 1 LOOP
sum:= sum+ i;
END LOOCP;

done <= '1';
out put <= sum
END | F;
END PROCESS;
END Behavi or al ;

Figure 10. VHDL code for the behavioral model of the summation algorithm.

Marie 100.Ons 00 On=
= sfart 1 | |_
=L O0ng | | |
S cutpun o A] A

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors

11.5 Examples

Example 11.5

This is an example for evaluating the GCD (Greatest Common Denominator) of two values.

Page 18 of 25

library ieee;

use ieee.std |logic 1164.all;
use ieee.std logic_ arith.all;
use work.all;

entity GCD i s

port (cl ock: in std_Il ogic;
reset: in std_Il ogic;
start: in std_|ogic;

X input: in unsigned(3 downto 0);
Y_input: in unsigned(3 downto 0);
output: out unsigned(3 downto 0)
)
end GCD;

architecture FSMD of GCD i s
begin

process(reset, clock)
type S Type is (S0, S1, S2);
variable State: S Type := SO ;
variable X, Y: unsigned(3 downto 0);

begin
if (reset="1") then -- initialization
out put <= "0000";
State : = SO;

el sif (clock'event and clock="1") then
case State is
when SO => -- starting

if (start="1") then

X 1= X_input;

Y := Y_input;

State : = S1;
el se

State := S0;
end if;
when S1 => -- idle state

State := S2;

when S2 => -- conputation
if (X=Y) then

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors

Page 19 of 25

if (X<Y) then
Y:=Y- X
el se
X:=X-Y%,;
end if;
State : = S1;
el se
output <= X; -- done
State : = SO;
end if;
when ot hers => -- go back
out put <= "Zz7z277";
State : = S0;
end case;
end if;
end process;
end FSMD,
Mairie: Walisg: 20.Ones A00.Orvs 600 Ons 800.0ns 1.0u= 1.2us 1.4us
m—clock [0 L I L LJ °J L_J
Em— renat 1 |
= start 0 | |
d@* State 0 EL 1 5 1 =2 81 1 =2 | 1]
£ _irput H O o & i 0
i f_input HO A A -
i X HO 1 5
@ H o | A 5
S outpui HO 0 1 5

Microprocessor Design — Principles and Practices with VHDL

Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors Page 20 of 25

Example 11.6
This is an example for evaluating the factorial of n (n!).

i nput n

product =1

while n > 1
product = product * n
n=n-1

out put product

The following registers and functional units are needed in the datapath:

e One register for variable product.
e One down counter with parallel load for storing variable n and for decrementing n.

e One multiply functional unit.
* One greater-than-one comparator.

Customize datapath
Input "

Load L
down

Count—— counter product

n>1
Done \
Done Output
State action table for the Moore FSM
Current State Next State Control and Datapath Actions
Q,0Q:Q, Name Condition, State Actions
000 s Start , s, Done =0
Start, s, Output = Z
001 s Sy n = Input
Product =1
010 s (n>1),s,
(n > 1)'! S4
011 s5 S, Product = Product * n
n=n-1
100 s, So Done =1
Output = Pr oduct

Using D flip-flops and straight binary encoding to construct the above FSM...

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors Page 21 of 25

Do = Qonext = So(Start=1) + sy(n>1)

= Q2'Q:'Qo’ (Start=1) + Q,'Q:Qo’ (n>1)
D1 = Qunext = S1 + 55(N>1) + 53

= Q2'Q1'Qo + Q2'Q1Q0" (N>1) + Q2'Q1Qo
D2 = Qanext = S2(n>1)'

= Q2'Qi1Qo" (n>1)'
Load = Q2'Q1'Qo
Count = Q,'Q1Qo
Done = Q,Q:'Qo’

Example 11.7

We want to construct a circuit at the FSMD level using a custom datapath for the following problem:

Input an 8-bit number. Output a 1 if the number has the same number of 0’s and 1’s, otherwise, output a 0.
e.g. the number 10111011 will produce a 0 output, whereas, the number 00110011 will produce a 1 output.

The high-level pseudo code for solving the problem is as follows:

i nput n
count = 0 /1 for counting the nunber of zeros

while n # 0 {
if LSB(n) =1 /1 least significant bit of n
count = count + 1
el se
count = count - 1
n=n>>1 /1 shift n right one bit
}
if count = O then
out put 1
el se
output O

assert done

The functional units required by the custom datapath are as follows:

« Asshifter with parallel load register for storing n.
e One 3-bit up/down counter for count.
e A*“not equal to 0” comparator and an “equal to 0” comparator.

Customize datapath

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors

Input

Shift >—{ shifter w

Load »—

load

n¢0<—<K—<

LSB=1 ¢——

Clear up/down
E -——1 counter
count=0
Out
Done Output
State-action table for the Moore FSM
Current State Next State Unconditional
Q:Q,0Q:Q, Name [Condition, State] Control and Datapath Actions
0000 So _Start = O, So count=0
tart =1 } done=0
|start =45, output = Z
0001 S1 S, n = input
0010 Sy _n z0, S3
|N=0,sq
0011 s [LSB(n) =15,
| LSB(n) #1,s5
0100 Sy Sy count =count + 1
n=n>>1
0101 S5 Sy count =count-1
n=n>>1
0110 sg count =0, s,
count =1, sg
0111 S7 So output=1
done=1
1000 Sg So output=0
done=1

Page 22 of 25

We will use D flip-flops to implement the state memory. To derive the next-state equations for the Moore FSM,
we can convert the state-action table to a K-map and follow the steps as described in section 6.3?? or we can derive

the equations as follows:

The following is done without simplifications of the state encodings.

Next-state equations using D flip-flops, D; = Qigex;) are:

For Dy, Qo = 1 in states sy, S3, S5, and s, therefore, we look for these states in the next state column, i.e. what is
the current state and may be an optional condition that will lead to these states. Hence, we get

Dg = sp(start) + s,(n # 0) + s3(LSB = 1)" + sg(count = 0)

Microprocessor Design — Principles and Practices with VHDL

Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors

Page 23 of 25

= Q3'Q2'Q1'Qo'(start) + Q3'Q2'Q1Qq" (n # 0) + Q3'Q2'Q1Qo (LSB =1)" + Q3'Q,Q1Qq' (count = 0)

D; =53 + 84+ S5+ Sp(n #0) + 5p(n £ 0)" + s¢(count = 0)

=, + 5, + 54 + S5 + Sg(count = 0)

= Q5'Q'Q1'Qo + Q5'Q2'Q1Q0" + Q3'Q2Q:'Qo" + Q3'Q2Q1'Qo + Q3'Q2Q:1Qy’ (count = 0)

D, = 53(LSB = 1) + s3(LSB = 1)" + s5(n = 0) + sg(count = 0)
= Q3'Q2'Q1Q0 + Q3'Q2'Q1Q0" (n = 0) + Q3'Q2Q;Qq" (count = 0)

D3 = sg(count = 0)'

= Q3'Q2Q:Qo’ (count = 0)'

The output equations are:

Shift =54 + 85 = Q3'Q2Q1'Qo’ + Q3'Q2Q1'Qo

Load =s; = Q5'Q>'Q1'Qqo
Clear =55 = Q3'Q2'Q.'Qo’

E =584 +55=Q3'Q:Q:'Qp" + Q3'Q2Q:'Qq
Out =7 + 53 = Q3'Q,Q1Qp + Q3Q2'Q1'Qo’

The Moore FSM circuit is as follows:

start=1 LSB#1

nz0

v

count =0

Y

Shift

Load

Clear

Out

ki

Clock

—) Ds Qs
B —p Clk
437 Q3
% P e
| —p Clk
] | Q%
—T\ b5 Clk
L/ Q
.—|—\I 1
: L/
—D_';‘\ pEr=2auik
| —b Clk
L —1 '
:_/ QU

State-action table for the Mealy FSM

Microprocessor Design — Principles and Practices with VHDL

Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors

Page 24 of 25
Current State Next State Control and Datapath Actions
Q:Q, Name [Condition, State] [Condition, Actions]
00 So [start =0,s, count=0
tart =1 } done =0
|start =45, output = Z
01 S1 Sy n = input
10 S2 m#0,s, LSB(n) =1, count = count +1
|n=0,s; LSB(n) #1, count =count -1
nz0,n=n>>1
11 S3 So done=1
count =0, output =1
count # 0, output =0
.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 7:58 PM

Chapter 11 — Dedicated Microprocessors

Index

A

Application specific integrated circuit. See ASIC

ASIC, 2

B

Behavioral model, 17

C

Control signal, 2, 3
Control unit, 2,9

See also Finite-state machine.
Controller. See Control unit

D
Datapath, 2
Dedicated microprocessor, 2

E

Excitation equation, 4

F

Finite-state machine, 2

See also Control unit.
FSM. See Finite-state machine
FSM+D model, 2, 3, 11
FSMD model, 3, 14

G

General-purpose microprocessor, 2

Microprocessor Design — Principles and Practices with VHDL

Next-state logic, 2, 9
Next-state table, 4, 9

Output logic, 2, 9

State memory, 2
Status signal, 2, 3, 10
generating, 10

VHDL code

dedicated microprocessor (behavioral) for
summation algorithm, 17

dedicated microprocessor (FSM+D) for summation
algorithm, 14

dedicated microprocessor (FSMD) for summation
algorithm, 16

FSM for summation algorithm, 13

Page 25 of 25

Generating status signal. See Status signal

Implementation table, 4, 9

Unused state encoding, 9

Last updated 3/18/2003 7:58 PM

Chapter 12 — General-Purpose Microprocessors Page 1 of 25

Table of Content

TADIE OF CONMLENT ...t e Rt R e Rt e Rt ren et r e nnen e nnens 1
12 General-PurpoSe IMICIOPIOCESSOISveveeeireereeseesietestestessessesseaseeseessessessessesseaseaseassessessessessessesseasesssessessessensenns 2
12,1 OVErVIEW OF the CPU DESIGN.....iiiieeiiicieieeieeesie e ste e te e e e et te et s e e seese e s e tesaessestesneereensenseseenresresneas 2
12.2 INSEFUCTION SEL ...t e Rttt n et n et nn s 2
12,21 TWO OPErand INSIFUCTIONSc.eitiitiitiiieiti ettt ettt e b b e b et ebeese et e stesbebesbesbenes 3
12.2.2 ONE OPErand INSLIUCTIONS.oiviitiitiitieie ettt ettt bttt se b et sb e b bt eb e e e be b sbeneas 3
12.2.3 Instructions USiNg @ MemMOFY AGAIESScieririiireiieitieieseeie ettt st sbe et e e see b e 3
1224 JUMP INSEFUCTIONS ...ttt ettt s a bbbt b e st e s e e e b e nb e eb e e b e bt enb e e e benbesbenes 3
12,3 DALAPALN .. e b bbb e R £ b £ et bR b e Ee Rt bt e e en b e e ebenbeaneas 5
12.3.1 INPUL MUIIPIEXET ..ttt e bbbt b et e e ne e b e s b e e bt et e e bt e st e e e benbesbenes 6
02 7 o 4o [1o 0 = I T 1SS 6
12.3.3 ACCUMUIALOT ...ttt Rttt e e n et R et n et nn b n et anis 6
I T S = (=T 113 (-] S 6
12,35 ALU oo R b bR bR bRt E e bRt b e bRt be bttt 6
12.3.6 SNIEEr / ROTAIONceiiiirciiitciesie ettt r et rer et nn s 7
20 A © 0 111U = 11 - S 7
12.3.8 CONIIOL WWOIT ...ttt et bbbt s e et bbb b e e Rt e s ne e b e s bt e bt et e et enb e e e benbeebenrs 7
12.3.9 VHDL Code for the DAtapathcoeiiiiiieie ettt e 8
R O 111 (o] IO T SO USRS U USSR URUPUPPRTRTON 9
S R S (- T TSP UTUPTURTPRRPRUTN 10
B [FO OSSPSR 10
12.4.3 DECOUE ..ottt Rt 10
L1244 EXECULE....eueiiiieeeeii ittt st e r et R e bRt R e Rt 10
12.45 VHDL Code for the CONrol UNit.........ccooieiiriieiieee e 11
12,5 CPU ittt b b E e R bt E e bt Ee bRt bRt b e bt et bt et e ne et 20
12,6 TOP-1EVEL COMPULET ...c.viitiieieeieiese ettt sttt s e st et et st e st e sees e et et e te st e sbeaneesee s enteneesnenneens 22
220 0 R 1o o U | SO PS PSR 22
I O 111 {010 | U T OO TSP T TP UPTUPTORTPROTN 22
T R Y/ (100 To] o U PO PTPTOT TP UPTUPTPRTPRUTN 22
T S 1 ool OSSOSO 23
12.6.5 VHDL Code for the Complete COMPULETcoueiiiiiiiie et 23
A b 1111 o] [OOSR 24

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 2 of 25

12 General-Purpose Microprocessors

Unlike a dedicated or custom microprocessor that is Control
capable of performing only one function, a general-purpose Inputs
microprocessor is capable of performing many different Y
functions under the direction of instructions. Given a
different instruction set or program, the general-purpose
microprocessor will perform a different function. On the
other hand, a general-purpose microprocessor can also be
viewed as a dedicated microprocessor because it is made to

Control unit

State
Memory|

Output
Logic Control

Signals i
g}l} 9 register

register

perform only one function, and that is to execute the software x

instructions. In this sense, we can design and construct our ssi‘ga}ifs i)

general-purpose microprocessor in the same way that we Control Data
Outputs Outputs

constructed our dedicated microprocessors as discuss in the
previous chapter.

12.1 Overview of the CPU Design

A general-purpose microprocessor is often referred to as the central processing unit (CPU). The CPU is simply
a dedicated microprocessor that only executes software instructions. In designing a CPU, we must first define its
instruction set and how the instructions are encoded and executed. We need to answer questions such as how many
instructions do we want? What are the instructions? What operation code (opcode) do we assign to each of the
instructions? How many bits do we use to encode an instruction?

Once we have decided on the instruction set, we can proceed to designing a datapath that can execute all the
instructions in the instruction set. In this step we are creating a custom datapath, so we need to answer questions
such as what functional units do we need? How many registers do we need? Do we use a single register file or
separate registers? How the different units are connected together?

Finally, we can design the control unit. Just like the dedicated microprocessor, the control unit asserts the
control signals to the datapath. This finite-state machine cycles through three main steps or states: 1) fetch an
instruction; 2) decode the instruction; and 3) execute the instruction. The control unit performs these steps by
sending the appropriate control signals to the datapath or to external devices.

Instructions in your program are usually stored in external memory, so in addition to the CPU, there is external
memory that is connected to the CPU via an address bus and a data bus. Hence, step 1 (fetch an instruction) usually
involves the control unit setting up a memory address on the address bus and telling the external memory to output
the instruction from that memory location onto the data bus. The control unit then reads the instruction from the data
bus. To keep our design simple, instead of having external memory, we will put the memory directly inside the CPU
and implemented simply as a 64-byte array. In fact, there are real CPUs with internal program memory.

For step 2 (decode the instruction) the control unit extracts the opcode bits from the instruction and determines
what the current instruction is by jumping to the state that has been assigned for executing that instruction. Once in
that particular state, the finite-state machine performs step 3 by simply asserting the appropriate control signals for
controlling the datapath to execute that instruction.

12.2 Instruction Set

The instructions that our general-purpose microprocessor can execute and the corresponding encoding are
defined in Figure 1. The Instruction column shows the syntax and mnemonic to use for the instruction when writing
a program in assembly language. The Encoding column shows the binary encoding for the instructions and the
Operation column shows the actual operation of the instruction. The instructions are separated into four categories:
1) data movement instructions for transferring data between the accumulator, the general registers and the memory;
2) jump instructions for changing the instruction execution sequence; 3) arithmetic and logical instructions for
performing arithmetic and logics; and 4) input / output and miscellaneous instructions. There are five data
movement instructions, eight jump instructions, ten arithmetic and logic instructions, two input/output instructions,
and two miscellaneous instructions.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 3 of 25

The number of instructions implemented determines the number of bits required to encode all the instructions.
All instructions are encoded using one byte except for instructions that have a memory address as one of its operand,
in which case a second byte for the address is needed. The encoding scheme uses the first four bits as the opcode.
Depending on the opcode, the last four bits are interpreted differently as follows.

12.2.1 Two Operand Instructions

If the instruction requires two operands, it always uses the accumulator (A) for one operand. If the second
operand is a register then the last three bits in the encoding specifies the register file number. An example of this is
the LDA (load accumulator from register) instruction where it loads the accumulator with the content of the register
file number specified in the last three bits of the encoding. Another example is the ADD (add) instruction where it
adds the content of the accumulator with the content of the specified register file and put the result in the
accumulator. The result of all arithmetic and logical operations is stored in the accumulator.

The LDI (load accumulator with immediate value) is also a two-operand instruction. However, the second

are interpreted as a signed number and is loaded into the accumulator.

12.2.2 One Operand Instructions

One-operand instructions always use the accumulator and the result is stored back in the accumulator. In this
case, the last four bits in the encoding are used to further decode the instruction. An example of this is the INC
(increment accumulator) instruction. The opcode (1110) is used by all the one-operand arithmetic and logical
instructions. The last four bits (0001) specify the INC instruction.

12.2.3 Instructions Using a Memory Address

For instructions that have a memory address as one of its operand, an additional six bits are needed in order to
access the 64 bytes of memory space. These six bits (aaaaaa) are specified in the six least significant bits of the
second byte of the instruction. An example is the LDM (load accumulator from memory) instruction. The address of
the memory location where the data is to be loaded from is specified in the second byte. In this case, the last four
bits of the first byte and the first two bits in the second byte are not used and are always set to 0. All the absolute
jump instructions follow this format.

12.2.4 Jump Instructions

For jump instructions, the last four bits of the encoding also serves to differentiate between absolute and relative
jumps. If the last four bits are zeros, then it is an absolute jump, otherwise, they represent a sign and magnitude
format relative displacement from the current location as specified in the program counter (PC). For example, the
two-byte encoding 0110 0000 0000 0100 specifies an absolute unconditional jump to memory location 4. The first
four bits (0110) specify the unconditional jump. The second four bits (0000) specify an absolute jump. The last six
bits (000100) specify the memory address 4. On the other hand, the one-byte encoding 0110 0100 specifies a
relative unconditional jump to PC + 4. Again, the first four bits (0110) specify the unconditional jump. The next four
bits (0100) specify that it is a relative jump because it is not zero. The relative position to jump to is +4 because the
first bit is a 0, which is for forward and the last three bits evaluate to 4. To jump backward by four locations, we
would use 1100 instead.

Two conditional flags (zero and positive) are used for conditional jumps. These flags are set or reset depending
on the value of the accumulator when the accumulator is written to. Instructions that modify the accumulator include
LDA, LDM, LDI, all the arithmetic and logic instructions, and IN. For example, if the result of the ADD instruction
is a positive number, then the zero flag will be reset and the positive flag will be set. A conditional jump then reads
the value of these flags to see whether to jump or not. The JZ instruction will not jump after the previous ADD
instruction, where as the JP instruction will perform the jump.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors

Page 4 of 25

| Instruction | Encoding | Operation | Comment |
Data movement instructions
LDA Arrr 0001 Orrr A — R[rrr] Load accumulator from register
STATIT,A 0010 Orrr R[rrr] « A Load register from accumulator
LDM A, aaaaaa | 0011 0000 A — M[aaaaaa] Load accumulator from memory
0Oaaaaaa
STM aaaaaa,A | 0100 0000 M[aaaaaa] — A Load memory from accumulator
00 aaaaaa
LDI A,iiiiiiii 0101 0000 A — iiiiiiii Load accumulator with immediate
iiiiiiii value (iiiiiiii is a signed number)
Jump instructions
JMP absolute | 0110 0000 PC = aaaaaa Absolute unconditional jump
00 aaaaaa
JMPR relative | 0110 smmm if (smmm !=0) then Relative unconditional jump (smmm
if (s ==0) then PC = PC + mmm is in sign and magnitude format)
else PC = PC — mmm
JZ absolute 0111 0000 if (A ==0) then PC = aaaaaa Absolute jump if A'is zero
00 aaaaaa
JZR relative 0111 smmm if (A ==0and smmm !=0) then Relative jump if A is zero (smmm is
if (s ==0) then PC = PC + mmm in sign and magnitude format)
else PC = PC — mmm
JNZ absolute 1000 0000 if (A !=0) then PC = aaaaaa Absolute jump if Ais not zero
00 aaaaaa
JNZR relative | 1000 smmm if (A =0 and smmm !=0) then Relative jump if A is not zero
if (s ==0) then PC = PC + mmm (smmm is in sign and magnitude
else PC = PC — mmm format)
JP absolute 1001 0000 if(A == positive) then PC = aaaaaa Absolute jump if A is positive
00 aaaaaa
JPR relative 1001 smmm if(A == positive and smmm != 0) then | Relative jump if A is positive (sSmmm

if (s ==0) then PC = PC + mmm
else PC = PC — mmm

is in sign and magnitude format)

Arithmetic and logical instructions

AND Arrr 1010 Orrr A — A AND Rrrr] Accumulator AND register
OR Ajrrr 1011 Orrr A — AORR]Jrrr] Accumulator OR register
ADD Ajrrr 1100 Orrr A — A+R]rrr] Accumulator + register
SUB A,rrr 1101 Orrr A <« A-R[rr] Accumulator - register
NOT A 1110 0000 A « NOT A Invert accumulator

INC A 1110 0001 A-A+1 Increment accumulator
DEC A 1110 0010 A-A-1 Decrement accumulator
SHFL A 1110 0011 A - A<l Shift accumulator left
SHFR A 11100100 A A>>1 Shift accumulator right
ROTR A 1110 0101 A — Rotate_right(A) Rotate accumulator right

Input / Output and Miscellaneous

In A 1111 0000 A « input Input to accumulator

Out A 1111 0001 output — A Output from accumulator
HALT 1111 0010 Halt Halt execution

NOP 0000 0000 no operation No operation

Microprocessor Design — Principles and Practices with VHDL

Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors

Notations:

A = accumulator.
R = general register.

M = memory.

PC = program counter.
rrr = three bits for specifying the general register number (0 — 7).
aaaaaa = six bits for specifying the memory address.

Page 5 of 25

smmm = four bits for specifying the relative jump displacement in sign and magnitude format. The most
significant bit (s) determines whether to jump forward or backward (0 = forward, 1 = backward). The last
three bits (mmm) specify the number of locations to increment or decrement from the current PC location.

Figure 1. Instruction set for the general-purpose microprocessor.

12.3 Datapath

Having defined the instruction set for our general microprocessor, we are now ready to design the custom
datapath that can execute all the operations as defined by all the instructions. We will follow the method described
in Chapter 8 for designing a custom datapath at the register-transfer level. The resulting datapath is shown in Figure

2.

Figure 2. Datapath.

imm_dp input_dp L
4
8
s 8 a
Y Y 8
muxsel_dp,
ero_d
2. C_muxout
positive_dp
accwr_dp Sr
rst_dp , ClearAccumulator
C_accout
rfwr_dp S 5
rfaddr_dpuO oar Register File
d 21,0
C_rfout
) 4
A B
alusel_dp, , ,
»sel, 10 ALU
C_aluout
shiftsel_dp, ,)
>sel, , Shifter
s | C_shiftout
outen_dp R4
\ 4
output_dp

Microprocessor Design — Principles and Practices with VHDL

Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 6 of 25

The width of the datapath is eight bits, i.e. all the connections for data movement are eight bits wide. In the
figure, they are the thicker lines. The remaining thinner control lines are all one bit wide unless the name for that
control line has a number subscript such as rfaddr_dp, 10, in which case there are as many lines as the subscript
numbers. For example, the control line label rfaddr_dp, ¢ is actually composed of three separate lines.

12.3.1 Input multiplexer

The 4-to-1 input mux at the top of the datapath drawing selects one of four different inputs to be written into the
accumulator. These four inputs, starting from the left, are: (1) imm_dp for getting the immediate value from the LDI
instruction and storing it into the accumulator; (2) input_dp for getting a user input value for the IN instruction; (3)
the next input selection allows the content of the register file to be written to the accumulator as used by the LDA
instruction; (4) allows the result of the ALU and the shifter to be written to the accumulator as used by all the
arithmetic and logical instructions.

12.3.2 Conditional Flags

The two conditional flags, zero and positive, are set by two comparators that check the value at the output of the
mux which is the value that is to be written into the accumulator for these two conditions. To check for a value being
zero, recall that just a NOR gate will do. In our case, we need an eight-input NOR gate because of the 8-bit wide
databus. To check for a positive number, we simply need to look at the most significant sign bit. A 2’s complement
positive number will have a zero sign bit, so a single inverter connected to the most significant bit of the databus is
all that is needed to generate this positive flag signal.

12.3.3 Accumulator

The accumulator is a standard 8-bit wide register with a write wr and clear clear control input signals. The write
signal, connected to accwr_dp, is asserted whenever we want to write a value into the accumulator. The clear signal
is connected to the main computer reset signal rst_dp, so that the accumulator is always cleared on reset. The
content of the accumulator is always available at the accumulator output. The value from the accumulator is sent to
three different places: (1) it is sent to the output buffer for the OUT instruction; (2) it is used as the first (A) operand
for the ALU; and (3) it is sent to the input of the register file for the STA instruction.

12.3.4 Register File

The register file has eight locations, each 8-bits wide. Three address lines, rfaddr_dp,, rfaddr_dp,, rfaddr_dpo,
are used to address the eight locations for both reading and writing. There are one read port and one write port. The
read port is always active which means that it always has the value from the currently selected address location.
However, to write to the selected location, the write control line rfwr_dp must be asserted before a value is written
to the currently selected address location.

Note that a separate read and write address lines is not required because all the instructions either perform just a
read from the register file or a write to the register file. There is no one instruction that performs both a read and a
write to the register file. Hence, only one set of address lines is needed for determining both the read and write
locations.

12.3.5ALU

The ALU has eight operations implemented as defined by the following table. The operations are selected by
the three select lines alusel_dp,, alusel_dp,, and alusel_dp,.

alusel dp, | alusel dp | alusel dp, | Operation Name | Operation Instruction
0 0 0 Pass Pass A to output | non-ALU instructions
0 0 1 AND A AND B AND Arrr
0 1 0 OR AORB OR Arrr
0 1 1 NOT A' NOT A
1 0 0 Addition A+B ADD Arrr

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 7 of 25

1 0 1 Subtraction A-B SUB A rrr
1 1 0 Increment A+1 INC A
1 1 1 Decrement A-1 DEC A

The select lines are asserted by the corresponding ALU instructions as shown under the Instruction column in
the above table. The pass through operation is used by all non-ALU instructions.

12.3.6 Shifter / Rotator

The Shifter has four operations implemented as defined by the following table. The operations are selected by
the two select lines shiftsel_dp,, and shiftsel_dp,.

shiftsel_dp, | shiftsel_dp, | Operation Instruction
0 0 Pass through non Shift/Rot instructions
0 1 Shift left and fill with 0 SHFL A
1 0 Shift right and fill with 0 SHFR A
1 1 Rotate right ROTR A

The select lines are asserted by the corresponding Shifter/Rotator instructions as shown under the Instruction
column in the above table. The pass through operation is used by all non-Shifter/Rotator instructions.

12.3.7 Output Buffer

The output buffer is a register with an enable control signal connected to outen_dp. Whenever the enable line is
asserted, the output from the accumulator is stored into the buffer. The value stored in the output buffer is used as
the output for the computer and is always available. The enable line is asserted either by the OUT A instruction or
by the system reset signal.

12.3.8 Control Word

From Figure 2, we see that the control word for this custom datapath has fourteen bits, which maps to the
control signals for the different datapath components. These fourteen control signals are summarized in Figure 3.

Number | Signal Name Component Purpose
14 muxsel_dp; | 4-input mux Select line 1
13 muxsel_dp, | 4-input mux Select line 0
12 accwr_dp accumulator Write enable
11 rst_dp accumulator Clear
10 rfwr_dp register file Write enable
9 rfaddr_dp., register file Address line 2
8 rfaddr_dp register file Address line 1
7 rfaddr_dp, register file Address line 0
6 alusel _dp, ALU Select line 2
5 alusel dp; ALU Select line 1
4 alusel _dp, ALU Select line 0
3 shiftsel dp, | Shifter Select line 1
2 shiftsel dp, | Shifter Select line 0
1 outen_dp Tri-state buffer | Output enable

Figure 3. Control word signals for the datapath

By now, you should be able to trace through this datapath and see how it executes for each of the instructions.
For example, to execute the ADD instruction, which adds the content of the accumulator with the content of the
specified register file location and writes the result back into the accumulator, the value in the accumulator is passed
to the A operand of the ALU. The B operand of the ALU comes from the register file, the location of which is

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 8 of 25

selected from setting the register file address lines rfaddr_dp, ;0. The appropriate ALU select lines alusel_dp,,, o are
set to select the ADD operation. The shifter is not needed and so the pass through operation is selected. The output
of the shifter is routed back through input 0 of the multiplexer and finally written back to the accumulator.

So the control word for the instruction
ADD A,011
is

muxsel; | muxsely | accwr | rst | rfwr | rfaddr, | rfaddr, | rfaddr, | alusel, | alusel; | alusely | shiftsel; | shiftsel, | outen

0 0 1 0 0 0 1 1 1 0 0 0 0 0

12.3.9 VHDL Code for the Datapath

Structural VHDL coding is used to connect all the components together to form the custom datapath for our
general microprocessor. The VHDL code is shown in Listing 1.

LI BRARY i eee;
USE ieee.std logic _1164.all;

ENTITY dp IS PORT (
clk _dp: IN std_|ogic;
rst_dp: IN std_|ogic;
nmuxsel dp: IN std | ogic_vector(1l DOANTO 0);
im.dp: IN std_|ogic_vector(7 DOANTO 0);
i nput _dp: IN std_|logic_vector(7 DOANTO 0);
accw _dp: IN std_| ogic;
rfaddr_dp: IN std_|ogic_vector(2 DOANNTO 0);
rfw _dp: IN std_|ogic;
al usel _dp: IN std_logic_vector(2 DOANTO 0);
shiftsel _dp: IN std_|logic_vector(1l DOANTO 0);
outen_dp: IN std_| ogic;
zero_dp: QUT std_| ogic;
positive_dp: QUT std_I ogic;
out put _dp: OUT std_| ogi c_vector (7 DOANTO 0));
END dp;

ARCHI TECTURE struct OF dp is

COVPONENT nmux4 PORT (
sel _mux: IN std_| ogic_vector (1 DOANTO 0);
i n3_mux, in2_mux,inl nmux,in0_nux: IN std |ogic vector(7 DOANTO 0);
out _nmux: OUT std_|ogic_vector(7 DONNTO 0));

END COVPONENT;

COVPONENT acc PORT (
clk _acc: IN std_|ogic;
rst_acc: IN std_|ogic;
wr_acc: IN std_|ogic;
i nput _acc: IN std_Ilogic_vector (7 DOANTO 0);
out put _acc: QUT std_Il ogic_vector (7 DOANTO 0));
END COVPONENT;

COVPONENT reg file PORT (
clk_rf: IN std_|logic;
w_rf: IN std_|logic;
addr _rf: IN std_|ogic_vector(2 DOANTO 0);
input _rf: IN std_|ogic_vector(7 DOANTO 0);

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 9 of 25

output_rf: OUT std_| ogic_vector(7 DOANTO 0));
END COVPONENT;

COVPONENT al u PORT (
sel _alu: IN std |ogic _vector(2 DOANTO 0);
inA alu: INstd_logic_vector(7 DOANTO 0);
inB alu: INstd_logic_vector(7 DOANTO 0);
QUT _alu: QUT std_l ogic_vector (7 DOANTO 0));
END COVPONENT;

COVPONENT shi fter PORT (
sel _shift: IN std_logic_vector(1 DOANTO 0);
i nput _shift: IN std_|logic_vector(7 DOANNTO 0);
out put_shift: OUT std | ogic_vector(7 DONNTO 0));
END COVPONENT;

COVPONENT tristatebuffer PORT (
E: IN std_logic;
D: IN std |ogic_vector(7 DOANTO 0);
Y: OUT std_|ogic_vector(7 DONNTO 0));
END COVPONENT;

SIGNAL C al uout, C_accout, C rfout, C nuxout, C shiftout: std_|logic_vector(7
DOVWNTO 0) ;
SIGNAL C outen: std_| ogic;

BEG N

U0: mux4 PORT MAP(nuxsel dp,immdp,input_dp, C rfout, C shiftout, C nuxout);
Ul: acc PORT MAP(cl k_dp, rst_dp, accw _dp, C nuxout, C accout);
U2: reg_file PORT MAP(cl k_dp, rfw _dp, rfaddr_dp, C accout, C rfout);

U3: alu PORT MAP(al usel dp, C accout, C rfout, C al uout);

U4: shifter PORT MAP(shiftsel dp, C al uout, C shiftout);

C outen <= outen_dp OR rst_dp;

Us: tristatebuffer PORT MAP(C outen, C accout, out put_dp);
--out put_dp <= C_accout;

zero_dp <= '1'" WHEN (C_nuxout = "00000000") ELSE 'O0';
positive_dp <= NOT C _nuxout (7);
--positive_dp <= "'1" WHEN (C_nuxout(7) = "'0") ELSE '0';
END struct;

Listing 1. Datapath.

12.4 Control Unit

The finite state machine for the control unit basically cycles through four main states: reset, fetch, decode, and
execute, as shown in Figure 4. There is one execute state for each instruction in the instruction set.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 10 of 25

Figure 4. State diagram for the control unit.

12.4.1 Reset

The finite state machine starts executing from the reset state when the reset signal is asserted. On reset, the
finite state machine initializes all its working variables and control signals. The variables include:

e PC - program counter

e IR —instruction register

» state — the state variable

In addition, the content of the memory, i.e., the program for the computer to execute is also loaded at this time.

12.4.2 Fetch

In the fetch state, the memory content of the location pointed to by the PC is loaded into the instruction register.
The PC is then incremented by one to prepare it for fetching the next instruction. If the fetched instruction is a jump
instruction, then the PC will be changed accordingly during the execution phase.

12.4.3 Decode

The content that is stored in the instruction register is decoded according to the encoding that is assigned to the
instructions as listed in Figure 1. This is accomplished in VHDL using a CASE statement with the switch condition
being the opcode. From the different cases, the state that is responsible for executing the corresponding instruction is
assigned to the next state variable. As a result, the instruction will be executed starting at the beginning of the next
clock cycle when the FSM enters this new state.

12.4.4 Execute

The execution state simply sets up the control word, which asserts the appropriate control signals for the
datapath to carry out the necessary operations for executing a particular instruction. Each instruction, therefore, has
its own execute state. For example, the execute state for the add instruction ADD A,011 will set up the following
control word.

muxsel; | muxsely | accwr | rst | rfwr | rfaddr, | rfaddr; | rfaddry | alusel, | alusel; | alusely | shiftsel; | shiftsel, | outen

0 0 1 0 0 0 1 1 1 0 0 0 0 0

For all the jump instructions, no actions need to be taken by the datapath. It simply determines whether to
perform the jump or not depending on the particular jump instruction and by checking on the zero and positive flags.
If a jump is needed then the target address is calculated and then assigned to the PC.

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 11 of 25

At the end of the execute state, the FSM goes back to the fetch state and the cycle repeats for the next
instruction.

12.4.5 VHDL Code for the Control Unit

Instead of manually constructing the FSM circuit, we will describe the circuit using the FSMD model by writing
behavioral VHDL code. This way the synthesizer will automatically generate the FSM circuit for our general
microprocessor. The VHDL code is shown in Listing 2.

LI BRARY | EEE;
USE | EEE. std | ogic_1164. all;
USE | EEE. std_I| ogi c_unsi gned. al | ; -- needed for CONV_I NTEGER()

ENTITY ctrl IS PORT (
clk ctrl: INstd_|ogic;
rst_ctrl: INstd_|ogic;
nmuxsel ctrl: QUT std_|ogic _vector(1l DOANTO 0);
immctrl: OUT std_Il ogic_vector (7 DOANTO 0);
accw _ctrl: QOUT std_l ogic;
rfaddr_ctrl: QUT std_| ogic_vector(2 DOANNTO 0);
rfw _ctrl: OUT std_| ogic;
alusel _ctrl: QUT std_|ogic_vector(2 DOANTO 0);
shiftsel _ctrl: OUT std_|ogic_vector(1l DOANTO 0);
outen_ctrl: OUT std_l ogic;

zero_ctrl: IN std_|ogic;
positive ctrl: IN std |logic);
END ctrl;

ARCHI TECTURE fsm OF ctrl 1S
TYPE state_type IS
(S1, s2, S8, 89, S10, S11, S12, S13, S14, S210, S2
20, S230, S240, S30, S31, S32, S33, $41, S42, S43
, S44, S45, $46, S51, S52, S99) ;
SIGNAL state: state_type;

-- Instructions

-- |l oad instructions

CONSTANT LDA : std_l ogic_vector(3 DOANTO 0) := "0001";
-- S10 -- XK
CONSTANT STA : std_|ogic_vector(3 DOMNTO 0) := "0010";
-- S11 -- XK
CONSTANT LDM : std_l ogic_vector(3 DOANTO 0) := "0011";
-- S12
CONSTANT STM : std_| ogic_vector (3 DOANNTO 0) := "0100";
-- S13
CONSTANT LDI : std_|ogic_vector(3 DONNTO 0) := "0101";
-- S14 -- XK
-- junp instructions
CONSTANT JMP : std_|ogic_vector(3 DOMNTO 0) := "0110";
-- S210 -- XK
- - CONSTANT JMPR: std_l| ogic_vector(3 DOMNTO 0) := "0110"; --the relative
junps are determ ned by the 4 LSBs
CONSTANT JZ : std_logic_vector(3 DOMNTO 0) := "0111";
-- S220

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors

Page 12 of 25

- - CONSTANT JZR
CONSTANT JNzZ

- - CONSTANT JNZR:
CONSTANT JP

- - CONSTANT JPR

arithnmetic and | ogi cal

CONSTANT ANDA :
CONSTANT ORA
CONSTANT ADD

CONSTANT SuUB

si ngl e oper
CONSTANT SA

CONSTANT | NC:

CONSTANT DEC:

CONSTANT M SC:

CONSTANT | NA:

CONSTANT NOP

BEA N

PROCESS (rst _ctr
VARI ABLE PM :
VARI ABLE IR :

VARl ABLE PC :

BEG N

CONSTANT NOTA :

CONSTANT SHFL :
CONSTANT SHFR :

CONSTANT ROTR :

CONSTANT QUTA :

CONSTANT HALT :

VARl ABLE OPCCDE :

VARI ABLE zero_

S1

l,clk _ctrl)

PM_BLOCK;

std_l ogi c_vector (7 DOANTO 0);
std_| ogic_vector(3 DOMNTO
i nteger RANGE 0 TO 31;

flag, positive flag: std_|logic;

std_l ogi c_vector (3 DOANTO 0) := "0111";
std_l ogi c_vector (3 DOANTO 0) := "1000";
-- 8230
std | ogi c_vector(3 DOANTO 0) := "1000";
std | ogic_vector(3 DOANTO 0) := "1001";
-- S240 changed
std_l ogi c_vector (3 DOANTO 0) := "1001";
i nstructions
std | ogic_vector(3 DOANTO 0) := "1010";
-- S30 -- XK
std_l ogi c_vector (3 DOANTO 0) := "1011";
-- S31 -- XK
std | ogic_vector(3 DOANTO 0) := "1100";
-- 832 -- XK
std_l ogi c_vector (3 DOANTO 0) := "1101";
-- S33 -- XK
and instructions
std | ogic_vector(3 DOANNTO 0) := "1110";
std_l ogi c_vector(2 DOMANTO 0) := "000";
-- S$41 -- XK
std | ogic_vector(2 DOANTO 0) := "001";
-- $42 -- XK
std_l ogi c_vector (2 DOANTO 0) := "010";
-- $43 -- XK
std_l ogi c_vector(2 DOMNTO 0) := "011";
-- S44 -- XK
std_| ogic_vector(2 DOWTO 0) := "100";
-- $45 -- XK
std_l ogi c_vector(2 DOMNTO 0) := "101";
-- $46
I nput / Qutput and M scel | aneous instructions
std_l ogi c_vector (3 DOANTO 0) := "1111";
std | ogic_vector(1l DOANTO 0) := "00";
-- Sh1
std | ogic_vector(1 DOMNNTO 0) := "01";
-- Sb2
std_l ogi c_vector(1l DOMNNTO 0) := "10";
-- S99
std | ogic_vector(3 DOANTO 0) := "0000";

TYPE PM BLOCK |'S ARRAY(0 TO 31) OF std_| ogi c_vector (7 DOANTO 0);

0);

Microprocessor Design —

Principles and Practices with VHDL

Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors

Page 13 of 25

IF (rst_ctrl="1") THEN

PC := 0;

muxsel ctrl <= "00";

immctrl <= (OTHERS => '0");
accw _ctrl <= '0";

rfaddr _ctrl <= "000";

rfw _ctrl <= '0";

al usel _ctrl <= "000";
shiftsel _ctrl <= "00";

outen _ctrl <= '0";

state <= S1;

-- load program nmenory with statenents
-- Multiplication programA x B

PM0) := "01010000"; ~-- LD A0

PM 1) := "00000000"; -- constant O

PM2) := "00100000"; -- STARDO],A

PM'3) := "01010000"; ~-- LD A 13

PM 4) := "00001101"; -- constant 13
PM'5) := "00100001"; -- STAR1],A

PM 6) := "11110000"; ~-- INA

PM 7) := "00100010"; -- STARZ2],A

PM8) := "01110000"; -- JZ out

PM9) := "00010001";

PM 10) := "00010000"; -- repeat: LDA A R O]
PM 11) := "11000001"; -- ADD A R[1]

PM12) := "00100000"; -- STA RO],A

PM13) := "00010010"; -- LDA A R 2]

PM14) := "11100010"; -- DEC A

PM'15) := "00100010"; -- STARZ2],A

PM16) := "10001110"; -- JNZR repeat

PM 17) := "00010000"; -- LDA A R O] output answer
PM18) := "11110001"; -- OJT A

PM19) := "11110010"; -- HALT

ELSIF (clk_ctrl'event and clk_ctrl =
CASE state IS
VWHEN S1 => - -
IR := PM PC);
OPCODE : =
PC := PC + 1;
muxsel ctrl <= "00";
immctrl <= (OTHERS => '0");
accw _ctrl <= '0";
rfaddr_ctrl <= "000";
rfw _ctrl <= '0";
al usel _ctrl <= "000";
shiftsel _ctrl <= "00";
outen _ctrl <= "'0";
Sstate <= S2;
WHEN S2 => -- decode instruction
CASE OPCODE | S
WHEN NOP => state <= S1;
WHEN LDA => state <= S10;
WHEN STA => state <= Sl11;
WHEN LDM => state <= S12;
WHEN STM => state <= S13;

"1') THEN
fetch instruction

| R(7 DOWNTO 4);

Microprocessor Design — Principles and Practices with VHDL

Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 14 of 25

VHEN LDI => state <= S14;
VWHEN JMP => state <= S210;
VWHEN JZ => state <= S220;
VWHEN JNZ => state <= S230;
VWHEN JP => state <= S240;
VWHEN ANDA => state <= S30;
VWHEN ORA => state <= S31;
VWHEN ADD => state <= S32;:
VWHEN SUB => state <= S33;
WHEN SO => -- single operand instructions
CASE | R(2 DOANTO 0) IS
VWHEN NOTA => state <= $41;
VWHEN | NC => state <= $42;
VWHEN DEC => state <= $43;
VHEN SHFL => state <= S$44;
WHEN SHFR => state <= S$45;
WHEN ROTR => state <= S46;
VWHEN OTHERS => state <= S99;
END CASE;
WHEN M SC => -- 1/0O and m scel | aneous instructions
CASE I R(1 DOANTO 0) IS
VWHEN | NA => state <= S51;
WHEN OUTA => state <= S52;
VWHEN HALT => state <= S99;
VWHEN OTHERS => state <= S99;
END CASE;
VWHEN OTHERS => state <= S99;
END CASE;
muxsel _ctrl <= "00";
immctrl <= (OTHERS => '0");
accwr _ctrl <= "'0";
rfaddr _ctrl <= "000";
rfw _ctrl <='0";
alusel _ctrl <= "000";
shiftsel _ctrl <= "00";
outen ctrl <="'0";

WHEN S8 => -- set zero and positive flags and then goto next
i nstruction
muxsel _ctrl <= "00";
immctrl <= (OTHERS => '0");
accwr _ctrl <= "'0";
rfaddr_ctrl <= "000";
rfw _ctrl <="'0";
alusel _ctrl <= "000";
shiftsel _ctrl <= "00";
outen ctrl <="'0";
Sstate <= SI1;

zero flag := zero_ctrl;
positive flag := positive_ctrl;
WHEN S9 => -- next instruction

muxsel _ctrl <= "00";
immctrl <= (OTHERS => '0");
accwr _ctrl <= "'0";
rfaddr_ctrl <= "000";

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors

Page 15 of 25

rfw _ctrl <= '0";

al usel _ctrl <= "000";
shiftsel _ctrl <= "00";
outen _ctrl <= "'0";
state <= SI1;

VWHEN S10 =>-- LDA
muxsel ctrl <= "01";
immctrl <= (OTHERS => '0");
accw _ctrl <= '1'";

rfw _ctrl <= '0";

al usel _ctrl <= "000";
shiftsel _ctrl <= "00";
outen _ctrl <= "'0";
state <= S8;

WHEN S11 => -- STA -- XK
muxsel _ctrl <= "00";
immctrl <= (OTHERS => '0");
accwr _ctrl <= '0";

rfw _ctrl <= "1";

al usel _ctrl <= "000";
shiftsel _ctrl <= "00";
outen ctrl <="'0";
state <= Si;

WHEN S12 => -- LDM
muxsel ctrl <= "10";
immctrl <= (OTHERS => '0');
accwr _ctrl <= "'1";
rfaddr_ctrl <= "000";
rfw _ctrl <="1";
al usel _ctrl <= "000";
shiftsel _ctrl <= "00";
outen ctrl <="'0";
state <= S9;

WHEN S13 => -- STM
muxsel ctrl <= "00";
immctrl <= (OTHERS => '0');
accw _ctrl <= '0";
rfaddr_ctrl <= "000";
rfw _ctrl <="'0";
al usel _ctrl <= "000";
shiftsel _ctrl <= "00";
outen _ctrl <= "'0";
Sstate <= S9;

WHEN S14 => -- LD -- K
muxsel ctrl <= "11";
immctrl <= PMPO);

PC := PC + 1;

accw _ctrl <= '1'";
rfaddr _ctrl <= "000";
rfw _ctrl <="'0";

rfaddr_ctrl <= I R(2 DOMTO 0);

rfaddr_ctrl <= I R(2 DOMTO 0);

Microprocessor Design — Principles and Practices with VHDL

Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 16 of 25

al usel _ctrl <= "000";
shiftsel _ctrl <= "00";
outen ctrl <="'0";
Sstate <= S8;

WHEN S210 => -- JMWP K
IF (1 R(3 DOANTO 0) = "0000") THEN

-- absolute

IR := PMPC); -- get next byte for absol ute address
PC : = CONV_I NTEGER(| R(4 DOMNTO 0));
ELSIF (IR(3) = '0") THEN -- relative positive

-- mnus 1 because PC has al ready increnented

PC := PC + CONV_I NTEGER(" 00" & I R(2 DOANTO 0)) - 1;
ELSE-- relative negative

PC := PC - CONV_INTEGER("00" & I R(2 DOANTO 0)) - 1;
END | F;

muxsel ctrl <= "00";

immctrl <= (OTHERS => '0");
accw _ctrl <= '0";

rfaddr _ctrl <= "000";

rfw _ctrl <= '0";

al usel _ctrl <= "000";
shiftsel _ctrl <= "00";

outen ctrl <= "'0";

state <= Si;

WHEN S220 => -- JZ

IF (zero_flag="1") THEN -- may need TO USE zero_flag instead
IF (IR(3 DOANTO 0) = "0000") THEN
-- absolute
IR := PMPC); -- get next byte for absol ute address
PC : = CONV_I NTEGER(| R(4 DOMNTO 0));
ELSIF (IR(3) ="'0") THEN -- relative positive

-- mnus 1 because PC has al ready increnented
PC : = PC + CONV_I NTEGER("00" & IR(2 DOMNTO 0)) - 1;
ELSE-- relative negative
PC := PC - CONV_I NTEGER("00" & IR(2 DOANTO 0)) - 1;
END | F;
END | F;

muxsel ctrl <= "00";

immctrl <= (OTHERS => '0");
accw _ctrl <= '0";
rfaddr_ctrl <= "000";

rfw _ctrl <= '0";

al usel _ctrl <= "000";
shiftsel _ctrl <= "00";

outen _ctrl <= "'0";

Sstate <= SI1;

VWHEN S230 => -- JNZ

IF (zero_flag="0") THEN -- may need TO USE zero_flag instead
IF (IR(3 DOANTO 0) = "0000") THEN
-- absolute
IR := PMPC); -- get next byte for absol ute address

PC : = CONV_|I NTEGER(| R(4 DOWNTO 0));

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 17 of 25

state <=

immctrl

rfw _ctrl

immctrl

ELSIF (IR(3) ="'0") THEN -- relative positive
-- mnus 1 because PC has al ready increnmented
PC : = PC + CONV_I NTEGER("00" & IR(2 DOANTO 0)) - 1;
ELSE-- relative negative
PC := PC - CONV_I NTEGER("00" & IR(2 DOANTO 0)) - 1;
END | F;
END | F;
muxsel _ctrl <= "00";
immctrl <= (OTHERS => '0");
accwr _ctrl <= "'0";
rfaddr _ctrl <= "000";
rfw _ctrl <= '0";
alusel _ctrl <= "000";
shiftsel _ctrl <= "00";

outen ctrl <= '0';

WHEN S240 => -- JP

IF (positive flag="1") THEN -- may need TO USE positive flag instead
IF (1 R(3 DOANTO 0) = "0000") THEN
-- absol ute
IR := PMPC); -- get next byte for absol ute address
PC = CONV_I NTEGER(|1 R(4 DOMNTO 0));
ELSIF(IR(3) ='0") THEN -- relative positive
-- mnus 1 because PC has al ready increnented
PC : = PC + CONV_I NTEGER("00" & I R(2 DOMNTO 0)) - 1;
ELSE-- relative negative
PC := PC - CONV_INTEGER("00" & I R(2 DOMNTO 0)) - 1;
END | F;
END | F;

muxsel _ctrl <= "00";

accw _ctrl <= '0";
rfaddr _ctrl <= "000";

al usel _ctrl <= "000";

shiftsel _ctrl <= "00";
outen _ctrl <= "'0";
state <= Si;
WHEN S30 => -- ANDA -- XK

muxsel ctrl <="00";

immctrl <= (OTHERS => '0");
rfaddr_ctrl <= I R(2 DOMTO 0);
rfw _ctrl <='0";
al usel _ctrl <="001";
shiftsel _ctrl <= "00";
outen ctrl <= "'0";
accw _ctrl <="1"; -- wite occurs IN the next cycle
state <= S8;
-- state <= S9; -- need one extra cycle TOwite back result ??
WHEN S31 => -- CORA -- XK

muxsel ctrl <="00";

S1;

<= (OTHERS => '0');

<='0';

<= (OTHERS => '0');

Microprocessor Design —

Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 18 of 25

rfaddr_ctrl <= I R(2 DOMTO 0);
rfw _ctrl <='0";

al usel _ctrl <="010";

shiftsel _ctrl <= "00";

outen _ctrl <= "'0";

accw _ctrl <="1"; -- wite occurs IN the next cycle
state <= S8;
-- state <= S9; -- need one extra cycle TOwite back result
WHEN S32 => -- ADD -- X

muxsel ctrl <="00";

immctrl <= (OTHERS => '0");
rfaddr_ctrl <= I R(2 DOMTO 0);
rfw_ctrl <="'0";

al usel _ctrl <="100";

shiftsel _ctrl <= "00";

outen ctrl <="'0";

accw _ctrl <="1"; -- wite occurs IN the next cycle
Sstate <= S8;
-- state <= S9; -- need one extra cycle TOwite back result
VWHEN S33 => -- SUB -- XK

muxsel ctrl <="00";

immctrl <= (OTHERS => '0");
rfaddr_ctrl <= I R(2 DOMTO 0);
rfw _ctrl <='0";

al usel _ctrl <="101";

shiftsel _ctrl <= "00";

outen _ctrl <= '0";

accw _ctrl <="1"; -- wite occurs IN the next cycle
state <= S8;
-- state <= S9; -- need one extra cycle TOwite back result
VWHEN S41 => -- NOTA -- XK

muxsel ctrl <="00";

immctrl <= (OTHERS => '0");
rfaddr _ctrl <= "000";
rfw_ctrl <="'0";

alusel _ctrl <="011";
shiftsel _ctrl <= "00";

outen ctrl <="'0";

accw _ctrl <="1"; -- wite occurs IN the next cycle
Sstate <= S8;

-- state <= S9; -- need one extra cycle TOwite back result
VWHEN S42 => -- |INC -- XK

muxsel ctrl <="00";

immctrl <= (OTHERS => '0");
rfaddr_ctrl <= "000";

rfw _ctrl <="'0";

al usel _ctrl <="110";

shiftsel _ctrl <= "00";

outen ctrl <= "'0";

accw _ctrl <="1"; -- wite occurs IN the next cycle
state <= S8;
-- state <= S9; -- need one extra cycle TOwite back result

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors

Page 19 of 25

VWHEN S43 => -- DEC -- K
muxsel ctrl <="00";
immctrl <= (OTHERS => '0");
rfaddr_ctrl <= "000";
rfw _ctrl <="'0";
al usel _ctrl <="111";
shiftsel _ctrl <= "00";
outen ctrl <="'0";

state <= S8;

VWHEN S44 => -- SHFL
muxsel _ctrl <="00";
immctrl <= (OTHERS => '0");
rfaddr _ctrl <= "000";
rfw _ctrl <= '0";
alusel _ctrl <= "000"; -- pass
shiftsel _ctrl <= "01";
outen _ctrl <= "'0";

muxsel ctrl <="00";

immctrl <= (OTHERS => '0");
rfaddr _ctrl <= "000";

rfw _ctrl <="'0";

al usel _ctrl <= "000"; -- pass
shiftsel _ctrl <= "10";

outen ctrl <="'0";

muxsel ctrl <="00";

immctrl <= (OTHERS => '0");
rfaddr_ctrl <= "000";

rfw _ctrl <= '0";

alusel _ctrl <= "000"; -- pass
shiftsel _ctrl <= "11";

outen _ctrl <= '0";

muxsel ctrl <= "10";
immctrl <= (OTHERS => '0");
accwr _ctrl <= "'1";
rfaddr_ctrl <= "000";

rfw _ctrl <="'0";

alusel _ctrl <= "000";
shiftsel _ctrl <= "00";

outen ctrl <= "'0";

accw _ctrl <="1"; -- wite occurs IN the next cycle

-- state <= S9; -- need one extra cycle TOwite back result

accw _ctrl <="1"; -- wite occurs IN the next cycle
state <= S8;
-- state <= S9; -- need one extra cycle TOwite back result
WHEN S45 => -- SHFR -- X

accw _ctrl <="1"; -- wite occurs IN the next cycle
Sstate <= S8;
-- state <= S9; -- need one extra cycle TOwite back result
WHEN S46 => -- ROIR -- ??

accw _ctrl <="1"; -- wite occurs IN the next cycle
state <= S8;
-- state <= S9; -- need one extra cycle TOwite back result
WHEN S51 => -- | NA

Microprocessor Design — Principles and Practices with VHDL

Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors

Page 20 of 25

state <= S8;
-- state <= S9;

WHEN S52 => -- QUTA
muxsel _ctrl <= "00";

accwr _ctrl <= "'0";
rfaddr _ctrl <= "000";
rfw _ctrl <="'0";
al usel _ctrl <= "000";
shiftsel _ctrl <= "00";
outen ctrl <= "'1";
state <= Si;

-- state <= S9;

VWHEN S99 => -- HALT
muxsel ctrl <= "00";

accw _ctrl <= '0";

rfaddr_ctrl <= "000";

rfw _ctrl <= '0";

al usel _ctrl <= "000";

shiftsel _ctrl <= "00";

outen ctrl <= "'0";
State <= S99;

VWHEN OTHERS =>
muxsel ctrl <= "00";

accw _ctrl <= '0";
rfaddr _ctrl <= "000";
rfw _ctrl <= '0";
alusel _ctrl <= "000";
shiftsel _ctrl <= "00";
outen _ctrl <= "'0";
state <= S99;
END CASE;
END | F;
END PROCESS;
END fsm

immctrl <= (OTHERS => '0');

immctrl <= (OTHERS => '0');

immctrl <= (OTHERS => '0");

Listing 2. Control unit.

12.5 CPU

Now that we have defined both the datapath and the control unit, we are ready to connect the two together to
create our very own custom general microprocessor. The necessary signals that need to be connected between the
two units are just the control word signals, shown in Figure 3, that the control unit has to generate for controlling the
datapath. In addition to the control signals, there are also two conditional flag signals (zero and positive) that the
datapath generates as status signals for the control unit to use. The interface between the datapath and the control

unit is shown in Figure 5.

The primary inputs to the CPU module are clock, reset, and data input. The primary output from the CPU

module is the data output, address???.

Microprocessor Design — Principles and Practices with VHDL

Last updated 3/18/2003 8:01 PM

rst_cpu

Chapter 12 — General-Purpose Microprocessors

Control
Inputs

input_cpu

Page 21 of 25

input_dp

imm_dp

Y

muxsel_dp, ,

V*V

Status Signals

210_dp
<

ppsitive_dp

acowr_dp

A

st_dp

I
>| Accumulator
»

7] > Control
> Signals ¥
—— State > > | rfwr_dp N
. Memory Output N rfaddr_dp, | ResisierFite
Next Logic i | >
state register >
Logic 9 4
g] A 4
| > | alusel_dp, \
"] > > ALU
clk_cpu Sl > siter
outen_dp X
Control unit f Datapath
output_dp
output_cpu

Figure 5. Connections between the datapath and the control unit for our general microprocessor.

Combining the datapath and control unit entities together is easily accomplished by writing a higher level
VHDL entity using the structural model as shown in Listing 3.

LI BRARY | EEE;
USE | EEE. std | ogic_1164. all;
USE | EEE. std_logic_arith.all;

ENTITY cpu IS PORT (
cl k_cpu: std_logic;
rst_cpu: IN std_|ogic;
i nput _cpu: I N std_Il ogic_vector (7 DOANNTO 0);
out put _cpu: OUT std_Il ogic_vector (7 DOANNTO 0));
END cpu;

ARCHI TECTURE structure OF cpu IS

COVPONENT ctrl PORT (
clk ctrl: INstd_|ogic;
rst_ctrl: IN std_|ogic;
nmuxsel ctrl: QUT std_|ogic _vector(1l DOANTO 0);
immctrl: OUT std_Il ogic_vector (7 DOANTO 0);
accw _ctrl: QOUT std_l ogic;
rfaddr_ctrl: QUT std_| ogic_vector(2 DOANNTO 0);
rfw _ctrl: OUT std_| ogic;

QUT std | ogic_vector(2 DOANTO 0);
QUT std_l ogic_vector(1l DOANTO 0);

al usel _ctrl:
shiftsel ctrl:

outen_ctrl: OUT std_l ogic;
zero_ctrl: IN std_|ogic;
positive ctrl: IN std |logic);

END COVPONENT;

COVPONENT dp PORT (
clk_dp: IN std_Ilogic;

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 22 of 25

rst_dp: IN std_| ogic;

nmuxsel _dp: I N std_l ogic_vector(1l DOANTO 0);

im.dp: IN std_|ogic_vector(7 DOANNTO 0);

i nput_dp: IN std |ogic_vector(7 DOANTO 0);

accw _dp: IN std_| ogic;

rfaddr_dp: I N std_logic_vector(2 DOANTO 0);

rfw _dp: IN std_|logic;

al usel _dp: IN std_logic_vector(2 DOANTO 0);

shiftsel _dp: IN std |ogic_vector(1l DOANNTO 0);

outen_dp: IN std_| ogic;

zero_dp: OUT std_l ogic;

positive_dp: OUT std_I ogic;

out put _dp: OUT std_l ogi c_vector (7 DOANTO 0));
END COVPONENT;

SIGNAL C imredi ate: std_l| ogic_vector(7 DOANTO 0);

--SIGNAL D inmediate: std_|ogic_vector(7 DOANTO 0);

SIGNAL C accwr,C rfw, C outen, C zero, C positive: std_logic;
SIGNAL C nuxsel ,C shiftsel: std | ogic_vector(1l DOANTO 0);
SIGNAL C rfaddr, C alusel: std _|ogic_vector(2 DOANNTO 0);

BEG N
Uo: ctrl PORT
MAP(cl k_cpu, rst_cpu, C nuxsel , C i nmedi ate
,C accw,Crfaddr,Crfw,C alusel,C shif
tsel, C outen, C zero, C positive);
Ul: dp PORT
MAP(cl k_cpu, rst_cpu, C_nmuxsel , C i nmedi at e
,input_cpu,C accwr,Crfaddr,Crfw,C alu
sel,C shiftsel,C outen, C zero, C positive
, out put _cpu);
--D i medi ate <= C_i mmedi at e;
END structure;

Listing 3. CPU — connecting the control unit with the datapath.

12.6 Top-level Computer

In order to actually test out our custom general microprocessor, we need to connect it to the three basic
components as defined in the Von Neuman architecture of a computer system, namely, an input, an output and a
memory.

12.6.1 Input

Our computer input consists of eight simple dip switches for binary input of a number.

12.6.2 Output

Our computer output consists of two 7-segment LEDs. The 8-bit output from the CPU datapath is decoded so
that the eight bit binary value is displayed as two decimal digits on the two 7-segment LEDs.

12.6.3 Memory

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 23 of 25

12.6.4 Clock

For our system clock, we use the built-in 25MHz clock that is available on the development board. In order to
see some intermediate actions by the CPU, we have used a clock divider to slow down the clock.

12.6.5 VHDL Code for the Complete Computer

LI BRARY | EEE;
USE | EEE. std_l ogic_1164. al | ;
USE | EEE. std_logic_arith.all;

ENTI TY conputer 1S PORT (
clock 25MHz: IN std logic; -- frompin 91 of UP2
reset: IN std_|ogic;
i nput _conp: IN std_| ogic_vector(7 DOANTO 0);
digitl conp: OUT std |logic vector(1l TO 8);
digit2 conp: OUT std |logic vector(1l TO 8));

END conput er;

ARCHI TECTURE structure OF conputer |S

COVPONENT cl k_generat or PORT (
clock_25Mz: IN STD LCOG C;

clock _1MHz . QUT STD LGA G

cl ock_100KHz . QUT STD LOG G
cl ock_10KHz . QUT STD LOG G
cl ock_1KHz . QUT STD LOA G

cl ock_100Hz . QUTr STD LOG G
cl ock _10Hz . QUT STD LGdA G
clock 1Hz : QUT STD LOd O);

END COVPONENT;

COVPONENT cpu PORT (
clk_cpu: IN std_logic;
rst_cpu: IN std_|logic;
i nput_cpu: IN std_|ogic_vector(7 DOANNTO 0);
out put_cpu: OUT std_|ogic_vector(7 DOMNNTO 0));
END COVPONENT;

COVPONENT out put PORT (
nunber: I N std | ogic_vector(7 DOANNTO 0);
digitl, digit2: OUT std logic vector(1l TO 7));
END COVPONENT;

SIGNAL cl k: STD LCd G

SIGNAL resetN. STD LOd C;

SIGNAL C outcpu: std_|ogic _vector(7 DOANTO 0);
SIGNAL C digitl,Cdigit2: std |ogic_vector(1l TO 7);

BEG N
U0: cl k_generator PORT MAP(cl ock 25MHz, open, open, clk, open, open, open,
open);
Ul: cpu PORT MAP(cl k, resetN,input_conp, C outcpu);
U2: out put PORT MAP(C outcpu,C digitl, Cdigit2);
digitl comp <= Cdigitl & '1" WHEN C outcpu < "01100100" ELSE C digitl &
N

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors

Page 24 of 25

digit2_conp <= Cdigit2 &"'1";
reset N <= NOT reset;

END structure;

Listing 4. Top-level computer.

12.7 Examples

Example 12.1

In this example, we will implement the multiplication program on our CPU. Figure 6(a) shows the disassembled

code for the multiplication program.

PM0) := "01010000"; -- LDI A O

PM 1) := "00100000"; STA R[0], A

PM2) := "11110000"; IN A

PM 3) := "00100001"; STA R[1], A

PM 4) := "11110000"; IN A

PM5) := "00100010"; STA R 2], A

PM 6) := "01110000"; JZ out

PM 7) := "00001111";

PM 8) := "00010000"; repeat: LDA A R[0]

PM9) := "11000001"; ADD A, R[1]

PM 10) := "00100000"; STA R[0], A

PM 11) := "00010010"; LDA A R 2]

PM 12) := "11100010"; DEC A

PM 13) := "00100010"; STA R[2], A

PM 14) := "10001110"; JNZR 1 epeat

PM 15) := "11110010"; out: HALT

(@

b ATE = Ll] 1 Ouks 2 g LT 4D 4. 5ig
= Chik

o Siale g1 152 S'L:I:ﬁ:
!
1

@ PC o I

A

) : ':I 3 :I'

EEERN B EVEYEN B ED ER)
[| 5 g !

r
A

H

o Oplode] G000)

[T TRl :I'

X 1111

(57 T

0

g § n

& RFD

& RF1
i RF1

A Inper

i
g

Microprocessor Design — Principles and Practices with VHDL

(b)

Last updated 3/18/2003 8:01 PM

Chapter 12 — General-Purpose Microprocessors Page 25 of 25

Kame L;u_ru_L/Diujg,_ﬁL.S-I,-(A oI5 LDi...a 1. .DFC tiguw ST'\?‘ - JNEL
= coch T U T
C TR ENEN EREREETERERES ENNER SN ERER ES N EREREYENN ERER -
& P 1] -] 11] i 12 13 14

@ OpCoda|- [Ti] [1100 ¥ o X 0ot [1110 | min Y oo !
@ AL i 1 [E i & 1 0 1 E]]
@ RFO 13 [3 !
& RFI 13

& RF2) | B
A Il 0

(©

Kami e &6 S ET Do 57w 55 0uE £H Sura £8 Oura £0 Sura B0 Dl B0 S Bl
= ciock

CAUTE ERER S ERE B EREENNERERES ENEREREI ENERE) = ER R
@ P 9y 10 W i1 ¥ 12 y 13] T | 18 ¥ ®

e mm-@; (] ¥ min [[¥ R ¥ min Yoamo ¥ 1

P BT | [Ex] ¥ 143 ¥] ¥ b

i RFl ET ¥ [LE

& RFI E]

@* RF2 i 1 i
A gl 0

(d)

Figure 6. Multiplication of 13 x 11: (a) multiplication program; (b) initialization of RF(0)=0, RF(1)=13 and
RF(2)=11; (c) one iteration of the loop; (d) last iteration with the result 143 in RF(0).

Microprocessor Design — Principles and Practices with VHDL Last updated 3/18/2003 8:01 PM

Appendix A — VHDL Summary Page 1 of 21

Appendix A VHDL SUMMAIY ...ttt sttt se e es e se e te s be s aesteenees e e e e st e eessenbeaneaseeneeneeneenrenre e 2
Al BaSiC Language EIBMENTScviieieieiise ettt ettt e s reeneen e e et e e renre e 2
All (O00] 011 11T 1 T T TSP T TPV OR PP PTPPPRPRON 2
Al2 [T 01X =] €SOO TP URRPTPTTPRTR 2
Al3 (D1 WO o] =Tt SO TP USSP 2
Al4 DU B 1Y 01 T T T TP U PP PP TP 2
Al5 DU W O] 0T =1 (o] £ T T TP T ST U R T PP PP 4
AL ENTITY oottt sttt s et st e b e et st e s e b e se e s e e b e se e R e e be st e s e ebe st e s e ebesbereebe st et e ebeneereabe e 5
ALT ARCHITECTUREooititt ettt ettt sttt sbe et sb et et e be st e teebe st e teebe e etesbe e eteabeseereabeneas 6
ALLB PACKAGEot b et bbbtk bbbkt b et b e e et b et e 7
A.2 Dataflow Model CONCUITENt SLALEMENTSc.iiiiiiriiiiiieee bbb 8
A2.1 Concurrent Signal ASSIGNMENT.ccvieeieie e se sttt e e e e se e tesbesresreeseenae e e e seesrenreens 8
A.2.2 Conditional Signal ASSIGNIMENT.........ccciiviiiiieieeieere et e e st et sresresreeneenaesrenre e 9
A2.3 Selected Signal ASSIGNMENLciiiiiiieii et e et esresre e ere e e et e saeseeseeseesrenre e 9
A2.4 Dataflow Model EXAMPIEvoiuiiiiiieciece s ettt sn e ne e eneas 10
A.3 Behavioral Model Sequential StatEMENTS.uiiiiiieie e e 10
ALB.L PROGCESS ...ttt sttt sttt s b et b et £e bt £e bR bRt E e bRt Re bRt Rt et te et nere et 10
A3.2 Sequential SigNaAl ASSIGNMENT.cuiiiiiiie ittt bbb bt et e e et e e e sbesbesbeens 10
A3.3 Variable ASSIGNMENToui ittt bbbt s et et b e be b ebe e b e ne e e et e b nbeebeenes 11
AL WAIT ettt b et E e bt Ee b bR e bt R Rt R e Rt R e R bR R bt b et te et et eens 11
A.35 IF THEN ELSE ..ottt sttt sttt sttt ettt e et e et e e e te st st eteebestereateneas 11
ALB.6 CASE oLt b et £ bt E e bt E e bR bt be e a et b e 12
ALBLT NULL oottt R e b e e Rt Rt be e b bttt re e 12
ALB.8 FOR bbb bR R bR bRt R e Rt be e h ettt re e 12
ALBL9 WHILE .ot bbbt bbb et E e b bRt b et b ne e 13
ALB.L0 LOOP ...ttt b E R E R R Rt E e R R R R bR e R R e h ettt eere e 13
N 50 N = 1 TSSOSO 13
N N N OSSR 13
AL3.L3 FUNCTION Lottt sttt sttt st et sttt et be et st ebe e b et e be s b et e be st et et et e e e beste s erestens 13
A.3.14 PROCEDUREociiiititt ettt sttt sttt b et b et sttt st e bbb e st et st e s e st st ete s e s te e erentens 14
A.3.15 Behavioral Model EXAMPIE. ..o bbbt 15
A4 SErUCtUral MOGEI STAEEMENTS ...ttt ettt bbb bbbttt e et e e e e e e sbesbesbeeneas 16
A4l COMPONENT DECIAIALION ..cuvitiieiiiteiieiiite ettt sttt sttt bbbttt e 16
A2 PORT IMAP e ettt b e et b etk b et b e e bt b e e bt e bt e b et e bt s btk s bt et b et bt 16
A3 OPEN et h bR b £ R b e R b e R bt R bt b h et be b e b e 17
AL GENERATE . ..ot bbbt b etk bbbt et s b et bbbt et ne s 17
A4S Structural Model EXAMPIE ...c.ocveieie ettt st aenrenneens 17
A5 CONVEISION ROULINES ..ottt ettt ettt b bbbttt b et b bt b et b bbb et nes 18
AB5.L CONVL_INTEGER() i e tititeietisieistestetstesteestestesestesee e sbesaetestesaetesbe s atesbesestessaseatesbesessessesessessessasessens 18
A5.2 CONV_STD_LOGIC_VECTOR(,) ctiereeeireriaesreriaesiereatesiesessessesessessesessessssessessssessessssessessssessessssensans 19
0T 1= TSSO UPTURPRURR 20

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 2 of 21

Appendix A VHDL Summary

VHDL is a hardware description language for modeling digital circuits that can range from simple connection
of gates to complex systems. VHDL is an acronym for VHSIC Hardware Description Language, and VHSIC in turn
is an acronym for Very High Speed Integrated Circuits. This appendix gives a brief summary of the basic VHDL
elements and its syntax. Many advance features of the language are omitted. Interested readers should refer to other
references for detail coverage.

A.1 Basic Language Elements

A.1.1 Comments

Comments are preceded by two consecutive hyphens (--) and are terminated at the end of the line.

Example:

|-- This is a coment

A.1.2 ldentifiers

VHDL identifier syntax:
» Asequence of one or more upper case letters, lower case letters, digits, and the underscore.
» Upper and lower case letters are treated the same, i.e. case insensitive.
» The first character must be a letter.
» The last character cannot be the underscore.
e Two underscores cannot be together.

A.1.3 Data Objects

There are three kinds of data objects: signals, variables, and constants.

The data object SIGNAL represents logic signals on a wire in the circuit. A signal does not have memory, thus, if
the source of the signal is removed, the signal will not have a value.

A VARIABLE object remembers its content and is used for computations in a behavioral model.
A CONSTANT object must be initialized with a value when declared and this value cannot be changed.

Example:

SIGNAL x: BIT,;
VARI ABLE y: | NTECER
CONSTANT one: STD LOG C VECTOR(3 DOANTO 0) := "0001";

A.1.4 Data Types

BIT and BIT_VECTOR

The BIT and BIT_VECTOR types are predefined in VHDL. Objects of these types can have the values ‘0’ or “1’.
The BIT_VECTOR type is simply a vector of type BIT.

Example:

SIGNAL x: BIT,;
SIGNAL y: BIT_VECTOR(7 DOMTO 0);

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 3 of 21

X <="'1";
y <= "0010";

STD_LOGIC and STD_LOGIC_VECTOR

The STD_LOGIC and STD_LOGIC_VECTOR types provide more values than the BIT type for modeling a real circuit
more accurately. Objects of these types can have the following values:

‘0’ —normal 0.

‘1" -normal 1.

‘Z’ - high impedance.
‘=’ —don’t care.

‘L> —weak0.

‘H* —weak 1.

‘U’ —uninitialized.
‘X —unknown.
‘W’ —weak unknown.

The STD_LOGIC and STD_LOGIC_VECTOR types are not predefined and so the two library statements must be
included in order to use these types:

LI BRARY i eee;
USE ieee.std_logic_1164. ALL;

If objects of type STD_LOGIC_VECTOR are to be used as binary numbers in arithmetic manipulations, then either
one of the following two USE statements must also be included:

| USE i eee. std_| ogi c_si gned. ALL; |

for signed number arithmetic or

‘ USE i eee.std_Il ogi c_unsigned. al | ; |

for unsigned number arithmetic.

Example:

LI BRARY i eee;
USE ieee.std_logic_1164. ALL;

SIGNAL x: STD LOG C;
SIGNAL y: STD LOG C_VECTOR(7 DOWNTO 0);

X <='Z;
y <= "001-";
INTEGER

The predefined INTEGER type defines binary number objects for use with arithmetic operators. By default, an
INTEGER signal uses 32 bits to represent a signed number. Integers using fewer bits can also be declared with the
RANGE keyword.

Example:

SIGNAL x: | NTECER;

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 4 of 21

SIGNAL y: | NTEGER RANCGE -64 to 64;

BOOLEAN
The predefined BOOLEAN type defines objects having the two values TRUE and FALSE.

Example:

SI GNAL x: BOOLEAN;

Enumeration TYPE
An enumeration type allows the user to specify the values that the data object can have.

Syntax:
TYPE identifier IS (valuel, value?, ...);

Example:

TYPE state type IS (S1, S2, S3);
SIGNAL state: state_type;
state <= SI;

ARRAY
The ARRAY type groups single data objects of the same type together into a one or multi- dimensional array.

Syntax:
TYPE identifier IS ARRAY (range) OF type;

Example:

TYPE byte IS ARRAY(7 DOMNTO 0) OF BIT;

TYPE menory_type 1S ARRAY(1 TO 128) OF byte;
SIGNAL nmenory: menory_type;

menory(3) <= "00101101";

SUBTYPE

A SUBTYPE is a subset of a type, that is, a type with a range constraint.

Syntax:
SUBTYPE identifier IS type RANGE range;

Example:

SUBTYPE integer4 IS | NTEGER RANGE -8 TO 7,

SUBTYPE cell IS STD LOd C_VECTOR(3 DOMTO 0);
TYPE memArray |'S ARRAY(O0 TO 15) OF cel l;

A.1.5 Data Operators

The VHDL Built-in operators are listed below.

| Logical Operators | Operation | Example

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 5 of 21
AND and aAND b
OR or aORb
NOT not NOT a
NAND nand aNAND b
NOR nor aNOR b
XOR xor aXOR b
XNOR xnor aXNORb
Arithmetic Operators

+ addition at+b

- subtraction a-b

* multiplication a*b

/ division alb
MOD modulus a MOD b
REM remainder aREMDb
** exponentiation a**2

& concatenation a'&'b'
ABS absolute

Relational Operators

= equal

/= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal

Shift Operators

sll shift left logical

srl shift right logical

sla shift left arithmetic

sra shift right arithmetic

rol rotate left

ror rotate right

A.1.6 ENTITY

An ENTITY declaration declares the external or user interface of the module similar to the declaration of a
function. It specifies the name of the entity and its interface. The interface consists of the signals to be passed into

the entity or out from it.

Syntax:

ENTITY entity-name IS

PORT (list-of-port-names-and-types);

END entity-name;

Example:

ENTI TY
I'N
I'N
I'N

.g___

Slren IS PORT (

Principles of Digital Logic Design

Enoch Hwang

Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary

A.1.7 ARCHITECTURE

Page 6 of 21

The ARCHITECTURE body defines the actual implementation of the functionality of the entity. This is similar to
the definition or implementation of a function. The syntax for the architecture varies depending on the model

(dataflow, behavioral, or structural) you use.
Syntax for dataflow model::
ARCHITECTURE architecture-name OF entity-name IS
signal-declarations;
BEGIN

concurrent-statements;
END architecture-name;

The concurrent-statements are executed concurrently.

Example:

ARCHI TECTURE Siren_Dataflow OF Siren IS
SIGNAL term 1: BIT,

BEG N
terml <= D QR YV,
S<=terml AND M

END Siren_Dat af | ow,

Syntax for behavioral model:

ARCHITECTURE architecture-name OF entity-name 1S
signal-declarations;
function-definitions;
procedure-definitions;
BEGIN
PROCESS-blocks;
concurrent-statements;
END architecture-name;

Statements within the process-block are executed sequentially. However, the process-block itself is a concurrent

statement.

Example:

ARCHI TECTURE Siren_Behavioral OF Siren IS
SIGNAL term 1: BIT,
BEG N
PRCCESS (D, V, M
BEGA N
terml1l <= D ORYV,
S <=term1l AND M
END PROCCESS;
END Siren_Behavi oral ;

Syntax for structural model

ARCHITECTURE architecture-name OF entity-name 1S
component-declarations;
signal-declarations;

BEGIN
instance-name: PORT MAP-statements;
concurrent-statements;

Principles of Digital Logic Design Enoch Hwang

Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary

END architecture-name;

Page 7 of 21

For each component declaration used, there must be a corresponding entity and architecture for that component.

The PORT MAP statements are concurrent statements.

Example:

ARCHI TECTURE Siren_Structural OF Siren IS
COVPONENT myOR PORT (
inl, in2: INBIT,
outl: QOUT BIT);
END COVPONENT;

SICGNAL terml: BIT,

BEG N
Uo: nmyOR PORT MAP (D, V, ternil);
S <=terml AND M

END Siren_Structural;

A.1.8 PACKAGE

A PACKAGE provides a mechanism to group together and share declarations that are used by several entity units.
A package itself includes a declaration and, optionally, a body. The package declaration and body are usually stored
together in a separate file from the rest of the design units. The file name given for this file must be the same as the
package name. In order for the complete design to synthesize correctly using MAX+PLUS Il, you must first

synthesize the package as a separate unit. After that you can synthesize the unit that uses that package.

PACKAGE Declaration and Body

The PACKAGE declaration contains declarations that may be shared between different entity units. It provides the
interface, that is, items that are visible to the other entity units. The optional PACKAGE BODY contains the

implementations of the functions and procedures that are declared in the PACKAGE declaration.
Syntax for PACKAGE declaration:

PACKAGE package-name IS
type-declarations;
subtype-declarations;
signal-declarations;
variable-declarations;
constant-declarations;
component-declarations;
function-declarations;
procedure-declarations;

END package-name;

Syntax for PACKAGE body:

PACKAGE BODY package-name IS
function-definitions; -- for functions declared in the package declaration
procedure-definitions; -- for procedures declared in the package declaration
END package-name;

Example:

LI BRARY i eee€;
USE i eee.std | ogic 1164. ALL;

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 8 of 21

PACKAGE ny_package IS
SUBTYPE bit4 1S std_I| ogi c_vector (3 DOANTO 0);
FUNCTI ON shiftright (input: IN bit4) RETURN bit4; -- declare a function
SI GNAL nysignal : bit4; -- a gl obal signal

END ny_package;

PACKAGE BODY ny_package IS
-- inplenmentation of the Shiftright function
FUNCTI ON Shiftright (input: INbit4) RETURN bit4 IS
BEG N
RETURN ' 0" & input (3 DOMTO 1);
END shiftright;
END ny_package;

Using a PACKAGE

To use a package, you simply include a LIBRARY and USE statement for that package. Before synthesizing the

module that uses the package, you need to first synthesize the package by itself as a top-level entity.
Syntax:

LIBRARY WORK;
USE WORK .package-name.ALL;

Example:

LI BRARY wor k;
USE wor k. my_package. ALL;

ENTI TY test package IS PORT (
x: I'N bit4;
z: QUT bit4);

END t est _package;

ARCHI TECTURE Behavi oral OF test_package IS
BEG N

mysi gnal <= x;

z <= Shiftright(nysignal);
END Behavi or al ;

A.2 Dataflow Model Concurrent Statements

Concurrent statements used in the dataflow model are executed concurrently. Hence, the ordering of these

statements does not affect the resulting output.

A.2.1 Concurrent Signal Assignment

Assigns a value or the result of evaluating an expression to a signal. This statement is executed whenever a
signal in its expression changes value. However, the actual assignment of the value to the signal takes place after a

certain delay and not instantaneously as for variable assignments.

Syntax:
signal <= expression;

Example:

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 9 of 21

y <="'1";
z <=y AND (NOT x);

A.2.2 Conditional Signal Assignment

Selects one of several different values to assign to a signal based on different conditions. This statement is
executed whenever a signal in any one of the value or condition changes.

Syntax:

signal <= valuel WHEN condition ELSE
value2 WHEN condition ELSE

value3;

Example:

Zz <=in0 WHEN sel = "00" ELSE
inl WHEN sel = "01" ELSE
in2 WHEN sel = "10" ELSE
in3;

A.2.3 Selected Signal Assignment

Selects one of several different values to assign to a signal based on the value of a select expression. This
statement is executed whenever a signal in the expression or any one of the value changes.

Syntax:
WITH expression SELECT
signal <= valuel WHEN choicel,
value2 WHEN choice? | choice3,
value4 WHEN choice4;

All possible choices for the expression must be given. The keyword OTHERS can be used to denote all remaining
choices.

Example:

W TH sel SELECT
z <=in0 WHEN "00",
inl WHEN "01",
in2 WHEN " 10",
i n3 WHEN OTHERS;

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 10 of 21

A.2.4 Dataflow Model Example

-- outputs a 1 if the 4-bit input is a prime nunber, 0 otherw se
ENTITY Prine | S PORT (

nunber: I N BI T_VECTOR(3 DOANTO 0);

yes: OUT BIT);

END Pri e;
ARCHI TECTURE Prine_Dataflow OF Prinme IS
BEG N
W TH number SELECT
yes <= '1' WHEN "0001" | "0010",

1" WHEN "0011" | "0101" | "O0111" | "1011" | "1101",
'0'" WHEN OTHERS;
END Pri me_Dat af | ow,

A.3 Behavioral Model Sequential Statements

The behavioral model allows statements to be executed sequentially just like in a regular computer program.
Sequential statements include many of the standard constructs such as variable assignments, if-then-else, and loops.

A.3.1 PROCESS

The PROCESS block contains statements that are executed sequentially. However, the PROCESS statement itself is
a concurrent statement. Multiple process blocks in an architecture will be executed simultaneously. These process
blocks can be combined together with other concurrent statements.

Syntax:

process-name: PROCESS (sensitivity-list)
variable-declarations;

BEGIN
sequential-statements;

END PROCESS process-name;

The sensitivity-list is a comma-separated list of signals in which the process is sensitive to. In other words,
whenever a signal in the list changes value, the process will be executed, that is, all the statements in the sequential
order listed. After the last statement has been executed, the process will be suspended until the next time that a
signal in the sensitivity list changes value before it is again executed.

Example:

PROCESS (D, V, M
BEG N
terml <= DRV,
S <=terml1l AND M
END PROCCESS;

A.3.2 Sequential Signal Assignment

Assigns a value to a signal. This statement is just like its concurrent counterpart except that it is executed
sequentially, that is, only when execution reaches it.

Syntax:

signal <= expression;

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 11 of 21

Example:

y <="'1";
z <=y AND (NOT x);

A.3.3 Variable Assignment

Assigns a value or the result of evaluating an expression to a variable. The value is always assigned to the
variable instantaneously whenever this statement is executed.

Variables are only declared within a process block.

Syntax:
signal := expression;

Example:

y :="'1%;
yn = NOT y;

A.3.4 WAIT

When a process has a sensitivity list, the process always suspends after executing the last statement. An
alternative to using a sensitivity list to suspend a process is to use a WAIT statement, which must also be the first
statement in a process’.

Syntax*:
WAIT UNTIL condition;

Example:

-- suspend until a rising clock edge
WAIT UNTIL cl ock’ EVENT AND clock = "1';

A.3.5 IF THEN ELSE

Syntax:

IF condition THEN
sequential-statements1;
ELSE
sequential-statements2;
END IF;

IF conditionl THEN
sequential-statements1;

ELSIF condition2 THEN
sequential-statements2;

ELSE
sequential-statements3;

! This is only a MAX+PLUS Il restriction.
% There are three different formats of the WAIT statement, however, MAX+PLUS 11 only supports one.

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 12 of 21

END IF,;

Example:

I F count /= 10 THEN -- not equal
count := count + 1;

ELSE
count := 0;

END | F;

A.3.6 CASE

Syntax:

CASE expression IS
WHEN choices => sequential-statements;
WHEN choices => sequential-statements;

WHEN OTHERS => sequential-statements;

END CASE;
Example:
CASE sel IS

WHEN " 00" => z <= inQ0;
WHEN "01" => z <= inl;
WHEN " 10" => z <= in2;
VWHEN OTHERS => z <= in3;
END CASE;

A.3.7 NULL
The NULL statement does not perform any actions.

Syntax:

NULL;

A.3.8 FOR

Syntax:

FOR identifier IN start [TO | DOWNTQ] stop LOOP
sequential-statements;
END LOOP;

Loop statements must have locally static bounds®. The identifier is implicitly declared, so no explicit declaration
of the variable is needed.

Example:

sum : = 0;

FOR count IN1 TO 10 LOOP
sum : = sum + count;

® This is only a MAX+PLUS I restriction.

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 13 of 21

| END LOCP;

A.3.9 WHILE?

Syntax:

WHILE condition LOOP
sequential-statements;
END LOOP;

A.3.10LOOP*

Syntax:

LOOP
sequential-statements;
EXIT WHEN condition;

END LOOP;

A.3.11EXIT?

The EXIT statement can only be used inside a loop. It causes execution to jump out of the innermost loop and is
usually used in conjunction with the LooP statement.

Syntax:
EXIT WHEN condition;

A.3.12NEXT

The NEXT statement can only be used inside a loop. It causes execution to skip to the end of the current iteration
and continue with the beginning of the next iteration. It is usually used in conjunction with the FOR statement.

Syntax:
NEXT WHEN condition;

Example:

sum : = 0;

FOR count IN 1 TO 10 LOOP
NEXT WHEN count = 3;
sum : = sum + count;

END LOOP;

A.3.13FUNCTION

Syntax for function declaration:

* Not supported by MAX+PLUS II.

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 14 of 21

FUNCTION function-name (parameter-list) RETURN return-type;
Syntax for function definition:

FUNCTION function-name (parameter-list) RETURN return-type 1S
BEGIN

sequential-statements;
END function-name;

Syntax for function call:
function-name (actuals);
Parameters in the parameter-list can be either signals or variables of mode IN only.

Example:

LI BRARY i eee;
USE ieee.std_logic_1164. ALL;

ENTITY test _function IS PORT (
x: IN std_| ogic_vector (3 DOMNNTO 0);
z: QUT std_l ogic_vector (3 DOANTO 0));
END test function;

ARCHI TECTURE Behavi oral OF test function IS
SUBTYPE bit4 1S std_I| ogi c_vector (3 DOANTO 0);

FUNCTI ON Shiftright (input: INbit4) RETURN bit4 IS
BEG N

RETURN ' 0' & input (3 DOMTO 1);

END shiftright;

SI GNAL nysignal : bit4;

BEGA N
PROCESS
BEG N
nysi gnal <= x;
z <= Shiftright(mnmysignal);
END PRCCESS;
END Behavi oral ;

A.3.14PROCEDURE

Syntax for procedure declaration:
PROCEDURE procedure -name (parameter-list);
Syntax for procedure definition:

PROCEDURE procedure-name (parameter-list) IS
BEGIN

sequential-statements;
END procedure-name;

Syntax for procedure call:
procedure -name (actuals);

Parameters in the parameter-list are variables of modes IN, OUT, or INOUT.

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 15 of 21

Example:

LI BRARY i eee;
USE ieee.std_logic_1164. ALL;

ENTI TY test _procedure |I'S PORT (
X: IN std_|logic _vector(3 DOANTO 0);
z: QUT std | ogic_vector(3 DOMTO 0));
END t est _procedure;

ARCHI TECTURE Behavi oral OF test procedure IS
SUBTYPE bit4 1S std_I| ogi c_vector (3 DOANTO 0);

PROCEDURE Shiftright (input: INDbit4; output: OUT bit4) IS
BEG N

output :="'0" & input(3 DOMNTO 1);

END shiftright;

BEA N
PROCESS
VARI ABLE nysi gnal : bit4;
BEG N
Shiftright(x, nysignal);
z <= nysignal;
END PRCCESS;
END Behavi or al ;

A.3.15Behavioral Model Example

LI BRARY i eee;
USE ieee.std logic 1164.all;

ENTITY bcd 1S PORT (
I: IN STD_LOG C_VECTOR (3 DOANTO 0);
Segs: OUT std_logic_vector (1 TO 7));
END bcd;

ARCHI TECTURE Behavioral OF bcd IS
BEG N
PROCESS(1)
BEG N
CASE | IS
WHEN "0000" => Segs <= "1111110";
WHEN "0001" => Segs <= "0110000";
WHEN "0010" => Segs <= "1101101";
WHEN "0011" => Segs <= "1111001";
WHEN "0100" => Segs <= "0110011";
WHEN "0101" => Segs <= "1011011";
WHEN "0110" => Segs <= "1011111";
WHEN "0111" => Segs <= "1110000";
WHEN "1000" => Segs <= "1111111";
WHEN "1001" => Segs <= "1110011";
WHEN OTHERS => Segs <= "0000000";
END CASE;

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 16 of 21

END PROCESS;
END Behavi or al ;

A.4 Structural Model Statements

The structural model allows the manual connection of several components together using signals. All
components used must first be defined with their respective ENTITY and ARCHITECTURE sections, which can be in the
same file or they can be in separate files.

In the topmost module, each component used in the netlist is first declared using the COMPONENT statement. The
declared components are then instantiated with the actual components in the circuit using the PORT MAP statement.
SIGNALS are then used to connect the components together according to the netlist.

A.4.1 COMPONENT Declaration

Declares the name and the interface of a component that is used in the circuit description. For each component
declaration used, there must be a corresponding entity and architecture for that component. The declaration name
and the interface must match exactly the name and interface that is specified in the entity section for that component.

Syntax:
COMPONENT component-name 1S

PORT (list-of-port-names-and-types);
END COMPONENT;

Example:

COVPONENT hal f _adder 1S PORT (
Xi, yi, cin: INBIT;
cout, si: QUT BIT);

END COVPONENT;

A.4.2 PORT MAP

The PORT MAP statement instantiates a declared component with an actual component in the circuit by
specifying how the connections to this instance of the component are to be made.

Syntax:

label: component-name PORT MAP (association-list);
The association-list can be specified using either the positional or named method.

Example (positional association):

SIGNAL x0, x1, yO, yl1, cO, cl, c2, sO, sl: BIT,;
Ul: hal f _adder PORT MAP (x0, yO, cO, cl1, sO0);
U2: hal f _adder PORT MAP (x1, yl1, cl, c2, sl1);

Example (hamed association):

SI GNAL x0, x1, yO, yl1, cO, cl, c2, sO, sl: BIT,;
Ul: hal f_adder PORT MAP (cout=>cl, si=>s0, cin=>c0, xi=>x0, yi=>y0);
U2: hal f_adder PORT MAP (cin=>cl, xi=>x1, yi=>yl, cout=>c2, si=>sl);

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 17 of 21

A.4.3 OPEN

The oPEN keyword is used in the PORT MAP association-list to signify that that particular port is not connected or
used.

Example:

| UL: hal f_adder PORT MAP (x0, y0, cO, OPEN, s0);

A.4.4 GENERATE

The GENERATE statement works like a macro expansion. It provides a simple way to duplicate similar
components.

Syntax:

label: FOR identifier IN start [TO | DOWNTO] stop GENERATE
port-map-statements;

END GENERATE label;

Example:

-- using a FOR- GENERATE statenment to generate four instances of the full adder
-- component for a 4-bit adder
ENTI TY Adder4 1S PORT (
Cin: INBIT,;
A, B: INBIT_VECTOR(3 DOANTO 0);
Cout: QUJT BIT,
SUM OUT BI T_VECTOR(3 DOMNTO 0));
END Adder 4;

ARCHI TECTURE Structural OF Adder4 IS
COVPONENT FA PORT (
ci, xi, yi: INBIT,
co, si: QUT BIT);
END COVPONENT;

SIGNAL Carryv: BI T_VECTOR(4 DOMNTO 0);

BEGA N
Carryv(0) <= Cn;

Adder: FOR k I N 3 DOANTO 0 GENERATE
Ful | Adder: FA PORT MAP (Carryv(k), A(k), B(k), Carryv(k+1), SUMKk));
END GENERATE Adder ;

Cout <= Carryv(4);
END Structural;

A.4.5 Structural Model Example

This example is based on the following circuit:

—D s

=<

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary

Page 18 of 21

-- declare and define the 2-input OR gate
LI BRARY i eee;
USE ieee.std_logic_1164. ALL;

ENTITY myOR | S PORT (
inl, in2: IN STD LOG G
outl: OUT STD LOd O);

END nyOR;

ARCHI TECTURE OR Dataflow OF nyOR IS
BEG N

outl <= inl OR in2;
END OR Dat af | ow;

-- topnost nmodule for the siren

LI BRARY i eee;

USE ieee.std_logic_1164. ALL;

ENTITY Siren IS PORT (
M IN STD_LQG C;
D: IN STD_LQG C;
V: IN STD_LOd G
S: OQUT STD L O;

END Siren;

ARCHI TECTURE Siren_Structural OF Siren IS
-- declaration of the needed OR gate
COVPONENT myOR PORT (

inl, in2: IN STD LOA C;
outl: OUT STD LOd O);
END COVPONENT;

-- with the input to the AND gate
SIGNAL terml: STD LCd C,

BEG N

Uo: nmyOR PORT MAP (D, V, terntl);

S <=ternl AND M

-- note how we can have both PORT MAP and si gnal
END Siren_Structural;

-- signal for connecting the output of the OR gate

assi gnnent statenents

A.5 Conversion Routines

A.5.1 CONV_INTEGER()

Converts a std_logic_vector type to an integer;
Requires:

LIBRARY ieee;

USE ieee.std_logic_unsigned.ALL;
Syntax:

CONV_INTEGER(std_logic_vector)

Example:

Principles of Digital Logic Design Enoch Hwang

Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary

Page 19 of 21

LI BRARY i eee;
USE i eee.std_Il ogi c_unsi gned. ALL;

SIGNAL four_bit: STD LOG C_VECTOR(3 DOMNTO 0);
SI GNAL n: | NTECER,

n := CONV_I NTEGER(four_bit);

A.5.2 CONV_STD_LOGIC_VECTOR(,)

Converts an integer type to a std_logic_vector type.
Requires:
LIBRARY ieee;
USE ieee.std_logic_arith.ALL;
Syntax:
CONV_STD_LOGIC_VECTOR (integer, number_of_bits)

Example:

LI BRARY i eee;
USE ieee.std logic_arith. ALL;

SIGNAL four_bit: std | ogic_vector(3 DOANTO 0);
SI GNAL n: | NTEGER;

four bit := CONV_STD LOG C VECTOR(n, 4);

Principles of Digital Logic Design Enoch Hwang

Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary

Index

A

ARCHITECTURE, 6
ARRAY, 4

B

Behavioral model, 6, 10
example, 16

BIT, 2

BIT_VECTOR, 2

BOOLEAN, 4

C

CASE, 12

Comments, 2

COMPONENT declaration, 16
Concurrent signal assignment, 8
Concurrent statements, 8
Conditional signal assignment, 9
CONV_INTEGER, 18

CONV_STD_LOGIC_VECTOR, 19

Conversion routines, 18

D

Data objects, 2

Data operators, 4

Data types, 2

Dataflow model, 6, 8
example, 10

DOWNTO, 12

E

ELSIF, 11
ENTITY, 5
Enumeration, 4
EXIT, 13
F
FOR, 12
FUNCTION, 13
G

GENERATE, 17

Identifiers, 2
IF THEN ELSE, 11
INTEGER, 3

Principles of Digital Logic Design

L
LOOP, 13

N
NEXT, 13
NULL, 12
o
OPEN, 17
OTHERS, 12
P

PACKAGE, 7
PORT MAP, 16
PROCEDURE, 14
PROCESS, 10

S

Selected signal assignment, 9
Sequential signal assignment, 10
Sequential statements, 10

Signal assignment
concurrent, 8
conditional, 9
selected, 9
sequential, 10

STD_LOGIC, 3

STD_LOGIC_VECTOR, 3
Structural model, 6, 16

example, 17
SUBTYPE, 4

T
TO, 12

\Y,

Variable assignment, 11

VHD

Conversion routines, 18

VHDL

Basic language elements, 2
Behavioral model, 6, 10

example, 16

Concurrent statements, 8
Dataflow model, 6, 8

example, 10

Sequential statements, 10
Structural model, 6, 16

Enoch Hwang

Page 20 of 21

Last updated 3/5/2003 5:22 PM

Appendix A — VHDL Summary Page 21 of 21

example, 17 NEXT, 13

VHDL syntax NULL, 12
ARCHITECTURE, 6 OPEN, 17
ARRAY, 4 OTHERS, 12
BIT, 2 PACKAGE, 7
BIT_VECTOR, 2 PORT MAP, 16
BOOLEAN, 4 PROCEDURE, 14
CASE, 12 PROCESS, 10
Comments, 2 Signal assignment
COMPONENT declaration, 16 concurrent, 8
CONV_INTEGER, 18 conditional, 9
CONV_STD_LOGIC_VECTOR, 19 selected, 9
Data objects, 2 sequential, 10
Data operators, 4 STD_LOGIC, 3
Data types, 2 STD_LOGIC_VECTOR, 3
DOWNTO, 12 SUBTYPE, 4
ELSIF, 11 TO, 12
ENTITY, 5 Variable assignment, 11
Enumberation, 4 WAIT, 11
EXIT, 13 WHEN, 12
FOR, 12 WHILE, 13
FUNCTION, 13
GENERATE, 17 w
Identifiers, 2
IF THEN ELSE, 11 WAIT, 11
INTEGER, 3 WHEN, 12
LOOP, 13 WHILE, 13

Principles of Digital Logic Design Enoch Hwang Last updated 3/5/2003 5:22 PM

Appendix B— MAX+plus Il Tutorial Page 1 of 11

Table of Content

TADIE OF CONMLENT ...t e Rt R e Rt e Rt ren et r e nnen e nnens 1
Appendix B Y a0 G o] 1S I I (o] o T PSSR 2
B.1 Creating a Project and WOrking With FIlESc.cvciviieieiiie et 2
B.1.1 Y Lo W AoV o] (0 =Tt SRS 2
B.1.2 OPENING AN EXISLING PIOJECL......c.eiiteiteitirieeiieieee ettt ettt st b et e et e st e e et e sbesbesbesbeeneesbesbesbesneas 3
B.1.3 Creating a project based on an existing VHDL SOUICE il ..o 3
B.1.4 Importing existing VHDL source files into the Project ... 3
B.1.5 Creating new VHDL source files for the ProjeCt..........coci i 3

B.2 Synthesis for functional SIMUIALIONccoiiiiiii e e 4
B.2.1 Starting the COMPIIEToo.i et sb e bbbttt e b sbesbesbe b 4
B.2.2 SEEUP INPUE SIGNAIS ...veeecc ettt e r e s e e e e e et e tesaeste e e eneeseennenreaneas 4
B.2.3 Set up and view SiIMUlation tiMe FANGEceivvviece et ae e nresreare s 6
B.2.4 AsSIgN Values to INPUL SIGNALSeiveiereieieicce sttt sre e e e e e e snenrenreaneas 6
B.2.5 SIMUIBLION ..t 8

B.3 Synthesis for programming the FPGAcccv oot st ne e nrenne e e 9
B.4 Programming the FPGAttt sttt st et ae e teese e s e e e et e teseestesreeneeseenrenreereanes 10
BLD REIEIENCES ... ettt b ettt bbb bR R £ e e b e R e bt Ee bt e R e et e beneenbenbeebeenes 11

Principles of Digital Logic Design Enoch Hwang Last updated 2/19/2003 3:02 PM

Appendix B— MAX+plus Il Tutorial Page 2 of 11

Appendix B MAX+plus Il Tutorial

This appendix contains instructions for using the MAX+plus Il synthesis software and the UP2 development
board by Altera. This package provides all the necessary tools for implementing and trying out all the examples,
including building the final general microprocessor, mentioned in this book. A student edition version of the
MAX+plus Il software is included in the CD-ROM and can also be downloaded for free from www.altera.com. The
hardware can be purchased directly from Altera. The full User Guide for using the UP2 board can be downloaded
from http://www.altera.com/literature/univ/upds.pdf.

This tutorial assumes that you are familiar with working under the Windows’ environment.

The UP2 FPGA development board is shown in Figure 1. The following tutorial uses the FSM+D summation
VHDL design presented in Section 8.3.

Figure 1. Altera’s UP1 FPGA development board.

B.1 Creating a Project and Working with Files

B.1.1 Starting a new project

1. Using Windows File Manager, create a new folder for your new project. Each new project should be placed in
its own folder since the synthesizer creates many working files for a project.

2. From the MAX+plus Il menu, select File | Project | Name or simply click on the icon . You will see the
Project Name window as shown below.

Principles of Digital Logic Design Enoch Hwang Last updated 2/19/2003 3:02 PM

Appendix B— MAX+plus Il Tutorial Page 3 of 11

Praoject Hame: |sum

Direchary iz d:my bookiwhdhzummation exampleshfzm+d

Files: Directories:

(= d:

[= e book,
(= vhdl

[= summation examples

Drrivves:
=4 ~|

[Show Only Tops of Hierarchies

] | Cancel |

3. Inthe box labeled Directories, move to the directory that you have created in step 1.

4. Inthe box labeled Project Name, type the name of your project. Note that the project name must be the same as
the top-level entity name, which must also be the same as that file’s name.

5. Click OK.

B.1.2 Opening an existing project

1. From the MAX+plus Il menu, select File | Project | Name or click on the icon . Select either the top-level
entity VHDL source file (with the extension .vhd) or the top-level name project file (with the extension .pof)
and clock OK.

B.1.3 Creating a project based on an existing VHDL source file

1. Alternatively you can open any VHDL entity source file using the menu commands File | Open. While the
VHDL entity source file is in the active editor window, select File | Project | Set Project to Current File or click

on the icon @l to make that particular file the top-level project file.
B.1.4 Importing existing VHDL source files into the project

1. If you already have your VHDL source files, then you can just use Windows’ File Manager and simply copy all
your VHDL source files into your project directory. Each entity can be stored in its own separate file. The name
of the file where an entity is stored must be the same as the entity name.

2. If a source file is not opened in a text editor window, you can select File | Open and select the VHDL file that
you want to view and / or edit.

B.1.5 Creating new VHDL source files for the project

1. If you need to type in a new VHDL source file, then you can do that using MAX+plus’ text editor. From the

Principles of Digital Logic Design Enoch Hwang Last updated 2/19/2003 3:02 PM

Appendix B— MAX+plus Il Tutorial Page 4 of 11

MAX+plus Il menu, select File | New.
2. Select Text Editor file, and click on OK.
3. Anew Untitled — Text Editor window is created. You can type in your VHDL code in this text editor window.

4. When you are done, select File | Save to save the file in the project directory. The file name should be the same
as the entity name. The file name extension must be .vhd.

B.2 Synthesis for functional simulation

You can do a simple synthesis for performing only a functional simulation or you can do a full synthesis with
timing and fitter information for downloading the netlist to the chip. We will do a functional synthesis first since it is
much faster and make sure that the design is correct before performing a full timing synthesis.

B.2.1 Starting the compiler
1. From the MAX+plus Il menu, select MAX+plus Il | Compiler, or click on the icon @I. to bring up the
Compiler window.

2. From the Compiler window menu, select Processing | Functional SNF Extractor so that a check mark appears
next to it. The compiler window should look like the following

(Bscompder il >
Compiler Databhase Functional
Metlist Builder SMF
Extracior Extractor
& s =

atar o) |

3. Click on the Start button to start the synthesis. You will then see the progress of the synthesis. At the end of the
synthesis, if there are no syntax errors, you will see a message window saying to that fact. See the section on
Debugging your VHDL code if there are errors.

B.2.2 Set up input signals

1. Before we can simulate the design, we need to create test vectors for specifying what the input values are. From
the MAX+plus Il menu, select MAX+plus 1l | Waveform Editor.

2. From the Waveform Editor window menu select Node | Enter Nodes from SNF. You can also right click under

the Name section in the Waveform Editor window and select Enter Nodes from SNF. You will see the Enter
Nodes from SNF window as shown below

Principles of Digital Logic Design Enoch Hwang Last updated 2/19/2003 3:02 PM

Appendix B— MAX+plus Il Tutorial Page 5 of 11

Enter Nodes from SMF - ﬂ
Mode / Group: I Lizt |
Availlable Mades & Groups: Selected Modes & Groups:
autput] [O] tart [1]

L[]

outputd (0] rezet (1]

ifpt [1 = input 1]
ﬁﬂ_ —I clack (1)

[Fzrn: LIORAEA, [B]

IFsree] I P hd 5 |

Bl » ol »

— Type ¥ Preserve Existing Modes

IV Inputs I Registered [Show Al Mode Mame Synonyms
W Outputs [Combinatorial

v Group ™| Femany Eit

"l

[al ™| FMemen waord ok Cancel Clear

3. Click on the List button and a list of available nodes and groups will be displayed in the Available Nodes &
Groups box.

4. Select the signals that you want to see in the simulation trace and click on the => button. The selected nodes
will be moved to the Selected Nodes & Groups box. You can select multiple nodes together by holding down
the Ctrl or Shift key while clicking on the signals.

5. Click on OK when you are finished. The selected signals will now be inserted in the Waveform Editor window
as shown below. You can drag the vertical separator lines so that the whole signal name can be displayed.

X =10 =]
Ref |0.0re [#[=] Time 0008 Interval [0.0ns | =
0 ns —

Marma Yalug 'LI.IIIr'-'E-

= start a

e o] u}

= clock u}

B inpid oo 1

=g outpul Ox kS
|datapatke Ul|regila: RF| DX ¥

'1| | l'l &

6. To delete a signal, just select the signal by clicking on its name and press the Delete key.

7. You can arrange the ordering of the signals by dragging the signal icons like ZE¥*= up or down.

8. For signals that are composed of a group of bits (such as the regfile RF), you can separate them into individual

bits or change the radix for the displayed value by first selecting that signal and then right click the mouse. A
drop down menu appears. Select Ungroup to separate the bits. Select Enter Group to change the radix or the
displayed signal name. Signal bits that are separated can be regroup by first selecting all the signal bits that you
want to regroup and then right click on the mouse and select Enter Group.

Principles of Digital Logic Design Enoch Hwang Last updated 2/19/2003 3:02 PM

Appendix B— MAX+plus Il Tutorial

B.2.3 Set up and view simulation time range

Page 6 of 11

1. Set the simulation time range by selecting File | End Time, and type in the ending simulation time. Click OK.

2. Selections under the View menu allow you to zoom in and out of the time range. To look at a specific portion of
the time range, select View | Time Range. Type in a starting and ending time as shown below.

Time Range

Show Time Range in %indow

X

Fram: IEI.EIns

To |1.Elus

ok |

Cancel |

You may want to select View | Fit in Window or click the icon El to fit the entire time range in the window.
The Waveform Editor window should now look like the following.

=10 x|
Ref. |0.0n Eﬂ Time. [0.0n% Irlereal IEl:m-—l =
(.Ons —
s guss | SOne 1Qu 1Sue 20ue 26u 30w 3fus 4Qus 45 S
= clock 0
b raai]
= atai 0 -
i input Da u}
i RFD O ks
@ RFi O %
¥ RFl O ¥
d#* RF3 (W k3
= mutpul Lx) H Roiiiiiiid =
e Ry

B.2.4 Assign values to input signals

3. The next thing is to assign values to all the input signals. Click on the input signal that you want to assign
values to and then click on one of the buttons on the left to assign different values to that signal.

Principles of Digital Logic Design

Enoch Hwang

Last updated 2/19/2003 3:02 PM

Appendix B— MAX+plus Il Tutorial Page 7 of 11

el % - W aweform Editor k '.J'WH
L& End ntarl -

healig ED0.Ons 10ue 15us 20w 25us 30ws JGus A0us 45u: S

4. For example, to set the clock, click on clock signal name and then click on the icon El Click on OK to set the
clock pulse.

5. For the input signal, we want the group value to be 10 decimal. So click on the input signal name and click on

the icon \E Type in the value and click on OK.

6. You can also set values manually for certain time range. For example, to set the start signal to a value of 1
between 100ns to 300ns, move the mouse cursor to 100ns for the start signal and drag to 300ns. Finally click on
1
the icon L for setting that range to a 1 value as shown below

St (10000 [slla] Ene e

Hame wWalkoe SM0ne THus Toue S0ue A5us Jlus Jdous dllus 4508 Sl

e MUUUUU UL U U000 U000 n0 ooy

= e a
= slarf o]
A iR oo
@# RFO Ox
b# RF1
@+ RF2 ox
d# RF3 Ox
S oulput 0x

T |

Similarly, set the reset value to a 1 between Ons and 100ns.

7. Save the Waveform Editor window by selecting File | Save. Again you need to give the file the same name as
your top-level entity name. The extension is .scf. Your Waveform Editor window should look like the following

Principles of Digital Logic Design Enoch Hwang Last updated 2/19/2003 3:02 PM

Appendix B— MAX+plus Il Tutorial Page 8 of 11

k =101 =
Ref |0.0n [E[=] Tire 0008 Irlereal |E|:r-:-—| =
{.0Ons —
Mama 'h,l'.‘,||'|E = LN L 1.5us 2 Uug Z.5us do
- clock M_H_TLWMWWJ
= g
i st o |]
v input oio 10
¥ RFD DX %
@ RFi D %
o¥ REZ OX A
oF RF3 B}]
S oitpil DI | I
ol '

8. To open an existing Waveform Editor window, select File | Open. Select the file that you want with the
extension .scf.

B.2.5 Simulation

1. We are now ready to simulate the design. From the MAX+plus Il menu, select MAX+plus Il | Simulator. This is

the same as clicking on the icon @ Notice that you can perform the save and simulate operations in one step
by selecting from the menu File | Project | Save & Simulate.

2. The Simulator window as shown below is displayed. Make sure that the Simulation Input has the same name as
your top level entity with the extension scf. Click on the Start button and watch the progress of the simulation.

=, simulator: Functional simulation -0l x|

Simulation Input. sum.scf

Simulation Time: 5.0us

Start Time: |0.0ns End Time: |5.0us
[Use Device
T SetupfHold
™ Check Qutputs T Glitch

¥ Oscillation

0 oo 100
_____________|

Start Pause Stop Open S5CF

3. Once the simulation is completed, you can open the Waveform Editor window with the updated simulation
result by clicking on the Open SCF button on the Simulator window which is shown below.

Principles of Digital Logic Design Enoch Hwang Last updated 2/19/2003 3:02 PM

Appendix B— MAX+plus Il Tutorial Page 9 of 11

B sumnscl - Wavelomm Bt or =l =)
et Lo |l Teve T TR -
[1 ez —
SEne Valugs 500 Oires 10us 20us 2 Bus A0us A5us 4.0us 4 5us 5L
— "WUJJUUUUUJJUUUUUJJUUUUUJJ
e raaal 1
= slarl 0 J_l
i it Wl [i] 10
&# RFD oo o0 f w ¥ % ¥ e F 7 ¥6 ¥ ¥ 4y 3 ¥ FOU1UOI @O
o RFZ oo 0
@¥ RF3 oo 0
% oulpu o r I :Eﬁ: I
Al L]

B.3 Synthesis for programming the FPGA

1. From the Compiler window menu, select Processing | Functional SNF Extractor so that no check mark appears
next to it. The compiler window should look like the following

ST

Compiler Datahase Lagic Timing
Metlizi Builder Synihesizer Fifler SMF Assembler
Extractor Extractar

] 56]

s _|

2. Select the target chip. From the Compiler window menu, select Assign | Device. Removed the check from the
Show Only Fastest Speed Grades. On the University Development board, there are two chips that you can use.

Select either:
Device Family: MAX7000S (smaller chip)
Devices: EPM7128SL.C84-7

or
Device Family: FLEX10K (larger chip)
Devices: EPF10K20RC240-4

3. To change the I/O pin assignments.
Method 1:

From the MAX+plus Il menu, select Floorplan Editor. You can also click on the icon @
From the Floorplan Editor window menu, select Layout | Current Assignments Floorplan.
From the Unassigned Nodes & Pins window, drag the nodes to an 1/O pin.
Method 2:
From the Compiler window menu, select Assign | Pin Location Chip
Click on Search
Click on List
From the Names in Database, select a node name. Click OK
From the Pin drop down menu, select the pin number that you want to assign to that node name.

Principles of Digital Logic Design Enoch Hwang Last updated 2/19/2003 3:02 PM

Appendix B— MAX+plus Il Tutorial Page 10 of 11

4. To make the pin assignments permanent. Select Assign | Back-Annotate Project. Check Chips, Pins & Devices.
Click OK.

5. Synthesize the circuit by clicking on the Start button in the Compiler window.

6. To see the pin assignments. Open the Floorplan Editor window. Select Layout | Device View.

25.175 MHz clock | 83 |

Segment Digit 1 pins | Digit 2 pins
a 58 69
b 60 70
c 61 73
d 63 74
e 64 76
f 65 75
g 67 77
Decimal point 68 79

25.175 MHz clock | 91

FLEX_PB1 | 28

FLEX_PB2 | 29

FLEX_SWITCH-1 | 41

FLEX_SWITCH-2 | 40

FLEX_SWITCH-3 | 39

FLEX_SWITCH-4 | 38

FLEX_SWITCH-5 | 36

FLEX_SWITCH-6 | 35

FLEX_SWITCH-7 | 34

FLEX_SWITCH-8 | 33

Segment Digit 1 pins | Digit 2 pins
a 6 17
b 7 18
c 8 19
d 9 20
e 11 21
f 12 23
g 13 24
Decimal point 14 25

B.4 Programming the FPGA

1. Plug in the ByteBlaster parallel cable between the computer’s parallel port and the FPGA programming board.

2. Check that the JTAG jumper settings are set correctly according to the following table:

Desired Action TDI TDO Device Board

Program EPM7128SLC84-7 Cl&C2|Cl&C2|Cl&C2|Cl&C2
Configure EPF10K20RC240-4 | C2& C3 | C2&C3 | C1&C2 | C1&C2

Principles of Digital Logic Design Enoch Hwang Last updated 2/19/2003 3:02 PM

Appendix B— MAX+plus Il Tutorial Page 11 of 11

3. Plug in the 9V power for the board.

&

4. Select MAX+plusll | Programmer window or click on the icon
ByteBlaster and the correct parallel port (usually LPT1).

. Select Options | Hardware Setup and select

5. Click on the Program button to start the download.

B.5 References

The online documentation for the UP2 board can be found at http://www.altera.com/literature/univ/upds.pdf.

Principles of Digital Logic Design Enoch Hwang Last updated 2/19/2003 3:02 PM

	Contens
	Designing a Microprocessor
	Digital Circuits
	Combinational Circuits
	Combinational Components
	Implementation Technologies
	Latches and Flip-Flops
	Sequential Circuits
	Sequential Components
	Datapaths
	Control Units
	Dedicated Microprocessors
	General-Purpose Microprocessors
	VHDLSummary
	MAX+plus II Tutorial

