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ABSTRACT | Since their introduction, field programmable gate

arrays (FPGAs) have grown in capacity by more than a factor of

10 000 and in performance by a factor of 100. Cost and energy

per operation have both decreased by more than a factor of

1000. These advances have been fueled by process technology

scaling, but the FPGA story is much more complex than simple

technology scaling. Quantitative effects of Moore’s Law have

driven qualitative changes in FPGA architecture, applications

and tools. As a consequence, FPGAs have passed through sev-

eral distinct phases of development. These phases, termed

‘‘Ages’’ in this paper, are The Age of Invention, The Age of

Expansion and The Age of Accumulation. This paper summa-

rizes each and discusses their driving pressures and funda-

mental characteristics. The paper concludes with a vision of the

upcoming Age of FPGAs.
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I . INTRODUCTION

Xilinx introduced the first field programmable gate arrays

(FPGAs) in 1984, though they were not called FPGAs until

Actel popularized the term around 1988. Over the ensuing

30 years, the device we call an FPGA increased in capacity
by more than a factor of 10 000 and increased in speed by a

factor of 100. Cost and energy consumption per unit func-

tion decreased by more than a factor of 1000 (see Fig. 1).

These advancements have been driven largely by process

technology, and it is tempting to perceive the evolution of

FPGAs as a simple progression of capacity, following semi-

conductor scaling. This perception is too simple. The real

story of FPGA progress is much more interesting.

Since their introduction, FPGA devices have pro-

gressed through several distinct phases of development.

Each phase was driven by both process technology oppor-
tunity and application demand. These driving pressures

caused observable changes in the device characteristics

and tools. In this paper, I review three phases I call the

‘‘Ages’’ of FPGAs. Each age is eight years long and each

became apparent only in retrospect. The three ages are:

1) Age of Invention 1984–1991;
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Fig. 1. Xilinx FPGA attributes relative to 1988. Capacity is logic cell

count. Speed is same-function performance in programmable fabric.

Price is per logic cell. Power is per logic cell. Price and power are scaled

up by 10 000�. Data: Xilinx published data.
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2) Age of Expansion 1992–1999;
3) Age of Accumulation 2000–2007.

II . PREAMBLE: WHAT WAS THE
BIG DEAL ABOUT FPGAs?

A. FPGA Versus ASIC
In the 1980s, Application-Specific Integrated Circuit

(ASIC) companies brought an amazing product to the

electronics market: the built-to-order custom integrated

circuit. By the mid-1980s, dozens of companies were sell-

ing ASICs, and in the fierce competition, the winning at-

tributes were low cost, high capacity and high speed. When

FPGAs appeared, they compared poorly on all of these

measures, yet they thrived. Why?
The ASIC functionality was determined by custom mask

tooling. ASIC customers paid for those masks with an up-

front non-recurring engineering (NRE) charge. Because

they had no custom tooling, FPGAs reduced the up-front

cost and risk of building custom digital logic. By making

one custom silicon device that could be used by hundreds or

thousands of customers, the FPGA vendor effectively

amortized the NRE costs over all customers, resulting in
no NRE charge for any one customer, while increasing the

per-unit chip cost for all.

The up-front NRE cost ensured that FPGAs were more

cost effective than ASICs at some volume [38]. FPGA

vendors touted this in their ‘‘crossover point,’’ the number

of units that justified the higher NRE expense of an ASIC.

In Fig. 2, the graphed lines show the total cost for a number

units purchased. An ASIC has an initial cost for the NRE,
and each subsequent unit adds its unit cost to the total. An

FPGA has no NRE charge, but each unit costs more than the

functionally equivalent ASIC, hence the steeper line. The

two lines meet at the crossover point. If fewer than that

number of units is required, the FPGA solution is cheaper;

more than that number of units indicates the ASIC has

lower overall cost.

The disadvantage of the FPGA per-unit cost premium
over ASIC diminished over time as NRE costs became a

larger fraction of the total cost of ownership of ASIC. The

dashed lines in Fig. 2 indicate the total cost at some process

node. The solid lines depict the situation at the next process

node, with increased NRE cost, but lower cost per chip. Both

FPGA and ASIC took advantage of lower cost manufacturing,

while ASIC NRE charges continued to climb, pushing the

crossover point higher. Eventually, the crossover point grew
so high that for the majority of customers, the number of

units no longer justified an ASIC. Custom silicon was war-

ranted only for very high performance or very high volume;

all others could use a programmable solution.

This insight, that Moore’s Law [33] would eventually

propel FPGA capability to cover ASIC requirements, was a

fundamental early insight in the programmable logic busi-

ness. Today, device cost is less of a driver in the FPGA
versus ASIC decision than performance, time-to-market,

power consumption, I/O capacity and other capabilities.

Many ASIC customers use older process technology,

lowering their NRE cost, but reducing the per-chip cost

advantage.

Not only did FPGAs eliminate the up-front masking

charges and reduce inventory costs, but they also reduced

design costs by eliminating whole classes of design prob-
lems. These design problems included transistor-level de-

sign, testing, signal integrity, crosstalk, I/O design and

clock distribution.

As important as low up-front cost and simpler design

were, the major FPGA advantages were instantly availabi-

lity and reduced visibility of a failure. Despite extensive

simulation, ASICs rarely seemed to be correct the first

time. With wafer-fabrication turnaround times in the
weeks or months, silicon re-spins impacted schedules sig-

nificantly, and as masking costs rose, silicon re-spins were

noticeable to ever-rising levels in the company. The high

cost of error demanded extensive chip verification. Since

an FPGA can be reworked in minutes, FPGA designs in-

curred no weeks-long delay for an error. As a result, veri-

fication need not be as thorough. ‘‘Self-emulation,’’ known

colloquially as ‘‘download-it-and-try-it,’’ could replace ex-
tensive simulation.

Finally, there was the ASIC production risk: an ASIC

company made money only when their customer’s design

went into production. In the 1980s, because of changing

requirements during the development process, product

failures or outright design errors, only about one-third of

all designs actually went to production. Two-thirds of de-

signs lost money. The losses were incurred not only by the
ASIC customers, but also by the ASIC suppliers, whose

NRE charges rarely covered their actual costs and never

covered the cost of lost opportunity in their rapidly depre-

ciating manufacturing facilities. On the other hand,

programmable-logic companies and customers could still

make money on small volume, and a small error could be

corrected quickly, without costly mask-making.

Fig. 2. FPGA versus ASIC Crossover Point. Graph shows total cost

versus number of units. FPGA lines are darker and start at the lower

left corner. With the adoption of the next process node (arrows

from the earlier node in dashed lines to later node in solid lines),

the crossover point, indicated by the vertical dotted line, grew larger.
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B. FPGA Versus PAL
Programmable logic was well established before the

FPGA. EPROM-programmed Programmable Array Logic

(PAL) had carved out a market niche in the early 1980s.

However, FPGAs had an architectural advantage. To un-

derstand the FPGA advantage, we first look at the simple

programmable logic structures of these early 1980s de-
vices. A PAL device, as depicted in Fig. 3, consists of a two-

level logic structure [6], [38]. Inputs are shown entering at

the bottom. On the left side, a programmable and array

generates product terms, ands of any combination of the

inputs and their inverses. A fixed or gate in the block at

the right completes the combinational logic function of the

macrocell’s product terms. Every macrocell output is an

output of the chip. An optional register in the macrocell
and feedback to the input of the and array enable a very

flexible state machine implementation.

Not every function could be implemented in one pass

through the PAL’s macrocell array, but nearly all common

functions could be, and those that could not were realized

in two passes through the array. The delay through the PAL

array is the same regardless of the function performed or

where it is located in the array. PALs had simple fitting
software that mapped logic quickly to arbitrary locations in

the array with no performance concerns. PAL fitting soft-

ware was available from independent EDA vendors,

allowing IC manufacturers to easily add PALs to their

product line.

PALs were very efficient from a manufacturing point of

view. The PAL structure is very similar to an EPROM

memory array, in which transistors are packed densely to
yield an efficient implementation. PALs were sufficiently

similar to memories that many memory manufacturers

were able to expand their product line with PALs. When

the cyclical memory business faltered, memory manufac-

turers entered the programmable logic business.

The architectural issue with PALs is evident when one

considers scaling. The number of programmable points in

the and array grows with the square of the number of
inputs (more precisely, inputs times product terms). Pro-

cess scaling delivers more transistors with the square of the

shrink factor. However, the quadratic increase in the and

array limits PALs to grow logic only linearly with the

shrink factor. PAL input and product-term lines are also

heavily loaded, so delay grows rapidly as size increases. A

PAL, like any memory of this type, has word lines and bit

lines that span the entire die. With every generation, the
ratio of the drive of the programmed transistor to the

loading decreased. More inputs or product terms increased

loading on those lines. Increasing transistor size to lower

resistance also raised total capacitance. To maintain speed,

power consumption rose dramatically. Large PALs were

impractical in both area and performance. In response, in

the 1980s, Altera pioneered the Complex Programmable

Logic Device (CPLD), composed of several PAL-type blocks
with smaller crossbar connections among them. But FPGAs

had a more scalable solution.

The FPGA innovation was the elimination of the and

array that provided the programmability. Instead, config-

uration memory cells were distributed around the array to

control functionality and wiring. This change gave up the

memory-array-like efficiency of the PAL structure in favor

of architectural scalability. The architecture of the FPGA,
shown in Fig. 4, consists of an array of programmable logic

blocks and interconnect with field-programmable switches.

The capacity and performance of the FPGA were no longer

limited by the quadratic growth and wiring layout of the

and array. Not every function was an output of the chip, so

Fig. 3. Generic PAL architecture.

Fig. 4. Generic array FPGA architecture. 4� 4 array with three wiring

tracks per row and column. Switches are at the circles at intersections.

Device inputs and outputs are distributed around the array.
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capacity could grow with Moore’s Law. The consequences
were great.

• FPGA architecture could look nothing like a mem-

ory. Design and manufacturing were very different

than memory.

• The logic blocks were smaller. There was no gua-

rantee that a single function would fit into one.

Therefore, it was difficult to determine ahead of

time how much logic would fit into the FPGA.
• The performance of the FPGA depended on where

the logic was placed in the FPGA. FPGAs required

placement and routing, so the performance of the

finished design was not easy to predict in advance.

• Complex EDA software was required to fit a design

into an FPGA.

With the elimination of the and-array, FPGA architects

had the freedom to build any logic block and any inter-
connect pattern. FPGA architects could define whole new

logic implementation models, not based on transistors or

gates, but on custom function units. Delay models need

not be based on metal wires, but on nodes and switches.

This architectural freedom ushered in the first Age of

FPGAs, the Age of Invention.

III . AGE OF INVENTION 1984–1991

The first FPGA, the Xilinx XC2064, contained only 64 logic

blocks, each of which held two three-input Look-Up Tables

(LUTs) and one register [8]. By today’s counting, this would

be about 64 logic cells, less than 1000 gates. Despite its

small capacity, it was a very large dieVlarger than the

commercial microprocessors of the day. The 2.5-micron

process technology used for the XC2064 was barely able to
yield it. In those early years, cost containment was critical

to the success of FPGAs.

‘‘Cost containment was critical to the success of FPGAs.’’

A modern reader will accept that statement as some kind of

simplistic statement of the obvious, but this interpretation

seriously underemphasizes the issue. Die size and cost per

function were crushingly vital. The XC2064, with only

64 user-accessible flip-flops, cost hundreds of dollars because
it was such a large die. Since yield (and hence, cost) is super-

linear for large die, a 5% increase in die size could have

doubled the cost or, worse, yield could have dropped to zero

leaving the startup company with no product whatsoever.

Cost containment was not a question of mere optimization; it

was a question of whether or not the product would exist. It

was a question of corporate life or death. In those early years,

cost containment was critical to the success of FPGAs.
As a result of cost pressure, FPGA architects used their

newfound freedom to maximize the efficiency of the

FPGA, turning to any advantage in process technology and

architecture. Although static memory-based FPGAs were

re-programmable, they required an external PROM to

store the programming when power was off. Reprogramm-

ability was not considered to be an asset, and Xilinx

downplayed it to avoid customer concerns about what
happened to their logic when power was removed. And

memory dominated the die area.

Antifuse devices promised the elimination of the second

die and elimination of the area penalty of memory-cell

storage, but at the expense of one-time programmability. The

early antifuse was a single transistor structure; the memory

cell switch was six transistors. The area savings of antifuses

over memory cells was inescapable. Actel invented the
antifuse and brought it to market [17], and in 1990 the largest

capacity FPGA was the Actel 1280. Quicklogic and Cross-

point followed Actel and also developed devices based on the

advantages of the antifuse process technology.

In the 1980s, Xilinx’s four-input LUT-based architec-

tures were considered ‘‘coarse-grained’’. Four-input func-

tions were observed as a ‘‘sweet spot’’ in logic designs, but

analysis of netlists showed that many LUT configurations
were unused. Further, many LUTs had unused inputs,

wasting precious area. Seeking to improve efficiency,

FPGA architects looked to eliminate waste in the logic

block. Several companies implemented finer-grained ar-

chitectures containing fixed functions to eliminate the

logic cell waste. The Algotronix CAL used a fixed-MUX

function implementation for a two-input LUT [24]. Con-

current (later Atmel) and their licensee, IBM, used a
small-cell variant that included two-input nand and xor

gates and a register in the CL devices. Pilkington based

their architecture on a single nand gate as the logic block

[23], [34]. They licensed Plessey (ERA family), Toshiba

(TC family) and Motorola (MPA family) to use their nand-

cell-based, SRAM-programmed device. The extreme of

fine-grained architecture was the Crosspoint CLi FPGA, in

which individual transistors were connected to one
another with antifuse-programmable connections [31].

Early FPGA architects noted that an efficient inter-

connect architecture should observe the two-dimensionality

of the integrated circuit. The long, slow wires of PALs were

replaced by short connections between adjacent blocks that

could be strung together as needed by programming to form

longer routing paths. Initially, simple pass transistors steered

signals through the interconnect segments to adjacent
blocks. Wiring was efficient because there were no unused

fractions of wires. These optimizations greatly shrank the

interconnect area and made FPGAs possible. At the same

time, though, they increased signal delay and delay

uncertainty through FPGA wiring due to large capacitances

and distributed series resistances through the pass transistor

switch network. Since interconnect wires and switches

added size, but not (billable) logic, FPGA architects were
reluctant to add much. Early FPGAs were notoriously

difficult to use because they were starved for interconnect.

IV. AGE OF INVENTION IN RETROSPECT

In the Age of Invention, FPGAs were small, so the design

problem was small. Though they were desirable, synthesis
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and even automated placement and routing were not
considered essential. Many deemed it impractical even to

attempt design automation on the personal computers of

the time, since ASIC placement and routing was being

done on mainframe computers. Manual design, both

logical and physical, was acceptable because of the small

problem size. Manual design was often necessary because

of the limited routing resources on the chips [41].

Radically different architectures precluded universal
FPGA design tools, as were available in the ASIC business.

FPGA vendors took on the added burden of EDA devel-

opment for their devices. This was eventually recognized

as an advantage, as FPGA vendors experimented and im-

proved their architectures. The PAL vendors of the pre-

vious decade had relied upon external tool vendors to

provide software for mapping designs into their PALs. As a

result, PAL vendors were restricted to those architectures
the tool vendors supported, leading to commoditization,

low margins and lack of innovation. PLD architecture was

stifled while FPGA architecture flourished.

A further advantage of captive software development

was that FPGA customers were not required to purchase

tools from a third-party EDA company, which would have

increased their NRE costs. As they did with NRE charges,

FPGA vendors amortized their tool development costs into
their silicon pricing, keeping the up-front cost of using

their devices very low. EDA companies were not much

interested in FPGA tools anyway with their fragmented

market, low volume, low selling price, and requirement to

run on underpowered computers.

In the Age of Invention, FPGAs were much smaller than

the applications that users wanted to put into them. As a

result, multiple-FPGA systems [1], [42] became popular, and
automated multi-chip partitioning software was identified as

an important component of an FPGA design suite [36], even

as automatic placement and routing were not.

V. INTERLUDE: SHAKEOUT IN
FPGA BUSINESS

The Age of Invention ended with brutal attrition in the FPGA

business. A modern reader may not recognize most of the

companies or product names in Section III and in the FPGA

genealogical tree in Fig. 5 [6], [38]. Many of the companies

simply vanished. Others quietly sold their assets as they
exited the FPGA business. The cause of this attrition was

more than the normal market dynamics. There were impor-

tant changes in the technology, and those companies that did

not take advantage of the changes could not compete. Quan-

titative changes due to Moore’s Law resulted in qualitative

changes in the FPGAs built with semiconductor technology.

These changes characterized the Age of Expansion.

VI. AGE OF EXPANSION 1992–1999

Through the 1990s, Moore’s Law continued its rapid pace of

improvement, doubling transistor count every two years.

Pioneering the fabless business model, FPGA startup com-
panies typically could not obtain leading-edge silicon tech-

nology in the early 1990s. As a result, FPGAs began the Age

of Expansion lagging the process introduction curve. In the

1990s, they became process leaders as the foundries realized

the value of using the FPGA as a process-driver application.

Foundries were able to build SRAM FPGAs as soon as they

were able to yield transistors and wires in a new technology.

FPGA vendors sold their huge devices while foundries
refined their processes. Each new generation of silicon

doubled the number of transistors available, which doubled

the size of the largest possible FPGA and halved the cost per

function. More import than simple transistor scaling, the

introduction of chemical-mechanical polishing (CMP)

permitted foundries to stack more metal layers. Valuable

Fig. 5. FPGA architecture genealogical tree, ca. 2000. All trademarks

are the property of their respective owners.

Fig. 6. Growth of FPGA LUTs and interconnect wires Wire length is

measured in millions of transistor pitches.
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for ASICs, this capability was explosive for FPGAs because
the cost of valuable (nonbillable) interconnect dropped even

faster than the cost of transistors, and FPGA vendors

aggressively increased the interconnect on their devices to

accommodate the larger capacity (see Fig. 6).

This rapid process improvement had several effects

which we now examine.

A. Area Became Less Precious
No one who joined the FPGA industry in the mid-1990s

would agree that cost was unimportant or area was not

precious. However, those who had experienced the ago-

nies of product development in the 1980s certainly saw the

difference. In the 1980s, transistor efficiency was neces-

sary in order to deliver any product whatsoever. In the

1990s, it was merely a matter of product definition. Area

was still important, but now it could be traded off for
performance, features and ease-of-use. The resulting de-

vices were less silicon efficient. This was unthinkable in

the Age of Invention just a few years earlier.

B. Design Automation Became Essential
In the Age of Expansion, FPGA device capacity in-

creased rapidly as costs fell. FPGA applications became too

large for manual design. In 1992, the flagship Xilinx
XC4010 delivered a (claimed) maximum of 10 000 gates.

By 1999, the Virtex XCV1000 was rated at a million. In the

early 1990s, at the start of the Age of Expansion, automatic

placement and routing was preferred, but not entirely

trusted. By the end of the 1990s, automated synthesis [9],

placement and routing [3], [4], [19], [32], [37] were required

steps in the design process. Without the automation, the

design effort would be simply too great. The life of an FPGA
company was now dependent upon the ability of design

automation tools to target the device. Those FPGA compa-

nies that controlled their software controlled their future.

Cheaper metal from process scaling led to more prog-

rammable interconnect wire, so that automated placement

tools could succeed with a less-precise placement.

Automated design tools required automation-friendly

architectures, architectures with regular and plentiful
interconnect resources to simplify algorithmic decision-

making. Cheaper wire also admitted longer wire segmen-

tation, interconnect wires that spanned multiple logic

blocks [2], [28], [44]. Wires spanning many blocks effec-

tively make physically distant logic logically closer, im-

proving performance. The graph in Fig. 7 shows large

performance gains from a combination of process technol-

ogy and interconnect reach. Process scaling alone would
have brought down the curve, but retained the shape;

longer segmentation flattened the curve. The longer seg-

mented interconnect simplified placement because with

longer interconnect, it was not as essential to place two

blocks in exactly the right alignment needed to connect

them with a high performance path. The placer can do a

sloppier job and still achieve good results.

On the down side, when the entire length of the wire

segment is not used, parts of the metal trace are effectively
wasted. Many silicon-efficient Age of Invention architec-

tures were predicated on wiring efficiency, featuring short

wires that eliminated waste. Often, they rigidly followed

the two-dimensional limitation of the physical silicon giv-

ing those FPGAs the label ‘‘cellular.’’ In the Age of Expan-

sion, longer wire segmentation was possible because the

cost of wasted metal was now acceptable. Architectures

dominated by nearest-neighbor-only connections could
not match the performance or ease-of-automation of archi-

tectures that took advantage of longer wire segmentation.

A similar efficiency shift applied to logic blocks. In the

Age of Invention, small, simple logic blocks were attractive

because their logic delay was short and because they

wasted little when unused or partially used. Half of the

configuration memory cells in a four-input LUT are wasted

when a three-input function is instantiated in it. Clever
designers could manually map complex logic structures

efficiently into a minimum number of fine-grained logic

blocks, but automated tools were not as successful. For

larger functions, the need to connect several small blocks

put greater demand on the interconnect. In the Age of

Expansion, not only were there more logic blocks, but the

blocks themselves became more complex.

Many Age of Invention architectures, built for effi-
ciency with irregular logic blocks and sparse interconnect,

were difficult to place and route automatically. During the

Age of Invention, this was not a serious issue because the

devices were small enough that manual design was practi-

cal. But excessive area efficiency was fatal to many devices

and companies in the Age of Expansion. Fine-grained

architectures based on minimizing logic waste (such as the

Pilkington nand-gate block, the Algotronix/Xilinx 6200
Mux-based 2LUT block, the Crosspoint transistor-block)

simply died. Architectures that achieved their efficiency by

starving the interconnect also died. These included all

nearest-neighbor grid-based architectures. The Age of Ex-

pansion also doomed time-multiplexed devices [14], [39],

Fig. 7. Performance scaling with longer wire length segmentation.
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since equivalent capacity expansion could be had without the
attendant complexity and performance loss by merely

waiting for the next process generation. The survivors in

the FPGA business were those that leveraged process

technology advancement to enable automation. Altera was

first, bringing the long-distance connections of their CPLDs

to the Altera FLEX architecture. FLEX was more automatable

than other FPGAs of the period that were dominated by short

wires. It achieved quick success. In the mid-1990s, AT&T/
Lucent released ORCA [26] and Xilinx scaled up its XC4000

interconnect in number and length as it built larger devices.

The Age of Expansion was firmly established.

C. Emergence of SRAM as Technology of Choice
One aspect of the rapid progress of Moore’s Law was the

need to be on the forefront of process technology. The easiest

way to double the capacity and halve the cost for logic was to
target the next process technology node. This pressured

FPGA vendors to adopt leading-edge process technology.

FPGA companies using technologies that could not be easily

implemented on a new process were at a structural

disadvantage. This was the case with nonvolatile program-

mable technologies such as EPROM, Flash and antifuse.

When a new process technology becomes available, the first

components that are available are transistors and wires, the
essential components of electronics. A static-memory-based

device could use a new, denser process immediately.

Antifuse devices were accurately promoted as being more

efficient on a particular technology node, but it took months

or years to qualify the antifuse on the new node. By the time

the antifuse was proven, SRAM FPGAs were already starting

to deliver on the next node. Antifuse technologies could not

keep pace with technology, so they needed to be twice as
efficient as SRAM just to maintain product parity.

Antifuse devices suffered a second disadvantage: lack

of reprogrammability. As customers grew accustomed to

‘‘volatile’’ SRAM FPGAs, they began to appreciate the ad-

vantages of in-system programmability and field-updating

of hardware. In contrast, a one-time-programmable device

needed to be physically handled to be updated or to re-

medy design errors. The alternative for antifuse devices
was an extensive ASIC-like verification phase, which un-

dermined the value of the FPGA.

The rapid pace of Moore’s Law in the Age of Expansion

relegated antifuse and flash FPGAs to niche products.

D. Emergence of LUT as Logic Cell of Choice
LUTs survived and dominated despite their docu-

mented inefficiency in the Age of Expansion for several
reasons. First, LUT-based architectures were easy targets

for synthesis tools. This statement would have been dis-

puted in the mid-1990s, when synthesis vendors com-

plained that FPGAs were not ‘‘synthesis friendly.’’ This

perception arose because synthesis tools were initially de-

veloped to target ASICs. Their technology mappers ex-

pected a small library in which each cell was described as a

network of nands with inverters. Since a LUT implements
any of the 22n

combinations of its inputs, a complete library

would have been enormous. ASIC technology mappers did

a poor job on LUT-based FPGAs. But by the mid-1990s,

targeted LUT mappers exploited the simplicity of mapping

arbitrary functions into LUTs [9].

The LUT has hidden efficiencies. A LUT is a memory,

and memories lay out efficiently in silicon. The LUT also

saves interconnect. FPGA programmable interconnect is
expensive in area and delay. Rather than a simple metal

wire as in an ASIC, FPGA interconnect contains buffers,

routing multiplexers and the memory cells to control them.

Therefore, much more of the cost of the logic is actually in

the interconnect [15]. Since a LUT implements any func-

tion of its inputs, automation tools need only route the

desired signals together at a LUT in order to retire the

function of those inputs. There was no need to make mul-
tiple levels of LUTs just to create the desired function of a

small set of inputs. LUT input pins are arbitrarily swappa-

ble, so the router need not target a specific pin. As a result,

LUT-based logic reduced the amount of interconnect re-

quired to implement a function. With good synthesis, the

waste from unused LUT functionality was less than the

savings from the reduced interconnect requirement.

Distributed-memory-cell programming permitted archi-
tectural freedom and gave FPGA vendors nearly universal

access to process technology. LUTs for logic implementation

eased the burden on interconnect. Xilinx-derived LUT-based

architectures appeared at Xilinx second sources: Monolithic

Memories, AMD and AT&T. In the Age of Expansion, other

companies, notably Altera, and AT&T/Lucent, adopted

memory cell and LUT architectures as well.

VII. INTERLUDE: FPGA CAPACITY
BELL CURVE

The bell curve in Fig. 8 represents the histogram of distri-

bution of sizes of ASIC applications. FPGA capacity at

some time is a point on the X-axis, shown by a vertical bar.

All the applications to the left of the bar are those that can

be addressed by FPGAs, so the addressable market for

FPGAs is the shaded area under the curve to the left of the

Fig. 8. Growth of the FPGA addressable market.
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bar. During the Age of Expansion, FPGA capacity in-

creased at Moore’s Law pace, so the bar moved to the right.

Of course, the entire bell curve of applications also moved
to the right, but the rate of growth in application size was

slower than the FPGA capacity growth. As a result, the bar

representing FPGAs moved quickly to the right relative to

the distribution of designs. Since FPGAs were addressing

the low end of the curve, even a small increase in available

capacity admitted a large number of new applications.

During the Age of Expansion, FPGA capacity covered a

growing fraction of extant designs and grew to address the
majority of ASIC applications.

This increasing applicability can also be seen from the

‘‘Design Gap’’ slide popular with EDA vendors in the late

1990s (Fig. 9). The capacity of ASICs and FPGAs grew with

Moore’s Law: ASICs growing at a 59% annual growth rate,

and FPGAs at 48% annual growth rate. The observed aver-

age ASIC design start grew considerably more slowly, only

25% per year. As a result, FPGA capacity met the average
ASIC design size in 2000, though for a large (expensive)

FPGA. By 2004, though, a ten-dollar FPGA was predicted to

meet the average ASIC requirement. That crossover point

moved farther out in the early 2000s as FPGAs addressed

the low end of the ASIC market and those small designs

became FPGA designs. Small designs were no longer in-

cluded in the average ASIC design size calculation, thereby

inflating the average ASIC design size in the new mille-
nnium. Today, the average ASIC is much larger than Fig. 9

would suggest, because FPGAs successfully absorbed nearly

the entire low-end of the ASIC business.

VIII . AGE OF EXPANSION
IN RETROSPECT

Through the Age of Expansion, Moore’s Law rapidly in-

creased the capacity of FPGAs, leading to a demand for

design automation and permitting longer interconnect

segmentation. Overly efficient architectures that could not

be effectively automated simply disappeared. SRAM de-
vices were first to exploit new process technology and

dominated the business. FPGAs encroached on ASIC terri-

tory as FPGA device capacity grew more rapidly than the

demand from applications. No longer did users clamor for

multi-FPGA partitioning software: designs fit, sometimes

snugly, into the available FPGAs.

As FPGAs became more popular, EDA companies be-

came interested in providing tools for them. However,
overtures by EDA companies were viewed with suspicion.

FPGA veterans had seen how PLD vendors had lost control

over their innovation by surrendering the software. They

refused to let that happen in the FPGA domain. Further,

the major FPGA companies feared their customers could

become dependent upon an external EDA company’s tools.

If that happened, the EDA company could effectively drive

up the FPGA NRE by their software tools prices. This
would undermine the FPGA value proposition, shifting the

crossover point back to lower volume. Some important

FPGA-EDA alliances were made in the synthesis domainV
an arms-length from the physical design tools that defined

the architecture. Despite the alliances, the FPGA compa-

nies maintained competitive projects to prevent the pos-

sibility of dependence. In the Age of Expansion, FPGA

vendors found themselves competing against both ASIC
technology and EDA technology.

IX. INTERLUDE: XILINX MARKETING,
CA. 2000

By the late 1990s, the Age of Expansion was well under-

stood in the FPGA business. FPGA vendors were aggres-

sively pursuing process technology as the solution to their
size, performance and capacity issues. Each new process

generation brought with it numerous new applications.

The slide in Fig. 10 is excerpted from a Xilinx marketing

Fig. 9. Design gap. Source: Data: Synopsys, Gartner Dataquest,

VLSI Technology, Xilinx.

Fig. 10. Xilinx marketing ca. 2000 Image courtesy of Xilinx.
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presentation from the year 2000. The Virtex 1000, the
largest FPGA available at the time, is depicted as the tiny

black rectangle at the lower left. The slide shows the ex-

pectation that the Age of Expansion will continue

unabated, increasing the number of gates to 50 million

over the following five years. This did not happen, despite

unwavering progress of Moore’s Law. In the following

section we examine what really happened and why.

X. AGE OF ACCUMULATION 2000–2007

By the start of the new millennium, FPGAs were common

components of digital systems. Capacity and design size were

growing and FPGAs had found a huge market in the data

communications industry. The dot-com bust of the early

2000s created a need for lower cost. The increasing cost and

complexity of silicon manufacturing eliminated ‘‘casual’’

ASIC users. Custom silicon was simply too risky for a small

team to execute successfully. When they saw they could fit
their problem into an FPGA, they became FPGA customers.

As in the Age of Expansion, the inexorable pace of

Moore’s Law made FPGAs ever larger. Now they were

larger than the typical problem size. There is nothing bad

about having capacity greater than what is needed, but

neither is there anything particularly virtuous in it. As a

result, customers were unwilling to pay a large premium

for the largest FPGA.
Increased capacity alone was insufficient to guarantee

market growth, either. Consider Fig. 11, the FPGA bell curve,

again. As the FPGA capacity passed the average design size,

the peak of the bell curve, an increase in capacity admitted

progressively fewer applications. Mere size, which virtually

guaranteed a successful product in the Age of Expansion,

attracted fewer and fewer new customers in the years

following.
FPGA vendors addressed this challenge in two ways. For

the low-end of the market, they refocused on efficiency and

produced families of lower-capacity, lower-performance

‘‘low-cost’’ FPGAs: Spartan from Xilinx, Cyclone from

Altera and EC/ECP from Lattice.

For the high-end, FPGA vendors looked to make it

easier for customers to fill up their spacious FPGAs. They

produced libraries of soft logic (IP) for important func-
tions. The most notable of these soft logic functions were

microprocessors (Xilinx MicroBlaze and Altera Nios) [21],

memory controllers and various communications protocol

stacks. Before Ethernet MAC was implemented in transis-

tors on Virtex-4, it was implemented in LUTs as a soft core

for Virtex-II. Standard interfaces to IP components con-

sumed additional LUTs, but that inefficiency was not a

great concern compared with the design effort savings.
Large FPGAs were larger than the average ASIC design.

By the mid-2000s, only ASIC emulators needed multi-chip

partitioners. More customers were interested in aggregat-

ing multiple, potentially unrelated components on a single

spacious FPGA [25]. Xilinx promoted ‘‘Internet Reconfi-

gurable Logic’’ and partitioning of the FPGA area to allow

dynamic insertion of functional units into a subset of the

programmable logic resources.
The characteristics of designs changed in the 2000s.

Large FPGAs admitted large designs that were complete

subsystems. FPGA users were no longer working simply on

implementing logic; they needed their FPGA design to

adhere to systems standards. These standards were prima-

rily communications standards for signaling and protocols,

either to interface to external components or to com-

municate among internal blocks. Processing standards
became applicable due to FPGAs growing role in compute-

intensive applications. As the FPGA grew as a fraction of

the customer’s overall system logic, its cost and power

grew accordingly. These issues became much more im-

portant than they were in the Age of Expansion.

Pressure to adhere to standards, decrease cost and de-

crease power led to a shift in architecture strategy from

simply adding programmable logic and riding Moore’s Law,
as was done in the Age of Expansion, to adding dedicated

logic blocks [7], [13], [29], [43]. These blocks included large

memories, microprocessors, multipliers, flexible I/O and

source-synchronous transceivers. Built of custom-designed

transistors rather than ASIC gates, they were often even

more efficient than ASIC implementations. For applications

that used them, they reduced the overhead of programma-

bility in area, performance, power and design effort [27].
The result was the ‘‘Platform FPGA,’’ captured by the

Xilinx Marketing slide from 2005 in Fig. 12. Compare this

with Fig. 10. No longer was the message the millions of gates,

but rather the pre-defined, high-performance dedicated

blocks. Even the term ‘‘gate’’ had disappeared from the slide.

This FPGA was not simply a collection of LUTs, flip-flops, I/O

and programmable routing. It included multipliers, RAM

blocks, multiple Power-PC microprocessors, clock manage-
ment, gigahertz-rate source-synchronous transceivers and bit-

stream encryption to protect the IP of the design. FPGA tools

grew to target this growing array of implementation targets.

To ease the burden of using the new functions and to

meet system standards, FPGA vendors offered logic gene-

rators to build targeted functionality from a combination of

their dedicated functions and soft logic [22]. Generators

Fig. 11. Shrinking growth of the FPGA addressable market.
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and libraries of soft logic provided the interfaces to

CoreConnect, AXI and other busses for peripherals on soft

and hardened processors. They also built the bus protocol
logic that wrapped around the fixed-function physical inter-

faces of serial transceivers. Xilinx System Generator and

Altera’s DSP Builder automated much of the assembly for

DSP systems, constructed from a combination of fixed func-

tions and LUTs. To simplify creation of microprocessor

systems, Xilinx provided the Embedded Design Kit (EDK)

while Altera released their Embedded System Design Kit

(ESDK). Demonstrations of these capabilities included Linux
running on the FPGA processor with video compression and

decompression in the FPGA fabric.

But, what of those customers in the Age of Accumu-

lation who do not need the fixed functions? To a customer

who does not need a Power-PC processor, memory or mul-

tiplier, the area of that block is wasted, effectively degrad-

ing the cost and speed of the FPGA. At first, FPGA vendors

tried to ensure those functions could be used for logic if
they were not needed for their primary purpose. They

provided ‘‘large-LUT-mapping’’ software to move logic into

unused RAM blocks. Xilinx released the ‘‘Ultracontroller’’

to map state machines into microprocessor code for the

hardened Power-PC in the Virtex-II Pro. But these mea-

sures were eventually perceived as unimportant. It is an

indication of how far we had come from the Age of Inven-

tion that FPGA vendors and customers alike simply ac-
cepted the wasted area. A Xilinx Vice-President remarked

that he would provide four Power-PC processors on an

FPGA and did not care if customers did not use any of them.

‘‘We give them the processors for free.’’

XI. INTERLUDE: ALL AGES AT ALL TIMES

Dedicated blocks were not unique to the Age of Accumu-

lation, just as increased device capacity was not unique to

the Age of Expansion or architecture innovation unique to

the Age of Invention. Gates, routing and three-state bussing

were available in the Age of Invention, while arithmetic,

memory and specialized I/O appeared in the Age of
Expansion (Table 1). Dedicated blocks have been added

throughout the ages of FPGAs, and there is every indication

that they will continue to evolve in variety and complexity. In

general, though, successful dedicated functions have been

generic in nature, using the flexibility of programmable LUTs

and interconnect to customize the functionality. Attempts to

produce niche-targeted or Application-Specific FPGAs have

not proved successful, as they lose the advantage of volume
manufacturing on which FPGA economics relies. This was, of

course, until the Age of Accumulation gave rise to the

‘‘communications FPGA.’’

XII. AGE OF ACCUMULATION
IN RETROSPECT

A. Applications
The biggest change in FPGAs in the Age of Accumula-

tion was the change in the target application. The FPGA

business grew not from general ASIC replacement, but from

adoption by the communications infrastructure. Companies

such as Cisco Systems used FPGAs to make custom data

paths for steering huge volumes of internet and packetized

voice traffic through their switches and routers [20], [30].
Their performance requirements eliminated standard mi-

croprocessors and array processors, and unit volumes were

within the FPGA crossover point. New network routing ar-

chitectures and algorithms could be implemented in FPGAs

quickly and updated in the field. In the Age of Accumula-

tion, sales to the communications industry segment grew

rapidly to well over half the total FPGA business.

Fig. 12. Xilinx marketing ca. 2005. Image courtesy of Xilinx.

Table 1 Selected Dedicated Logic on FPGA
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Of course, this success led major FPGA manufacturers
to customize their FPGAs for the communications

industry. Made-for-communications FPGAs incorporated

high-speed I/O transceivers, thousands of dedicated high-

performance multipliers, the ability to make wide data

paths and deep pipelines for switching large amounts of

data without sacrificing throughput. The dedicated blocks

and routing that were added to better serve the commu-

nications application requirements reduced the available
general logic area. By the end of the 2000s, FPGAs were

not general-purpose ASIC replacements as much as they

were data-routing engines. As multi-core processors and

general-purpose graphics processor units (GPGPUs) ap-

peared, FPGAs were still preferred for high-throughput,

real-time computation. At the same time, FPGAs retained

their generality. FPGA bitwise programmability assured

their continued use in a wide range of applications, in-
cluding control and automotive systems.

B. Moore’s Law
Classical Dennard scaling, with simultaneous improve-

ments in cost, capacity, power and performance, ended in

the mid-2000s [5], [18]. Subsequent technology genera-

tions still gave improvements in capacity and cost. Power

continued to improve also, but with a clear tradeoff against
performance. Performance gains from one technology node

to the next were modest and were traded off against power

savings. This effect is evident in the slowdown of perfor-

mance growth in the 2000s in Fig. 1. These tradeoffs also

drove the accumulation of functions, because simple re-

liance on process technology scaling, as in the Age of

Expansion, was not sufficient to improve power and per-

formance. Hardening the logic provided the needed
improvements.

We are now well into the next Age of FPGAs.

What is this next age?

XIII. CURRENT AGE: NO LONGER
PROGRAMMABLE LOGIC

By the end of the Age of Accumulation, FPGAs were not

arrays of gates, but collections of accumulated blocks in-

tegrated with the programmable logic. They were still

programmable but were not restricted to programmable

logic. The additional dimensions of programmability

acquired in the Age of Accumulation added design burden.

Design effort, an advantage for FPGAs in their competition
with ASIC, was a disadvantage in competition with newly

arrived multi-core processors and GPUs.

Pressures continued to mount on FPGA developers.

The economic slowdown beginning in 2008 continued to

drive the desire for lower cost. This pressure is exhibited

not only in the demand for lower price for functionality,

but also in lower power consumption, which reflects the

cost of using the devices [29], [40]. Post-Dennard scaling

processing technology failed to deliver the huge concur-

rent benefits in cost, capacity, performance, power and

reliability that new process technology had delivered in

preceding decades. Of particular concern was the demand

for tradeoffs between power and performance. Now what?

A. Applications
During the Age of Accumulation, the ASIC companies

that brought custom devices to market in the 1980s were

quietly disappearing. Custom socket-specific ASIC devices

still existed, of course, but only for designs with very large

volume or extreme operating requirements. Did FPGAs

defeat them? Well, partially. In the 2000s, ASIC NRE
charges simply grew too large for most applications. This

can be seen in Fig. 13 where development cost in millions

of dollars is plotted against technology node. The devel-

opment cost of a custom device reached tens, then hun-

dreds of millions of dollars. A company that invests 20% of

income on research and development requires half a bil-

lion dollars revenue from sales of a chip to justify one

hundred million dollars development cost. The FPGA
crossover point reached millions of units. There are very

few chips that sell in that volume: notably microproces-

sors, memories and cell phone processors. Coupled with

tight financial controls in the wake of another recession,

the sales uncertainty and long lead time to revenue for new

products, the result was inescapable: if the application re-

quirements could be met by a programmable device, prog-

rammable logic was the preferred solution. The FPGA
advantage from the very earliest days was still operating:

lower overall cost by sharing development cost.

ASICs did not die. ASICs survived and expanded by

adding programmability in the form of application specific

standard product (ASSP) system-on-chip (SoC) devices. An

SoC combines a collection of fixed function blocks along

with a microprocessor subsystem. The function blocks are

Fig. 13. Estimated chip design cost, by process node, worldwide. Data:

Xilinx and Gartner. 2011.
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typically chosen for a specific application domain, such as
image processing or networking. The microprocessor con-

trols the flow of data and allows customization through

programming as well as field updates. The SoC gave a struc-

ture to the hardware solution, and programming the

microprocessors was easier than designing hardware. Lev-

eraging the FPGA advantages, programmable ASSP devices

served a broader market, amortizing their development costs

more broadly. Companies building ASSP SoCs became
fabless semiconductor vendors in their own right, able to

meet sales targets required by high development costs.

Following the ASIC migration to SoC, programmable

logic vendors developed programmable SoCs [12]. This is

decidedly not the data-throughput engine so popular in the

data communications domain and also not an array of

gates. The Programmable System FPGA is a full prog-

rammable system-on-a-chip, containing memory, micro-
processors, analog interfaces, an on-chip network and a

programmable logic block. Examples of this new class of

FPGA are the Xilinx All-Programmable Zynq, the Altera

SoC FPGA, and the Actel/Microsemi M1.

B. Design Tools
These new FPGAs have new design requirements. Most

importantly, they are software programmable as well as
hardware programmable. The microprocessor is not the

simple hardware block dropped into the FPGA as was done

in the Age of Accumulation but includes a full environment

with caches, busses, Network-on-Chip and peripherals.

Bundled software includes operating systems, compilers

and middleware: an entire ecosystem, rather than an integ-

rated function block. Programming software and hardware

together adds design complexity.
But this is still the tip of the iceberg. To achieve their

goal of displacing ASICs or SoCs, FPGAs inherit the system

requirements of those devices. Modern FPGAs have power

controls, such as voltage scaling and the Stratix adaptive

body bias [29]. State-of-the art security is required, includ-

ing public-key cryptography in the Xilinx Zynq SoC and

Microsemi SmartFusion. Complete systems require mixed-

signal interfaces for real-world interfacing. These also
monitor voltage and temperature. All these are required

for the FPGA to be a complete system on a chip, a credible

ASSP SoC device. As a result, FPGAs have grown to the

point where the logic gate array is typically less than half

the area. Along the way, FPGA design tools have grown to

encompass the broad spectrum of design issues. The num-

ber of EDA engineers at FPGA companies grew to be

comparable to the number of design engineers.

C. Process Technology
Although process scaling has continued steadily

through the past three decades, the effects of Moore’s

Law on FPGA architecture were very different at different

times. To be successful in the Age of Invention, FPGAs

required aggressive architectural and process innovation.

In the Age of Expansion, riding Moore’s Law was the most
successful way to address an ever-growing fraction of the

market. As FPGAs grew to become systems components,

they were required to address those standards, and the dot-

com bust required them to provide those interfaces at a

much lower price. The FPGA industry has relied on

process technology scaling to meet many of these

requirements.

Since the end of Dennard scaling, process technology
has limited performance gains to meet power goals. Each

process node has delivered less density improvement as

well. The growth in the number of transistors in each new

node slowed as complex processes became more expen-

sive. Some predictions claim the cost per transistor will

rise. The FPGA industry, like the semiconductor industry

as a whole, has relied on technology scaling to deliver

improved products. If improvements no longer come from
technology scaling, where do they come from?

Slowing process technology improvement enhances the

viability of novel FPGA circuits and architecture: a return

to the Age of Invention. But it is not as simple as returning

to 1990. These changes must be incorporated without

degrading the ease-of-use of the FPGA. This new age puts a

much greater burden on FPGA circuit and applications

engineers.

D. Design Effort
Notice how that last section focused on device attri-

butes: cost, capacity, speed, and power. Cost, capacity and

speed were precisely those attributes at which FPGAs were

at a disadvantage to ASIC in the 1980s and 1990s. Yet they

thrived. A narrow focus on those attributes would be mis-

guided, just as the ASIC companies’ narrow focus on them
in the 1990s led them to underestimate FPGAs. Program-

mability gave FPGAs an advantage despite their drawbacks.

That advantage translated into lower risk and easier de-

sign. Those attributes are still valuable, but other technol-

ogies offer programmability, too.

Design effort and risk are emerging as critical re-

quirements in programmable logic. Very large systems are

difficult to design correctly and require teams of designers.
The problems of assembling complex compute or data

processing systems drive customers to find easier solu-

tions. As design cost and time grow, they become as much

of a problem for FPGAs as ASIC NRE costs were for ASICs

in the 1990s [16]. Essentially, large design costs under-

mine the value proposition of the FPGA.

Just as customers seeking custom integrated circuits 30

years ago were attracted to FPGAs over the complexity of
ASICs, many are now attracted to multicore processors,

graphic processing units (GPU) and software-programma-

ble Application Specific Standard Products (ASSPs). These

alternative solutions provide pre-engineered systems with

software to simplify mapping problems onto them. They

sacrifice some of the flexibility, the performance and the

power efficiency of programmable logic for ease-of-use. It
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is clear that, while there are many FPGA users who need to
exploit the limits of FPGA technology, there are many

others for whom the technological capability is adequate,

but who are daunted by the complexity of using that

technology.

The complexity and capability of devices have driven an

increase in capability of design tools. Modern FPGA tool-

sets include high-level synthesis compilation from C, Cuda

and OpenCL to logic or to embedded microprocessors [10],
[11], [35]. Vendor-provided libraries of logic and process-

ing functions defray design costs. Working operating sys-

tems and hypervisors control FPGA SoC operation. Team

design functions, including build control, are built into

FPGA design systems. Some capabilities are built by the

vendors themselves, others are part of the growing FPGA

ecosystem.

Clearly, usability is critical to this next age of FPGAs.
Will that usability be realized through better tools, novel

architectures, exploitation of the process technology, or
greater accumulation of fixed blocks? Most likely, just as

every previous age was required to contribute to each suc-

cessive age, all techniques will be needed to succeed. And

more besides. As with the other Ages, the next Age of

FPGAs will only be completely clear in retrospect.

Throughout the age, expect to see time-honored good

engineering: producing the best products possible from the

available technology. This good engineering will be
accomplished as the available technology and the definition

of ‘‘best’’ continuously change.

XIV. FUTURE AGE OF FPGAS

What of the future? What is the age after this one? I refuse

to speculate, but instead issue a challenge: remember the

words of Alan Kay, ‘‘The best way to predict the future is to
invent it.’’ h
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