CONTENTS

. INTRODUCTION

. NUMBER SYSTEM

. CODE CONVERSION

. BINARY CODES

. BASIC LOGIC FUNCTIONS AND GATES
. COMBINATIONAL LOGIC

. SEQUENTIAL CIRCUITS

. LATCH AND FLIP-FLOPS



Introduction

The guantities that are to beasueed, monitored, recorded, processed and
controlled are analog and digital, depending ontyipe of system used. It is important
when dealing with various quantities that we bedblrepresent their values efficiently
and accurately. There are basically two ways ofesgnting the numerical value of

guantities: analog and digital.

Analog Representation

Systems which are capable of processing a contstemge of values varying
with respect to time are called analog systemsanalog representation a quantity is
represented by a voltage, current, or meter movethahis proportional to the value of
that quantity. Analog quantities such as thosedciwbove have an important

characteristic: they can vary over a continuougeanf values.

Diagram of analog voltage vs time




Digital Representation

Systems which process discrete values are cal@gthldsystems. In digital
representation the quantities are represented woprbportional quantities but by
symbols called digits. As an example, considerdigtal watch, which provides the
time of the day in the form of decimal digits reggating hours and minutes (and
sometimes seconds). As we know, time of day chawegesnuously, but the digital
watch reading does not change continuously; ratiheshanges in steps of one per
minute (or per second). In other words, time of d#yital representation changes in
discrete steps, as compared to the representdtittme provided by an analog watch,

where the dial reading changes continuously.

Below is a diagram of digitalltame vs time: here input voltage changes
from +4 Volts to -4 Volts; it can be converted tmithl form by Analog to Digital
converters (ADC). An ADC converts continuous signato samples per second. Well,

this is an entirely different theory.

Diagram of Digital voltage vs time




The major difference betwesralog and digital quantities, then, can be

stated simply as follows:
Analog = continuous

+ Digital = discrete (step by step)

Advantages of Digital Techniques

- [Easier to design. Exact values of voltage or ctrage not important, only the
range (HIGH or LOW) in which they fall.

+ Information storage is easy.

« Accuracy and precision are greater.

« Operations can be programmed. Analog systems canba programmed, but
the available operations variety and complexityagerely limited.

- Digital circuits are less affected by noise, agjlas the noise is not large enough
to prevent us from distinguishing HIGH from LOW (wéscuss this in detail in
an advanced digital tutorial section).

« More digital circuitry can be fabricated on IC chip

Limitations of Digital Techniques

Most physical quantities @ak world are analog in nature, and these
quantities are often the inputs and outputs thatbesing monitored, operated on, and
controlled by a system. Thus conversion to digibamat and re-conversion to analog

format is needed.



Numbering System

Many number systems are in usdigital technology. The most common
are the decimal, binary, octal, and hexadecimaksys. The decimal system is clearly
the most familiar to us because it is a tool thatuse every day. Examining some of its
characteristics will help us to better understdradther systems. In the next few pages
we shall introduce four numerical representatiostays that are used in the digital

system. There are other systems, which we will laolriefly.

- Decimal
« Binary
« Octal

- Hexadecimal

Decimal System

The decimal system is composed @f nbumerals or symbols. These 10
symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Usingehgymbols as digits of a number, we can

express any quantity.

The decimal system is also called the base-1@msybecause it has 10 digits.

Binary System

In the binary system, there arey @awo symbols or possible digit values, O
and 1. This base-2 system can be used to reprasgmjuantity that can be represented

in decimal or other base system.

Octal System

The octal number system has a basegbt,eneaning that it has eight possible
digits: 0,1,2,3,4,5,6,7.



Hexadecimal System

The hexadecimal system uses bas&hl&, it has 16 possible digit symbols. It
uses the digits 0 through 9 plus the letters ACBD, E, and F as the 16 digit symbols.



Code Conversion

Converting from one code form to theo code form is called code
conversion, like converting from binary to decinmalconverting from hexadecimal to

decimal.
Binary-To-Decimal Conversion

Any binary number can be converteditto decimal equivalent simply by

summing together the weights of the various pas#tiin the binary number which

containa 1.
1101%
2+ 25+ 04214+ 2° =16+8+0+2+1
Result 2710

Decimal-To-Binary Conversion

Convert 2% to binary

25/2 =12+ remainder of 1 1 (Least Significant Bit)
12/2 = 6 + remainder of O 0
6/2 = 3 + remainder of 0 0
3/2 =1 + remainder of 1 1
1/2 =0 + remainder of 1 1 (Most Significant Bit)

Result 2510 = 1100%



Binary-To-Octal / Octal-To-Binary Conversion

N O N D I O O O

Binary

: 000 001 010 011 100 101 110 111
Equivalent
Each Octal digit is represented by three binarytslig

Example:

100 111 019= (100) (111) (01Q)=47 2

Binary-To-Hexadecimal /Hexadecimal-To-Binary Convesion

N O O

Binary Equivalent 0000 0001 0010 0011 O100 0101 0110 0111

Hexadecim
. A C E |F
al Digit

100 100 101 101 110 110 111 111
0O 1 0 1 0 1 0 1

Binary Equivalent

Each Hexadecimal digit is represented by four difitsinary digit.

Example:

1011 0010 11%l= (1011) (0010) (1113 B 2 R



Decimal to octal
This method uses repeated division by 8.

Example: Convert 177, to octal and binary

177/8 = 22+ remainder of 1 1 (Least Significant Bit)
22/ 8 = 2 + remainder of 6 6

2/8 = 0 + remainder of 2 2 (Most Significant Bit)
Result 1770 = 263

Binary = 010110001

Hexadecimal to Decimal/Decimal to Hexadecimal Convsion
Example:
2AF16=2 x (16) + 10 x (18) + 15 x (16) = 6870

Example: convert 37§ to hexadecimal and binary:

378/16 = 23+ remainder of 10 A (Least Significant Bit)23
23/16 =1 + remainder of 7 7

1/16 = 0 + remainder of 1 1 (Most Significant Bit)
Result 37810 =17As6

Binary =0001 0111 1010



Octal-To-Hexadecimal Hexadecimal-To-Octal Conversio

« Convert Octal (Hexadecimal) to Binary first.

« Regroup the binary number by three bits per graagisg from LSB if Octal is
required.

+ Regroup the binary number by four bits per grougrtstg from LSB if

Hexadecimal is required.
Example:

Convert 5A8sto Octal.

5A816 =010110101000(Binary)
=01 110101000 (Binary)
Result =2 650 (Octal)



Binary Codes

Binary codes are codes whize represented in binary system with

modification from the original ones. Below we vl seeing the following:

+ Weighted Binary Systems
+ Non Weighted Codes

Weighted Binary Systems

Weighted binary codes are thegech obey the positional weighting
principles, each position of the number represarggecific weight. The binary counting

sequence is an example

0 0000 0000 0000 0011
1 0001 0001 0001 0100
2 0010 0010 0011 0101
3 0011 0011 0101 0110
4 0100 0100 0111 0111
5 0101 1011 1000 1000
6 0110 1100 1010 1001
7 0111 1101 1100 1010
8 1000 1110 1110 1011
9 1001 1111 1111 1100



8421 Code/BCD Code

The BCD (Binary Coded Decimal)a straight assignment of the binary
equivalent. It is possible to assign weights tolimary bits according to their positions.
The weights in the BCD code are 8,4,2,1.

Example: The bit assignment 1001 can be seen by its weiglhrepresent the decimal 9
because:

1x8+0x4+0x2+1x1 =9

2421 Code

This is a weighted code; its weights are 2, 4, @ an A decimal number is
represented in 4-bit form and the total four bitsight is 2 + 4 + 2 + 1 = 9. Hence the

2421 code represents the decimal numbers from@0 to

5211 Code

This is a weighted code; its weights are 5, 2, d &nA decimal number is
represented in 4-bit form and the total four bitght is 5+ 2 + 1 + 1 = 9. Hence the

5211 code represents the decimal numbers fron90 to

Reflective Code

A code is said to be reflective when code for 8amplement for the code for 0,
and so is for 8 and 1 codes, 7 and 2, 6 and 3d%afodes 2421, 5211, and excess-3

are reflective, whereas the 8421 code is not.



Sequential Codes

A code is said to be sequential when two subseqoadgs, seen as numbers in
binary representation, differ by one. This grealgs mathematical manipulation of
data. The 8421 and Excess-3 codes are sequertiedeas the 2421 and 5211 codes are

not.

Non Weighted Codes

Non weighted codes are codes that are not podityowaighted. That is, each

position within the binary number is not assigndked value.

Excess-3 Code

Excess-3 is a non weighted code used to expressmiaenumbers. The code
derives its name from the fact that each binaryededhe corresponding 8421 code plus
0011(3).

Example: 1000 of 8421 = 1011 in Excess-3

Gray Code

The gray code belongs to a classodies called minimum change codes, in
which only one bit in the code changes when moving one code to the next. The
Gray code is non-weighted code, as the positidnitaloes not contain any weight. The
gray code is a reflective digital code which hae #pecial property that any two
subsequent numbers codes differ by only one bits T$halso called a unit-distance

code. In digital Gray code has got a special place.



Decimal Number Binary Code Gray Code

0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

Binary to Gray Conversion

« Gray Code MSB is binary code MSB.

+ Gray Code MSB-1 is the XOR of binary code MSB an8Bv1.

« MSB-2 bit of gray code is XOR of MSB-1 and MSB-2 bi binary code.

« MSB-N bit of gray code is XOR of MSB-N-1 and MSB#\ of binary code.



Basic Logical Functions and Gates

While each logical element or condition must alwhgse a logic value of either
"0" or "1", we also need to have ways to combirfeedent logical signals or conditions

to provide a logical result.

For example, consider the logical statement: 'ifidve the switch on the wall
up, the light will turn on." At first glance, thseems to be a correct statement. However,
if we look at a few other factors, we realize thia¢re's more to it than this. In this
example, a more complete statement would be:rfibéVe the switch on the wall up and

the light bulb is good and the power is on, thatligill turn on."

If we look at these two statements as logical esgioms and use logical

terminology, we can reduce the first statement to:
Light = Switch

This means nothing more than that the light willde the action of the switch,
so that when the switch is up/on/true/1 the light also be on/true/1. Conversely, if the
switch is own/off/false/0 the light will also bef&lse/0.Looking at the second version

of the statement, we have a slightly more compigxession:
Light = Switch and Bulb and Power

Normally, we use symbols rather than words to dediythe and function that
we're using to combine the separate variables atcBwBulb, and Power in this
expression. The symbol normally used is a dot, Wwhicthe same symbol used for
multiplication in some mathematical expressiongng/shis symbol, our three-variable

expression becomes:
Light = Switch«Bulb sPower

When we deal with logical circuits (as in computerge not only need to deal
with logical functions; we also need some spegiail®ols to denote these functions in a
logical diagram. There are three fundamental |dgigeerations, from which all other
functions, no matter how complex, can be derivetese functions are named and, or,

and not.



A logic gate is an electronic circuit/device whitlakes the logical decisions. To
arrive at this decisions, the most common logiegaised are OR, AND, NOT, NAND,
and NOR gates. The NAND and NOR gates are callécersal gates. The exclusive-
OR gate is another logic gate which can be congtdugsing AND, OR and NOT gate.

AND Gate

The AND gate performs logical multiplication, comntp known as AND
function. The AND gate has two or more inputs amgls output. The output of AND
gate is HIGH only when all its inputs are HIGH (ieven if one input is LOW, Output
will be LOW).

If X and Y are two inputs, then output F can bgresented mathematically as F
= X.Y, Here dot (.) denotes the AND operation. Tirtable and symbol of the AND gate

is shown in the figure below.

Symbol

Truth Table

Hl—\ooI
HOHOI
e
By
X
=



Two input AND gate using "diode-resistor” logic séiown in figure below,

where X, Y are inputs and F is the output.

Circuit

If X=0and Y =0, then both diodes D1 and D2 farsvard biased and thus both

diodes conduct and pull F low.

If X=0and Y =1, D2 is reverse biased, thussdaet conduct. But D1 is

forward biased, thus conducts and thus pulls F low.

If X=1and Y = 0, D1 is reverse biased, thus dnest conduct. But D2 is

forward biased, thus conducts and thus pulls F low.

If X=1and Y =1, then both diodes D1 and D2 mverse biased and thus both
the diodes are in cut-off and thus there is no dnomltage at F. Thus F is HIGH.

Switch Representation of AND Gate

In the figure below, X and Y are two switches whitdwe been connected in
series (or just cascaded) with the load LED andc®battery. When both switches are

closed, current flows to LED.



Three Input AND gate

Since we have already seen how a AND gate workd anlll just list the truth

table of a 3 input AND gate. The figure below shaissymbol and truth table.

Circuit

Truth Table

0
0
0
0
1
1
1
1

HI—\OOI—‘HOOI
HOHOI—‘OHOI

0
0
0
0
0
0
0
1



OR Gate

The OR gate performs logical addition, commonlywnacas OR function. The
OR gate has two or more inputs and single outpue. utput of OR gate is HIGH only
when any one of its inputs are HIGH (i.e. evenrieanput is HIGH, Output will be
HIGH).

If X and Y are two inputs, then output F canrbpresented mathematically as F
= X+Y. Here plus sign (+) denotes the OR operationth table and symbol of the OR
gate is shown in the figure below.

Symbol
Truth Table
i
0 0 0
0 1 1
1 0 1
1 1 1

Two input OR gate using "diode-resistor" logic wn in figure below, where

X, Y are inputs and F is the output.



Circuit

If X=0andY =0, then both diodes D1 and D2 meerse biased and thus both

the diodes are in cut-off and thus F is low.

If X =0and Y =1, D1 is reverse biased, thussdoet conduct. But D2 is
forward biased, thus conducts and thus pulling RIt6H.

If X=1and Y = 0, D2 is reverse biased, thus dnes conduct. But D1 is

forward biased, thus conducts and thus pulling RItBH.

If X=1and Y =1, then both diodes D1 and D2 farsvard biased and thus both
the diodes conduct and thus F is HIGH.

Switch Representation of OR Gate

In the figure, X and Y are two switches which hde=n connected in parallel,
and this is connected in series with the load LEI aource battery. When both
switches are open, current does not flow to LEL, welkien any switch is closed then

current flows.




Three Input OR gate

Since we have already seen how an OR gate wowkd, just list the truth table

of a 3-input OR gate. The figure below shows itswit and truth table.

Truth Table

A R

|—\|—\|—\|—\ooooI
_<

P =, O O +» BB O O
O = O Fkr O Fr omEl
R R PP R P RO

NOT Gate

The NOT gate performs the basic logical functionllech inversion or
complementation. NOT gate is also called inveifée purpose of this gate is to convert
one logic level into the opposite logic level. Hshone input and one output. When a

HIGH level is applied to an inverter, a LOW levelpgars on its output and vice versa.

If X is the input, then output F can be repreed mathematically as F = X', Here
apostrophe (') denotes the NOT (inversion) opemafldiere are a couple of other ways
to represent inversion, F=! X, here! representision. Truth table and NOT gate

symbol is shown in the figure below.

Symbol




Truth Table

0

1
1 0

NOT gate using "transistor-resistor" logic is shawrthe figure below, where X
is the input and F is the output.

Circuit

When X = 1, the transistor input pin 1 is HIGH,stlgroduces the forward bias
across the emitter base junction and so the ttansisnducts. As the collector current

flows, the voltage drop across RL increases andéh&ns LOW.

When X = 0, the transistor input pin 2 is LOW: tipoduces no bias voltage

across the transistor base emitter junction. Tholsage at F is HIGH.



BUF Gate

Buffer or BUF is also a gate with the exceptionttiiadoes not perform any
logical operation on its input. Buffers just pasput to output. Buffers are used to
increase the drive strength or sometime just tdhice delay. We will look at this in

detail later.

If X is the input, then output F can be representethematically as F = X.
Truth table and symbol of the Buffer gate is shamwthe figure below.

Symbol

Truth Table

0 0
1 1
NAND Gate

NAND gate is a cascade of AND gate and NOT gateshasvn in the figure
below. It has two or more inputs and only one outfilne output of NAND gate is
HIGH when any one of its input is LOW (i.e. everoife input is LOW, Output will be
HIGH).



NAND From AND and NOT

R

If X and Y are two inputs, then output F can baespnted mathematically as F
= (X.Y)', Here dot (.) denotes the AND operationl ) denotes inversion. Truth table
and symbol of the N AND gate is shown in the fighetow.

Symbol




Truth Table

0
0
1
1

, o ek oIi

1
1
1
0

NOR Gate

NOR gate is a cascade of OR gate and NOT gatdiaaensin the figure below.
It has two or more inputs and only one output. dbgput of NOR gate is HIGH when

any all its inputs are LOW (i.e. even if one inmuHIGH, output will be LOW).

Symbol

If X and Y are two inputs, then output F can berespnted mathematically as F
= (X+Y)'; here plus (+) denotes the OR operatiod @nhdenotes inversion. Truth table

and symbol of the NOR gate is shown in the figwow.



Truth Table

0
0
1
1

, O e oIi

1
0
0
0

XOR Gate

An Exclusive-OR (XOR) gate is gate with two or #arer more inputs and one
output. The output of a two-input XOR gate assuméHGH state if one and only one
input assumes a HIGH state. This is equivalentatng that the output is HIGH if
either input X or input Y is HIGH exclusively andOW when both are 1 or O

simultaneously.

If X and Y are two inputs, then output F can épresented mathematically as F
= XY, Here fidenotes the XOR operation Y and is equivalent to X.Y' + X'Y.
Truth table and symbol of the XOR gate is showthanfigure below.

XOR from Simple gates

>




Symbol

Truth Table

0 0 0
0 1 1
1 0 1
1 1 0
XNOR Gate

An Exclusive-NOR (XNOR) gate is gate with two ordé or more inputs and
one output. The output of a two-input XNOR gateuasss a HIGH state if all the inputs
assumes same state. This is equivalent to sayatdhe output is HIGH if both input X
and input Y is HIGH exclusively or same as inpuaixd input Y is LOW exclusively,
and LOW when both are not same.

If X and Y are two inputs, then output F canrpresented mathematically as F
= X@Y, Here®denotes the XNOR operation¥ and is equivalent to X.Y + X'Y".
Truth table and symbol of the XNOR gate is showthanfigure below.



Symbol

Truth Table

0
0
1
1



Combinational Logic

Combinatorial Circuits are circuits which can bensidered to have the

following generic structure.

M Inputs N Outputs

Combinatorial
Circuits

Whenever the same set of inputs is fed in to a aoamdrial circuit, the same
outputs will be generated. Such circuits are sadbeé stateless. Some simple

combinational logic elements that we have seemawipus sections are "Gates".

All the gates in the above figure have 2 inputs and output; combinational

elements simplest form are "not" gate and "bufes"shown in the figure below. They

have only one input and one output.



Decoders

A decoder is a multiple-input, multiple-output loggircuit that converts coded
inputs into coded outputs, where the input and wiutpdes are different; e.g. n-to-2n,
BCD decoders. Enable inputs must be on for the dircto function, otherwise its

outputs assume a single "disabled" output code word

Decoding is necessary in applications such as dathiplexing, 7 segment
display and memory address decoding. Figure belogws the pseudo block of a

decoder.

Decoder

Binary n-to-2" Decoders

A binary decoder has n inputs aniditputs. Only one output is active at any
one time, corresponding to the input value. Figoetow shows a representation of

Binary n-to-2 decoder



n Inputs

Encoders

An encoder is a combinational circuit that perforthe inverse operation of a
decoder. If a device output code has fewer bits th& input code has, the device is

usually called an encoder. e.g:t@-n, priority encoders.

The simplest encoder is d-®-n binary encoder, where it has only one bf 2

inputs = 1 and the output is the n-bit binary nundmeresponding to the active input.

2Mn puts

Multiplexer

A multiplexer (MUX) is a digital switch which conots data from one of n
sources to the output. A number of select inputerdeéne which data source is
connected to the output. The block diagram of MU¥hvm data sources of b bits wide

and s bits wide select line is shown in below fegur



Select

Multiplexer

MUX acts like a digitally controlled multi-positioswitch where the binary code
applied to the select inputs controls the inputreeuhat will be switched on to the
output as shown in the figure below. At any givemnp of time only one input gets

selected and is connected to output, based oretéet $nput signal.

De-multiplexers

They are digital switches which connect data frame eput source to one of n
outputs. Usually implemented by using n-fb{@inary decoders where the decoder

enable line is used for data input of the de-migker.

The figure below shows a de-multiplexer block déagrwhich has got s-bits-

wide select input, one b-bits-wide data input ardbits-wide outputs.



Multiplexer
D

D1 m—

Adders

Adders are the basic building blocks of all arithimeircuits; adders add two binary

numbers and give out sum and carry as output. Biasiwe have two types of adders.

- Half Adder.
- Full Adder.
Half Adder

Adding two single-bit binary values X, Y produceswam S bit and a carry out
C-out bit. This operation is called half additiamdethe circuit to realize it is called a half

adder.

Truth Table

N O N
0 0

0

1

1

R O P O BES
o B R O

0
0
1



Symbol

Circuit

Full Adder

Full adder takes a three-bits input. Adding twagrbit binary values X, Y with
a carry input bit C-in produces a sum bit S andraycout C-out bit.



Truth Table

CARRY
0

0



Sequential Circuits

Digital electronics is classified into combinatibiagic and sequential logic.
Combinational logic output depends on the inputglle whereas sequential logic

output depends on stored levels and also the Iapels.

Memory Element

The memory elements are devices capable of stobrrayy info. The binary info
stored in the memory elements at any given timéndsfthe state of the sequential
circuit. The input and the present state of the orgnelement determine the output.
Memory elements next state is also a function @éreal inputs and present state. A

sequential circuit is specified by a time sequesfdaputs, outputs, and internal states.

There are two types of sequential circuits.iTtlassification depends on the

timing of their signals:

« Synchronous sequential circuits

« Asynchronous sequential circuits

Asynchronous sequential circuit

This is a system whose outputs depend upon ther andevhich its input
variables change and can be affected at any instawoff

time.



Gate-type asynchronous systems are basically catidal circuits with
feedback paths. Because of the feedback among dages, the system may, at times,

become unstable. Consequently they are not ofted. us

Synchronous sequential circuits

This type of system uses storage elements calledldps that are employed to
change their binary value only at discrete instasftdime. Synchronous sequential
circuits use logic gates and flip-flop storage desi Sequential circuits have a clock
signal as one of their inputs. All state transigian such circuits occur only when the
clock value is either O or 1 or happen at the gsor falling edges of the clock

depending on the type of memory elements useceigitiouit.

Synchronization is achieved by a timing devicdechh clock pulse generator.
Clock pulses are distributed throughout the systesuch a way that the flip-flops are
affected only with the arrival of the synchronipatipulse. Synchronous sequential
circuits that use clock pulses in the inputs aféedaclocked-sequential circuits. They
are stable and their timing can easily be brokemndmto independent discrete steps,

each of which is considered separately.



A clock signal is a periodic square wave that imdefly switches from 0 to 1
and from 1 to O at fixed intervals. Clock cycle ¢iror clock period: the time interval

between two consecutive rising or falling edgethefclock.

Clock Frequency = 1/ clock cycle time (measuredyicies per second or Hz)

Example: Clock cycle time = 10ns clock frequency = 100 MHz



Latches and Flip-Flops

Latches and Flip-flops are one dmel $ame with a slight variation: Latches
have level sensitive control signal input and Flgps have edge sensitive control signal
input. Flip-flops and latches which use this cohs@nals are called synchronous

circuits. So if they don't use clock inputs, thkeeyt are called asynchronous circuits.
RS Latch

RS latch have two inputs, S and R. S is callechrdtR is called reset. The S
input is used to produce HIGH on Q ( i.e. storeahyrl in flip-flop). The R input is used
to produce LOW on Q (i.e. store binary 0 in flipf). Q' is Q complementary output, so
it always holds the opposite value of Q. The outgguhe S-R latch depends on current
as well as previous inputs or state, and its gtatkie stored) can change as soon as its

inputs change. The circuit and the truth table $fl&ch is shown below.




The operation has to be analyzed with the 4 inpatabinations together with

the 2 possible previous states.

« When S =0andR =0if we assume Q =1 and Q' = 0 as initial conditidmen
output Q after input is applied would be Q = (R¥8©1land Q'=(S+Q)' =0.
Assuming Q = 0 and Q' = 1 as initial condition, theutput Q after the input
applied wouldbe Q = (R+Q")'=0and Q' = (S +%)). So it is clear that when
both S and R inputs are LOW, the output is retam&tefore the application of
inputs. (i.e. there is no state change).

+ When S =1 and R = 0if we assume Q = 1 and Q' = 0 as initial conditiden
output Q after input is applied would be Q = (R¥ @1 and Q' =(S + Q)' = 0.
Assuming Q = 0 and Q' = 1 as initial condition, theutput Q after the input
applied would be Q = (R + Q) = 1 and Q' = (S + 9. So in simple words
when S is HIGH and R is LOW, output Q is HIGH.

« WhenS=0andR =1if we assume Q =1 and Q' = 0 as initial conditidmen
output Q after input is applied would be Q = (R¥8©0and Q'=(S+Q)' = 1.
Assuming Q = 0 and Q' = 1 as initial condition, theutput Q after the input
applied would be Q = (R + Q) = 0 and Q' = (S + ®)L. So in simple words
when S is LOW and R is HIGH, output Q is LOW.

+ When S =1 and R =1 No matter what state Q and Q' are in, applicatioh at
input of NOR gate always results in 0 at outpuN@R gate, which results in
both Q and Q' set to LOW (i.e. Q = Q'). LOW in batlie outputs basically is

wrong, so this case is invalid.

The waveform below shows the operation of NOR fpated RS Latch.




It is possible to construct the RS latch using NANd&es (of course as seen in
Logic gates section). The only difference is th&N\\D neither is NOR gate dual form
(Did | say that in Logic gates section?). So isttase the R =0 and S = 0 case becomes

the invalid case. The circuit and Truth table ofIR®h using NAND is shown below.

If you look closely, there is no control signak(ino clock and no enable), so
these kinds of latches or flip-flops are calledreckyonous logic elements. Since all the
sequential circuits are built around the RS latgh, will concentrate on synchronous

circuits and not on asynchronous circuits.

D Latch

The RS latch seen earlier contains ambiguous diateliminate this condition
we can ensure that S and R are never equal. Tdais by connecting S and R together
with an inverter. Thus we have D Latch: the samehasRS latch, with the only

difference that there is only one input, insteativaf (R and S). This input is called D or



Data input. D latch is called D transparent latwhthe reasons explained earlier. Delay
flip-flop or delay latch is another name used. Bels the truth table and circuit of D
latch.

In real world designs (ASIC/FPGA Designs) onlyaithes/Flip-Flops are used.

Below is the D latch waveform, which is similartt® RS latch one, but with R

removed.




JK Latch

The ambiguous state output in the RS latch wasimdited in the D latch by
joining the inputs with an inverter. But the D lateas a single input. JK latch is similar
to RS latch in that it has 2 inputs J and K as shéigure below. The ambiguous state

has been eliminated here: when both inputs are bigfiput toggles. The only difference

we see here is output feedback to inputs, whictoighere in the RS latch.

T Latch

When the two inputs of JK latch are shorted, a ichas formed. It is called T

latch as, when input is held HIGH, output toggles.



JK Master Slave Flip-Flop

All sequential circuits that we have seen in th& faw pages have a problem
(All level sensitive sequential circuits have thgsoblem). Before the enable input
changes state from HIGH to LOW (assuming HIGH is @il LOW is OFF state), if
inputs changes, then another state transition sdourthe same enable pulse. This sort
of multiple transition problem is called racing. f we make the sequential element
sensitive to edges, instead of levels, we can oweecthis problem, as input is evaluated

only during enable/clock edges.



In the figure above there are two latches, the fatch on the left is called
master latch and the one on the right is calledeslatch. Master latch is positively

clocked and slave latch is negatively clocked.




VHDL



CONTENTS

. INTRODUCTION TO VLSI

. BASIC COMPONENTS OF A VHDL MODEL

. BASIC LANGUAGE ELEMENTS

. MODELING TYPES

. GENERICS AND CONFIGURATIONS

. SUBPROGRAMS AND PACKAGES

. ADVANCED FEATURES



CHAPTER 1

INTRODUCTION TO VLSI

Introduction

Integrated circuits were made possible by experiaiediscoveries which
showed that semiconductor devices could performfuhetions of vacuum tubes, and
by mid-20th-century technology advancements in senductor device fabrication. The
integration of large numbers of tiny transistorsoim small chip was an enormous
improvement over the manual assembly of circuiisgudiscrete electronic components.
The integrated circuit's mass production capabilitgliability, and building-block
approach to circuit design ensured the rapid adoptif standardized ICs in place of
designs using discrete transistors. There are taim mdvantages of ICs over discrete
circuits - cost and performance. Cost is low beedhe chips, with all their components,
are printed as a unit by photolithography and rmistructed a transistor at a time.
Performance is high since the components switckektjuiand consume little power,
because the components are small and close togéhef 2006, chip areas range from

a few square mm to around 250 famvith up to 1 million transistors per mMim

Advances in Integrated circuits

Among the most advanced integrated circuits arenti@oprocessors, which
control everything from computers to cellular phene digital microwave ovens.
Digital memory chips are another family of integgftircuit that is crucially important
to the modern information society. While the cos$tdesigning and developing a
complex integrated circuit is quite high, when sgreacross typically millions of
production units the individual IC cost is minimizeThe performance of ICs is high
because the small size allows short traces, whi¢trn allows low power logic (such as

CMOS) to be used at fast switching speeds.



ICs have consistently migrated to smaller featizessover the years, allowing
more circuitry to be packed on each chip. As tlaue size shrinks, almost everything
improves - the cost per unit and the switching poe@sumption go down, and the
speed goes up. However, IC's with nanometer-scaléces are not without their
problems, principal among which is leakage curratthough these problems are not
insurmountable and will likely be solved or at keameliorated by the introduction of
high-k dielectrics. Since these speed and poweswoption gains are apparent to the
end user, there is fierce competition among theufzaturers to use finer geometries.
This process, and the expected progress over tidaeve years, is well described by the

International Technology Roadmap for Semiconductar$TRS.

SSI, MSI, LSI

The first integrated circuits contained only a fénansistors. Called Small-
Scale Integratior’ (SSI), they used circuits containing transistors nunmggein the
tens.SSI circuits were crucial to early aerospaagepts, and vice-versa. Both the
Minuteman missile and Apollo program needed lighgve digital computers for their
inertially-guided flight computers; the Apollo gaidce computer led and motivated the
integrated-circuit technology, while the Minutemanmissile forced it into mass-
production.These programs purchased almost atleoavailable integrated circuits from
1960 through 1963, and almost alone provided thmeadel that funded the production
improvements to get the production costs from $1€afuit (in 1960 dollars) to merely
$25/circuit (in 1963 dollars).

The next step in the development of integratedudisc taken in the late 1960s,
introduced devices which contained hundreds ofstsdors on each chip, called
“Medium-Scale Integration’' (MSI). They were attractive economically because while
they cost little more to produce than SSI devitlesy allowed more complex systems to
be produced using smaller circuit boards, lessmalssework, and a number of other
advantages. Further development, driven by the ssmaromic factors, led td_arge-
Scale Integratiorf’ (LSI) in the mid 1970s, with tens of thousands of tisinss per
chip. LSI circuits began to be produced in largardgities around 1970, for computer

main memories and pocket calculators.



VLSI

The final step in the development process, staitintdpe 1980s and continuing
on, was "Very Large-Scale Integration" (VLSI), withundreds of thousands of
transistors, and beyond (well past several milliothe latest stages). For the first time it
became possible to fabricate a CPU on a singlegrated circuit, to create a
microprocessor. In 1986 the first one megabit RAMps were introduced, which
contained more than one million transistors. Micomgssor chips produced in 1994
contained more than three million transistors. Biep was largely made possible by the
codification of "design rules" for the CMOS techogy used in VLSI chips, which

made production of working devices much more ofsiesnatic endeavor.

ULSI, WSI, SOC

To reflect further growth of the complexity, therrte ULSI that stands for
"Ultra-Large Scale Integration" was proposed for chips of complexity more than 1
million of transistors. However there is no qudiita leap between VLSI and ULSI,
hence normally in technical texts the "VLSI" terovers ULSI as well, and "ULSI" is
reserved only for cases when it is necessary tohasipe the chip complexity, e.g. in

marketing.

The most extreme integration techniquewsafer-scale integration (WSI),
which uses whole uncut wafers containing procesasraell as memory. Attempts to
take this step commercially in the 1980s (e.g. lepn&Amdahl) failed, mostly because
of defect-free manufacturability problems, andaesd not now seem to be a high priority
for industry. The WSI technique failed commercialbut advances in semiconductor
manufacturing allowed for another attack on thectnplexity, known as$System-on-
Chip (SOC) design. In this approach, components traditignatianufactured as
separate chips to be wired together on a printexlitiboard are designed to occupy a
single chip that contains memory, microprocesserjpperal interfaces, Input/Output
logic control, data converters, and other comp)etatgether composing the whole

electronic system.



Other developments

In the 1980s programmable integrated circuits waaeeloped. These devices
contain circuits whose logical function and conngigt can be programmed by the user,
rather than being fixed by the integrated circusinufacturer. This allows a single chip
to be programmed to implement different LSI-typedtions such as logic gates, adders,
and registers. Current devices named FPGAs (FisddrBmmable Gate Arrays) can
now implement tens of thousands of LSI circuitpamallel and operate up to 400 MHz.
The techniques perfected by the integrated ciréodsstry over the last three decades
have been used to create microscopic machines, ike®WEMS. These devices are
used in a variety of commercial and defense apphies, including projectors, ink jet
printers, and accelerometers used to deploy tHe@iin car accidents. In the past,
radios could not be fabricated in the same low-postesses as microprocessors. But
since 1998, a large number of radio chips have degrloped using CMOS processes.
Examples include Intel's DECT cordless phone, tvefds's 802.11 card.

Moore’s Law

Transistors
Per Die

101
¥ 1965 Actual Data 16 26 &

10°{ m MOS Arrays &4 MOS Logic 1975 Actual Data 256M 912M
108 1975 Projection T b Hanium®
Memory Pentium® 4

107 : Pentium® I1I
il A Microprocessor entium®l

105

104

10°

102

101

B e i B e e B e

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010




The growth of complexity of integrated circuits follows a trend alled
"Moore's Law", first observed by Gordon Moore of Intel. Moore's Law in its
modern interpretation states that the number of transistors in an integrated circuit
doubles every two years. By the year 2000 the largfeintegrated circuits contained
hundreds of millions of transistors. It is difficult to say whether the trend will

continue.

Popularity of ICs

Only a half century after their development wasiated, integrated circuits have
become ubiquitous. Computers, cellular phones, @hdr digital appliances are now
inextricable parts of the structure of modern siese That is, modern computing,
communications, manufacturing and transport systemsuding the Internet, all
depend on the existence of integrated circuitseédd many scholars believe that the
digital revolution brought about by integrated oits was one of the most significant
occurrences in the history of mankind.

Why VLSI?
Integration improves the design:

e Lower parasitic = higher speed.
* Lower power.
* Physically smaller.

* Integration reduces manufacturing cost-no manisdrably.

Challenges in VLSI Design

« Multiple levels of abstraction: transistors to CPUs
« Multiple and conflicting constraints: low cost anigh performances are often at odds.

* Short design time: Late products are often irreieva



Dealing with Complexity

Divide-and-conquer: limit the number of componerda deal with at any one time.

Group several components into larger components:

* transistors form gates;
« gates form functional units;

* Functional units form processing elements, etc.

Top-down vs. Bottom-up Design

¢ Top-down design adds functional detail. Create lower levels of abstraction from upper
levels.
e Bottom-up design creates abstractions from low-level behavior.

e Good design needs both top-down and bottom-up efforts.

Design Strategies

IC design productivity depends on the efficiencyhwihich the design may be
converted from concept to architecture, to logid aremory, to circuit and hence to a
physical layout. A good design strategy with a gdedign system should provide for
consistent descriptions in various abstractionl&Vvehe role of good design strategies is

to reduce complexity, increase productivity, ansuas working product.

Design is a continuous trade-off to achieve adeqredults for:

» Performance - speed, power, function, flexibility
» Size of die (hence cost of die)
* Time to design

» [Ease of test generation and testability



Hardware Description Languages (HDLs)

IEEE standardized Language

« VHDL

» VerilogHDL

What is VHDL?

e VHDL: V HSIC HardwareDescriptionLanguage
YHSIC: V eryHigh Speedi ntegratedCircuit

« Developed originally by DARPA

—for specifying digital systems

* International IEEE standard (IEEE 1076-1993)
e Hardware Description, Simulation, Synthesis
* Practical benefits:

—a mechanism for digital design andsable design documentation
—Model interoperability among vendors
—Third party vendor support

—Design re-use.

VHDL vs. C/Pascal

C/Pascal:

—Procedural programming languages.

—Typically describe procedures for computing a fsdilmction or manipulation of data.
(e.g., sorting, matrix computing)

—A program is a recipe or a sequence of stepsdarth perform a computation or

manipulate data.



VHDL:

— A language to describe digital systems.

—Purposes: simulation and synthesis of digitalesyst

Design Flow

| Specificalion ]
¥

| High Level Design |

Y

| Low Level Design |
Y

|  RTCoding |—
Y

| Funclianal Vesification {—
Y

| Logic Synlhesis H Gate Level Simulation

Y

| Place And Route |

Y

| Fabrication ]
Y

| Post 5i validation |

» SPECIFICATION

This is the stage at which we define what are theortant parameters of the

system/design that you are planning to design.ndpk example would be: | want to design a

counter; it should be 4 bit wide, should have syaohus reset, with active high enable; when

reset is active, counter output should go to "0".

» HIGH LEVEL DESIGN

This is the stage at which you defraeous blocks in the design and how they

communicate. Let's assume that we need to desigitr@processor: high level design

means splitting the design into blocks based o thection; in our case the blocks are

registers, ALU, Instruction Decode, Memory Intedaetc.



» MICRO DESIGN/LOW LEVEL DESIGN

Low level design or Micro design is thlease in which the designer describes
how each block is implemented. It contains detaflState machines, counters, Mux,
decoders, internal registers. It is always a gatehito draw waveforms at various

interfaces. This is the phase where one spenad tohe.

»> RTL CODING

In RTL coding, Micro design is converted into VeglVHDL code, using
synthesizable constructs of the language. Nornvadlylike to lint the code, before

starting verification or synthesis.

»> SIMULATION

Simulation is the process of verifying the functibrcharacteristics of models at any
level of abstraction. We use simulators to simuthie Hardware models. To test if the RTL
code meets the functional requirements of the fipation, we must see if all the RTL blocks
are functionally correct. To achieve this we needntite atest bench which generates clk,
reset and the required test vectors. We use thefaawm output from the simulator to see if the

DUT (Device Under Test) is functionally correct.

» SYNTHESIS

Synthesis is the process in which synthesis titkdsdesign compiler or Synplify take
RTL in Verilog or VHDL, target technology, and cérans as input and maps the RTL to target
technology primitives. Synthesis tool, after magpthe RTL to gates, also do the minimal
amount of timing analysis to see if the mapped giless meeting the timing requirements.
(Important thing to note is, synthesis tools are noaware of wire delays, they only know of

gate delays).

- Formal Verification: Check if the RTL to gate mapping is correct.

« Scan insertion:Insert the scan chain in the case of A.



» PLACE & ROUTE

The gate level net list from the synthesd is taken and imported into place
and route tool in Verilog net list format. All tlyates and flip-flops are placed; clock
tree synthesis and reset is routed. After this ddobk is routed. The P&R tool
output is a GDS file, used by foundry for fabriogtthe ASIC.

» GATE LEVEL SIMULATION (OR) SDF/TIMING SIMULATION

There is another kind of simulation, calléching simulation, which is done
after synthesis or after P&R (Place and Route)eher include the gate delays and wire

delays and see if DUT works at rated clock speed.

» POST SILICON VALIDATION

Once the chip (silicon) is back from fab, it ne¢d$ut in real environment and
tested before it can be released into Market. Siheespeed of simulation with RTL is
very slow (number clocks per second), there is ywzossibility to find a bug in Post

silicon validation.

Note As design becomes complex, we wr8&LF CHECKING TESTBENCH , where

test bench applies the test vector, then compheestttput of DUT with expected values.



CHAPTER 2

BASIC COMPONENTS OF A VHDL MODEL

The purpose of VHDL descriptions is to provide a model for digital circuits and systems.
This abstract view of the real physical circuit is referred to as entity. An entity normally consists

of five basic elements, or design units.

r w g )
FACKAGE
ENTITY
DECLARATION {interface description)
" ™)
hvave ARCHITECTURE
{functicnality}
foften used o
functions, ” ™,
constants,
components,... ) CONFIGURATION
{connection entity «— architectura)
\. I W o’

In VHDL one generally distinguishes between themdl view of a module and
its internal description. The external view is eefed in the entity declaration, which
represents an interface description of a 'black.bhe important part of this interface
description consists of signals over which the vitilial modules communicate with
each other.

The internal view of a module and, therefore, utsctionality is described in the
architecture body. This can be achieved in variwaygs. One possibility is given by
coding a behavioral description with a set of corent or sequential statements.
Another possibility is a structural description, i@l serves as a base for the
hierarchically designed circuit architectures. Mally, these two kinds of architectures
can also be combined. The lowest hierarchy lev@ldver, must consist of behavioral
descriptions. One of the major VHDL features is tagability to deal with multiple

different architectural bodies belonging to the samtity declaration.



Being able to investigate different architecturalternatives permits the
development of systems to be done in an efficieptdown manner. The ease of
switching between different architectures has aro#tuvantage, namely, quick testing.
In this case, it is necessary to bind one architedb the entity in order to have a unique
hierarchy for simulation or synthesis. Which arebitire should be used for simulation
or synthesis in conjunction with a given entityspgecified in the configuration section.
If the architecture body consists of a structuraksdatiption, then the binding of
architectures and entities of the instantiated sadhries, the so-called components, can

also be fixed by the configuration statement.

The package is the last element mentioned here. It contains declarations of frequently
used data types, components, functions, and so on. The package consists of a package
declaration and a package body. The declaration is used, like the name implies, for declaring
the above-mentioned objects. This means, they become visible to other design units. In the
package body, the definition of these objects can be carried out, for example, the definition of
functions or the assignment of a value to a constant. The partitioning of a package into its

declaration and body provides advantages in compiling the model descriptions.

Entity Declaration

An entity declaration specifies the name of antgndind its interface. This
corresponds to the information given by the symbolsaditional design methods based
on drawing schematics. Signals that are used fommanication with the surrounding

modules are called ports.

A
—
N SUM |
— > Fulladder
CARRY,
_C,

Interface of a full-adder module



Example:

entity FULLADDER is

port (A, B, C:in bit;

SUM, CARRY : out bit );

end FULLADDER,;

The module FULLADDER has five interface ports. Tdua them are the input
ports A, B and C indicated by the VHDL keywdrd The remaining two are the output
ports SUM and CARRY indicated byut. The signals going through these ports are
chosen to be of the type bit. This is one of thedpfined types besides integer, real and
others types provided by VHDL. The type bit corsist the two characters '0' and '1'

and represents the binary logic values of the $gna

Every port declaration implicitly creates a signaith the name and type
specified. It can be used in all architectures mgilog to the entity in one of the

following port modes:

in: The port can only be read within the entity and its architectures.

out: This port can only be written.

inout: This port can be read and written. This is useful for modeling bus systems.

buffer: The port can be read and written. Each port must have only one driver.



Syntax :

entity entity name is

[ generics ]

[ ports ]

[ declarations (types, constants, signals) ]

[ definitions (functions, procedures) ]

[ begin -- normally not used

statements ]

end [ entity name | ;

Architecture

The second important component of a VHDL descnpisothe architecture. This
is where the functionality and the internal implertation of a module are described. In

general, a complex hierarchically structured systesy have the topology.

53
//'_""‘-.._‘__‘
5 B
3 Brs 2




Hierarchical circuit design
S: structural description

B: behavioral description

B/S: mixed description

In order to describe such a system both behavaordlistructural descriptions are
required. A behavioral description may be of eitloencurrent or sequential type.

Overall, VHDL architectures can be classified itite three main types:

» Data flow modeling.
» Behavioral modeling.

 Structural modeling.

Syntax :

architecture architecture name of entity name is

[ arch declarative part ]

begin

[ arch statement part ]

end [ architecture name];

The architecture specifies the implementation of the entity entity name. A label
architecture name must be assigned to the architecture. In case there are multiple

architectures associated with one entity this label is then used within a configuration



Statement to bind one particular architecture to its entity. The architecture block consists of
two parts: the arch declarative part before the keywords begin and the arch statement part
after the keywords begin. In the declaration part local types, signals, components etc. are
declared and subprograms are defined. The actual model description is done in the statement
part. In contrast to programming languages like C, the major concern of VHDL is describing
hardware which primary works in parallel and not in a sequential manner. Therefore, a special
simulation algorithm is used to achieve a virtual concurrent processing. This algorithm is

explained in the following section.

Configuration :

It is used to create a configuration for an enflty.binding of components used

in the selected architecture body to other entities

Package Declaration :
It contains a set of declarations that may possibly be shared by many design units.

Package Body :

It contains the behavior of the subprogram and vhkies of the deferred

constants declared in a package declaration.



CHAPTER 3

BASIC LANGUAGE ELEMENTS

This describes the facilities in VHDL, which areadn from the familiar
programming language repertoire. If you are famileith the Ada programming
language, you will notice the similarity with thianguage. This is both a convenience
and a nuisance. The convenience is that you dave hmuch to learn to use these
VHDL facilities. The problem is that the facilitiese not as comprehensive as those of

Ada, though they are certainly adequate for mostatiog purposes.

Lexical Elements

Comments

Comments in VHDL start with two adjacent hyphens)(and extend to the end

of the line. They have no part in the meaning ¥HDL description.

Identifiers

Identifiers in VHDL are used as reserved words asdprogrammer-defined
names. They must conform to the rule:

Letter {[ underlindetter_or_digit }

Note that case of letters is not considered significant, so the identifiers cat and Cat are the
same. Underline characters in identifiers are significant, so This_Name and ThisName are

different identifiers.



Numbers

Literal numbers may be expressed either in decomad a base between two and
sixteen. If the literal includes a point, it reprats a real number, otherwise it represents

an integer. Decimal literals are defined by:

integer [ integer ] [ exponent ]

Example :

0 1 123_456_789 987E6 -- integer literals

0.0 05 2.718 28 12.4E-9 -- real literals

Based literal numbers are defined by:

base # based_integer [ based_integer ] # [ exponent ]

The base and the exponent are expressed in decimal. The exponent indicates the power of the
base by which the literal is multiplied. The letters A to F (upper or lower case) are used as

extended digits to represent 10 to 15.
Example :

2#1100_0100# 16#CA# A4#301#E1 -- the integer 196

2#1.1111_1111_111#E+11 16#F.FF#E2 -- the real number 4095.0



Characters

Literal characters are formed by enclosing an ASfD#racter in single-quote

marks.

Example :

|AI Ikt

Strings

Literal strings of characters are formed by endgsihe characters in double-
guote marks. To include a double-quote mark itsel string, a pair of double-quote
marks must be put together. A string can be useal eue for an object which is an

array of characters.

Example :
"A string"

-- empty string
"A string in a string: ""A string"". " -- contains quote marks

Bit Strings

VHDL provides a convenient way of specifying literal values for arrays of type bit.
Syntax :

base_specifier " bit_value "

Base specifier B stands for binary, O for octal and X for hexadecimal.



Examples :

B"1010110" --lengthis 7
0"126" --length is 9, equivalent to B"001_010_110"
X"56" -- length is 8, equivalent to B"0101_0110"

Data Types and Objects

VHDL provides a number of basic, or scalar, types, and a means of forming composite
types. The scalar types include numbers, physical quantities, and enumerations and there are a
number of standard predefined basic types. The composite types provided are arrays and

records. A data type can be defined by a type declaration:

type identifier is type_definition ;

Type_definition :

scalar_type_definition

composite_type_definition

Scalar_type_definition :

integer_type_definition
physical_type_definition
floating_type_definition

enumeration_type_definition



Composite_type_definition :

array_type_definition

record_type_definition

Integer Types

An integer type is a range of integer values withspecified range.

Syntax :

type identifier is range range_constraint;

The expressions that specify the range must of course evaluate to integer numbers. Types
declared with the keyword to are called ascending ranges, and those declared with the
keyword downto are called descending ranges. The VHDL standard allows an implementation
to restrict the range, but requires that it must at least allow the range —2147483647 to
+2147483647.

Example :

type byte_int is range 0 to 255 ;

type sighed_word_int is range —32768 to 32767 ;

type bit_index is range 31 downto 0 ;

There is a predefined integer type called integer. The range of this type is implementation

defined, though it is guaranteed to include —2147483647 to +2147483647.



Physical Types

A physical type is a numeric type for represensogne physical quantity, such
as mass, length, time or voltage. The declaratibra @hysical type includes the

specification of a base unit, and possibly a nundfesecondary units, being multiples

of the base unit.

Syntax :
type identifier is range range_constraint
units
base_unit_declaration
{ secondary_unit_declaration }
end units
Example :

type length is range 0 to 1E9
units

um;

mm = 1000 um;

cm =10 mm;
m = 1000 mm;
in=25.4 mm;
ft=12in;
yd =3 ft;
rod =198 in;

chain =22 yd;



furlong = 10 chain;

end units;

type resistance is range O to 1E8

units
ohms;
kohms = 1000 ohms;
Mohms = 1E6 ohms;
end units;

The predefined physical type time is important in VHDL, as it is used extensively to specify

delays in simulations. Its definition is:

type time is range implementation_defined

units
fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;

sec =1000 ms;

min = 60 sec;

hr =60 min;

end units;



Floating Point Types

A floating point type is a discrete approximatianthe set of real numbers in a
specified range. The precision of the approximatismot defined by the VHDL
language standard, but must be at least six deaiigdk. The range must include at
least —1E38 to +1E38.

Syntax :

type identifieris rangerange_constraint

Examples :
type signal_level is range —10.00 to +10.00 ;

type probability is range 0.0to0 1.0 ;

There is a predefined floating point type called real. The range of this type is implementation

defined, though it is guaranteed to include —1E38 to +1E38.

Enumeration Types

An enumeration type is an ordered set of identifiers or characters. The identifiers and
characters within a single enumeration type must be distinct, however they may be reused in

several different enumeration types.

Syntax :

type identifieris (enumeration_literal ;)

Example :

type logic_level is (unknown, low, undriven, high);
type alu_function is (disable, pass, add, subtract, multiply, divide);

type octal_digitis ('0', '1','2','3','4','5','6','7");



There are a number of predefined enumeration types, defined as follows:

type severity_level is (note, warning, error, failure);

type boolean is (false, true);

type bitis ('0', '1');

type character is ( NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, BS,
HT, LF, VT, FF, CR, SO, SI, DLE, DC1, DC2, DC3,
DC4, NAK, SYN, ETB, CAN,EM, SUB, ESC, FSP,
GSP, RSP, USP, ", 'I', "™ '#' 'S, 9", &', ™, (%, 1),
sk, oY, ', 20, '3, 4, 'Y, e, 17, '8, 19
WL <, @, A B L DY 'E F G
HL UK LY, MY, NS, 'O P, Q) R 'S, T U,
VLW YT, N T A, L, T al, ', e, Y
‘e, ', g’ 'h g K T, 'mY, 'Y, e, e, g, Y s

lul’ 'VI, IWI, IXI, 'y', IZI' I{I’ lll’ I}‘, |~|’ DEL);

Note that type character is an example of an enumeration type containing a mixture of
identifiers and characters. Also, the characters '0' and 'l' are members of both bit and
character . Where '0' or '1' occur in a program, the context will be used to determine which

type is being used.



Arrays

An array in VHDL is an indexed collection of elenterall of the same type.
Arrays may be one-dimensional (with one index) aitidimensional (with a number of
indices). In addition, an array type may be coms#id in which the bounds for an index
are established when the type is defined, or unainsd, in which the bounds are

established subsequently.

Syntax :
type identifier is array index_constraint of element_subtype_indication;

Example :

type word is array (31 downto 0) of bit;
type memory is array (address) of word;
type transform is array (1 to 4, 1 to 4) of real;

type register_bank is array (byte range 0 to 132) of integer;

An example of an unconstrained array type declaration:

type vector is array (integer range <>) of real;

The symbol ‘<>’ (called a box) can be thought ofagglace-holder for the index
range, which will be filled in later when the arrgype is used. For example, an object

might be declared to be a vector of 20 elementgivipg its type as:

vector(1 to 20)



There are two predefined array types, both of which are unconstrained. They are defined as:

type string is array (positive range <>) of character;

type bit_vector is array (natural range <>) of bit;

The types positive and natural are subtypes of integer. The type bit_vector is
particularly useful in modeling binary coded representations of values in simulations of digital
systems. An element of an array object can referred to by indexing the name of the object. For
example, suppose a and b are one and two-dimensional array objects respectively. Then the
indexed names a(1) and b(1, 1) refer to elements of these arrays. Furthermore, a contiguous
slice of a one-dimensional array can be referred to by using a range as an index. For example a
(8 to 15) is an eight-element array which is part of the array . Sometimes you may need to
write a literal value of an array type. This can be done using an array aggregate, which is a list

of element values. Suppose we have an array type declared as:

type ais array (1 to 4) of character;

and we want to write a value of this type containing the elements 'f', 'o', 'o', 'd" in that order.

We could write an aggregate with positional association as follows:

(lfl, IOI' |OI, Idl)

In this case, the index for each element is explicitly given, so the elements can be in any
order. Positional and named association can be mixed within an aggregate, provided all the
positional associations come first. Also, the word others can be used in place of an index in a
named association, indicating a value to be used for all elements not explicitly mentioned. For

example, the same value as above could be written as:

('f, 4 =>'d', others ©



Records

VHDL provides basic facilities for records, whicheacollections of named

elements of possibly different types.

Syntax :
type identifier is
record
element_declaration
{ element_declaration }
end record
Example :

type instruction is
record
op_code : processor_op ;
address_mode : mode ;
operandl, operand2: integer range 0 to 15 ;

end record;

When you need to refer to a field of a record object, you use a selected name. For
example, suppose that r is a record object containing a field called f. Then the name r.f refers
to that field. As for arrays, aggregates can be used to write literal values for records. Both
positional and named association can be used, and the same rules apply, with record field

names being used in place of array index names.



Subtypes

The use of a subtype allows the values taken oanbgbject to be restricted or

constrained subset of some base type.

Syntax :

subtype identifier is [ resolution_function_name ] range [ constraint ] ;

There are two cases of subtypes. Firstly a subtype may constrain values from a scalar

type to be within a specified range.

Example :
subtype pin_count is integer range 0 to 400;

subtype digits is character range '0'to '9';

Secondly, a subtype may constrain an otherwise unconstrained array type by specifying

bounds for the indices.

Example :

subtype id is string(1 to 20);

subtype word is bit_vector(31 downto 0);

There are two predefined numeric subtypes, defazed

subtype natural is integer range 0 to highest_integer ;

subtype positive is integer range 1 to highest_integer ;



Object Declarations

An object is a named item in a VHDL description gtihas a value of a

specified type. There are three classes of objects:

e Constants
» Variables
* Signals

Constants

Declaration and use of constants and variablesiig much like their use in
programming languages. A constant is an object lwtsdnitialised to a specified value

when it is created, and which may not be subsetyuerddified.
Syntax :

constant identifier_list : subtype_indication [ := expression | ;

Constant declarations with the initialising expressmissing are called deferred
constants, and may only appear in package dedasaftl he initial value must be given

in the corresponding package body.

Example :
constant e : real :=2.71828;
constant delay : Time := 5 ns;
constant max_size : natural;
Variables

A variable is an object whose value may be changed after it is created.

Syntax :

variable identifier_list : subtype_indication [ := expression ] ;



The initial value expression, if present, is eviddaand assigned to the variable
when it is created. If the expression is absendefault value is assigned when the
variable is created. The default value for scatpes is the leftmost value for the type,
that is the first in the list of an enumerationdyghe lowest in an ascending range, or the
highest in a descending range. If the variabledsraposite type, the default value is the
composition of the default values for each elemieased on the element types.

Example :

variable count : natural := 0;

variable trace : trace_array;

Assuming the type trace_array is an array of boolean, then the initial value of the variable trace

is an array with all elements having the value false.

Signals

Signals represent wires in a logic circuit. Signals can be declared in all declarative
regions in VHDL except for functions and procedures. Assignments to signals are not

immediate, but scheduled to be executed after a delta delay.

Syntax :

signal identifier_list : subtype_indication [ := expression ] ;

Example :

signal foo : bit_vector (0 to 5) := B"000000" ;
signal aux : bit ;

signal max_value : integer ;



The declaration assigns a name to the signal foo ; a type, with or without a range

restriction (bit_vector(0 to 5)); and optionally an initial value. Initial values on signals are

usually ignored by synthesis. Signals can be assigned values using an assignment statement

(e.g., aux<="0";). If the signal is of an array type, elements of the signal’s array can be accessed

and assigned using indexing or slicing methods.

Expressions and Operators

Expressions in VHDL are much like expressions irfeot programming

languages. An expression is a formula combiningharies with operators. Primaries

include names of objects, literals, function caltel parenthesized expressions.

Type Operators Precedence
Lgical and  or nand  nor xor  xnor |Lowest
Relational = = < = -'- az
Adding + - &

Unary (sign) |+ -

Muttiplying * mid rem
Miscellaneous  |™ abs ot Highast

Operators and precedence

The logical operators and, or, nand, nor, xor and not operate on values of type bit or

Boolean, and also on one-dimensional arrays of these types. For array operands, the operation

is applied between corresponding elements of each array, yielding an array of the same length

as the result. For bit and Boolean operands, and, or, nand, and nor are ‘short-circuit’

operators, that is they only evaluate their right operand if the left operand does not determine

the result. So and and nand only evaluate the right operand if the left operand is true or '1',

and or and nor only evaluate the right operand if the left operand is false or '0'.



The relational operators =, /=, <, <=, > and >= must have both operands of the same
type, and yield Boolean results. The equality operators (= and /=) can have operands of any
type. For composite types, two values are equal if all of their corresponding elements are
equal. The remaining operators must have operands which are scalar types or one-dimensional

arrays of discrete types.

The sign operators (+ and —) and the addition (+) and subtraction (-) operators have
their usual meaning on numeric operands. The concatenation operator (&) operates on one-
dimensional arrays to form a new array with the contents of the right operand following the
contents of the left operand. It can also concatenate a single new element to an array, or two
individual elements to form an array. The concatenation operator is most commonly used with

strings.

The multiplication (*) and division (/) operators work on integer, floating point and
physical types. The modulus (mod) and remainder (rem) operators only work on integer types.
The absolute value (abs) operator works on any numeric type. Finally, the exponentiation (**)
operator can have an integer or floating point left operand, but must have an integer right

operand. A negative right operand is only allowed if the left operand is a floating point number.



CHAPTER 4
MODELING TYPES

DATAFLOW MODELING

This kind of description specifies a dataflow thgbuthe entity based on
concurrent signal assignment statements. A streictdirthe entity is not explicitly
defined by this description but can be derived fritmAs an example, consider the

following implementation of the entity FULLADDER.

Example :

architecture CONCURRENT of FULLADDER is

begin

SUM <= A xor B xor C after 5 ns;

CARRY <= (A and B) or (B and C) or (A and C) after 3 ns;

end CONCURRENT;

Two concurrent signal assignment statements desthié model of the entity
FULLADDER. The symbol <= indicates the signal assngnt. This means that the
value on the right side of the symbol is calculased subsequently assigned to the
signal on the left side. A concurrent signal assignt is executed whenever the value of
a signal in the expression on the right side changegeneral, a change of the current
value of a signal is called an event. Due to tloe tfaat all signals used in this example
are declared as ports in the entity declaration.

The arch declarative part remains empty. Infornmtibout a possibly existing

delay time of the modeled hardware is providedhwydfter clause. If there is an event



on one of the inputs A, B or C at time T, the esgren A xor B xor C is computed at
this time T, but the target signal (the output SUM$cheduled to get this new value at
time T + 5 ns. The signal assignment for CARRY asdied in exactly the same way
except for the smaller delay time of 3 ns. If esplinformation about the delay time is
missing then it is assumed to be 0 ns by defauliveltheless, during the VHDL
simulation the signal assignment is executed ateinfinitesimally small delay time,
the so-called delta-delay. This means that theasigssignment is executed immediately
after an event on a signal on the right side i®aet and the calculation of the new

expression value is performed.

Syntax :

[ label : ] signal name <= [ transport ] expression [ after time expression | ;

Up to now the label was not used. With this elenitig possible to assign a
label to the statement, which can be useful forudwmntation. Furthermore, it is
possible to assign several events with differef@ydémes to the target signal. In this
case the values to be assigned and their delag tienee to be sorted in ascending order.
The keyword transport affects the handling of nplatisignal events coming in short

time one after another.

Example :

architecture VER1 of MUX is
begin
OUTPUT <= A ;

end VER1;



Conditional Signal Assignment statement

In this case there are different assignment staitsmelated to one target signal.
The selection of one assignment statement is dedrby a set of conditions condition.
The conditional signal assignment statement cacobgpared with the well-known if -

elsif - else structure.

Syntax :

[ label : ] signal name <= expression when condition else

expression when condition else

expression ;

The conditional signal assignment is activated as soon as one of the signals belonging to the

condition or expression changes.

Example :

Z <= A when (X>3) else
B when (X < 3) else

C;

Each time one signal either in expression or caithanges its value the
complete statement is executed. Starting withitisedondition, the first true one selects
the expression that is computed and the resultadgevis assigned to the target signal

signal name.



Selected Signal Assighment statement

With this statement a choice between differentgamssent statements is made.
The selection of the right assignment is done &y \talue of select expression. The

statement resembles a case structure.

Syntax :

[label : ] with select_expression select
signal name <= expression when value,
expression when value,

expression when others;

The selected signal assignment is activated as soon as one of the signals belonging to the

selection condition or expression changes.

Example :

with MYSEL select
Z<=Awhen15,
B when 22,

C when others ;

Unaffected Statement

No action to be take place in a sequential statement and execution continues with the
next statement. It is represented by using the keyword unaffected. It is used in a conditional
or selected signal assignment statement wheregftain conditions. It may be useful or

necessary to explicitly specify that no action reetedbe performed.



Example :

with mux_sel select
Z <= A when “00”,
B when “01”,
C when “10”,

unaffected when others ;

Block statement

A block statement defines an internal block repméeg a portion of a design.

Blocks may be hierarchically nested to supportgtediecomposition.

In order to efficiently group concurrent assignnseriilock statements may be
used. A block may contain declarations of datasypegnals, and so on, all of which are
locally used. The body of the block statement dastany of the concurrent statements

mentioned previously.

A guarded block contains an additional boolean esgion guard expression,
which drives an implicit signal GUARD of boolearpg This signal can be used within
a block for the control of concurrent assignmetitsconcurrent statements have an

associated GUARD signal, they are known as GuaSigual Assignments.

Syntax :

Label : block [ ( guard expression )]
[ use clause ]
[ subprogram decl, subprogram body ]

[ type decl]



[ subtype decl ]
[ constant decl ]
[ signal decl ]
[ component decl ]
begin
[ concurrent statements ]

end block [label];

Guarded Signal Assignment is a special form ofdtecurrent assignment. The
assignment is activated after the GUARD signal,clvhinust be of the boolean type, is
evaluated to true. The GUARD signal can be expicieclared and used; however, it is

more common to use it implicitly within a Guardelb&k.

Syntax :

[ label : ] signal name <= guarded expression [ after time expr];

Example :
U1 : block ( clk="1" and not clk’stable )
signal temp : std_logic ;
begin
temp <= guarded D ;
Q <= temp;
Q' <= nottemp

end block U1;



Any declarations appearing within the block are visible only within the block, that is,

between block ................ end block.

BEHAVIORAL MODELING

Behavioral descriptions are based on the processroement. A process
statement as a whole is treated as a concurretegnstat within the architecture.
Therefore, in the simulation time a process is ioously executed and it never gets
finished. The statements within the process arecuggd sequentially without the
advance of simulation time. To ensure that simofatime can move forward every
process must provide a means to get suspended, dlmscess is constantly switching
between the two states: the execution phase inhathie process is active and the
statements within this process are executed, andubpended state. The change of state

is controlled by two mutually exclusive implementas:

. With a list of signals in such a manner that an event on one of these signals invokes a
process. This can be compared with the mechanism used in conjunction with concurrent
signal assighnment statements. There, the statement is executed whenever a signal on the
right side of the assignment operator <= changes its value. In case of a process, it
becomes active by an event on at least one signal belonging to the sensitivity list. All
statements between the keywords begin and end process are then executed

sequentially.

Syntax :

[ proclabel : ] process ( sensitivity list)

[ proc declarative part ]



begin

[ sequential statement part ]

end process [ proc label ];

The sensitivity list is a list of signal names within round brackets, for Example

(A B,C).

. With wait statements in such a way that the process is executed until it reaches a wait
statement. At this instance it gets explicitly suspended. The statements within the
process are handled like an endless loop which is suspended for some time by a wait

statement.

Syntax :

[ process label : ] process
[ proc declarative part ]
begin
[ sequential statements ]
wait ...; -- at least one wait statement

[ sequential statements ]

end process [ proc label | ;



The structure of a process statement is similar to the structure of an architecture. In
the process declarative part various types, constants and variables can be declared; functions
and procedures can be defined. The sequential statement part contains the description of the
process functionality with ordered sequential statements. An implementation of the full adder

with a sequential behavioral description is given below:

Example :

architecture SEQUENTIAL of FULLADDER is
begin
process (A, B, C)
variable TEMP : integer;
variable SUM CODE : bit vector(0 to 3) := "0101";

variable CARRY CODE : bit vector(0 to 3) :="0011";

begin
if A="1"then
TEMP :=1;
else
TEMP :=0;
end if;
if B="1"then

TEMP := TEMP + 1;

end if;



if C="1"then
TEMP :=TEMP + 1;
end if; -- variable TEMP now holds the number of ones
SUM <= SUM CODE(TEMP);
CARRY <= CARRY CODE(TEMP);
end process;

end SEQUENTIAL;

The functionality of this behavioral description lgsed upon a temporary
variable TEMP which counts the number of ones eniniput signals. With this number
one element, or one bit, is selected from eachetwo predefined vectors SUM CODE
and CARRY CODE. The initialization of these two tas reacts the truthtable of a
full-adder module. The reason for this unusual rgds the attempt to explain the
characteristics of a variable. A variable diffecs pnly in the assignment operator (:=)
from that of a signal (<=). It is also differentttvirespect to time when the new
computed value becomes valid and, therefore, réadalother parts of the model.

Every variable gets the new calculated value imateti, whereas the new
signal value is not valid until the beginning oéthext delta-cycle, or until the specified
delay time elapses. If the above example had bedadcwith a signal as the temporary
counter instead of the variable, then the cornettionality of this architecture as a full
adder could not be ensured. After an event at Tinoe one of the input signals A, B or
C, which are members of the sensitivity list, theogess is executed once. The
simulation continues with executing the second tédtesment at time T because
computing a sequential statement does not advéwecsitnulation time. Therefore, the
signal TEMP still holds the same value it had befibre process activation! This means

that the intended counting of ones does not wotk WEMP declared as signal.



In general, signal assignment statements within a process have to be handled with
care, especially if the target signal will be read or rewritten in the following code before the
process gets suspended. If this effect is taken into consideration, the process statement
provides an environment in which a person familiar with programming languages like C or
Pascal can easily generate a VHDL behavioral description. This remark, however, should not be
understood that the process statement is there for people switching to VHDL. In reality, some

functions can be implemented much more easily in a sequential manner.

Example :

architecture SEQUENTIAL of DFF is
begin
process (CLK, NR)
begin
if (NR="0') then
Q <= (others =>'0');

elsif (CLK'event and CLK ='1') then

end if;
end process;
end SEQUENTIAL;

In the above example, the attribute CLK'event isdut detect an edge on the
CLK signal. This is equivalent to an event on CLKhe ability to detect edges on
signals is based upon the storage of all eventevient queues for every signal.
Therefore, old values can be compared with theahanes or even read. In contrast,
variables always get the new assigned value imrtedgiand the old value is not stored.
Subsequently, during the simulation more memorgagiired for a signal for a variable.

In complex system descriptions this fact shoulddien into consideration.



Sequential Signal Assignment statement

The syntax of a sequential signal assignment ig s@nilar to the concurrent

assignment statement, except for a label whicmcabe used.

Syntax :

signal name <= [ transport ] expression [ after time expr];

Variable Assighment statement

A variable assignment statement is very similar to a signal assignment. As already
mentioned, a variable differs from a signal in that it gets its new value immediately upon
assignment. Therefore, the specification of a delay time in a variable assignment is not
possible. Attention must be paid to the assignment operator which is := for a variable and <=

for a signal.

Syntax :

variable name := expression ;

Wait statement

This statement may only be used in processes withosensitivity list. The

purpose of the wait statement is to control aditivaand suspension of the process.



Syntax :

Wait [ on signal names ] ;
Wait [ until condition ]

Wait [ for time expression ] ;

The arguments of the wait statement have the following interpretations:

. on signal names:

The process gets suspended at this line until tisesm event on at least one
signal in the list signal names. The signal namessaparated by commas; brackets are

not used. It can be compared to the sensitivityolishe process statement.

. until condition:

The process gets suspended until the condition becomes true.

. for time expression:

The process becomes suspended for the time specified by time expression.

. without any argument:

The process gets suspended until the end of the simulation.

A sensitivity list of a process is functionally equivalent to the wait on ... appearing at the end of

the process. There are four different ways to use the wait-statement:



wait on A, B;

suspends a process until an occurrence of a changgistered. Here, execution will
resume when a new event is detected on eitherlsigoaB.

wait until X > 10;

suspends a process until the condition is satisfied; in this case, until the value of a signal is > 10.

wait for 10 ns;

suspends a process for the time specified; here, until 10 ns of simulation time elapses.

wait;

suspends a process indefinitely. . . Since a VHBdcess is always active, this
statement at the end of a process is the only wasps$pend it. This technique may be

used to execute initialization processes only once.

The example below models an architecture, whichukkites a Producer/Consumer
problem using two processes. The processes arehreymzed through a simple

handshake protocol, which has two wires, each tithactive states.

Example :

entity PRO CON is

end PRO CON;



architecture BEHAV of PRO CON is

signal PROD: boolean :=false; --item produces a semaphore

signal CONS: boolean :=true; --item consumes a semaphore

begin

PRODUCER: process producer model

begin

PROD <= false;

wait until CONS; ----produce item

PROD <= true;

wait until not CONS;

end process;

CONSUMER: process consumer model

begin

CONS <= true;

wait until PROD;

CONS <= false;

...consume item

wait until not PROD;

end process;

end BEHAV;



If-else statement

This branching statement is equivalent to the daerd in other programming

languages and, therefore, needs no further exjpdenat

Syntax :

if condition then

sequential statements ;

[ elsif condition then

sequential statements ; ]

[ else

sequential statements; ]

end if;

Case statement

This statement is also identical to its correspogdiquivalent found in other

programming languages.



Syntax :

case expression is

when choices => sequential statements ;

[ when others => sequential statements ; ]

end case ;

Either all-possible values of expression must beemed with choices or the case

statement has to be completed with an others branch

Example :

case BCDis e Decoder: BCD to 7-Segment
when "0000" => LED :="1111110"
when "0001" => LED :="1100000";
when "0010" => LED :="1011011";
when "0011" => LED :="1110011";
when "0100" => LED :="1100101";
when "0101" => LED :="0110111";
when "0110" => LED :="0111111";

when "0111" => LED := "1100010";



when "1000" => LED :="1111111";
when "1001" => LED :="1110111";
when others => LED := "------- e don't care

end case;

Null statement

This statement is used for an explicit definitidnbeanches without any further

commands. Therefore, it is used primarily in cdagesnents, and also in if clauses.

Syntax :

null ;

Loop statement

This is a conventional loop structure found in other programming languages.

Syntax :
[ loop label : ] while condition loop | --controlled by condition
for identifier in valuel to | downto value2 loop | --with counter
loop --endless loop

sequential statements

end loop [ loop label ] ;



Example :
1.=0;

Ul: while J<20 loop

J.=1+2;

end loop Ul;

The while...loop statement has a Boolean iterasocheme. If the iteration
condition evaluates true, executes the enclos¢enséamts once. The iteration condition
is then reevaluated. As long as the iteration d@mwiremains true, the loop is
repeatedly executed. When the iteration conditiealuates false, the loop is skipped
and execution continues with the next loop iteratio

for i in Oto 3 loop

Z(i)-=A(i)andB(i);

end loop ;

The for...loop statement has an integer iteration scheme. The integer range determines the

number of repetitions.



Z:=2; sum:.=1;
V1: loop
Z2:=7Z+ 3;
sum:=sum*5 ;
exit when sum > 100 ;

end loop V1 ;

The basic loop statement has no iteration scheme. It executes enclosed statements repeatedly

until it encounters an exit or next statement.

Exit and Next statement

With these two statements a loop iteration carebminated before reaching the
keyword end loop. With next the remaining sequérgtatements of the loop are
skipped and the next iteration is started at tiggnioéng of the loop. The exit directive
skips the remaining statements and all remainiog lierations. In nested loops both
statements skip the innermost enclosing loop ip llzdel is left out. Otherwise, the loop
labeled loop label is terminated. The optional ¢ood expression can be specified to
determine whether or not to execute these statesment

Syntax :

next [ loop label ] [ when condition ] ;

Example :

for I'in 0 to MAX LIM loop
if (DONE(l) = true) then
next, 0 - Jump to end loop

end if;



Q(l) <= A(l);
end loop;
L1: while J < 10 loop outer loop
L2: while K < 20 loop inner loop...

next L1 when J = K; jump out of the inner loop...

end loop L2;
endloopll, - jump destination
Syntax :
exit [loop label ] [ when condition];
Example:

for lin 0 to MAX LIM loop

if (Q(I) <= 0) then
exit;, 0 - jump out of the loop
end if;
Q(l) <= (A*1);
endloop;, - jump destination

STRUCTURAL DESCRIPTION

In structural descriptions the implementation afyatem or model is described

as a set of interconnected components, which ifasito drawing schematics. Such a

description can often be generated with a VHDL isklt in a graphical development

tool. Since there are many different ways to wsiteictural descriptions, to explain all

of them in one section would be more confusing tlalightening. Therefore, only one

alternative approach is presented here.



A N TR
SLIM
HA Ly SUM
B JT gl E1 oo cl=2 J OR
% CARBY.
c |2HA|:: C1 w2 .

Structural implementation of a full adder

As an introductive example, consider the implemionaof a full-adder circuit. The

components HA and XOR are assumed to be predeéieedents.

Example :

architecture STRUCTURAL of FULLADDER is
signal S1, C1, C2 : bit;
component HA
port ( 11,12 :in bit; S, C: out bit);
end component ;
component OR
port ( 11,12 :in bit; X :outbit);
end component;
begin
INST HA1 : HA port map (11 =>B,12=>C,5S=>51,C=>C1);
INST HA2 : HA port map (11 => A, 12=>51,S=>SUM,C=>C2);
INST OR : OR port map (11 =>C2,12 =>C1, X => CARRY) ;

end STRUCTURAL ;



Component declaration

In the declarative part of the architecture, ajeots which are not yet known to
the architecture have to be declared. In the exampbve, these are the signals S1, C1
and C2 used for connecting the components togegixefuding the ports of the entity
FULLADDER. In addition, the components HA and XORvk to be declared. The
declaration of a component consists of declariagnterface ports and generics to the
actual model.

Often used components could be selected from arlibof gates defined in a
package and linked to the design. In this casal#utaration of components usually is
done in the package, which is visible to the enfilyerefore, no further declaration of

the components is required in the architectureadatie part.

The actual structural description is done in tlageshent part of the architecture
by the instantiation of components. The componeetstence names INST HAL, INST
HA2 and INST XOR, also known as instance namest fmisinique in the architecture.
The port maps specify the connections betweenrdiitecomponents, and between the
components and the ports of the entity. Thus, tmponents' ports (so-called formals)
are mapped to the signals of the architecture gdeet actuals) including the signals of
the entity ports. For example, the input port I1hed half adder INST HAL is connected
to the entity input signal B, input port 12 to Cpdaso on. The instantiation of a
component is a concurrent statement. This meanghbaorder of the instances within

the VHDL code is of no importance.

Syntax :

component component name
[ generic ( generic list : type name [ := expression] ; |
generic list : type name [ := expression] ); ]
[ port ( signal list : mode type name ;
signal list : mode type name ); ]

end component ;



Component instantiation

A component instantiation statement defines a smipoment of the design entity
in which it appears, associates signals or valuds thie ports of that subcomponent,
and associates values with generics of that subopemt. This subcomponent is one
instance of a class of components defined by aespanding component declaration,

design entity, or configuration declaration.

Syntax :

component label : component name port map ( Association-list ) ;

The Association of ports to the connecting sigaisng the instantiation can be
done through the positional notation. Alternativetymay be done by using the named
notation, using the already familiar format

Two types of association

e Positional Association

¢ Named Association

Positional Association

Each actual in the component instantiation is mapped by position with each port in the

component declaration. The ordering of the actuals is therefore important.
An association-list form

actuall, actual2 , actual3, ............ actualn

Example :

V1 :nand2 portmap( S1,S2,S3) ;



If a port in a component instantiation is not cartad to any signal. This purpose the

keywordOpen s used.

V1 :nand2 port map ( S1, open, S3) ;

Named Association

The ordering of the association is not importantsithe mapping between the

actuals and formals is explicitly specified

An association-list form

formall => actuall, formal2 => actual2,....... formaln => actualn

Example :
component nand2
port (A, B : instd_logic ;
C : outstd_logic) ;
end component ;
begin

V1: nand2 port map (A=>S1,B=>52,C=>S3);

It is important to note that the symbol '=>' is dis@thin a port map in contrast to the
symbol '<=" used for concurrent or sequential diggaignment statements. If one of the
ports has no signal connected to it, a reserved wpen may be used. A function call
can replace the signal name. This allows direce tgpnversions at the component

instantiation.



CHAPTER 5

GENERICS AND CONFIGURATIONS
GENERICS

It allow static information to be communicated to a block from its environment for all
architectures of a design unit. These include timing information like setup, hold, delay times,

part sizes, and other parameters.

Syntax :

[ generic ( list-of-generics-and-their-types ) ; ]

It can be declared any one of the following :

e Entity Declaration

e Component Declaration

* Component Instantiation

¢ Configuration Specification

e Configuration Declaration

The generic size can be used inside the entityimmnike architecture that matches the
entity. In this example, the generic size is defims an integer with an initial value 8.

The sizes of the input and output ports of thetgmicrement are set to be 8 bits unless
the value of the generic is overwritten by a genemap statement in the component

instantiation of the entity.

Example: entity incrementis

generic ( size : integer :=8) ;
port ( ivec: in bit_vector (0 to size-1) ;
ovec : out bit_vector (0 to size-1)) ;

end increment ;



The other ways of specifying the value of a generic are in a component instantiation.

U1 :and2 generic map (10) port map( D,S1);

U2 : or2 generic map (M=>8) port map ( C, S2) ;

CONFIGURATIONS

Used to bind component instances to design enateiscollect architectures to
make, typically, a simulatable test bench. One igontion could create a functional
simulation while another configuration could cretite complete detailed logic design.

With an appropriate test bench the results ofweedonfigurations can be compared.

A configuration does not have any simulation semanassociated with it; it
only specifies how a top-level entity is organizeaderms of lower-level entities. The
component names and the entity names, as welleapdti names and their order, are

different. The binding information can be specifiezsing a configuration.

Two types of binding
e Configuration Specification

¢ Configuration Declaration

Configuration specification

To bind component instantiations to specific entities stored in design libraries. It
appears in the declarations part of the architeabuiblock in which the components are

instantiated

Syntax :

for list-of-comp-labels : component-name binding-indication ;

The binding-indication specifies the entity reprasd by the entity-architecture

pair, and the generic and port bindings, and onts dérms is



use entity entity-name [ ( architecture-name ) ]
[ generic map ( generic-association-list ) ]

[ port map ( port-association-list)] ~  ------ Form1

The list of component labels may be replaced withkeyword all to denote all
instance of a component; it may also be the keywtindrs to specify all as yet unbound
instances of a componemhe generic map is used to specify the values for the generics or
provide the mapping between the generic parameters of the component and the entity to
which it is bound. The port map is used to specify the port bindings between the component

and the bound entity.
Example: Library ieee;
use ieee.std_logic_1164.all;
entity HA
port (A, B : instd_logic ;
Sum,Ca : outstd_logic) ;
end HA ;
architecture HA_str of HA is
component xor2
port (A, B : instd_logic ;
C : outstd_logic) ;
end component ;
component and2
port (A, B : instd_logic ;
C : outstd_logic) ;

end component ;



for X1 : xor2 use entity work.xor2 ( xor_arch );
for Al : and2 use entity work.and2 ( and_arch );
begin
X1 : xor2 port map ( A, B, Sum) ;
Al:and2 port map (A, B, Ca);

end HA_ str;

Configuration declarations

The binding of component instances to design estitis performed by
configuration specifications; such specificationpear in the declarative part of the
block in which the corresponding component instanaee created. In certain cases,
however, it may be appropriate to leave unspecifiedbinding of component instances
in a given block and to defer such specificatiotildater. A configuration declaration

provides the mechanism for specifying such defebiadings.

Syntax :

configuration identifier of entity_name is
configuration_declarative_part
use_clause
| attribute_specification
block_configuration
end [ configuration ] [ configuration_simple_name ] ;

The entity name identifies the name of the entidgldration that defines the
design entity at the apex of the design hierar&lwy.a configuration of a given design
entity, both the configuration declaration and tloeresponding entity declaration must
reside in the same library. If a simple name appedrthe end of a configuration

declaration, it must repeat the identifier of tleafiguration declaration.



NOTES

—A configuration declaration achieves its effect entirely through elaboration. There are no

behavioral semantics associated with a configuration declaration.

—A given configuration may be used in the defimtiof another, more complex

configuration.

Example :
— An architecture of a microprocessor:

architecture Structure_View of Processor is
component ALU port ( ®ee ); end component;
component MUX port ( eee ); end component;
component Latch port ( ®ee ); end component;
begin

Al: ALU port map ( eee);

M1: MUX port map ( eee ) ;

M2: MUX port map ( eee ) ;

M3: MUX port map ( eee ) ;

L1: Latch port map ( eee);

L2: Latch port map ( eee );

end Structure_View ;



— A configuration of the microprocessor:

library TTL, Work ;
configuration V_config of Processor is
use Work.all ;
for Structure_View
for Al: ALU use configuration TTL.SN74L5181 ;
end for ;
for M1,M2,M3: MUX use entity Multiplex4 (Behavior) ;
end for ;
for all: Latch
end for ; — use defaults
end for ;
end configuration V_config ;

A block configuration defines the binding of compats in a block, where a block may
be an architecture body, a block statement, onarng¢e statement.

Syntax of Block configuration :

for block-name
component-configurations
block-configurations
end for ;
A block-name is the name of an architecture body, a block statement label, or a generate

statement label.



Syntax of Component-configuration :

for list-of-comp-labels : component-name

[ binding-indication ; ]

[ block-configurations ]

end for ;

There are two other forms of binding indication

use configuration configuration-name  ------ Form 2

use open. ~ ------ Form 3

In Form 2, the binding indication specifies that the component instance are to be
bound to a configuration of a lower-level entity as specified by the configuration name. In Form
3,the binding indication specifies that the binding is not yet specified and is to be deferred.

Both these forms of binding indication may also be used in a configuration specification.

Example : Library TTL;

configuration HA_config of HA is

for HA_XA

for X1 :xor2

use entity work.Xor2 ( xor_2);

end for ;

for Al:and2

use entity work.and2 (and_2);

end for ;

end for ;

end HA_config ;



Direct Instantiation

It is possible to directly instantiate the entity-architecture pair or a configuration in a
component instantiation statement. This saves the additional binding step necessary when
using components. Two additional forms of the component instantiation statement that can be

used to directly instantiate an entity or a configuration.

Syntax :

Component-label : entity entity-name
[ (architecture-name) ]
[ generic map ( generic-association-list ) ]

[ port map ( port-association-list ) ] ;

Component-label : configuration config-name
[ generic map ( generic-association-list ) ]

[ port map ( port-association-list ) ] ;

NOTE

No configuration declaration is necessary or pdssib this case, since the component
instantiations directly instantiate the appropriagntity-architecture pairs or

configurationsNo components declarations are necessary or possible.

Example :

architecture HA str of HA is

begin
X1 : entity work.xor2 ( xor2 ) port map (A, B,S);
Al : configuration TTL.and2 port map (A, B,C);

end HA_str;



CHAPTER 6

SUBPROGRAMS AND PACKAGES

SUBPROGRAMS

There are two kinds of subprograms: procedures amtttions. Both
procedures and functions written in VHDL must ha®ebody and may have
declarations.

Procedures perform sequential computations andrrrevalues in global

objects or by storing values into formal parameters

Functions perform sequential computations andmesuvalue as the value of

the function. Functions do not change their forpalameters.

Subprograms may exist as just a procedure bodya dunction body.
Subprograms may also have a procedure declaratioasfunction declaration. When
subprograms are provided in a package, the sutmrogieclaration is placed in the

package declaration and the subprogram body ieg@lacthe package body.

Procedure Declaration
Syntax :

procedure identifier [ ( formal parameter list) ] ;

Formal parameters are separated by semicolonseirfiormal parameter list.
Each formal parameter is essentially a declaratibran object that is local to the
procedure. The type definitions used in formalpagters must be visible at the place
where the procedure is being declared. No semmcfaibows the last formal parameter
inside the parenthesis. Formal parameters may bstarts, variables, signals or files.
The default is variable. Formal parameters may lmwdesin, inout andout Files do
not have a mode. The defaultnslf no type is given and a mode iof is used, constant

is the default.



Example :
procedure build ( A :in integer;

B :inout signal bit_vector;
C :out real;
D :file ) ;

Procedure Body

Syntax :

procedure identifier [ ( formal parameter list )i$
subprogram declanati
| subprogram body
| type declaration
| subtype declaration
| constant, objeatldeation
| variable, objectldeation
| alias declaration
| use clause
begin
sequential stagat(s)

end procedure identifier ;

The procedure body formal parameter list is defirsdove in Procedure
Declaration. When a procedure declaration is ubet the corresponding procedure

body should have exactly the same formal parantister
Example :
type op_code is (add, sub, mul, div) ;
procedure ALU (A, B: in integer ;
p : in op_code ;

Z : out integer ;) is

Begin



case op is
when add => Z<= A+B ;
when sub => Z<= A-B ;
when mul => Z<= A*B ;
when others => Z<= A/B ;
end case ;

Procedure Call

Procedures are invoked by using procedure calls.

Syntax :

[ Label ] procedure-name ( list-of-actuals);

The actuals specify the expressions, signals, basa or files, that are to be
passed into the procedure and the names of objeztsare to receive the computed

values from the procedure.

Example :

CheckTiming (tPLH, tPHL, Clk, D, Q);

Function Declaration

Syntax :

function identifier [ ( formal parameter list gturn a_type ;

Formal parameters are separated by semicolonseirfiormal parameter list.
Each formal parameter is essentially a declaratibran object that is local to the
function. The type definitions used in formal pasers must be visible at the place
where the function is being declared. No semicd@lows the last formal parameter

inside the parenthesis.



Formal parameters may be constants, signalseas. filhe default is constant.

Formal parameters have the madeFiles do not have a mode.

The reserved worfilinction may be preceded by nothing, implyipgre, pure
or impure . A pure function must not contain a reference to a file object;esli
subelement, shared variable or signal with attebutuch as 'delayed, 'stable, 'quiet,

‘transaction and must not be a parent of an imfuunetion.

Note -- The inout andut are not allowed for functions. The defaulins

Example :

function randonreturn float ;

function is_even ( A : integemeturn boolean ;

Function Body

Syntax :

function identifier [ ( formal parameter list )rgturn a_typeis
subprogram declanati
| subprogram body
| type declaration
| subtype declaration
| constant, objeatldeation
| variable, objectldeation
| alias declaration
| use clause
begin
sequestatement(s)
returmss value; -- of type a_type

end function identifier ;

The function body formal parameter list is definabove in Function
Declaration. When a function declaration is ugezhtthe corresponding function body

should have exactly the same formal parameter list.



Example :
function randomreturn floatis
variable Xaat;
begin
return X; -- compute X

end function random ;

Function Call

A function call is an expression and can also be used in large expressions.

Syntax :

f unction-name ( list-of-actuals )

The actuals may be associated by position or using named association.

sum : = sum + largest ( max_coins, collection ) ;

PACKAGES

A package is used as a collection of often used dgpes, components,
functions, and so on. Once these object are deckrd defined in a package, they can
be used by different VHDL design units. In partaoyl the definition of global
information and important shared parameters in dexnpesigns or within a project
team is recommended to be done in packages. lbssilge to split a package into a
declaration part and the so-called body. The adgpntof this splitting is that after
changing definitions in the package body only trast has to be recompiled and the rest
of the design can be left untouched. Thereforet afltime consumed by compiling can

be saved.

Package declarations

A package declaration defines the interface to ekage. The scope of a

declaration within a package can be extended teratésign units.



Syntax :
package package_name is
package_declarative_part :

subprogram_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| alias_declaration
| component_declaration
| attribute_declaration & specification
| use_clause

end [ package ] [ package_name ] ;

If a name appears at the end of the package declarda must repeat the name of the
package declaration. If a package declarative itena type declaration, then that
protected type definition must not be a protecyge body. Items declared immediately
within a package declaration become visible bydgle within a given design unit

wherever the name of that package is visible ingilren unit. Such items may also be

made directly visible by an appropriate use clause.

NOTE—Not all packages will have a package bodypanticular, a package body is
unnecessary if no subprograms, deferred constantprotected type definitions are

declared in the package declaration.



Example :

— A package declaration that needs no package body:

package TimeConstants is
constant tPLH : Time := 10 ns;
constant tPHL : Time := 12 ns;
constant tPLZ : Time := 7 ns;

end TimeConstants ;

— A package declaration that needs a package body:

package MY PACK is
type SPEED is (STOP, SLOW, MEDIUM, FAST);
component HA
port (11, 12 : in bit; S, C : out bit);
end component;
constant DELAY TIME : time;
function INT2BIT VEC (INT VALUE : integer) return bit vector;

end MY PACK;

Package bodies

A package body defines the bodies of subprogramdstlas values of deferred

constants declared in the interface to the package.



Syntax :

package body package_name is
package_body_declarative_part
subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| alias_declaration
| use_clause

end [ package body ] [ package_name ] ;

The name at the start of a package body must réipeatame name. In addition
to subprogram body and constant declarative itenpgckage body may contain certain
other declarative items to facilitate the definitiof the bodies of subprograms declared

in the interface.

Items declared in the body of a package cannot &denvisible outside of the
package body. If a given package declaration costaideferred constant declaration,
then a constant declaration with the same identifiest appear as a declarative item in
the corresponding package body. This object detatawss called the fulbeclaration of
the deferred constant. The subtype indication gimethe full declaration must conform
to that given in the deferred constant declarat\gfithin a package declaration that
contains the declaration of a deferred constamt,véthin the body of that package, the
use of a name that denotes the deferred constanhlis allowed in the default
expression for a local generic, local port, or fafrparameter. The result of evaluating
an expression that references a deferred consteftreb the elaboration of the

corresponding full declaration is not defined bg thnguage.



Example :

package body MY PACK is
constant DELAY TIME : time := 1.25 ns;
function INT2BIT VEC (INT VALUE : integer)return bit vector is
begin
-- sequential behavioral description
end INT2BIT VEC;

end MY PACK;

The binding between the package declaration and the body is established by using the same

name. In the above example it is the package name MY PACK.

Packages must be made visible before their contents can be used. The USE clause makes

packages visible to entities, architectures, and other packages.

Syntax :

Use library_name . Package_name. all ;

Example :

-- use only the binary and add_bits3 declarations

USE work .my_stuff.binary, my_stuff.add_bits3;
... ENTITY declaration...

... ARCHITECTURE declaration ...



-- use all of the declarations in package my_stuff

USE work .my_stuff.ALL;

... ENTITY declaration...

... ARCHITECTURE declaration...



CHAPTER 7
ADVANCED FEATURES

e Generate Statements
e Aliases

e Attributes

GENERATE STATEMENTS

Concurrent statements can be conditionally selectedeplicated during the
elaboration phase. The generate Statement profadescompact description of regular

structures such as memories, registers, and caunter

Two forms of the Generate Statement

e For-generation Scheme

¢ If-generation Scheme

For-Generation

Concurrent statements can be replicated a predetermined number of times.

Syntax :

generate-label : for generate-identifier in discrete-range generate
[ block-declarations
begin ]
concurrent statements

end generate [ generate-label] ;



The values in the discrete range must be globally static, that is, they must be computable at
elaboration time. These statements can also use the generate idenitifi their
expressions, and its value would be substitutechgwelaboration for each replication.
The type of identifier is defined by the discrete range. Declarations, if present, declare items

that are visible only within the generate statement.

Example :

Ul:for F in 3 downto O generate
sum(F) <= A(F) xorB(F)xorC(F)
ca(F+1) <= A(F)andB(F)andC(F)

end generate U1l ;

If-Generation
Concurrent statements can be conditionally elaborated.

Syntax :

generate-label : if expression generate

[ block-declarations
begin ]
concurrent statements

end generate [ generate-label] ;

This statement allows for conditional selection of concurrent statements based on the value of
an expression. This expression must be a globally static expression, that is, the value must be
computable at elaboration time. Any declarations present are again local to the generate

statement.



Example :

V1:if User =low_Dly generate
Z <= A after 2ns ;

end generate V1 ;

V2 :if User = high_DIly generate
Z <= A after 25ns ;

end generate V2 ;

ALIASES

An alias is an alternate name for an existing object. By using an alias of an object, you
actually use the object to which it refers. By assigning to an alias, you actually assign to the

object to which the alias refers.

Syntax :

alias identifier : subtype_indication is name ;

A reference to an alias is interpreted as a reference to the object or part corresponding to the

alias.

Example :

variable instr : bit_vector(31 downto 0);

alias op_code : bit_vector(7 downto 0) is instr(31 downto 24);

declares the name op_code to be an alias for the left-most eight bits of instr.



signal vec : std_logic_vector (4 downto 0) ;

alias mid_bit : std_logic is vec(2) ;

-- Assignment :

mid_bit <="0";

--isthe same as

vec(2)<="0";

Aliases are often useful in unbound function céfisr instance, if you want to
make a function that takes the AND operation oftthe left most bits of an arbitrary
array parameter. If you want to make the functiemegal enough to handle arbitrary

sized arrays, this function could look like this:

function left_and (arr: std_logic_vector) return std_logic is

begin
return arr(arr’left) and arr(arr’left-1) ;

end left_and ;

---- Function does not work for ascending index ranges of arr.

This function will only work correctly if the inderange of arr is descending
(downto). Otherwise, arr’left-1 is not a valid indeaumber. VHDL does not have a
simple attribute that will give the one-but-leftnhdst out of an arbitrary vector, so it
will be difficult to make a function that works eectly both for ascending and

descending index ranges. Instead, you could makaias of arr, with a known index

range, and operate on the alias:



function left_and (arr : std_logic_vector) return std_logic is

alias aliased_arr : std_logic_vector (0 to arr’length-1) is arr ;

begin

return aliased_arr(0) and aliased_arr(1) ;

end left_and;

---- Function works for both ascending and descending index ranges of arr.

ATTRIBUTES

It is a value, function, type, range, signal, or constant that can associated with certain

names. Such as an entity name, an architecture name, a label, or a signal

User-defined Attributes

User-defined attributes are constants of any type, except access or file type. They are
declared using attribute declarations User-defined attributes are useful for annotating

language models with tool-specific information.

Attribute Declarations

It declares the name of the attribute and its type.



Syntax & Example :

attribute attribute-name : value-type ;

type Farads is range 0 to 5000 ;
units
pf ;
end units ;

attribute capacitance : Farads;

These user-defined attribute with a name and tigrassvalue to the attribute.

Attribute Specification

It is used to associate a user-defined attribute with a name and to assign a value to the
attribute.

Syntax :

attribute attribute-name of item-names : name-class is expression ;

The item-names is a list of one or more names of eatity, architecture,
configuration, component, label, signal, variabbenstant, type, subtype, package,
procedure, or function. The name-class indicatescthass type, that is, whether it is an
entity, architecture, label, or otheTée expression, whose value must belong to the type of

attribute, specifies the value of the attribute.

Example : attribute length of RX_Rdy : signal is 3cnan ;

attribute capacitance of clk, rst : signal is 20 pf;



The item-name in the attribute specification can also be replaced with the keyword all

to indicate all names belonging to that name-class.

Example :

attribute capacitance of all : variable is 10 pf;

After having created an attribute and then associated it with a name, the value of the
attribute can then be used in an expression. An attribute indicates a specific property of the
signal, and is of a defined type. Using attributes at the right places creates a very flexible style

of writing VHDL code.

Syntax :

item-name ‘ attribute-name

Example :

signal vector_up : bit_vector (4to 9) ;
signal vector_dwn : bit_vector (25 downto 0) ;
vector_dwn’LEFT -- returns integer 25

vector_dwn’RANGE -- returns range 25to 0

X'EVENT -- TRUE when there is an event on signal X
Y'HIGH -- returns the highest value in the range of Y
vector_up’RIGHT -- returns integer 9

vector_up’RANGE  --returns range 4to 9



TEST BENCHES

Testbenches have become the standard method fg kégh-Level Language

designs. Typically, testbenches perform the foltayasks:

¢ Instantiate the design under test (DUT)

Stimulate the DUT by applying test vectors to the model

¢ QOutput results to a terminal or waveform window for visual inspection

Optionally compare actual results to expected results

Testbenches are written in the industry-standardDWHor Verilog hardware
description languages. Testbenches invoke the ifuradt design, then stimulate it.
Complex testbenches perform additional functions—efixample, they contain logic to
determine the proper design stimulus for the desigto compare actual to expected
results. The remaining sections of this note dbsctihe structure of a well-composed

testbench, and provide an example of a self-chgdiestbench—one that automates the

comparison of actual to expected testbench results.

—-ﬁ[ )

DUT

Response
Analysis

"

|Waveform| [ File |




+ Stimuli transmitter to testvectors

« Needs not to be synthesizable

* No ports to the outside

* Environment for DUT

+ Verification and validation of the design

» Several output methods and input methods

Syntax :

Entity testbench_name is

end testbench_name;

architecture testbench_archnamaf testbench_nameés
signal declarations
component declarations
begin
UUT component instantiation

stimuli;

end testbench_archname;

Example :

library ieee; use ieee.std_logic_1164.all;
entity testnand is

end testnand;

architecture testgate of testnand is
component my_n&nd
port (A, Bn:std_logic; Y : out std_logic );
end component;

signal A, B, td_logic;



begin
UUT : my_nand porap ( A, B, Y);
process
begin

A <= ‘0";wait for 20 ns;

B <= ‘0’; wait for 20 ns;

end process;

process
begin

A <=‘0";wait for 20 ns;

B <=‘1‘; wait for 20 ns;

end process;
process
begin

A <= ‘0";wait for 20 ns;

B <= ‘0’; wait for 20 ns;

end process;

process
begin

A <=‘0";wait for 20 ns;

B <= ‘1‘; wait for 20 ns;

end process;

End testgate;



A testbench that instantiates and provides stimulus to the shift register.

library IEEE;

use IEEE.std_logic_1164.all;

entity testbench is

end entity testbench;

architecture test_reg of testbench is

component shift_reg is

port (clock : in std_logic;

reset : in std_logic;

load : in std_logic;

sel :in std_logic_vector(1 downto 0);

data : in std_logic_vector(4 downto 0);

shiftreg : out std_logic_vector(4 downto 0));

end component;

signal clock, reset, load: std_logic;

signal shiftreg, data: std_logic_vector(4 downto 0);

signal sel: std_logic_vector(1 downto 0);

constant ClockPeriod : TIME := 50 ns;



begin

UUT : shift_reg port map (clock => clock, reset => reset,

load => load, data => data,

shiftreg => shiftreg);

process begin

clock <= not clock after (ClockPeriod / 2);

end process;

process begin

reset <="1’;

data <= "00000";

load <="0’;

set <="00";

wait for 200 ns;

reset <='0’;

load <="1’;

wait for 200 ns;

data <="00001";

wait for 100 ns;

sel <="01";



load <="0’;

wait for 200 ns;

sel <="10";

wait for 1000 ns;

end process;

end architecture test_reg;

PROGRAMS

--Design Unit : 4X1 Mux

--File Name : MUX.vhd

--Program for AND gate

library ieee;

use ieee.std_logic_1164.all;

entity and3 is

port(a,b,c : in std_logic;

d: out std_logic);

end and3;

architecture data of and3 is

begin

d<=aand b andc;

end data;




--Program for OR gate

library ieee;

use ieee.std_logic_1164.all;

entity ord is

port(a,b,c,d : in std_logic;

e: out std_logic);

endor4;

architecture data of or4 is

begin

e<=aorborcord;

end data;

--Program for NOT gate

library ieee;

use ieee.std_logic_1164.all;

entity inv is

port(a : in std_logic;

b: out std_logic);

endinv;

architecture data of inv is

begin

b <=not a;

end data;




--Program for 4x1 MUX

library ieee;

use ieee.std_logic_1164.all;

entity mux4x1 is

port(a,b,c,d,sel_1,sel_2 :in std_logic;

muxout : out std_logic);

end mux4x1 ;

architecture str of mux4x1 is

component and3

port(a,b,c : in std_logic;

d: out std_logic);

end component;

component or4

port(a,b,c,d : in std_logic;

e: out std_logic);

end component;

component inv

port(a : in std_logic;

b: out std_logic);

end component;

signal al,a2,a3,a4,invl,inv2 : std_logic;

begin



nl:inv port map (sel_1,invl);

n2 :inv port map (sel_2,inv2);

ul:and3 port map (a,invl,inv2,al);

u2 : and3 port map (b,invl,sel_2,a2);

u3 : and3 port map (c,sel_1,inv2,a3);

u4 : and3 port map (d,sel_1,sel_2,a4);

u5 : or4 port map (al,a2,a3,a4,muxout);

end str;

--Design Unit: 3 bit counter
--File Name :counter.vhd

--Program for AND gate

library ieee;

use ieee.std_logic_1164.all;

entity and2 is

port(a,b : in std_logic;

c: out std_logic);

end and2 ;

architecture data of and2 is

begin

c<=aandb;

end data;




--Program for T flipflop

library ieee;

use ieee.std_logic_1164.all;

entity tff is

port(reset,clock,t : in std_logic;

0,91 : inout std_logic);

end tff ;

architecture beh of tff is

begin

gl <=notq;

process(reset,clock,t)

begin

if (reset="1")then

q<='0}

elsif (clock'event and clock='1") then

if (t='0") then

q<=gq;

else

g<=notq;

end if; end if;

end process;

end beh;




--Program for counter

library ieee;

use ieee.std_logic_1164.all;

entity count3bit is

port(rst,clk : in std_logic;

count : inout std_logic_vector(2 downto 0));

end count3bit ;

architecture str of count3bit is

component and2

port(a,b : in std_logic;

c: out std_logic);

end component;

component tff

port(reset,clock,t : in std_logic;

g,91 : inout std_logic);

end component;

signal al : std_logic;

signal high : std_logic :="'1";

begin

ul: and2 port map (count(1),count(0),al);

u2 : tff port map (rst,clk,al,count(2));

u3 : tff port map (rst,clk,count(0),count(1));

u4 : tff port map (rst,clk,high,count(0));

end str;



--Design Unit : Mealy machine

--File Name : mealy.vhd

library ieee;

use ieee.std_logic_1164.all;

Entity mealy is

port(clk,in1,reset:in std_logic;

outl : out std_logic_vector(1 downto 0));

end mealy;

Architecture mealy of mealy is

type state_type is (s0,s1,s2,s3);

signal state:state_type;

begin

pl: process(clk.reset)

begin

if reset="'1' then state<=s0 ;

elsif clk'event and clk='1' then

case state is

when s0=>if in1="1' then state<=s1;

end if;

when s1=>if in1='0' then state<=s2;

end if;

when s2=>if in1="1' then state<=s3;

end if;



when s3=>if in1='0' then state<=s0;

end if; end case; end if;

end process;

p2: process(state,inl)

begin

case state is

when s0=>if in1="1' then out1<="01";

else outl<="00";

end if;

when s1=>if in1='0' then out1<="10";

else outl<="01";

end if;

when s2=>if in1="1' then out1<="11";

else outl<="10";

end if;

when s3=>if in1='0' then out1<="00";

else outl<="11";

end if: end case;

end process; end mealy;



--Design Unit : Comparator

--File Name : compar.vhd

library IEEE;

use IEEE.std_logic_1164.all;

entity comparator is

port(x,y:in std_logic_vector(3 downto 0);

eq,gr,le:out std_logic);

end entity comparator;

architecture iterative of comparator is

begin

process(x,y)

variable eqi:std_logic;

begin

if ( x<y)then

le<="1’;

elsif ( x>y)then

gr<="1’;

if ( x=y)then

eq<="1’; end process;

end architecture iterative;



--Design Unit : 16x7 ROM

--File Name : Rom.vhd

library ieee;

use ieee.std_logic_1164.all;

entity rom16X7 is

port (address : in INTEGER range 0 to 15;

data : out std_logic_vector (6 downto 0));

end entity rom16X7;

architecture sevenseg of rom16X7 is

type rom_array is array (0 to 15) of std_logic_vector(6 downto 0);

constant rom : rom_array := ("1110111",

"0010010",

"1011101",

"1011011",

"0111010",

"1101011",

"1101111",

"1010010",

"1111111",

"1111011",

"1101101",

"1101101",



"1101101",

"1101101",

"1101101",

"1101101");

begin

data <= rom(address);

end architecture sevenseg;

--Design Unit : Shift Register

--File Name : shiftreg.vhd

--Program for D flipflop

library ieee; use ieee.std_logic_1164.all;

entity dff is

port ( d,clk : in std_logic ;

g : out std_logic );

end dff ;

architecture beh of dff is

begin

process(clk,d)

begin

wait until clk'event and clk="1";

g<=d;

end process;

end beh;




--Program for Shift Register using generate statement

library ieee;

use ieee.std_logic_1164.all;

entity shift is

port(din,clk: in std_logic;

gout: out std_logic);

end shift;

Architecture gen_shift of shift is

component dff

port(d,clk:in std_logic;

g:out std_logic);

end dff;

signal gsh:std_logic_vector(0 to 7);

begin

gsh(0)<=din;

gl:foriin O to 6 generate

dffx:dff port map(gsh(i),clk,qsh(i+1));

end generate;

gout<=qsh(4);

end;



--Design Unit : JK flipflop

--File Name : JKff.vhd

library ieee;

use ieee.std_logic_1164.all;

entity JK_FF is

port (J,K,Clock,Reset: in std_logic;

g,gbar : out std_logic);

end entity JK_FF;

architecture sig of JK_ff is

signal state:std_logic;

begin

p0: process(Clock,Reset) is

begin

if (Reset ='0') then

state <='0";

elsif rising_edge(Clock) then

case std_logic_vector'(J,K)is

when "11" =>

state <=not state;

when "10" =>

state <="'1";

when "01" =>

state <='0";



when others =>

null;

end case;

end if;

end process p0;

q <= state;

gbar <= not state;

end architecture sig;

--Design Unit : ALU

--File Name : Alu.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic _arith.all;

use ieee.std_logic _unsigned.all;

entity alu is

port(reset:in std_logic;

b, sel :instd_logic_vector(3 downto 0);

acc, prod :inout std_logic_vector(7 downto 0);

flag :inout std_logic_vector(1 downto 0);

end alu;

architecture Behavioral of alu is

signal count:std_logic_vector(3 downto 0);



begin

Process(count,prod)

begin

case sel is

when "0000"=>--addition

acc<=acc+b;

when "0001"=>--subtration

acc<=acc-b;

when "0010"=>--multiplication

if(count< b)then

acc<=acc+prod; count<=count+'1l";

end if;

when "0011"=>--divion

if(prod>=b)then

prod<=prod-b;

acc<="0000"&count+'1";

count<=count+'1';

end if;

when "0100"=>--increment

acc<=acc+'l’;

when "0101"=>--decrement

acc<=acc-'1";

when "0110"=> --compare



if(acc<b)then

flag(1) <="1";

elsif(acc >=b) then

flag(1) <='0";

end if;

if( acc=b) then

flag(0) <='0";

else

flag(0) <="1";

end if;

when "1000" =>--and

acc <= acc and prod;

when "1001"=>--or

acc<= acc or prod;

when "1010"=>--nand

acc<= acc nand prod;

when "1011"=>--nor

acc<= acc nor prod;

when "1100"=>--xor

acc<= acc xor prod;

when "1101"=>--xnor

acc<= acc xnor prod;

when "1110"=>--not



acc<=not acc;
when others => acc <= acg;
end case;
if(reset'event and reset='1") then
acc <= "00000000";
end if;
if(sel'event and sel = "0011") then
prod <=acc;
acc <="00000000";
count <="0000";
end if;
if(sel'event and sel = "0010") then
acc <= "00000000";
prod <= acg;
count <= "0000";
end if;
if(sel (3) ='1') then
prod <= "0000" & b;
end if; end process;

end Behavioral;



--Design Unit : Pseudo Random Bit Sequence Generator

--File Name : prbs_gen.vhd

entity prbsgen is

generic(length : Positive := 8; tap1 : Positive := 8; tap2 : Positive := 4);

port(clk, reset : in Bit; prbs : out Bit);

end prbsgen;

architecture v2 of prbsgen is

signal prreg : Bit_Vector(length downto 0);

begin

prreg <= (0 =>'1', others=>"'0") when reset ="'1' else

(prreg((length - 1) downto 0) & (prreg(tapl) xor prreg(tap2)))

when clk'event and clk = '1' else

prreg;

prbs <= prreg(length);

end v2;

--Design Unit : 7-Segment Decoder

--File Name : segdec.vhd

library ieee;

use ieee.std_logic_1164.all;



entity adcout is port( nib0: in std_logic_vector(3 downto 0);

nibl: in std_logic_vector(3 downto 0);

clk: in bit;
disO: out bit;
dis1l: outbit;

ssdout: out std_logic_vector(7 downto 0) );

end adcout;

architecture arch_adc of adcout is

signal tmp : std_logic_vector(3 downto 0);

begin

- fl | b
- - -- seven segment display format ( .gfedcba )

- el g |c

process(clk,tmp,nib0,nib1)

begin
if clk ='0" then
tmp <= nib0;

dis0 <="'0";



disl<="1";

elsif clk ='1' then

tmp <= nib1;

dis0 <="1";

disl <='0";

end if;

if tmp ="0000" then

ssdout <= "11000000";

elsif tmp = "0001" then

ssdout <="11111001";

elsif tmp = "0010" then

ssdout <= "10100100";

elsif tmp = "0011" then

ssdout <= "10110000";

elsif tmp = "0100" then

ssdout <= "10011001";

elsif tmp = "0101" then

ssdout <= "10010010";

elsif tmp = "0110" then

ssdout <= "10000010";

elsif tmp ="0111" then

ssdout <="11111000";

elsif tmp = "1000" then



ssdout <= "10000000";
elsif tmp = "1001" then
ssdout <= "10010000";
elsif tmp = "1010" then
ssdout <= "10001000";
elsif tmp = "1011" then
ssdout <= "10000011";
elsif tmp = "1100" then
ssdout <= "11000110";
elsif tmp = "1101" then
ssdout <= "10100001";
elsif tmp = "1110" then
ssdout <= "10000110";
elsif tmp = "1111" then
ssdout <= "10001110";
end if;
end process;

end arch_adg;

--Design Unit : 3-bit 1-of-9 Priority Encoder

--File Name : prienc.vhd

Jlibrary ieee;

use ieee.std_logic_1164.all;



entity priority is
port ( sel : in std_logic_vector (7 downto 0);
code :out std_logic_vector (2 downto 0));
end priority;
architecture archi of priority is
begin
code <="000" when sel(0) ='1" else
"001" when sel(1) = '1' else
"010" when sel(2) = '1' else
"011" when sel(3) = '1' else
"100" when sel(4) = '1' else
"101" when sel(5) = '1' else
"110" when sel(6) = '1' else
"111" when sel(7) = '1' else

end archi;

--Design Unit : Fibonacci series

--File Name : Fibo.vhd

library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity Fibonacci is

port

Reset  :in std_logic;

Clock :in std_logic;



Number :out unsigned(31 downto 0)

end entity Fibonacci;

architecture fibo_arch of Fibonacci is

signal Previous : natural;

signal Current : natural;

signal Next_Fib :natural;

begin

Adder:

Next_Fib <= Current + Previous;

Registers: process (Clock, Reset) is

begin

if Reset ='1' then

Previous <=1;

Current <=1;

elsif rising_edge(Clock) then

Previous <= Current;

Current <= Next_Fib;

end if;

end process Registers;

Number <= to_unsigned(Previous, 32);

end architecture fibo_arch;



Verilog



CONTENTS

. INTRODUCTION

. HISTORY OF VERILOG

. VERILOG HDL SYNTAX AND SEMATICS
. GATE LEVEL MODELLING

. VERILOG OPERATORS

. BEHAVIOUR LEVEL MODELLING

. TASK AND FUNCTIONS



INTRODUCTION

Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL). Ahardware
description Language is a language used to desaildigital system, for example, a
microprocessor or a memory or a simple flip-flopisTjust means that, by using a HDL one

can describe any hardware (digital) at any level.

Verilog is one of the HDL languages available i timdustry for designing the
Hardware. Verilog allows us to design a Digital idasat Behavior Level, Register Transfer
Level (RTL), Gate level and at switch level. Veglallows hardware designers to express
their designs with behavioral constructs, deterring details of implementation to a later

stage of design in the final design.

Abstraction Levels ofVerilog

Verilog supports a design at many different lexalabstraction. Three of them are

very important:

Behavioral level
Register-Transfer Level

Gate Level

Behavioral level

This level describes a system by concurrent alymst (Behavioral). Each
algorithm itself is sequential, that means it cetssiof a set ofinstructions that are
executed one after the other. Functions, TasksAdnedys blocks are the main elements.

There is no regard to the structural realizatiothefdesign.



Register-Transfer Level

Designs using the Register-Transfer Level spetifydharacteristics of a circuit
by operations and the transfer of data betweemdbisters. An explicit clock is used.
RTL design contains exact timing possibility, opgenas are scheduled to occur at
certain times. Modern definition of a RTL code'#sny code that is synthesizable is
called RTL code".

Gate Level

Within the logic level the characteristics of ateys are described by logical links
and their timing properties. All signals are disersignals. They can only have definite
logical values (0", "1, "X, "Z). The usable omns are predefined logic primitives
(AND, OR, NOT etc gates). Using gate level modelinght not be a good idea for any
level of logic design. Gate level code is generdgdools like synthesis tools and this net

list is used for gate level simulation and for berud.



History of Verilog

Verilog was started initially as a proprietary hasde modeling language by
Gateway Design Automation Inc. around 1984. Itrusnored that the original
language was designed by taking features from tbst mopular HDL language of
the time, called Hilo as well as from traditionaheputer language such @s At that
time, Verilog was not standardized and the languagdified itself in almost all the

revisions that came out within 1984 to 1990.

Verilog simulator was first used beginning in 198Hhd was extended
substantially through 1987.The implementation wae Verilog simulator sold by
Gateway. The first major extension was Verilog-Xihich added a few features and
implemented the infamous "XL algorithm” which was/ery efficient method for

doing gate-level simulation.

The time was late 1990. Cadence Design Systemsevpomary product at
that time included thin film process simulator, idecd to acquire Gateway
Automation System. Along with other Gateway prddutadence now became the
owner of the Verilog language, and continued toketierilog as both a language
and a simulator. At the same time, Synopsys waxketiag the top- down design

methodology, using Verilog. This was a powerful donation.

In 1990, Cadence recognized that if Verilog remdiaeclosed language, the
pressures of standardization would eventually cdlasandustry to shift to VHDL.
Consequently, Cadence organized Open Verilog latemal (OVI), and in 1991
gave it the documentation for the Verilog HardwBsescription Language. This was

the event which "opened" the language.



OVI did a considerable amount of work to improve thanguage Reference
Manual (LRM), clarifying things and making the larage specification as vendor-
independent as possible. In 1990 soon it was eglithat if there were too many
companies in the market for Verilog, potentiallyeegbody would like to do what
Gateway did so far - changing the language forr tbein benefit. This would defeat
the main purpose of releasing the language to puldimain. As a result in 1994, the
IEEE 1364 working group was formed to turn the QWM into an IEEE standard.
This effort was concluded with a successful bailiotl995, and Verilog became an
IEEE standard in December, 1995.

When Cadence gave OVI the LRM, several companiggrbevorking on
Verilog simulators. In 1992, the first of these weannounced, and by 1993 there
were several Verilog simulators available from camps other than Cadence. The
most successful of these was VCS, the Verilog CtadpiSimulator, from
Chronologic Simulation. This was a true compileropposed to an interpreter, which
is what Verilog-XL was. As a result, compile timeasvsubstantial, but simulation

execution speed was much faster.

In the meantime, the popularity of Verilog and Rias rising exponentially.
Verilog as a HDL found more admirers than well-fedrand federally funded VHDL.
It was only a matter of time before people in O\alized the need of a more
universally accepted standard. Accordingly, therthaat directors of OVI requested
IEEE to form a working committee for establishingrifog as an IEEE standard. The
working committee 1364 was formed in mid 1993 anddxtober 14, 1993, it had its
first meeting. The standard, which combined both Werilog language syntax and
the PLI in a single volume, was passed in May 1888 now known as IEEE Std.
1364-1995.

After many years, new features have been addecktibod, and new version is
called Verilog 2001. This version seems to havediijot of problems that Verilog
1995 had. This version is called 1364-2000. Onlyting now is that all the tool

vendors implementing it.



Verilog HDL Syntax and Semantics

Lexical Conventions

The basic lexical conventions used by Verilog HDE aimilar to those in the
C programming language. Verilog HDL is a case-se@sianguage. All keywords are

in lowercase.

White Space

White space can contain the characters for blatalks, newlines, and form
feeds. These characters are ignored except whgrséinee to separate other tokens.
However, blanks and tabs are significant in strings
White space characters are:

Blank spaces
Tabs

Carriage returns
Newdine

Form-feeds

Comments

There are two forms to introduce comments.

Single linecomments begin with the tokétand end with @arriage return

Multi Line comments begin with the tokéhand end with the tokenh



Examples ofComments

[* 1-bit adder example for showing
tew verilog */
module addbit (

a,

b,

ci,

sum,

co);

/[ Input Ports
input a;
input b;
input ci;
/I Output ports
output sum;
output co;

/I Data Types

wire a;
wire b;
wire Ci;
wire sum;
wire Co;

Case Sensitivity

Verilog HDL is case sensitive

Lower case letters are unique from upper casadette

All Verilog keywords are lower case

Examples of uniqgue names

input /I a Verilog

Keywordwire /I a Verilog

Keyword

WIRE /l a unique name ( not a keyword)

Wire /I 'a unique name (not a keyword)



Identifiers

Identifiers are names used to give an object, sisch register or a module, a

name so that it can be referenced from other plecaslescription.

Identifiers must begin with an alphabetic charaotethe underscore
character @-z A-Z _).ldentifiers may contain alphabetic charactersneic
characters, the underscore, and the dollar sigrz (A-Z 0-9 _ $) Identifiers can be

up to 1024 characters long.

Escapedldentifiers

Verilog HDL allows any character to be used in dentifier byescaping
the identifier. Escaped identifiers provide a meahscluding any of the printable
ASCII characters in an identifier (the decimal wdu33 through 126, or 21
through 7E in hexadecimal). Escaped identifiersirbegth the back slash \)
Entire identifier is escaped by the back slastaped identifier is terminated by
white space o Characters such as commas, paresthasd semicolons become
part of the escaped identifier unless preceded Wiite space. Terminate escaped
identifiers with white space, otherwise characteet should follow the identifier

are considered as part of it.

Numbers in Verilog

You can specify constant numbers in decimal, hesiaud, octal, or binary
format. Negative numbers are represented in 2'plmment form. When used in a
number, the question mark (?) character is thel&gslternative for the z character.
The underscore character () is legal anywherenimnaber except as the first

character, where it is ignored.



Integer Numbers

Verilog HDL allows integer numbers to be specifeiSized or unsized
numbers ( Unsized size is 32 bits ) In a radixip&by, octal, decimal, or hexadecimal
Radix is case and hex digits (a,b,c,d,e,f) arensidé@e Spaces are allowed between the

size, radix and value.

Syntax: <size>'<radix><value>

Verilog expandsvalue>to be fill the specifiecksize> byworking from right-toleft

When<size>is smaller tharvalue>, then left-most bits ofvalue>are truncated

When<size>is larger tharxvalue>, then left-most bits are filled, based on the
value of the left-most bit invalue>.
Left most '0' or '1' are filled with '0", 'Z' ardléd with 'Z' and X" with 'X'

Example of integer numbers

8'hCA 11001010
16'bZ filled with 16 Z's

Real Numbers

Verilog supports real constants and variables
Verilog converts real numbers to integers by roogdi
Real Numbers can not contain 'Z" and 'X'
Real numbers may be specified in either decimakcantific notation
<value>.<wel
<mantissa>E<exponent>
Real numbers are rounded off to the nearest integer
Example of RealNumbers
1.2,0.6



Signed and UnsignedNumbers

Verilog supports both the type of numbers, but wigtain restrictions. Like
in C language we don't have int and unint typesatif a number is signed integer or
unsigned integer.

Any number that does not have negative sign pisfapositive number. Or

indirect way would be "Unsigned".

Negative numbers can be specified by putting a sgign before the size
for a constant number, thus become signed numWergog internally represents
negative numbers in 2's compliment format. An amicsigned specifier can be
added for signed arithmetic.

Examples

32'hDEAD_BEEF Unsigned or signed positive Number

-14'h1234 Signed negative number

Ports:

Ports allow communication between a module andntsronment. All but the
top-level modules in a hierarchy have poRerts can be associated by order or by

name.

You declare ports to baput, output or inout. The port declaration syntax is :
input [range_val:range_var] list_of identifiers;
output [range_val:range_var] list_of_identifiers;

inout [range_val:range var] list_of identifiers;



Examples: Port Declaration

input clk ; 1l clock input

input [15:0] data_in /1 16 bit data input bus
output[7:0] count ; /1 8 bit counter output

inout data_bi J/ Bi-Directional data bus

Examples: A complete Example inVerilog

wodule addbit |

f Carry output

Input Declaration

+ b+ ci;

endmodule /7 End 0f Module addbit




Data Types

Verilog Language has two primary data types
Nets -represents structural connections between compsnent
Registers -represent variables used to store data.

Every signal has a data type associated with it:

Explicitly declared with a declaration in your Verilog code.
Implicitly declared with no declaration but used to connect structural
building blocks in your code.

Implicit declaration is always anet of type wire and is one bit wide.

Types ofNets
Each net type has functionality that is used to ehadifferent types of
hardware (such @&MOS, NMOS, CMOS etc)

Net Data Type Functionality
wire tri Interconnecting wire - no special

resolution function

wor trior
Wired outputs OR together (models ECL)
wand triand Wired outputs AND together (models
open-collector)
tri0 tril Net pulls-down or pulls-up when not

driven

supplyO supplyl Net has a constant logic O or logic 1
(supply strength)



Register Data Types

Registers store the last value assigned to thenl anbther assignment
statement changes their value. Registers reprefsat storage constructs. You can
create arrays of the regs called memories. regdsta types are used as variables in
procedural blocks. A register data type is requifedsignal is assigned a value within

a procedural block. Procedural blocks begin witivkard initial andalways.

Data types Functionality

reg Unsigned variable

integer Signed variable - 32 bits

time Unsigned integer - 64 bits

real Double precision floating point variable
Strings

A string is a sequence of characters enclosed lbldoquotes and all
contained on a single line. Strings used as opsram@éxpressions and assignments
are treated as a sequence of eight-bit ASCII valugh one eight-bit ASCII value
representing one character. To declare a varig@bitare a string, declare a register
large enough to hold the maximum number of charadtee variable will hold. Note
that no extra bits are required to hold a termoratharacter; Verilog does not store a
string termination character. Strings can be mdatpd using the standard operators.
When a variable is larger than required to holdalue being assigned, Verilog pads
the contents on the left with zeros after the assint. This is consistent with the

padding that occurs during assignment of non-stadges.

Certain characters can be used in strings only wpesteded by an
introductory character called an escape charadiee. following table lists these
characters in the right-hand column with the escsgguence that represents the

character in the left-hand column.



Special characters in string

\n New line character

\t Tab character

\\ Backslash (\) character

\" Double quote (") character

\ddd A character specified in 1-3 octal digits<€0d <= 7)

%%  Percent (%) character

Example

reg[8*17:0] version }/ Declare a register variable that is 18 bytes
initial

version ="model version 1.Q"

Port Connection Rules
Inputs : internally must always be type net, externally thputs can be
connected to variable reg or net type.
Outputs : internally can be type net or reg, externally thgpats
must be connected to a variable net type.

Inouts : internally or externally must always be type netn only be

connected to a variable net type.

outputs

reg or net

reg or net Inputs net

inouts




Width matching: It is legal to connect internal and external poftsifferent sizes.
But beware, synthesis tools could report problems.

Unconnected ports:unconnected ports are allowed by usifg' aThe net data
types are used to connect structure

A net data type is required if a signal can beatria structural connection.



Gate LevelModeling

Introduction
Verilog has built in primitives like gates, transgsion gates, and switches. This

are rarely used for in design work, but are usegbst synthesis world for modeling the

ASIC/FPGA cells, this cells are then used for getel simulation or what is called as

SDF simulation.

Gate Primitives

MAMWD

The gates have one scalar output and multiple istglats. The 1st terminal in the list of

gate terminals is an output and the other termiagdsinputs.

And N-input and gate
Nand N-input nand gate
Or N-input or gate

Nor N-input nor gate
Xor N-input xor gate

Xnor N-input xnor gate

Examples

and Ul(out,in);
and U2(out,inl1,in2,in3,in4);
xor U3(out,inl,in2,in3);



Transmission Gate Primitives

deeps@deeps.0rg

Examples

not
buf
bufif0
bufifl
notifo

notifl

N-output invertor.
N-output buffer.

Tri-state buffer, Active low en.
Tri-state buffer, Active high en.

Tristate inverter, Low en.

Tristate inverter, High en.

bufif0 Ul(data bus,data_drive, data_enable_low);

buf U2(out,in);

not U3(out,in);

Switch Primitives

deepsi@deeps.org

pmos
rpmos
nmos
rnmos
cmos
rcmos
tranifl
tranifl
tranifO
rtranifl
tran
rtran

Uni-directional PMOS switch
Resistive PMOS switch
Uni-directional NMOS switch
Resistive NMOS switch
Uni-directional CMOS switch
Resistive CMOS switch
Bi-directional transistor (High)
Resistive transistor (High)
Bi-directional transistor (Low)
Resistive Transistor (Low)
Bi-directional pass transistor
Resistive pass transistor



Syntax: keyword unique_name (inoutl, inout2, control);

tranif0 my_gatel (net5, net8, cnt);
rtranifl my_gate2 (net5, netl2, cnt);

Transmission gates tran and rtran are permanemiharal do not have a
control line. Tran can be used to interface twoewiwith separate drives, and rtran
can be used to weaken signals. Resistive deviahsceethe signal strength which
appears on the output by one level. All the swischely pass signals from source to

drain, incorrect wiring of the devices will resiithigh impedance outputs.

Logic Values and signalStrengths

The Verilog HDL has got four logic values

0 zero, low, false

1 one, high, true

zorZ highimpendence, floating

x or X unknown, uninitialized, contention

Verilog Strength Levels

7 Supply Drive supply0  supplyl
6 Strong Pull strong0 strongl
5 Pull Drive pullo pulll

4 Large Capacitanc large

3 Weak Drive weakO0  weakl
2 Medium Capacitanc mediun

1 Small Capacitance small

0 Hi Impedance highzO  highzl



Examples

Two buffers that has output
A:Pulll
B : Supply O
Since supply 0 is stronger then pull
1, OutputC takes value oB.

Two buffers that has output

A : Supply 1

B:Large 1l

. : N Since Supply 1 is stronger then
Designing Using Primitives
Large 1, OutpuC takes the value

of A

AND Gate from NAND Gate




Verilog code

/l Structural model of AND gate from two NANDS

moduleand_from_nand(X, Y, F);

input X, Y;

outputF;

wire W;

/I Two instantiations of the module NAND
nandUL1(X, Y, W);

nandU2(W, W, F);

endmodule

D-Flip flop from NAND Gate




Verilog Code

moduledff(Q,Q_BAR,D,CLK);
outputQ,Q_BAR,;
inputD,CLK;

nandUl (X,D,CLK) ;
nandu2 (Y,X,CLK) ;
nandU3 (Q,Q_BAR,X);
nanduU4 (Q_BAR,Q,Y);

endmodule

Multiplexer from primitives

deepsiidesps.org




Verilog Code

/IModule 4-2 Mux
modue mux (c0,¢1,¢c2,c3,A,B,Y’
input c0,c1,c2,c3,AE
oupu Y;

/lInvert the sel signals
nat (a_iny, A);

nct (b_inv, B);

Il 3-input AND gate

ard (y0,c0,a_inv,b_inv
ard (yl,cl,a_inv,B)
ard (y2,c2,A,b_inv);
ard (y3,c3,A,B)

Il 4-input OR gate

or (Y, y0,yl,y2,y3)

endmodule

Gate and Switch delays

In real circuits , logic gates haves delays assediaith them. Verilog

provides the mechanism to associate delays witsgat

Rise, Fall and Turn-off delays.

Minimal, Typical, and Maximum delays.



Rise Delay

The rise delay is associated with a gate outpuositian to 1 from another

value (0,x,2).

Fall Delay :

The fall delay is associated with a gate outpuiditéon to O from another

value (1,x,2).

Turn-off Delay

The fall delay is associated with a gate outpuiditéon to z from another

value (0,1,x).

Min Value

The min value is the minimum delay value that thgegs expected to

have.



Max Value

The max value is the maximum delay value that tite ¢¢ expected to
have.

Examples

/I Delay for all transitions

or#5 u_or (a,b,c);

/l Rise and fall delay
and#(1,2) u_and (a,b,c);

/I Rise, fall and turn off delay

nor# (1,2,3) u_nor (a,b,c);

//One Delay, min, typ and max

nand#(1:2:3) u_nand (a,b,c);

/[Two delays, min,typ and max

buf #(1:4:8,4:5:6) u_buf (a,b);

/[Three delays, min, typ, and max

notifl #(1:2:3,4:5:6,7:8:9) u_notifl (a,b,c);

Gate Delay CodeExample

modue not_gae (in,out);
input in;
outptt out;
nct #(5) (out,in);

endmodule




Gate Delay CodeExample

modue not_cale (in,out);
input in;
outptt out;
nct #(2,3’ (out,in);

endmodul

Normally we can have three models of delays, glpiminimum and
maximum delay. During compilation of a modules oeeds to specify the
delay models to use, else Simulator will use tipécgl model.

N-Input Primitives
Theand, nand, or, nor, xor,and xnor primitives have one output and any
number of inputs

The single output is the first terminal

All other terminals are inputs

Examples

/l Two input AND gate

andu_and (out, inl, in2);

/Il four input AND gate

andu_and (out, inl, in2, in3, in4);

// three input XNOR gate

Xnoru_xnor (out, in_1,in_2, in_3);



N-Output Primitives

Thebuf andnot primitives have any number of outputs and one input

The output are in first terminals listed.

The last terminal is the single input.

Examples

/I one output Buffer gate

buf u_buf (out,in);

Il four output Buffer gate

bufu_buf (out_0, out_1, out 2, out_3, in);

/l three output Invertor gate

notu_not (out_a, out_b, out_c, in);



Verilog Operators

Arithmetic Operators
Binary: +, -, *, /, % (the modulus operator)
Unary: +, -
Integer division truncates any fractional part
The result of a modulus operation takes the sigim@first operand
If any operand bit value is the unknown value entithe entire result
value is x
Register data types are used as unsigned values

0 nhegative numbers are stored in tw@omplement form

Relational Operators

a<b a less than b a>b
a greater than b
a<=b a less than or equal to b a>=b

a greater than or equal to b

The result is a scalar value:

0 if the relation is false

1 if the relation is true

x if any of the operands has unknown x bits

Note: If a value is x or z, then the result of ttest is false

Equality Operators

a=== a equal to b, including x and z
al== a not equal to b, including x and z
a== a equal to b, resulting may be unknown

al=b a not equal to b, result may be unknown



Logical Operators

! logic negation
&& logical and

I logical or

Expressions connected by && and || are evaluatad feft to right
Evaluation stops as soon as the result is known
The result is a scalar value:

» 0if the relation is false

e 1 if the relation is true

» xif any of the operands has unknown x bits

Bit-wise Operators

~ negation

& and

| inclusive or
A exclusive or

A~or ~*  exclusive nor (equivalence)

Computations include unknown bits, in the followivgy:

s ~X=X
e 0&x=0

o 1&X = X&X =X
e 1x=1

e Ox=xx=x
o O™ =1IMX=xXx™X=X
o OMXx=1"Mx=X"~X=X
When operands are of unequal bit length, the shopgerand is zeréifled in the most

significant bit positions



Reduction Operators

& and
~& nand

| or

= nor

A xor
A~or ~N xnor

Reduction operators are ugar

Shift Operators

<< left shift
>> right shift

The left operand is shifted by the number of baipons given by the right operand.
The vacated bit positions are filled with zeroes.

Concatenation Operator

Concatenations are expressed using the brace targ@nd }, with commas
separating the expressions within

Examples

{a, b[3:0], c, 4'b1001} // if a and c are 8-bit nbers, the results has 24 bits
Unsized constant numbers are not allowed in conesitns

Repetition multipliers that must be constants camged:

{3{a}} // this is equivalent to {a, a, a} Nested



concatenations are possible:
{b, {3{c, d}}} // this is equivalent to {b, c, dc, d, c, d}

Conditional Operator

The conditional operator has the following C-likerhat:
cond_expr ? true_expr : false_expr
The true_expr or the false_expr is evaluated aed as a result depending on

whether cond_expr evaluates to true or false

Example

out = (enable) ? data : 8'bz; // Tri state buffer

Operator precedence

Operator Symbols

Unary, Multiply, Divide,

Modulus tel=rl%

Add, Subtract, Shift. +, -, <<>>

Relation, Equality <> <=>= === === ===
Reduction &, 1&" "~ |~

Logic &&, ||

Conditional ?:



Behavioral Modeling

Verilog HDL Abstraction Levels
Behavioral Models: Higher level of modeling whehhvior of logic is modeled.
RTL Models: Logic is modeled at register level

Structural Models: Logic is modeled at both regiseel and gatéevel.

Procedural Blocks
Verilog behavioral code is inside procedures blotkd there is a exception, some
behavioral code also exist outside procedureskblot/e can see this in detail as

we make progress.

There are two types of procedural blocks in Verilog

initial : initial blocks execute only once at time zerafsexecution at time
zero).

always: always blocks loop to execute over and over agaiother words as name

means, it executes always.

Example : initial and always

initial always @ (posedgeclk)
begin begin: D_FF
clk = 0; if (reset ==1)
reset = 0; q<=0;
enable = 0; else
data = 0; g<=d;

end end



Procedural AssignmentStatements

Procedural assignment statements assign valuegigiers and can not assign
values to nets ( wire data types)

You can assign to the register (reg data typeydhge of a net

(wire), constant, another register, or a speciéitug.

Example :Bad and Good procedural assignment

wire clk, reset; reg clk, reset;
reg enable, data; reg enable,data;
initial initial
begin begin
clk =0; clk =0;
reset = 0; reset = 0;
enable = 0; enable = 0;
data = 0O; data = 0;
end end

Procedural AssignmentGroups

If a procedure block contains more then one staténtleose statements must be

enclosed within

Sequentiabegin - end block

Parallelfork - join block

When using begin-end, we can give name to thatpyréhis is called named

blocks.



Example : "begin-end" and "fork - join"

initial initial
begin fork
#1 clk = 0; #1 clk = 0;
#5 reset = 0; #5 reset = 0;
#5 enable = 0; #5 enable = 0;
#2 data = 0; #2 data = 0;
end join

Begin :clk gets 0 after 1 time unit, reset gets O aftén® units, enable after 11 time
units, data after 13 units. All the statementsex@cuted in sequentially.
Fork : clk gets value after 1 time unit, reset after Setinmits, enable after

5 time units, data after 2 time units. All the staents are executed in

parallel.

The Conditional Statementif-else
Theif - elsestatement controls the execution of other statesnént

programming language like c, if - else controls ftbes of program.

if (condition)

statements;

if (condition)
statements;
else

statements;



if (condition)
statements;
else if(condition)

statements;

statements;

Example

/I Simple if statement

if (enable)
q<=d

/I One else statement

if (reset == 1'b1)
q<=0;

else
q<=d

/Il Nested if-else-if statements

if (reset == 1'b0)
counter <= 4'b0000;

else if(enable == 1'bl && up_en == 1'b1)
counter <= counter + 1'b1;

else if(enable == 1'bl && down_en == 1'b1);
counter <= counter - 1'b0;

else

counter <= counter/ Redundant code



The CaseStatement

The casestatement compares a expression to a series of aasleexecutes the
statement or statement group associated with teierfiatching case

Case statement supports single or multiple statesn@mnoup multiple
statements using begin and end keywords.

case(<expression>)

<casel> : <statement>

<casezZ> : <statement>

default ; <statement>

endcase

Example

module mux (a,b,c,d,sel,y

input a, b, ¢, d;

input [1:0] sel:

outptty;

recy;

always @ (aorborcordorsel

cace (sel,

O:y=a;

b;
C;
d

<K<K <

1:
2:
3:
defaut : $displey("Errar in SEL");

f
endcas

Q

endmodule



The Verilog case statement does an identity corapar(like the === operator),
One can use the case statement to check for logntlz values

Example with z and x

casdenable)
1'bz :$display(“enable is floatin®;
1'bx :$display("enable is unknowl);
default: $display("enable is %henable);

endcase

The casez and casestatement

Special versions of the case statement allow the x logic values to be used as
"don't care”

casezuses the as the don't care instead of as a logic vaheexuses either the

or thez as don't care instead of as logic values

Example casez

casetopcode)
4'blzzz : out = & don't care about lower 3 bits
4'b01?7?: out = bfthe ? is same agin a number
4'p0017?: out = c;
default: out =$display("Error xxxx does matches 0000

endcase



Looping Statements
Looping statements appear inside a procedural blooky, Verilog has four looping

statements like any other programming language.

forever
repeat
while

for

The forever statement

Theforever loop executes continually, the loop never ends

syntax : forever <statement>

Example : Free running clock generator

initial begin

clk = 0;

forever#5 clk =Iclk;

end

The repeatstatement

Therepeatloop executes statement fixed <number> of times

syntax: repeat (<number>) <statement>



Example:
if (opcode == 10)/perform rotate
repeat(8) begin
temp = data[7];

data = {data<<1,temp};

end

The while loop statement

Thewhile loop executes as long as an <expression> evalaatgse

syntax : while (<expression>) <statement>

Example :

loc = 0;

if (data = 0)Y/ example of a 1 detect shift value

loc = 32;
else while(data[0] == 0)y/find the first set bit
begin

loc = loc + 1,

data = data << 1;

end



The for loop statement

The for loop is same as the for loop used in ahgroprogramming language.
Executes an <initial assignment> once at the efdtte loop. Executes the loop as
long as an <expression> evaluates as true. Exeautetep assignment> at the end of

each pass through the loop.

syntax: for (<initial assignment>; <expression>, <step assigmnmje

<statement>

Example :

for (i=0;i<=63;i=i+1)
ram[i] <= 0;// Inialize the RAM with 0

Continuous AssignmentStatements
Continuous assignment statements drives nets (laii® type). They represent

structural connections.

They are used for modeling Tri-State buffers.

They can be used for modeling combinational logic.

They are outside the procedural blocks (alwaysiaitidl blocks).
The continuous assign overrides and proceduraj@sents.

The left-hand side of a continuous assignment rbestet data

type.

syntax : assign(strength, strength) # delay net = expression;



Example: 1-bit Adder

moduleadder (a,b,sum,carry);
inputa, b;
outputsum, carry;
assign#5 {carry,sum} = a+b;
endmodule

Example: Tri-State Buffer

moduletri_buf(a,b,enable);
inputa, enable;
outputb;
assignb = (enable) ? a : 1'bz;

endmodule

Propagation Delay
Continuous Assignments may have a delay speci@edy one delay for all
transitions may be specified. A minimum:typical:rima¥m delay range may be

specified.
Example : Tri-State Buffer

moduletri_buf(a,b,enable);
inputa, enable;
outputb;
assign#(1:2:3) b = (enable) ? a: 1'bz;

endmodule



Procedural Block Control
Procedural blocks become active at simulation me®, Use level sensitive

even controls to control the execution of a procedu

always @ (d or enable
if (enable
q=d;

An event sensitive delay at the begining of a pdoce, any change in either d or
enable satisfies the even control and allows tlee@on of the statements in the

procedure. The procedure is sensitive to any chandeor enable.

Combo Logic using ProceduralCoding

To model combinational logic, a procedure block traessensitive to any change on

the input.

Example : 1-bit Adder

module adder (a,b,sum,carry);
inputa, b;
outputsum, carry;
regsum, carry;

always@ (aorb)
begin
{carry} =a + b;
endmodul

The statements within the procedural block worlhventire vectors at a time.



Example : 4-bit Adder

module adder (a,b,sum,carry);
input[3:0] a, b;
output[3:0] sum;

outputcarry;
reg[3:0] sum;
regcarry;
always@ (aorb)
begin

endmodul

A procedure can't trigger itself

Once cannot trigger the block with the variable thlack assigns value or

drive's.
always @ (clk)
#5 clk = Iclk;

Procedural Block Concurrency

If we have multiple always blocks inside one modtiteen all the blocks ( i.e. all the
always blocks) will start executing at time O andll weontinue to execute
concurrently. Sometimes this is leads to race ¢mngiif coding is not done proper.

module procedue (a,b,d);
input a,b
outptt c,d;

always @ ( c)
a=c;

always @ (d or a)
b=aé&d;

endmodule



Procedural Timing Control

Procedural blocks and timingcontrols.
Delayscontrols.
Edge-Sensitive Event controls
Level-Sensitive Event controls-Wait statements

Named Events

Delay Controls

Delays the execution of a procedural statemenpbygific simulation time.

#<time> <statement>;

Example :

modue clk_ger (clk,rese);
outptt clk,reset
rec clk, reset
initial begir
clk =0;
rese = 0;
#2resd =1,
#5resd = 0;
enc
always
#1 clk = Iclk;
endmodule



Waveform

Edge sensitive EvenControls

Delays execution of the next statement until trecEped transition on a signal.

@ (<posedge>|<negedge> signal) <statement>;

Example :

always @ (posede enable
begir
repei (5) // Wait for 5 clock cycles
@ (posede clk) ;
trigger = 1;
end



Waveform

10 20 a0

Level-Sensitive Even Controls ( Wait statement¥

Delays execution of the next statement until thepsession> evaluates as true

syntax: wait (<expression>) <statement>;

Example :

while (mem_red == 1'b1) begir
wait (data_read) dafa = data_bus
read_ack =1,

end

Intra-Assignment Timing Controls
Intra-assignment controls evaluate the right sij@ession right always

and assigns the result after the delay or evertraion

In non-intra-assignment controls (delay or evemttic® on the left side)

right side expression evaluated after delay or egentrol.



Example :

initial begir
a=1,
b=0;
a=#100;
b=a,
end

Waveform

deepsi@deeps.org

Modeling Combinational Logic with Continuous Assigmiments

Whenever any signal changes on the right hand gidegntire right-hand side is re-evaluated
and the result is assigned to the left hand side

Example : Tri-state buffer

modue tri_buf (data_in,data_o, pad,enate);
input data_ir, enable
outptt data_out
inout pad
wire pac, data_oult
assigi ped = (enabl) ?data_n: 1'bz
assigl data_ot = pad

endmodule



Waveform

10 20

deepsifideeps.org

Example : 2:1Mux

modue mux2x1 (data_in_0,data_in,, se, data_out,
input data_in_{, data_in_1
outptt data_out
input sel:
wire data_out
assigi data_out = (sel) ? data_in_1 : data_in_0;
endmodule

Waveform

10 20 a0




Task and Function

Task

Tasks are used in all programming languages, giy&reown as Procedures or sub
routines. Many lines of code are enclosed in taskd task brackets. Data is passed to the
task, the processing done, and the result retumedspecified value. They have to be
specifically called, with data in and outs, rattiean just“wired in’’ to the general netlist.
Included in the main body of code they can be daleny times, reducing code repetition.

Task are defined in the module in which they aedug is possible to define task in
separate file and use compile directive 'includmétude the task in the file which
instantiates the task.

Task can include timing delays, like posedge, ngge#t delay. task can have any
number of inputs and outputs.

The variables declared within the task are locah#d task. The
order of declaration within the task defines hoe #ariables passed to the task by the
caller are used.

Task can take drive and source global variablessrwho local variables are
used. When local variables are used, it basica$ygaed output only at the end of task

execution. Task can call another task or function.

Task can be used for modeling both combinationdlssaguential logic.
A task must be specifically called with a stateméntannot be used within an

expression as a function can.

Syntax
Task begins with keyword task and end's with keylnamdtask input and output are
declared after the keyword task.

Local variables are declared after input and outi@ataration.



Example : SimpleTask

task convert
input [7:0] temp_in
outptt [7:0] temp_out
begir
temp_ou = (9/5) *(temp_in + 32)
end
endtask

Example : Task using Global Variables

task convert
begir
temp_ou = (9/5) *( temp_ir + 32);
erd
endtask

Calling a Task

Lets assume that task in example 1 is stored ile adlled mytask.v. Advantage of coding

task in separate file is that, it can be used ittipia module's.

modue temp_ci (temp_i, temp_b
temp_c temp_d)
input [7:0] temp_i, temp_c
outptt [7:0] temp_b, temp_d;
rec [7:0] temp_I, temp_d
‘include "mytask.v"

always @ (temp_a)
conver (temp_za temp_b)

always @ (temp_c
conver (temp_c, temp_d);

endmodule



Function
A Verilog HDL function is same as task, with veitglé difference, like function

cannot drive more then one output, can not corttaiays.

Function is defined in the module in which they ased. it is possible to define
function in separate file and use compile directlnelude to include the function in the file
which instantiates the task.

Function cannot include timing delays, like posedwgegedge, # delay. Which means
that function should be executed in "zero" timeagtel

Function can have any number of inputs and but ong/output.The variables declared
within the function are local to that function. Theder of declaration within the function
defines how the variables passed to the functiothéycaller are used.

Function can take drive and source global variabld®n no local variables are
used. When local variables are used, it basicalfygmed output only at the end of function
execution. Function can be used for modeling coatimnal logic.Function can call other

functions, but cannot call task.

Syntax

Function begins with keyword function and end'swikieyword endfunction

input are declared after the keyword function. @epre delcared.

Example : SimpleFunction

functior myfunction
input a, b, c, d;
begir
myfuncticn = ((a+b) + (c-d));
enc
endfunction



Calling a Function

Lets assume that function in above example i®dtm a file called myfunction.v. Advantage

of coding function in separate file is that, it dmused in multiple module's.

modue func_test(, b, ¢, d, €, f);
input a, b, c, d, e;
outptt f;
wire f;
‘include "myfunction.v'
assin f = (myfunctior (a,b,c,d) ? € :0;

endmodule



