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Introduction 

                   The quantities that are to be measured, monitored, recorded, processed and 

controlled are analog and digital, depending on the type of system used. It is important 

when dealing with various quantities that we be able to represent their values efficiently 

and accurately. There are basically two ways of representing the numerical value of 

quantities: analog and digital. 

 

Analog Representation 

             Systems which are capable of processing a continuous range of values varying 

with respect to time are called analog systems. In analog representation a quantity is 

represented by a voltage, current, or meter movement that is proportional to the value of 

that quantity. Analog quantities such as those cited above have an important 

characteristic: they can vary over a continuous range of values. 

 

Diagram of analog voltage vs time 

 

 

 

 

 

 

 

 



Digital Representation 

                 Systems which process discrete values are called digital systems. In digital 

representation the quantities are represented not by proportional quantities but by 

symbols called digits. As an example, consider the digital watch, which provides the 

time of the day in the form of decimal digits representing hours and minutes (and 

sometimes seconds). As we know, time of day changes continuously, but the digital 

watch reading does not change continuously; rather, it changes in steps of one per 

minute (or per second). In other words, time of day digital representation changes in 

discrete steps, as compared to the representation of time provided by an analog watch, 

where the dial reading changes continuously. 

     

                   Below is a diagram of digital voltage vs time: here input voltage changes 

from +4 Volts to -4 Volts; it can be converted to digital form by Analog to Digital 

converters (ADC). An ADC converts continuous signals into samples per second. Well, 

this is an entirely different theory. 

Diagram of Digital voltage vs time 

 

 

 

 

 

 

 



                      The major difference between analog and digital quantities, then, can be 

stated simply as follows: 

    Analog = continuous 

• Digital = discrete (step by step)  

 

Advantages of Digital Techniques 

 

• Easier to design. Exact values of voltage or current are not important, only the 

range (HIGH or LOW) in which they fall. 

• Information storage is easy. 

• Accuracy and precision are greater. 

• Operations can be programmed. Analog systems can also be programmed, but 

the available operations variety and complexity is severely limited. 

• Digital circuits are less affected by noise, as long as the noise is not large enough 

to prevent us from distinguishing HIGH from LOW (we discuss this in detail in 

an advanced digital tutorial section). 

• More digital circuitry can be fabricated on IC chips. 

 

Limitations of Digital Techniques 

                      Most physical quantities in real world are analog in nature, and these 

quantities are often the inputs and outputs that are being monitored, operated on, and 

controlled by a system. Thus conversion to digital format and re-conversion to analog 

format is needed. 

 

 

 

 

 



Numbering System 

                  Many number systems are in use in digital technology. The most common 

are the decimal, binary, octal, and hexadecimal systems. The decimal system is clearly 

the most familiar to us because it is a tool that we use every day. Examining some of its 

characteristics will help us to better understand the other systems. In the next few pages 

we shall introduce four numerical representation systems that are used in the digital 

system. There are other systems, which we will look at briefly. 

• Decimal 

• Binary 

• Octal 

• Hexadecimal 

 

Decimal System 

                The decimal system is composed of 10 numerals or symbols. These 10 

symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Using these symbols as digits of a number, we can 

express any quantity.  

 The decimal system is also called the base-10 system because it has 10 digits. 

 

Binary System 

                 In the binary system, there are only two symbols or possible digit values, 0 

and 1. This base-2 system can be used to represent any quantity that can be represented 

in decimal or other  base system. 

 

Octal System 

           The octal number system has a base of eight, meaning that it has eight possible 

digits: 0,1,2,3,4,5,6,7. 

 

 



Hexadecimal System 

              The hexadecimal system uses base 16. Thus, it has 16 possible digit symbols. It 

uses the digits 0 through 9 plus the letters A, B, C, D, E, and F as the 16 digit symbols. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Conversion 

 

               Converting from one code form to another code form is called code 

conversion, like converting from binary to decimal or converting from hexadecimal to 

decimal. 

Binary-To-Decimal Conversion 

              Any binary number can be converted to its decimal equivalent simply by 

summing together the weights of the various positions in the binary number which 

contain a 1. 

 

Binary  Decimal 

110112 
 

24+23+01+21+20 =16+8+0+2+1 

Result 2710 
 

 

Decimal-To-Binary Conversion 

Convert 2510 to binary    

Division Remainder Binary  

25/2  = 12+ remainder of 1  1 (Least Significant Bit) 

12/2  = 6 + remainder of 0  0 

6/2  = 3 + remainder of 0  0 

3/2  = 1 + remainder of 1  1 

1/2  = 0 + remainder of 1  1 (Most Significant Bit) 

Result  2510  = 110012 

 

 

 

 



Binary-To-Octal / Octal-To-Binary Conversion  

Octal Digit  0  1  2  3  4  5  6  7 

Binary 

Equivalent  
000  001  010  011  100  101  110  111 

     

Each Octal digit is represented by three binary digits. 

Example: 

100 111 0102 = (100) (111) (010)2 = 4 7 28 

 

Binary-To-Hexadecimal /Hexadecimal-To-Binary Conversion 

 

Hexadecimal Digit  0  1  2  3  4  5  6  7 

Binary Equivalent  0000  0001  0010  0011  0100  0101  0110  0111 

     

Hexadecim

al Digit  
8  9  A  B  C  D  E  F 

Binary Equivalent  
100

0  

100

1  

101

0  

101

1  

110

0  

110

1  

111

0  

111

1 

     

Each Hexadecimal digit is represented by four bits of binary digit. 

 Example:  

1011 0010 11112 = (1011) (0010) (1111)2 = B 2 F16 

 

 

 



Decimal to octal 

This method uses repeated division by 8. 

   Example: Convert 17710 to octal and binary     

 

Division Result Binary  

177/8  = 22+ remainder of 1  1 (Least Significant Bit) 

22/ 8  = 2 + remainder of 6  6 

2 / 8  = 0 + remainder of 2  2 (Most Significant Bit) 

Result  17710  = 2618 

Binary 
 

= 0101100012 

Hexadecimal to Decimal/Decimal to Hexadecimal Conversion 

Example: 

2AF16 = 2 x (162) + 10 x (161) + 15 x (160) = 68710 

Example: convert 37810 to hexadecimal and binary:     

 

Division Result Hexadecimal 

378/16  = 23+ remainder of 10  A (Least Significant Bit)23 

23/16  = 1 + remainder of 7  7 

1/16  = 0 + remainder of 1  1 (Most Significant Bit) 

Result  37810  = 17A16 

Binary  
 

= 0001 0111 10102 

 

 

 

 



Octal-To-Hexadecimal Hexadecimal-To-Octal Conversion 

• Convert Octal (Hexadecimal) to Binary first. 

• Regroup the binary number by three bits per group starting from LSB if Octal is 

required. 

• Regroup the binary number by four bits per group starting from LSB if 

Hexadecimal is required.   

Example:  

Convert 5A816 to Octal.     

 

Hexadecimal  Binary/Octal  

5A816  = 0101 1010 1000 (Binary) 

 
= 010 110 101 000 (Binary) 

Result  = 2 6 5 0 (Octal) 

     

 

 

 

 

 

 

 

 

 

 

 



Binary Codes 

 

                        Binary codes are codes which are represented in binary system with 

modification from the original ones. Below we will be seeing the following: 

     

• Weighted Binary Systems 

• Non Weighted Codes 

 

Weighted Binary Systems 

                   Weighted binary codes are those which obey the positional weighting 

principles, each position of the number represents a specific weight. The binary counting 

sequence is an example 

Decimal 8421 2421 5211 Excess-3 

0 0000 0000 0000 0011 

1 0001 0001 0001 0100 

2 0010 0010 0011 0101 

3 0011 0011 0101 0110 

4 0100 0100 0111 0111 

5 0101 1011 1000 1000 

6 0110 1100 1010 1001 

7 0111 1101 1100 1010 

8 1000 1110 1110 1011 

9 1001 1111 1111 1100 

 

 

 



8421 Code/BCD Code 

                    The BCD (Binary Coded Decimal) is a straight assignment of the binary 

equivalent. It is possible to assign weights to the binary bits according to their positions. 

The weights in the BCD code are 8,4,2,1. 

Example: The bit assignment 1001 can be seen by its weights to represent the decimal 9 

because:  

1x8+0x4+0x2+1x1 = 9 

 

2421 Code 

This is a weighted code; its weights are 2, 4, 2 and 1. A decimal number is 

represented in 4-bit form and the total four bits weight is 2 + 4 + 2 + 1 = 9. Hence the 

2421 code represents the decimal numbers from 0 to 9. 

 

5211 Code 

This is a weighted code; its weights are 5, 2, 1 and 1. A decimal number is 

represented in 4-bit form and the total four bits weight is 5 + 2 + 1 + 1 = 9. Hence the 

5211 code represents the decimal numbers from 0 to 9. 

 

Reflective Code 

A code is said to be reflective when code for 9 is complement for the code for 0, 

and so is for 8 and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 

are reflective, whereas the 8421 code is not. 

 

 

 

 

 



Sequential Codes 

A code is said to be sequential when two subsequent codes, seen as numbers in 

binary representation, differ by one. This greatly aids mathematical manipulation of 

data. The 8421 and Excess-3 codes are sequential, whereas the 2421 and 5211 codes are 

not. 

 

Non Weighted Codes 

 

Non weighted codes are codes that are not positionally weighted. That is, each 

position within the binary number is not assigned a fixed value. 

 

Excess-3 Code 

Excess-3 is a non weighted code used to express decimal numbers. The code 

derives its name from the fact that each binary code is the corresponding 8421 code plus 

0011(3).     

Example: 1000 of 8421 = 1011 in Excess-3 

 

Gray Code 

                The gray code belongs to a class of codes called minimum change codes, in 

which only one bit in the code changes when moving from one code to the next. The 

Gray code is non-weighted code, as the position of bit does not contain any weight. The 

gray code is a reflective digital code which has the special property that any two 

subsequent numbers codes differ by only one bit. This is also called a unit-distance 

code. In digital Gray code has got a special place.      

 

 

 



Decimal Number Binary Code Gray Code 

0  0000  0000 

1  0001  0001 

2  0010  0011 

3  0011  0010 

4  0100  0110 

5  0101  0111 

6  0110  0101 

7  0111  0100 

8  1000  1100 

9  1001  1101 

10  1010  1111 

11  1011  1110 

12  1100  1010 

13  1101  1011 

14  1110  1001 

15  1111  1000 

 

Binary to Gray Conversion 

• Gray Code MSB is binary code MSB. 

• Gray Code MSB-1 is the XOR of binary code MSB and MSB-1. 

• MSB-2 bit of gray code is XOR of MSB-1 and MSB-2 bit of binary code. 

• MSB-N bit of gray code is XOR of MSB-N-1 and MSB-N bit of binary code. 

 

 

 

 



Basic Logical Functions and Gates 

While each logical element or condition must always have a logic value of either 

"0" or "1", we also need to have ways to combine different logical signals or conditions 

to provide a logical result. 

For example, consider the logical statement: "If I move the switch on the wall 

up, the light will turn on." At first glance, this seems to be a correct statement. However, 

if we look at a few other factors, we realize that there's more to it than this. In this 

example, a more complete statement would be: "If I move the switch on the wall up and 

the light bulb is good and the power is on, the light will turn on." 

If we look at these two statements as logical expressions and use logical 

terminology, we can reduce the first statement to: 

Light = Switch 

This means nothing more than that the light will follow the action of the switch, 

so that when the switch is up/on/true/1 the light will also be on/true/1. Conversely, if the 

switch is own/off/false/0 the light will also be off/false/0.Looking at the second version 

of the statement, we have a slightly more complex expression: 

Light = Switch and Bulb and Power 

Normally, we use symbols rather than words to designate the and function that 

we're using to combine the separate variables of Switch, Bulb, and Power in this 

expression. The symbol normally used is a dot, which is the same symbol used for 

multiplication in some mathematical expressions. Using this symbol, our three-variable 

expression becomes: 

Light = Switch Bulb Power 

When we deal with logical circuits (as in computers), we not only need to deal 

with logical functions; we also need some special symbols to denote these functions in a 

logical diagram. There are three fundamental logical operations, from which all other 

functions, no matter how complex, can be derived. These functions are named and, or, 

and not.  

 



A logic gate is an electronic circuit/device which makes the logical decisions. To 

arrive at this decisions, the most common logic gates used are OR, AND, NOT, NAND, 

and NOR gates. The NAND and NOR gates are called universal gates. The exclusive-

OR gate is another logic gate which can be constructed using AND, OR and NOT gate. 

 

AND Gate 

The AND gate performs logical multiplication, commonly known as AND 

function. The AND gate has two or more inputs and single output. The output of AND 

gate is HIGH only when all its inputs are HIGH (i.e. even if one input is LOW, Output 

will be LOW). 

 If X and Y are two inputs, then output F can be represented mathematically as F 

= X.Y, Here dot (.) denotes the AND operation. Truth table and symbol of the AND gate 

is shown in the figure below.     

Symbol 

     

 

 

Truth Table    

X Y F=(X.Y) 

0 0 0 

0 1 0 

1 0 0 

1 1 1  

     



Two input AND gate using "diode-resistor" logic is shown in figure below, 

where X, Y are inputs and F is the output. 

     

Circuit  

 

If X = 0 and Y = 0, then both diodes D1 and D2 are forward biased and thus both 

diodes conduct and pull F low. 

 If X = 0 and Y = 1, D2 is reverse biased, thus does not conduct. But D1 is 

forward biased, thus conducts and thus pulls F low. 

     

If X = 1 and Y = 0, D1 is reverse biased, thus does not conduct. But D2 is 

forward biased, thus conducts and thus pulls F low. 

  If X = 1 and Y = 1, then both diodes D1 and D2 are reverse biased and thus both 

the diodes are in cut-off and thus there is no drop in voltage at F. Thus F is HIGH. 

     

 Switch Representation of AND Gate  

In the figure below, X and Y are two switches which have been connected in 

series (or just cascaded) with the load LED and source battery. When both switches are 

closed, current flows to LED. 



                                        

 

 Three Input AND gate  

Since we have already seen how a AND gate works and I will just list the truth 

table of a 3 input AND gate. The figure below shows its symbol and truth table. 

   Circuit 

 

 

Truth Table  

X Y Z F=X.Y.Z  

0 0 0 0  

0 0 1 0  

0 1 0 0  

0 1 1 0  

1 0 0 0  

1 0 1 0  

1 1 0 0  

1 1 1 1 

     

 

 

 



 OR Gate  

The OR gate performs logical addition, commonly known as OR function. The 

OR gate has two or more inputs and single output. The output of OR gate is HIGH only 

when any one of its inputs are HIGH (i.e. even if one input is HIGH, Output will be 

HIGH). 

     If X and Y are two inputs, then output F can be represented mathematically as F 

= X+Y. Here plus sign (+) denotes the OR operation. Truth table and symbol of the OR 

gate is shown in the figure below. 

 

 Symbol   

 

 

Truth Table  

X Y F=(X+Y)  

0 0 0 

0 1 1 

1 0 1 

1 1 1  

     

Two input OR gate using "diode-resistor" logic is shown in figure below, where 

X, Y are inputs and F is the output. 

 

 

 

 



 Circuit  

 

If X = 0 and Y = 0, then both diodes D1 and D2 are reverse biased and thus both 

the diodes are in cut-off and thus F is low. 

 If X = 0 and Y = 1, D1 is reverse biased, thus does not conduct. But D2 is 

forward biased, thus conducts and thus pulling F to HIGH. 

If X = 1 and Y = 0, D2 is reverse biased, thus does not conduct. But D1 is 

forward biased, thus conducts and thus pulling F to HIGH. 

If X = 1 and Y = 1, then both diodes D1 and D2 are forward biased and thus both 

the diodes conduct and thus F is HIGH. 

 Switch Representation of OR Gate  

In the figure, X and Y are two switches which have been connected in parallel, 

and this is connected in series with the load LED and source battery. When both 

switches are open, current does not flow to LED, but when any switch is closed then 

current flows. 

     

 

 



 Three Input OR gate  

Since we have already seen how an OR gate works, I will just list the truth table 

of a 3-input OR gate. The figure below shows its circuit and truth table. 

Truth Table  

X Y Z F=X+Y+Z  

0 0 0 0  

0 0 1 1  

0 1 0 1  

0 1 1 1  

1 0 0 1  

1 0 1 1  

1 1 0 1  

1 1 1 1 

     

NOT Gate 

The NOT gate performs the basic logical function called inversion or 

complementation. NOT gate is also called inverter. The purpose of this gate is to convert 

one logic level into the opposite logic level. It has one input and one output. When a 

HIGH level is applied to an inverter, a LOW level appears on its output and vice versa. 

    If X is the input, then output F can be represented mathematically as F = X', Here 

apostrophe (') denotes the NOT (inversion) operation. There are a couple of other ways 

to represent inversion, F=! X, here! represents inversion. Truth table and NOT gate 

symbol is shown in the figure below. 

Symbol 

    

 

 



Truth Table    

 

X Y=X'  

0 1 

1 0 

     

 

NOT gate using "transistor-resistor" logic is shown in the figure below, where X 

is the input and F is the output. 

 Circuit 

 

 

 

When X = 1, the transistor input pin 1 is HIGH, this produces the forward bias 

across the emitter base junction and so the transistor conducts. As the collector current 

flows, the voltage drop across RL increases and hence F is LOW. 

When X = 0, the transistor input pin 2 is LOW: this produces no bias voltage 

across the transistor base emitter junction. Thus Voltage at F is HIGH. 

 

 



BUF Gate 

Buffer or BUF is also a gate with the exception that it does not perform any 

logical operation on its input. Buffers just pass input to output. Buffers are used to 

increase the drive strength or sometime just to introduce delay. We will look at this in 

detail later. 

     

If X is the input, then output F can be represented mathematically as F = X. 

Truth table and symbol of the Buffer gate is shown in the figure below. 

    

Symbol 

     

 

 

Truth Table  

X Y=X  

0 0 

1 1 

 

NAND Gate 

NAND gate is a cascade of AND gate and NOT gate, as shown in the figure 

below. It has two or more inputs and only one output. The output of NAND gate is 

HIGH when any one of its input is LOW (i.e. even if one input is LOW, Output will be 

HIGH). 

     



NAND From AND and NOT     

 

 

 

If X and Y are two inputs, then output F can be represented mathematically as F 

= (X.Y)', Here dot (.) denotes the AND operation and (') denotes inversion. Truth table 

and symbol of the N AND gate is shown in the figure below.  

     

Symbol     

 

 

 

 

 

 

 

 



Truth Table      

 

X Y F=(X.Y)'  

0 0 1 

0 1 1 

1 0 1 

1 1 0  

     

 

NOR Gate 

NOR gate is a cascade of OR gate and NOT gate, as shown in the figure below. 

It has two or more inputs and only one output. The output of NOR gate is HIGH when 

any all its inputs are LOW (i.e. even if one input is HIGH, output will be LOW). 

     

Symbol     

 

If X and Y are two inputs, then output F can be represented mathematically as F 

= (X+Y)'; here plus (+) denotes the OR operation and (') denotes inversion. Truth table 

and symbol of the NOR gate is shown in the figure below.  

     

 

 

 

 



Truth Table  

     

X Y F=(X+Y)'  

0 0 1 

0 1 0 

1 0 0 

1 1 0  

     

 

 XOR Gate  

An Exclusive-OR (XOR) gate is gate with two or three or more inputs and one 

output. The output of a two-input XOR gate assumes a HIGH state if one and only one 

input assumes a HIGH state. This is equivalent to saying that the output is HIGH if 

either input X or input Y is HIGH exclusively and LOW when both are 1 or 0 

simultaneously. 

  If X and Y are two inputs, then output F can be represented mathematically as F 

= X Y, Here denotes the XOR operation. XY and is equivalent to X.Y' + X'.Y. 

Truth table and symbol of the XOR gate is shown in the figure below. 

 

 XOR from Simple gates 

 

 

 

 

 



Symbol     

 

 

Truth Table      

X Y F=(X Y) 

0 0 0 

0 1 1 

1 0 1 

1 1 0  

     

 XNOR Gate  

An Exclusive-NOR (XNOR) gate is gate with two or three or more inputs and 

one output. The output of a two-input XNOR gate assumes a HIGH state if all the inputs 

assumes same state. This is equivalent to saying that the output is HIGH if both input X 

and input Y is HIGH exclusively or same as input X and input Y is LOW exclusively, 

and LOW when both are not same. 

    If X and Y are two inputs, then output F can be represented mathematically as F 

= X Y, Here denotes the XNOR operation. XY and is equivalent to X.Y + X'.Y'. 

Truth table and symbol of the XNOR gate is shown in the figure below. 

  

 

 

 

 

 

 

 



Symbol    

 

 

 

Truth Table      

X Y F=(X Y)'  

0 0 1 

0 1 0 

1 0 0 

1 1 1  

     

 

 

 

 

 

 

 

 

 

 

 

 



Combinational Logic 

 

Combinatorial Circuits are circuits which can be considered to have the 

following generic structure. 

     

 

 

Whenever the same set of inputs is fed in to a combinatorial circuit, the same 

outputs will be generated. Such circuits are said to be stateless. Some simple 

combinational logic elements that we have seen in previous sections are "Gates".     

 

 

All the gates in the above figure have 2 inputs and one output; combinational 

elements simplest form are "not" gate and "buffer" as shown in the figure below. They 

have only one input and one output. 

     



 

 

Decoders 

A decoder is a multiple-input, multiple-output logic circuit that converts coded 

inputs into coded outputs, where the input and output codes are different; e.g. n-to-2n, 

BCD decoders. Enable inputs must be on for the decoder to function, otherwise its 

outputs assume a single "disabled" output code word. 

 Decoding is necessary in applications such as data multiplexing, 7 segment 

display and memory address decoding. Figure below shows the pseudo block of a 

decoder.     

 

 

Binary n-to-2n Decoders 

A binary decoder has n inputs and 2n outputs. Only one output is active at any 

one time, corresponding to the input value. Figure below shows a representation of 

Binary n-to-2n decoder 

     



 

 

Encoders 

An encoder is a combinational circuit that performs the inverse operation of a 

decoder. If a device output code has fewer bits than the input code has, the device is 

usually called an encoder. e.g. 2n-to-n, priority encoders.  

The simplest encoder is a 2n-to-n binary encoder, where it has only one of 2n 

inputs = 1 and the output is the n-bit binary number corresponding to the active input.     

 

 

Multiplexer 

A multiplexer (MUX) is a digital switch which connects data from one of n 

sources to the output. A number of select inputs determine which data source is 

connected to the output. The block diagram of MUX with n data sources of b bits wide 

and s bits wide select line is shown in below figure.     

 



 

 

MUX acts like a digitally controlled multi-position switch where the binary code 

applied to the select inputs controls the input source that will be switched on to the 

output as shown in the figure below. At any given point of time only one input gets 

selected and is connected to output, based on the select input signal. 

     

 

De-multiplexers 

They are digital switches which connect data from one input source to one of n 

outputs. Usually implemented by using n-to-2n binary decoders where the decoder 

enable line is used for data input of the de-multiplexer.   

The figure below shows a de-multiplexer block diagram which has got s-bits-

wide select input, one b-bits-wide data input and n b-bits-wide outputs. 

     



 

 

Adders 

Adders are the basic building blocks of all arithmetic circuits; adders add two binary 

numbers and give out sum and carry as output. Basically we have two types of adders.     

• Half Adder. 

• Full Adder. 

 

 

Half Adder 

Adding two single-bit binary values X, Y produces a sum S bit and a carry out 

C-out bit. This operation is called half addition and the circuit to realize it is called a half 

adder.     

Truth Table  

X Y SUM CARRY  

0 0 0 0 

0 1 1 0 

1 0 1 0  

1 1 0 1  

     

 

 



Symbol     

 

 

 

 

 

Circuit     

 

 

 

 Full Adder   

Full adder takes a three-bits input. Adding two single-bit binary values X, Y with 

a carry input bit C-in produces a sum bit S and a carry out C-out bit.  

 

 

 



Truth Table  

X Y Z SUM CARRY  

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0  

0 1 1 0 1  

1 0 0 1 0  

1 0 1 0 1  

1 1 0 0 1  

1 1 1 1 1 

     

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sequential Circuits 
 

Digital electronics is classified into combinational logic and sequential logic. 

Combinational logic output depends on the inputs levels, whereas sequential logic 

output depends on stored levels and also the input levels. 

     

 

 

The memory elements are devices capable of storing binary info. The binary info 

stored in the memory elements at any given time defines the state of the sequential 

circuit. The input and the present state of the memory element determine the output. 

Memory elements next state is also a function of external inputs and present state. A 

sequential circuit is specified by a time sequence of inputs, outputs, and internal states. 

    There are two types of sequential circuits. Their classification depends on the 

timing of their signals: 

• Synchronous sequential circuits 

• Asynchronous sequential circuits 

 

Asynchronous sequential circuit  

This is a system whose outputs depend upon the order in which its input 

variables change and can be affected at any instant of 

time.  



Gate-type asynchronous systems are basically combinational circuits with 

feedback paths. Because of the feedback among logic gates, the system may, at times, 

become unstable. Consequently they are not often used. 

     

 

 

  

 

 

Synchronous sequential circuits  

This type of system uses storage elements called flip-flops that are employed to 

change their binary value only at discrete instants of time. Synchronous sequential 

circuits use logic gates and flip-flop storage devices. Sequential circuits have a clock 

signal as one of their inputs. All state transitions in such circuits occur only when the 

clock value is either 0 or 1 or happen at the rising or falling edges of the clock 

depending on the type of memory elements used in the circuit. 

 

 Synchronization is achieved by a timing device called a clock pulse generator. 

Clock pulses are distributed throughout the system in such a way that the flip-flops are 

affected only with the arrival of the synchronization pulse. Synchronous sequential 

circuits that use clock pulses in the inputs are called clocked-sequential circuits. They 

are stable and their timing can easily be broken down into independent discrete steps, 

each of which is considered separately. 

     



 

 

A clock signal is a periodic square wave that indefinitely switches from 0 to 1 

and from 1 to 0 at fixed intervals. Clock cycle time or clock period: the time interval 

between two consecutive rising or falling edges of the clock. 

     

Clock Frequency = 1 / clock cycle time (measured in cycles per second or Hz)  

   Example: Clock cycle time = 10ns clock frequency = 100 MHz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Latches and Flip-Flops 

 

               Latches and Flip-flops are one and the same with a slight variation: Latches 

have level sensitive control signal input and Flip-flops have edge sensitive control signal 

input. Flip-flops and latches which use this control signals are called synchronous 

circuits. So if they don't use clock inputs, then they are called asynchronous circuits. 

 

RS Latch 

 

RS latch have two inputs, S and R. S is called set and R is called reset. The S 

input is used to produce HIGH on Q ( i.e. store binary 1 in flip-flop). The R input is used 

to produce LOW on Q (i.e. store binary 0 in flip-flop). Q' is Q complementary output, so 

it always holds the opposite value of Q. The output of the S-R latch depends on current 

as well as previous inputs or state, and its state (value stored) can change as soon as its 

inputs change. The circuit and the truth table of RS latch is shown below. 

 

 

 

 

 

S R Q Q+ 

0 0 0 0 

0 0 1 1 

0 1 X 0 

1 0 X 1 

1 1 X 0 

     



The operation has to be analyzed with the 4 inputs combinations together with 

the 2 possible previous states.     

• When S = 0 and R = 0: If we assume Q = 1 and Q' = 0 as initial condition, then 

output Q after input is applied would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0. 

Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input 

applied would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1. So it is clear that when 

both S and R inputs are LOW, the output is retained as before the application of 

inputs. (i.e. there is no state change). 

• When S = 1 and R = 0: If we assume Q = 1 and Q' = 0 as initial condition, then 

output Q after input is applied would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0. 

Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input 

applied would be Q = (R + Q')' = 1 and Q' = (S + Q)' = 0. So in simple words 

when S is HIGH and R is LOW, output Q is HIGH. 

• When S = 0 and R = 1: If we assume Q = 1 and Q' = 0 as initial condition, then 

output Q after input is applied would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1. 

Assuming Q = 0 and Q' = 1 as initial condition, then output Q after the input 

applied would be Q = (R + Q')' = 0 and Q' = (S + Q)' = 1. So in simple words 

when S is LOW and R is HIGH, output Q is LOW. 

• When S = 1 and R =1 : No matter what state Q and Q' are in, application of 1 at 

input of NOR gate always results in 0 at output of NOR gate, which results in 

both Q and Q' set to LOW (i.e. Q = Q'). LOW in both the outputs basically is 

wrong, so this case is invalid.     

The waveform below shows the operation of NOR gate based RS Latch.                                    

 



It is possible to construct the RS latch using NAND gates (of course as seen in 

Logic gates section). The only difference is that NAND neither is NOR gate dual form 

(Did I say that in Logic gates section?). So in this case the R = 0 and S = 0 case becomes 

the invalid case. The circuit and Truth table of RS latch using NAND is shown below.     

 

 

S R Q Q+ 

1 1 0 0 

1 1 1 1 

0 1 X 0 

1 0 X 1 

0 0 X 1 

     

If you look closely, there is no control signal (i.e. no clock and no enable), so 

these kinds of latches or flip-flops are called asynchronous logic elements. Since all the 

sequential circuits are built around the RS latch, we will concentrate on synchronous 

circuits and not on asynchronous circuits. 

D Latch 

The RS latch seen earlier contains ambiguous state; to eliminate this condition 

we can ensure that S and R are never equal. This is done by connecting S and R together 

with an inverter. Thus we have D Latch: the same as the RS latch, with the only 

difference that there is only one input, instead of two (R and S). This input is called D or  



Data input. D latch is called D transparent latch for the reasons explained earlier. Delay 

flip-flop or delay latch is another name used. Below is the truth table and circuit of D 

latch. 

 

   In real world designs (ASIC/FPGA Designs) only D latches/Flip-Flops are used.   

 

 

 

D Q Q+ 

1 X 1 

0 X 0 

Below is the D latch waveform, which is similar to the RS latch one, but with R 

removed.     

 

 

 



JK Latch 

The ambiguous state output in the RS latch was eliminated in the D latch by 

joining the inputs with an inverter. But the D latch has a single input. JK latch is similar 

to RS latch in that it has 2 inputs J and K as shown figure below. The ambiguous state 

has been eliminated here: when both inputs are high, output toggles. The only difference 

we see here is output feedback to inputs, which is not there in the RS latch.     

 

 

 

J K  Q 

1 1 0 

1 1 1 

1 0 1 

0 1 0 

     

 

 T Latch  

When the two inputs of JK latch are shorted, a T Latch is formed. It is called T 

latch as, when input is held HIGH, output toggles.     

 



 

 

 

T Q Q+ 

1 0 1 

1 1 0 

0 1 1 

0 0 0 

     

 

  JK Master Slave Flip-Flop 

All sequential circuits that we have seen in the last few pages have a problem 

(All level sensitive sequential circuits have this problem). Before the enable input 

changes state from HIGH to LOW (assuming HIGH is ON and LOW is OFF state), if 

inputs changes, then another state transition occurs for the same enable pulse. This sort 

of multiple transition problem is called racing.  If we make the sequential element 

sensitive to edges, instead of levels, we can overcome this problem, as input is evaluated 

only during enable/clock edges.     



 

In the figure above there are two latches, the first latch on the left is called 

master latch and the one on the right is called slave latch. Master latch is positively 

clocked and slave latch is negatively clocked.  

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

VHDL 
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CHAPTER 1 

INTRODUCTION TO VLSI 

 

Introduction 
 

Integrated circuits were made possible by experimental discoveries which 

showed that semiconductor devices could perform the functions of vacuum tubes, and 

by mid-20th-century technology advancements in semiconductor device fabrication. The 

integration of large numbers of tiny transistors into a small chip was an enormous 

improvement over the manual assembly of circuits using discrete electronic components. 

The integrated circuit's mass production capability, reliability, and building-block 

approach to circuit design ensured the rapid adoption of standardized ICs in place of 

designs using discrete transistors. There are two main advantages of ICs over discrete 

circuits - cost and performance. Cost is low because the chips, with all their components, 

are printed as a unit by photolithography and not constructed a transistor at a time. 

Performance is high since the components switch quickly and consume little power, 

because the components are small and close together. As of 2006, chip areas range from 

a few square mm to around 250 mm2, with up to 1 million transistors per mm2. 

 

Advances in Integrated circuits 
 

Among the most advanced integrated circuits are the microprocessors, which 

control everything from computers to cellular phones to digital microwave ovens. 

Digital memory chips are another family of integrated circuit that is crucially important 

to the modern information society. While the cost of designing and developing a 

complex integrated circuit is quite high, when spread across typically millions of 

production units the individual IC cost is minimized. The performance of ICs is high 

because the small size allows short traces, which in turn allows low power logic (such as 

CMOS) to be used at fast switching speeds. 

 

 

 



ICs have consistently migrated to smaller feature sizes over the years, allowing 

more circuitry to be packed on each chip. As the feature size shrinks, almost everything 

improves - the cost per unit and the switching power consumption go down, and the 

speed goes up. However, IC's with nanometer-scale devices are not without their 

problems, principal among which is leakage current, although these problems are not 

insurmountable and will likely be solved or at least ameliorated by the introduction of 

high-k dielectrics. Since these speed and power consumption gains are apparent to the 

end user, there is fierce competition among the manufacturers to use finer geometries. 

This process, and the expected progress over the next few years, is well described by the 

International Technology Roadmap for Semiconductors, or ITRS. 

 

 

SSI, MSI, LSI 

The first integrated circuits contained only a few transistors. Called "Small-

Scale Integration" (SSI), they used circuits containing transistors numbering in the 

tens.SSI circuits were crucial to early aerospace projects, and vice-versa. Both the 

Minuteman missile and Apollo program needed lightweight digital computers for their 

inertially-guided flight computers; the Apollo guidance computer led and motivated the 

integrated-circuit technology, while the Minuteman missile forced it into mass-

production.These programs purchased almost all of the available integrated circuits from 

1960 through 1963, and almost alone provided the demand that funded the production 

improvements to get the production costs from $1000/circuit (in 1960 dollars) to merely 

$25/circuit (in 1963 dollars). 

The next step in the development of integrated circuits, taken in the late 1960s, 

introduced devices which contained hundreds of transistors on each chip, called 

“Medium-Scale Integration" (MSI ). They were attractive economically because while 

they cost little more to produce than SSI devices, they allowed more complex systems to 

be produced using smaller circuit boards, less assembly work, and a number of other 

advantages. Further development, driven by the same economic factors, led to "Large-

Scale Integration" (LSI ) in the mid 1970s, with tens of thousands of transistors per 

chip. LSI circuits began to be produced in large quantities around 1970, for computer 

main memories and pocket calculators. 

 



 
VLSI 
 

The final step in the development process, starting in the 1980s and continuing 

on, was "Very Large-Scale Integration" (VLSI), with hundreds of thousands of 

transistors, and beyond (well past several million in the latest stages). For the first time it 

became possible to fabricate a CPU on a single integrated circuit, to create a 

microprocessor. In 1986 the first one megabit RAM chips were introduced, which 

contained more than one million transistors. Microprocessor chips produced in 1994 

contained more than three million transistors. This step was largely made possible by the 

codification of "design rules" for the CMOS technology used in VLSI chips, which 

made production of working devices much more of a systematic endeavor.  

 

ULSI, WSI, SOC 

To reflect further growth of the complexity, the term ULSI  that stands for 

"Ultra-Large Scale Integration" was proposed for chips of complexity more than 1 

million of transistors. However there is no qualitative leap between VLSI and ULSI, 

hence normally in technical texts the "VLSI" term covers ULSI as well, and "ULSI" is 

reserved only for cases when it is necessary to emphasize the chip complexity, e.g. in 

marketing.  

 

The most extreme integration technique is wafer-scale integration (WSI), 

which uses whole uncut wafers containing processors as well as memory. Attempts to 

take this step commercially in the 1980s (e.g. by Gene Amdahl) failed, mostly because 

of defect-free manufacturability problems, and it does not now seem to be a high priority 

for industry. The WSI technique failed commercially, but advances in semiconductor 

manufacturing allowed for another attack on the IC complexity, known as System-on-

Chip (SOC) design. In this approach, components traditionally manufactured as 

separate chips to be wired together on a printed circuit board are designed to occupy a 

single chip that contains memory, microprocessor, peripheral interfaces, Input/Output 

logic control, data converters, and other components, together composing the whole 

electronic system. 

 

 



Other developments 

In the 1980s programmable integrated circuits were developed. These devices 

contain circuits whose logical function and connectivity can be programmed by the user, 

rather than being fixed by the integrated circuit manufacturer. This allows a single chip 

to be programmed to implement different LSI-type functions such as logic gates, adders, 

and registers. Current devices named FPGAs (Field Programmable Gate Arrays) can 

now implement tens of thousands of LSI circuits in parallel and operate up to 400 MHz. 

The techniques perfected by the integrated circuits industry over the last three decades 

have been used to create microscopic machines, known as MEMS. These devices are 

used in a variety of commercial and defense applications, including projectors, ink jet 

printers, and accelerometers used to deploy the airbag in car accidents. In the past, 

radios could not be fabricated in the same low-cost processes as microprocessors. But 

since 1998, a large number of radio chips have been developed using CMOS processes. 

Examples include Intel's DECT cordless phone, or Atheros's 802.11 card. 

 
Moore’s Law  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The growth of complexity of integrated circuits follows a trend called 

"Moore's Law", first observed by Gordon Moore of In tel. Moore's Law in its 

modern interpretation states that the number of transistors in an integrated circuit 

doubles every two years. By the year 2000 the largest integrated circuits contained 

hundreds of millions of transistors. It is difficult to say whether the trend will 

continue.  

 

 

Popularity of ICs 

Only a half century after their development was initiated, integrated circuits have 

become ubiquitous. Computers, cellular phones, and other digital appliances are now 

inextricable parts of the structure of modern societies. That is, modern computing, 

communications, manufacturing and transport systems, including the Internet, all 

depend on the existence of integrated circuits. Indeed, many scholars believe that the 

digital revolution brought about by integrated circuits was one of the most significant 

occurrences in the history of mankind. 

 
Why VLSI? 
 
Integration improves the design: 

• Lower parasitic = higher speed. 

• Lower power. 

• Physically smaller. 

• Integration reduces manufacturing cost-no manual assembly. 
 

 

Challenges in VLSI Design 
 

• Multiple levels of abstraction: transistors to CPUs. 

• Multiple and conflicting constraints: low cost and high performances are often at odds. 

• Short design time: Late products are often irrelevant. 

 

 

 

 

 



Dealing with Complexity 
 

Divide-and-conquer: limit the number of components you deal with at any one time. 

 

Group several components into larger components: 

 

• transistors form gates; 

• gates form functional units; 

• Functional units form processing elements, etc. 

 

Top-down vs. Bottom-up Design 
 

• Top-down design adds functional detail. Create lower levels of abstraction from upper 

levels. 

• Bottom-up design creates abstractions from low-level behavior. 

• Good design needs both top-down and bottom-up efforts. 

 
Design Strategies 
 

IC design productivity depends on the efficiency with which the design may be 

converted from concept to architecture, to logic and memory, to circuit and hence to a 

physical layout. A good design strategy with a good design system should provide for 

consistent descriptions in various abstraction levels. The role of good design strategies is 

to reduce complexity, increase productivity, and assure working product. 

 

Design is a continuous trade-off to achieve adequate results for: 

 

• Performance - speed, power, function, flexibility 

• Size of die (hence cost of die) 

• Time to design 

• Ease of test generation and testability 

 

 



Hardware Description Languages (HDLs) 

 

IEEE standardized Language 

  

• VHDL  
 

• VerilogHDL  

 
What is VHDL? 

• VHDL: V HSIC Hardware Description Language 

            –VHSIC: V ery High Speed Integrated Circuit  

• Developed originally by DARPA 

            –for specifying digital systems  

• International IEEE standard (IEEE 1076-1993) 

• Hardware Description, Simulation, Synthesis 

• Practical benefits: 

            –a mechanism for digital design and  reusable design documentation  

            –Model interoperability among vendors 

            –Third party vendor support 

            –Design re-use. 

 
VHDL vs. C/Pascal 
 

C/Pascal: 

–Procedural programming languages. 

–Typically describe procedures for computing a math’s function or manipulation of data. 

  (e.g., sorting, matrix computing) 

–A program is a recipe or a sequence of steps for how to perform a computation or   

  manipulate data. 

 



VHDL: 

– A language to describe digital systems. 

–Purposes: simulation and synthesis of digital systems. 

Design Flow 

 

 

 

 

� SPECIFICATION  

                This is the stage at which we define what are the important parameters of the 

system/design that you are planning to design. A simple example would be: I want to design a 

counter; it should be 4 bit wide, should have synchronous reset, with active high enable; when 

reset is active, counter output should go to "0".  

� HIGH LEVEL DESIGN  

              This is the stage at which you define various blocks in the design and how they 

communicate. Let's assume that we need to design a microprocessor: high level design 

means splitting the design into blocks based on their function; in our case the blocks are 

registers, ALU, Instruction Decode, Memory Interface, etc.  

 



� MICRO DESIGN/LOW LEVEL DESIGN  

            Low level design or Micro design is the phase in which the designer describes 

how each block is implemented. It contains details of State machines, counters, Mux, 

decoders, internal registers. It is always a good idea to draw waveforms at various 

interfaces. This is the phase where one spends lot of time. 

 

� RTL CODING  

           In RTL coding, Micro design is converted into Verilog/VHDL code, using 

synthesizable constructs of the language. Normally we like to lint the code, before 

starting verification or synthesis. 

 

� SIMULATION  

            Simulation is the process of verifying the functional characteristics of models at any 

level of abstraction. We use simulators to simulate the Hardware models. To test if the RTL 

code meets the functional requirements of the specification, we must see if all the RTL blocks 

are functionally correct. To achieve this we need to write a test bench, which generates clk, 

reset and the required test vectors. We use the waveform output from the simulator to see if the 

DUT (Device Under Test) is functionally correct. 

 

� SYNTHESIS   

  Synthesis is the process in which synthesis tools like design compiler or Synplify take 

RTL in Verilog or VHDL, target technology, and constrains as input and maps the RTL to target 

technology primitives. Synthesis tool, after mapping the RTL to gates, also do the minimal 

amount of timing analysis to see if the mapped design is meeting the timing requirements. 

(Important thing to note is, synthesis tools are not aware of wire delays, they only know of 

gate delays). 

• Formal Verification:  Check if the RTL to gate mapping is correct.  

• Scan insertion: Insert the scan chain in the case of A. 

 

 



� PLACE & ROUTE  

         The gate level net list from the synthesis tool is taken and imported into place 

and route tool in Verilog net list format. All the gates and flip-flops are placed; clock 

tree synthesis and reset is routed. After this each block is routed. The P&R tool 

output is a GDS file, used by foundry for fabricating the ASIC. 

 

� GATE LEVEL SIMULATION (OR) SDF/TIMING SIMULATION  

There is another kind of simulation, called timing simulation, which is done 

after synthesis or after P&R (Place and Route). Here we include the gate delays and wire 

delays and see if DUT works at rated clock speed.  

 

� POST SILICON VALIDATION 

Once the chip (silicon) is back from fab, it needs to put in real environment and 

tested before it can be released into Market. Since the speed of simulation with RTL is 

very slow (number clocks per second), there is always possibility to find a bug in Post 

silicon validation. 

       Note: As design becomes complex, we write SELF CHECKING TESTBENCH , where 

test bench applies the test vector, then compares the output of DUT with expected values. 

 
 

 

 

 

 

 

 

 

 

 



CHAPTER 2 
 

BASIC COMPONENTS OF A VHDL MODEL 
 

The purpose of VHDL descriptions is to provide a model for digital circuits and systems. 

This abstract view of the real physical circuit is referred to as entity. An entity normally consists 

of five basic elements, or design units. 

 

 

 

 

In VHDL one generally distinguishes between the external view of a module and 

its internal description. The external view is reflected in the entity declaration, which 

represents an interface description of a 'black box'. The important part of this interface 

description consists of signals over which the individual modules communicate with 

each other. 

The internal view of a module and, therefore, its functionality is described in the 

architecture body. This can be achieved in various ways. One possibility is given by 

coding a behavioral description with a set of concurrent or sequential statements. 

Another possibility is a structural description, which serves as a base for the 

hierarchically designed circuit architectures. Naturally, these two kinds of architectures 

can also be combined. The lowest hierarchy level, however, must consist of behavioral 

descriptions. One of the major VHDL features is the capability to deal with multiple 

different architectural bodies belonging to the same entity declaration.  

 



  Being able to investigate different architectural alternatives permits the 

development of systems to be done in an efficient top-down manner. The ease of 

switching between different architectures has another advantage, namely, quick testing. 

In this case, it is necessary to bind one architecture to the entity in order to have a unique 

hierarchy for simulation or synthesis. Which architecture should be used for simulation 

or synthesis in conjunction with a given entity is specified in the configuration section. 

If the architecture body consists of a structural description, then the binding of 

architectures and entities of the instantiated submodules, the so-called components, can 

also be fixed by the configuration statement. 

 

The package is the last element mentioned here. It contains declarations of frequently 

used data types, components, functions, and so on. The package consists of a package 

declaration and a package body. The declaration is used, like the name implies, for declaring 

the above-mentioned objects. This means, they become visible to other design units. In the 

package body, the definition of these objects can be carried out, for example, the definition of 

functions or the assignment of a value to a constant. The partitioning of a package into its 

declaration and body provides advantages in compiling the model descriptions.  

 

Entity Declaration 
 

An entity declaration specifies the name of an entity and its interface. This 

corresponds to the information given by the symbols in traditional design methods based 

on drawing schematics. Signals that are used for communication with the surrounding 

modules are called ports. 

 

 

 

Interface of a full-adder module 
 

 

 



Example:  

 

               entity FULLADDER is 

 

                  port ( A, B, C : in bit ; 

 

                            SUM, CARRY : out bit ); 

 

              end FULLADDER; 

 

 

The module FULLADDER has five interface ports. Three of them are the input 

ports A, B and C indicated by the VHDL keyword in. The remaining two are the output 

ports SUM and CARRY indicated by out. The signals going through these ports are 

chosen to be of the type bit. This is one of the predefined types besides integer, real and 

others types provided by VHDL. The type bit consists of the two characters '0' and '1' 

and represents the binary logic values of the signals. 

 

Every port declaration implicitly creates a signal with the name and type 

specified. It can be used in all architectures belonging to the entity in one of the 

following port modes: 

 
     in:   The port can only be read within the entity and its architectures. 

 

    out:   This port can only be written. 

 

    inout:  This port can be read and written. This is useful for modeling bus systems. 

 

   buffer: The port can be read and written. Each port must have only one driver. 

 

 

 



Syntax :  

 

               entity entity name is 

 

                           [ generics ] 

 

                           [ ports ] 

 

                           [ declarations (types, constants, signals) ] 

                           [ definitions (functions, procedures) ] 

 

                       [ begin        -- normally not used 

 

                                                              statements ] 

 

               end [ entity name ] ; 

 

Architecture 
 

The second important component of a VHDL description is the architecture. This 

is where the functionality and the internal implementation of a module are described. In 

general, a complex hierarchically structured system may have the topology. 

 

 

 



Hierarchical circuit design 
S: structural description 

B: behavioral description 

B/S: mixed description 

 

 

In order to describe such a system both behavioral and structural descriptions are 

required. A behavioral description may be of either concurrent or sequential type. 

Overall, VHDL architectures can be classified into the three main types: 

 

• Data flow modeling. 

• Behavioral modeling. 

• Structural modeling.  

 

Syntax :  

 

              architecture architecture name of entity name is 

 

                                 [ arch declarative part ] 

 

                    begin 

 

                                  [ arch statement part ] 

 

             end  [ architecture name ] ; 

 

The architecture specifies the implementation of the entity entity name. A label 

architecture name must be assigned to the architecture. In case there are multiple 

architectures associated with one entity this label is then used within a configuration  

 



Statement to bind one particular architecture to its entity. The architecture block consists of 

two parts:  the arch declarative part before the keywords begin and the arch statement part 

after the keywords begin. In the declaration part local types, signals, components etc. are 

declared and subprograms are defined. The actual model description is done in the statement 

part. In contrast to programming languages like C, the major concern of VHDL is describing 

hardware which primary works in parallel and not in a sequential manner. Therefore, a special 

simulation algorithm is used to achieve a virtual concurrent processing. This algorithm is 

explained in the following section. 

 

Configuration : 

 

It is used to create a configuration for an entity. To binding of components used 

in the selected architecture body to other entities.  

 
Package Declaration : 

It contains a set of declarations that may possibly be shared by many design units. 

Package Body :   

It contains the behavior of the subprogram and the values of the deferred 

constants declared in a package declaration.  

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 

BASIC LANGUAGE ELEMENTS 

 

This describes the facilities in VHDL, which are drawn from the familiar 

programming language repertoire. If you are familiar with the Ada programming 

language, you will notice the similarity with that language. This is both a convenience 

and a nuisance. The convenience is that you don’t have much to learn to use these 

VHDL facilities. The problem is that the facilities are not as comprehensive as those of 

Ada, though they are certainly adequate for most modeling purposes. 

 

Lexical Elements 

 

Comments 

 

Comments in VHDL start with two adjacent hyphens (‘--’) and extend to the end 

of the line. They have no part in the meaning of a VHDL description. 

 

Identifiers 

 

Identifiers in VHDL are used as reserved words and as programmer-defined 

names. They must conform to the rule: 

                            Letter  { [ underline ] letter_or_digit } 

 

Note that case of letters is not considered significant, so the identifiers cat and Cat are the 

same. Underline characters in identifiers are significant, so This_Name and ThisName are 

different identifiers. 

 

 

 

 



Numbers 

 

Literal numbers may be expressed either in decimal or in a base between two and 

sixteen. If the literal includes a point, it represents a real number, otherwise it represents 

an integer. Decimal literals are defined by: 

 

                                    integer [  integer ] [ exponent ] 

Example : 

 

                 0        1      123_456_789          987E6          -- integer literals 

               0.0      0.5        2.718_28            12.4E-9         -- real literals 

 

Based literal numbers are defined by: 

 

                         base  #  based_integer [ based_integer ] #  [ exponent ] 

               

 

The base and the exponent are expressed in decimal. The exponent indicates the power of the 

base by which the literal is multiplied. The letters A to F (upper or lower case) are used as 

extended digits to represent 10 to 15.  

Example : 

               2#1100_0100#   16#C4#    4#301#E1              -- the integer 196 

 

               2#1.1111_1111_111#E+11    16#F.FF#E2     -- the real number 4095.0 

 

 

 

 

 

 



Characters 

 

Literal characters are formed by enclosing an ASCII character in single-quote 

marks.  

Example : 

                                           'A' '*' ''' ' ' 

 

Strings 

 

Literal strings of characters are formed by enclosing the characters in double-

quote marks. To include a double-quote mark itself in a string, a pair of double-quote 

marks must be put together. A string can be used as a value for an object which is an 

array of characters. 
 

Example : 

                                          "A string" 

 

                                          ""                                       -- empty string 

 

                            "A string in a string: ""A string"". "   -- contains quote marks 

 

Bit Strings 

 

VHDL provides a convenient way of specifying literal values for arrays of type bit.  

Syntax : 

                            base_specifier " bit_value " 

               

Base specifier B stands for binary, O for octal and X for hexadecimal.  

 

 

 



Examples : 

 

                    B"1010110"        -- length is 7 

                    O"126"                -- length is 9, equivalent to B"001_010_110" 

                     X"56"                 -- length is 8, equivalent to B"0101_0110" 

 

Data Types and Objects 

 

VHDL provides a number of basic, or scalar, types, and a means of forming composite 

types. The scalar types include numbers, physical quantities, and enumerations and there are a 

number of standard predefined basic types. The composite types provided are arrays and 

records. A data type can be defined by a type declaration: 

 

                                    type identifier is type_definition ; 

 

 

Type_definition : 

                                    scalar_type_definition  

                                    composite_type_definition            

 

Scalar_type_definition : 

 

                                    integer_type_definition 

                                    physical_type_definition  

                                    floating_type_definition  

                                    enumeration_type_definition 

 

 



Composite_type_definition : 

 

                                   array_type_definition 

                                   record_type_definition 

 

Integer Types 

 

An integer type is a range of integer values within a specified range.  

 

Syntax : 

                       type identifier is range range_constraint; 

           

           

The expressions that specify the range must of course evaluate to integer numbers. Types 

declared with the keyword to are called ascending ranges, and those declared with the 

keyword downto are called descending ranges. The VHDL standard allows an implementation 

to restrict the range, but requires that it must at least allow the range –2147483647 to 

+2147483647. 

 

Example : 

 

                   type byte_int is range 0 to 255 ; 

 

                   type signed_word_int is range –32768 to 32767 ; 

 

                   type bit_index is range 31 downto 0 ; 

 

There is a predefined integer type called integer. The range of this type is implementation 

defined, though it is guaranteed to include  –2147483647  to  +2147483647. 

 



Physical Types 

 

A physical type is a numeric type for representing some physical quantity, such 

as mass, length, time or voltage. The declaration of a physical type includes the 

specification of a base unit, and possibly a number of secondary units, being multiples 

of the base unit.  

 

Syntax : 

 

                           type identifier is range range_constraint 

                           units 

                                           base_unit_declaration 

                                           { secondary_unit_declaration } 

                           end units 

 

Example : 

 

                       type length is range 0 to 1E9 

                                  units 

                                                  um; 

                                                  mm = 1000 um; 

                                                   cm = 10 mm; 

                                                     m = 1000 mm; 

                                                     in = 25.4 mm; 

                                                      ft = 12 in; 

                                                     yd = 3 ft; 

                                                    rod = 198 in; 

                                                 chain = 22 yd; 



                                                 furlong = 10 chain; 

                                 end units; 

 

                      type resistance is range 0 to 1E8 

                                  units 

                                                    ohms; 

                                                    kohms = 1000 ohms; 

                                                    Mohms = 1E6 ohms; 

                                 end units; 

 

The predefined physical type time is important in VHDL, as it is used extensively to specify 

delays in simulations. Its definition is: 

                     type time is range implementation_defined 

                                     units 

                                                     fs; 

                                                     ps = 1000 fs; 

                                                     ns = 1000 ps; 

                                                     us = 1000 ns; 

                                                     ms = 1000 us; 

                                                     sec = 1000 ms; 

                                                     min = 60 sec; 

                                                     hr = 60 min; 

                                    end units; 

 

 

 



Floating Point Types 

 

A floating point type is a discrete approximation to the set of real numbers in a 

specified range. The precision of the approximation is not defined by the VHDL 

language standard, but must be at least six decimal digits. The range must include at 

least –1E38 to +1E38.  

Syntax : 

                           type identifier is range range_constraint ; 

 

Examples : 

                          type signal_level is range –10.00 to +10.00 ; 

                          type probability is range 0.0 to 1.0 ; 

There is a predefined floating point type called real. The range of this type is   implementation 

defined, though it is guaranteed to include –1E38 to +1E38. 

Enumeration Types 

 An enumeration type is an ordered set of identifiers or characters. The identifiers and 

characters within a single enumeration type must be distinct, however they may be reused in 

several different enumeration types.  

 

 

Syntax : 

                      type identifier is ( enumeration_literal ) ; 

 

Example : 

 

                  type logic_level is (unknown, low, undriven, high); 

                  type alu_function is (disable, pass, add, subtract, multiply, divide); 

                  type octal_digit is ('0', '1', '2', '3', '4', '5', '6', '7'); 

 

 



There are a number of predefined enumeration types, defined as follows: 

 

                  type severity_level is (note, warning, error, failure); 

                  type boolean is (false, true); 

                  type bit is ('0', '1'); 

                  type character is ( NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, BS,   

                                                HT, LF, VT, FF, CR, SO, SI, DLE, DC1, DC2, DC3,   

                                                DC4, NAK, SYN, ETB, CAN,EM, SUB, ESC, FSP,  

                                                GSP, RSP, USP, ' ', '!', '"', '#', '$', '%', '&', ''',  '(', ')',  

                                                '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',     

                                                ':', ';', '<', '=', '>', '?', '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',  

                                                'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O','P', 'Q', 'R', 'S', 'T', 'U',  

                                                'V', 'W',   'X', 'Y', 'Z', '[', '\', ']', '^', '_', '`', 'a', 'b', 'c', 'd',  

                                                'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',   

                                                'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~', DEL); 

 

 

Note that type character is an example of an enumeration type containing a mixture of 

identifiers and characters. Also, the characters '0' and '1' are members of both bit and 

character . Where '0' or '1' occur in a program, the context will be used to determine which 

type is being used. 

 

 

 

 

 

 



Arrays 

An array in VHDL is an indexed collection of elements all of the same type. 

Arrays may be one-dimensional (with one index) or multidimensional (with a number of 

indices). In addition, an array type may be constrained, in which the bounds for an index 

are established when the type is defined, or unconstrained, in which the bounds are 

established subsequently. 

 
Syntax : 
                   type identifier is array index_constraint of element_subtype_indication; 

 

 

Example : 

 

                      type word is array (31 downto 0) of bit; 

                      type memory is array (address) of word; 

                      type transform is array (1 to 4, 1 to 4) of real; 

                      type register_bank is array (byte range 0 to 132) of integer; 

 

An example of an unconstrained array type declaration: 

 

                      type vector is array (integer range <>) of real; 

 

The symbol ‘<>’ (called a box) can be thought of as a place-holder for the index 

range, which will be filled in later when the array type is used. For example, an object 

might be declared to be a vector of 20 elements by giving its type as: 

 

                     vector(1 to 20) 

 

 

 

 



There are two predefined array types, both of which are unconstrained. They are defined as: 

 

                    type string is array (positive range <>) of character; 

                    type bit_vector is array (natural range <>) of bit; 

 

The types positive and natural are subtypes of integer. The type bit_vector is 

particularly useful in modeling binary coded representations of values in simulations of digital 

systems. An element of an array object can referred to by indexing the name of the object. For 

example, suppose a and b are one and two-dimensional array objects respectively. Then the 

indexed names a(1) and b(1, 1) refer to elements of these arrays. Furthermore, a contiguous 

slice of a one-dimensional array can be referred to by using a range as an index. For example a 

(8 to 15) is an eight-element array which is part of the array . Sometimes you may need to 

write a literal value of an array type. This can be done using an array aggregate, which is a list 

of element values. Suppose we have an array type declared as: 

 

                                 type a is array (1 to 4) of character; 

 

and we want to write a value of this type containing the elements 'f', 'o', 'o', 'd' in that order. 

We could write an aggregate with positional association as follows: 

 

                                       ('f', 'o', 'o', 'd') 

 

In this case, the index for each element is explicitly given, so the elements can be in any 

order. Positional and named association can be mixed within an aggregate, provided all the 

positional associations come first. Also, the word others can be used in place of an index in a 

named association, indicating a value to be used for all elements not explicitly mentioned. For 

example, the same value as above could be written as: 

 

                         ('f', 4 => 'd', others => 'o') 
 

 

 



Records 

 

VHDL provides basic facilities for records, which are collections of named 

elements of possibly different types.  

 

Syntax : 

                               type identifier is  

                                        record 

                                                     element_declaration 

                                                     { element_declaration } 

                                         end record 

 

Example : 

 

                                 type instruction is 

                                    record 

                                                    op_code : processor_op ; 

                                                    address_mode : mode ; 

                                                    operand1, operand2: integer range 0 to 15 ; 

                                    end record; 

 

When you need to refer to a field of a record object, you use a selected name. For 

example, suppose that r is a record object containing a field called f. Then the name r.f refers 

to that field. As for arrays, aggregates can be used to write literal values for records. Both 

positional and named association can be used, and the same rules apply, with record field 

names being used in place of array index names. 

 

 



Subtypes 

 

The use of a subtype allows the values taken on by an object to be restricted or 

constrained subset of some base type.  

 
Syntax : 

                    subtype identifier is [ resolution_function_name ] range [ constraint ] ; 

 

There are two cases of subtypes. Firstly a subtype may constrain values from a scalar 

type to be within a specified range. 

 

Example : 

                    subtype pin_count is integer range 0 to 400; 

                    subtype digits is character range '0' to '9'; 

 

Secondly, a subtype may constrain an otherwise unconstrained array type by specifying 

bounds for the indices. 

 

 

Example : 

                subtype id is string(1 to 20); 

                subtype word is bit_vector(31 downto 0); 

 

There are two predefined numeric subtypes, defined as: 
 

               subtype natural is integer range 0 to highest_integer ; 

               subtype positive is integer range 1 to highest_integer ; 

 



Object Declarations 
 

An object is a named item in a VHDL description which has a value of a 

specified type. There are three classes of objects:  

• Constants 

• Variables  

• Signals 

Constants 

 

 Declaration and use of constants and variables is very much like their use in 

programming languages. A constant is an object which is initialised to a specified value 

when it is created, and which may not be subsequently modified.  

Syntax : 

                        constant identifier_list : subtype_indication [ := expression ] ; 

 

 

Constant declarations with the initialising expression missing are called deferred 

constants, and may only appear in package declarations. The initial value must be given 

in the corresponding package body.  

Example : 

                          constant e : real := 2.71828; 

                          constant delay : Time := 5 ns; 

                          constant max_size : natural; 

Variables  

 

A variable is an object whose value may be changed after it is created. 

Syntax : 

 

                      variable identifier_list : subtype_indication [ := expression ] ; 

 



The initial value expression, if present, is evaluated and assigned to the variable 

when it is created. If the expression is absent, a default value is assigned when the 

variable is created. The default value for scalar types is the leftmost value for the type, 

that is the first in the list of an enumeration type, the lowest in an ascending range, or the 

highest in a descending range. If the variable is a composite type, the default value is the 

composition of the default values for each element, based on the element types. 

 

Example : 

                             variable count : natural := 0; 

                             variable trace : trace_array; 

 

Assuming the type trace_array is an array of boolean, then the initial value of the variable trace 

is an array with all elements having the value false.   

Signals 

Signals represent wires in a logic circuit. Signals can be declared in all declarative 

regions in VHDL except for functions and procedures. Assignments to signals are not 

immediate, but scheduled to be executed after a delta delay.  

 

Syntax : 

                  signal identifier_list : subtype_indication [ := expression ] ; 

 

Example : 

 

                  signal foo : bit_vector (0 to 5) := B"000000" ; 

                  signal aux : bit ; 

                  signal max_value : integer ; 

 

 

 



The declaration assigns a name to the signal foo ; a type, with or without a range 

restriction (bit_vector(0 to 5)); and optionally an initial value. Initial values on signals are 

usually ignored by synthesis. Signals can be assigned values using an assignment statement 

(e.g., aux <= ’0’ ;). If the signal is of an array type, elements of the signal’s array can be accessed 

and assigned using indexing or slicing methods.  

 

Expressions and Operators 

 

Expressions in VHDL are much like expressions in other programming 

languages. An expression is a formula combining primaries with operators. Primaries 

include names of objects, literals, function calls and parenthesized expressions.  

 

 

Operators and precedence 
 

The logical operators and, or, nand, nor, xor and not operate on values of type bit or 

Boolean, and also on one-dimensional arrays of these types. For array operands, the operation 

is applied between corresponding elements of each array, yielding an array of the same length 

as the result. For bit and Boolean operands, and, or, nand, and nor are ‘short-circuit’ 

operators, that is they only evaluate their right operand if the left operand does not determine 

the result. So and and nand only evaluate the right operand if the left operand is true or '1', 

and or and nor only evaluate the right operand if the left operand is false or '0'. 

 

 

 

 



The relational operators =, /=, <, <=, > and >= must have both operands of the same 

type, and yield Boolean results. The equality operators (= and /=) can have operands of any 

type. For composite types, two values are equal if all of their corresponding elements are 

equal. The remaining operators must have operands which are scalar types or one-dimensional 

arrays of discrete types. 

 

The sign operators (+ and –) and the addition (+) and subtraction (–) operators have 

their usual meaning on numeric operands. The concatenation operator (&) operates on one-

dimensional arrays to form a new array with the contents of the right operand following the 

contents of the left operand. It can also concatenate a single new element to an array, or two 

individual elements to form an array. The concatenation operator is most commonly used with 

strings. 

 

The multiplication (*) and division (/) operators work on integer, floating point and 

physical types. The modulus (mod) and remainder (rem) operators only work on integer types. 

The absolute value (abs) operator works on any numeric type. Finally, the exponentiation (**) 

operator can have an integer or floating point left operand, but must have an integer right 

operand. A negative right operand is only allowed if the left operand is a floating point number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4 

MODELING TYPES 

DATAFLOW  MODELING 
 

This kind of description specifies a dataflow through the entity based on 

concurrent signal assignment statements. A structure of the entity is not explicitly 

defined by this description but can be derived from it. As an example, consider the 

following implementation of the entity FULLADDER. 

 

Example :  

 

                       architecture CONCURRENT of  FULLADDER is 

 

                              begin 

                         

                                       SUM <= A xor B xor C after 5 ns; 

 

                                       CARRY <= (A and B) or (B and C) or (A and C) after 3 ns; 

 

                       end CONCURRENT; 

 

 

Two concurrent signal assignment statements describe the model of the entity 

FULLADDER. The symbol <= indicates the signal assignment. This means that the 

value on the right side of the symbol is calculated and subsequently assigned to the 

signal on the left side. A concurrent signal assignment is executed whenever the value of 

a signal in the expression on the right side changes. In general, a change of the current 

value of a signal is called an event. Due to the fact that all signals used in this example 

are declared as ports in the entity declaration.  

The arch declarative part remains empty. Information about a possibly existing 

delay time of the modeled hardware is provided by the after clause. If there is an event 



on one of the inputs A, B or C at time T, the expression A xor B xor C is computed at 

this time T, but the target signal (the output SUM) is scheduled to get this new value at 

time T + 5 ns. The signal assignment for CARRY is handled in exactly the same way 

except for the smaller delay time of 3 ns. If explicit information about the delay time is 

missing then it is assumed to be 0 ns by default. Nevertheless, during the VHDL 

simulation the signal assignment is executed after an infinitesimally small delay time, 

the so-called delta-delay. This means that the signal assignment is executed immediately 

after an event on a signal on the right side is detected and the calculation of the new 

expression value is performed. 

 

Syntax :  

 

             [ label : ] signal name  <=  [ transport ] expression [ after time expression ] ; 

 

 

Up to now the label was not used. With this element it is possible to assign a 

label to the statement, which can be useful for documentation. Furthermore, it is 

possible to assign several events with different delay times to the target signal. In this 

case the values to be assigned and their delay times have to be sorted in ascending order. 

The keyword transport affects the handling of multiple signal events coming in short 

time one after another.  

 

Example :  

                     architecture VER1 of MUX is 

                           begin 

                                    OUTPUT <=  A  ; 

                      end VER1; 

 

 

 

 

 

 



Conditional Signal Assignment statement  

 

In this case there are different assignment statements related to one target signal. 

The selection of one assignment statement is controlled by a set of conditions condition. 

The conditional signal assignment statement can be compared with the well-known if - 

elsif - else structure. 

 

Syntax : 

 

            [ label : ] signal name  <=  expression  when  condition  else 

 

                                                       expression  when  condition  else 

  

                                                       expression ; 

 

The conditional signal assignment is activated as soon as one of the signals belonging to the 

condition or expression changes. 

 

Example :  

                       Z  <=   A  when (X > 3)  else 

                                   B  when (X < 3)  else 

                                   C ; 

 

Each time one signal either in expression or condition changes its value the 

complete statement is executed. Starting with the first condition, the first true one selects 

the expression that is computed and the resulting value is assigned to the target signal 

signal name.  

 

 

 

 



Selected Signal Assignment statement  

 

With this statement a choice between different assignment statements is made. 

The selection of the right assignment is done by the value of select expression. The 

statement resembles a case structure. 

 

Syntax :  

 

             [ label : ]  with  select_expression  select 

                              signal name  <=  expression  when  value , 

                                                          expression  when  value , 

                                                          expression  when  others ; 

The selected signal assignment is activated as soon as one of the signals belonging to the 

selection condition or expression changes. 

 

Example :  

                            with  MYSEL  select 

                                  Z <= A when 15 , 

                                           B when 22 , 

                                           C when others ; 

 
Unaffected Statement 
 

No action to be take place in a sequential statement and execution continues with the 

next statement. It is represented by using the keyword unaffected. It is used in a conditional 

or selected signal assignment statement where, for certain conditions. It may be useful or 

necessary to explicitly specify that no action needs to be performed.   

 

 

 



Example :  

                   

                  with  mux_sel  select  

                           Z  <=  A   when  “00”,   

                                      B   when  “01”,   

                                      C   when  “10”,   

                                      unaffected  when  others  ;   

 

Block statement  
 

A block statement defines an internal block representing a portion of a design. 

Blocks may be hierarchically nested to support design decomposition. 

 

In order to efficiently group concurrent assignments, block statements may be 

used. A block may contain declarations of data types, signals, and so on, all of which are 

locally used. The body of the block statement contains any of the concurrent statements 

mentioned previously. 

 

A guarded block contains an additional boolean expression guard expression, 

which drives an implicit signal GUARD of boolean type. This signal can be used within 

a block for the control of concurrent assignments. If concurrent statements have an 

associated GUARD signal, they are known as Guarded Signal Assignments. 

 

 

Syntax :  

                          Label : block  [ ( guard expression ) ] 

                                          [ use clause ] 

                                          [ subprogram decl , subprogram body ] 

                                          [ type decl ] 

 



                                          [ subtype decl ] 

                                          [ constant decl ] 

                                          [ signal decl ] 

                                          [ component decl ] 

                                 begin 

                                             [ concurrent statements ] 

                         end  block  [ label ] ; 

 

Guarded Signal Assignment is a special form of the concurrent assignment. The 

assignment is activated after the GUARD signal, which must be of the boolean type, is 

evaluated to true. The GUARD signal can be explicitly declared and used; however, it is 

more common to use it implicitly within a Guarded Block. 

 

Syntax :  

                [ label : ] signal name <=  guarded expression [ after time expr ] ; 

 

Example : 

                   U1 : block ( clk=‘1’ and not clk’stable )   

                                          signal temp  :  std_logic  ;   

                                 begin  

                                            temp  <=  guarded D ; 

                                                Q   <=  temp ; 

                                               Q’  <=  not temp  

                        end block  U1 ;   

 

                           



Any declarations appearing within the block are visible only within the block, that is,  

between block ……………. end block.       

 

BEHAVIORAL MODELING  
 

Behavioral descriptions are based on the process environment. A process 

statement as a whole is treated as a concurrent statement within the architecture. 

Therefore, in the simulation time a process is continuously executed and it never gets 

finished. The statements within the process are executed sequentially without the 

advance of simulation time. To ensure that simulation time can move forward every 

process must provide a means to get suspended. Thus, a process is constantly switching 

between the two states: the execution phase in which the process is active and the 

statements within this process are executed, and the suspended state. The change of state 

is controlled by two mutually exclusive implementations: 

 

• With a list of signals in such a manner that an event on one of these signals invokes a 

process. This can be compared with the mechanism used in conjunction with concurrent 

signal assignment statements. There, the statement is executed whenever a signal on the 

right side of the assignment operator <= changes its value. In case of a process, it 

becomes active by an event on at least one signal belonging to the sensitivity list. All 

statements between the keywords begin and end process are then executed 

sequentially. 

 

Syntax :  

 

              [ proc label : ]  process  ( sensitivity list ) 

 

                                                    [ proc declarative part ] 

 

 

 

 



                                            begin 

 

                                                   [ sequential statement part ] 

 

                                      end  process  [ proc label ] ; 

 

 

The sensitivity list is a list of signal names within round brackets, for Example   

 

                                            ( A, B, C ). 

 

• With wait statements in such a way that the process is executed until it reaches a wait 

statement. At this instance it gets explicitly suspended. The statements within the 

process are handled like an endless loop which is suspended for some time by a wait 

statement. 

 

Syntax :  

 

               [ process label : ]  process 

                                                          [ proc declarative part ] 

                                                 begin 

                                                          [ sequential statements ] 

                                                            wait ...;            -- at least one wait statement 

                                                           [ sequential statements ] 

 

                                              end  process [ proc label ] ; 

 

 

 

 



The structure of a process statement is similar to the structure of an architecture. In 

the process declarative part various types, constants and variables can be declared; functions 

and procedures can be defined. The sequential statement part contains the description of the 

process functionality with ordered sequential statements. An implementation of the full adder 

with a sequential behavioral description is given below:  

 

Example : 

 

               architecture  SEQUENTIAL of  FULLADDER is 

                        begin 

                           process (A, B, C) 

                                variable TEMP : integer; 

                                variable SUM CODE : bit vector(0 to 3) := "0101"; 

                                variable CARRY CODE : bit vector(0 to 3) := "0011";                           

                            begin 

 

                             if A = '1' then  

                                                   TEMP := 1; 

                                   else  

                                                   TEMP := 0; 

                             end if; 

                               if B = '1' then  

                                                  TEMP := TEMP + 1; 

                               end if; 

 

 

 



                               if C = '1' then  

                                                 TEMP := TEMP + 1; 

                              end if;                 -- variable TEMP now holds the number of ones 

                                     SUM <= SUM CODE(TEMP); 

                                CARRY <= CARRY CODE(TEMP); 

                            end process; 

              end SEQUENTIAL; 

 

The functionality of this behavioral description is based upon a temporary 

variable TEMP which counts the number of ones on the input signals. With this number 

one element, or one bit, is selected from each of the two predefined vectors SUM CODE 

and CARRY CODE. The initialization of these two vectors reacts the truthtable of a 

full-adder module. The reason for this unusual coding is the attempt to explain the 

characteristics of a variable. A variable differs not only in the assignment operator (:=) 

from that of a signal (<=). It is also different with respect to time when the new 

computed value becomes valid and, therefore, readable to other parts of the model.  

Every variable gets the new calculated value immediately, whereas the new 

signal value is not valid until the beginning of the next delta-cycle, or until the specified 

delay time elapses. If the above example had been coded with a signal as the temporary 

counter instead of the variable, then the correct functionality of this architecture as a full 

adder could not be ensured. After an event at time T on one of the input signals A, B or 

C, which are members of the sensitivity list, the process is executed once. The 

simulation continues with executing the second if statement at time T because 

computing a sequential statement does not advance the simulation time. Therefore, the 

signal TEMP still holds the same value it had before the process activation! This means 

that the intended counting of ones does not work with TEMP declared as signal. 

 

 

 

 

 



In general, signal assignment statements within a process have to be handled with 

care, especially if the target signal will be read or rewritten in the following code before the 

process gets suspended. If this effect is taken into consideration, the process statement 

provides an environment in which a person familiar with programming languages like C or 

Pascal can easily generate a VHDL behavioral description. This remark, however, should not be 

understood that the process statement is there for people switching to VHDL. In reality, some 

functions can be implemented much more easily in a sequential manner.  

 

Example :  

 

                   architecture SEQUENTIAL of DFF is 

                          begin 

                                 process (CLK, NR) 

                                       begin 

                                                   if (NR = '0') then 

                                                                 Q <= (others => '0');  

                                                        elsif (CLK'event and CLK = '1') then 

                                                                  Q <= D; 

                                                   end if; 

                                 end process; 

                     end SEQUENTIAL;   

In the above example, the attribute CLK'event is used to detect an edge on the 

CLK signal. This is equivalent to an event on CLK. The ability to detect edges on 

signals is based upon the storage of all events in event queues for every signal. 

Therefore, old values can be compared with the actual ones or even read. In contrast, 

variables always get the new assigned value immediately and the old value is not stored. 

Subsequently, during the simulation more memory is required for a signal for a variable. 

In complex system descriptions this fact should be taken into consideration. 

 

 



Sequential Signal Assignment statement  

 

The syntax of a sequential signal assignment is very similar to the concurrent 

assignment statement, except for a label which can not be used. 

 

Syntax :  

 

                         signal name <= [ transport ] expression [ after  time expr ] ;  

 

Variable Assignment statement  

 

A variable assignment statement is very similar to a signal assignment. As already 

mentioned, a variable differs from a signal in that it gets its new value immediately upon 

assignment. Therefore, the specification of a delay time in a variable assignment is not 

possible. Attention must be paid to the assignment operator which is := for a variable and <= 

for a signal. 

 

Syntax :  

 

                         variable name := expression ; 

 

 

Wait statement  

 

This statement may only be used in processes without a sensitivity list. The 

purpose of the wait statement is to control activation and suspension of the process. 

 

 

 

 



Syntax :  

 

                        Wait  [ on signal names ] ;  

                        Wait  [ until condition ] 

                        Wait  [ for time expression ] ; 

 

 

The arguments of the wait statement have the following interpretations: 

 

• on signal names:  

 

The process gets suspended at this line until there is an event on at least one 

signal in the list signal names. The signal names are separated by commas; brackets are 

not used. It can be compared to the sensitivity list of the process statement. 

 

• until condition:  

 

The process gets suspended until the condition becomes true. 

 

• for time expression: 

 

The process becomes suspended for the time specified by time expression. 

 

• without any argument: 

 

       The process gets suspended until the end of the simulation. 

 

A sensitivity list of a process is functionally equivalent to the wait on ... appearing at the end of 

the process. There are four different ways to use the wait-statement: 

 

 



                                    wait on A, B;  

 

suspends a process until an occurrence of a change is registered. Here, execution will 

resume when a new event is detected on either signal A or B.                            

                                   wait until X > 10;  

 

suspends a process until the condition is satisfied; in this case, until the value of a signal is > 10.  

                                   wait for 10 ns;  

  

suspends a process for the time specified; here, until 10 ns of simulation time elapses. 

 

                                   wait;  

 

suspends a process indefinitely. . . Since a VHDL-process is always active, this 

statement at the end of a process is the only way to suspend it. This technique may be 

used to execute initialization processes only once. 

 

 

The example below models an architecture, which simulates a Producer/Consumer 

problem using two processes. The processes are synchronized through a simple 

handshake protocol, which has two wires, each with two active states. 

 

Example :  

 

                    entity  PRO CON  is 

                         ... 

                    end  PRO CON ; 

 

 

 



                    architecture BEHAV of PRO CON is 

                             signal PROD: boolean := false;    --item produces a semaphore 

                             signal CONS: boolean := true;     --item consumes a semaphore 

                          begin 

                               PRODUCER: process producer model 

                                 begin 

                                           PROD <= false; 

                                           wait until CONS;                       ----produce item 

                                           PROD <= true; 

                                           wait until not CONS; 

                              end process; 

                            CONSUMER: process consumer model 

                                 begin 

                                        CONS <= true; 

                                         wait until PROD; 

                                        CONS <= false; 

                                        ...consume item 

                                        wait until not PROD; 

                            end process; 

                   end BEHAV; 

 

 

 

 

 

 



If-else statement  

 

This branching statement is equivalent to the ones found in other programming 

languages and, therefore, needs no further explanation. 

 

Syntax :  

 

                  if condition then 

 

                                    sequential statements ; 

 

                       [ elsif condition then 

 

                                    sequential statements ; ] 

 

                       [ else 

 

                                    sequential statements ; ] 

 

                  end if ; 

 

 

Case statement 

 

This statement is also identical to its corresponding equivalent found in other 

programming languages. 

 

 

 

 



Syntax :  

 

                 case expression is 

       

                          when choices  =>  sequential statements ; 

 

                         [ when others  =>  sequential statements ; ] 

 

                 end case ; 

 

 

Either all-possible values of expression must be covered with choices or the case 

statement has to be completed with an others branch.  

 

 

Example :  

 

                 case  BCD  is                                            ------Decoder:  BCD to 7-Segment 

                            when "0000" => LED := "1111110"; 

                            when "0001" => LED := "1100000"; 

                            when "0010" => LED := "1011011"; 

                            when "0011" => LED := "1110011"; 

                            when "0100" => LED := "1100101"; 

                            when "0101" => LED := "0110111"; 

                            when "0110" => LED := "0111111"; 

                            when "0111" => LED := "1100010"; 

 

 



                            when "1000" => LED := "1111111"; 

                            when "1001" => LED := "1110111"; 

                            when others => LED := "-------";                    ------don't care 

                 end  case; 

 

Null statement  

 

This statement is used for an explicit definition of branches without any further 

commands. Therefore, it is used primarily in case statements, and also in if clauses. 

 

Syntax : 

                         

                                null ; 

 

Loop statement 

 

  This is a conventional loop structure found in other programming languages. 

Syntax : 

                  [ loop label : ]  while condition loop      |                 --controlled by condition 

 

                  for identifier in value1 to | downto value2 loop  |    --with counter 

 

                  loop                                                                           --endless loop 

 

                          sequential statements 

 

                   end loop [ loop label ] ; 

 

 



Example : 

                         J : = 0 ; 

                    U1 :  while  J < 20  loop 

                  

                              J : = J + 2 ; 

       

                    end  loop  U1 ;                

  

The while...loop statement has a Boolean iteration scheme. If the iteration 

condition evaluates true, executes the enclosed statements once. The iteration condition 

is then reevaluated. As long as the iteration condition remains true, the loop is 

repeatedly executed. When the iteration condition evaluates false, the loop is skipped 

and execution continues with the next loop iteration. 

  

                                    for  i  in  0 to 3  loop 

               

                            Z ( i ) : = A ( i )  and B ( i ) ; 

       

                   end loop ;    

 

The for...loop statement has an integer iteration scheme. The integer range determines the 

number of repetitions. 

 

 

 

 



                             Z : = 2 ;    sum : = 1 ; 

                             V1 :  loop             

                                     Z : = Z  +  3  ; 

                                      sum : = sum * 5  ;          

                                exit  when  sum  > 100  ;         

                           end loop  V1  ;             

 

The basic loop statement has no iteration scheme. It executes enclosed statements repeatedly 

until it encounters an exit or next statement.   

 

Exit and Next statement  

 

With these two statements a loop iteration can be terminated before reaching the 

keyword end loop. With next the remaining sequential statements of the loop are 

skipped and the next iteration is started at the beginning of the loop. The exit directive 

skips the remaining statements and all remaining loop iterations. In nested loops both 

statements skip the innermost enclosing loop if loop label is left out. Otherwise, the loop 

labeled loop label is terminated. The optional condition expression can be specified to 

determine whether or not to execute these statements. 

Syntax : 

                            next  [ loop label ] [ when condition ] ; 

 

Example :  

                         for I in 0 to MAX LIM loop 

                             if (DONE(I) = true) then  

                                              next;                                -----Jump to end loop 

                             end if; 

 

 



                                             Q(I) <= A(I); 

                             end loop; 

                                    L1: while J < 10 loop outer loop 

                                    L2: while K < 20 loop inner loop... 

   next L1 when J = K; jump out of the inner loop... 

                              end loop L2; 

                          end loop L1;                                      ------jump destination 

Syntax : 

 

                            exit   [ loop label ] [ when condition ] ; 

 

Example:  

                          for I in 0 to MAX LIM loop 

                               if (Q(I) <= 0) then  

                                              exit;                            ------jump out of the loop 

                               end if; 

                                             Q(I) <= (A * I); 

                          end loop;                                         ------jump destination 

 

STRUCTURAL DESCRIPTION 
 

In structural descriptions the implementation of a system or model is described 

as a set of interconnected components, which is similar to drawing schematics. Such a 

description can often be generated with a VHDL netlister in a graphical development 

tool. Since there are many different ways to write structural descriptions, to explain all 

of them in one section would be more confusing than enlightening. Therefore, only one 

alternative approach is presented here. 

 



 

 

Structural implementation of a full adder 
 

As an introductive example, consider the implementation of a full-adder circuit. The 

components HA and XOR are assumed to be predefined elements. 

 

Example : 

 

                   architecture STRUCTURAL of FULLADDER is 

                          signal  S1, C1, C2  : bit ; 

                                component HA 

                                      port (  I1, I2 : in bit ;  S, C : out bit ) ; 

                                end component ; 

                               component OR 

                                      port (  I1, I2 : in bit ;  X  : out bit ) ; 

                               end component; 

                         begin 

                            INST HA1 : HA port map ( I1 => B, I2 => C, S => S1, C => C1 ) ; 

                            INST HA2 : HA port map ( I1 => A, I2 => S1, S => SUM, C => C2 ) ; 

                            INST OR : OR port map ( I1 => C2, I2 => C1, X => CARRY) ; 

                    end STRUCTURAL ; 

 

 

 



Component declaration 

 

In the declarative part of the architecture, all objects which are not yet known to 

the architecture have to be declared. In the example above, these are the signals S1, C1 

and C2 used for connecting the components together, excluding the ports of the entity 

FULLADDER. In addition, the components HA and XOR have to be declared. The 

declaration of a component consists of declaring its interface ports and generics to the 

actual model. 

Often used components could be selected from a library of gates defined in a 

package and linked to the design. In this case the declaration of components usually is 

done in the package, which is visible to the entity. Therefore, no further declaration of 

the components is required in the architecture declarative part. 

 

The actual structural description is done in the statement part of the architecture 

by the instantiation of components. The components' reference names INST HA1, INST 

HA2 and INST XOR, also known as instance names, must be unique in the architecture. 

The port maps specify the connections between different components, and between the 

components and the ports of the entity. Thus, the components' ports (so-called formals) 

are mapped to the signals of the architecture (so-called actuals) including the signals of 

the entity ports. For example, the input port I1 of the half adder INST HA1 is connected 

to the entity input signal B, input port I2 to C, and so on. The instantiation of a 

component is a concurrent statement. This means that the order of the instances within 

the VHDL code is of no importance. 

 

Syntax :                  

                       component component name 

                           [ generic ( generic list : type name  [ := expression ]  ; | 

                                            generic list : type name  [ := expression ]  ) ; ] 

                           [ port ( signal list : mode type name ; 

                                       signal list : mode type name ); ] 

                       end component ; 

 



Component instantiation 

A component instantiation statement defines a subcomponent of the design entity 

in which it appears, associates signals or values with the ports of that subcomponent, 

and associates values with generics of that subcomponent. This subcomponent is one 

instance of a class of components defined by a corresponding component declaration, 

design entity, or configuration declaration. 

 

Syntax : 

                       component label : component name  port map ( Association-list  ) ; 

 

The Association of ports to the connecting signals during the instantiation can be 

done through the positional notation. Alternatively, it may be done by using the named 

notation, using the already familiar format 

 

Two types of association  

• Positional Association 

• Named Association 

 

Positional Association    

 Each actual in the component instantiation is mapped by position with each port in the 

component declaration. The ordering of the actuals is therefore important. 

An association-list form  

                                actual1, actual2 , actual3, ………… actualn 

  

Example : 

                   V1  : nand2  port map (  S1, S2, S3 )  ; 

 

 



If a port in a component instantiation is not connected to any signal. This purpose the 

keyword Open is used.  

                   V1  : nand2  port map (  S1, open, S3 )  ; 

Named Association    

 The ordering of the association is not important since the mapping between the 

actuals and formals is explicitly specified   

  

An association-list form  

                    formal1 => actual1, formal2 =>  actual2 ,……. formaln => actualn          

                                                                                        

Example :    

                    component  nand2  

                            port ( A, B  :  in std_logic  ; 

                                           C  :  out std_logic )  ;  

                   end  component  ; 

                  begin  

                   V1: nand2 port map (A => S1, B =>S2, C => S3 ) ; 

 

It is important to note that the symbol '=>' is used within a port map in contrast to the 

symbol '<=' used for concurrent or sequential signal assignment statements. If one of the 

ports has no signal connected to it, a reserved word open may be used. A function call 

can replace the signal name. This allows direct type conversions at the component 

instantiation. 

 

 

 

 

 



CHAPTER 5 

GENERICS AND CONFIGURATIONS 

GENERICS  

 

It allow static information to be communicated to a block from its environment for all 

architectures of a design unit. These include timing information like setup, hold, delay times, 

part sizes, and other parameters.  

 

Syntax : 

                                                  [ generic ( list-of-generics-and-their-types ) ; ]  

 

It can be declared any one of the following :    

• Entity Declaration   

• Component Declaration  

• Component Instantiation  

• Configuration Specification  

• Configuration Declaration 

 

The generic size can be used inside the entity and in the architecture that matches the 

entity. In this example, the generic size is defined as an integer with an initial value 8. 

The sizes of the input and output ports of the entity increment are set to be 8 bits unless 

the value of the generic is overwritten by a generic map statement in the component 

instantiation of the entity. 

Example :     entity increment is 

                            generic ( size : integer := 8 ) ; 

                            port ( ivec : in bit_vector (0 to size-1) ; 

                                     ovec : out bit_vector (0 to size-1)) ; 

                      end increment ; 

 



The other ways of specifying the value of a generic are in a component instantiation. 

 

                U1 : and2 generic map (10) port map (  D, S1 ) ; 

                     U2 : or2 generic map (M=>8) port map ( C, S2) ;    

 

 

CONFIGURATIONS  

 Used to bind component instances to design entities and collect architectures to 

make, typically, a simulatable test bench. One configuration could create a functional 

simulation while another configuration could create the complete detailed logic design. 

With an appropriate test bench the results of the two configurations can be compared.  

A configuration does not have any simulation semantics associated with it; it 

only specifies how a top-level entity is organized in terms of lower-level entities. The 

component names and the entity names, as well as the port names and their order, are 

different. The binding information can be specified using a configuration.  

Two types of binding 

• Configuration Specification 

• Configuration Declaration 

 

Configuration specification      

  To bind component instantiations to specific entities stored in design libraries. It 

appears in the declarations part of the architecture or block in which the components are 

instantiated 

  

Syntax :  

                     for list-of-comp-labels  :  component-name  binding-indication ;   

The binding-indication specifies the entity represented by the entity-architecture 

pair, and the generic and port bindings, and one of its forms is 

 

 



                  use entity entity-name [ ( architecture-name ) ] 

                    [ generic map ( generic-association-list ) ] 

                      [ port map ( port-association-list ) ]               - - - - - - Form 1         

     

The list of component labels may be replaced with the keyword all to denote all 

instance of a component; it may also be the keyword others to specify all as yet unbound 

instances of a component. The generic map is used to specify the values for the generics or 

provide the mapping between the generic parameters of the component and the entity to 

which it is bound. The port map is used to specify the port bindings between the component 

and the bound entity. 

Example :      Library ieee; 

                          use ieee.std_logic_1164.all ; 

                                 entity  HA  

                                      port ( A, B   :  in std_logic  ; 

                                           Sum,Ca  :  out std_logic )  ; 

                                 end  HA  ; 

                         architecture HA_str  of  HA  is  

                                    component  xor2  

                                        port ( A, B   :  in std_logic  ; 

                                                        C  :  out std_logic )  ;  

                                    end  component  ; 

                                    component  and2  

                                        port ( A, B   :  in std_logic  ; 

                                                        C  :  out std_logic )  ;  

                                    end  component  ; 

 



                                for X1 : xor2 use entity work.xor2 ( xor_arch );   

                                for A1 : and2 use entity work.and2 ( and_arch );   

                        begin  

                           X1 : xor2 port map ( A, B, Sum ) ; 

                           A1 : and2 port map ( A, B, Ca) ; 

                       end  HA_str ;  

Configuration declarations 
 

The binding of component instances to design entities is performed by 

configuration specifications; such specifications appear in the declarative part of the 

block in which the corresponding component instances are created. In certain cases, 

however, it may be appropriate to leave unspecified the binding of component instances 

in a given block and to defer such specification until later. A configuration declaration 

provides the mechanism for specifying such deferred bindings. 

Syntax : 

                        configuration identifier of entity_name is 

                                   configuration_declarative_part 

                                            use_clause 

                                            | attribute_specification 

                                              block_configuration 

                        end [ configuration ] [ configuration_simple_name ] ; 

The entity name identifies the name of the entity declaration that defines the 

design entity at the apex of the design hierarchy. For a configuration of a given design 

entity, both the configuration declaration and the corresponding entity declaration must 

reside in the same library. If a simple name appears at the end of a configuration 

declaration, it must repeat the identifier of the configuration declaration. 

 

 



NOTES 

—A configuration declaration achieves its effect entirely through elaboration. There are    no 

behavioral semantics associated with a configuration declaration. 

 

—A given configuration may be used in the definition of another, more complex     

configuration. 

 

 

Example : 

                    — An architecture of a microprocessor: 

                              architecture Structure_View of Processor is 

                                     component ALU port ( ••• ); end component; 

                                     component MUX port ( ••• ); end component; 

                                     component Latch port ( ••• ); end component; 

                                begin 

                                         A1: ALU port map ( ••• ) ; 

                                        M1: MUX port map ( ••• ) ; 

                                        M2: MUX port map ( ••• ) ; 

                                        M3: MUX port map ( ••• ) ; 

                                         L1: Latch port map ( ••• ) ; 

                                         L2: Latch port map ( ••• ) ; 

                              end Structure_View ; 

 

 

 

 



— A configuration of the microprocessor: 

                               library TTL, Work ; 

                               configuration V_config of Processor is 

                                use Work.all ; 

                                      for Structure_View 

                                          for A1: ALU use configuration TTL.SN74LS181 ; 

                                               end for ; 

                                                 for M1,M2,M3: MUX use entity Multiplex4 (Behavior) ; 

                                                     end for ; 

                                                         for all: Latch 

                                                            end for ;                          — use defaults 

                                                end for ; 

                                   end configuration V_config ; 

A block configuration defines the binding of components in a block, where a block may 

be an architecture body, a block statement, or a generate statement. 

  Syntax of Block configuration : 

 

                                    for  block-name  

                                            component-configurations 

                                            block-configurations 

                                    end  for  ;  

A block-name is the name of an architecture body, a block statement label, or a generate  

statement label.  

 

 

 



Syntax of Component-configuration :    

                                  for  list-of-comp-labels  :  component-name  

                                               [ binding-indication  ; ] 

                                               [ block-configurations ] 

                                  end  for  ;         

 

There are two other forms of binding indication 

    use  configuration configuration-name               - - - - - - Form 2                                                          

    use  open                                                               - - - - - - Form 3  

                                               

 In Form 2, the binding indication specifies that the component instance are to be 

bound to a configuration of a lower-level entity as specified by the configuration name. In Form 

3,the binding indication specifies that the binding is not yet specified and is to be deferred. 

Both these forms of binding indication may also be used in a configuration specification. 

Example :         Library TTL ; 

                               configuration HA_config of HA is 

                                      for HA_XA          

                                          for  X1 : xor2  

                                                    use entity work.Xor2 ( xor_2 ) ; 

                                              end  for  ; 

                                                 for  A1 : and2  

                                                     use entity work.and2 ( and_2 ) ; 

                                                end  for  ; 

                                       end  for  ; 

                               end  HA_config  ;         

 



Direct Instantiation      

It is possible to directly instantiate the entity-architecture pair or a configuration in a 

component instantiation statement. This saves the additional binding step necessary when 

using components. Two additional forms of the component instantiation statement that can be 

used to directly instantiate an entity or a configuration. 

 

Syntax : 

                 Component-label  :  entity  entity-name  

                           [ ( architecture-name ) ]            

                           [ generic map ( generic-association-list ) ] 

                           [ port map ( port-association-list ) ]  ; 

 

                 Component-label  :  configuration  config-name            

                           [ generic map ( generic-association-list ) ] 

                           [ port map ( port-association-list ) ]  ; 

 

NOTE      

No configuration declaration is necessary or possible in this case, since the component 

instantiations directly instantiate the appropriate entity-architecture pairs or 

configurations. No components declarations are necessary or possible. 

Example :  

                                    architecture  HA_str  of  HA  is  

                                     begin 

                                        X1 : entity work.xor2 ( xor2 ) port map ( A, B, S ) ; 

                                        A1 : configuration TTL.and2  port map ( A, B,C ) ;          

                                end HA_str ;       



CHAPTER 6 

SUBPROGRAMS AND PACKAGES 

SUBPROGRAMS 

 There are two kinds of subprograms: procedures and functions. Both 

procedures and functions written in VHDL must have a body and may have 

declarations.  

 
 Procedures perform sequential computations and return values in global 

objects or by storing values into formal parameters. 

 
 Functions perform sequential computations and return a value as the value of 

the function.  Functions do not change their formal parameters. 

 
 Subprograms may exist as just a procedure body or a function body. 

Subprograms may also have a procedure declarations or a function declaration. When 

subprograms are provided in a package, the subprogram declaration is placed in the 

package declaration and the subprogram body is placed in the package body. 

 
Procedure Declaration  

Syntax : 

                     procedure identifier [ ( formal parameter list ) ] ; 

 
 Formal parameters are separated by semicolons in the formal parameter list.  

Each formal parameter is essentially a declaration of an object that is local to the 

procedure.  The type definitions used in formal parameters must be visible at the place 

where the procedure is being declared.  No semicolon follows the last formal parameter 

inside the parenthesis. Formal parameters may be constants, variables, signals or files. 

The default is variable. Formal parameters may have modes in, inout and out Files do 

not have a mode. The default is in.If no type is given and a mode of in is used, constant 

is the default. 

 

 

 

 

 



Example : 
                       procedure build ( A : in integer;  

                                                     B : inout signal bit_vector; 

                                                     C : out real; 

                                                     D : file ) ; 

Procedure Body  

Syntax : 

 
                   procedure identifier [ ( formal parameter list ) ] is 

                               subprogram declaration  

                              | subprogram body  

                              | type declaration  

                              | subtype declaration  

                              | constant, object declaration  

                              | variable, object declaration  

                              | alias declaration  

                              | use clause  

                       begin 

                                   sequential statement(s) 

                   end procedure identifier ; 

                   
 The procedure body formal parameter list is defined above in Procedure 

Declaration. When a procedure declaration is used then the corresponding procedure 

body should have exactly the same formal parameter list. 

 
Example :    

                type  op_code  is  ( add, sub, mul, div ) ;  

                       procedure  ALU ( A, B :  in  integer  ;  

                                                         p  :  in  op_code  ; 

                                                       Z   :  out  integer  ; )  is 

                              Begin 

 

 

 



                                     case  op  is  

                                          when  add  =>  Z <=  A + B  ; 

                                          when  sub  =>  Z <=  A - B  ; 

                                          when  mul  =>  Z <=  A * B  ; 

                                          when  others   =>   Z <=  A / B  ;        

                                   end  case  ;        

Procedure Call      

Procedures are invoked by using procedure calls. 

Syntax : 

                      [ Label ]  procedure-name  ( list-of-actuals ) ;   

The actuals specify the expressions, signals, variables, or files, that are to be 

passed into the procedure and the names of objects that are to receive the computed 

values from the procedure. 

Example : 

                       CheckTiming (tPLH, tPHL, Clk, D, Q); 

Function Declaration  

Syntax : 

 
                     function identifier [ ( formal parameter list ) ] return  a_type ; 
 
 
 Formal parameters are separated by semicolons in the formal parameter list.  

Each formal parameter is essentially a declaration of an object that is local to the 

function.  The type definitions used in formal parameters must be visible at the place 

where the function is being declared. No semicolon follows the last formal parameter 

inside the parenthesis.  

 

 

 



 Formal parameters may be constants, signals or files. The default is constant. 

Formal parameters have the mode in. Files do not have a mode. 

 
 The reserved word function may be preceded by nothing, implying pure, pure 

or impure . A pure function must not contain a reference to a file object, slice, 

subelement, shared variable or signal with attributes such as 'delayed, 'stable, 'quiet, 

'transaction and must not be a parent of an impure function. 

 
Note -- The inout and out are not allowed for functions. The default is in. 
 
 
 
Example : 
 
                                function random return  float ; 

                            function is_even ( A : integer) return  boolean ; 

Function Body  

Syntax : 

                     function identifier [ ( formal parameter list ) ] return  a_type is 

                               subprogram declaration  

                              | subprogram body  

                              | type declaration  

                              | subtype declaration  

                              | constant, object declaration  

                              | variable, object declaration  

                              | alias declaration  

                              | use clause  

                         begin 

                                          sequential statement(s) 

                                          return some_value;                    -- of type  a_type 

                     end function identifier ; 

 

 The function body formal parameter list is defined above in Function 

Declaration.  When a function declaration is used then the corresponding function body 

should have exactly the same formal parameter list. 

 

 

 



Example : 

                          function random return  float is 

                                      variable X : float; 

                             begin 

                                               return  X;          -- compute X 

                         end function random ; 

 
Function Call      

A function call is an expression and can also be used in large expressions. 

Syntax : 

                f unction-name  ( list-of-actuals )   

The actuals may be associated by position or using named association.  

               sum : = sum + largest ( max_coins, collection ) ; 

 
 
PACKAGES 
 

A package is used as a collection of often used data types, components, 

functions, and so on. Once these object are declared and defined in a package, they can 

be used by different VHDL design units. In particular, the definition of global 

information and important shared parameters in complex designs or within a project 

team is recommended to be done in packages. It is possible to split a package into a 

declaration part and the so-called body. The advantage of this splitting is that after 

changing definitions in the package body only this part has to be recompiled and the rest 

of the design can be left untouched. Therefore, a lot of time consumed by compiling can 

be saved. 

 
Package declarations 

A package declaration defines the interface to a package. The scope of a 

declaration within a package can be extended to other design units. 

 

 

 



Syntax : 

                         package package_name is 

                                  package_declarative_part : 

                                     subprogram_declaration 

                                     | type_declaration 

                                     | subtype_declaration 

                                     | constant_declaration 

                                     | signal_declaration 

                                     | alias_declaration 

                                     | component_declaration 

                                     | attribute_declaration & specification 

                                     | use_clause 

                         end [ package ] [ package_name ] ; 

If a name appears at the end of the package declaration, it must repeat the name of the 

package declaration. If a package declarative item is a type declaration, then that 

protected type definition must not be a protected type body. Items declared immediately 

within a package declaration become visible by selection within a given design unit 

wherever the name of that package is visible in the given unit. Such items may also be 

made directly visible by an appropriate use clause. 

 

NOTE—Not all packages will have a package body. In particular, a package body is 

unnecessary if no subprograms, deferred constants, or protected type definitions are 

declared in the package declaration. 

 

 

 

 

 



Example : 

 

                  — A package declaration that needs no package body: 

                             package TimeConstants is 

                                        constant tPLH : Time := 10 ns; 

                                        constant tPHL : Time := 12 ns; 

                                        constant tPLZ : Time := 7 ns; 

                             end TimeConstants ; 

 

                 — A package declaration that needs a package body: 

                            package MY PACK is 

                                type SPEED is (STOP, SLOW, MEDIUM, FAST); 

                                       component HA 

                                             port (I1, I2 : in bit; S, C : out bit); 

                                       end component; 

                                    constant DELAY TIME : time; 

                               function INT2BIT VEC (INT VALUE : integer) return bit vector; 

                           end MY PACK; 

 

 

Package bodies 

A package body defines the bodies of subprograms and the values of deferred 

constants declared in the interface to the package. 

 

 

 

 



Syntax : 

                      package body package_name is 

                             package_body_declarative_part 

                                subprogram_declaration 

                                | subprogram_body 

                                | type_declaration 

                                | subtype_declaration 

                                | constant_declaration 

                                | alias_declaration 

                                | use_clause 

                  end [ package body ] [ package_name ] ; 

 

The name at the start of a package body must repeat the same name. In addition 

to subprogram body and constant declarative items, a package body may contain certain 

other declarative items to facilitate the definition of the bodies of subprograms declared 

in the interface.  

 
Items declared in the body of a package cannot be made visible outside of the 

package body. If a given package declaration contains a deferred constant declaration, 

then a constant declaration with the same identifier must appear as a declarative item in 

the corresponding package body. This object declaration is called the full declaration of 

the deferred constant. The subtype indication given in the full declaration must conform 

to that given in the deferred constant declaration. Within a package declaration that 

contains the declaration of a deferred constant, and within the body of that package, the 

use of a name that denotes the deferred constant is only allowed in the default 

expression for a local generic, local port, or formal parameter. The result of evaluating 

an expression that references a deferred constant before the elaboration of the 

corresponding full declaration is not defined by the language. 

 

 

 



Example :  

 

                 package body MY PACK is 

                             constant DELAY TIME : time := 1.25 ns; 

                             function INT2BIT VEC (INT VALUE : integer)return bit vector is 

                  begin 

                                                   -- sequential behavioral description  

                             end INT2BIT VEC; 

                 end MY PACK; 

 

The binding between the package declaration and the body is established by using the same 

name. In the above example it is the package name MY PACK. 

 

Packages must be made visible before their contents can be used. The USE clause makes 

packages visible to entities, architectures, and other packages. 

 

Syntax : 

 

                   Use library_name . Package_name . all ;  

 

Example : 

                 -- use only the binary and add_bits3 declarations 

                    USE work .my_stuff.binary, my_stuff.add_bits3; 

                 ... ENTITY declaration... 

                 ... ARCHITECTURE declaration ... 

 



                -- use all of the declarations in package my_stuff 

                    USE work .my_stuff.ALL; 

                    ... ENTITY declaration... 

                    ... ARCHITECTURE declaration... 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 7 

ADVANCED FEATURES 

 

• Generate Statements 

• Aliases  

• Attributes 

 

 

GENERATE STATEMENTS 

Concurrent statements can be conditionally selected or replicated during the 

elaboration phase. The generate Statement provides for a compact description of regular 

structures such as memories, registers, and counters.       

 

Two forms of the Generate Statement 

• For-generation Scheme 

• If-generation Scheme     

 

For-Generation   

Concurrent statements can be replicated a predetermined number of times. 

Syntax : 

                     generate-label : for generate-identifier in  discrete-range generate  

                                          [ block-declarations 

                             begin  ]  

                                          concurrent statements  

                     end  generate  [ generate-label ]  ;          

 

 

 



The values in the discrete range must be globally static, that is, they must be computable    at 

elaboration time. These statements can also use the generate identifier in their 

expressions, and its value would be substituted during elaboration for each replication. 

The type of identifier is defined by the discrete range. Declarations, if present, declare items 

that are visible only within the generate statement.  

Example : 

                          U1 : for  F  in  3  downto  0  generate 

                                   sum ( F )    <=  A ( F )  xor B ( F ) xor C ( F ) 

                                   ca ( F + 1 )  <=  A ( F )  and B ( F ) and C ( F )        

                           end  generate  U1  ;         

 

If-Generation       

Concurrent statements can be conditionally elaborated. 

Syntax : 

                        generate-label  :  if  expression  generate  

                                             [ block-declarations 

                             begin  ]  

                                            concurrent statements  

                        end  generate  [ generate-label ]  ; 

 

This statement allows for conditional selection of concurrent statements based on the value of 

an expression. This expression must be a globally static expression, that is, the value must be 

computable at elaboration time. Any declarations present are again local to the generate 

statement.  

 

 

 



Example : 

                          V1 : if  User = low_Dly  generate              

                                   Z   <=  A  after  2 ns  ;      

                          end  generate  V1  ;  

  

                         V2 : if  User = high_Dly  generate 

                                    Z   <=  A  after  25 ns  ;         

                         end  generate  V2  ;  

 

 
ALIASES  
 

An alias is an alternate name for an existing object. By using an alias of an object, you 

actually use the object to which it refers. By assigning to an alias, you actually assign to the 

object to which the alias refers. 

Syntax :             

                          alias identifier : subtype_indication is name ; 

A reference to an alias is interpreted as a reference to the object or part corresponding to the 

alias.  

Example :       

                         variable instr : bit_vector(31 downto 0); 

      alias op_code : bit_vector(7 downto 0) is instr(31 downto 24); 

 

declares the name op_code to be an alias for the left-most eight bits of instr. 

   

 



                        signal vec : std_logic_vector (4 downto 0) ; 

                        alias mid_bit : std_logic is vec(2) ; 

 

                               -- Assignment : 

                                        mid_bit <= ’0’ ; 

                              -- is the same as 

                                        vec(2) <= ’0’ ;         

 

Aliases are often useful in unbound function calls. For instance, if you want to 

make a function that takes the AND operation of the two left most bits of an arbitrary 

array parameter. If you want to make the function general enough to handle arbitrary 

sized arrays, this function could look like this: 

 

 

                      function left_and (arr: std_logic_vector) return std_logic is 

                          begin 

                                      return arr(arr’left) and arr(arr’left-1) ; 

                      end left_and ; 

 

      ---- Function does not work for ascending index ranges of arr. 

This function will only work correctly if the index range of arr is descending 

(downto). Otherwise, arr’left-1 is not a valid index number. VHDL does not have a 

simple attribute that will give the one-but-leftmost bit out of an arbitrary vector, so it 

will be difficult to make a function that works correctly both for ascending and 

descending index ranges. Instead, you could make an alias of arr, with a known index 

range, and operate on the alias: 

 



                  function left_and (arr : std_logic_vector) return std_logic is 

                  alias aliased_arr : std_logic_vector (0 to arr’length-1) is arr ; 

                      begin 

                                return aliased_arr(0) and aliased_arr(1) ; 

                  end left_and ; 

 

 ---- Function works for both ascending and descending index ranges of arr. 

 

ATTRIBUTES     

 

It is a value, function, type, range, signal, or constant that can associated with certain 

names. Such as an entity name, an architecture name, a label, or a signal   

 

 

User-defined Attributes 

User-defined attributes are constants of any type, except access or file type. They are 

declared using attribute declarations User-defined attributes are useful for annotating 

language models with tool-specific information.  

 

Attribute Declarations 

           It declares the name of the attribute and its type. 

 

 

 

 

 



Syntax & Example : 

                                     attribute  attribute-name  :  value-type  ; 

 

                                              type  Farads  is  range  0  to  5000  ; 

                                                  units 

                                                        pf  ; 

                                                  end  units  ; 

                                              attribute  capacitance  :  Farads ;    

 

These user-defined attribute with a name and to assign a value to the attribute.    
 

Attribute Specification  

     It is used to associate a user-defined attribute with a name and to assign a value to the  

attribute.    

Syntax : 

               attribute  attribute-name  of  item-names  : name-class  is  expression ;  

 

The item-names is a list of one or more names of  an entity, architecture, 

configuration, component, label, signal, variable, constant, type, subtype, package, 

procedure, or function. The name-class indicates the class type, that is, whether it is an 

entity, architecture, label, or others. The expression, whose value must belong to the type of 

attribute, specifies the value of the attribute.    

 

Example :        attribute length of RX_Rdy : signal is 3 micron ;   

                           attribute capacitance of clk, rst : signal is 20 pf ; 

 



 The item-name in the attribute specification can also be replaced with the keyword all 

to indicate all names belonging to that name-class.   

 

Example : 

                          attribute capacitance of  all  :  variable is 10 pf ; 

 
 After having created an attribute and then associated it with a name, the value of the 

attribute can then be used in an expression. An attribute indicates a specific property of the 

signal, and is of a defined type. Using attributes at the right places creates a very flexible style 

of writing VHDL code.  

Syntax :  

                         item-name ‘ attribute-name  

Example : 

 

                 signal vector_up : bit_vector (4 to 9) ; 

                 signal vector_dwn : bit_vector (25 downto 0) ; 

                 vector_dwn’LEFT          -- returns integer 25 

                 vector_dwn’RANGE     -- returns range 25 to 0 

                 X'EVENT                      -- TRUE when there is an event on signal X 

                 Y'HIGH                         -- returns the highest value in the range of Y 

                 vector_up’RIGHT         -- returns integer 9 

                 vector_up’RANGE       -- returns range 4 to 9 

 

 

 

 



 TEST BENCHES  

Testbenches have become the standard method to verify High-Level Language 

designs. Typically, testbenches perform the following tasks: 

 

•  Instantiate the design under test (DUT) 

•  Stimulate the DUT by applying test vectors to the model 

•  Output results to a terminal or waveform window for visual inspection 

•  Optionally compare actual results to expected results 

 

Testbenches are written in the industry-standard VHDL or Verilog hardware 

description languages. Testbenches invoke the functional design, then stimulate it. 

Complex testbenches perform additional functions—for example, they contain logic to 

determine the proper design stimulus for the design or to compare actual to expected 

results. The remaining sections of this note describe the structure of a well-composed 

testbench, and provide an example of a self-checking testbench—one that automates the 

comparison of actual to expected testbench results. 

 

 

 

 



• Stimuli transmitter to testvectors  

•  Needs not to be synthesizable  

•  No ports to the outside  

•  Environment for DUT  

•  Verification and validation of the design  

•  Several output methods and input methods 

Syntax : 

                  Entity  testbench_name  is 

                  end  testbench_name ; 

                  architecture  testbench_archname  of  testbench_name  is 

                         signal declarations 

                         component declarations 

                  begin 

                       UUT : component instantiation; 

                       stimuli; 

                 end  testbench_archname ;  

Example :    

                           library ieee;  use ieee.std_logic_1164.all; 

                           entity testnand is 

                           end testnand; 

                           architecture testgate of testnand is 

                                  component my_nand is 

                                      port ( A, B : in std_logic; Y : out std_logic ); 

                                  end component; 

                                  signal A, B, Y : std_logic; 



                            begin 

                                UUT : my_nand port map ( A, B, Y ); 

                            process 

                              begin 

                                 A <= ‘0';wait for 20 ns; 

                                 B <= ‘0‘; wait for 20 ns; 

                            end process; 

                            process 

                               begin 

                                 A <= ‘0';wait for 20 ns; 

                                 B <= ‘1‘; wait for 20 ns; 

                             end process; 

                             process 

                                begin 

                                A <= ‘0';wait for 20 ns; 

                                B <= ‘0‘; wait for 20 ns; 

                             end process; 

                             process 

                                begin 

                                 A <= ‘0';wait for 20 ns; 

                                 B <= ‘1‘; wait for 20 ns; 

                             end process; 

                           End testgate; 

 



A testbench that instantiates and provides stimulus to the shift register. 

 

 

library IEEE; 

use IEEE.std_logic_1164.all; 

entity testbench is 

end entity testbench; 

architecture test_reg of testbench is 

component shift_reg is 

port (clock : in std_logic; 

reset : in std_logic; 

load : in std_logic; 

sel : in std_logic_vector(1 downto 0); 

data : in std_logic_vector(4 downto 0); 

shiftreg : out std_logic_vector(4 downto 0)); 

end component; 

signal clock, reset, load: std_logic; 

signal shiftreg, data: std_logic_vector(4 downto 0); 

signal sel: std_logic_vector(1 downto 0); 

constant ClockPeriod : TIME := 50 ns; 

 



begin 

UUT : shift_reg port map (clock => clock, reset => reset, 

load => load, data => data, 

shiftreg => shiftreg); 

process begin 

clock <= not clock after (ClockPeriod / 2); 

end process; 

process begin 

reset <= ’1’; 

data <= "00000"; 

load <= ’0’; 

set <= "00"; 

wait for 200 ns; 

reset <= ’0’; 

load <= ’1’; 

wait for 200 ns; 

data <= "00001"; 

wait for 100 ns; 

sel <= "01"; 

 



load <= ’0’; 

wait for 200 ns; 

sel <= "10"; 

wait for 1000 ns; 

end process; 

end architecture test_reg; 

 

PROGRAMS 

--Design Unit : 4X1 Mux  

--File Name : MUX.vhd 

--Program for AND gate 

 

library ieee; 

use ieee.std_logic_1164.all; 

entity and3 is 

port(a,b,c : in std_logic; 

     d: out std_logic); 

end and3 ;  

architecture data of and3 is 

begin 

d <=a and b and c; 

end data; 

--------------------------------------------------------------------------------------------- 

 



--Program for OR gate 

 

library ieee; 

use ieee.std_logic_1164.all; 

entity or4 is 

port(a,b,c,d : in std_logic; 

     e: out std_logic); 

end or4 ;  

architecture data of or4 is 

begin 

e <=a or b or c or d; 

end data; 

------------------------------------------------------------------------------------------------- 

--Program for NOT gate 

library ieee; 

use ieee.std_logic_1164.all; 

entity inv is 

port(a : in std_logic; 

     b: out std_logic); 

end inv ;  

architecture data of inv is 

begin 

b <=not a; 

end data; 

 

------------------------------------------------------------------------------------------------------ 



--Program for 4x1 MUX 

 

library ieee; 

use ieee.std_logic_1164.all; 

entity mux4x1 is 

port(a,b,c,d,sel_1,sel_2 : in std_logic; 

     muxout : out std_logic); 

end mux4x1 ;  

architecture str of mux4x1 is 

component and3  

port(a,b,c : in std_logic; 

     d: out std_logic); 

end component; 

component or4  

port(a,b,c,d : in std_logic; 

     e: out std_logic); 

end component; 

 

component inv 

port(a : in std_logic; 

     b: out std_logic); 

end component;      

signal a1,a2,a3,a4,inv1,inv2 : std_logic; 

begin 

 



n1 : inv port map (sel_1,inv1); 

n2 : inv port map (sel_2,inv2); 

u1 : and3 port map (a,inv1,inv2,a1);  

u2 : and3 port map (b,inv1,sel_2,a2);   

u3 : and3 port map (c,sel_1,inv2,a3);   

u4 : and3 port map (d,sel_1,sel_2,a4);    

u5 : or4 port map (a1,a2,a3,a4,muxout);   

end str ; 

 

--Design Unit: 3 bit counter  

--File Name :counter.vhd 

--Program for AND gate 

 

library ieee; 

use ieee.std_logic_1164.all; 

entity and2 is 

port(a,b : in std_logic; 

     c: out std_logic); 

end and2 ;  

architecture data of and2 is 

begin 

c <=a and b; 

end data; 

--------------------------------------------------------------------------------------------- 

 

 



 

--Program for T flipflop 

 

library ieee; 

use ieee.std_logic_1164.all; 

entity tff is 

port(reset,clock,t : in std_logic; 

     q,q1 : inout std_logic); 

end tff ;  

architecture beh of tff is 

begin 

   q1 <= not q; 

process(reset,clock,t) 

begin 

if (reset='1')then 

   q <= '0'; 

elsif (clock'event and clock='1') then 

    if (t='0') then 

      q <= q; 

      else 

       q <= not q ; 

end if; end if; 

            end process; 

            end beh; 

 



--Program for counter 

library ieee; 

use ieee.std_logic_1164.all; 

entity count3bit is 

port(rst,clk : in std_logic; 

     count : inout std_logic_vector(2 downto 0)); 

end count3bit ;  

architecture str of count3bit is 

component and2  

port(a,b : in std_logic; 

     c: out std_logic); 

end component; 

component tff  

port(reset,clock,t : in std_logic; 

     q,q1 : inout std_logic); 

end component;      

signal a1 : std_logic; 

signal high : std_logic := '1'; 

begin 

u1 : and2 port map (count(1),count(0),a1);   

u2 : tff port map (rst,clk,a1,count(2)); 

u3 : tff port map (rst,clk,count(0),count(1));     

u4 : tff port map (rst,clk,high,count(0)); 

end str ; 

 



--Design Unit : Mealy machine 

--File Name : mealy.vhd 

 

library ieee; 

use ieee.std_logic_1164.all; 

Entity mealy is 

port(clk,in1,reset:in std_logic; 

out1 : out std_logic_vector(1 downto 0)); 

end mealy; 

Architecture mealy of mealy is 

type state_type is (s0,s1,s2,s3); 

signal state:state_type; 

begin 

p1:    process(clk.reset)        

begin 

if reset='1' then state<=s0 ;      

elsif clk'event and clk='1' then 

case state is 

when s0=>if in1='1' then state<=s1; 

end if; 

when s1=>if in1='0' then state<=s2; 

end if; 

when s2=>if in1='1' then state<=s3; 

end if; 

 



when s3=>if in1='0' then state<=s0; 

end if;  end case;  end if; 

end process; 

p2:     process(state,in1) 

begin 

case state is 

when s0=>if in1='1' then out1<="01"; 

         else out1<="00"; 

end if; 

when s1=>if in1='0' then out1<="10"; 

         else out1<="01"; 

end if; 

when s2=>if in1='1' then out1<="11"; 

         else out1<="10"; 

end if; 

when s3=>if in1='0' then out1<="00"; 

         else out1<="11"; 

end if: end case; 

end process; end mealy;          

 

 

 

 

 

 



--Design Unit : Comparator 

--File Name : compar.vhd 

library IEEE; 

use IEEE.std_logic_1164.all; 

entity comparator is 

port(x,y:in std_logic_vector(3 downto 0); 

   eq,gr,le:out std_logic); 

end entity comparator; 

architecture iterative of comparator is 

begin 

   process(x,y) 

    variable eqi:std_logic; 

begin 

 if ( x<y)then 

   le<=’1’; 

elsif ( x>y)then 

  gr<=’1’; 

 if ( x=y)then 

eq<=’1’; end process;  

end architecture iterative;           

 



--Design Unit : 16x7 ROM 

--File Name : Rom.vhd 

 

library ieee; 

use ieee.std_logic_1164.all; 

entity rom16X7 is 

   port (address : in INTEGER range 0 to 15; 

         data : out std_logic_vector (6 downto 0)); 

end entity rom16X7; 

architecture sevenseg of rom16X7 is 

    type rom_array is array (0 to 15) of std_logic_vector(6 downto 0); 

    constant rom : rom_array := ("1110111", 

                                 "0010010", 

                                 "1011101", 

                                 "1011011", 

                                 "0111010", 

                                 "1101011", 

                                 "1101111", 

                                 "1010010", 

                                 "1111111", 

                                 "1111011", 

                                 "1101101", 

                                 "1101101", 

 

 



                                 "1101101", 

                                 "1101101", 

                                 "1101101", 

                                 "1101101");           

    begin 

       data <= rom(address); 

  end architecture sevenseg;           

--Design Unit : Shift Register 

--File Name : shiftreg.vhd 

--Program for D flipflop 

 

library ieee; use ieee.std_logic_1164.all; 

entity dff is 

port ( d,clk : in std_logic ; 

       q : out std_logic ); 

end dff ; 

architecture beh of dff is 

begin 

process(clk,d) 

begin 

wait until clk'event and clk='1' ; 

q <= d; 

end process; 

end beh;        

------------------------------------------------------------------------------------------------------------ 



--Program for Shift Register using generate statement 

 

library ieee; 

use ieee.std_logic_1164.all; 

entity shift is 

 port(din,clk: in std_logic; 

     qout: out std_logic); 

end shift; 

Architecture gen_shift of shift is 

component dff 

  port(d,clk:in std_logic; 

   q:out std_logic); 

   end dff; 

   signal qsh:std_logic_vector(0 to 7); 

   begin 

   qsh(0)<=din; 

   g1:for i in 0 to 6 generate 

   dffx:dff port map(qsh(i),clk,qsh(i+1)); 

 end generate; 

   qout<=qsh(4); 

end; 

 

 

 

 



--Design Unit : JK flipflop 

--File Name : JKff.vhd 

library ieee; 

use ieee.std_logic_1164.all; 

entity JK_FF is 

   port (J,K,Clock,Reset: in std_logic; 

         q,qbar : out std_logic); 

end entity JK_FF; 

architecture sig of JK_ff is 

  signal state:std_logic; 

begin 

p0: process(Clock,Reset) is 

    begin 

       if (Reset = '0') then 

         state <='0'; 

       elsif rising_edge(Clock) then 

         case std_logic_vector'(J,K)is 

           when "11" => 

             state <=not state; 

           when "10" => 

             state <= '1'; 

           when "01" => 

             state <= '0'; 

 

 



          when others => 

          null; 

         end case; 

       end if; 

     end process p0; 

q <= state; 

qbar <= not state; 

end architecture sig;     

 

--Design Unit : ALU 

--File Name : Alu.vhd 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic _arith.all; 

use ieee.std_logic _unsigned.all; 

entity alu is 

  port(reset:in std_logic; 

       b, sel  :in std_logic_vector(3 downto 0); 

       acc, prod  :inout std_logic_vector(7 downto 0); 

       flag :inout std_logic_vector(1 downto 0); 

end alu; 

architecture Behavioral of alu is 

signal count:std_logic_vector(3 downto 0); 

 



begin 

     Process(count,prod) 

     begin 

           case sel is 

                 when "0000"=>--addition 

                       acc<=acc+b; 

                 when "0001"=>--subtration 

                       acc<=acc-b; 

                 when "0010"=>--multiplication 

                       if(count< b)then 

                             acc<=acc+prod; count<=count+'1'; 

                       end if; 

                 when "0011"=>--divion 

                       if(prod>=b)then 

                             prod<=prod-b; 

                             acc<="0000"&count+'1'; 

                             count<=count+'1'; 

                       end if; 

                 when "0100"=>--increment 

                       acc<=acc+'1'; 

                 when "0101"=>--decrement 

                       acc<=acc-'1'; 

                 when "0110"=> --compare 

 

 



                       if(acc<b)then 

                             flag(1) <='1'; 

                       elsif(acc >=b) then 

                             flag(1) <='0'; 

                       end if; 

                       if( acc=b) then 

                             flag(0) <='0'; 

                       else 

                             flag(0) <='1'; 

                       end if; 

                 when "1000" =>--and 

                       acc <= acc and prod; 

                 when "1001"=>--or 

                       acc<= acc or prod; 

                 when "1010"=>--nand 

                       acc<= acc nand prod; 

                 when "1011"=>--nor 

                       acc<= acc nor prod; 

                 when "1100"=>--xor 

                       acc<= acc xor prod; 

                 when "1101"=>--xnor 

                       acc<= acc xnor prod; 

                 when "1110"=>--not  

 

 



                       acc<=not acc; 

                 when others => acc <= acc; 

            end case;             

            if(reset'event and reset='1') then 

                  acc <= "00000000"; 

            end if;             

            if(sel'event and sel = "0011") then 

                  prod <=acc; 

                  acc <= "00000000"; 

                  count <="0000"; 

            end if;             

            if(sel'event and sel = "0010") then 

                  acc <= "00000000"; 

                  prod <= acc; 

                  count <= "0000"; 

            end if;             

            if(sel (3) ='1') then 

                   prod <= "0000" & b; 

            end if;    end process; 

 end Behavioral;            

 

 

 

 

 



--Design Unit : Pseudo Random Bit Sequence Generator  

--File Name : prbs_gen.vhd 

 

entity prbsgen is 

   generic(length : Positive := 8; tap1 : Positive := 8; tap2 : Positive := 4); 

   port(clk, reset : in Bit; prbs : out Bit); 

end prbsgen; 

 

 architecture v2 of prbsgen is 

   signal prreg : Bit_Vector(length downto 0); 

begin 

   prreg <= (0 => '1', others=> '0') when reset = '1' else 

            (prreg((length - 1) downto 0) & (prreg(tap1) xor prreg(tap2)))   

            when clk'event and clk = '1' else  

            prreg;    

   prbs <= prreg(length); 

           end v2; 

 

--Design Unit : 7-Segment Decoder 

--File Name : segdec.vhd 

 

library ieee; 

use ieee.std_logic_1164.all; 

 

 



entity adcout is port(  nib0:  in std_logic_vector(3 downto 0);  

  nib1:  in std_logic_vector(3 downto 0);  

 clk:   in bit;       

 dis0: out bit;             

 dis1:  out bit;                                 

 ssdout:  out std_logic_vector(7 downto 0) );  

end adcout; 

 

architecture arch_adc of adcout is 

signal tmp : std_logic_vector(3 downto 0); 

begin 

--       a 

--               -- 

-- f|          | b 

--               --                --  seven segment display format ( .gfedcba ) 

--        e|    g    | c 

--      -- 

--             d             

      

process(clk,tmp,nib0,nib1) 

 begin 

 if clk = '0' then 

   tmp <= nib0; 

   dis0 <= '0'; 

 



   dis1 <= '1'; 

 elsif clk = '1' then 

   tmp <= nib1; 

             dis0 <= '1'; 

             dis1 <= '0'; 

end if; 

    if    tmp = "0000" then 

 ssdout <= "11000000"; 

    elsif tmp = "0001" then 

 ssdout <= "11111001"; 

    elsif tmp = "0010" then 

 ssdout <= "10100100"; 

    elsif tmp = "0011" then 

 ssdout <= "10110000"; 

    elsif tmp = "0100" then  

           ssdout <= "10011001"; 

    elsif tmp = "0101" then 

 ssdout <= "10010010"; 

    elsif tmp = "0110" then 

 ssdout <= "10000010"; 

    elsif tmp = "0111" then 

 ssdout <= "11111000"; 

    elsif tmp = "1000" then 

 

 



 ssdout <= "10000000"; 

    elsif tmp = "1001" then 

 ssdout <= "10010000"; 

    elsif tmp = "1010" then 

 ssdout <= "10001000"; 

    elsif tmp = "1011" then 

 ssdout <= "10000011"; 

    elsif tmp = "1100" then 

 ssdout <= "11000110"; 

    elsif tmp = "1101" then 

 ssdout <= "10100001"; 

    elsif tmp = "1110" then 

 ssdout <= "10000110"; 

    elsif tmp = "1111" then 

 ssdout <= "10001110"; 

    end if;     

  end process; 

end arch_adc; 

 

--Design Unit : 3-bit 1-of-9 Priority Encoder  

--File Name : prienc.vhd 

 

.library ieee;   

use ieee.std_logic_1164.all;    

 

 



entity priority is   

port ( sel : in std_logic_vector (7 downto 0);   

        code :out std_logic_vector (2 downto 0));   

end priority;   

architecture archi of priority is   

begin   

  code <= "000" when sel(0) = '1' else   

          "001" when sel(1) = '1' else   

          "010" when sel(2) = '1' else   

          "011" when sel(3) = '1' else   

          "100" when sel(4) = '1' else   

          "101" when sel(5) = '1' else   

          "110" when sel(6) = '1' else   

          "111" when sel(7) = '1' else   

          "---";   

end archi; 

 

--Design Unit : Fibonacci series  

--File Name : Fibo.vhd 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

 

entity Fibonacci is 

port 

( 

    Reset       : in    std_logic; 

    Clock       : in    std_logic; 

 



    Number      : out   unsigned(31 downto 0) 

); 

end entity Fibonacci; 

architecture fibo_arch of Fibonacci is 

    signal  Previous    : natural; 

    signal  Current     : natural; 

    signal  Next_Fib    : natural; 

begin 

    Adder: 

    Next_Fib <= Current + Previous; 

    Registers:  process (Clock, Reset) is 

    begin 

        if Reset = '1' then 

            Previous <= 1; 

            Current  <= 1; 

        elsif rising_edge(Clock) then 

            Previous <= Current; 

            Current  <= Next_Fib; 

        end if; 

    end process Registers; 

    Number <= to_unsigned(Previous, 32); 

end architecture fibo_arch; 
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INTRODUCTION 

 
 

Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL). A hardware 

description Language is a language used to describe a digital system, for example, a 

microprocessor or a memory or a simple flip-flop. This just means that, by using a HDL one 

can describe any hardware (digital) at any level. 

 

Verilog is one of the HDL languages available in the industry for designing the 

Hardware. Verilog allows us to design a Digital design at Behavior Level, Register Transfer 

Level (RTL), Gate level and at switch level. Verilog allows hardware designers to express 

their designs with behavioral constructs, deterring the details of implementation to a later 

stage of design in the final design. 

 

 

Abstraction Levels of Verilog 

 

Verilog supports a design at many different levels of abstraction. Three of them are 

very important: 

 

  Behavioral level 

  Register-Transfer Level  

  Gate Level 

 

Behavioral level 

This level describes a system by concurrent algorithms (Behavioral). Each 

algorithm itself is sequential, that means it consists of a set of instructions that are 

executed one after the other. Functions, Tasks and Always blocks are the main elements. 

There is no regard to the structural realization of the design. 

 

 

 

 

 



 

Register-Transfer Level 

Designs using the Register-Transfer Level specify the characteristics of a circuit 

by operations and the transfer of data between the registers. An explicit clock is used. 

RTL design contains exact timing possibility, operations are scheduled to occur at 

certain times. Modern definition of a RTL code is "Any code that is synthesizable is 

called RTL code". 

 

 

Gate Level 

Within the logic level the characteristics of a system are described by logical links 

and their timing properties. All signals are discrete signals. They can only have definite 

logical values (`0', `1', `X', `Z`). The usable operations are predefined logic primitives 

(AND, OR, NOT etc gates). Using gate level modeling might not be a good idea for any 

level of logic design. Gate level code is generated by tools like synthesis tools and this net 

list is used for gate level simulation and for backend. 



 
 

History of Verilog 
 
 
 
 

Verilog was started initially as a proprietary hardware modeling language by 

Gateway Design Automation Inc. around 1984.  It is rumored that the original 

language was designed by taking features from the most popular HDL language of 

the time, called Hilo as well as from traditional computer language such as C. At that 

time, Verilog was not standardized and the language modified itself in almost all the 

revisions that came out within 1984 to 1990. 

 

Verilog simulator was first used beginning in 1985 and was extended 

substantially through 1987.The implementation was the Verilog simulator sold by 

Gateway. The first major extension was Verilog-XL, which added a few features and 

implemented the infamous "XL algorithm" which was a very efficient method for 

doing gate-level simulation. 

 

The time was late 1990.  Cadence Design System, whose primary product at 

that time included thin film process simulator, decided to acquire Gateway 

Automation System.  Along with other Gateway product, Cadence now became the 

owner of the Verilog language, and continued to market Verilog as both a language 

and a simulator. At the same time, Synopsys was marketing the top- down design 

methodology, using Verilog. This was a powerful combination. 

 

In 1990, Cadence recognized that if Verilog remained a closed language, the 

pressures of standardization would eventually cause the industry to shift to VHDL. 

Consequently, Cadence organized Open Verilog International (OVI), and in 1991 

gave it the documentation for the Verilog Hardware Description Language. This was 

the event which "opened" the language. 

 

 

 

 

 

 

 



OVI did a considerable amount of work to improve the Language Reference 

Manual (LRM), clarifying things and making the language specification as vendor-

independent as possible. In 1990 soon it was realized, that if there were too many 

companies in the market for Verilog, potentially everybody would like to do what 

Gateway did so far - changing the language for their own benefit. This would defeat 

the main purpose of releasing the language to public domain. As a result in 1994, the 

IEEE 1364 working group was formed to turn the OVI LRM into an IEEE standard. 

This effort was concluded with a successful ballot in 1995, and Verilog became an 

IEEE standard in December, 1995. 

 

When Cadence gave OVI the LRM, several companies began working on 

Verilog simulators. In 1992, the first of these were announced, and by 1993 there 

were several Verilog simulators available from companies other than Cadence. The 

most successful of these was VCS, the Verilog Compiled Simulator, from 

Chronologic Simulation. This was a true compiler as opposed to an interpreter, which 

is what Verilog-XL was. As a result, compile time was substantial, but simulation 

execution speed was much faster. 

 

In the meantime, the popularity of Verilog and PLI was rising exponentially. 

Verilog as a HDL found more admirers than well-formed and federally funded VHDL.  

It was only a matter of time before people in OVI realized the need of a more 

universally accepted standard. Accordingly, the board of directors of OVI requested 

IEEE to form a working committee for establishing Verilog as an IEEE standard. The 

working committee 1364 was formed in mid 1993 and on October 14, 1993, it had its 

first meeting. The standard, which combined both the Verilog language syntax and 

the PLI in a single volume, was passed in May 1995 and now known as IEEE Std. 

1364-1995. 

 

After many years, new features have been added to Verilog, and new version is 

called Verilog 2001. This version seems to have fixed lot of problems that Verilog 

1995 had. This version is called 1364-2000. Only waiting now is that all the tool 

vendors implementing it. 



 
 
 

 

Verilog HDL Syntax and Semantics 
 
 
 
 

Lexical Conventions 

The basic lexical conventions used by Verilog HDL are similar to those in the 

C programming language. Verilog HDL is a case-sensitive language. All keywords are 

in lowercase. 

 

White Space 

White space can contain the characters for blanks, tabs, newlines, and form 

feeds. These characters are ignored except when they serve to separate other tokens. 

However, blanks and tabs are significant in strings. 

White space characters are:  

Blank spaces 

Tabs 

Carriage returns 

New-line 

Form-feeds 

 

 

Comments 

There are two forms to introduce comments. 

 

Single line comments begin with the token // and end with a carriage return  

Multi Line comments begin with the token /* and end with the token*/  

 

 

 

 

 

 

 
 



  
 few verilog */   

module addbit ( 
a, 
b, 
ci, 
sum, 
co); 
// Input Ports   
input a; 
input b; 
input ci; 
// Output ports 
output sum; 
output co; 
// Data Types 

wire  a; 
wire  b; 
wire  ci; 
wire  sum; 
wire  co; 

 

Examples of Comments 

 

/* 1-bit adder example for showing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case Sensitivity 

Verilog HDL is case sensitive 

 

Lower case letters are unique from upper case letters 

All Verilog keywords are lower case 

 

 

Examples of unique names 

 

input // a Verilog 

Keyword wire   // a Verilog 

Keyword 

WIRE  // a unique name ( not a keyword) 

Wire  // a unique name (not a keyword) 

 

 

 



 

Identifiers  

Identifiers are names used to give an object, such as a register or a module, a 

name so that it can be referenced from other places in a description. 

 

Identifiers must begin with an alphabetic character or the underscore 

character ( a-z  A-Z _ ).Identifiers may contain alphabetic characters, numeric 

characters, the underscore, and the dollar sign (  a-z A-Z 0-9 _ $ ) Identifiers can be 

up to 1024 characters long. 

 

 

Escaped Identifiers  

Verilog HDL allows any character to be used in an identifier by escaping 

the identifier. Escaped identifiers provide a means of including any of the printable 

ASCII characters in an identifier (the decimal values 33 through 126, or 21 

through 7E in hexadecimal). Escaped identifiers begin with the back slash ( \ ) 

Entire identifier is escaped   by the back slash Escaped identifier is terminated by 

white space o Characters such as commas, parentheses, and semicolons become 

part of the escaped identifier unless preceded by a white space. Terminate escaped 

identifiers with white space, otherwise characters that should follow the identifier 

are considered as part of it. 

 

Numbers in Verilog 

You can specify constant numbers in decimal, hexadecimal, octal, or binary 

format. Negative numbers are represented in 2's complement form. When used in a 

number, the question mark (?) character is the Verilog alternative for the z character. 

The underscore character (_) is legal anywhere in a number except as the first 

character, where it is ignored. 

 

 

 

 

 

 

 



Integer Numbers 

Verilog HDL allows integer numbers to be specified as Sized or unsized 

numbers ( Unsized size is 32 bits ) In a radix pf binary, octal, decimal, or hexadecimal 

Radix is case and hex digits (a,b,c,d,e,f) are insensitive Spaces are allowed between the 

size, radix and value. 

 

Syntax: <size>'<radix><value> 

 

Verilog expands <value> to be fill the specified <size> by working from right-to-left 

 

When <size> is smaller than <value>, then left-most bits of <value> are truncated 

 

When <size> is larger than <value>, then left-most bits are filled, based on the 

value of the left-most bit in <value>. 

Left most '0' or '1' are filled with '0', 'Z' are filled with 'Z' and 'X' with 'X' 

 

Example of integer numbers 

 

8’hCA 11001010 

16’bZ   filled with 16 Z's 

 

Real Numbers 

Verilog supports real constants and variables 

Verilog converts real numbers to integers by rounding 

Real Numbers can not contain 'Z' and 'X' 

Real numbers may be specified in either decimal or scientific notation 

                                       <value>.<value> 

<mantissa>E<exponent> 

Real numbers are rounded off to the nearest integer. 

Example of Real Numbers 

1.2,0.6 

 

 

 

 



Signed and Unsigned Numbers 

Verilog supports both the type of numbers, but with certain restrictions. Like 

in C language we don't have int and unint types to say if a number is signed integer or 

unsigned integer. 

 

Any number that does not have negative sign prefix is a positive number. Or 

indirect way would be "Unsigned". 

 

Negative numbers can be specified by putting a minus sign before the size 

for a constant number, thus become signed numbers. Verilog internally represents 

negative numbers in 2's compliment format. An optional signed specifier can be 

added for signed arithmetic. 

 

Examples 

 

32'hDEAD_BEEF Unsigned or signed positive Number 

 

 -14'h1234 Signed negative number 

 

 

Ports: 

 

Ports allow communication between a module and its environment. All but the 

top-level modules in a hierarchy have ports. Ports can be associated by order or by 

name. 

 

You declare ports to be input, output or inout. The port declaration syntax is : 

input               [range_val:range_var] list_of_identifiers;  

output  [range_val:range_var] list_of_identifiers;  

inout                    [range_val:range_var] list_of_identifiers; 

 

 

 

 

 



Examples: Port Declaration 

 

 

input clk  ; // clock input 

input [15:0] data_in ; // 16 bit data input bus 

output [7:0] count   ; // 8 bit counter output  

inout   data_bi  ; // Bi-Directional data bus 

 

 

Examples : A complete Example in Verilog 

 

 

                         

 

 



Data Types 

Verilog Language has two primary data types 

Nets - represents structural connections between components. 

Registers - represent variables used to store data.  

Every signal has a data type associated with it: 

Explicitly declared with a declaration in your Verilog code.  

Implicitly declared with  no declaration but used to connect structural 

building blocks in your code. 

Implicit declaration is always a net of type wire and is one bit wide. 

 

Types of Nets 

Each net type has functionality that is used to model different types of 

hardware (such as PMOS, NMOS, CMOS, etc) 

 

Net Data Type Functionality  

wire tri  Interconnecting wire - no special 

resolution function 

wor  trior   
Wired outputs OR together (models ECL) 

 
wand  triand  Wired outputs AND together (models 

open-collector) 

tri0  tri1  Net pulls-down or pulls-up when not 

driven 

supply0 supply1 Net has a constant logic 0 or logic 1 

(supply strength) 

  

  



Register Data Types 

Registers store the last value assigned to them until another assignment 

statement changes their value. Registers represent data storage constructs. You can 

create arrays of the regs called memories. register data types are used as variables in 

procedural blocks. A register data type is required if a signal is assigned a value within 

a procedural block. Procedural blocks begin with keyword initial and always. 

 

 

Data types  Functionality  
reg  Unsigned variable 
integer  Signed variable - 32 bits 
time   Unsigned integer - 64 bits 
real Double precision floating point variable 

 

 

Strings 

A string is a sequence of characters enclosed by double quotes and all 

contained on a single line. Strings used as operands in expressions and assignments 

are treated as a sequence of eight-bit ASCII values, with one eight-bit ASCII value 

representing one character. To declare a variable to store a string, declare a register 

large enough to hold the maximum number of characters the variable will hold. Note 

that no extra bits are required to hold a termination character; Verilog does not store a 

string termination character. Strings can be manipulated using the standard operators. 

When a variable is larger than required to hold a value being assigned, Verilog pads 

the contents on the left with zeros after the assignment. This is consistent with the 

padding that occurs during assignment of non-string values. 

 

Certain characters can be used in strings only when preceded by an 

introductory character called an escape character. The following table lists these 

characters in the right-hand column with the escape sequence that represents the 

character in the left-hand column. 

 

 

 

 

 

 



Special characters in string 

 

\n  New line character 

\t  Tab character 

\\  Backslash (\) character 

\"  Double quote (") character 

\ddd  A character specified in 1-3 octal digits (0 <= d <= 7) 

%%  Percent (%) character 

 

 

Example 

 

reg [8*17:0] version   ; // Declare a register variable that is 18 bytes 

initial 

version = "model version 1.0"; 

 

 

 

Port Connection Rules 

Inputs : internally must always be type net, externally the inputs can be 

connected to variable reg or net type. 

Outputs : internally can be type net or reg, externally the outputs 

must be connected to a variable net type. 

Inouts : internally or externally must always be type net, can only be 

connected to a variable net type. 

  

         

 

 



Width matching:  It is legal to connect internal and external ports of different sizes. 

But beware, synthesis tools could report problems.  

Unconnected ports: unconnected ports are allowed by using a "," The net data 

types are used to connect structure 

A net data type is required if a signal can be driven a structural connection. 

 

 

 

 

 

 

 

 

 



Gate Level Modeling 

 

Introduction  

Verilog has built in primitives like gates, transmission gates, and switches. This 

are rarely used for in design work, but are used in post synthesis world for modeling the 

ASIC/FPGA cells, this cells are then used for gate level simulation or what is called as 

SDF simulation. 

 

Gate Primitives 

 

             

 

The gates have one scalar output and multiple scalar inputs. The 1st terminal in the list of 

gate terminals is an output and the other terminals are inputs. 

 

            And N-input and gate 

Nand N-input nand gate 

Or  N-input or gate 

Nor  N-input nor gate 

Xor  N-input xor gate 

Xnor  N-input xnor gate 

 

Examples 

 

and U1(out,in); 

and U2(out,in1,in2,in3,in4); 

xor U3(out,in1,in2,in3); 

 

 



 

 N-output invertor. 
 N-output buffer. 
 Tri-state buffer, Active low en. 
 Tri-state buffer, Active high en. 
 Tristate inverter, Low en. 

 
 
 
notif1 

 
 
 
Tristate inverter, High en. 

Transmission Gate Primitives 

 

not   

buf   

bufif0   

bufif1   

notif0   

 

 

 

 

 

 

 

Examples 

 

bufif0 U1(data_bus,data_drive, data_enable_low); 

buf  U2(out,in); 

not U3(out,in); 

 

 

Switch Primitives 

 

 

 

 

 

1 

pmos Uni-directional PMOS switch 
rpmos Resistive PMOS switch 

 

2 

nmos Uni-directional NMOS switch 

rnmos Resistive NMOS switch 
 

3 

cmos Uni-directional CMOS switch 

rcmos Resistive CMOS switch 
 

4 

tranif1 Bi-directional transistor (High) 
tranif1 Resistive transistor (High) 

 

5 

tranif0 Bi-directional transistor (Low) 
rtranif1 Resistive Transistor (Low) 

 

6 

tran Bi-directional pass transistor 
rtran Resistive pass transistor 



 zero, low, false 
 1 one, high, true 

z or Z    high impendence, floating 
 x or X unknown, uninitialized, contention 

 

Strength 
Level 

 

Strength 
Specification 

Keyword 

  7   Supply Drive   supply0     supply1   
 6 Strong Pull strong0 strong1 

    pull0    pull1   Pull Drive 
 

 Small Capacitance  small 
  0  Hi Impedance  highz0 highz1 
 

Syntax: keyword unique_name (inout1, inout2, control); 

 

tranif0 my_gate1 (net5, net8, cnt); 

rtranif1 my_gate2 (net5, net12, cnt); 

 

Transmission gates tran and rtran are permanently on and do not have a 

control line. Tran can be used to interface two wires with separate drives, and rtran 

can be used to weaken signals. Resistive devices reduce the signal strength which 

appears on the output by one level. All the switches only pass signals from source to 

drain, incorrect wiring of the devices will result in high impedance outputs. 

 

Logic Values and signal Strengths 

The Verilog HDL has got four logic values 

 

 

0   

 

 

 

 

 

Verilog Strength Levels 

 

 

 

 

 5   

4  Large Capacitance  large 
  3  Weak Drive    weak0       weak1   

2  Medium Capacitance  medium 
  1   

 

 

 

 

 



Examples 

 

 

 

 

 

 

 

 

 

Designing Using Primitives 

 

 

 

Two buffers that has output 

A : Pull 1 

B : Supply 0 

Since supply 0 is stronger then pull 

1, Output C takes value of B. 

 

 

 

 

 

 

 

Two buffers that has output 

A : Supply 1 

B : Large 1 

 

 

Since Supply 1 is stronger then 

Large 1, Output C takes the value 

of A 

 

 

AND Gate from NAND Gate 

 

 

 

 

 



Verilog code 

 

 

// Structural model of AND gate from two NANDS 

module and_from_nand(X, Y, F); 

 

input X, Y; 

output F; 

wire W; 

// Two instantiations of the module NAND 

nand U1(X, Y, W); 

nand U2(W, W, F); 

 

endmodule 

 

 

 

D-Flip flop from NAND Gate 

 

 

 

 

 

 

 

 

 

 

 



 

Verilog Code 

 

 

module dff(Q,Q_BAR,D,CLK); 

output Q,Q_BAR; 

input D,CLK; 

 

nand U1 (X,D,CLK) ; 

nand U2 (Y,X,CLK) ; 

nand U3 (Q,Q_BAR,X); 

nand U4 (Q_BAR,Q,Y); 

 

endmodule 

 

Multiplexer from primitives  

 

 

 

 

 



 

Verilog Code 

 

    //Module 4-2 Mux 
     module mux (c0,c1,c2,c3,A,B,Y); 
 input c0,c1,c2,c3,A,B; 
 ouput Y; 
 //Invert the sel signals 
 not (a_inv, A); 
 not (b_inv, B); 
 // 3-input AND gate 
 and (y0,c0,a_inv,b_inv); 
 and (y1,c1,a_inv,B); 
 and (y2,c2,A,b_inv); 
 and (y3,c3,A,B); 
 // 4-input OR gate 
 or (Y, y0,y1,y2,y3); 
  
endmodule 

 

 

 

Gate and Switch delays 

 

 

In real circuits , logic gates haves delays associated with them. Verilog 

provides the mechanism to associate delays with gates. 

 

Rise, Fall and Turn-off delays. 

Minimal, Typical, and Maximum delays. 

 

 

 

 

 

 

 

 

 

 

 



 

Rise Delay 

The rise delay is associated with a gate output transition to 1 from another 

value (0,x,z). 

 

 

 

 

 

Fall Delay : 

The fall delay is associated with a gate output transition to 0 from another 

value (1,x,z). 

 

 

 

 

 

Turn-off Delay 

The fall delay is associated with a gate output transition to z from another 

value (0,1,x). 

 

 

Min Value 

The min value is the minimum delay value that the gate is expected to 

have. 

 

 

 



 

Max Value 

The max value is the maximum delay value that the gate is expected to 

have. 

 

 

Examples 

 

// Delay for all transitions 

or #5  u_or (a,b,c); 

 

// Rise and fall delay 

and #(1,2) u_and (a,b,c); 

 

// Rise, fall and turn off delay 

nor # (1,2,3) u_nor (a,b,c); 

 

//One Delay, min, typ and max 

nand #(1:2:3) u_nand (a,b,c); 

 

//Two delays, min,typ and max 

buf #(1:4:8,4:5:6) u_buf (a,b); 

 

//Three delays, min, typ, and max 

notif1 #(1:2:3,4:5:6,7:8:9) u_notif1 (a,b,c); 

 

Gate Delay Code Example 

module not_gate (in,out);  
 input in; 
 output out; 
  
 not #(5) (out,in); 
  
endmodule 
  

 



Gate Delay Code Example 

 

 

module not_gate (in,out);  
 input in; 
 output out; 
  
 not #(2,3) (out,in); 
  
endmodule 
 

 

Normally we can have three models of delays,  typical, minimum and 

maximum delay. During compilation of a modules one needs to specify the 

delay models to use, else Simulator will use the typical model. 

 

 

N-Input Primitives  

The and, nand, or, nor, xor, and  xnor primitives have one output and any 

number of inputs 

 

The single output is the first terminal 

All other terminals are inputs 

 

 

Examples 

 

// Two input AND gate 

and u_and (out, in1, in2); 

 

// four input AND gate 

and u_and (out, in1, in2, in3, in4); 

 

// three input XNOR gate 

xnor u_xnor (out, in_1, in_2, in_3); 

 

 

 



 

N-Output Primitives  

The buf and not  primitives have any number of outputs and one input 

 

The output are in first terminals listed. 

The last terminal is the single input. 

 

Examples 

 

// one output Buffer gate 

buf u_buf (out,in); 

 

// four output Buffer gate 

buf u_buf (out_0, out_1, out_2, out_3, in); 

 

// three output Invertor gate 

not u_not (out_a, out_b, out_c, in); 



 

Verilog Operators 

 

Arithmetic Operators 

Binary: +, -, *, /, % (the modulus operator) 

Unary: +, - 

Integer division truncates any fractional part 

The result of a modulus operation takes the sign of the first operand 

If any operand bit value is the unknown value x, then the entire result 

value is x 

Register data types are used as unsigned values 

o  negative numbers are stored in two’s complement form 

 

 

 

Relational Operators 

 

a<b  a less than b a>b

 a greater than b 

a<=b  a less than or equal to b a>=b 

 a greater than or equal to b 

 

The result is a scalar value: 

0 if the relation is false 

1 if the relation is true 

x if any of the operands has unknown x bits 

Note: If a value is x or z, then the result of that test is false 

 

Equality Operators 

a === b a equal to b, including x and z 

a !== b a not equal to b, including x and z 

a == b a equal to b, resulting may be unknown 

a != b a not equal to b, result may be unknown 

 

 



Logical Operators 

 

!  logic negation 

&& logical and 

||  logical or 

 

Expressions connected by && and || are evaluated from left to right 

Evaluation stops as soon as the result is known 

The result is a scalar value: 

• 0 if the relation is false 

• 1 if the relation is true 

• x if any of the operands has unknown x bits 

 

 

Bit-wise Operators 

 

~  negation 

& and 

|  inclusive or 

^ exclusive or 

^~ or ~^ exclusive nor (equivalence) 

 

Computations include unknown bits, in the following way: 

• ~x = x 

• 0&x = 0 

• 1&x = x&x = x 

• 1|x = 1 

• 0|x = x|x = x 

• 0^x = 1^x = x^x = x 

• 0^~x = 1^~x = x^~x = x 

When operands are of unequal bit length, the shorter operand is zero-filled in the most 

significant bit positions 

 

 

 



Reduction Operators 

 

 

&  and 
~&  nand 

| or 
~| nor 
^  xor 

^~ or ~^ xnor 
 

Reduction operators are unary. 

 

 

 

Shift Operators 

 

  <<    left shift   

  >>    right shift   

 

 

The left operand is shifted by the number of bit positions given by the right operand. 

The vacated bit positions are filled with zeroes. 

 

 

Concatenation Operator 

 

Concatenations are expressed using the brace characters { and }, with commas 

separating the expressions within 

Examples 

{a, b[3:0], c, 4'b1001} // if a and c are 8-bit numbers, the results has 24 bits 

Unsized constant numbers are not allowed in concatenations 

Repetition multipliers that must be constants can be used: 

{3{a}} // this is equivalent to {a, a, a} Nested  

 

 

 

 



 

concatenations are possible: 

 {b, {3{c, d}}} // this is equivalent to {b, c, d, c, d, c, d} 

 

 

 

Conditional Operator 

 

The conditional operator has the following C-like format: 

          cond_expr ? true_expr : false_expr 

The true_expr or the false_expr is evaluated and used as a result depending on 

whether cond_expr evaluates to true or false 

 

Example 

out = (enable) ? data : 8'bz; // Tri state buffer 

 

Operator precedence 

 

 

Operator  Symbols 

Unary, Multiply, Divide,  

Modulus  
+ - ! ~ * / % 

Add, Subtract, Shift.  +, - , <<, >> 

Relation, Equality <,>,<=,>=,==,!=,===,!=== 

Reduction  &, !&,^,^~,|,~|  

Logic  &&, ||  

Conditional  ?: 



 

Behavioral Modeling 

 

Verilog HDL Abstraction Levels 

Behavioral Models: Higher level of modeling where behavior of logic is modeled. 

RTL Models: Logic is modeled at register level 

Structural Models: Logic is modeled at both register level and gate level. 

 

Procedural Blocks 

Verilog behavioral code is inside procedures blocks, but there is a exception, some 

behavioral code also exist  outside procedures blocks. We can see this in detail as 

we make progress. 

 

There are two types of procedural blocks in Verilog 

 

initial : initial blocks execute only once at time zero (start execution at time 

zero). 

always : always blocks loop to execute over and over again, in other words as name 

means, it executes always. 

 

 

Example : initial and always 

 

 

initial  always @ (posedge clk) 

begin  begin : D_FF 

clk = 0; if (reset == 1) 

reset = 0;  q <= 0; 

enable = 0; else 

data = 0; q <=d; 

end  end 

 

 

 

 



Procedural Assignment Statements 

Procedural assignment statements assign values to registers and can not assign 

values to nets ( wire data types) 

You can assign to the register (reg data type) the value of a net 

(wire), constant, another register, or a specific value. 

 

 

 

Example : Bad and Good procedural assignment 

 

 

wire clk, reset; reg clk, reset; 

reg enable, data;  reg enable, data; 

 

initial  initial 

begin   begin 

clk = 0; clk = 0; 

reset = 0; reset = 0; 

enable = 0; enable = 0; 

data = 0; data = 0; 

end  end 

 

 

Procedural Assignment Groups 

If a procedure block contains more then one statement, those statements must be 

enclosed within 

 

Sequential begin - end block 

Parallel fork - join block 

 

When using begin-end, we can give name to that group. This is called named 

blocks. 

 

 

 



 

Example : "begin-end" and "fork - join" 

 

initial  initial 

begin   fork  

#1 clk = 0; #1 clk = 0; 

#5 reset = 0; #5 reset = 0; 

#5 enable = 0; #5 enable = 0; 

#2 data = 0; #2 data = 0; 

end  join 

Begin : clk gets 0 after 1 time unit, reset gets 0 after 6 time units, enable after 11 time 

units, data after 13 units. All the statements are executed in sequentially. 

Fork : clk gets value after 1 time unit, reset after 5 time units, enable after 

5 time units, data after 2 time units. All the statements are executed in 

parallel. 

 

 

The Conditional Statement if-else 

The if - else statement controls the execution of other statements, In 

programming language like c, if - else controls the flow of program. 

 

 

if (condition) 

statements; 

 

 

if (condition) 

statements; 

else 

statements; 

 

 

 

 

 



if (condition) 

statements; 

else if (condition) 

statements; 

................ 

................ 

else 

statements; 

 

Example 

 

// Simple if statement 

if (enable) 

q <= d; 

// One else statement 

if (reset == 1'b1) 

q <= 0;; 

else 

q <= d; 

// Nested if-else-if statements 

if (reset == 1'b0) 

counter <= 4'b0000; 

else if (enable == 1'b1 && up_en == 1'b1) 

counter <= counter + 1'b1; 

else if (enable == 1'b1 && down_en == 1'b1); 

counter <= counter - 1'b0; 

else 

counter <= counter; // Redundant code 

 

 

 

 

 

 



The Case Statement 

The case statement compares a expression to a series of cases and executes the 

statement or statement group associated with the first matching case 

Case statement supports single or multiple statements. Group multiple 

statements using begin and end keywords. 

 

 

case (<expression>) 

 

<case1> : <statement> 

<case2> : <statement> 

..... 

default : <statement> 

endcase 

 

 

Example 

 

 
module mux (a,b,c,d,sel,y); 
 input a, b, c, d; 
 input [1:0] sel; 
 output y; 
 reg y; 
 always @ (a or b or c or d or sel) 
 case (sel) 
  0 : y = a; 
  1 : y = b; 
  2 : y = c; 
  3 : y = d; 
  default : $display("Error in SEL"); 
 endcase 
  
endmodule 
 

 

 

 

 

 

 



The Verilog case statement does an identity comparison (like the === operator), 

One can use the case statement to check for logic x and z values 

 

Example with z and x 

 

 

case(enable) 

1'bz : $display ("enable is floating"); 

1'bx : $display ("enable is unknown"); 

default : $display ("enable is %b",enable); 

endcase 

 

The casez and casex statement 

Special versions of the case statement allow the x ad z logic values to be used as 

"don't care" 

 

casez uses the z as the don't care instead of as a logic value casex uses either the x 

or the z as don't care instead of as logic values 

 

 

 

Example casez 

 

 

casez(opcode) 

4'b1zzz : out = a; // don't care about lower 3 bits 

4'b01??: out = b; //the ? is same as z in a number 

4'b001?: out = c; 

default : out = $display ("Error xxxx does matches 0000"); 

endcase 

 

 

 

 

 



 

Looping Statements 

Looping statements appear inside a procedural blocks only, Verilog has four looping 

statements like any other programming language. 

 

forever 

repeat 

while 

for 

 

 

The forever statement 

The forever loop executes continually, the loop never ends 

 

syntax : forever <statement> 

 

Example : Free running clock generator 

 

initial begin 

clk = 0; 

forever #5 clk = !clk; 

end 

 

 

The repeat statement 

The repeat loop executes statement fixed <number> of times 

 

syntax : repeat (<number>) <statement> 

 

 

 

 

 

 

 



Example: 

 

if (opcode == 10) //perform rotate 

repeat (8) begin 

temp = data[7]; 

data = {data<<1,temp}; 

end 

 

 

 

The while loop statement 

 

 

The while loop executes as long as an <expression> evaluates as true 

 

syntax : while (<expression>) <statement> 

 

Example : 

 

loc = 0; 

if (data = 0) // example of a 1 detect shift value 

loc = 32; 

else while (data[0] == 0); //find the first set bit 

begin 

loc = loc + 1; 

data = data << 1; 

end 

 

 

 

 

 

 

 

 



The for loop statement 

The for loop is same as the for loop used in any other programming language. 

Executes an <initial assignment> once at the start of the loop. Executes the loop as 

long as an <expression> evaluates as true. Executes a <step assignment> at the end of 

each pass through the loop. 

 

syntax : for (<initial assignment>; <expression>, <step assignment>) 

<statement> 

 

Example : 

 

for (i=0;i<=63;i=i+1) 

ram[i] <= 0; // Inialize the RAM with 0 

 

 

 

Continuous Assignment Statements 

Continuous assignment statements drives nets (wire data type). They represent 

structural connections. 

 

They are used for modeling Tri-State buffers. 

They can be used for modeling combinational logic. 

They are outside the procedural blocks (always and initial blocks). 

The continuous assign overrides and procedural assignments. 

The left-hand side of a continuous assignment must be net data 

type. 

 

syntax : assign (strength, strength) # delay net = expression; 



Example: 1-bit Adder 

 

 

module adder (a,b,sum,carry); 
input a, b; 
output sum, carry; 
assign #5 {carry,sum} = a+b; 

endmodule 
 

Example: Tri-State Buffer  

 

 

module tri_buf(a,b,enable); 

input a, enable; 

output b; 

assign b = (enable) ? a : 1'bz; 

endmodule 

 

Propagation Delay 

Continuous Assignments may have a delay specified, Only one delay for all 

transitions may be specified. A minimum:typical:maximum delay range may be 

specified. 

 

Example : Tri-State Buffer  

 

module tri_buf(a,b,enable); 

input a, enable; 

output b; 

assign #(1:2:3) b = (enable) ? a : 1'bz; 

endmodule 

 

 

 

 

 

 



 

Procedural Block Control 

Procedural blocks become active at simulation time zero, Use level sensitive 

even controls to control the execution of a procedure. 

 

always @ (d or enable)  
if  (enable) 
 q = d; 

 

An event sensitive delay at the begining of a procedure, any change in either d or 

enable satisfies the even control and allows the execution of the statements in the 

procedure. The procedure is sensitive to any change in d or enable. 

 

Combo Logic using Procedural Coding 

To model combinational logic, a procedure block must be sensitive to any change on 

the input. 

 

Example :  1-bit Adder 

 

 

module adder (a,b,sum,carry); 
input a, b; 
output sum, carry; 
reg sum, carry; 

always @ (a or b) 

begin 

{carry} = a + b; 

endmodule 
 

The statements within the procedural block work with entire vectors at a time. 

 

 

 

 

 

 

 



 

Example :  4-bit Adder 

 

 

module adder (a,b,sum,carry); 
input [3:0] a, b; 
output [3:0] sum; 

output carry; 

reg [3:0] sum; 

reg carry; 

always @ (a or b) 

begin 

endmodule 
 

A procedure can't trigger itself 

 

 

Once cannot trigger the block with the variable that block assigns value or 

drive's. 

 

always @ (clk)  
 #5 clk = !clk; 

 

 

Procedural Block Concurrency 

 

If we have multiple always blocks inside one module, then all the blocks ( i.e. all the 

always blocks) will start executing at time 0 and will continue to execute 

concurrently. Sometimes this is leads to race condition, if coding is not done proper. 

module procedure (a,b,c,d);  
 input a,b; 
 output c,d; 
  
 always @ ( c) 
  a = c; 
  
 always @ (d or a) 
  b = a &d; 
 
endmodule 

 



Procedural Timing Control  

 

 

Procedural blocks and  timing controls. 

Delays controls. 

Edge-Sensitive Event controls 

Level-Sensitive Event controls-Wait statements 

Named Events 

 

 

 

Delay Controls 

Delays the execution of a procedural statement by specific simulation time. 

 

#<time> <statement>; 

 

Example : 

 

 

module clk_gen (clk,reset);  
 output clk,reset; 
 reg clk, reset; 
 initial begin 
  clk = 0; 
  reset = 0; 
  #2 reset = 1; 
  #5 reset = 0; 
 end 
 always 
 #1 clk = !clk; 
endmodule 

 

 

 

 



Waveform 

 

 

 

 

Edge sensitive Event Controls 

Delays execution of the next statement until the specified transition on a signal. 

 

@ (<posedge>|<negedge> signal) <statement>; 

 

 

 

 

 

Example : 

 

 

always @ (posedge enable)  
begin 
 repeat (5) // Wait for 5 clock cycles 
  @ (posedge clk) ; 
 trigger = 1; 
end 

 

 

 

 



Waveform 

 

 

 

 

 

 

 

Level-Sensitive Even Controls ( Wait statements ) 

Delays execution of the next statement until the <expression> evaluates as true 

 

syntax: wait (<expression>) <statement>; 

 

Example : 

 

 

while (mem_read == 1'b1) begin  
 wait (data_ready) data = data_bus; 
 read_ack = 1; 
end 

 

Intra-Assignment Timing Controls 

Intra-assignment controls evaluate the right side expression right always 

and assigns the result after the delay or event control. 

 

In non-intra-assignment controls (delay or event control on the left side) 

right side expression evaluated after delay or event control. 

 



Example : 

 

initial begin  
 a = 1; 
 b = 0; 
 a = #10 0; 
 b = a; 
end 

 

Waveform 

 

 

 

 

Modeling Combinational Logic with Continuous Assignments 

Whenever any signal changes on the right hand side, the entire right-hand side is re-evaluated 

and the result is assigned to the left hand side 

 

Example : Tri-state buffer  

 

 

module tri_buf (data_in,data_out, pad,enable);  
 input data_in, enable; 
 output data_out; 
 inout pad; 
 wire pad, data_out; 
 assign pad = (enable) ? data_in : 1'bz; 
 assign data_out = pad; 
endmodule 
  

 

 



Waveform 

 

 

 

 

Example : 2:1 Mux  

 

 

module mux2x1 (data_in_0,data_in_1, sel, data_out);  
 input data_in_0, data_in_1; 
 output data_out; 
 input  sel; 
 wire data_out; 
 assign data_out = (sel) ? data_in_1 : data_in_0; 
endmodule 

 

 

 

 

Waveform 

 

 

 

 

 

 



Task and Function 

 

Task 

Tasks are used in all programming languages, generally known as Procedures or sub 

routines. Many lines of code are enclosed in task....end task brackets. Data is passed to the 

task, the processing done, and the result returned to a specified value. They have to be 

specifically called, with data in and outs, rather than just “wired in” to the general netlist. 

Included in the main body of code they can be called many times, reducing code repetition. 

 

Task are defined in the module in which they are used. it is possible to define task in 

separate file and use compile directive 'include to include the task in the file which 

instantiates the task. 

Task can include timing delays, like posedge, negedge, # delay. task can have any 

number of inputs and outputs. 

The variables declared within the task are local to that task. The 

order of declaration within the task defines how the variables passed to the task by the 

caller are used. 

Task can take drive and source global variables, when no local variables are 

used. When local variables are used, it basically assigned output only at the end of task 

execution. Task can call another task or function. 

 

Task can be used for modeling both combinational and sequential logic. 

A task must be specifically called with a statement, it cannot be used within an 

expression as a function can. 

 

Syntax 

Task begins with keyword task and end's with keyword endtask input and output are 

declared after the keyword task. 

Local variables are declared after input and output declaration. 

 



 

Example : Simple Task 

 

 

task convert;  
 input [7:0] temp_in; 
 output [7:0] temp_out; 
 begin 
  temp_out = (9/5) *( temp_in + 32) 
 end  
endtask 

 

Example : Task using Global Variables 

 

task convert;  
 begin 
  temp_out = (9/5) *(  temp_in + 32); 
 end 
endtask 

 

Calling a Task 

Lets assume that task in example 1 is stored in a file called mytask.v. Advantage of coding 

task in separate file is that, it can be used in multiple module's. 

 

module temp_cal (temp_a, temp_b,  
temp_c, temp_d); 

 input [7:0] temp_a, temp_c; 
 output [7:0] temp_b, temp_d; 
 reg [7:0] temp_b, temp_d; 
 `include "mytask.v" 
  
 always @ (temp_a) 
  convert (temp_a, temp_b); 
  
 always @ (temp_c) 
  convert (temp_c, temp_d); 
  
endmodule 

 

 



Function 

A Verilog HDL function is same as task, with very little difference, like function 

cannot drive more then one output, can not contain delays. 

 

Function is defined in the module in which they are used. it is possible to define 

function in separate file and use compile directive. Include to include the function in the file 

which instantiates the task. 

Function cannot  include timing delays, like posedge, negedge, # delay. Which means 

that function should be executed in "zero" time delay. 

Function can have any number of inputs and but only one output.The variables declared 

within the function are local to that function. The order of declaration within the function 

defines how the variables passed to the function by the caller are used. 

Function can take drive and source global variables, when no local variables are 

used. When local variables are used, it basically assigned output only at the end of function 

execution. Function can be used for modeling combinational logic. Function can call other 

functions, but cannot call task. 

 

 

Syntax 

Function begins with keyword function and end's with keyword endfunction 

input  are declared after the keyword function. Ouputs are delcared. 

 

 

Example : Simple Function 

 

 

function myfunction;  
 input a, b, c, d; 
 begin 
  myfunction = ((a+b) + (c-d)); 
 end 
endfunction 

 



 

Calling a Function 

Lets assume that function in  above example  is stored in a file called myfunction.v. Advantage 

of coding function in separate file is that, it can be used in multiple module's. 

 

module func_test(a, b, c, d, e, f);  
 
 input a, b, c, d, e ; 
 output f; 
 wire f; 
 `include "myfunction.v" 
  
 assign f =  (myfunction (a,b,c,d)) ? e :0; 
  
endmodule 

 

 

 


