
MSX2 TECHNICAL HANDBOOK

-

Edited by: ASCII Systems Division
Published by: ASCII Coprporation - JAPAN
First edition: March 1987

M

Text files typed by: Nestor Soriano (Konami Man) - SPAIN
March 1997

M

Changes from the original:

C

- In description of REM statement, [<comment>] field has been added.

-

- In description of SGN function, "Examines the sign and returns..." has been
substitued for "Examines the sign of <expression> and returns..."

s

- Descriptions for MSX DISK-BASIC statements DSKI$ and DSKO$ have been added.

-

- Descriptions for new commands on MSX DISK-BASIC version 2 have been added.

-

- In Table 2.20 (List of intermediate codes), the code "FC" is shown as
assigned to "\" as it is actually, and not to "$" as in the original text.

a

- In List 2.3 (Changing error handling routine), the third line of "command
initialize", which is "LD HL,CMDHDAT" in the original, is corrected and
substitued by "LD HL,HDAT".

s

- In section 5, "Notes on Software Development", subsection "BASIC version
number", the part "and so on" has been added in point 1.

n

- In error code list, description of errors 72 to 75 have been added.

-

-=-

--

CHAPTER 2 - BASIC

C

The BASIC of MSX2 has been upgraded: the new version is called MSX BASIC
version 2.0. And, when using a disk system, MSX DISK-BASIC can be used, which
consists of MSX BASIC version 2.0 and additional instructions for disk
operations. The following sections describe these two versions of BASIC.

oo

1. LIST OF INSTRUCTIONS

1

First of all, the sentence and function for each instruction of BASIC are
listed. Each instruction is listed in the format shown in Figure 2.1.

ll

 Figure 2.1 Instruction list format

| Instruction format |
| - |
| Instruction type | Function or action of instruction |

-

-

(a) Syntax of instructions

(

If there is an "*" followed by a keyword, it indicates that the syntax or
function of the instruction has just been modified after version 1.0, or that
the instruction has been added to version 2.0.

t

Descriptions of sentences use the following notational conventions.

D

* [item] the item is optional
* [, item ...] more items having the same form may appear
* [item1 | item2] choose item1 or item2

*

And <filename>, which is used in the sentence, is a string specifying I/O
devices or files for input/output in the format listed below. <Filename> for
a cassette files is a string consisting of any combination of up to 6
characters. <filename> for disk or RAM disk is a string, whose form is
"<filename (up to 8 characters)> + <filename extension (up to 3
characters)>". <drive> is one of characters from A to H (depending on the
number of drives connected).

n

"CAS: <filename>" Cassette file
"MEM: <filename>" RAM disk
"CRT:" Text screen
"GRP:" Graphic screen
"LPT:" Printer
"<drive>:<filename>" .. Disk file

""

(b) Instruction type

(

There are four types of instructions:

T

* Function Returns a certain value depending on the
given parameter(s).

* System variable Variables available from BASIC. Generally,
assignment is allowed.

* Statement Takes a certain action.
* Command Gives an instruction to BASIC interpreter

itself.

ii

(c) Function or action of instruction

(

The following list gives a brief description of the action for each
instruction. More detailed descriptions about instructions which have been
modified or added at version 2.0 are given in section 2.

mm

1.1 Instructions of MSX BASIC version 2.0

11

--- A ---

-

ABS (<expression>)
Function Returns absolute value of <expression>.

R

ASC (<string>)

Function Returns the code of the first character of <string>.

R

ATN (<expression>)
Function Returns arc tangent of <expression> in radians.

R

AUTO [<linenumber>[, <increment>]]
Command Produces line numbers automatically.

PP

--- B ---

-

* BASE (<expression>)
System variable Contains the table address of the screen assigned

on VRAM.

o

BEEP
Statement Produces beep to the audio terminal.

P

BIN$ (<expression>)
Function Converts the value of <expression> to a string of

binary expression, then returns its result.

b

BLOAD "<filename>"[,R[,offset]]
Command Loads an assembly language program.

L

BSAVE "<filename>",<start address>,<end address>[,<execution address>]
Command Saves an assembly language program.

SS

--- C ---

-

CALL <extended statement name>[(<argument>[,<argument>...])]
Statement Calls the extended statements by inserting

various cartridges.

v

* CALL MEMINI [(<upper limitation of RAM disk>)]
Statement Specifies the upper limit of memory for Ram disk.

S

* CALL MFILES
Statement Lists file names in RAM disk.

L

* CALL MKILL ("<filename>")
Statement Deletes a file in RAM disk.

D

* CALL MNAME ("<old filename>" AS "<new filename>")
Statement Renames a file in RAM disk.

R

CDBL (<expression>)
Function Converts the value of <expression> to a double

precission real value and returns its result.

p

CHR$ (<expression>) Returns a character which has the code of
Function <expression> value.

<

CINT (<expression>)
Function Converts the value of <expression> to an integer

value and returns its result.

v

* CIRCLE {(X,Y) | STEP(X,Y)},<radius>[, <colour>[, <start angle>[, <end
 angle>[, <proportion>]]]]

Statement Draws a circle whose center is at (X,Y) and whose
size depends on <radius>.

s

CLEAR [<size of string area>[, <upper limitation of memory>]]
Statement Initialises variables and sets the size of

memory area.

m

CLOAD ["<filename>"]
Command Loads a program from cassette.

L

CLOAD? ["<filename>"]
Command Compares a program on cassette with the one in

memory.

m

CLOSE [[#]<filenumber>[, [#]<filenumber>...]]
Command Closes a file represented by <filenumber>.

C

CLS
Statement Clears screen.

C

* COLOR [<foreground colour>[, <background colour>[, <border colour>]]]
Statement Specifies the colours of each part of the screen.

S

* COLOR [=NEW]
Statement Initialises the palette.

I

* COLOR = (<palette number>, <red brightness>, <green brightness>, <blue
 brightness>)

Statement Sets the palette colour.

S

* COLOR = RESTORE
Statement Puts the contents of the colour palette storage table

into the palette register.

i

* COLOR SPRITE (<sprite plane number>)=<colour>
Statement Sets the colour to the sprite of <sprite plane

number> to the specified colour.

n

* COLOR SPRITE$ (<sprite plane number>)=<string expression>
Statement Sets the colour of each horizontal line of the

sprite using <string expression>.

s

CONT
Command Resumes the execution of the program which has

been stopped.

b

* COPY <source> TO <destination>
Statement Transfers the screen data among the screen, array,

and disk file.

a

* COPY SCREEN [<mode>]
Statement Writes colour bus data into VRAM (optional).

W

COS (<expression>)
Function Returns the cosine value of <expression (in

radians)>.

r

CSAVE "<filename>"[, <baud rate>]
Command Saves a program to cassette.

S

CSGN (<expression>)
Function Converts the value of <expression> to a single

precision real value, and returns its result.

p

CSRLIN
System variable Contains the vertical screen location of the cursor.

No assignment is allowed.

NN

--- D ---

-

DATA <constant>[, <constant>...]
Statement Prepares data to be read by READ statement.

P

DEF FN <name> [(<argument>[, <argument>...])]=<function-definitive
 expression>
Statement Defines a user-defined function.

D

DEFINT <character range>[, <character range>...]
Statement Declares the specified variable(s) as integer type.

D

DEFSNG <character range>[, <character range>...]
Statement Declares the specified variable(s) as single

precision real type.

p

DEFDBL <character range>[, <character range>...]
Statement Declares the specified variable(s) as double

precision real type.

p

DEFSTR <character range>[, <character range>...]
Statement Declares the specified variable(s) as character type.

D

DEF USR [<number>]=<start address>
Statement Defines the starting address for the execution of

assembly language routine, called by USR function.

a

DELETE {[<start linenumber>-<end linenumber>] | <linenumber> | -<end
 linenumber>}
Command Deletes the specified portion of the program.

D

DIM <variable name> (<maximum subscript value>[, <maximum subscript
 value>...])
Statement Defines an array variable and allocates it into

memory.

m

DRAW <string expression>
Statement Draws a line or lines on the screen according to

<string expression (DRAW macro)>.

<<

--- E ---

-

END
Statement Ens the program, close all files, and returns to

the command level.

t

EOF (<filenumber>)
Function Checks if the file is finished and returns -1 if at

the end of file.

t

ERASE <array variable name>[, <array variable name>...]
Statement Deletes the array variable(s).

D

ERL
System variable Contains the error code for the preceding error.

No assignment is allowed.

N

ERR
System variable Contains the line number of the previous error.

No assignment is allowed.

N

ERROR <error code>
Statement Puts the program into the error condition.

P

EXP (<expression>)
Function Returns the exponent (power) of the natural

exponential form of <expression>.

ee

--- F ---

-

FIX (<expression>)
Function Returns the value of <expression>, without any

decimal fractions.

d

FOR <variable name> = <initial value> TO <end value> [STEP <increment>]
Statement Repeats the execution from FOR statement to NEXT

statement for the specified times.

s

FRE ({<expression> | <string expression>})
Function Returns the size of unused user's area or unused

character area.

cc

--- G ---

-

* GET DATE <string variable name>[, A]
Statement Assigns date into a string variable.

A

* GET TIME <string variable name>[, A]
Statement Assigns time into a string variable.

A

GOSUB <linenumber>
Statement Calls the subroutine at <linenumber>.

C

GOTO <linenumber>
Statement Jumps to <linenumber>.

JJ

--- H ---

-

HEX$ (<expression>)

Function Converts the value of <expression> to a string of
hexadecimal expression, then returns its result.

hh

--- I ---

-

IF <condition> THEN {<statement> | <linenumber>} [ELSE {<statement> |
 <linenumber>}]
Statement Judges the condition. If <condition> is not zero,

it is true.

i

IF <condition> GOTO <linenumber> [ELSE {<statement> | <linenumber>}]
Statement Judges the condition. If <condition> is not zero,

it is true.

i

INKEY$
Function Returns a character when a key is being pressed,

or when not, returns null string.

o

INP (<port number>)
Function Reads the port specified by <port number> and

returns its result.

r

INPUT ["<prompt statement>";]<variable name>[, <variable name>...]
Statement Assigns data input from keyboard into the specified

variable(s).

v

INPUT #<filenumber>, <variable name>[, <variable name>...]
Statement Reads data from the file and assigns the data into

the specified variable(s).

t

INPUT$ (<number of characters>[, [#]<filenumber>])
Function Reads the specified size of string from the keyboard

or file.

o

INSTR ([<expression>,]<string expression 1>,<string expression 2>)
Function Searches <string expression 2> from the left of

<string expression 1>, and returns its location if
found, otherwise zero. <Expression> is the character
location to start searching.

l

INT (<expression>)
Function Returns the largest integer less than <expression>.

R

INTERVAL {ON | OFF | STOP}
Statement Allows, suppresses, or suspends the timer interrupt.

AA

--- K ---

-

KEY <key number>,<string>
Command Redefines a function key.

R

KEY LIST
Command Displays the contents of function keys.

D

KEY (<key number>){ON | OFF | STOP}
Statement Allows, supresses, os suspends the function key

interrupt.

i

KEY {ON | OFF}
Statement Specifies whethter to display the contents of

function keys at the bottom of the screen.

f

--- L ---

-

LEFT$ (<string expression>,<expression>)
function Gets <expression> characters from the left of

<string expression>.

<

LEN (<string expression>)
Function Returns the number of characters of <string

expression>.

e

[LET] <variable name> = <expression>
Statement Assigns the value of <expression> to the variable.

A

* LINE [{(X1,Y1) | STEP(X1,Y1)}] - {(X2,Y2) | STEP(X2,Y2)}[, <colour>
 [, {B|BF}[, <logical operation>]]]
Statement Draws a line or a rectangle on the screen.

D

LINE INPUT ["<prompt statement>";]<string variable name>
Statement Assigns a whole line of string data from the

keyboard into the string variable.

k

LINE INPUT# <filenumber>, <string variable name>
Statement Reads data in lines from the file and assigns the

data into the string variable.

d

LIST [[<linenumber>] - [<linenumber>]]
Command Displays the program in memory on the screen.

D

LLIST [[<linenumber>] - [<linenumber>]]
Command Sends the program in memory to the printer.

S

LOAD "<filename>" [,R]
Command Loads a program saved in ASCII format.

L

* LOCATE [<X-coordinate>[, <Y-coordinate>[, <cursor switch>]]]
Statement Locates the cursor on the text screen.

L

LOG (<expression>)
Function Returns the natural logarithm of <expression>.

R

LPOS (<expression>)
System variable Contains the location of the printer head.

No assignment is allowed.

N

LPRINT [<expression>[{; | ,}<express]ion>...]
Statement Outputs characters or numerical values to the

printer.

p

LPRINT USING <form>; <expression>[{; | ,}<expression>...]
Statement Outputs characters or numerical values through the

printer according to <form>.

p

p

--- M ---

-

MAXFILES = <number of files>
Statement Sets the number of files to be opened.

S

MERGE "<filename>"
Command Merges the program in memory with the program saved

in ASCII format (in external storage device).

i

MID$ (<string expression>, <expression 1>[, <expression 2>])
Function Returns <expression 2> character(s) starting from

the <expression 1>th position of <string expression>.

t

MID$ (<string variable name>, <expression 1>[, <expression 2>])
 = <string expression>
Statement Defines <string expression> using <expression 2>

character(s) from the <expression 1>th position
of <string variable name>.

o

MOTOR [{ON | OFF}]
Statement Turns the motor of cassette ON and OFF.

TT

--- N ---

-

NEW
Command Deletes the program in meory and clears variables.

D

NEXT [<variable name>[, <variable name>...]]
Statement Indicates the end of FOR statement.

II

--- O ---

-

OCT$ (<expression>)
Function Converts the value of <expression> to the string of

octal expression and returns its result.

o

ON ERROR GOTO <linenumber>
Statement Defines the line to begin the error handling routine.

D

ON <expression> GOSUB <linenumber>[, <linenumber>...]
Statement Executes the subroutine at <linenumber> according to

<expression>.

<

ON <expression> GOTO <linenumber>[, <linenumber>...]
Statement Jumps to <linenumber> according to <expression>.

J

ON INTERVAL = <time> GOSUB <linenumber>
Statement Defines the timer interrupt interval and the line to

begin the interrupt handling routine.

b

ON KEY GOSUB <linenumber>[, <linenumber>...]
Statament Defines the line to begin the function key interrupt

handling routine.

h

ON SPRITE GOSUB <linenumber>

Statement Defines the line to begin the piled-sprite interrupt
handling routine.

h

ON STOP GOSUB <linenumber>
Statament Defines the line to begin the CTRL+STOP key interrupt

handling routine.

h

ON STRING GOSUB <linenumber>[, <linenumber>...]
Statement Defines the line to begin the trigger button

interrupt handling routine.

i

OPEN "<filename>" [FOR <mode>] AS #<filenumber>
Statement Opens the file in the specified mode.

O

OUT <port number>,<expression>
Statement Sends data to the output port specified by <port

number>.

nn

--- P ---

-

* PAD (<expression>)
Function Examines the state of tablet, mouse, light pen, or

track ball specified by <expression>, then returns
its result.

i

* PAINT {(X,Y) | STEP(X,Y)}[, <colour>[, <border colour>]]
Statement Paints the area surrounded by specified <border

colour> using <colour>.

c

PDL (<paddle number>)
Function Returns the state of the paddle which has the

specified number.

s

PEEK (<address>)
Function Returns the contents of one byte of the memory

specified by <address>.

s

PLAY <string expression 1>[, <string expression 2>[, <string expression 3>]]
Statement Plays the music by <string expression (music macro)>.

P

PLAY (<voice channel>)
Function Examines whethter the music is being played and

returns its result (if in play, -1 is returned).

r

POINT (X,Y)
Function Returns the colour of the dot specified by

coordinate (X,Y).

c

POKE <address>,<data>
Statement Writes one byte of <data> into the memory specified

by <address>.

b

POS (<expression>)
System variable Contains the horizontal location of the cursor on the

text screen. No assignment is allowed.

t

* PRESET {(X,Y) | STEP(X,Y)}[, <colour>[, <logical operation>]]

Statement Erases the dot specified by coordinate (X,Y) on the
graphic screen

g

PRINT [<expression [{; | ,}<expression>...]
Statement Displays characters of numbers on the screen.

D

PRINT USING <form>; <expression>[{; | ,}<expression>...]
Statement Displays characters or numbers on the screen

according to <form>.

a

PRINT #<filenumber>, [<expression>[{; | ,}<expression>...]]
Statement Writes characters or numbers to the file specified

by <file number>.

b

PRINT #<filenumber>, USING <form>; <expression>[{; | ,}<expression>...]
Statement Writes characters or numbers to the file specified

by <file number> according to <form>.

b

PSET {(X,Y) | STEP(X,Y)}[, <colour>[, <logical operation>]]
Statement Draws the dot in the coordinate specified by (X,Y)

on the graphic screen.

o

* PUT KANJI [(X,Y)],<JIS kanji code>[, <colour>[, <logical operation>
 [, <mode>]]]

Statement Displays the kanji on the screen (KANJI ROM is
required).

r

* PUT SPRITE <sprite plane number>[, {(X,Y) | STEP(X,Y)}[, <colour>[, <sprite
 pattern number>]]]

Statement Displays the sprite pattern.

DD

--- R ---

-

READ <variable name>[, <variable name>...]
Statement Reads data from DATA statement(s) and assigns the

data to the variable(s).

d

REM [<comment>]
Statement Puts the comment in the program.

P

RENUM [<new linenumber>[, <old linenumber>[, <increment>]]]
Command Renumbers the line numbers.

R

RESTORE [<linenumber>]
Statement Specifies the line to begin reading DATA by READ

statement.

s

RESUME {[0] | NEXT | <linenumber>}
Statement Ends the error recovery routine and resumes execution

of the program.

o

RETURN [<linenumber>]
Statement Returns from a subroutine.

R

RIGHT$ (<string expression>, <expression>)
Function Gets <expression> characters from the right of

<string expression>.

<

RND [(<expression>)]
Function Returns a random number between 0 and 1.

R

RUN [<linenumber>]
Command Executes the program from <linenumber>.

EE

--- S ---

-

SAVE "<filename>"
Command Saves the program in ASCII format.

S

* SCREEN <screen mode>[, <sprite size>[, <key click switch>[, <cassette baud
 rate>[, <printer option>[, <interlace mode>]]]]]

Statement Sets the screen mode and so on.

S

* SET ADJUST (<X-coordinate offset>, <Y-coordinate offset>)
statement Changes the display location of the screen. Ranges

from -7 to 8.

f

* SET BEEP <timbre>, <volume>
Statement Selects the BEEP tone. Ranges from 1 to 4.

S

* SET DATE <strign expression>[, A]
Statement Sets a date. "A" is the specification of alarm.

S

* SET PAGE <display page>, <active page>
Statement Specifies the page to display and the page to read

and write data to.

a

* SET PASSWORD <string expression>
Statement Sets a password.

S

* SET PROMPT <string expression>
Statement Sets a prompt (up to 8 characters).

S

* SET SCREEN
Statement Reserves the parameters of the current settings of

SCREEN statement.

S

* SET TIME <string expression>[, A]
Statement Sets time. "A" is the alarm specification.

S

* SET VIDEO [<mode>[, <Ym>[, <CB>[, <sync>[, <voice>[, <video input>[, <AV
 control>]]]]]]]

Statement Sets superimposing and other modes (optional).

S

SGN (<expression>)
Function Examines the sign of <expression> and returns its

result (positive=1, zero=0, negative=-1).

r

SIN (<expression>)
Function Returns the sine of <expression> in radians.

R

SOUND <register number>,<data>
Statement Writes data to the register of PSG.

W

SPACE$ (<expression>)
Function Returns a string containing <expression> spaces.

R

SPC (<expression>)
Function Produces <expression> spaces; used in the

instructions of PRINT family.

i

SPRITE {ON | OFF | STOP}
Statement Allows, supresses, or suspends the piled-sprite

interrupt.

i

SPRITE$ (<sprite pattern number>)
System variable Contains the sprite pattern.

C

SQR (<expression>)
Function Returns the square root of <expression>.

R

STICK (<joystick number>)
Function Examines the direction of the joystick and returns

its result.

i

STOP
Statement Stops the execution of the program.

S

STRIG (<joystick number>)
Function Examines the state of the trigger button and returns

its result.

i

STRIG (<joystick number>) {ON | OFF | STOP}
Statement Allows, supresses, or suspends interrupts from the

trigger button.

t

STR$ (<expression>)
Function Converts the value of <expression> to a string

decimal expression and returns its result.

d

STRING$ (<expression 1>, {<string expression> | <expression 2>}
Function Converts the leading character of <string expression>

or the character containing the code <expression 2>
to a string whose length is <expression 1>, and
returns the string.

r

SWAP <variable name>, <variable name>
Statement Exchanges the value of two variables.

EE

--- T ---

-

TAB (<expression>)
Function Produces the specified spaces in PRINT instructions.

P

TAN (<expression>)
Function Returns the tangent of <expression> in radians.

R

TIME
System variable Contains the value of the interval timer.

C

TRON

Command Keeps displaying the line numbers of the program
currently being executed.

c

TROFF
Command Cancels TRON and stops displaying the line numbers.

CC

--- U ---

-

USR [<number](<argument>)
Function Calls the assembly language routine.

CC

--- V ---

-

VAL (<string expression>)
Function Converts <string expression> to a numerical value

and returns its result.

a

VARPTR (<variable name>)
Function Returns the address containing the variable.

R

VARPTR (#<filenumber>)
Function Returns the starting address of the file control

block.

b

* VDP (<register number>)
System variable Writes/reads data to/from the VDP registers.

W

* VPEEK (<address>)
Function Reads data from <address> in VRAM.

R

* VPOKE (<address>)
Statement Writes data to <address> in VRAM.

WW

--- W ---

-

WAIT <port number>, <expression 1>[, <expression 2>]
Statement Stops the execution until data of the input port

grows to the specified value.

g

* WIDTH <number>
Statement Specifies the number of characters per line in the

display screen.

dd

1.2 Instructions of MSX DISK-BASIC

1

Note: Instructions marked with "**" have been added to version 2 of MSX
DISK-BASIC and are not available in version 1.

DD

--- B ---

-

* BLOAD "<filename>"[{[, R] | [, S]}[, <offset>]]
Command Loads the assembly language program or screen data

from a file.

f

* BSAVE "<filename>", <start address>, <end address>[, {<execution address>
| S}]

Command Saves the assembly language program or screen data
in a file.

ii

--- C ---

-

CLOSE [[#]<filenumber>[, [#]<filenumber>...]]
Statement Closes the file specified by <filenumber>.

C

** CALL CHDRV ("<drive name>:")
Command Sets the drive specified by <drive name> as the

default drive.

d

** CALL CHDIR ("<directory path>")
Command Changes to the directory specified by <directory

path>.

p

CALL FORMAT
Command Formats the floppy disk.

F

** CALL MKDIR ("<directory name>")
Command Creates the directory with the name specified

in <directory name> in the current directory.

i

** CALL RAMDISK (<size in kilobytes>[, <variable name>])
Command Tries to crate the DOS 2 RAM disk of the specified

size, and returns in the variable (if specified) the
actual size of the RAM disk created.

a

** CALL RMDIR ("<directory name>")
Command Deletes the directory specified in <directory name>.

If the directory is not empty, "File already exists"
error will be returned.

e

CALL SYSTEM
Command Returns to MSX-DOS.

R

** CALL SYSTEM [("<filename>")]
Command Returns to MSX-DOS and executes the DOS command

<filename> if it is specified.

<

COPY "<filename 1>"[TO "<filename 2>"]
Command Copies the contents of <filename 1> to the file

specified by <filename 2>.

s

CVD (<8-byte string>)
Function Converts the string to the double precision real

value and returns its result.

v

CVI (<2-byte string>)
Function Converts the string to the integer value and returns

its result.

i

CVS (<4-byte string>)
Function Converts the string to the single precision real

value and returns its result.

vv

--- D ---

-

DSKF (<drive number>)
Function Returns the unused portions of the disk in clusters.

R

DSKI$ (<drive number>, <sector number>)
Function Reads the specified sector of the specified drive

to the memory area indicated by address &HF351, and
returns a null string.

r

DSKO$ (<drive number>, <sector number>)
Statement Writes 512 bytes starting from address indicated by

&HF351 to the specified sector of the specified
drive.

dd

--- E ---

-

EOF (<filenumber>)
Function Checks if the file has ended and returns -1 if at the

end of file.

ee

--- F ---

-

FIELD [#]<filenumber>, <field width> AS <string variable name>[, <field
 width> AS <string variable name>...]
Statement Assigns the string variable name to the random

input/output buffer.

i

FILES ["<filename>"]
Command Displays the name of the file matched with <filename>

on the screen.

o

** FILES ["<filename>"][,L]
Command Displays the name of the file matched with <filename>

on the screen, and also the attributes and the size
of the file if "L" is specified.

oo

--- G ---

-

GET[#]<filenumber>[, <record number>]
Statement Reads one record from the random file to the random

input/output buffer.

ii

--- I ---

-

INPUT #<filenumber>, <variable name>[, <variable name>...]
Statement Reads data from the file.

R

INPUT$ (<the number of characters>[, [#]<filenumber>])
Function Gets the string of the specified length from the

file.

ff

--- K ---

-

KILL "<filename>"
Command Delets the file specified by <filename>.

DD

--- L ---

-

LFILES ["<filename>"]
Command Sends the name of the file matched with <filename>

to the printer.

t

** LFILES ["<filename>"][,L]
Command Sends the name of the file matched with <filename>

to the printer, and also the attributes and the size
of the file if "L" is specified.

o

LINE INPUT #<file number>, <string variable name>
Statement Reads lines of data from the file to the string

variable.

v

LOAD "<filename>"[, R]
Command Loads the program into memory.

L

LOC (<filenumber>)
Function Returns the record number of the most recently

accessed location of the file.

a

LOF (<filenumber>)
Function Returns the size of the specified file in bytes.

R

LSET <string variable name>=<string expression>
Statement Stores data padded on the left in the random

input/output buffer.

ii

--- M ---

-

MAXFILES = <the number of files>
Statement Declares the maximum number of files that can be

opened.

o

MERGE "<filename>"
Command Merges the program in memory with the program saved

in ASCII format.

i

MKD$ (<double precision real value>)
Function Converts the double precision real value to the

character code corresponding to the internal
expression.

e

MKI$ (<integer value>)
Function Converts the integer value to the character code

corresponding to the internal expression.

c

MKS$ (<single precision real value>)

Function Converts the single precision real value to the
character code corresponding to the internal
expression.

ee

--- N ---

-

NAME "<filename 1>" AS "<filename 2>"
Command Renames the name of a file.

RR

--- O ---

-

OPEN "<filename>"[FOR <mode>] AS #<filenumber>[LEN = <record length>]
Statement Opens the file.

OO

--- P ---

-

PRINT #<filenumber>, [<expression>[{; | ,}<expression>...]]
Statement Sends data to the sequential file.

S

PRINT #<filenumber>, USING <form>; <expression>[{; | ,}<expression>...]]
Statement Sends data to the sequential file according to the

form.

f

PUT [#]<filenumber>[, <record number>]
Statement Sends data of the random input/output buffer to the

random file.

rr

--- R ---

-

RSET <string varibale name>=<string expression>
Statement Stores data padded on the right in the random

input/output buffer.

i

RUN "<filename>"[, R]
Command Loads a program from the disk and executes it.

LL

--- S ---

-

SAVE "<filename>"[, A]
Command Saves a program. The program is saved in ASCII format

when "A" is specified.

ww

--- V ---

-

VARPTR (#<filenumber>)
Function Returns the starting address of the file control

block.

bb

2. DIFFERENCES IN MSX BASIC VERSION 2.0

2

A great deal of functions in MSX BASIC version 2.0 have been added or

modified when compared with MSX BASIC version 1.0. They are either the
functions that are added or modified with the version-up of VDP (Video
Display Processor) or the functions that are added or modified because of the
various hardware features such as RAM disk, clock, or memory switch;
especially, the alternation of VDP affects, most of the statement for the
screen display.

s

This section picks up these statements and indicates the additions or the
modifications. In the following descriptions, "MSX1" means MSX BASIC version
1.0 and "MSX2" for MSX BASIC version 2.0.

11

2.1 Additions or Modifications to Screen Mode

2

* SCREEN <screen mode>[, <sprite size>[, <key click switch>[, <cassette baud
 rate>[, <printer option>[, <interlace mode>]]]]]

<Screen mode> and <interlace mode> have been modified.

<

<Screen mode> may be specified from 0 to 8. Modes from 0 to 3 are the same as
MSX1 and the rest have been added. When specifying a screen mode, in BASIC it
is called "SCREEN MODE", which is somewhat different from "screen mode" which
is used by VDP internally. Table 2.1 shows these correspondences and
meanings. The difference between screen modes 2 and 4 is only in the sprite
display functions.

dd

 Table 2.1 Correspondances of BASIC screen (SCREEN) modes and
 VDP screen modess

		Meaning		
BASIC	VDP	--		
mode	mode	Dots or	Display colours	Screen
		characters	at a time	format
--------------+-------------+----------------+-----------------+-----------				
SCREEN 0 (1)	TEXT 1	40 x 24 chars	2 from 512	Text
--------------+-------------+----------------+-----------------+-----------				
SCREEN 0 (2)	TEXT 2	80 x 24 chars	2 from 512	Text
--------------+-------------+----------------+-----------------+-----------				
SCREEN 1	GRAPHIC 1	32 x 24 chars	16 from 512	Text
--------------+-------------+----------------+-----------------+-----------				
SCREEN 2	GRAPHIC 2	256 x 192 dots	16 from 512	High res.
				graphics
--------------+-------------+----------------+-----------------+-----------				
SCREEN 3	MULTICOLOUR	64 x 48 dots	16 from 512	Low res.
				graphics
--------------+-------------+----------------+-----------------+-----------				
SCREEN 4	GRAPHIC 3	256 x 192 dots	16 from 512	High res.
				graphics
--------------+-------------+----------------+-----------------+-----------				
SCREEN 5	GRAPHIC 4	256 x 212 dots	16 from 512	Bit map
				graphics
--------------+-------------+----------------+-----------------+-----------				
SCREEN 6	GRAPHIC 5	512 x 212 dots	4 from 512	Bit map
				graphics
--------------+-------------+----------------+-----------------+-----------				
SCREEN 7	GRAPHIC 6	512 x 212 dots	16 from 512	Bit map

| | | | | graphics |
|--------------+-------------+----------------+-----------------+-----------|
| SCREEN 8 | GRAPHIC 7 | 256 x 212 dots | 256 | Bit map |
| | | | | graphics |

--

Specifying <interlace mode> enables to set the interlace functions of VDP
(see Table 2.2). In the alternate screen display mode, the display page
specified in "SET PAGE" must be odd. In this case the display page and the
page of which the number is smaller by one is displayed alternately.

pp

 Table 2.2 Differences of display function in the interlace mode

| Interlace mode | Display function |
|------------------+--|
0	Normal non-interlaced display (default)
1	Interlaced display
2	Non interlaced, Even/Odd alternate display
3	Interlaced, Even/Odd alternate display

--

* SET PAGE <display page>, <active page>

*

This statement is new. It allows users to set the page to display and the
page to read and write data to. This is valid when the screen mode is between
5 and 8, and the value specified depends on the VRAM capacity and the screen
mode (see Table 2.3).

mm

 Table 2.3 Page values to be specified depending on the screen mode
 and the VRAM capacity

--
| Screen mode | VRAM 64K | VRAM 128K |
|-------------+------------+-------------|
SCREEN 5	0 to 1	0 to 3
SCREEN 6	0 to 1	0 to 3
SCREEN 7	Unusable	0 to 1
SCREEN 8	Unusable	0 to 1
--

--

See the VRAM map in the APPENDIX for the page assignment on VRAM.

SS

2.2 Additions or Modifications for the Colour Specification

22

* COLOR [<foreground colour>[, <background colour>[, <border colour>]]]

*

In MSX2, with its colour palette feature, the ranges and meanings of values
specifying colours in the screen mode are different (see Table 2.4). The
<background colour> except that of the text display changes when the CLS
statement is executed. If the display mode is 0, specification of a <border

colour> is ignored.

c

The "border colour" in screen mode 6 has special meanings. Figure 2.2 shows
the bitwise meanings of <border colour> in the mode. In this mode, by
changing the flag (bit 4), the colour of vertical lines at odd X-coordinates
and the colour of those at even coordinates can be specified differently.

a

When the flag is 0 (the value of border colour is one of the values from 0 to
15), different colours cannot be specified and the border colour is set as
the colour of vertical odd lines. When the flag is 1 (the value of border
colour is one of the values from 16 to 31), the border colours are set as the
colour of vertical odd lines and that of vertical even lines; when these two
colours are different, the screen shows a vertically-striped pattern.

cc

 Figure 2.2 Bitwise meanings for the border colour on screen mode 6

 4 3 2 1 0

| flag | colour of even lines | colour of odd lines |

Bits 7 to 5 are unused

BB

* COLOR = (<palette number>, <red brightness>, <green brightness>, <blue
 brightness>)

This statement sets the colour of the specified palette. See Table 2.4 for
the specification of <palette number>. Note that nothing happens and no error
occurs wwhen the screen mode is 8, which has no palette feature. Though
palette number 0 is ordinally fixed to a transparent colour (that is, border
space is seen transparently), it can be dealt in the same way as other
palettes by changing the register of VDP:

p

VDP(9)=VDP(9) OR &H20 (when dealing as with other palettes)
VDP(9)=VDP(9) AND &HDF (when fixing it to a transparent colour)

 Table 2.4 Colour specifications for the screen mode.

--
| Screen mode | Colour specification | Range of number |
|-------------+----------------------+-----------------|
SCREEN 0	Palette number	0 to 15
SCREEN 1	Palette number	0 to 15
SCREEN 2	Palette number	0 to 15
SCREEN 3	Palette number	0 to 15
SCREEN 4	Palette number	0 to 15
SCREEN 5	Palette number	0 to 15
SCREEN 6	Palette number	0 to 3
SCREEN 7	Palette number	0 to 15
SCREEN 8	Colour number	0 to 255
--

--

Brightness of each colour can be set to one of eight steps from 0 to 7 and
combinig them enables to display 512 colours; 8 (red) x 8 (green) x 8 (blue).

c

X

* COLOR=RESTORE

*

This statement resets the colour palette register according to the contents
of the colour palette storage table (see APPENDIX VRAM MAP). For example, if
image data written under unusual colour palette settings is BSAVEd, the
original images cannot be reproduced because BLOADing the data does not
change the colour palettes. Therefore, the image data should be BSAVEd with
the colour palette storage table. To obtain the colours of the original
images, BLOAD the data and reset the palettes with the COLOR=RESTORE
instruction.

ii

* COLOR [=NEW]

*

This statement initialises the colour palette to the same state as when the
power of the computer is turned on (see Table 2.5). It is a good idea to
place this statement at the beginning and the end of the program.

pp

 Table 2.5 Initial colours of colour palettes and palette setting values

--
| Palette | Colour | Brightness | Brightness | Brightness |
| number | | of red | of blue | of green |
|---------+---------------+------------+------------+------------|
0	transparent	0	0	0
1	black	0	0	0
2	bright green	1	1	6
3	light green	3	3	7
4	deep blue	1	7	1
5	bright blue	2	7	3
6	deep red	5	1	1
7	light blue	2	7	6
8	bright red	7	1	1
9	light red	7	3	3
10	bright yellow	6	1	6
11	pale yellow	6	3	6
12	deep green	1	1	4
13	purple	6	5	2
14	grey	5	5	5
15	white	7	7	7
--

--

2.3 Additions or Modifications for the Character Display

22

* LOCATE [<X-coordinate>[, <Y-coordinate>[, <cursor switch>]]]

*

This statement specifies the location to display a character in the text
display screen.

d

Since an 80-character display feature has been added to the screen mode 0,
the X-coordinate value can be specified up to 79.

tt

2.4 Additions or Modifications for the Graphics Display

22

* LINE [{(X1,Y1) | STEP(X1,Y1)}] - {(X2,Y2) | STEP(X2,Y2)}[, <colour>
 [, {B|BF}[, <logical operation>]]]
* PSET {(X,Y) | STEP(X,Y)}[, <colour>[, <logical operation>]]
* PRESET {(X,Y) | STEP(X,Y)}[, <colour>[, <logical operation>]]

*

The specifiable coordinate range of these statements varies according to the
screen mode (see Table 2.6).

ss

 Table 2.6 Range of coordinates for each screen mode

| Screen mode | X-coordinate | Y-coordinate |
|-------------+----------------+----------------|
SCREEN 2	0 to 255	0 to 191
SCREEN 3	0 to 255	0 to 191
SCREEN 4	0 to 255	0 to 191
SCREEN 5	0 to 255	0 to 211
SCREEN 6	0 to 511	0 to 211
SCREEN 7	0 to 511	0 to 211
SCREEN 8	0 to 255	0 to 211

--

The logical operation feature is new. When <logical operation> is specified,
a logical operation is done between the specified <colour> and the original
colour, and the colour of its result will be used to draw. Logical operation
types are listed in Table 2.7. <Colour> is specified by the palette number,
except for screen mode 8.

ee

 Table 2.7 Logical operation

| Logical operation | Function to draw |
|-------------------------+---|
PSET (default) ,TPSET	Use "specified colour"
PRESET ,TPRESET	Use "NOT (specified colour)"
XOR ,TXOR	Use "(background colour) XOR (specified colour)"
OR ,TOR	Use "(background colour) OR (specified colour)"
AND ,AND	Use "(background colour) AND (specified colour)"

-

Note: The list above assumes that <colour> is (specified colour) and that the
original colour of the place to be drawn is (background colour). Specifying a
logical operation preceded by "T" causes nothing to be done when <colour> is
transparent (colour 0).

tt

* CIRCLE {(X,Y) | STEP(X,Y)},<radius>[, <colour>[, <start angle>[, <end
 angle>[, <proportion>]]]]

The coordinate range to be specified depends on the screen mode (see Table
2.6). <colour> is specified by the palette number, except for screen mode 8.

22

* PAINT {(X,Y) | STEP(X,Y)}[, <colour>[, <border colour>]]

*

The coordinate range to be specified depends on the screen mode (see Table
2.6). <Colour> is specified by the palette number, except for screen mode 8.
The specification of <border color> is invalid in screen modes 2 and 4.

TT

2.5 Additions or modifications for VDP access

22

* BASE (<expression>)

*

This system variable contains the starting address of each table assigned to
VRAM. The contents of <expression> and the screen mode tables correspond as
listed in Table 2.8.

l

The starting address of the table can be read for each <expression>, but can
be written only when <expression> is a value from 0 to 19 (that is, from
screen mode 0 to screen mode 3).

s

Note that the table of screen mode 4 changes as you change the table address
of screen mode 2.

o

Address returned for screen mode from 5 to 8 is the offset value from the
starting address of the active page.

ss

 Table 2.8 Correspondences between BASE set values and VRAM table

--
| Expression | Screen mode | Table |
|------------+-------------+-------------------------|
0	0	Pattern name table
1	0	N/A
2	0	Pattern generator table
3	0	N/A
4	0	N/A
5	1	Pattern name table
6	1	Colour table
7	1	Pattern generator table
8	1	Sprite attribute table
9	1	Sprite generator table
10	2	Pattern name table
11	2	Colour table
12	2	Pattern generator table
.	.	.
 . . .
 . . .
43	8	Sprite attribute table
44	8	Sprite generator table
--

--

* VDP (<n>)

*

This allows the value of VDP register to be read and written. <n> is slightly
different from the actual VDP register number. Their correspondances are

listed in Table 2.9.

ll

 Table 2.9 Correspondances with VDP register

| n | VDP register number | Access mode |
|----------+------------------------+-------------|
0 to 7	0 to 7 (same as MSX1)	Read/write
8	Status register 0	Read only
9 to 24	8 to 23	Read/write
33 to 47	32 to 46	Write only
-1 to -9	Status register 1 to 9	Read only

--

* VPEEK (<address>)
* VPOKE <address>, <data>

*

When the screen mode is from 5 to 8, the offset value from the starting
address of the active page should be set for <address>. Valid range for the
<address> value is from 0 to 65535 and the valid range for the data value is
from 0 to 255.

ff

* BSAVE <filename>, <start address>, <end address>, S
* BLOAD <filename> ,S

*

These are statements of DISK BASIC, used to save/load the contents of VRAM
to/from disk files. Both can be used in any screen mode, note, however, that
only the active pages are valid when the screen mode is from 5 to 8. No
cassette tapes can be used. Valid value range of <address> is from -32768 to
-2, or from 0 to 65534 (&HFFFE).

--

* COPY (X1,Y1) - (X2,Y2)[, <source page>] TO (X3,Y3)[, <destination page>
 [, <logical operation>]]
* COPY (X1,Y1) - (X2,Y2)[, <source page>] TO {<array variable name> |
 <filename>}
* COPY {<array variable name> | <filename>}[, <direction>] TO (X3,Y3)
 [, <destination page>[, <logical operation>]]
* COPY <filename> TO <array variable name>
* COPY <array variable name> TO <filename>

*

The COPY statements transfer screen data and are valid when the screen mode
is from 5 to 8. VRAM, array variables, and disk files can be used with these
statements, and data can be transferred among these at will.

s

(X1,Y1) - (X2,Y2) means that the rectangular area, with a diagonal formed by
these two coordinates is to be transferred. <Source page> and <destination
page> indicate the page to be transferred from and the page to be transferred
to, respectively, and if these pages are omitted, the active pages are
assumed. <Direction> indicates the direction for writing the screen data to
the screen, and is specified by a number from 0 to 3 (see Figure 2.3).

tt

 Figure 2.3 Directions for writing the screen data

Original Screen Direction = 0 Direction = 1

 ----- ----- -----
 | O | ---> | O | | O |
 ----- ----- -----
 | | |

 Direction = 2 Direction = 3

| |
----- -----
| O | | O |
----- -----

--

<Array variable> is of the integer type, or single precision real type, or
double precision real type. It should be prepared with enough area to get the
screen data. Its size can be calculated by expression 1 as shown below.
<Pixel size> is the number of bits to be used to express one dot on the
screen. It is 4 when the screen mode is 5 or 7, 2 for mode 6, and 8 for mode
8. Screen data is stored in the format shown in figure 2.4.

8

Expression 1

E

INT ((<pixel size>*(ABS(X2-X1)+1)*(ABS(Y2-Y1)+1)+7)/8)+4 bytes

II

 Figure 2.4 Screen data format

| horizontal width low-order byte | 0
|----------------------------------|
| horizontal width high-order byte | 1
|----------------------------------|
| vertical height low-order byte | 2
|----------------------------------|
| vertical height high-order byte | 3
|----------------------------------|
| | 4
| | .
| screen data (*) | .
| | .
| | n bytes

-

(*) If the length of data cannot be divided by byte, excess bits are to be 0.

((

<Logical operation> specifies a logical operation between the data which
resides on the destination and the data to be transferred. See table 2.7 for
the parameters to specify.

t

When operations preceded by "T" are specified, the transparent portions of
the source will not be transferred.

tt

2.7 Additions or Modifications for Sprite

2

The sprites used in screen mode 4-8 of MSX2 are called sprite mode 2, which
has upgraded a great deal as compared with MSX1. On MSX1, for example, one
sprite could treat only one colour, while in this mode of MSX2 different
colours can be specified for each horizontal line and so multi-coloured
characters can be realised with one sprite. Additionally, it is a good idea
to combine two sprites as though they were one sprite to paint each dot with
different colours. And, on MSX1, when more than five sprites are arrayed on
a horizontal line, the sprites after the fifth one were not displayed, but on
MSX2 up to eight sprites can be displayed, so a higher flexibility is
offered.

o

Colours which can be specified for sprites are shown in Table 2.4 (colour
statement) except for screen mode 8. The sprite in screen mode 8, not capable
of using the palette, uses the colour number for the specification, and only
16 colours can be used (see Table 2.10).

11

 Table 2.10 Sprite colours in screen mode 8

| 0: Black | 1: Deep Blue | 2: Deep Red | 3: Deep Purple |
|-----------------+-----------------+-----------------+-----------------|
| 4: Deep Green | 5: Turquoise | 6: Olive | 7: Grey |
|-----------------+-----------------+-----------------+-----------------|
| 8: Light Orange | 9: Blue | 10: Red | 11: Purple |
|-----------------+-----------------+-----------------+-----------------|
| 12: Green | 13: Light Blue | 14: Yellow | 15: White |

--

* PUT SPRITE <sprite plane number>[, {(X,Y) | STEP(X,Y)}[, <colour>[, <sprite
 pattern number>]]]

In screen modes 1 through 3, Y-coordinate was 209 for erasing the display of
the specified sprite and was 208 for erasing the displays of the specified
sprite and all sprites following it, but in screen modes 4 through 8, where
the limit of Y-coordinate has been increased to 212 dots, the values to be
specified are now 217 and 216, respectively.

ss

* COLOR SPRITE$ (<sprite plane number>) = <string expression>

*

This statement specifies a colour for each horizontal line (see Figure 2.5).

T

<String expression> consists of one to sixteen characters. Bits 0 throgh 3 of
the character's ASCII code are used for the colour specification, and bits 4
throgh 7 are used to specify each function of the sprite (see Table 2.11).
These specifications are valid only for screen modes 4 through 8.

T

COLOR SPRITE$ = CHR$ (colour of the first line) + CHR$ (colour of the second
line) + + CHR$ (colour of the eight line)

ll

 Figure 2.5 Relation of the sprite and <string expression>

Line 1 --> | * | | | * | * | | | * |

 |---+---+---+---+---+---+---+---|
Line 2 --> | * | * | | | | | * | * |

 |---+---+---+---+---+---+---+---|
 | | | | | | | | |
 |---+---+---+---+---+---+---+---|
 | * | * | | | | | * | * |
 |---+---+---+---+---+---+---+---|
 | | | * | | | * | | |
 |---+---+---+---+---+---+---+---|
 | * | | | * | * | | | * |
 |---+---+---+---+---+---+---+---|
 | * | * | | | | | * | * |
 |---+---+---+---+---+---+---+---|

Line 8 --> | | | * | * | * | * | | | The colour for each line
 --------------------------------- can be set.

 Table 2.11 Bitwise meanings of string expression

| b7 | If 1, move the sprite to left by 32 dots. |
|----------+--|
	If 1, move the sprites of the successive planes together.
b6	The priority and conflict of sprites are ignored, and when
	sprites are piled up, they are displayed in the colour
	which is OR-ed with their colour numbers. *
----------+--	
b5	If 1, the conflict of sprites are ignored.
----------+--	
b4	Unused.
----------+--	
b0 to b3	Palette number.

-

* For example, assuming that bit 6 of sprite plane 1 is "0" and bit 6 of
sprite plane 2 is "1", only by moving sprite plane 1, will sprite plane 2 be
displayed displayed to be piled at the same location.

dd

* COLOR SPRITE (<sprite plane number>) = <expression>

*

This statement sets the whole sprite of the specified plane to the
<expression>, this uses <expression> for colour specification. The format of
the colour specification is the same as shown in Table 2.11, but the
specification for b7 is disabled. These are valid for screen modes 4 through
8.

8

2.8 Additions for Optional Features

22

* SET VIDEO [<mode>[, <Ym>[, <CB>[, <sync>[, <voice>[, <video input>[, <AV
 control>]]]]]]]

This statement is for the superimposer or the digitiser which are optional,
so it can be used only for machines which have these features.

s

<Mode> sets the superimposing mode and can be set to the value listed in
Table 2.12.

T

When <Ym> is 1, the brightness of the television is halved.

W

When <CB> is 1, the colour bus of VDP is prepared for input, and, when 0, it
is prepared for output.

i

When <sync> is 1, "external sync" is selected, and, when 0, "internal sync"
is selected.

i

<Voice> specifies whether to mix external signal for output, and values are
listed in Table 2.13.

l

<Video input> is used to alternate the input of external video signals. When
it is 0, the RGB multiconnector is selected; when it is 1, external video
signal connector is selected.

s

<AV control> specifies AV control terminal output of the RGB multiconnector.
When it is 0, the output is OFF; when it is 1, the output is ON.

WW

 Table 2.12 Input values for SET VIDEO <mode>.

--
| Mode | S1 | S2 | TP | Display screen |
|------+----+----+----+----------------|
0	0	0	0	Computer
1	0	1	1	Computer
2	0	1	0	Superimpose
3	1	0	0	Television
--

-

Note: In the case of mode 0, external sync cannot be used. In other modes the
compoalte output of VDP is not available. S1, S0, and TP are the names of
flags in the VDP register.

ff

 Table 2.13 Input values for SET VIDEO <voice>

--
| Voice | Function for external voice signal |
|-------+------------------------------------|
0	No mixing
1	Right channel mixed
2	Left channel mixed
3	Both channels mixed
--

--

* COPY SCREEN [<mode>]

*

This statement is used for writing data from the colour bus to VRAM, for
example, after digitising. This is valid for screen modes 5 to 8.

e

In mode 0, one field of signals is digitised and written to the display page;
in mode 1, two successive fields (that is, one frame) of signals are written
to (display page - 1)th page and the display page, so the display page should
be an odd page when the mode is 1. The default mode is 0.

b

b

2.9 Additions for Timer Features

22

* GET DATE <string variable name> [,A]

*

This statement is for reading the date from the timer and assigning it to the
string variable. The format of date to be read is as follows:

s

YY/MM/DD (YY = lower two digits of year, MM = month, DD = day)

(

e.g.) 85/03/23 (March 23, 1985)

(

When option A is specified, the alarm date is read.

WW

* SET DATE <string expression>[, A]

*

This statement sets date to timer. The form of parameter and option is the
same as "GET DATE"

s

e.g.) SET DATE "85/03/23"

ee

* GET TIME <string variable>[, A]

*

This statement is for reading time from the timer and assigning it to a
string variable. The form of time to be read is as follows:

s

HH:MM:SS (HH = hour, MM = minute, SS = second)

(

e.g.) 22:15:00 (22 hours 15 minutes 0 seconds)

(

When A is specified, the time for the alarm is read.

WW

* SET TIME <string expression>[, A]

*

This statement sets the time to the timer. The form of parameter and option
is the same as "GET TIME".

i

e.g.) SET TIME "22:15:00"

ee

* The Alarm

*

Since the alarm feature is optional, the action taken at the specified time
depends on the machine (ordinarily nothing happens).

d

When the alarm is to be set in both "SET DATE" and "SET TIME", "SET TIME"
should be done first (when "SET TIME" is done, date of the alarm set by "SET
DATE" will be erased).

D

The minimum setting for alarm is in minutes (setting in seconds is ignored).

TT

2.10 Additions for Memory Switch

2

Using "SET" instructions, various settings described below can be stored to
the battery-powered RAM in CLOCK-IC. Settings based on these are done
automatically at system startup (when the system is powered or reset). "SET
TITLE", "SET PROMPT", and "SET PASSWORD" use the same RAM, so only the most
recent instruction is valid.

rr

* SET ADJUST (<X-coordinate offset>, <Y-coordinate offset>)

*

This statement sets the location to display on the screen. The coordinate
offset is from -7 to 8.

oo

* SET BEEP <timbre>, <volume>

*

This statement sets BEEP sound. <Timbre> and <volume> are from 1 to 4.

T

Table 2.14 shows the correspondance of <timbre> and to the actual sound.

TT

 Table 2.14 Input values for <timbre> of SET BEEP

--
| Timbre | Sound |
|--------+-------------------------------|
1	High tone beep (same as MSX1)
2	Low tone beep
3	2 - tone beep
4	3 - tone beep
--

--

* SET TITLE <string expression>[, <title colour>]

*

This statement specifies the title and the colour of the initial screen at
system startup. <Title> is set by a string of up to 6 characters and <colour>
is one of the values on Table 2.15. When <title> is 6 characters, keyboard
input is awaited just after the title screen is displayed.

ii

 Table 2.15 Available colours in SET TITLE

| Color | 1 | 2 | 3 | 4 |
|---------------+--------+--------+--------+--------|
| Screen color | Blue | Green | Red | Orange |

--

* SET PROMPT <prompt>

*

This statement sets the prompt. <Prompt> can have up to 6 characters.

TT

* SET PASSWORD <password>

*

This statement sets a system password. <Password> is a string expression up
to 255 characters. Once this statement is done, input of the password is

requested for invoking the system. When the correct password is given, the
system is normally invoked; otherwise, correct password input is requested.
When the system is invoked by pressing both graphic key and stop key, no
password input is requested (in this case, the password setting has been done
by the key cartridge; however, password input is always required for system
startup). The password is disabled by specifying a null character in SET
TITLE.

TT

* SET SCREEN

*

This statement records the current parameters of the "SCREEN" statement. At
the system startup, they are automatically set. Items to be recorded are the
following:

f

Screen number of text mode Key click switch
Screen width of text mode Printer option
Foreground, background, and border colours Cassette baud rate
Function key switch Display mode

DD

2.11 Additions for RAM Disk

2

On MSX1 RAM from 0000H to 7FFFH was used only by DOS. On MSX2, however, this
portion can be used as a RAM disk of up to 32K bytes. The format of the file
name for RAM disk is described below, where <filename> is a string which
consists of 1 to 8 characters and <extension> is one which consists of 1 to
3 characters. Note that ";" (colon), "." (period), control characters of
character codes 00H-1FH, and graphic symbols consisting of two bytes cannot
be used.

b

MEM: <filename>[.<extension>]

M

The following are executable operations for the RAM disk:

T

1. Load/save a BASIC program (always saved in ASCII format)
 SAVE, LOAD, RUN, MERGE

When any of the above commands is executed from the program, control returns
to the command level.

t

2. Read/write a sequential file
 OPEN, CLOSE
 PRINT #, PRINT USING #
 INPUT #, LINE INPUT #, INPUT$
 EOF, LOC, LOF

The RAM disk does not support the following instructions:

T

1. Random file Read/Write
2. BLOAD, BSAVE
3. COPY

33

* CALL MEMINI [(<size>)]

*

This statement specifies the amount of memory to be used as a RAM disk,
initialises the RAM disk, and deletes all files. When the RAM disk is to be

used, this statement should always be executed.

u

<Size> is "the amount of memory to be used as RAM disk minus 1". By default,
the maximum size is allocated for RAM disk. "CALL MEMINI(0)" causes the RAM
disk feature to be disabled.

dd

* CALL MFILES

*

This statement displays file names on the RAM disk.

TT

* CALL MKILL ("<filename>")

*

This statement deletes the specified file.

TT

* CALL MNAME ("<old filename>" AS "<new filename>")

*

This statement renames the specified file.

TT

2.12 Other Additions

22

* PAD (<expression>)

*

This function returns status to touch pad (touch panel), light pen, mouse, or
track ball.

t

When <expression> is 0 to 7, it returns the status to touch pad as on MSX1,
and, when <expression> is 8 to 11, it returns the status to light pen. Since
the coordinates and the value of the switch are read when "PAD(8)" is
executed, other data should be read after confirming that the value of PAD(8)
is -1 (see Table 2.16).

ii

 Table 2.16 <Expression> returning status to light pen

| Expression | The value returned |
|------------+--|
8	-1 when data of light open is valid; otherwise, 0
9	X - coordinate of light pen
10	Y - coordinate of light pen
11	-1 when switch of light pen is pressed; otherwise, 0

--

This statement returns the status of the mouse or the track ball connected to
port 1 when <expression> is 12 to 15 or connected to port 2 when it is 16 to
19 (see Table 2.17). The mouse and track ball are automatically
distinguished from each other.

dd

 Table 2.17 <Expression> returning status to mouse or track ball

| Expression | The value returned |
|------------+------------------------|
12, 16	- 1; for input request
13, 17	X - coordinate
14, 18	Y - coordinate
15, 19	0 (unused)

--

Coordinate data is read when PAD(12) or PAD(16) is examined. Coordinate data
should be obtained after examining these. The STRIG function is used with the
joystick to input the status of the trigger button.

jj

3. INTERNAL STRUCTURE OF BASIC

3

Knowledge of how the BASIC interpreter controls and executes programs is
necessary for more advanced use of BASIC. The internal structure of BASIC is
discussed next.

dd

3.1 User's Area

3

The lowest address of the user's area was different in the MSX1 machine whose
amount of RAM was 8K, 16K, 32K, or 64K; in MSX2, it is always 8000H, because
MSX2 machines have at least 64K of RAM. It can be obtained from the content
of BOTTOM (FC48H).

o

The highest address of the user's area when no disk drives are connected is
F380H; when disk drives are connected (using DISK-BASIC), it depends on the
number of disk drives or on the disk capacity. It can be obtained from the
content of HIMEM (FC4AH) after reset and before executing CLEAR statement.

c

Figure 2.6 shows the state of memory when MSX is invoked.

FF

 Figure 2.6 State of memory for BASIC mode

0000 --------------------
 | |
 | BASIC |
 | Interpreter |
 | |
8000 |------------------| <-- (BOTTOM) --+
 | | | |
 | User area | --+ |
 | | | |
 |------------------| <-- (HIMEM) | |32K
 | Disk work area | --+ |16K |
F380 |------------------| | 8K | |
 | System work area | | | |
FFFF -------------------- --+ --+ --+

Note: Though the machine has more than 32K bytes of RAM, only 32K bytes are
used for BASIC. On MSX2, however, another 32K bytes can be used as a RAM disk
by BASIC.

bb

When developping a program on MSX2, we recommend you create it at addresses
8000H to DE3FH as if to install a 2DD-2 drive whose highest address of the
user's area is the lowest. The work area of the disk can grow even larger,
therefore, HIMEM of the application program should be checked to prevent
disasters even in the worst situation. The following are ways to prevent
this:

t

1. Make the work area relocatable
2. Get the work area from BOTTOM
3. Stop after instructing to reduce the number of drives

3

On MSX, even when disks are mounted, they can be cut off by resetting while
pressing the SHIFT key. When only one drive is mounted, the normal invocation
causes the work area for two drives to be allocated (mainly for 2 drive
simulator): in such a case, invoking the works area for only one drive is
possible by resetting while pressing the CTRL key. If these steps are taken,
more user's area can be allocated.

mm

3.2 Detailed View of the User's Area

3

Figure 2.7 shows how the user's area will be used in BASIC, and Table 2.18
shows the work area with information about where these areas start. This work
area is read-only (the initialising routine sets it when reset), so actions
when it is changed are not guaranteed.

w

 Figure 2.7 State of the user's area

BOTTOM --> ---------------------- The lowest of the user's area
 | | (8000H on MSX2)

TXTTAB --> |--------------------|
 | | |
 | BASIC V |
 | program area |
 | |

VARTAB --> |--------------------| Depends on the amount of text
 | Simple variable | |
 | area V |

ARYTAB --> |--------------------|
 | Array variable | |
 | area V |

STREND --> |--------------------| Depends on the number of variables
 | | |
 | V |
 | Free area |
 | ^ |
 | | |

SP --> |--------------------| Area pointed by SP register
 | Stack ^ |
 | area | |

STKTOP --> |--------------------| --+
 | String ^ | | Set by 1st parameter
 | area | | | of CLEAR

MEMSIZ --> |--------------------| --+
 | File ^ |
 | control block | |

HIMEM --> |--------------------| Set by 2nd parameter of CLEAR
 | |

 | Assembly language |
 | area |
 | |
 ---------------------- The highest of the user's area

 (depends on the presence of disks)

 Table 2.18 Work areas with start and end addresses of each area

Area name Start address End address
--
User's area | [BOTTOM (FC48H)] | ([HIMEM (FC4AH)] when reset) - 1
Program area | [TXTTAB (F676H)] | [VARTAB (F6C2H)] - 1
Simple variable area | [VARTAB (F6C2H)] | [ARYTAB (F6C4H)] - 1
Array variable area | [ARYTAB (F6C4H)] | [STREND (F6C6H)] - 1
Free area | [STREND (F6C6H)] | [SP register] - 1
Stack area | [SP register] | [STKTOP (F674H)] - 1
String area | [STKTOP (F674H)] | [MEMSIZ (F672H)] - 1
(start of unused area) | [FRETOP (F69BH)] |
File control block | [MEMSIZ (F672H)] | [HIMEM (FC4AH)] - 1
Assembly language area | [HIMEM (FC4AH)] | to the end of the user's area
--

-

Roles of each user's area are described below.

RR

* BASIC program area

*

A program written in BASIC is stored from the lowest address (8000H on MSX2)
of the user's area and its size depends on the amount of the program.

oo

* Variable area

*

The variable area is located just after the BASIC program area. It is secured
to store the name and the value of the variables used when executing the
program. The variables storage formats are shown in Figure 2.8 (simple
variables) and Figure 2.9 (array variables). Using array variables without
declaring in the DIM statement causes the area to be allocated as an array
with ten indexes. However, arrays which are more than four dimensional must
be declared.

bb

 Figure 2.8 Storage format of simple variables

 ------ ------------- -------------
Integer variable | 02 | | | | | | |

 ------ ------------- -------------
 Name of Integer
 variable

 ------ ------------- -------------------------
Single precision | 04 | | | | | | | | |
real variable ------ ------------- -------------------------

 Name of Single precision
 variable real number

 ------ ------------- -------------------------

Double precision | 08 | | | | | | | | |
real variable ------ ------------- -------------------------

 Name of | | | | |
 variable -------------------------

 Double precision
 real number

 ------ ------------- ------ -------------
String variable | 03 | | | | | | | | |

 ------ ------------- ------ -------------
 Name of Number Address for
 variable of string

 characters storage

 ^ ^
 | |
 Variable Address returned
 type by VARPTR function

 Figure 2.9 Storage format of array variables

------ ------------- -------------
| | | | | | | |
------ ------------- -------------
variable variable length
type name of data
(1 byte) (2 bytes) (2 bytes)

+---------------------------- data ----------------------------+
| |

------ ---------- ---------- ---------- -----------
| | | | . . . | | | | . . . | |
------ ---------- ---------- ---------- -----------
number (largest index for each variable data
of dimension) + 1
dimension (number of dimensions)
(1 byte) x 2 bytes

((

e.g.) DEFINT A : DIM AA (2,3)

e

 +---------------------- (*) -----------------------+
 | |

 02 41 41 1D 00 02 04 00 03 00 00 00 00 00 00 00
| | | | | | | | | ... | |
--- ---------
Inte- Varia- Number 2 di- (index (index AA(0,0) AA(1,0) AA(2,3)
ger ble of men- of 2nd of 1st | |
type name bytes sion dimen- dimen- +------ Variable data--------+
 "AA" of (*) array sion)+1 sion)+1

Note: variable data format is the same as the storage format of simple
variables. The lower of the 2-byte value is stored first, and the higher byte
last.

ll

* Free area

*

If the program area or the variable area grows too large or a lot of data is
stacked and the free area runs out, an "OUT OF MEMORY" error occurs. The
amount of free area can be checked by examining PRINT FRE(0) using the FRE
function in BASIC.

ff

* Stack area

*

This is the stack area used by BASIC. It is used in order from high-order
address when executing GOSUB or FOR.

aa

* String area

*

This area is used to reserve the contents of string variables and used from
high-order address. The space in this area can be specified by the first
parameter of the CLEAR statement in BASIC. The default is 200 bytes.
Exhausting the space in this area causes a "OUT OF STRING SPACE" error. The
amount of unused area can be checked by examining PRINT FRE("") using the FRE
function in BASIC

ff

* File control block

*

File information is stored in this area with 10BH (267) bytes allocated for
each file. The amount of space for files can be specified by the MAXFILES
statement of BASIC. At reset, the area for one file (MAXFILES = 1) is
allocated. Another space is always allocated for SAVE and LOAD instructions,
so actually area for two files is allocated. Table 2.19 shows the format of
file control block.

ff

 Table 2.19 File control block (FCB) format

 Offset Label Meaning
--
+ 0	FL.MOD	Mode of the file opened
+ 1	FL.FCA	Pointer (low) to FCB for BDOS
+ 2	FL.LCA	Pointer (high) to FCB for BDOS
+ 3	FL.LSA	Backup character
+ 4	FL.DSK	Device number
+ 5	FL.SLB	Internal use for the interpreter
+ 6	FL.BPS	FL.BUF location
+ 7	FL.FLG	Flag containing various information
+ 8	FL.OPS	Virtual head information
+ 9...	FL.BUF	File buffer (256 bytes)
--

--

* Assembly language area

*

Use this area to write programs in assembly language or to operate from
memory directly. To do these, this area should be reserved by CLEAR
statement.

ss

* Work area for disk

*

Figure 2.10 shows the work area allocated when a disk is mounted. Note that
this area does not exist when no disk is mounted. Labels to the right of this
figure shows the address information which resides there.

ff

 Figure 2.10 Work area for disk

W

 : User's :
 : area :

BLDCHK + 1 (F377H + 1) --> |------------------------| --+
 | BLOAD, BSAVE routine | |
 | (19H bytes) | |

 FCBBASE (F353H) --> |------------------------| | Reserved when a
 | FCB entry | | disk is mounted
 | (25H * (FILMAX) bytes) | |

HIMSAV (F349H) --> |------------------------| |
 | Disk interface | |
 | work area | |

 F380H --> |------------------------| --+
 : System :
 : work area :

3.3 Storage format of BASIC programs

3

Programs are stored in memory as shown in Figure 2.11 and the meaning of its
contents are described below.

cc

 Figure 2.11 Text storage format

T

 Text start code (8000H)

00

 Code for the
 Link pointer Line number Text end of line (EOL)
 ----------- ----------- -------------- --------- ------
 | XX | XX | | XX | XX | | XX | XX | . . . | XX | | 00 |
 ----------- ----------- -------------- --------- ------

| List of the first line number
+-------+
|
| ----------- ----------- --------- --------- ------
+->| XX | XX | | XX | XX | | XX | . . . | XX | | 00 |
 ----------- ----------- --------- --------- ------

|
+-------+
|
| . . .
+-> . . .

. . . Line number

. . .

. . .

|

+-------+
|
| ----------- ----------- --------- --------- ------
+->| XX | XX | | XX | XX | | XX | . . . | XX | | 00 |
 ----------- ----------- --------- --------- ------

| List of the last line number
+-------+
|
| -----------
+->| 00 | 00 | Code for the end of text (EOT)

Note: Link pointers and line numbers are stored with their low bytes first
and high bytes last.

aa

* Link pointer

*

The text pointer to the next line is given in the form of an absolute
address.

aa

* Line number

*

This stores the line number of the program, normally the values from 0 to
65529 (from 0000H to FFF9H). It is possible to make line numbers of 65530 or
more, but LIST command does not list them.

mm

* Text

*

The program body is stored here in the intermediate code format. Reserved
words (keywords), operators, numeric values are converted to the intermediate
codes, and others (such as variable names or string constantes) are stored as
character codes. Table 2.20 lists the intermediate codes and Figure 2.12
shows the numeric formats in text.

s

See the appendix at the end of this book for character codes. Graphic
characters are stored in 2 bytes (2 characters) of "CHR$(1) + (graphic
character code + 64)", so be careful when defining graphic characters.

cc

 Table 2.20 List of intermediate codes

------------------- ------------------- -------------------
>	EE		ERR	E2		PAINT	BF
=	EF		ERROR	A6		PDL	FF A4
<	F0		EXP	FF 8B		PEEK	FF 97
+	F1		FIELD	B1		PLAY	C1
-	F2		FILES	B7		POINT	ED
*	F3		FIX	FF A1		POKE	98
/	F4		FN	DE		POS	FF 91
^	F5		FOR	82		PRESET	C3
\	FC		FPOS	FF A7		PRINT	91
ABS	FF 86		FRE	FF 8F		PSET	C2
AND	F6		GET	B2		PUT	B3
ASC	FF 95		GOSUB	8D		READ	87
ATN	FF 8E		GOTO	89		REM	3A 8F

ATTR$	E9		HEX$	FF 9B		RENUM	AA
AUTO	A9		IF	8B		RESTORE	8C
BASE	C9		IMP	FA		RESUME	A7
BEEP	C0		INKEY$	EC		RETURN	8E
BIN$	FF 9D		INP	FF 90		RIGHT$	FF 82
BLOAD	CF		INPUT	85		RND	FF 88
BSAVE	D0		INSTR	E5		RSET	B9
CALL	CA		INT	FF 85		RUN	8A
CDBL	FF A0		IPL	D5		SAVE	BA
CHR$	FF 96		KEY	CC		SCREEN	C5
CINT	FF 9E		KILL	D4		SET	D2
CIRCLE	BC		LEFT$	FF 81		SGN	FF 84
CLEAR	92		LEN	FF 92		SIN	FF 89
CLOAD	9B		LET	88		SOUND	C4
CLOSE	B4		LFILES	BB		SPACE$	FF 99
CLS	9F		LINE	AF		SPC(DF
CMD	D7		LIST	93		SPRITE	C7
COLOR	BD		LLIST	9E		SQR	FF 87
CONT	99		LOAD	B5		STEP	DC
COPY	D6		LOC	FF AC		STICK	FF A2
COS	FF 8C		LOCATE	D8		STOP	90
CSAVE	9A		LOF	FF AD		STR$	FF 93
CSNG	FF 9F		LOG	FF 8A		STRIG	FF A3
CSRLIN	E8		LPOS	FF 9C		STRING$	E3
CVD	FF AA		LPRINT	9D		SWAP	A4
CVI	FF A8		LSET	B8		TAB(DB
CVS	FF A9		MAX	CD		TAN	FF 8D
DATA	84		MERGE	B6		THEN	DA
DEF	97		MID$	FF 83		TIME	CB
DEFDBL	AE		MKD$	FF B0		TO	D9
DEFINT	AC		MKI$	FF AE		TROFF	A3
DEFSNG	AD		MKS$	FF AF		TRON	A2
DEFSTR	AB		MOD	FB		USING	E4
DELETE	A8		MOTOR	CE		USR	DD
DIM	86		NAME	D3		VAL	FF 94
DRAW	BE		NEW	94		VARPTR	E7
DSKF	FF A6		NEXT	83		VDP	C8
DSKI$	EA		NOT	E0		VPEEK	FF 98
DSKO$	D1		OCT$	FF 9A		VPOKE	C6
ELSE	3A A1		OFF	EB		WAIT	96
END	81		ON	95		WIDTH	A0
EOF	FF AB		OPEN	B0		XOR	F8
EQV	F9		OR	F7	-------------------		
ERASE	A5		OUT	9C			
ERL	E1		PAD	FF A5			
------------------- -------------------

--

 Figure 2.12 Numeral formats in text

N

 Octal number (&O) | 0B | XX : XX |

 Hexadecimal number (&H) | 0C | XX : XX |

-

---------------- Absolute address of the

 Line number (after RUN) | 0D | XX : XX | destination line for the
---------------- branch instruction

 in memory.

 Destination line number
---------------- for the branch instruction.

 Line number (before RUN) | 0E | XX : XX | After RUN, identification
---------------- code is made 0DH and the

 line number is changed to
 the absoulte address.

 Integer from 10 to 255 (%) | 0F : XX |

 Integer from 0 to 9 (%) | | 11 to 1A

Integer from 256 to 32767 (%) | 1C | XX : XX |

 Single precision real (!) | 1D | XX : XX : XX : XX |

 Double precision real (#) | 1F | XX : XX : XX : XX :

 : XX : XX : XX : XX |

 Binary (&B) | "&"| "B"| . . . Characters of "0" or "1"
------------------ following "&B"

--

Numbers called "identification codes" are assigned numeric values to
distinguish them from reserved words and variable names, and by referring to
them the following values can be recognised.

t

The high and low bytes of a 2-byte numeric value are stored in reverse.
Signed numeric values have only the intermediate codes + or - preceding the
identifying codes, numeral values themselves are always stored as positive
values. Floating-point notations are almost the same as the descriptions of
Math-Pack (Mathematical Package) in the APPENDIX, note that numerical values
are always stored as positive. Binary numbers (&B) do not have identifying
codes and are stored as ASCII codes.

cc

4. LINKING WITH ASSEMBLY LANGUAGE PROGRAMS

4

As described so far, MSX BASIC version 2.0 has powerful features, but, if you
wish to save execution time even more or to make full use of MSX2 hardware,
you should use assembly language. The following sections show how to call
assembly language programs from BASIC and gives the information you will
need.

nn

4.1 USR Function

4

To call the assembly language routine from BASIC, follow the steps described
below. The value in parenthesis of the USR function is passed to the assembly

language routine as an argument. The argument may be either an expression or
a string expression.

a

1. Specify the starting address of the assembly language program for the
execution, using DEF USR statement.
2. Call the assembly language program by USR function.
3. Execute RET (C9H) when returning from the assembly language routine to
BASIC.

B

e.g.) To call the assembly language program whose starting address is C000H:

e

DEFUSR=&HC000
A=USR(0)

AA

4.2 Data Exchange by the Argument and Return Value of USR Function

4

When the argument is passed from BASIC to the assembly language program, its
type can be checked by examining the contents of register A in the assembly
language program (see Table 2.21). Since the object value is stored in the
form as shown in Figure 2.13 according to the argument type, you can get the
value according to the format. As an example, List 2.1 shows a program which
receives an argument of the string type.

r

 Table 2.21 Argument types assigned to register A

A

2	2-byte integer type
3	String type
4	Single precision real type
8	Double precision real type

--

 Figure 2.13 How values are passed as arguments

H

2-byte integer type + 0 + 1 + 2 + 3
 Address pointed at by HL register --> -----------------------------

| XX | XX | Low | High |

 Note: "XX" may be anything

Single precision real type + 0 + 1 + 2 + 3
 Address pointed by HL register --> -----------------------------

|Expo- |Man- |Man- |Man- |
|nent |tissa |tissa |tissa |

-

Double precision real type + 0 + 1 + 7
 Address pointed by HL register --> --------------- --------

|Expo- |Man- | . . . |Man- |
|nent |tissa | . . . |tissa |
--------------- --------

-

String type + 0 + 1 + 2 These three
 Address pointed by DE register --> ---------------------- bytes are

| | Low | High | called the
---------------------- string

 ^ | | descriptor.
 Number of characters --+ +-------------+

 Points to the address
of the string

oo

List 2.1 Example of the argument of string type
===

=

;**
; List 2.1 print string with USR function
; to use, do DEF USR=&HB000 : A$=USR("STRING")
;**
;
CHPUT EQU 00A2H ;character output

;

ORG 0B000H

0

RDARG: CP 3
RET NZ ;parameter is not string

;

PUSH DE
POP IX ;IX := string descriptor
LD A,(IX+0) ;get string length
LD L,(IX+1) ;get string pointer (low)
LD H,(IX+2) ;get string pointer (high)
OR A
RET Z ;if length = 0

;

RD1: PUSH AF
LD A,(HL) ;get a characetr
CALL CHPUT ;put a character
POP AF
DEC A
RET Z
INC HL
JR RD1

R

END

E

===

==

On the other hand, these values passed as arguments can be passed to BASIC as
USR function values by changing them in the assembly language program. In
this case the type of return value can alse be changed to types other that of
the argument from BASIC by changing VALTYP (F663H). Note that the amount of
characters for a string cannot be changed.

cc

4.3 Making New Commands

4

In MSX the reserved words "CMD" and "IPL" are currently unused and by
changing the pointers to these words (FE0DH and FE03H) to jump to your own
assembly language routine, new commands can be built. List 2.2 shows a simple
example.

ee

List 2.2 Making CMD command
===

=

;***
; List 2.2 make CMD command (turn on/off the CAPS LOCK)
; to initialize command: DEF USR=&HB000 : A=USR(0)
; to use command: CMD
;***
;
CHGCAP EQU 0132H ;CAPS LAMP on/off
CAPST EQU 0FCABH ;CAPS LOCK status
HCMD EQU 0FE9DH ;CMD HOOK

;

ORG 0B000H

0

;----- CMD initialize ----- Note: Executing this section adds the
 CMD command

LD BC,5 ;NEW HOOK SET
LD DE,HCMD
LD HL,HDAT
LDIR
RET

R

;----- new HOOK data ----- Note: 5-byte data to be written into
 hook (FE0DH)

HDAT: POP AF
JP CAPKEY
NOP

N

;----- executed by CMD ----- Note: Actual CMD command

;

CAPKEY: CALL CHGCAP
LD A,(CAPST)
CPL
LD (CAPST),A
RET

R

END

E

===

==

The first "POP AF" written to the pointer in this case, discards the error
handling addresses stacked at "CMD" execution. Without this, the "RET"
command would jump to the error handling routine isntead of returning to
BASIC. It is a way to use this address for printing errors inside of user
routine.

r

These pointers are reserved for future expansion, so should not be used with
application programs on the market.

aa

4.4 Expansion of CMD command

4

For more sophisticated expansions of statements it is useful if arguments can
be passed to the CMD command. As the HL register points to the next location

after "CMD" in the BASIC text when the assembly language routine is called,
it can be done by appreciating the successive string. The following is a list
of internal routines, useful for these.

oo

* CHRGTR (4666H/MAIN) ---- Extract one character from text (see Figure 2.14)
Input: HL <-- Address pointing to text
Output: HL <-- Address of the extracted character

 A <-- Extracted character
 Z flag <-- ON at the end of line (: or 00H)
 CY flag <-- ON if 0 to 9

Purpose: Extract one character from the text at (HL + 1). Spaces are skipped.

PP

 Figure 2.14 Input/output state of CHRGTR

I

| Input |
| |
| --- BASIC text |
| . . . | A | | = | 0 | : | | B | = | 0 | . . . (in intermediate code |
| --- format, actually) |
| ^ |
| | |
HL
First execution

+-> A

. . .

^
HL

Second execution
----- -----
+-> A
--- CY flag is ON
. . .

^
HL

Third execution
----- -----
+-> A
--- Z flag is ON
. . .
--- the end of line
^
HL

--

* FRMEVL (4C64/MAIN) ---- Evaluate an expression in text (see Figure 2.15)
Input: HL <-- Starting address of the expression in text
Output: HL <-- Address after the expression

 [VALTYP (F663H)] <-- Value 2, 3, 4 or 8 according to the expression
 [DAC (F7F6H)] <-- Result of the evaluation of the expression

Purpose: Evaluate an expression and make output according to its type.

PP

 Figure 2.15 Input/output state of FRMEVL

I

| Input |
...

^
HL

Output

...

+---------------------------------------+

DAC

----- The case of double precision
VALTYP

--

* FRMQNT (542F/MAIN) ---- Evaluate an expression un 2-byte integer type.
Input: HL <-- Starting address of the expression in text
Output: HL <-- Address after the expression

 DE <-- Result of evaluation of the expression
Purpose: Evaluate an expression and make output in integer type (INT). When
the result is beyond the range of 2-byte integer type, an "Ovwrflow" error
occurs and the system returns to the BASIC command level.

oo

* GETBYT (521C/MAIN) ---- Evaluate an expression in 1-byte integer type.
Input: HL <-- Starting address of the expression in text
Output: HL <-- Next address of expression

 A, E <-- Result of expression evaluation
 (A and E contains the same value.)

Purpose: Evaluate an expression and make 1-byte integer output. When the
result is beyond the range of 1-byte integer type, an "Illegal function call"
error occurs and the execution returns to BASIC command level.

ee

* FRESTR (67D0/MAIN) ---- Register a string.
Input: [VALTYP (F663H)] <-- Type (if not string type, an error occurs)

 [DAC (F7F6H)] <-- Pointer to string descriptor
Output: HL <-- Pointer to string descriptor
Purpose: Register the result of the string type obtained by FRMEVL and obtain
its string descriptor. When evaluating a string, this is generally combined
with FRMEVL described above to use as follows:

w

 .
 .
 .
CALL FRMEVL
PUSH HL
CALL FRESTR
EX DE,HL
POP HL
LD A,(DE)
 .
 .
 .

* PTRGET (5EA4/MAIN) ---- Obtain the address for the storage of a variable
 (see Figure 2.16).

Input: HL <-- Starting address of the variable name in text
[SUBFLG (F6A5H)] <-- 0: Simple variable,

 other than 0: array variable
Output: HL <-- Address after the variable name

 DE <-- Address where the contents of the objective variable
is stored

Purpose: Obtain the address for the storage of a variable (or an array
variable). Allocation of the area is also done when the area for the
objective variable has not been allocated. When the value of [SUBFLG] is set
to other than 0, the starting address of the array is obtained, other than
individual elements of the array.

ii

 Figure 2.16 Input/output state of PTRGET

I

| Input --------------------------------- |
| . . . | A | A | = | B | B | . . . |
| --------------------------------- |
| ^ |
| | |
HL
SUBFLG

Output ---------------------------------
. . .

^
HL

| |
| ----------- address where the contents |
| DE | XX | XX | of variable AA reside |

-

| Input --- |
| . . . | A | A | (| 3 |) | = | B | B | . . . |
| --- |
| ^ |
| | |
HL
SUBFLG

Output ---
. . .

^
HL
----------- address where the contents
DE

-

| Input --- |
| . . . | A | A | (| 3 |) | = | B | B | . . . |
| --- |
| ^ |
| | |
HL
SUBFLG

Output ---
. . .

^
HL
----------- starting address of
DE

--

* NEWSTT (4601H/MAIN) ---- Execute a text
Input: HL <-- Address of the text to be executed
Output: ----
Purpose: Execute a text. The state of the text is necessary to be as same as
shown in Figure 2.17.

ss

 Figure 2.17 Memory setting for NEWSTT

M

Intermediate codes of BASIC are contained here.
 +-----------------+
 | |
 3AH 94H 00H

 | : | NEW | | . . .

 ^ word
 | stop
 HL

Since these internal routines are for BASIC texts, the same error handling as
BASIC is done when an error occurs. In this case, by changing H.ERROR
(FFB1H), the user can handle the error (the E register contains the error
number) (see List 2.3).

nn

List 2.3 Changing error handling routine
===

=

;**
; List 2.3 Your own error
; To use, do DEF USR=&HB000 : A=USR(0)
;**
;
HERR EQU 0FFB1H ;error hook
SYNERR EQU 2 ;syntax error code
CHPUT EQU 0A2H ;character output
NEWSTT EQU 4601H ;run
READYR EQU 409BH

4

ORG 0B000H
Note:

;----- command initialize ----- When this portion is executed, the error
handling routine is changed.

h

LD BC,5 ;SET NEW HOOK
LD DE,HERR
LD HL,HDAT
LDIR
RET

R

HDAT: JP ERROR
NOP
NOP

Note:
;----- error routine ----- Error handling body

E

ERROR: LD A,E ;when in error, E holds error code
CP SYNERR ;syntax error ?
RET NZ ;no

;

LD HL,DATA1 ;yes

LOOP: LD A,(HL) ;put new error message
CP "$"
JR Z,EXIT
PUSH HL
CALL CHPUT
POP HL
INC HL
JR LOOP

L

EXIT: JP READYR ;BASIC hot start

;

DATA1: DEFM OOHPS!! ;new error message
DB 07H,07H,07H,"$"

0

END

E

===

==

4.5 Interrupt usage

4

The Z80 CPU has INT and NMI interrupt terminals. The MSX, however, uses only
INT. The INT terminal gets 60 [Hz] signals, so timer interrupts are executed
60 times per 1 second. As the interrupt mode of Z80 is set to 1, 38H is
called when an interrupt occurs and then the system control jumps to the
timer interrupt routine, where various operations such as key input are done.

t

The timer interrupt routine jumps to hook H.TIMI (FD9FH) in mid course. Using
this hook enables the user to add a function to this timer interrupt routine.
Thogh there is ordinarily only a RET command, be careful when peripherals
such as disks are connected and this hook is already in use. In this case,
careless modifications causes peripherals to be disabled, so prearrangement
is necessary to make machines to execute that normally. List 2.4 is an
example of this handling and the interrupt usage.

ee

List 2.4 Correct usage of timer interrupt hook
===

=

;***
; List 2.4 How to use HOOK safety
; This routine uses TIMER INTERRUPT HOOK
; and turn on/off CAPS LOCK
; To start, do DEF USR=&HB000 : A=USR(0)
; To end, do DEF USR=&HB030 : A=USR(0)
;***
;
CHGCAP EQU 0132H ;CAPS LAMP on/off
CAPST EQU 0FCABH ;CAPS LOCK status
TIMI EQU 0FD9FH ;timer interrupt hook
JPCODE EQU 0C3H
TIMER EQU 020H

0

ORG 0B000H

0

;----- interrupt on ----- Note: restore the former hook
 when changing the hook

INTON: DI
LD HL,TIMI ;OLD HOOK SAVE
LD DE,HKSAVE
LD BC,5
LDIR

L

LD A,JPCODE ;NEW HOOK SET
LD (TIMI),A
LD HL,INT
LD (TIMI+1),HL
EI
RET

R

ORG 0B030H

0

;----- interrupt off ----- Note: restore the reserved hook and exit

;

INTOFF: DI
LD HL,HKSAVE
LD DE,TIMI
LD BC,5
LDIR
EI
RET

R

;----- interrupt routine -----

;

INT: PUSH AF
LD A,(CAPST)
OR A
JR Z,CAPON

Z

CAPOFF: LD A,(COUNT1)
DEC A
LD (COUNT1),A
JR NZ,FIN
LD A,TIMER
LD (COUNT1),A
XOR A
LD (CAPST),A
LD A,0FFH
CALL CHGCAP
JR FIN

F

CAPON: LD A,(COUNT2)
DEC A
LD (COUNT2),A
JR NZ,FIN
LD A,TIMER
LD (COUNT2),A
LD A,0FFH
LD (CAPST),A
XOR A
CALL CHGCAP

C

FIN: POP AF
CALL HKSAVE ;old HOOK call

;

RET

R

COUNT1: DEFB TIMER
COUNT2: DEFB TIMER

T

HKSAVE: NOP ;old HOOK save area
NOP
NOP
NOP
RET

R

END

E

===

==

5. NOTES ON SOFTWARE DEVELOPMENT

5

There are some matters, when developing the software for MSX, that should be
followed so as to make the software work without any problems on any MSX
machines. The following describes these matters and introduces information
that will help you develop software.

tt

* BIOS

*

The purpose of BIOS is to separate the hardware and the software and to make
the software still valid if the hardware changes. Applications for sale which
manage input and output should use BIOS (except for VDP).

m

BIOS is called through the jump table which begins at 0000H of MAIN-ROM.
Though MSX2 has a jump table on SUB-ROM, it is used for calling the extended
functions. The branch destination of the jump table or, the contents of BIOS
may be modified for the hardware modification or the extension of the
function, so applications should not call them directly. Thogh this book has
some examples that call addresses other than the BIOS jump table, you should
consider them for information only (see BIOS list in APPENDIX). Applications
can call Math-Pack and internal routines for the extended statements
described above. These will not be changed in the future.

dd

* Work area

*

F380H to FFFFH of MAIN-RAM cannot be used, as it is a work area for BIOS and
BASIC interpreter. Free space in the work area cannot be used, because it is
reserved for the future use. See "3.1 User's area" for the work area of the
disk.

dd

* Initialisation of RAM and stack pointer

*

The contents of RAM are unpredictable when the machine is powered and areas
other than system work are are not initialised. Applications should
initialise the work area. There was once an application which expected the
contents of RAM to be 00H and was unusable.

c

The value of the stack pointer when the INIT routine (see Section 7 of
Chapter 5) in the ROM cartridge is called is unpredictable and the value when

disk interface has been initialised is smaller than when not. For these
reasons some programs which did not initialise the stack pointer had
unpredictable results. Programs which are invoked by the INIT routine and
continue processing (that is, programs which do not need to use peripherals
such as disks or BASIC interpreter) should initialise the stack pointer.

ss

* Work area of extended BIOS

*

When using extended BIOS calls, a stack should be placed above C000H so that
CPU can refer to the work area even if the slot is switched over. For the
same reason, FCB of RS-232C should be above 8000H.

ss

* Work area of device drivers, etc.

*

Special attention should be paid for the allocation of the work area of
programs which reside in memory with another program at the same time,
programs such as the device driver or a subroutine called from BASIC.

p

The INIT routine of the cartridge changes BOTTOM (FC48H), reserves the area
between the old BOTTOM and new BOTTOM as its work area, and records the
address of the work area to 2-byte area SLTWRK (FD09H) allocated for each
slot. For more details, see Section 7 of Chapter 5.

ss

* Hook

*

When using the RS-232C cartridge, change the hook for an interrupt. For
example, if another cartridge uses an interrupt hook, the RS-232C cartridge
cannot use the same hook. To prevent this, the previous contents of the hook
(inter-slot call command for the interrupt handling routine of RS-232C
cartridge, in the example above) should be copied to another location, and,
when called by the hook, it should be called so that all cartridges intending
to use the hook can receive control (see Figure 2.18). For more details, see
Section 7 of Chapter 5.

SS

 Figure 2.18 Initialisation of the hook

I

Initialisation of the hook of program 1

I

------------- -------> -------------
| Hook | <---+ | Program 1 |
------------- +--- -------------

Initialisation of the hook of program 2

I

------------- -------> ------------- +---> -------------
| Hook | <---+ | Program 2 | ---+ | Program 1 |
------------- +--- ------------- <------- -------------

* VRAM capacity

*

The capacity of VRAM can be found by evaluating bits 1 and 2 of MODE (FAFCH)
(see Table 2.22).

((

 Table 2.22 Getting the information about the VRAM capacity

[FAFCH]		
---------------	VRAM Capacity	
Bit 2	Bit 1	
-------+-------+----------------		
0	0	16K (MSX1)
0	1	64K (MSX2)
1	0	128K (MSX2)

--

* BASIC version number

*

The following methods can be used for applications to find out the version
number of BASIC.

n

1. Read the contents of 2DH of MAIN-ROM (00H = version 1.0, 01H = version
2.0, and so on).
2. In version 2.0 or later versions, EXBRSA (FAF8H) contains the slot address
of SUB-ROM. When it has none (00H), the version is version 1.0.

oo

* International MSX

*

There are different kinds of MSX for various countries. The following items
are different by country:

a

- Keyboard arrangement, character set, PRINT USING format
- Timer interrupt frequency

-

The version of machine can be found by reading the ID byte information in ROM
(see Figure 2.19) and the correspondence for MSX of each country will be
accomplished (see Table 2.23).

aa

 Figure 2.19 Contents of ID byte

C

| 2BH | b0 --+
------- | character generator

 b1 |
| 0: Japan 1: United States, etc.

 b2 | 2: USSR
|

 b3 --+

 b4 --+
| date format

 b5 |
| 0:Y/M/D 1:M/D/Y 2:D/M/Y

 b6 --+

 b7 interrupt period (VSYNC)
 0:60Hz 1:50Hz

11

| 2CH | b0 --+
------- | keyboard

 b1 |
| 0:Japan 1:United States, etc.

 b2 | 2:France 3:United Kingdom
| 4:Germany 5:USSR 6:Spain

 b3 --+

 b4 --+
|

 b5 | information about PRINT USING
| or others

 b6 |
|

 b7 --+

 Table 2.23 MSX format for each country

			PRINT USING			
		Date	-------------------------------------			
Country	TV set		Initial	String	Re-	Curren-
		format	screen	length	place	cy
			mode	specif.	char.	symbol
-----------+--------------+----------+----------+--------+-------+---------						
Japan	NTSC (60Hz)	YY/MM/DD	Screen 1	&	@	(yen)
UK	PAL (50Hz)	DD/MM/YY	Screen 0	\	&	(pound)
Internat.	PAL (50Hz)	MM/DD/YY	Screen 0	\	&	$
(dollar)						
US	NTSC (60Hz)	MM/DD/YY	Screen 0	\	&	$(dollar)
France	SECAM (50Hz)	DD/MM/YY	Screen 0	\	&	$
(dollar)						
Germany	PAL (50Hz)	DD/MM/YY	Screen 0	\	&	$
(dollar)						
USSR	NTSC (60Hz)	MM/DD/YY	Screen 0	\	&	$
(dollar)						
Spain	PAL (50Hz)	MM/DD/YY	Screen 0	\	&	$
(dollar)|

--

* Escape sequence

*

MSX has the escape sequence feature (see Appendix), which can be used in the
PRINT statement of BASIC, and in console output of BIOS or BDOS call
(MSX-DOS). The escape sequence feature is a subset of DEC VT52 terminal and
Heathkit H19 terminal.

HH

* Returning to BASIC

*

- Warm start

-

After selecting a slot of MAIN-ROM, jump to 409BH of MAIN-ROM. If the work
area of BASIC has not been destroyed, the BASIC prompt will be displayed. The
contents of register and stack at the jump are ignored.

c

Another way is to execute the next command in internal routine NEWSTT (see
4.4 of Chapter 4) (see Figure 2.20)

44

 Figure 2.20 Input setting of NEWSTT for the warm start

I

 3AH 81H 00H

| : | END | | = (:END)

 ^ word
 | stop
 HL

* Auto start

*

In the case of simple game cartridges which do not use the BIOS or BASIC work
areas, the program can be invoked by writing a starting address for the
program to "INIT" in ROM header. But using this method prevents the initial
settings of another cartridge, so disk drives cannot be used.

s

To prevent this, the hook "H.STKE" is at FEDAH; write the inter-slot call
command in the program to be invoked at the execution on "INIT" routine of
the cartridge, and return to the system by RET command. Then after
initialising all cartridges and after preparing the DISK BASIC environment if
there is a disk, the hook is called, so the objective program can be invoked.
This method is also effective when there is no disk (see APPENDIX).

TT

Error code list

E

1. NEXT without FOR There is no FOR statement corresponding with
the NEXT statement.

t

2. Syntax error There is an error in syntax.

T

3. RETURN without GOSUB The RETURN statement does not correspond to
the GOSUB statement.

t

4. Out of DATA There is no data to be READ by the READ
statement.

s

5. Illegal function call There is an error in the function or numeric
value specification.

v

6. Overflow The numeric value has overflow.

T

7. Out of memory The free area has been exhausted.

T

8. Undefined line number There is no such a line number in the
program.

p

9. Subscript out of range The subscript value of the array variable

exceeds the declared range.

e

10. Redimensioned array The array is declared twice.

T

11. Division by zero The attempt to divide by zero is made. The
negative exponent of zero is done.

n

12. Illegal direct The statement which cannot be executed in the
direct mode is carried out directly.

d

13. Type mismatch There is a conflict in the data types.

T

14. Out of string space The string space is exhausted.

T

15. String too long The length of the string is longer than 255
characters.

c

16. String formula too complex The specified string is too complex.

T

17. Can't CONTINUE The CONT command cannot be executed.

1

18. Undefined user function An attempt was made to use the user-defined
function which has not been defined by
DEF FN statement.

D

19. Device I/O error An error occurred in input/output of device.

A

20. Verify error The program on cassette and the one in memory
are not the same.

a

21. No RESUME There is no RESUME statement in the error
handling routine.

h

22. RESUME without error The RESUME statement is used other than in
the error handling routine.

t

23. Undefined.

2

24. Missing operand Necessary parameters are not specified.

N

25. Line buffer overflow There are too many characters for the input
data.

d

26 to 49. Undefined.

2

50. FIELD overflow The field size defined in FIELD statement
exceeds 256 bytes.

e

51. Internal error An error occurred inside BASIC.

A

52. Bad file number File number which has not been OPENed is
specified. The specified file number exceeds
the number specified in MAXFILES statement.

t

53. File not found The specified file is not found.

T

54. File already open The file has already been OPENed.

T

55. Input past end The attempt to read the file is made after
reading the end of it.

r

56. Bad file name There is an error in the specification of the
file name.

f

57. Direct statement Data other than the program is found while
loading the ASCII format program.

l

58. Sequential I/O only Random access to the sequential file is made.

R

59. File not OPEN The specified file has not been OPENed yet.

T

60. Bad FAT Unusual disk format.

U

61. Bad file mode An incorrect input/output operation is made
in the OPENed mode.

i

62. Bad drive name There is an error in the drive name
specification.

s

63. Bad sector number There is an error in the sector number.

T

64. File still open The file has not been closed.

T

65. File already exists The file name specified in NAME statement
already exists on the disk.

a

66. Disk full The free area of the disk has been exhausted.

T

67. Too many files The number of files exceeds 112 (the
directory space has been exhausted).

d

68. Disk write protected The disk is protected from writing.

T

69. Disk I/O error Some trouble occurred in the disk
input/output.

i

70. Disk offline The diskette is not in.

T

71. Rename accross disk NAME statement is done across different
disks.

d

72. File write protected The file has the read-only attribute set.

T

73. Directory already exists The directory name specified in CALL MKDIR
statement already exists.

s

74. Directory not found The specified directory is not found.

T

75. RAM disk already exists Attempt to create the DOS 2 RAM disk when
it already exists is made.

i

76 to 255. Undefined.

77

* Note: Errors with codes 72 to 75 are added from version 2 of MSX
DISK-BASIC. In version 1 they are undefined.

D

Use larger numbers first for user error definition.

U

