
MSX2 TECHNICAL HANDBOOK

-

Edited by: ASCII Systems Division
Published by: ASCII Coprporation - JAPAN
First edition: March 1987

M

Text files typed by: Nestor Soriano (Konami Man) - SPAIN
March 1997

M

Changes from the original:

C

- Remarks (1) and (2) about the FCB format in version 2 of MSX-DOS have been
added.

a

- Description of function call 06H is modified. The name of this function in
the original text is "String output", and the setup description is "E
register <-- starting address of string to send to the console. When 0FF is
specified, the character will be sent to the console as character code."

s

- In description of function calls 13H (Deleting files) and 23H (File size
acquisition), the original text has "DE register <-- starting address of
opened FCB" in setup field. Instead of this, the correct setup explanation is
set.

s

- In description of function 26H (Random writing to the disk 2), the correct
term "FCB" is set instead of "DMA" in DE register setup explanation.

t

- In description of function 27H (Random readout 2), the phrase "When this
number is almost one, the data which has been read is set in the area
indicated by DMA" has been added.

i

-=-

--

CHAPTER 3 - MSX-DOS

C

Large capacity storage devices with high-speed access are necessary for
business applications. That is why a disk operating system was added to the
MSX machine. The DOS (disk operating system) is also required to handle the
large amount of data on the disk effectively. MSX-DOS is derived from MS-DOS
which is used widely on 16-bit machines. Thus, it represents the most
powerful DOS environment for Z-80 based machines. Chapter 3 describes the
basic operations of MSX-DOS and the use of the system calls.

bb

1. OVERVIEW

1

What kind of software is MSX-DOS? What does it offer to users? The following
sections describe and introduce the features, functions, and software
configurations of MSX-DOS.

cc

1.1 Features of MSX-DOS

11

* Consolidation of disk operating environment

*

MSX-DOS is the disk operating system for MSX computers. It works with any
version of MSX and can be operated on both the MSX1 and MSX2 without any
problem. Disk operation on MSX is always done via MSX-DOS. This is also true
concerning MSX DISK-BASIC, which uses BDOS calls for disk input/output.
MSX-DOS and DISK-BASIC use the same disk format so that file conversion
between BASIC and DOS is not necessary. This greatly increases operating
efficiency and allows more effective use of file resources when MSX-DOS is
used as the software development environment.

uu

* Compatibility with MS-DOS

*

MSX-DOS, created on the basis of MSX-DOS (ver 1.25) which is a disk operating
system for 16-bit personal computers, uses the same file format as MS-DOS. It
is compatible with MS-DOS at the file level so that MSX-DOS can read and
write files written on MS-DOS disks. In turn MS-DOS can read and write files
created by MSX-DOS. Both disk operating systems use similar commands, so
users who are familiar with MSX-DOS can easily use MS-DOS when upgrading to
16-bit machines.

11

* Using CP/M applications

*

MSX-DOS has system call compatibility with CP/M and can execute most programs
created on CP/M without any modification. Most CP/M applications can thus be
easily used with MSX-DOS. This opens up a large library of existing software
which can be run on the MSX machines.

ww

1.2 MSX-DOS Environment

11

* System requirements

*

To use MSX-DOS, a minimum configuration of 64K bytes RAM, a CRT, one disk
drive, and a disk interface ROM is required. If less than 64K bytes RAM is
installed, MSX-DOS cannot be used. MSX computers can only use MSX-DOS if they
have 64K bytes RAM or more. Since MSX2 computers always have 64K bytes or
more of RAM, they can always run MSX-DOS. A limited disk basic is used on
those machines with less than 64K bytes RAM. Disk interface ROM is always
supplied with the disk drive, and, on MSX machines with an internal disk
drive, it resides inside the machine. For those machines using disk
cartridges, it is in the cartridge.

cc

* System supported

*

MSX-DOS supports up to eight disk drives. On a one-drive system, it has a
2-drive simulation feature (it uses one drive as two drives by replacing
diskettes temporarily). It supports keyboard input, screen output, and
printer output.

pp

* Media supported

*

MSX-DOS, which has a flexible file manager that does not depend on the
physical structure of the disk, supports various media and uses 3.5 inch
double density disks as standard. Either a one-sided disk called 1DD or

two-sided disk called 2DD is used. Each of them uses either an 8-sector track
format so four kinds of media can be used. The Microsoft formats for these
four types are shown below.

ff

 Table 3.1 Media supported by MSX-DOS

--
| | 1DD, 9 | 2DD, 9 | 1DD, 8 | 2DD, 8 |
| | sectors | sectors | sectors | sectors |
|----------------------------+---------+---------+---------+---------|
media ID	0F8H	0F9H	0FAH	0FBH
number of sides	1	2	1	2
tracks per side	80	80	80	80
sectors per track	9	9	8	8
bytes per sector	512	512	512	512
cluster size (in sectors)	2	2	2	2
FAT size (in sectors)	2	3	1	2
number of FATs	2	2	2	2
number of recordable files	112	112	112	112
--

-

Note: See chapter 3 for the meanings of the above words.

NN

1.3 MSX-DOS System Resources

11

* Memory map

*

MSX-DOS consists of the following modules: COMMAND.COM, MSXDOS.SYS, and a
disk interface ROM. It resides in memory as shown in Figure 3.1 when MSX-DOS
is active. COMMAND.COM and MSXDOS.SYS are disk files until MSX-DOS is booted
and then read into RAM after that. Disk interface ROM includes a disk driver,
DOS kernel, and DISK-BASIC interpreter.

DD

 Figure 3.1 MSX-DOS memory map

0000H -----------------------
| system scratch area |

0100H |---------------------| --- 4000H ---------------------
	^	disk driver	
			DOS kernel
			DISK BASIC
			interpreter
	TPA 7FFFH ---------------------		
		disk interface ROM	

COMMAND.COM	V		

(0006H) |---------------------| ---
MSXDOS.SYS
work area

FFFFH -----------------------

--

The area 00H to FFH of RAM is called the system scratch area, which is used
by MSX-DOS for exchanging data with other programs. This area is important
when using system calls, which are described later. The area which begins at
0100H and ends where the contents of 0006H of RAM indicates is calles the TPA
(Transient Program Area). This area is accessible by the user. MSXDOS.SYS
always resides at a higher address than TPA (when destroyed, the result is
unpredictable), and COMMAND.COM is placed in TPA.

uu

* COMMAND.COM

*

The main operation of MSX-DOS is to accept typing commands from the keyboard
and execute them. In this case the program COMMAND.COM is responsible for the
process from getting a string to interpreting and executing it, or accepting
commands from the user interface. Programs executed by COMMAND.COM consists
of internal commands, batch commands, and external commands.

o

Internal commands are inside COMMAND.COM and on RAM. Typing an internal
acommand causes COMMAND.COM to call and execute it immediately.

a

For the external command, COMMAND.COM loads the routine from disk to TPA and
executes it (the execution of external commands always begins at 100H). In
this case COMMAND.COM frees its own area for the external command. That is,
COMMAND.COM might erase itself and writes the external command onto it, when
the external command is small enough and does not use the high-end of TPA,
COMMAND.COM would not be destroyed. When the external command ends with
"RET", MSXDOS.SYS examines whether COMMAND.COM has been destroyed (by using
checksum) and, if so, re-loads COMMAND.COM onto RAM and passes the control to
COMMAND.COM.

C

Batch commands are carried out by getting command line input from a batch
file instead of from the keyboard. Each step of the batch file can execute
any internal command or external command. It is possible that the batch
command executes another batch command, but the control will not return to
the caller after the called batch command is done.

tt

* MSXDOS.SYS

*

MSXDOS.SYS, core of MSX-DOS, controls disk access and communications with
peripherals. These MSXDOS.SYS functions are opened as "BDOS (Basic Disk
Operating System)" so that the user can use them. Each routine opened is
called a "system call", which is useful in developping software for managing
the disk (see chapter 4). Each execution is, however, not done by MSXDOS.SYS
itself but DOS kernel. MSXDOS.SYS is an intermediation which arranges
input/output requests from COMMAND.COM or external commands and passes them
to the DOS kernel.

t

MSXDOS.SYS includes a portion called BIOS other than BDOS, as shown in Figure
3.2. BIOS, which has been prepared to be compatible with CP/M, is not
normally used.

nn

 Figure 3.2 MSXDOS.SYS

-------------- --+
| BDOS | |
|------------| | MSXDOS.SYS

| BIOS | |
-------------- --+

--

* DOS kernel

*

The DOS kernel is the fundamental input/output routine which resides in the
disk interface ROM and executes BDOS functions of MSXDOS.SYS. Actually, any
system call function can be executed using the DOS kernel. DISK-BASIC
executes system calls by calling the DOS kernel directly.

ee

* Procedure for invoking MSX-DOS

*

MSX-DOS is invoked by the following procedure:

M

1. Resetting MSX causes all the slots to be examined first, and when two
bytes, 41H and 42H, are written in the top of the examined slot, the slot is
interpreted as connected to a certain ROM. When connected with ROM, the INIT
(initialize) routine whose address is set to the header portion of ROM is
carried out. In the case of the INIT routine of the disk interface ROM, the
work area for the drive connected to the interface is allocated first.

w

2. When all slots have been examined, FEDAH (H.STKE) is then referred to.
Unless the contents of this address is C9H (unless a certain routine is set
to the hook of H.STKE during INIT routine), the environment for DISK-BASIC is
prepared and execution jumps to H.STKE.

p

3. When the contents of H.STKE is C9H in the examination above, the cartridge
with TEXT entry is searched in each slot and, if found, the environment for
DISK-BASIC is prepared, and then the BASIC program at the cartridge is
carried out.

c

4. Then, the contents of the boot sector (logical sector #0) is transferred
to C000H to C0FFH. At this time, when "DRIVE NOT READY" or "READ ERROR"
occurs, or when the top of the transferred sector is neither EBH nor E9H,
DISK-BASIC is invoked.

D

5. The routine at C01EH is called with CY flag reset. Normally, since code
"RET NC" is written to this address, nothing is carried and the execution
returns. Any boot program written here in assembly language is invoked
automatically.

a

6. RAM capacity is examined (contents of RAM will not be destroyed). Less
than 64K bytes causes DISK-BASIC to be invoked.

t

7. The environment for MSX-DOS is prepared and C01EH is called with a CY flag
set. MSXDOS.SYS is loaded from 100H, and the execution jumps to 100H. After
this, MSX-DOS transfers itself to a high order address. If MSXDOS.SYS does
not exist, DISK-BASIC is invoked.

n

8. MSXDOS.SYS loads COMMAND.COM from 100H and jumps to its start address.
COMMAND.COM also transfers itself to a high order address and then begins
to execute. If COMMAND.COM does not exist, the message "INSERT A DISKETTE"
appears and the execution waits for the correct diskette to be inserted in
the drive.

t

9. At the first boot for MSX-DOS, when a file named "AUTOEXEC.BAT" exists, it

is carried out as a batch file. When MSX-DOS is not invoked and DISK-BASIC
starts, if a BASIC program named "AUTOEXEC.BAS" exists, it will be carried
out.

oo

2. OPERATION

2

This section describes how to type command line input from the keyboard. This
is the basis of MSX-DOS operations. Several examples of actual use and their
explanations will be given for the commands used in MSX-DOS.

ee

2.1 Basic Operations

22

* Message at startup

*

When MSX-DOS is invoked, the following message appears on the screen:

WW

 Figure 3.3 Screen at atartup

| |
| MSX-DOS version 1.03 |
| Copyright 1984 by Microsoft |
| |
| COMMAND version 1.11 |

-

The upper two lines show the version of MSXDOS.SYS and its copyright. The
last line shows the version of COMMAND.COM.

ll

* Prompt

*

Then, a prompt (input request symbol) appears under the version description.
The prompt for MSX-DOS consists of two characters: the default drive name
plus ">".

pp

* Default drive

*

The term "default drive" as the first character of the prompt is the drive to
be accessed automatically when the drive name is omitted. When the default
drive is A, for example, referring to a file "BEE" on drive "B" needs to be
typed as "B:BEE". A file "ACE" on drive A, however, can be typed simply as
"ACE" omitting the drive name.

"

 ex.1) A>DIR B:BEE (<-- referring to "BEE" on drive B)
 ex.2) A>DIR ACE (<-- referring to "ACE" on drive A)

* Changing default drive

*

When using systems with more than one drive, typing "B" causes the default
drive to be changed to B. When changing the default drive to C to H, "C" or

the appropiate letter is needed. Specfification of a drive which does not
exist causes an error.

e

 ex.1) A>B:
 B> (<-- Default drive has been changed to B)

(

 ex.2) A>K:
 Invalid Drive Specification
 A> (<-- Drive K does not exist.

 Default drive is not changed.)

* Command input

*

When a prompt is displayed it indicates that MSX-DOS requests a command to
be input. By typing in a command, MSX-DOS can get an instruction.

b

Three forms of commands exist as shown in Table 3.2. The COMMAND.COM program
interprets and executes these commands. MSX-DOS operations are repeats of the
actions "give a command - make COMMAND.COM execute it".

aa

 Table 3.2 Three forms of commands

| (1) Internal | Command inside COMMAND.COM. Assembly routine on RAM. |
| command | Thirten commands are prepared as described later. |
|--------------+--|
| (2) External | Assembly routine on disk. It is loaded from disk at |
| command | execution. Its file name has an extension "COM". |
|--------------+--|
(3) Batch	Text file containing one or more commands. Commands
command	are executed orderly (batch operation). File names
	have the extension "BAT".

--

* File name convention

*

Files handled by MSX-DOS are expressed by a "file spec" which is described
below:

b

(1) File spec is expressed in the form "<drive>:<file name>".

(

(2) <drive> is a character from A to H. When specifying the default drive, it
can be omitted as well as the colon ":" following it.

c

(3) <file name> is expressed in the form of "<filename>.<extension>".

(

(4) <filename> is a string containing one or more (up to 8) characters. When
more than 8 characters are sepcified, the ninth and subsequent characters are
ignored.

i

(5) <extension> is a string containing up to 3 (including zero) characters.
When more than 3 characters are specified, 4th and subsequent chartacters are
ignored.

i

(6) <extension> can be omitted as well a preceding period ".".

(

(7) Characters which are available in <filename> and <extension> are shown in
Table 3.3.

T

(8) Cases are not sensitive. Capital letters and small letters have the same
meaning.

mm

 Table 3.3 Available characters for file name

| Available | A to Z 0 to 9 $ & # % () - @ ^ { } ' ` ! |
| characters | characters corresponding to character codes 80H to FEH |
|-------------+---|
Unavailable	~ * + , . / : ; = ? []
characters	characters corresponding to character codes 00H to 20H
	and 7FH, FFH

--

* Wildcards

*

Using a special character called a "wildcard" in the description of
<filename> and <extension> of the file specification causes files with common
characters to be specified. Wildcards are "?" and "*".

c

(1) "?" is a substitution for one character.
 ex) "TEXT", "TEST", "TENT" <-- "TE?T"
 "F1-2.COM", "F2-6.COM" <-- "F?-?.COM"

(2) "*" is a substitution for a string with any length.
 ex) "A", "AB", "ABC" <-- "A*"
 "files with an extension .COM" <-- "*.COM"
 "all files" <-- "*.*"

When comparing existing file names and file names with wildcards, the portion
less than 8 characters of <filename> and the portion less than 3 characters
of <extension> are considered to be padded with spaces (" "). Thus, a
specification "A???.??" is not expanded to "ABCDE.123" but to "AZ.9", as
shown in Figure 3.4.

ss

 Figure 3.4 Wildcard expansion

 --------------------------------- -------------
ABCDE.123 --> | A | B | C | D | E | | | | | 1 | 2 | 3 |

 --------------------------------- -------------
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
| | | | | | | | | | |
O O O O X O O O O O X
| | | | | | | | | | |
V V V V V V V V V V V

 --------------------------------- -------------
 A???.?? --> | A | ? | ? | ? | | | | | | ? | ? | |

 --------------------------------- -------------
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
| | | | | | | | | | |
O O O O O O O O O O O

| | | | | | | | | | |
V V V V V V V V V V V

 --------------------------------- -------------
 AZ.9 --> | A | Z | | | | | | | | 9 | | |

 --------------------------------- -------------

An asterisk (*) is interpreted as either 8 question marks or 3 question marks
(?) depending on if it is in the file name position or file extension
position. For example, a file name "A*B" is not interpreted as "any strings
which begin with A and end with B". It is interpreted as "any strings which
begin with A", as shown below.

b

A*B ("*" is expanded to 8 "?"s)
 |
 V
A????????B (Characters after 8th are deleted)
 |
 V
A???????

AA

* Device name

*

MSX-DOS does not need special commands for data input/output with
peripherals. This means that it considers each objective device as a certain
file (device file) and input/output actions are done by reading or writing to
or from this file. This enables MSX-DOS users to treat input/output devices
in the same way as files on a disk. Five devices are supported as standard by
MSX-DOS as shown in Table 3.4 and are specified with proper names. For this
reason, these names can not be used to specify disk files. These device names
with drive specifications or extensions are also treated as simple device
names.

nn

 Table 3.4 Device names

--
| Device name | Input/output device to be specified |
|-------------+--|
	Reserved name for input/output expansion
AUX	which normally has the same effect as NUL
-------------+--	
CON	Console (keyboard for input, screen for OUTPUT)
-------------+--	
LST	Printer (ouput only; cannot be used for input)
-------------+--	
PRN	Printer (same as LST)
-------------+--	
	Special device used as a dummy when the result is not
NUL	desired to be displayed on the screen or put in a file.

| | When used for input, always EOF. |
--

--

* Input functions using a template

*

A "template" is a character buffer area and can be used for command input.
The template contains the previous command line most recently entered. It is
possible to use the template for easier command entry. By taking advantage of
this template feature, it is easy to execute previous commands again or to
execute the command partially modified. The keys listed in Table 3.6 are used
for the template operation.

ff

* Other special keys

*

In addition to the template operation keys, the following control keys are
also available. These special key functions also support some other system
calls described later.

cc

 Table 3.5 Special key functions

| | Function |
|-------+---|
^C	stops command currently executed
^S	pauses screen output until any key is pressed
^P	send characters to the printer at the same time
	they appear on the secreen
^N	resets ^P and send characters only to the secreen
^J	feeds a line on the screen and continue input

--

 Table 3.6 Template functions

| Name | Keys used | Functions |
|----------+--------------+---|
| COPY1 | RIGHT, ^\ | Gets one character from the template and |
| | | displays it in the command line |
|----------+--------------+---|
		Gets characters before the character to be
COPYUP	SELECT, ^X	typed next (by keyboard) from the template
		and displays them on the command line
----------+--------------+---		
		Gets all characters from the location which
COPYALL	DOWN, ^_	the template is currently referring to the
		end of the line and displays them on the
		command line
----------+--------------+---		
SKIP1	DEL	Skips one character of the template
----------+--------------+---		
SKIPUP	CLS, ^L	Skips template characters before the
		character to be typed next (by keyboard)
----------+--------------+---		
VOID	UP, ESC, ^^,	Discards current line input not changing

| | ^U, ^[| the template |
|----------+--------------+---|
		Discards one character input and returns
BS	LEFT, BS,	the location referred by the template
	^H, ^]	by one character
----------+--------------+---		
		Switches insert mode/normal input mode,
INSERT	INS, ^R	in insert mode, displays keyboard input
		on the command line with fixing the
		location referred by the template
----------+--------------+---		
NEWLINE	HOME, ^K	Transfers the contents of current command
		line to the template
-------------------------+---		
	Feeds a line on screen but continues	
Return	getting input. Transfers the contents of	
key	current command line to the template	
	and executes it	
-------------------------+---		
Keys other	Displays a character corresponding to the	
than above	key on the command line and skips one	
	character of the template	

--

 Table 3.7 Template operation examples

		Contents of template ("-"
Keyboard input	Command line display	indicates location currently
		referred to)
-------------------+----------------------+------------------------------		
DIR ABCDE	A>DIR ABCDE	---------
RETURN	A>	DIR ABCDE
		-
DOWN	A>DIR ABCDE	DIR ABCDE
		-
LEFT LEFT LEFT	A>DIR AB	DIR ABCDE
		-
INS XYZ	A>DIR ABXYZ	DIR ABCDE
		-
RIGHT RIGHT RIGHT	A>DIR ABXYZCDE	DIR ABCDE
		-
UP	A>	DIR ABCDE
		-
DOWN	A>DIR ABCDE	DIR ABCDE
		-
UP	A>	DIR ABCDE
		-
XXX	A>XXX	DIR ABCDE
		-
DOWN	A>XXX ABCDE	DIR ABCDE
		-
HOME	A>XXX ABCDE	XXX ABCDE
		-

-

-

* Disk errors

*

When an error occurs during disk access, MSX-DOS retries sometimes. Still
more errors cause MSX-DOS to display the following message and inquire what
to do with them. Press one of the keys A, R, or I.

tt

 Figure 3.5 Error display

| |
| <error type> error <action> drive <drive name> |
| ------------ -------- ------------ |
| | | | |
| ----------------- ----------- ---------- |
| | Write protect | | Reading | | A to H | |
| | Not ready | | Writing | ---------- |
| | Disk | ----------- |
| ----------------- |
| |
| Abort, Retry, Ignore? |
Abort: stops the disk access and ends the command execution
Retry: tries again
Ignore: stops the disk access and continues the command execution

-

The following error might occur other than listed above. It indicates that
the pointer in FAT is pointing to a cluster which does not exist. When this
error occurs, the diskette will be unusable.

e

Bad FAT

BB

2.2 Internal commands

2

Internal commands are assembly language programs grouped together in
COMMAND.COM. It is not necessary to read them from the disk so they are
executed fast. Following are 13 internal commands. This section describes
their use.

t

BASIC jumps to MSX DISK-BASIC
COPY copies a file
DATE displays or modifies date
DEL deletes a files
DIR displays a list of files
FORMAT formats a disk
MODE modifies number of characters to be displayed

 in one line
PAUSE pauses a batch command operation
REM puts a comment line in a batch command
REN renames a file name
TIME displays or modifies time
TYPE prints the contents of a file

VERIFY turns on/off the verify mode

VV

* BASIC

*

form: BASIC [<file spec>]

B

Starts DISK-BASIC. This is not done by loading BASIC onto RAM but by
selecting BASIC-ROM in 0000H to 7FFFH by switching the slot, so it starts
immediately. When <file spec> is specified, the corresponding BASIC program
is automatically read and executed. To return to the MSX-DOS environment from
BASIC, execute "CALL SYSTEM".

BB

* COPY

*

This command copies the contents of one file to another. Specifying
parameters enables various options.

pp

(1) File duplication

(

form COPY <file spec 1> <file spec 2>

C

Duplicates the file specified by <file spec 1> into a file specified by <file
spec 2>. Files having the same names cannot be created on the same disk. On
different disks, specifying the same names is possible.

d

examples:

ee

 A>COPY ABC XYZ <-- copies file "ABC" and makes a file "XYZ".

<<

 A>COPY B:ABC XYZ <-- copies a file "ABC" on drive B and makes
 a file "XYZ".

 A>COPY B:ABC C:XYZ <-- copies a file "ABC" on drive B and makes
 a file "XYZ" on drive C.

When copying files, either ASCII or binary mode may be selected. The "/A"
swith specifies ASCII mode and the "/B" switch specifies binary mode. If no
mode is specified, binary mode is selected by default (except when combining
files, described in (4) below, when ASCII is the default mode). Table 3.8
shows the differences between the ASCII and the binary modes.

ss

 Table 3.8 ASCII mode and binary mode

| | Read from source file | Write to destination file |
|-----------+-----------------------------------+---------------------------|
|ASCII mode | ignore after 1AH (file end mark) | add one byte 1AH to end |
|Binary mode| read as long as physical file size| write without modification|

--

examples:

e

 A>COPY/A ABC XYZ <-- ABC to XYZ (both files are in ASCII mode)

<

 A>COPY ABC/A XYZ/B <-- reads ABC in ASCII mode and writes it to XYZ
 in binary mode

(2) File duplication to another disk drive

(

form COPY <file spec> [<destination drive>:]

C

Copies a file specified by <file spec> to <destination drive> under the same
file name. When <destination drive> is omitted, it is copied to the default
drive. The drive name included in the <file spec> must not be the same as the
<destination drive>.

<

More than one file can be copied by using wildcards in the <file spec>. In
this case, the file name is displayed on the screen each time the file is
copied.

c

examples:

e

 A>COPY *.COM B: <-- copies any files with extension "COM"
 on default drive to drive B

 A>COPY B:ABC <-- copies a file ABC to default drive

<<

(3) Simultaneous duplication of many files

(

form COPY <file spec 1> <file spec 2>
 ------------- -------------

 | |
 wildcard description wildcard description

When <file spec 2>, the destination, is described using wildcards, the
portions corresponding to wildcards are replaced with corresponding
characters in <file spec 1>. For example, when

c

 COPY AB-07.021 FL?X*.V??

is executed, it is interpreted as shown in figure 3.6 and a file "FL-X7.V21"
is created.

ii

 Figure 3.6 Wildcard specification of destination file

--------------------------------- -------------
| F | L | ? | X | ? | ? | ? | ? | | V | ? | ? | <file spec 2>
--------------------------------- -------------
 | | | |
 V V V V
--------------------------------- ------------- Only wildcard portion
| F | L | - | X | 7 | | | | | V | 2 | 1 | is replaced with
--------------------------------- ------------- <file spec 1>

 ^ ^ ^ ^ ^ ^ ^
 | | | | | | |

--------------------------------- -------------

| A | B | - | 0 | 7 | | | | | 0 | 2 | 1 | <file spec 1>
--------------------------------- -------------

--

Using wildcards in the specification of <file spec 1> enables the duplication
of many files at the same time.

o

examples:

e

 A>COPY *.ASM *.MAC <-- makes files with extension "MAC" from
 any files with extension "ASM"

 A>COPY A*.* B:Z*.* <-- Any files beginning with the character
 A are copied to files beginning with
 the character Z on drive B

(4) File concatenation

(

form COPY <multiple file spec> <file name>

 |
 wildcard specification, or
 multiple file spec connected by "+"

When one destination file receives more than one source file, the contents of
all source files are concatenated and stored to the specified destination
file. When specifying more than one source file, wildcards are available, and
file specs can also be copied by using the plus sign.

f

When files are concatenated, ASCII mode is selected by default and 1AH is
considered the file end mark. Thus, concatenating binary files including data
1AH by the COPY command causes data after 1AH to be discarded. To prevent
this, specify /B switch and use COPY command in binary mode.

t

If more than one wildcard appears in the specification of source files, the
second wildcard and after are expanded referring to original file names, as
in paragraph (3) above. This permits concatenation of similar files at the
same time.

s

examples:

e

 A>COPY X+Y+Z XYZ <-- concatenates X, Y, AND Z and stores
 in a file XYZ

 A>COPY *.LST ALL <-- concatenates any files with extension
 "LST" and stores in a file ALL

 A>COPY /B *.DAT ALL <-- concatenates any ".DAT" files in
 binary mode

 A>COPY ASC/A+BIN/B AB/B <-- concatenates an ASCII file ASC and a
 binary file BIN and stores in a
 file AB

 A>COPY *.LST+*.REF *.PRN <-- concatenates files named same with
 extension "LST" and extension "REF"
 and makes a file with extension "PRN"

* DATE

*

form DATE [<month>-<day>-<year>]
 - -
 | |

|
 "/" and "." are also allowed.

Sets the date in the internal CLOCK-IC. For MSX machines without a CLOCK-IC,
it is written to the specific work area. Creations or modifications of files
on MSX-DOS cause this date information to be recorded for each file.

o

When the DATE command is executed without specifying <month>/<day>/<year>,
the date currently set is displayed with a request for a new date as shown
below. Pressing only the RETURN key here leaves the date unchanged.

b

Current date is <day of week> <month>-<day>-<year>
Enter new date:

E

The format of the date to be set by the DATE command has three fields:
<year>, <month>, and <day>. Each field is separated by "-", "/", or ".". Each
field can have the following numerical values:

f

<year>: 1980 to 2079
0 to 79 (considered as 2000 to 2079)
80 to 99 (considered as 1980 to 1999)

<month>: 1 to 12
<day>: 1 to 31

1

Foreign versions of MSX-DOS have different date formats: <month>-<day>-<year>
or <day>-<month>-<year>.

oo

* DEL

*

form DEL <file spec>
ERASE is also allowed

E

Deletes the specified file. Wildcards can be used to specify more than one
files.

f

Since "DEL *.*" causes all files on the diskette to be deleted, in this case,
an acknowledgement is required.

a

A>DEL *.*
Are you sure (Y/N)?

A

Pressing "Y" or "y" causes all files to be deleted.

P

"ERASE" may be used the same way as the DEL command.

""

* DIR

*

form DIR [<file spec>] [/W] [/P]

D

The following information about the specified at <file spec> is listed from
the left side in one line.

t

<file name> <file size> <date> <time>

<

The fields <date> and <time> show when the file was created or last
modified. When this information is longer than one line, items displayed near
the right side are omitted.

t

In addition to the usual wildcards, the following abbreviations for <file
spec> can be used.

s

Abbreviation Formal notation

F

DIR = DIR *.*
DIR <drive>: = DIR <drive>:*.*
DIR <filename> = DIR <filename>.*
DIR .<extension> = DIR *.<extension>

D

When the /W switch is specified, only <filename>s are padded to one line.
When the /P switch is specified, the listing is stopped after each display
page to wait for any key input.

p

examples:

e

 A>DIR <-- displays information for all files on drive A

<

 A>DIR B: <-- displays information for all files on drive B

<

 A>DIR TEST <-- displays information for all files
 having <filename> "TEST"

 A>DIR /W <-- displays all file names of drive A

<<

* FORMAT

*

form FORMAT

F

Formats a diskette in MSX-DOS format. In other words, directories and FAT are
initialised and any files are erased. Since MSX-DOS has the same disk format
as MS-DOS, the formatted diskette is also read or written by MS-DOS.

a

When executing the FORMAT command, an inquiry

W

Drive name? (A,B) (<-- Depends on number of drives)

(

is made for the name of the drive containing a disk to be formatted.
Answering "A" or "B" causes the menu to be displayed when a drive that can
select one-sided and two-sided formats is being used. After specifying the
type of format,

t

Strike a key when ready

S

is displayed to wait for a key input. Pressing any key starts formatting. See
the disk drive manual for the format menu.

t

t

* MODE

*

form MODE <characters per line>

M

Sets the number of characters to be displayed in one line on the screen.
<characters per line> can have a value from 1 to 80 and the screen mode
depends on that value:

d

<characters per line> Screen mode
1 to 32 GRAPHIC 1 (SCREEN 1)

 33 to 40 TEXT 1 (SCREEN 0:WIDTH 40)
 41 to 80 TEXT 2 (SCREEN 0:WIDTH 80)

TT

* PAUSE

*

form PAUSE [<comment>]

P

MSX-DOS has a "batch operation" feature which automatically executes a series
of commands written in a text file. During the batch operation, you may want
to stop command execution temporarily. One example would be for the user to
exchange disks. PAUSE can be used in such cases.

e

When this command is executed,

W

Strike a key when ready...

S

is displayed and a key input is expected. Pressing any key other than Ctrl-C
here ends the PAUSE command and proceeds to the next one. Pressing CTRL-C
abandons the batch operation. Any kind of comments can follow "PAUSE". This
makes it possible to display the purpose of the request for the key input.

mm

* REM

*

form REM [<comment>]

R

REM is used to write a comment in the batch command. It does nothing as a
command. A space between "REM" and <comment> is required.

cc

* REN

*

form REN <file spec> <file name>
RENAME is also allowed

R

REN changes the file name specified by <file spec>. Wildcards can be used in
both <file spec> and <file name>. Specifying wildcards for <file name> causes
these wildcards to be replaced with corresponding characters of the <file
spec> (see COPY command).

s

Any attempt to change a file name to a name already in use will cause an
error.

e

examples:

e

 A>REN ABC XYZ <-- changes the file name "ABC" to "XYZ"

 A>REN B:ABC XYZ <-- changes the file name "ABC" on drive B to "XYZ"

 A>REN *.BIN *.COM <-- changes any files with the extension "BIN" to "COM"

* TIME

*

form TIME [<hour>[:<minute>[:<second>]]]

T

TIME sets the time for the internal CLOCK-IC. Nothing happens to machines
that do not have a CLOCK-IC. When a file is created on MSX-DOS, time
information set here is recorded for each file.

i

Executing the TIME command without specifying the time causes the current
time setting to be displayed as shown below. Then there is an input request
for a new time. Pressing only the RETURN key does not change the time.

f

Current time is <hour>:<minute>:<second>:<second/100><p or a>
Enter new time:

E

The punctuation mark ":" separates the three TIME command fields of <hour>,
<minute>, and <second>. Fields after <minute> or <second> may be omitted or
considered to be 0. Each field can have the following values:

c

<hour>: 0 to 23
 12A (represents midnight)
 0A to 11A (represents midnight to 11 o'clock

 in the morning)
 12P (represents noon)
 1P to 11P (represents 1 o'clock to 11 o'clock

 in the evening)
<minute>: 0 to 59
<second>: 0 to 59

<

examples:

e

 A>TIME 12 <-- sets time to 12:00:00

<

 A>TIME 1:16P <-- sets time to 13:16:00

<<

* TYPE

*

form TYPE <file spec>

T

The command TYPE displays the contents of a file specified by <file spec>.
Using wildcards in <file spec> causes the first of the corresponding files to
be displayed. This command is for ASCII files, and displaying binary files
causes unreadable control characters to be sent to the screen.

cc

* VERIFY

*

form VERIFY [ON|OFF]

V

VERIFY sets/resets the verify mode. When the verify mode is turned ON, after
data is written to the disk, it is always read to ensure that it was written

correctly. This is why disk access takes longer. "VERIFY OFF" is set by
default.

dd

2.3 Batch Command Usage

2

MSX-DOS has a batch feature that allows a series of commands listed in the
order of operation to be executed automatically. The file containing this
procedureis called a "batch file" and the series of operations defined by a
batch file is called a "batch command".

b

A batch file uses the extension ".BAT". Typing only the file name (the
extension ".bat" is not typed) at the command line prompt causes MSX-DOS to
execute the commands in the file line by line.

e

For example, let us consider the following operation:

F

1. Copy all files on drive A with the extension ".COM" onto drive B.
2. List all "COM" files on drive B.
3. Delete all "COM" files on drive A.

3

This operation could be achieved by issuing the following commands to
MSX-DOS:

M

A>COPY A:*.COM B:
A>DIR B:*.COM /W
A>DEL A:*.COM

A

If these three lines are combined into a batch file called "MV.BAT", the
command line input "MV" will automatically execute the operation shown above.
The following list illustrates this.

T

A>COPY CON MV.BAT -+
COPY A:*.COM B: | creates "MV.BAT"
DIR B:*.COM /W |
DEL A:*.COM -+
^Z Ctrl-Z + RETURN key input

A>TYPE MV.BAT -+
COPY A:*.COM B: | to confirm the contents of "MV.BAT"
DIR B:*.COM /W |
DEL A:*.COM -+

A>MV invokes the batch command "MV"
A>COPY A:*.COM B: reads the first line automatically and executes it

.

.

.
A>DIR B:*.COM /W reads the second line automatically and executes it

.

.

.
A>DEL A:*.COM reads the third line automatically and executes it

.

.

.

.

A batch operation may be interrupted by pressing Ctrl-C. When Ctrl-C is

entered during batch operations, the request shown in Figure 3.7 is displayed
on the screen.

oo

 Figure 3.7 Interrupt of the batch operation

| |
| Terminate batch file (Y/N)? |

-

Selecting "Y" here terminates the batch command and returns to MSX-DOS.
Selecting "N" reads the next line of the batch file and continues the
execution of the batch command.

ee

* Batch variables

*

For more flexible use of the batch command, any string can be passed as
parameters from the command line to the batch command. Parameters passed are
referred to with the symbols "%n" where n is any number from 0 to 9. These
"%n" symbols are called batch variables.

"

Batch variables %1, %2, ... correspond to parameters specified in the command
line from left to right, and %0 is for the name of the batch command itself.

ll

 Figure 3.8 Examples for batch variables usage

| |
| A>COPY CON TEST.BAT creates a batch command |
| REM %0 %1 %2 %3 |
| ^Z |
| 1 file copied |
| A>TYPE TEST.BAT |
| REM %0 %1 %2 %3 a batch command to display 3 arguments |
| |
| A>TEST ONE TWO THREE FOUR executes the batch command, |
| A>REM TEST ONE TWO THREE giving arguments to it |
| A> |

--

* AUTOEXEC.BAT

*

The batch file named "AUTOEXEC.BAT" is used as a special autostart program at
MSX-DOS startup. When MSX-DOS is invoked, COMMAND.COM examines whether
AUTOEXEC.BAT exists and, if so, executes it.

AA

2.4 External Commands

2

External commands exist on the diskette as files with the extension ".COM",
and typing the external command name (except for the extension) causes the
command to be executed in the following manner.

c

1. loads an external command after 100H
2. calls 100H

22

* Developing external commands

*

Assembly language routines created to work in memory at location 100H and
saved under file names with the extension ".COM" are called external commands
and can be executed from MSX-DOS.

a

For example, consider a program to produce a control code "0CH" by using
one-character output routine (see system calls) and clear the screen. This is
an 8-byte program as shown below.

aa

List 3.1 Contents of CLS.COM
===

=

1E 0C LD E,0CH ; E := control-code of CLS
0F 02 LD C,02H ; C := function No. of CONSOLE OUTPUT
CD 05 00 CALL 0005H ; call BDOS
C9 RET

R

===

==

Writing these 8 bytes to a file named CLS.COM produces the external command
"CLS" to clear the screen. The following sample program uses the sequential
file access feature of BASIC to make this command. After this program is run,
the CLS command is created on the diskette. Confirm that the command actually
works after returning to MSX-DOS.

ww

List 3.2 Creating CLS.COM

L

===

=

100 '***** This program makes "CLS.COM" *****
110 '
120 OPEN "CLS.COM" FOR OUTPUT AS #1
130 '
140 FOR I=1 TO 8
150 READ D$
160 PRINT #1,CHR$(VAL("&H"+D$));
170 NEXT
180 '
190 DATA 1E,0C,0E,02,CD,05,00,C9

1

===

==

* Passing arguments to an external command

*

When creating an external command, there are two ways to pass arguments from
the command line to the external command. First, when passing the file names
to the command line as arguments, use 5CH and 6CH in the system scratch area.
COMMAND.COM, which always considers the first and second parameters as file

names when external commands are executed, expands them to a drive number (1
byte) + file name (8 bytes) + extension (3 bytes) and stores them in 5CH and
6CH. These are in the same format as the first 12 bytes of FCB, so setting
these address as first addresses of FCB permits various operatuons.

t

However, since in this method only 16 bytes differ from the starting
addresses of two FCBs, either 5CH or 6CH (only) can be used as a complete
FCB. Next, when passing arguments other than file names (numbers, for
instance) or creating an external command handling more than three file
names, COMMAND.COM stores the whole command line, which invoked the external
command, except for the command line itself in the form of number of bytes (1
byte) + command line body, so it can be used by interpreting it in the
external command properly. See list 3.3 of section 4 for an example of
passing arguments using this DMA area.

pp

3. STRUCTURE OF DISK FILES

3

Information about the structure of data on the disk and how it is controlled
is important when acessing the disk using system calls. This section begins
with a description about "logical sectors" which are the basic units for
exchanging data with the disk on MSX-DOS, and proceeds to the method of
handling data with "files" which is more familiar to programmers.

hh

3.1 Data units on the disk

3

* Sectors

*

MSX-DOS can access most types of disk drives including th 3.5 inch 2DD and
hard disks. For handling different media in the same way, the system call
consider "logical sector" as the basic units of data on the disk. A logical
sector is specified by numbers starting from 0.

ss

* Clusters

*

As long as system calls are used, a sector may be considered the basic unit
of data as considered above. In fact, however, data on the disk is controlled
in units of "clusters" which consists of multiple sectors. As described later
in the FAT section, a cluster is specified by a serial number from 2 and the
top of the data area corresponds to the location of cluster #2. For getting
information about how many sectors a cluster has, use the system call
function 1BH (acquiring disk information).

ff

* Conversion from clusters to sectors

*

In a part of the directory or FCB, described later, the data location on the
disk is indicated by the cluster. To use system calls to access data
indicated by cluster, the relation of the correspondence between the cluster
and the sector needs to be calculated. Since cluster #2 and the top sector of
the data area reside in the same location, this can be done as follows:

t

1. Assume the given cluster number is C.
2. Examine the top sector of the data area (by reading DPB) and assume it is
S0.
3. Examine the number of sectors equivalent to one cluster (using function

1BH) and assume it is n.
4. Use the formula S = S0 + (C-2) * n to calculate sector numbers.

4

In MSX-DOS, sectors in the disk are divided into four areas, as shown in
Table 3.9. The file data body written to the disk is recorded in the "data
area" portion. Information for handling data is written in three areas.
Figure 3.9 shows the relation of the locations of these areas. The boot
sector is always in sector #0, but the top sectors (FAT, directory, and data
area) differ by media, so DPB should be referred to.

aa

 Table 3.9 Disk contents

--
boot sector	MSX-DOS startup program and information proper to the disk
FAT	physical control information of data on the disk
directory	control information of files on the disk
data area	actual file data
--

--

 Figure 3.9 Relation of locations of elements in the disk

 +- ----------------------- <-- sector #0
 | | boot sector |
 | |---------------------| <-- sector #? -+
 | | FAT | | Top sectors of these data
whole |---------------------| <-- sector #? | areas can be acquired by
of a | directory | | referring to DPB.
disk |---------------------| <-- sector #? -+
	data area
 +- ----------------------- <-- last sector

* DPB (drive parameter block) and boot sector

*

On MSX-DOS, the area "DPB" is allocated in the work area of memory for each
connected drive, and information proper to each drive is recorded there.
MSX-DOS can handle most types of disk drives, because the differences between
media can be compensated for by the process corresponding to each drive.

m

Information written on DPB, which is originally on the boot sector (sector
#0) of the disk, is read at MSX-DOS startup. Note that the differences
between the contents of the boot sector and DPB, as shown in Figures 3.10 and
3.11. Data is arranged differently in the boot sector and the DPB.

33

 Figure 3.10 Information of the boot sector

I

| |
|---------------| -+

0B | | |-- 1 sector size (in bytes)
0C | | |

|---------------| -+
0D | | ---- 1 cluster size (in sectors)

|---------------| -+

0E | | |-- Number of unused sectors by MSX-DOS
0F | | |

|---------------| -+
10 | | ---- Number of FATs

|---------------| -+
11 | | |-- Number of directory entries
12 | | | (How many files can be created)

|---------------| -+
13 | | |-- Number of sectors per disk
14 | | |

|---------------| -+
15 | | ---- Media ID

|---------------| -+
16 | | |-- Size of FAT (in sectors)
17 | | |

|---------------| -+
18 | | |-- Number of tracks per sector
19 | | |

|---------------| -+
1A | | |-- Number of sides used
1B | | | (either one or two)

|---------------| -+
1C | | |-- Number of hidden sectors
1D | | |

|---------------| -+
| |

||

 Figure 3.11 DPB structure

D

BASE -> | | ---- drive number

|---------------|
+1 | | ---- media ID

|---------------| -+
+2 | | |-- sector size
+3 | | |

|---------------| -+
+4 | | ---- directory mask

|---------------|
+5 | | ---- directory shift

|---------------|
+6 | | ---- cluster mask

|---------------|
+7 | | ---- cluster shift

|---------------| -+
+8 | | |-- top sector of FAT
+9 | | |

|---------------| -+
+10 | | ---- number of FATs

|---------------|
+11 | | ---- number of directory entries

|---------------| -+
+12 | | |-- top sector of data area
+13 | | |

|---------------| -+
+14 | | |-- amount of cluster + 1
+15 | | |

|---------------| -+
+16 | | ---- number of sectors required for one FAT

|---------------| -+
+17 | | |-- top sector of directory area
+18 | | |

|---------------| -+
+19 | | |-- FAT address in memory
+20 | | |

----------------- -+

--

Use the system call Function 1BH (disk information acquisition) to access the
DPB. This system call returns the DPB address in memory and other information
for each drive written on the boot sector (see section 4 "System call usage"
for the detailed usage).

ff

* FAT (file allocation table)

*

In MSX-DOS, a "cluster" is the data unit for writing to the disk. Files
larger than a cluster are written across multiple clusters. But in this case
adjacent clusters are not always used. In particular, after creating and
deleting files many times, clusters which are no longer used are scattered at
random across the disk. When a large file is created for such cases, the file
is broken down into several clusters and these clusters are stored where
space is available. The linkage information is kept at the beginning so that
the file can be recreated. This is the main function of the FAT.

t

When a bad cluster is found, FAT is also used to record that location, so
access will not be made there any more. Linkage information of clusters and
information concerning bad clusters is necessary for managing disk files.
Without this information, the whole disk will be unusable. For this reason,
more than one FAT is always prepared in case of accidental erasure.

mm

Figure 3.2 shows an example of a FAT. The first byte is called the "FAT ID"
which contains the value indicating the type of media (the same value as
media ID in Table 3.2). The next two bytes contains meaningless dummy values.
From the fourth byte (start address + 3), actual linkage information is
recorded in an irregular format of 12 bits per cluster. Each 12-bit area
containing linkage information is called a FAT entry. Note that the FAT entry
begins with number 2. The number of the FAT entry is also the number of the
cluster corresponding to it. Read the 12-bit linkage information recorded in
the FAT entry in the way shown in Figure 3.13.

tt

 Figure 3.12 FAT example

F

|4 bits |4 bits |
 FAT -----------------
start address ->| F B | ----- FAT ID

|---------------|
 +1 | F F | --+

|---------------| |-- dummy
 +2 | F F | |

|---------------| --+
 +3 | 0 3 |

|---------------| FAT entry 2 : link = 003H ---+

 +4 | 4 | 0 | +------------------------+
|---------------| V

 +5 | 0 0 | FAT entry 3 : link = 004H ---+
|---------------| +------------------------+

 +6 | F F | V
|---------------| FAT entry 4 : link = FFFH (end)

 +7 | 6 | F |
|---------------|

 +8 | 0 0 | FAT entry 5 : link = 006H ---+
|---------------| +------------------------+

 +9 | F F | V
|---------------| FAT entry 6 : link = FFFH (end)

 +10 | | F |

--

The linkage information is the value indicating the next cluster number. FFFH
means that the file ends with that cluster. The example of Figure 3.12 shows
a file of three clusters, (cluster #2 -> cluster #3 -> cluster #4), and a
file of two clusters, (cluster #5 -> cluster #6). The linkage from the
cluster with the smaller number is only for easy comprehension. In actual
practice, numbers are not necessarily ordered.

pp

 Figure 3.13 Reading FAT

R

2 1

4

6 5

.

.

.

..

* Directory

*

The FAT as described above, relates the physical location of data on the disk
and does not include information about the contents of data written there.
Thus, an information resource other than FAT is required to know what kind of
data is in a file. This resource is called a "directory". A directory entry
is composed of 32 bytes and records file names, file attributes, date
created, time created, number of the top cluster of the file, and file size,
as shown in Figure 3.14.

a

"File attributes" in the directory are used for specifying the invisibility
attribute in a file. Specifying "1" in the second bit from the lowest of this
byte prevents files specified in the directory from being accessed by the
system call (see Figure 3.15). MS-DOS also has a file attribute byte which
permits a write-prohibit attribute using another bit, but MSX-DOS does not
support this feature.

s

The date and time are recorded so that two bytes of each are divided into
three bitfields, as shown in Figure 3.16 and Figure 3.17. Since only 5 bits

are prepared for the "time" bitfield, the minimum unit for time is two
seconds. The year (1980 to 2079) is specified by using 0 to 99 in 7 bits.

ss

 Figure 3.14 Directory construction

D

Directory ----------------- -+
header --> | . | |

. |-- filename (8 characters)

. |
 +7 | | |

|---------------| -+
 +8 | | |
 +9 | | |-- extension (3 characters)
 +10 | | |

|---------------| -+
 +11 | | ---- file attribute

|---------------| -+
 . | . | |
 . . |-- space for compatibility with MS-DOS
 . . | (not used by MSX-DOS)

| | |
|---------------| -+

 +22 | | |-- time created
 +23 | | |

|---------------| -+
 +24 | | |-- date created
 +25 | | |

|---------------| -+
 +26 | | |-- top cluster of the file
 +27 | | |

|---------------| -+
 +28 | | |
 +29 | | |-- file size
 +30 | | |
 +31 | | |

----------------- -+

--

 Figure 3.15 Invisibility attribute of the file

I

 (11th byte of the directory)

| . | . | . | . | . | . | X | . |

 |
 | 0 : enables normal acess
 +----->

 1 : disables access

 Figure 3.16 Bitfield representing time

B

 (23rd byte of the directory) (22nd byte of the directory)
--------------------------------- ---------------------------------
| h4| h3| h2| h1| h0| m5| m4| m3| | m2| m1| m0| s4| s3| s2| s1| s0|
--------------------------------- ---------------------------------
| | | |

+-------------------+-----------------------------+-------------------+
 hour (0 to 23) minute (0 to 59) second /2 (0 to 29)

 |
 "second" value when multiplied by 2 --+

 Figure 3.17 Bitfield representing date

B

 (25th byte of the directory) (24th byte of the directory)
--------------------------------- ---------------------------------
| y6| y5| y4| y3| y2| y1| y0| m3| | m2| m1| m0| d4| d3| d2| d1| d0|
--------------------------------- ---------------------------------
| | | |
+---------------------------+---------------------+-------------------+
 year (0 to 99) month (1 to 12) day (1 to 31)

 |
 +-- corresponds to 1980 to 2079

The place where this directory information is actually recorded is the
directory area on the disk (see Figure 3.9). The location (top sector) is
recorded in the DPB. Directory entries (locations of directory storage) are
arranged every 32 bytes in the driectory area, as shown in Figure 3.18. When
a file is created, the directory is created at the lowest value of unused
directory entries. Deleting a file causes E5H to be written to the first byte
of the corresponding directory entry, which is empty. After all direcotry
entries are exhausted, new files cannot be created even if there is a lot of
unused space on the disk. The number of directory entries, that is, the
number of files which can be created on one disk is also recorded in the DPB.

nn

 Figure 3.18 Organisation of directory area

O

------ 32 bytes -------

BASE -> | MSXDOS.SYS |
|-----------------------|

 +32 | COMMAND.COM |
|-----------------------|

 +64 | E5H | | <-- The directory entry whose first
|-----------------------| byte is E5H is currently unused

 +96 | TEST |
|-----------------------|
| . |

 . |
 .

+32 * n | 00H | | <-- The directory entry whose first
|-----------------------| byte is 00H has never been used
| |

||

3.2 File Access

3

* FCB (file control block)

*

Using information recorded in the directory area allows data to be treated as

a "file". The advantage of this method is that the data location is not
represented by an absolute number such as sector number or cluster number;
instead, the file can be specified with a "name". The programmer need only
specify the file name and the system will do all the work concerned with
accessing the requested file. In other words, the programmer need not
understand the details of which sectors the file occupies. In this case, FCB
plays an important role for directories.

p

FCB is the area for storing information needed to handle files using system
calls. Handling one file requires 37 bytes of memory each, as shown in Figure
3.19. Although the FCB can be located anywhere in memory, the address 005CH
is normally used to utilize MSX-DOS features.

ii

 Figure 3.19 Organization of FCB

O

FCB ------
bytes | 0 | drive number
from |----|
top | 1 | file name
 | | | filename 8 bytes
 V | 11 | extension 3 bytes

|----|
| 12 | current block
| 13 | number of blocks from the top of the file to the
|----| current block
| 14 | record size
| 15 | 1 to 65535
|----|
| 16 | file size
| | 1 to 4294967296
| 19 |

 +-- |----|
 | | 20 | date
 | | 21 | same form as directory
 (1) |----|
 | | 22 | time
 | | 23 | same form as directory
 +-- |----|
 | | 24 | device ID
 | |----|
 | | 25 | directory location
 | |----|
 | | 26 | top cluster number of the file
 (2) | 27 |
 | |----|
 | | 28 | last cluster number accessed
 | | 29 |
 | |----|
 | | 30 | relative location from top cluster of the file
 | | 31 | number of clusters from top of the file
 +-- |----| to the last cluster accessed

| 32 | current record
|----|
| 33 | random record
| | record order from the top of the file
| 36 | usually stores the last record made random access

-

Notes: FCB usages differ, depending on whether they use CP/M compatible
system calls or additional system calls. See the decription below for
details.

d

(1) When using version 2 of MSX-DOS, here is stored the volume-id of the
disk, and should not be modified by the program.
(2) When using version 2 of MSX-DOS, here is stored internal information
relative to the physical location of the file on the disk. The format of this
information is different from shown in figure 3.19, and should not be
modified by the program.

mm

* drive number (00H)
Indicates the disk drive containing the file.
(0 -> default drive, 1 -> A:, 2 -> B:...)

(

* filename (01H to 08H)
A filename can have up to 8 characters. When it has less than 8, the rest are
filled in by spaces (20H).

f

* extension (09H to 0BH)
A extension can have up to 8 characters. When it has less than 3, the rest
are filled in by spaces (20H).

a

* current block (0CH to 0DH)
Indicates the block number currently being referred to by sequential access
(see function 14H, 15H in section 4).

(

* record size (0EH to 0FH)
Specifies the size of data unit (record) to be read or written at one access,
in bytes (see function 14H, 15H, 21H, 27H, 28H).

i

* file size (10H to 13H)
Indicates the size of the file in bytes.

I

* date (14H to 15H)
Indicates date when a file was last written. The format is the same as the
one recorded in the directory.

o

* time (16H to 17H)
Indicates time when a file was last written. The format is the same as the
one recorded in the directory.

o

* device ID (18H)
When a peripheral is opened as a file, the value shown in Table 3.10 is
specified for this device ID field. For normal disk files, the value of this
field is 40H + drive number. For example, the device ID for drive A is 40H
(for future expansion, application programs should not use the ID byte).

((

 Table 3.10 Device ID

| Device name | Device ID |
|--------------------+-----------|
| CON (Console) | 0FFH |
| PRN (Printer) | 0FBH |

LST (List=Printer)	0FCH
AUX (Auxiliary)	0FEH
NUL (Null)	0FDH

--

* directory location (19H)
Indicates the order of the directory entries of a file in the directory area.

I

* top cluster (1AH to 1BH)
Indicates the top cluster of the file in the disk.

I

* last cluster accessed (1C to 1DH)
Indicates the last cluster accessed.

I

* relative location from top cluster of last cluster accessed (1EH to 1FH)
Indicates the relative location from the top cluster of the last cluster
accessed.

a

* current record (20H)
Indicates the record currently being referred to by sequential access (see
function 14H, 15H).

f

* random record (21H to 24H)
Specifies a record to be accessed by random access or random block access.
Specifying a value from 1 to 63 for the record size field described above
causes all four bytes from 21H to 24H to be used, where only three bytes from
21H to 23H have meaning when the record size is greater than 63 (see function
14H, 15H, 21H, 22H, 27H, 28H).

11

* Opening a file

*

A special procedure is required to open a file when using FCB. "Opening a
file" means, at the system call level, transforming the incomplete FCB whose
file name field is only defined for the complete FCB, by using information
written in the directory area. Figure 3.20 shows the differences between
"unopened FCB" and "opened FCB".

""

 Figure 3.20 Before/after opening FCB

B

before the open after the opem

 ----- -----
 0 | S | drive number 0 | S | default drive (00H) is converted
 1 | S | ----- 1 | S | to real drive (01H to 06H)
 2 | S | ^ 2 | S |
 3 | S | | 3 | S |
 4 | S | | 4 | S |
 5 | S | | 5 | S |
 6 | S | file name 6 | S |
 7 | S | | 7 | S |
 8 | S | | 8 | S |
 9 | S | | 9 | S |
10 | S | V 10 | S |
11 | S | ----- 11 | S |
12 | | 12 | | \ current block

13 | | 13 | | /
14 | | 14 | | \ record size
15 | | 15 | | /
16 | | 16 | S | --+
17 | | 17 | S | | file
18 | | 18 | S | | size
19 | | 19 | S | --+
20 | | 20 | S | \ date
21 | | 21 | S | /
22 | | 22 | S | \ time
23 | | 23 | S | /
24 | | 24 | S | device ID
25 | | 25 | S | directory location
26 | | 26 | S | \ top cluster number number of the file
27 | | 27 | S | /
28 | | 28 | S | \ last cluster number accessed
29 | | 29 | S | /
30 | | 30 | S | \ relative location from top
31 | | 31 | S | / cluster of the file
32 | | 32 | | current record
33 | | 33 | | --+
34 | | 34 | | | random
35 | | 35 | | | record
36 | | 36 | | --+
 ----- -----

* Closing a file

*

When a file is opened and written to, the contents of each field of FCB, such
as size, is also modified. Unless the updated FCB information is returned to
the directory area, directory information and the actual contents of the file
might be different at the next file access. This operation to return the
updated FCB information to the directory corresponds to closing a file at the
system call level.

ss

* Random block access (file management by records)

*

MSX-DOS has two system calls dealing with random access, "RANDOM BLOCK READ"
and "RANDOM BLOCK WRITE". With these system calls, a file can be divided into
data units of any size, which can be handled by numbers, such as 0, 1, 2,
..., from the top. This data unit is called a "record". Record size can be
any value of more than one byte. So, treating a whole file as one record
(extreme sequential access), treating data with one byte as one record
(extreme random access), or treating 128 bytes as one record (the CP/M way)
are all possible.

a

In this case, the FCB fields, "record size" and "random record" are used to
specify the record. The value of the record size field is the number of bytes
in one record. Random record fields can have any record number to be accessed
(for more detailed usage, see descriptions of each system call).

((

 Figure 3.21 File and record

F

 +-- +- ----------------
 | record size | | record #0 |

 | +- |--------------| -----------------
 | | record #1 | <--- | random record |
 | |--------------| -----------------
 | | record #2 | point to the
 whole |--------------| record currently
 file | . | accessed
 | .
 | .

	record #n
 +-- ----------------

* Sequential access (file management by fixed-length record + current record
+ current block)

+

MSX-DOS can also access files the same way as CP/M for purposes of
compatibility. One way is the sequential file which is managed by "current
record" and "current block". This uses a 128-byte fixed-length record as the
basic unit of data. File access is always done from the top sequentially and
the number of records which was accessed is counted at the current record
field of FCB. The value of the current record field is reset to 0 when it
reaches 128, and the carry is counted in the current block field.

rr

* Random access (file management by fixed-length record + random record)

*

A second method included to keept compatibility with CP/M is a random access
method using random record fields. It can access the record of any location
but the record size is fixed at 128 bytes.

bb

4. SYSTEM CALL USAGE

4

The system calls are a collection of general-purpose subroutines which handle
the basic input/output operations of MSX-DOS. Having these system calls
gathered into BIOS in a predefined manner permits the basic functions of the
MSX disk system to be easily accessed.

M

There are two purposes of system calls; first, to reduce programming time by
preprogramming basic functions; second, to increase portability by the fact
that all programs share the same basic functions. Utilizing system calls
shortens program development time and makes the developed program highly
portable.

p

To execute a system call, enter the defined function number in the C register
of the Z80 CPU and call one of the following addresses:

o

0005H MSX-DOS
F37DH (&HF37D) MSX DISK-BASIC

F

For example, when the function number is 01FH and the system call requires
00H to be set in the A register, the following assembler code can be used
with MSX-DOS:

w

LD A,00H
LD C,01FH

CALL 0005H
 .
 .
 .

The CALL statement is also used in operations that return values or restore
registers from memory. System calls can also be used from DISK-BASIC by using
the entry address of F37DH. For this case, store the machine codes in the
area allocated by the CLEAR statement and call its start address using the
USR function.

UU

* System call format

*

This section introduces system call usages in the following notation:

T

--
| Function: function number |
| Setup: value needed to be set in register or memory by programmer |
Return value: value set in register by system call

--

Function:

F

The function number is used to identify the system call. When using a system
call, set the function number in the C register.

cc

Setup:

S

In this section, "setup:" indicates the value to be set in the named register
or memory location before executing system calls.

oo

Return value:

R

The result obtained by a system call is normally set in a register or memory
location. This is called output in this section and "return value:" indicates
where and how this output is set.

w

Is important to note that when using system calls, the contents of registers
other than those specified are sometimes destroyed. So, before using system
calls, store the contents of registers whose value you do not want to change
in an appropriate place (stack, for example) before executing system calls.

i

There are forty-two MSX system calls. These are listed in Table 3.11, and are
described in this section. There are four categories:

d

* Peripheral I/O
* Environment setting
* Absolute READ/WRITE (direct access to sector)
* File access using FCB

**

 Table 3.11 List of System Calls

Function no. Function

F

 00H system reset
 01H get one character from console (input wait,

echo back, control code check)
 02H send one character to console
 03H get one character from auxiliary device
 04H send one character to auxiliary device
 05H send one character to printer
 06H get one character from console (no input wait,

no echo back, no control code check)/ one character
output

 07H get one character from console (input wait,
no echo back, no control code check)

 08H get one character from console (input wait,
no echo back, control code check)

 09H send string
 0AH get string
 0BH check input from console
 0CH get version number
 0DH disk reset
 0EH select default drive
 0FH open file
 10H close file
 11H search the first file matched with wildcard
 12H search the second and after the second file

matched wildcard
 13H delete file
 14H read sequential file
 15H write sequential file
 16H create file
 17H rename file
 18H get login vector
 19H get default drive name
 1AH set DMA address
 1BH get disk information
 1CH-20H no function
 21H write random file
 22H read random file
 23H get file size
 24H set random record field
 25H no function
 26H write random block
 27H read random block
 28H write random file (00H is set to unused portion)
 29H no function
 2AH get date
 2BH set date
 2CH get time
 2DH set time
 2EH set verify flag
 2FH read logical sector
 30H write logical sector

ww

* Note

*

System call function numbers are from 00H to 30H; the following seven numbers
are blank:

a

1CH to 20H, 25H, 29H

1

Calling these blank funtion system calls do nothing except setting 00H in the
A register. System calls after function 31H are undefined. Using them may
cause unpredictable results (not advisable).

cc

List 3.3 Utility routines
===

=

;**
;
; List 3.3 utility.mac
;
; these routines are used in other programs
;
; GETARG, STOHEX, PUTHEX, PUTCHR, DUMP8B
;
;**
;

PUBLIC GETARG Note: Five utility routines included in
PUBLIC STOHEX this program list will be used in
PUBLIC PUTHEX sample programs later.
PUBLIC PUTCHR
PUBLIC DUMP8B

D

BDOS: EQU 0005H
DMA: EQU 0080H

0

;----- DE := address of arg(A)'s copy -----

;

GETARG: PUSH AF Note: Nth parameter (N is specified by
PUSH BC A register) of the command line
PUSH HL stored in default DMA area

 (0080H to) is loaded in memory and
LD C,A its starting address is returned in
LD HL,DMA DE register.
LD B,(HL)
INC HL
INC B

B

SKPARG: DEC B
JR NZ,NOARG

SKP1: LD A,(HL)
INC HL
CALL TERMCHK
JR NZ,SKP1

SKP2: LD A,(HL)
INC HL
CALL TRMCHK
JR Z,SKP2
DEC HL
DEC C
JR NZ,SKPARG

N

CPYARG: LD DE,BUFMEM
CPY1: LD A,(HL)

LD (DE),A
INC HL
INC DE
CALL TRMCHK
JR NZ,CPY1

N

DEC DE
LD A,"$"
LD (DE),A
LD DE,BUFMEM
JR EXIT

E

NOARG: LD DE,BUFMEM
LD A,"$"
LD (DE),A

(

EXIT: POP HL
POP BC
POP AF
RET

R

TRMCHK: CP 09H
RET Z
CP 0DH
RET Z
CP " "
RET Z
CP ";"
RET

R

;----- HL := hexadecimal value of [DE] -----

;

SOTHEX: PUSH AF Note: Hexadecimal string indicated by
PUSH DE DE register is converted into
LD HL,0000H two-byte integer and stored in
CALL STOH1 HL register.
POP DE
POP AF
RET

R

STOH1: LD A,(DE)
INC DE
SUB "0"
RET C
CP 10
JR C,STOH2
SUB "A"-"0"
RET C
CP 6
RET NC
ADD A,10

A

STOH2: ADD HL,HL
ADD HL,HL
ADD HL,HL
ADD HL,HL
OR L
LD L,A

JR STOH1

S

;----- print A-reg, in hexadecimal form (00-FF) -----

;

PUTHEX: PUSH AF Note: Contents of A register is displayed
RR A using two hexadecimal digits.
RR A
RR A
RR A
CALL PUTHX1
POP AF

PUTHX1: PUSH AF
AND 0FH
CP 10
JR C,PUTHX2
ADD A,"A"-10-"0"

PUTHX2: ADD A,"0"
CALL PUTCHR
POP AF
RET

R

;----- put character -----

;

PUTCHR: PUSH AF
PUSH BC
PUSH DE
PUSH HL
LD E,A
LD C,02H
CALL BDOS
POP HL
POP DE
POP BC
POP AF
RET

R

;----- dumps 8bytes of [HL] to [HL+7] in hexa & ASCII form -----

;

DUMP8B: PUSH HL Note: Contents of eight bytes after the
LD B,8 address indicated in HL register

DUMP1: LD A,(HL) are dumped in both hexadecimal
INC HL and character codes.
CALL PUTHEX
LD A," "
CALL PUTCHR
DJNZ DUMP1
POP HL
LD B,8

DUMP2: LD A,(HL)
INC HL
CP 20H
JR C,DUMP3
CP 7FH
JR NZ,DUMP4

DUMP3: LD A,"."
DUMP4: CALL PUTCHR

DJNZ DUMP2
LD A,0DH

CALL PUTCHR
LD A,0AH
CALL PUTCHR
RET

R

;----- work area -----

;

BUFMEM: DS 256

2

END

E

===

==

4.1 Peripheral I/O

4

The following system calls are intended for input/output operations. Some
examples include console I/O (screen/keyboard), auxiliary I/O (external
input/output), and printer I/O. Since subroutines such as getting information
from the keyboard or controlling printers are necessary for most programs,
you will find the system calls described in this section useful for general
programming.

pp

* Console input

*

Function: 01H
Setup: none
Return value: A register <-- one character from console

A

When there is no input (no key pressed and input buffer empty), an input is
wait for. Input characters are echoed back to the console. The following
control character input is allowed: Ctrl-C causes program execution to be
halted and a return to the MSX-DOS command level; Ctrl-P causes any sucessive
input to also echoed to the printer until Ctrl-N is accepted; Ctrl-S causes
the display to stop until any key is pressed.

t

Ctrl-C system reset
Ctrl-P printer echo
Ctrl-N halt printer echo
Ctrl-S pause display

CC

* Console output

*

Function: 02H
Setup: E register <-- character code to be sent out
Return value: none

n

This system call displays the character specified by the E register on the
screen. It also checks the four control characters, listed above.

ss

* External input

*

Function: 03H
Setup: none
Return value: A register <-- one character from AUX device

A

This system call checks four control characters.

TT

* External output

*

Function: 04H
Setup: E register <-- character code to send to AUX device
Return value: none

n

This system call checks four control characters.

TT

* Printer output

*

Function: 05H
Setup: A register <-- one character from console

A

This system call does not echo back. It treats control characters in the same
way as function 01H.

ww

* Direct console input/output

*

Function: 06H
Setup: E register <-- character code to be send to the console

When 0FFH is specified, the character will be input
from the console.

Return value: When the E register is set to 0FFH (input), the result of
input is in the A register. The value set in the A register
is the character code of the key, if it was pressed;
otherwise, the value is 00H. When the E register is set to
a value other than 0FFH (output), there is no return value.

a

This system call does not support control characters and does not echo back
input. This system call checks four control characters.

ii

* Direct console input - 1

*

Function: 07H
Setup: none
Return value: A register <-- one character from console

A

This system call does not support control characters, nor echo back.

TT

* Direct console input - 2

*

Function: 08H
Setup: none
Return value: A register <-- one character from console

A

This system call does not echo back. It treats control characters in the same
way as function 01H.

ww

* String output

*

Function: 09H
Setup: DE register <-- starting address of string, prepared on

memory, to be sent to the console.
Return value: none

n

24H ("$") is appended to the end of the string as the end symbol. This system
call checks and performs four control character functions, as listed
previously.

pp

* String input

*

Function: 0AH
Setup: The address of memory where the maximum number of input

characters (1 to 0FFH) is set should be set in the DE
register.

Return value: Number of characters actually sent from console is set in the
address, one added to the address indicated by the DE
register; string sent from console is set in the area from
the address, two added to the address indicated by the DE
register.

r

Return key input is considered as the end of console input. However, when the
number of input characters exceeds the specified number of characters
(contents indicated by DE register, 1 to 255), characters within the
specified number of characters will be treated as an input string and set in
memory, and the operation ends. The rest of characters including the return
key are ignored. Editing with the template is available to string input using
this system call. This system call checks and performs four control character
function, as listed previously.

ff

* Console status check

*

Function: 0BH
Setup: none
Return value: 0FFH is set in the A register when the keyboard is being

pressed; otherwise, 00H is set.

p

This system call checks and performs four control character function, as
listed previously.

ll

4.2 Environment Setting and Readout

4

The following system calls set the MSX system environment; for example,
changing the default drive, or setting various default values of the system

cc

* System reset

*

Function: 00H
Setup: none
Return value: none

n

When this is called in MSX-DOS, the system is reset by jumping to 0000H. When
MSX DISK-BASIC call this, it is "warm started". That is, it returns to BASIC

command level without destroying programs currently loaded.

cc

* Version number acquisition

*

Function: 0CH
Setup: none
Return value: HL register <-- 0022H

H

This system call is for acquiring various CP/M version numbers, on MSX-DOS,
however, 0022H is always returned.

hh

* Disk reset

*

Function: 0DH
Setup: none
Return value: none

n

If there is a sector which has been changed but not written to the disk, this
system call writes it to the disk, then it sets the default drive to drive A
and sets DMA to 0080H.

aa

* Default drive setting

*

Funtion: 0EH
Setup: E register <-- default drive number (A = 00H, B = 01H, ...)
Return value: none

n

Disk access by the system calls are made to the drive indicated by the
default drive number, unless otherwise specified. Note that, when the drive
number, which is set in the FCB specified upon calling the system call, is
other than 00H, the default drive setting made by this system call is
ignored.

ii

* Login vector acquisition

*

Function: 18H
Setup: none
Return value: HL register <-- online drive information

H

The online drive is the drive connected to MSX normally when the disk system
is booted up. Executing this system call causes each drive to be examined
whether it is online, and the result is returned in the HL register as shown
in Figure 3.22. When the bit is "1", the corresponding drive is online;
otherwise it is not.

oo

 Figure 3.22 Login vector

L

--
| register name | H | L |
|----------------+--------------------------+--------------------------|
| bit number | 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 |
|----------------+--------------------------+--------------------------|
| drive name | meaningless on MSX-DOS | H: G: F: E: D: C: B: A: |

|----------------+---|
| online/offline | 1 is set for online and 0 for offline in each bit |
--

--

* Default drive acquisition

*

Function: 19H
Setup: none
Return value: A register <-- defaut drive number (A = 00H, B = 01H, ...)

AA

* Setting of address to be transferred to

*

Function: 1AH
Setup: DE register <-- address setting to be transferred to

(DMA address)
Return value: none

n

Though DMA address is initialized to 0080H at system reset, it can be reset
to any address by using this system call.

tt

* Disk information acquisition

*

Function: 1BH
Setup: E register <-- number of the objective drive

 (default drive = 00H, A = 01H, B = 02H, ...)
Return value: A register <-- number of logical sectors per one cluster

 (FFH if E register is set inappropriate)
BC register <-- logical sector size
DE register <-- amount of clusters
IX register <-- DPB starting address
IY register <-- FAT starting address on memory

I

This system call gets the information about the disk in the specified drive.
Specifying 00H for the drive number specifies the default drive. For other
than that, specify 01H for drive A, 02H for drive B, and so on.

t

This system call has been created for MSX-DOS and is not compatible with
CP/M.

CC

* Date acquisition

*

Function: 2AH
Setup: none
Return value: HL register <-- year

D register <-- month
E register <-- day of month
A register <-- day of week

A

This system call has been created for MSX-DOS and is not compatible with
CP/M.

CC

* Date setting

*

Function: 2BH
Setup: HL register <-- year

D register <-- month
E register <-- day of month

Return value: A indicates whether the system call has done succesfully. If
successful, the A register is set to 00H; otherwise, 0FFH.

s

This system call has been created for MSX-DOS and is not compatible with
CP/M.

CC

* Time acquisition

*

Function: 2CH
Setup: none
Return value: H register <-- hour

L register <-- minute
D register <-- second
E register <-- 1/100 second

E

This system call has been created for MSX-DOS and is not compatible with
CP/M.

CC

* Time setting

*

Function: 2DH
Setup: H register <-- hour

L register <-- minute
D register <-- second
E register <-- 1/100 second

Return value: If successful, the A register is set to 00H; otherwise, 0FFH

I

This system call has been created for MSX-DOS and is not compatible with
CP/M.

CC

* Verify flag setting

*

Function: 2EH
Setup: E register <-- 00H, when resetting verify flag

E register <-- value other than 00H, when setting
 the verify flag

Return value: none

n

Setting the verify flag causes successive writing to the disk to be done in
mode "verify on". That is, by reading the contents written on the disk, the
check is made to compare them with the contents to be written.

c

This system call has been created for MSX-DOS and is not compatible with
CP/M.

CC

4.3 Absolute READ/WRITE (direct access to sectors)

4

MSX manages the disk with the "logical sector" as a minimum unit. The logical
sector is defined independent of the physical secotrs of the disk, and is
numbered from 0 to the maximum logical sector (maximum number depends on the

kind of the disks).

k

Logical sectors enable users of MSX-DOS or MSX DISK-BASIC to access the disk
without being concerned about the number of physical sectors per track, where
that number depends on the media type of the disk. In fact, by utilizing
system calls which use FCB (file control block), the file can be easily
handled in detail even without considering logical sectors, so the user does
not even need to use logical sectors. But for some purposes, access using
logical sectors is desirable, so MSX-DOS ans MSX DISK-BASIC offer system
calls which can access logical sectors.

c

This section describes the system calls which access the disk by use of
logical sectors.

ll

* Reading from the disk using logical sectors

*

Function: 2FH
Setup: The logical sector number to be read from (for more than

one logical sector, the starting logical sector number)
should be set in the DE register. The number of logical
sectors to be read should be set in the H register, and
the drive number (00H for drive A, 01H for drive B, and
so on. The same follows for function 30H below) to be used
to read should be set in the L register.

Return value: The contents read are set in the DMA buffer.

T

This system call reads out a specified number of continuous logical sectors
from the specified logical sector of the specified drive and stores the
contents in memory after DMA. It then stores the contents of what it has read
in memory after DMA. Function 1AH (which specifies the address it is to be
transferred to) assures that there is enough available space in memory.

t

This system call has been created for MSX-DOS and is not compatible with
CP/M.

CC

* Writing to the disk using logocal sectors

*

Function: 30H
Setup: Contents to be written should be set in memory area after

the address indicated by DMA. The logical sector number from
where the writing begins should be set in the DE register.
The number of logical sectors to be written should be set
in the H register. The drive number to be written to should
be set in the L register.

Return value: none

n

This system call has been created for MSX-DOS and is not compatible with
CP/M.

CC

List 3.4 Cluster dump
===

=

;***
;
; List 3.4 cluster dump

;
; this program must link List 3.3
;
;***
;

EXTRN GETARG Note: The first 128 bytes of an arbitrary
EXTRN STOHEX cluster specified in the command
EXTRN PUTHEX line are dumped.
EXTRN PUTCHR
EXTRN DUMP8B

D

BDOS EQU 0005H

0

;----- program start -----

;

LD A,1
CALL GETARG ;[DE] := 1st argument of command line
CALL STOHEX ;HL := evaluate [DE] as hexadecimal

; this is the target cluster No.
PUSH HL
LD E,00H ;requests the default drive
LD C,1BH ;get disk information
CALL BDOS
POP HL
CP 0FFH ;fail ?
JR NZ,L2 ;if not fail, A := sector/cluster and goto L2

;

LD DE,ERMSG1 ;[DE] := 'Cannot get Disk information'
LD C,09H ;string putput function
CALL BDOS
RET ;error return

;

L2: LD E,(IX+12) ;DE := 1st sector of data area
LD D,(IX+13)
DEC HL
DEC HL ;HL := Cluster No. - 2
LD B,H
LD C,L ;BC := Cluster No. - 2

LOOP: DEC A ;Count N times
JR Z,RESULT
ADD HL,BC
JR LOOP

RESULT: ADD HL,DE ;HL := sector of target cluster
PUSH HL ;save target sector
LD DE,NEWDMA ;we reserved 1024 bytes area for DMA
LD C,1AH ;Set DMA address function
CALL BDOS
LD C,19H
CALL BDOS ;default drive ?
LD L,A
POP DE ;DE := target sector
LD H,1 ;H := 1 (read 1 sector only)
LD C,2FH ;absolute read function
CALL BDOS ;data will be set into DMA

;

DUMP: LD HL,NEWDMA ;HL := DMA address
LD DE,0000H ;DE := relative address from cluster top
LD B,16 ;dump 16 lines

DLOOP: PUSH BC
LD A,D
CALL PUTHEX
LD A,E
CALL PUTHEX
LD A," "
CALL PUTCHR
PUSH HL
LD HL,8
ADD HL,DE
EX DE,HL ;DE := DE+8
POP HL
CALL DUMP8B ;8 bytes dump subroutine (in another file)
POP BC
DJNZ DLOOP
RET ;all work have done.

;

;----- work area -----

;

NEWDMA: DS 1024 ;Private DMA area
ADRS: DS 2

2

ERMSG1: DB "Cannot get Disk information.$"
ERMSG2: DB "Cannot read that cluster.$"

"

END

E

===

==

4.4 File Access Using FCB

4

Since accessing a file is difficult when using the system calls described in
the previous section (which read and write logical sectors directly), system
calls using FCB are needed to easier access the disk by specifying files.

c

There are three categories of system calls using FCB. First is sequential
file access and second is random file access, both are offered to maintain
CP/M compatibility. The third is what gives MSX-DOS its power: random block
access. This method is not available in CP/M. Random block access has the
following features:

f

* Any record size can be specified
* Random access can be made to multiple records
* File size can be controlled in bytes

*

This section describes system calls for file access using FCB, including
random block access. Note that the following three functions do not work
correctly when FCB is in the address range 4000H to 7FFFH:

c

1. Function call 11H
2. Function call 12H
3. Input/output for devices (CON, PRN, NUL, AUX)

33

* Opening files

*

Function: 0FH

Setup: DE register <-- starting address of FCB which is not opened
Return value: 00H is set in the A register when a file is opened

succeessfully; otherwise 0FFH is set. When a file is opened
successfully, each field of the FCB is set.

s

When 00H is specified for a drive number, the default drive set by function
0EH (default drive setting) is used. To open a file on another drive, specify
01H for drive A, 02H for drive B and so on.

0

When a file is opened by this system call, all FCB fields except record size,
current block, current record, and random record are set using information
from the directory area on the disk. Fields which are not set should be set
by the user after executing this system call, if needed. The state that each
field of FCB is set is "the state that file is opened" when using system
calls using FCB, and, in this case, system calls which access the file using
FCB, described below, can be used.

FF

* Closing files

*

Function: 10H
Setup: DE register <-- starting address of opened FCB
Return value: 00H is set in the A register when file is closed

scuccessfully; otherwise, 0FFH is set.

s

By writing the current contents of FCB in memory to the corresponding
directory area on the disk, file information can be kept current. When the
file is only read, it does not need to be closed by using this system call.

ff

* File search - 1

*

Function: 11H
Setup: DE register <-- starting address of FCB which is not opened
Return value: 00H is set in the A register when the file is found;

otherwise 0FFH is set. When the file is found, the directory
entry (32 bytes) of the file on the disk is set in the area
indicated by DMA, and FCB drive number is set (thus, 33 bytes
are used).

a

Wildcard characters can be used in the name of the file. For example, a
specification "????????.c" causes any file name with an extension of "c" to
be searched for, and the directory information of the file first found is
written in after DMA. To find all matching files or to see whether there is
only one matching file, use function 12H described below.

oo

* File search - 2

*

Function: 12H
Setup: none
Return value: 00H is set in the A register when the file is found;

otherwise 0FFH is set. When the file is found, the directory
entry (32 bytes) of the file on the disk is set in the area
indicated by DMA, and the FCB drive number is set
(thus, 33 bytes are used).

(

This system call should be used to search for multiple files meeting the file

name specification by wildcard characters in function 11H. So this function
should not be used by itself.

s

This system call allows the directory information of files meeting the
specifications in function 11H to be listed in order, one by one.

ss

* Deleting files

*

Function: 13H
Setup: DE register <-- starting address of FCB which is not opened
Return value: 00H is set in the A register when file is successfully

deleted., otherwise 0FFH is set.

d

Using wildcard characters for the file name may cause more than one file to
be deleted. Exercise caution when using wildcards to delete files.

bb

* Sequential readout

*

Function: 14H
Setup: DE register <-- starting address of opened FCB

FCB current block <-- starting block for readout
FCB current record <-- starting record for readout

Return value: 00H is set in the A register when readout is successful;
otherwise 01H is set. When successful, one record which has
been read is set in the area indicated by DMA.

b

The FCB current block and record will be updated automatically after the
readout. That is, in successive readouts, the current block and record do not
need to be set. The record size for readout is fixed at 128 bytes.

nn

* Sequential writing to the disk

*

Function: 15H
Setup: DE register <-- starting address of opened FCB

FCB current block <-- starting block for writing
FCB current record <-- starting record for writing
128 bytes starting from DMA <-- data to be written

Return value: 00H is set in the A register when writing is successful;
otherwise 01H is set.

o

The FCB current block and record will be updated automatically after the
readout.

rr

* Creating files

*

Function: 16H
Setup: DE register <-- starting address of FCB which is not opened
Retu4rn value: 00H is set in the A register when the file is created

successfully; otherwise 0FFH is set.

s

The record size, current block and record, and the random record of the FCB
should be set after executing this system call.

ss

* Renaming files

*

Function: 17H
Setup: New file name should be set within 11 bytes after the

18th byte of the FCB (2nd byte of file size field
of FCB = 16 bytes after old file name) corresponding to
old file name (that is, it should be set in 18th to 28th
byte), the FCB address should be set in the DE register.

Return value: 00H is set in the A register when the file name is renamed
successfully; otherwise 0FFH is set.

s

Wildcard characters can be used for both the new and old file names. For
example, specifying "????????.o" for the old file name and "????????.obj" for
the new file name causes the extension of all files having ".o" to be changed
to ".obj".

tt

* Random reading from the disk

*

Function: 21H
Setup: DE register <-- starting address of opened FCB

random record in FCB <-- record for readout
Return value: 00H is set in the A register when readout is successful;

otherwise 01H is set. When successful, the contents of one
record which has been read are set in the area indicated
by DMA.

b

The lenght of the record is fixed to 128 bytes.

TT

* Random writing to the disk

*

Function: 22H
Setup: DE register <-- starting address of opened FCB

random record in FCB <-- record to be written to
128 bytes starting from DMA <-- data to be written

Return value: 00H is set in the A register when writing is successful;
otherwise 01H is set.

o

The lenght of the record is fixed to 128 bytes.

TT

* File size acquisition

*

Function: 23H
Setup: DE register <-- starting address of FCB which is not opened
Return value: 00H is set in the A register when the function is successful;

otherwise 00H is set. When successful, the size of the
specified file is set in increments of 128 bytes, in the
first three bytes of the random record field.

f

The file size is calculated in increments of 128 bytes. That is, 2 would be
set for files ranging in size from 129 bytes to 256 bytes. Thus a file with
257 bytes would return a value of 3.

22

* Random record field setting

*

Function: 24H
Setup: DE register <-- starting address of opened FCB

FCB current block <-- objective block
FCB current record <-- objective record

Return value: Current record position, calculated from the current block
and record fields of specified FCB, is set in the random
record field.

rr

* Random writing to the disk - 2 (random block access)

*

Function: 26H
Setup: DE register <-- the starting address from the FCB

FCB record size <-- size of record to be written
FCB random record <-- the record ID number
HL register <-- the number of records to be written
DMA memory buffer <-- the data to be written

Return value: 00H is set in the A register when writing is successful;
otherwise 01H is set.

o

After writing to the disk, the value of the random record field is
automatically updated and points to the next record. The size of one record
can be set to any value from 1 byte to 65535 bytes by setting the desired
value in the FCB record size field. When 0 records are to be written, the
file lenght is calculated at the record size multiplied by the record number.
The rest is discarded.

T

This system call has been created for MSX-DOS and is not compatible with
CP/M.

CC

* Random readout - 2 (random block access)

*

Function: 27H
Setup: DE register <-- starting address of opened FCB

FCB record size <-- record size to be read
FCB random record <-- record to start reading
HL register <-- number of records to be read

Return value: 00H is set in the A register when data is read successfully;
otherwise 01H is read. The number of records actually read
is set back in the HL register. When this number is almost
one, the data which has been read is set in the area
indicated by DMA.

i

After readout, the random record field is automatically updated. After
executing this system call, the total number of records actually read is set
in the HL register. That is, if the end of file is reached before the
specified number of records have been read, the actual number of records read
will be returned in the HL register.

ww

This system call has been created for MSX-DOS and is not compatible with
CP/M.

CC

* Random writing - 3

*

Function: 28H
Setup: DE register <-- starting address of opened FCB

FCB random record <-- record to be written
128 bytes in DMA buffer <-- data to be written

Return value: 00H is set in the A register when writing is successful;
otherwise, 01H is set.

o

The lenght of records is fixed at 128 bytes.

T

This system call is the same as 22H except for one point. When the file
becomes large, 00H is written to the added records coming before the
specified record.

ss

List 3.5 File dump
===

=

;**
;
; List 3.5 file dump
;
; this program must link List 3.3
;
;**
;

EXTRN GETARG Note: gets the dump list of the file
EXTRN STOHEX specified at the command line
EXTRN PUTCHR
EXTRN PUTHEX
EXTRN DUMP8B

D

BDOS: EQU 0005H Note: The file name specified as the first
FCB: EQU 005CH parameter of the command line is

 stored in the default FCB area
 from (005CH)

;----- program start -----

;

LD DE,FCB ;DE := default FCB address
LD C,0FH ;open file function
CALL BDOS
OR A ;success ?
JR Z,READ ;if so, goto READ

;

LD DE,ERMSG1 ;[DE] := 'Cannot open that file'
LD C,09H ;string output function
CALL BDOS
RET ;error return

;

READ: LD A,2
CALL GETARG ;get 2nd argument of command line
CALL STOHEX ;HL := value of the argument
LD (ADRS),HL ;set address counter

;

LD DE,NEWDMA
LD C,1AH ;set DMA address function
CALL BDOS

B

LD HL,8
LD (FCB+14),HL ;record size := 8

;

LD HL,0
LD (FCB+33),HL
LD (FCB+35),HL ;random record := 0

;

RD1: LD HL,NEWDMA ;clear DMA area
LD B,8

RD2: LD (HL)," "
INC HL
DJNZ RD2

R

LD HL,1 ;read 1 record
LD DE,FCB
LD C,27H ;random block read function
CALL BDOS
OR A ;success ?
JR Z,DUMP ;if so, goto DUMP

;

LD DE,ERMSG2 ;[DE] := 'Ok.'
LD C,09H ;string output function
CALL BDOS
RET

R

DUMP: LD HL,(ADRS)
LD A,H
CALL PUTHEX
LD A,L
CALL PUTHEX
LD A," "
CALL PUTCHR
LD DE,8
ADD HL,DE
LD (ADRS),HL

(

LD HL,NEWDMA
CALL DUMP8B ;dump 8 bytes

;

JR RD1

R

;----- work area -----

;

ADRS: DS 2
NEWDMA: DS 8

8

;----- error message -----

;

ERMSG1: DB "Cannot open that file.$"
ERMSG2: DB "Ok.$"

"

END

E

===

=

