
MSX2 TECHNICAL HANDBOOK

-

Edited by: ASCII Systems Division
Published by: ASCII Coprporation - JAPAN
First edition: March 1987

M

Text file typed by: Nestor Soriano (Konami Man) - SPAIN
October 1997

O

Changes from the original in APPENDIX 1:

C

- In description of ENASLT, the needed input in HL has been added.

-

- In description of GETYPR, the Input field has been added.

-

- In description of INITXT (MAIN), the reference to "INIPLOT" has been
corrected to "INIPLT".

c

- In description of SUBROM routine, the mark "*1" has been erased.

-

- In description of INITXT (SUB), the needed input in LINL40 has been added.

-

- Description of PHYDIO routine has been added.
Changes from the original in APPENDIX 2:

C

- In the explanation before Figure A.3, the indication about the excess 64
method has been added.

m

- In Figure A.3, in the third byte, "63rd power of 10" has been corrected to
"-63rd power of 10".

"

- In the explanation before Figure A.3, the indication about the excess 64
method has been added.

m

- In Figure A.3, in the third byte, "63rd power of 10" has been corrected to
"-63rd power of 10".

"

-=-

--

APPENDIX 1 - BIOS LISTING

A

This section lists the 126 BIOS entries available to the user.

T

There are two kinds of BIOS routines, the ones in MAIN-ROM and the ones in
SUB-ROM. They each have different calling sequences which will be described
later. The following is the entry notation.

ll

Label name (address) *n
 Function: descriptions and notes about the function
 Input: parameters used by call
 Output: parameters returned by call
 Registers: registers which will be used (original contentes are lost)

The value of *n has the following meanings.

T

 *1 ... same as MSX1
 *2 ... call SUB-ROM internally in screen modes 5 to 8
 *3 ... always call SUB-ROM
 *4 ... do not call SUB-ROM while screen modes 4 to 8 are changed

Routines without "*n" are appended for MSX2.

RRR

MAIN-ROM

-

To call routines in MAIN-ROM, the CALL or RTS instruction is used as an
ordinary subroutine call.

ooo

* RSTs

*

Among the following RSTs, RST 00H to RST 28H are used by the BASIC
interpreter. RST 30H is used for inter-slot calls and RST 38H is used for
hardware interrupts.

hh

CHKRAM (0000H) *1
 Function: tests RAM and sets RAM slot for the system
 Input: none
 Output: none
 Registers: all

aa

SYNCHR (0008H) *1
 Funtcion: tests whether the character of [HL] is the specified

character. If not, it generates SYNTAX ERROR, otherwise it
goes to CHRGTR (0010H).

 Input: set the character to be tested in [HL] and the character to
be compared next to RST instruction which calls this routine
(inline parameter).

(

Example: LD HL,LETTER
RST 08H
DB "A"

 .
 .
 .

LETTER: DB "B"

"

 Output: HL is increased by one and A receives [HL]. When the tested
character is numerical, the CY flag is set; the end of the
statement (00H or 3AH) causes the Z flag to be set.

 Registers: AF, HL

AA

RDSLT (000CH) *1
 Function: selects the slot corresponding to the value of A and reads

one byte from the memory of the slot. When this routine is
called, the interrupt is inhibited and remains inhibited

even after execution ends.
 Input: A for the slot number.

A

 F000EEPP
 - ----
 | ||++-------------- Basic slot number (0 to 3)
 | ++---------------- Expansion slot number (0 to 3)
 +--------------------- "1" when using expansion slot

HL for the address of memory to be read
 Output: the value of memory which has been read in A
 Registers: AF, BC, DE

AA

CHRGTR (0010H) *1
 Function: gets a character (or a token) from BASIC text
 Input: [HL] for the character to be read
 Output: HL is incremented by one and A receives [HL]. When the

character is numerical, the CY flag is set; the end of the
statement causes the Z flag to be set.

 Registers: AF, HL

AA

WRSLT (0014H) *1
 Function: selects the slot corresponding to the value of A and writes

one byte to the memory of the slot. When this routine is
called, interrupts are inhibited and remain so even after
execution ends.

 Input: specifies a slot with A (same as RDSLT)
 Output: none
 Registers: AF, BC, D

AA

OUTDO (0018H) *2
 Funtion: sends the value to current device
 Input: A for the value to be sent

 sends output to the printer when PTRFLG (F416H) is other
 than 0
 sends output to the file specified by PTRFIL (F864H) when
 PTRFIL is other than 0

 Output: none
 Registers: none

nn

CALSLT (001CH) *1
 Function: calls the routine in another slot (inter-slot call)
 Input: specify the slot in the 8 high order buts of the IY register

(same as RDSLT). IX is for the address to be called.
 Output: depends on the calling routine
 Registers: depends on the calling routine

dd

DCOMPR (0020H) *1
 Function: compares the contents of HL and DE
 Input: HL, DE
 Output: sets the Z flag for HL = DE, CY flag for HL < DE
 Registers: AF

A

A

ENASLT (0024H) *1
 Function: selects the slot corresponding to the value of A and enables

the slot to be used. When this routine is called, interrupts
are inhibited and remain so even after execution ends.

 Input: specify the slot by A (same as RDSLT)
specify the page to switch the slot by 2 high order bits
of HL

 Output: none
 Registers: all

aa

GETYPR (0028H) *1
 Function: returns the type of DAC (decimal accumulator)
 Input: none
 Output: S, Z, P/V flags are changed depending on the type of DAC:

S

integer type single precision real type
 C = 1 C = 1
 S = 1 * S = 0
 Z = 0 Z = 0
 P/V = 1 P/V = 0 *

P

string type double precision real type
 C = 1 C = 0 *
 S = 0 S = 0
 Z = 1 * Z = 0
 P/V = 1 P/V = 1

P

Types can be recognised by the flag marked by "*".
 Registers: AF

AA

CALLF (0030H) *1
 Function: calls the routine in another slot. The following is the

calling sequence:

c

RST 30H
DB n ;n is the slot number (same as RDSLT)
DW nn ;nn is the called address

;

 Input: In the method described above
 Output: depends on the calling routine
 Registers: AF, and other registers depending on the calling routine

AA

KEYINT (0038H) *1
 Function: executes the timer interrupt process routine
 Input: none
 Output: none
 Register: none

nnn

* I/O initialisation

**

INITIO (003BH) *1

 Function: initialises the device
 Input: none
 Output: none
 Registers: all

aa

INIFNK (003EH) *1
 Function: initialises the contents of function keys
 Input: none
 Output: none
 Registers: all

aaa

* VDP access

**

DISSCR (0041H) *1
 Function: inhibits the screen display
 Input: none
 Output: none
 Registers: AF, BC

AA

ENASCR (0044H) *1
 Function: displays the screen
 Input: none
 Output: none
 Registers: all

aa

WRTVDP (0047H) *2
 Function: writes data in the VDP register
 Input: C for the register number, B for data; the register number

is 0 to 23 and 32 to 46
 Output: none
 Registers: AF, BC

AA

RDVRM (004AH) *1
 Function: reads the contents of VRAM. This is for TMS9918, so only the

14 low order bits of the VRAM address are valid. To use all
bits, call NRDVRM.

 Input: HL for VRAM address to be read
 Output: A for the value which was read
 Registers: AF

AA

WRTVRM (004DH) *1
 Function: writes data in VRAM. This is for TMS9918, so only the 14 low

order bits of the VRAM address are valid. To use all bits,
call NWRVRM.

 Input: HL for VRAM address, A for data
 Output: none
 Registers: AF

AA

SETRD (0050H) *1

 Function: sets VRAM address to VDP and enables it to be read. This is
used to read data from the sequential VRAM area by using the
address auto-increment function of VDP. This enables faster
readout than using RDVRM in a loop. This is for TMS9918, so
only the 14 low order bits of VRAM address are valid. To use
all bits, call NSETRD.

 Input: HL for VRAM address
 Output: none
 Registers: AF

AA

SETWRT (0053H) *1
 Function: sets VRAM address to VDP and enables it to be written. The

purpose is the same as SETRD. This is for TMS9918, so only
the 14 low order bits of VRAM address are valid. To use all
bits, call NSETRD.

 Input: HL for VRAM address
 Output: none
 Registers: AF

AA

FILVRM (0056H) *4
 Function: fills the specified VRAM area with the same data. This is for

TMS9918, so only the 14 low order bits of the VRAM address
are valid. To use all bits, see BIGFIL.

 Input: HL for VRAM address to begin writing, BC for the length of
the area to be written, A for data.

 Output: none
 Registers: AF, BC

AA

LDIRMV (0059H) *4
 Function: block transfer from VRAM to memory
 Input: HL for source address (VRAM), DE for destination address

(memory), BC for the length. All bits of the VRAM address
are valid.

 Output: none
 Registers: all

aa

LDIRVM (005CH) *4
 Function: block transfer from memory to VRAM
 Input: HL for source address (memory), DE for destination address

(VRAM), BC for the length. All bits of the VRAM address are
valid.

 Output: none
 Registers: all

aa

CHGMOD (005FH) *3
 Function: changes the screen mode. The palette is not initialised. To

initialise it, see CHGMDP in SUB-ROM.
 Input: A for the screen mode (0 to 8)
 Output: none
 Registers: all

aa

CHGCLR (0062H) *1

 Function: changes the screen colour
 Input: A for the mode

 FORCLR (F3E9H) for foreground color
 BAKCLR (F3EAH) for background color
 BDRCLR (F3EBH) for border colour

 Output: none
 Registers: all

aa

NMI (0066H) *1
 Function: executes NMI (Non-Maskable Interrupt) handling routine
 Input: none
 Output: none
 Registers: none

nn

CLRSPR (0069H) *3
 Function: initialises all sprites. The sprite pattern is cleared to

null, the sprite number to the sprite plane number, the
sprite colour to the foregtound colour. The vertical location
of the sprite is set to 209 (mode 0 to 3) or 217
(mode 4 to 8).

 Input: SCRMOD (FCAFH) for the screen mode
 Output: none
 Registers: all

aa

INITXT (006CH) *3
 Function: initialises the screen to TEXT1 mode (40 x 24). In this

routine, the palette is not initialised. To initialise the
palette, call INIPLT in SUB-ROM after this call.

 Input: TXTNAM (F3B3H) for the pattern name table
TXTCGP (F3B7H) for the pattern generator table
LINL40 (F3AEH) for the length of one line

 Output: none
 Registers: all

aa

INIT32 (006FH) *3
 Function: initialises the screen to GRAPHIC1 mode (32x24). In this

routine, the palette is not initialised.
 Input: T32NAM (F3BDH) for the pattern name table

T32COL (F3BFH) for the colour table
T32CGP (F3C1H) for the pattern generator table
T32ATR (F3C3H) for the sprite attribute table
T32PAT (F3C5H) for the sprite generator table

 Output: none
 Registers: all

aa

INIGRP (0072H) *3
 Function: initialises the screen to the high-resolution graphics mode.

In this routine, the palette is not initialised.
 Input: GRPNAM (F3C7H) for the pattern name table

GRPCOL (F3C9H) for the colour table
GRPCGP (F3CBH) for the pattern generator table
GRPATR (F3CDH) for the sprite attribute table
GRPPAT (F3CFH) for the sprite generator table

 Output: none
 Registers: all

aa

INIMLT (0075H) *3
 Function: initialises the screen to MULTI colour mode. In this routine,

the palette is not initialised.
 Input: MLTNAM (F3D1H) for the pattern name table

MLTCOL (F3D3H) for the colour table
MLTCGP (F3D5H) for the pattern generator table
MLTATR (F3D7H) for the sprite attribute table
MLTPAT (F3D9H) for the sprite generator table

 Output: none
 Registers: all

aa

SETTXT (0078H) *3
 Function: set only VDP in TEXT1 mode (40x24)
 Input: same as INITXT
 Output: none
 Registers: all

aa

SETT32 (007BH) *3
 Function: set only VDP in GRAPHIC1 mode (32x24)
 Input: same as INIT32
 Output: none
 Registers: all

aa

SETGRP (007EH) *3
 Function: set only VDP in GRAPHIC2 mode
 Input: same as INIGRP
 Output: none
 Registers: all

aa

SETMLT (0081H) *3
 Function: set only VDP in MULTI colour mode
 Input: same as INIMLT
 Output: none
 Registers: all

aa

CALPAT (0084H) *1
 Funtion: returns the address of the sprite generator table
 Input: A for the sprite number
 Output: HL for the address
 Registers: AF, DE, HL

AA

CALATR (0087H) *1
 Function: returns the address of the sprite attribute table
 Input: A for the sprite number
 Output: HL for the address
 Registers: AF, DE, HL

AA

GSPSIZ (008AH) *1
 Function: returns the current sprite size
 Input: none
 Output: A for the sprite size (in bytes). Only when the size is

16 x 16, the CY flag is set; otherwise the CY flag is reset.
 Registers: AF

AA

GRPPRT (008DH) *2
 Function: displays a character on the graphic screen
 Input: A for the character code. When the screen mode is 0 to 8,

set the logical operation code in LOGOPR (FB02H).
 Output: none
 Registers: none

nnn

* PSG

**

GICINI (0090H) *1
 Function: initialises PSG and sets the initial value for the PLAY

statement
 Input: none
 Output: none
 Registers: all

aa

WRTPSG (0093H) *1
 Function: writes data in the PSG register
 Input: A for PSG register number, E for data
 Output: none
 Registers: none

nn

RDPSG (0096H) *1
 Function: reads the PSG register value
 Input: A for PSG register number
 Output: A for the value which was read
 Registers: none

nn

STRTMS (0099H) *1
 Function: tests whether the PLAY statement is being executed as a

background task. If not, begins to execute the PLAY statement
 Input: none
 Output: none
 Registers: all

aaa

* Keyboard, CRT, printer input-output

**

CHSNS (009CH) *1
 Function: tests the status of the keyboard buffer
 Input: none
 Output: the Z flag is set when the buffer is empty, otherwise the

Z flag is reset
 Registers: AF

AA

CHGET (009FH) *1
 Function: one character input (waiting)
 Input: none
 Output: A for the code of the input character
 Registers: AF

AA

CHPUT (00A2H) *1
 Function: displays the character
 Input: A for the character code to be displayed
 Output: none
 Registers: none

nn

LPTOUT (00A5H) *1
 Function: sends one character to the printer
 Input: A for the character code to be sent
 Output: if failed, the CY flag is set
 Registers: F

FF

LPTSTT (00A8H) *1
 Function: tests the printer status
 Input: none
 Output: when A is 255 and the Z flag is reset, the printer is READY.

when A is 0 and the Z flag is set, the printer is NOT READY.
 Registers: AF

AA

CNVCHR (00ABH) *1
 Function: test for the graphic header and transforms the code
 Input: A for the character code
 Output: the CY flag is reset to not the graphic header

the CY flag and the Z flag are set to the transformed code
is set in A
the CY flag is set and the CY flag is reset to the
untransformed code is set in A

 Registers: AF

AA

PINLIN (00AEH) *1
 Function: stores in the specified buffer the character codes input

until the return key or STOP key is pressed.
 Input: none
 Output: HL for the starting address of the buffer minus 1, the CY

flag is set only when it ends with the STOP key.
 Registers: all

aa

INLIN (00B1H) *1
 Function: same as PINLIN except that AUTFLG (F6AAH) is set
 Input: none
 Output: HL for the starting address of the buffer minus 1, the CY

flag is set only when it ends with the STOP key.

 Registers: all

aa

QINLIN (00B4H) *1
 Function: executes INLIN with displaying "?" and one space
 Input: none
 Output: HL for the starting address of the buffer minus 1, the CY

flag is set only when it ends with the STOP key.
 Registers: all

aa

BREAKX (00B7H) *1
 Function: tests Ctrl-STOP key. In this routine, interrupts are

inhibited.
 Input: none
 Output: the CY flag is set when pressed
 Registers: AF

AA

BEEP (00C0H) *3
 Function: generates BEEP
 Input: none
 Output: none
 Registers: all

aa

CLS (00C3H) *3
 Function: clears the screen
 Input: set zero flag
 Output: none
 Registers: AF, BC, DE

AA

POSIT (00C6H) *1
 Function: moves the cursor
 Input: H for the X-coordinate of the cursor, L for the Y-coordinate
 Output: none
 Registers: AF

AA

FNKSB (00C9H) *1
 Function: tests whether the function key display is active (FNKFLG).

If so, displays them, otherwise erases them.
 Input: FNKFLG (FBCEH)
 Output: none
 Registers: all

aa

ERAFNK (00CCH) *1
 Function: erases the function key display
 Input: none
 Output: none
 Registers: all

aa

DSPFNK (00CFH) *2
 Function: displays the function keys
 Input: none

 Output: none
 Registers: all

aa

TOTEXT (00D2H) *1
 Function: forces the screen to be in the text mode
 Input: none
 Output: none
 Registers: all

aaa

* Game I/O access

**

GTSTCK (00D5H) *1
 Function: returns the joystick status
 Input: A for the joystick number to be tested
 Output: A for the joystick direction
 Registers: all

aa

GTTRIG (00D8H) *1
 Function: returns the trigger button status
 Input: A for the trigger button number to be tested
 Output: When A is 0, the trigger button is not being pressed.

When A is FFH, the trigger button is being pressed.
 Registers: AF

AA

GTPAD (00DBH) *1
 Function: returns the touch pad status
 Input: A for the touch pad number to be tested
 Output: A for the value
 Registers: all

aa

GTPDL (00DEH) *2
 Function: returns the paddle value
 Input: A for the paddle number
 Output: A for the value
 Registers: all

aaa

* Cassette input-output routine

**

TAPION (00E1H) *1
 Function: reads the header block after turning the cassette motor ON.
 Input: none
 Output: if failed, the CY flag is set
 Registers: all

aa

TAPIN (00E4H) *1
 Function: reads data from the tape
 Input: none

 Output: A for data. If failed, the CY flag is set.
 Registers: all

aa

TAPIOF (00E7H) *1
 Function: stops reading the tape
 Input: none
 Output: none
 Registers: none

nn

TAPOON (00EAH) *1
 Function: writes the header block after turning the cassette motor ON
 Input: A = 0, short header; A <> 0, long header
 Output: if failed, the CY flag is set
 Registers: all

aa

TAPOUT (00EDH) *1
 Function: writes data on the tape
 Input: A for data
 Output: if failed, the CY flag is set
 Registers: all

aa

TAPOOF (00F0H) *1
 Function: stops writing to the tape
 Input: A for data
 Output: if failed, the CY flag is set
 Registers: all

aa

STMOTR (00F3H) *1
 Function: sets the cassette motor action
 Input: A = 0 -> stop

A = 1 -> start
A = 0FFH -> reverse the current action

 Output: none
 Registers: AF

AAA

* Miscellaneous

**

CHGCAP (0132H) *1
 Function: alternates the CAP lamp status
 Input: A = 0 -> lamp off

A <>0 -> lamp on
 Output: none
 Registers: AF

AA

CHGSND (0135H) *1
 Function: alternates the 1-bit sound port status
 Input: A = 0 -> OFF

A <>0 -> ON
 Output: none

 Registers: AF

AA

RSLREG (0138H) *1
 Function: reads the contents of current output to the basic slot

register
 Input: none
 Output: A for the value which was read
 Registers: A

AA

WSLREG (013BH) *1
 Function: writes to the primary slot register
 Input: A for the value to be written
 Output: none
 Registers: none

nn

RDVDP (013EH) *1
 Function: reads VDP status register
 Input: none
 Output: A for the value which was read
 Registers: A

AA

SNSMAT (0141H) *1
 Function: reads the value of the specified line from the keyboard

matrix
 Input: A for the specified line
 Output: A for data (the bit corresponding to the pressed key will

be 0)
 Registers: AF, C

AA

PHYDIO (0144H)
 Function: Physical input/output for disk devices
 Input: A for the drive number (0 = A:, 1 = B:,...)

B for the number of sector to be read from or written to
C for the media ID
DE for the first sector number to be read rom or written to
HL for the startinga address of the RAM buffer to be
 read from or written to specified sectors
CY set for sector writing; reset for sector reading

 Output: CY set if failed
B for the number of sectors actually read or written
A for the error code (only if CY set):

0 = Write protected
2 = Not ready
4 = Data error
6 = Seek error
8 = Record not found

 10 = Write error
 12 = Bad parameter
 14 = Out of memory
 16 = Other error

 Registers: all

aa

ISFLIO (014AH) *1
 Function: tests whether the device is active
 Input: none
 Output: A = 0 -> active

A <>0 -> inactive
 Registers: AF

AA

OUTDLP (014DH) *1
 Function: printer output.Different from LPTOUT in the following points:

 1. TAB is expanded to spaces
 2. For non-MSX printers, hiragana is transformed to

katakana and graphic characters are transformed to
1-byte characters.

 3. If failed, device I/O error occurs.
 Input: A for data
 Output: none
 Registers: F

FF

KILBUF (0156H) *1
 Function: clears the keyboard buffer
 Input: none
 Output: none
 Registers: HL

HH

CALBAS (0159H) *1
 Function: executes inter-slot call to the routine in BASIC interpreter
 Input: IX for the calling address
 Output: depends on the called routine
 Registers: depends on the called routine

ddd

* Entries appended for MSX2

**

SUBROM (015CH)
 Function: executes inter-slot call to SUB-ROM
 Input: IX for the calling address and, at the same time, pushes IX

on the stack
 Output: depends on the called routine
 Registers: background registers and IY are reserved

bb

EXTROM (015FH)
 Function: executes inter-slot call to SUB-ROM
 Input: IX for the calling address
 Output: depends on the called routine
 Registers: background registers and IY are reserved

bb

EOL (0168H)
 Function: deletes to the end of the line
 Input: H for X-coordinate of the cursor, L for Y-coordinate
 Output: none
 Registers: all

aa

BIGFIL (016BH)
 Function: same function as FILVRM. Differences are as follows:

 In FILVRM, it is tested whether the screen mode is 0 to 3.
 If so, it treats VDP as the one which has only 16K bytes
 VRAM (for the compatibility with MSX1). In BIGFIL, the
 mode is not tested and actions are carried out by the
 given parameters.

 Input: same as FILVRM
 Output: same as FILVRM
 Registers: same as FILVRM

ss

NSETRD (016EH)
 Function: enables VRAM to be read by setting the address
 Input: HL for VRAM address
 Output: none
 Registers: AF

AA

NSTWRT (0171H)
 Function: enables VRAM to be written by setting the address
 Input: HL for VRAM address
 Output: none
 Registers: AF

AA

NRDVRM (0174H)
 Function: reads the contents of VRAM
 Input: HL for VRAM address to be read
 Output: A for the value which was read
 Registers: F

FF

NWRVRM (0177H)
 Function: writes data in VRAM
 Input: HL for VRAM address, A for data
 Output: none
 Registers: AF

AAA

SUB-ROM

-

The calling sequence of SUB-ROM is as follows:

T

.

.

.
LD IX, INIPLT

 ; Set BIOS entry address
CALL EXTROM

 ; Returns here
.
.
.

.

When the contents of IX should not be destroyed, use the call as shown below.

W

.

.

.
INIPAL: PUSH IX

 ; Save IX
LD IX, INIPLT

 ; Set BIOS entry address
JP SUBROM

 ;Returns caller of INIPAL
.
.
.

..

GRPRT (0089H)
 Function: one character output to the graphic screen (active only in

screen modes 5 to 8)
 Input: A for the character code
 Output: none
 Registers: none

nn

NVBXLN (00C9H)
 Function: draws a box
 Input: start point: BC for X-coordinate, DE for Y-coordinate

end point: GXPOS (FCB3H) for X-coordinate
 GYPOS (FCB5H) for Y-coordinate

colour: ATRBYT (F3F3H) for the attribute
logical operation code: LOGOPR (FB02H)

 Output: none
 Registers: all

aa

NVBXFL (00CDH)
 Function: draws a painted box
 Input: start point: BC for X-coordinate, DE for Y-coordinate

end point: GXPOS (FCB3H) for X-coordinate
 GYPOS (FCB5H) for Y-coordinate

colour: ATRBYT (F3F3H) for the attribute
logical operation code: LOGOPR (FB02H)

 Output: none
 Registers: all

aa

CHGMOD (00D1H)
 Function: changes the screen mode
 Input: A for the screen mode (0 to 8)
 Output: none
 Registers: all

aa

INITXT (00D5H)
 Function: initialises the screen to TEXT1 mode (40 x 24)
 Input: TXTNAM (F3B3H) for the pattern name table

TXTCGP (F3B7H) for the pattern generator table

LINL40 (F3AEH) for the length of one line
 Output: none
 Registers: all

aa

INIT32 (00D9H)
 Function: initialises the screen to GRAPHIC1 mode (32x24)
 Input: T32NAM (F3BDH) for the pattern name table

T32COL (F3BFH) for the colour table
T32CGP (F3C1H) for the pattern generator table
T32ATR (F3C3H) for the sprite attribute table
T32PAT (F3C5H) for the sprite generator table

 Output: none
 Registers: all

aa

INIGRP (00DDH)
 Function: initialises the screen to the high-resolution graphics mode
 Input: GRPNAM (F3C7H) for the pattern name table

GRPCOL (F3C9H) for the colour table
GRPCGP (F3CBH) for the pattern generator table
GRPATR (F3CDH) for the sprite attribute table
GRPPAT (F3CFH) for the sprite generator table

 Output: none
 Registers: all

aa

INIMLT (00E1H)
 Function: initialises the screen to MULTI colour mode
 Input: MLTNAM (F3D1H) for the pattern name table

MLTCOL (F3D3H) for the colour table
MLTCGP (F3D5H) for the pattern generator table
MLTATR (F3D7H) for the sprite attribute table
MLTPAT (F3D9H) for the sprite generator table

 Output: none
 Registers: all

aa

SETTXT (00E5H)
 Function: sets VDP in the text mode (40x24)
 Input: same as INITXT
 Output: none
 Registers: all

aa

SETT32 (00E9H)
 Function: ses VDP in the text mode (32x24)
 Input: same as INIT32
 Output: none
 Registers: all

aa

SETGRP (00EDH)
 Function: sets VDP in the high-resolution mode
 Input: same as INIGRP
 Output: none
 Registers: all

a

a

SETMLT (00F1H)
 Function: sets VDP in MULTI COLOUR mode
 Input: same as INIMLT
 Output: none
 Registers: all

aa

CLRSPR (00F5H)
 Function: initialises all sprites. The sprite pattern is set to null,

sprite number to sprite plane number, and sprite colour to
the foregtound colour. The vertical location of the sprite
is set to 217.

 Input: SCRMOD (FCAFH) for the screen mode
 Output: none
 Registers: all

aa

CALPAT (00F9H)
 Funtion: returns the address of the sprite generator table

(this routine is the same as CALPAT in MAIN-ROM)
 Input: A for the sprite number
 Output: HL for the address
 Registers: AF, DE, HL

AA

CALATR (00FDH)
 Function: returns the address of the sprite attribute table

(this routine is the same as CALATR in MAIN-ROM)
 Input: A for the sprite number
 Output: HL for the address
 Registers: AF, DE, HL

AA

GSPSIZ (0101H)
 Function: returns the current sprite size

(this routine is the same as GSPSIZ in MAIN-ROM)
 Input: none
 Output: A for the sprite size. The CY flag is set only for the size

16 x 16.
 Registers: AF

AA

GETPAT (0105H)
 Function: returns the character pattern
 Input: A for the character code
 Output: PATWRK (FC40H) for the character pattern
 Registers: all

aa

WRTVRM (0109H)
 Function: writes data in VRAM
 Input: HL for VRAM address (0 TO FFFFH), A for data
 Output: none
 Registers: AF

AA

RDVRM (010DH)

 Function: reads the contents of VRAM
 Input: HL for VRAM address (0 TO FFFFH) to be read
 Output: A for the value which was read
 Registers: AF

AA

CHGCLR (0111H)
 Function: changes the screen colour
 Input: A for the mode

FORCLR (F3E9H) for the foreground color
BAKCLR (F3EAH) for the background color
BDRCLR (F3EBH) for the border colour

 Output: none
 Registers: all

aa

CLSSUB (0115H)
 Function: clears the screen
 Input: none
 Output: none
 Registers: all

aa

DSPFNK (011DH)
 Function: displays the function keys
 Input: none
 Output: none
 Registers: all

aa

WRTVDP (012DH)
 Function: writes data in the VDP register
 Input: C for the register number, B for data
 Output: none
 Registers: AF, BC

AA

VDPSTA (0131H)
 Function: reads the VDP register
 Input: A for the register number (0 to 9)
 Output: A for data
 Registers: F

FF

SETPAG (013DH)
 Function: switches the page
 Input: DPPAGE (FAF5H) for the display page number

ACPAGE (FAF6H) for the active page number
 Output: none
 Registers: AF

AA

INIPLT (0141H)
 Function: initialises the palette(the current palette is saved in VRAM)
 Input: none
 Output: none
 Registers: AF, BC, DE

A

A

RSTPLT (0145H)
 Function: restores the palette from VRAM
 Input: none
 Output: none
 Registers: AF, BC, DE

AA

GETPLT (0149H)
 Function: obtains the colour code from the palette
 Input: D for the palette number (0 to 15)
 Output: 4 high order bits of B for red code

4 low order bits of B for blue code
4 low order bits of C for green code

 Registers: AF, DE

AA

SETPLT (014DH)
 Function: sets the colour code to the palette
 Input: D for the palette number (0 to 15)

4 high order bits of A for red code
4 low order bits of A for blue code
4 low order bits of E for green code

 Output: none
 Registers: AF

AA

BEEP (017DH)
 Function: generates BEEP
 Input: none
 Output: none
 Registers: all

aa

PROMPT (0181H)
 Function: displays the prompt
 Input: none
 Output: none
 Registers: all

aa

NEWPAD (01ADH)
 Function: reads the status of mouse or light pen
 Input: call with setting the following data in A;

descriptions in parenthesis are return values.
 8 light pen check (valid at 0FFH)
 9 returns X-coordinate
 10 returns Y-coordinate
 11 returns the light pen switch status

(0FFH, when pressed)
 12 whether the mouse is connected to the

port 1 (valid at 0FFH)
 13 returns the offset in X direction
 14 returns the offset in Y direction
 15 (always 0)
 16 whether the mouse is connected to the

port 2 (valid at 0FFH)
 17 returns the offset in X direction

 18 returns the offset in Y direction
 19 (always 0)

 Output: A
 Registers: all

aa

CHGMDP (01B5H)
 Function: changes VDP mode. The palette is initialised.
 Input: A for the screen mode (0 to 8)
 Output: none
 Registers: all

aa

KNJPRT (01BDH)
 Function: sends a kanki to the graphic screen (modes 5 to 8)
 Input: BC for JIS kanji code, A for the display mode. The display

mode has the following meaning, similar to the PUT KANJI
command of BASIC.
 0 display in 16 x 16 dot
 1 display even dots
 2 display odd dots

REDCLK (01F5H)
 Function: reads the clock data
 Input: C for RAM address of the clock

C

 00MMAAAA

 ||++++--- Address (0 to 15)
 ++------- Mode (0 to 3)

 Output: A for the data which were read (only 4 low order bits are
valid)

 Registers: F

FF

WRTCLK (01F9H)
 Function: writes the clock data
 Input: A for the data to be written, C for RAM address of the clock
 Output: none
 Registers: F

FF

===

=

Changes from the original in APPENDIX 2:

C

- In the explanation before Figure A.3, the indication about the excess 64
method has been added.

m

- In Figure A.3, in the third byte, "63rd power of 10" has been corrected to
"-63rd power of 10".

"

- In the explanation before Figure A.3, the indication about the excess 64
method has been added.

m

- In Figure A.3, in the third byte, "63rd power of 10" has been corrected to
"-63rd power of 10".

"

-=-

--

APPENDIX 2 - MATH-PACK

A

The Math-Pack is the core for the mathematical routines of MSX-BASIC and, by
calling these routines from an assembly language program, floating-point
operations and trigonometrical functions are available.

o

Any operations involving real numbers in Math-Pack are done in BCD (Binary
Coded Decimal). There are two ways of expressing a real number, "single
precision" and "double precision"; a single precision real number (6 digits)
is expressed by 4 bytes and a double precision real number (14 digits) by 8
bytes (see Figure A.1 and Figure A.2).

bb

 Figure A.1 BCD format for expressing real numbers

 MSB 7 6 5 4 3 2 1 0 LSB
 --- --- ---
 ^ ^ |sign | exponent | 0
 | | ---
 | | ---
 | | | mantissa 1st place | mantissa 2nd place | 1
 | single ---
 | precision ---
 | | | mantissa 3rd place | mantissa 4th place | 2
 | | ---
 | | ---
 | V | mantissa 5th place | mantissa 6th place | 3
 double --- ---
precision ---
 | | mantissa 7th place | mantissa 8th place | 4

 V | mantissa 13th place | mantissa 14th place | 7
 --- ---

--

 Figure A.2 Examples of expressions for real numbers

Example of the single precision expression

E

 123456 --> 0.123456 E+6

 1 2 3 4

DAC | 46 | 12 | 34 | 56 |

Example of the double precision expression

E

 123456.78901234 --> 0.12345678901234 E+6

 1 2 3 4 5 6 7 8

DAC | 46 | 12 | 34 | 56 | 78 | 90 | 12 | 34 |

A real number consists of a sign, an exponent, and a mantissa. The sign
represents the sign of the mantissa; 0 for positive, 1 for negative. The
exponent is a binary expression and can be expressed as a power from +63 to
-63, with an excess of 64 (see Figure A.3). Figure A.4 shows the valid range
of double precision real numbers.

oo

 Figure A.3 Exponent format

|sign |<--------------- exponent -------------->| meaning

| 0 | 0 0 0 0 0 0 0 | 0

| 1 | 0 0 0 0 0 0 0 | undefined (-0?)

| x | 0 0 0 0 0 0 1 | -63rd power of 10

| x | 1 0 0 0 0 0 0 | 0th power of 10

| x | 1 1 1 1 1 1 1 | +63rd power of 10

-

 Note: "x" is 1 or 0, both of which are allowed.

 Figure A.4 Valid range for double precision real numbers

 7 6 5 4 3 2 1 0 (byte)

DAC | FF | 99 | 99 | 99 | 99 | 99 | 99 | 99 | -0.99999999999999 E+63

 .
 .
 .

 | 81 | 10 | 00 | 00 | 00 | 00 | 00 | 00 | -0.10000000000000 E-63

 | 00 | x | x | x | x | x | x | x | 0

 | 01 | 10 | 00 | 00 | 00 | 00 | 00 | 00 | +0.10000000000000 E-63

 .
 .

 .

 | 7F | 99 | 99 | 99 | 99 | 99 | 99 | 99 | +0.99999999999999 E+63

In Math-Pack, the memory is predefined for operation. This memory area is
called "DAC (Decimal ACumulator (F7F6H)" and the area which reserves the
numerical value to be operated is called "ARG (F847H)". For example, in
multiplication, the product of the numbers in DAC and ARG is calculated and
the result is returned in the DAC.

t

In the DAC, single precision real numbers, double precision real numbers, and
two-byte integers can be stored. In order to distinguish them, "VALTYP
(F663H)" is used and its value is 4 for single precision real numbers, 8 for
double precision real numbers, and 2 for two-byte integers.

d

Single and double precision numbers must be stored from the top of the DAC.
For two-byte integers, the low and high bytes should be stored in DAC + 2 and
DAC + 3.

D

Since Math-Pack is an internal routine of BASIC, when an error occurs (such
as division by 0 or overflow), control automatically jumps to the
corresponding error routine, then returns to BASIC command level. To prevent
this, change H.ERRO (FFB1H).

tt

* Math-Pack work area

*

| Label | Address | Size | Meaning |
|-----------+-----------+--------+--|
VALTYP	F663H	1	format of the number in DAC
DAC	F7F6H	16	floating point accumulator in BCD format
ARG	F847H	16	argument of DAC

--

* Math-Pack entry

**

Basic operation

B

| Label | Address | Function |
|-----------+-----------+-----------------------|
DECSUB	268CH	DAC <-- DAC - ARG
DECADD	269AH	DAC <-- DAC + ARG
DECNRM	26FAH	normalises DAC (*1)
DECROU	273CH	rounds DAC
DECMUL	27E6H	DAC <-- DAC * ARG
DECDIV	289FH	DAC <-- DAC / ARG

-

Note: These operations treat numbers in DAC and ARG as the double precision
 number. Registers are not preserved.
*1 Excessive zeros in mantissa are removed. (0.00123 --> 0.123 E-2)

*

p

Function 1

F

--
| Label | Address | Function | Register modified |
|-----------+-----------+----------------------+---------------------|
COS	2993H	DAC <-- COS(DAC)	all
SIN	29ACH	DAC <-- SIN(DAC)	all
TAN	29FBH	DAC <-- TAN(DAC)	all
ATN	2A14H	DAC <-- ATN(DAC)	all
LOG	2A72H	DAC <-- LOG(DAC)	all
SQR	2AFFH	DAC <-- SQR(DAC)	all
EXP	2B4AH	DAC <-- EXP(DAC)	all
RND	2BDFH	DAC <-- RND(DAC)	all
--

-

Note: These processing routines all have the same function names as those in
 BASIC. "All" registers are A, B, C, D, E, H, and L.

Function 2

F

--
| Label | Address | Function | Register modified |
|-----------+-----------+----------------------+---------------------|
SIGN	2E71H	A <-- sign of DAC	A
ABSFN	2E82H	DAC <-- ABS(DAC)	all
NEG	2E8DH	DAC <-- NEG(DAC)	A,HL
SGN	2E97H	DAC <-- SGN(DAC)	A,HL
--

-

Note: Except for SIGN, these processing routines all have the same function
 names as those in BASIC. Registers are A, B, C, D, E, H, and L.
 Note that for SGN, the result is represented as a 2-byte integer.

Movement

M

--
| Label | Address | Function | Object | Reg. mod. |
|-----------+-----------+---------------------+--------------+-------------|
MAF	2C4DH	ARG <-- DAC	double prec.	A,B,D,E,H,L
MAM	2C50H	ARG <-- (HL)	double prec.	A,B,D,E,H,L
MOV8DH	2C53H	(DE) <-- (HL)	double prec.	A,B,D,E,H,L
MFA	2C59H	DAC <-- ARG	double prec.	A,B,D,E,H,L
MFM	2C5CH	DAC <-- (HL)	double prec.	A,B,D,E,H,L
MMF	2C67H	(HL) <-- DAC	double prec.	A,B,D,E,H,L
MOV8HD	2C6AH	(HL) <-- (DE)	double prec.	A,B,D,E,H,L
XTF	2C6FH	(SP) <--> DAC	double prec.	A,B,D,E,H,L
PHA	2CC7H	ARG <-- (SP)	double prec.	A,B,D,E,H,L
PHF	2CCCH	DAC <-- (SP)	double prec.	A,B,D,E,H,L
PPA	2CDCH	(SP) <-- ARG	double prec.	A,B,D,E,H,L
PPF	2CE1H	(SP) <-- DAC	double prec.	A,B,D,E,H,L
PUSHF	2EB1H	DAC <-- (SP)	single prec.	D,E
MOVFM	2EBEH	DAC <-- (HL)	single prec.	B,C,D,E,H,L
MOVFR	2EC1H	DAC <-- (CBED)	single prec.	D,E
MOVRF	2ECCH	(CBED) <-- DAC	single prec.	B,C,D,E,H,L
MOVRMI	2ED6H	(CBED) <-- (HL)	single prec.	B,C,D,E,H,L

MOVRM	2EDFH	(BCDE) <-- (HL)	single prec.	B,C,D,E,H,L
MOVMF	2EE8H	(HL) <-- DAC	single prec.	A,B,D,E,H,L
MOVE	2EEBH	(HL) <-- (DE)	single prec.	B,C,D,E,H,L
VMOVAM	2EEFH	ARG <-- (HL)	VALTYP	B,C,D,E,H,L
MOVVFM	2EF2H	(DE) <-- (HL)	VALTYP	B,C,D,E,H,L
VMOVE	2EF3H	(HL) <-- (DE)	VALTYP	B,C,D,E,H,L
VMOVFA	2F05H	DAC <-- ARG	VALTYP	B,C,D,E,H,L
VMOVFM	2F08H	DAC <-- (HL)	VALTYP	B,C,D,E,H,L
VMOVAF	2F0DH	ARG <-- DAC	VALTYP	B,C,D,E,H,L
VMOVMF	2F10H	(HL) <-- DAC	VALTYP	B,C,D,E,H,L
--

-

Note: (HL), (DE) means the values in memory pointed to by HL or DE. Four
 register names in the parentheses are the single precision real numbers
 which indicate (sign + exponent), (mantissa 1st and 2nd places),
 (mantissa 3th and 4th places), (mantissa 5th and 6th places) from left
 to right. Where the object is VALTYP, the movement (2, 4, 8 bytes) is
 according to the type indicated in VALTYP (F663H).

Comparison

C

| Label | Address | Object | Left | Right |Reg. mod.|
|-----------+-----------+--------------------------+------+-------+---------|
FCOMP	2F21H	single prec. real number	CBED	DAC	HL
ICOMP	2F4DH	2-byte integer	DE	HL	HL
XDCOMP	2F5CH	double prec. real number	ARG	DAC	all

-

Note: Results will be in A register. Meanings of A register are:

N

 A = 1 --> left < right
 A = 0 --> left = right
 A = -1 --> left > right

l

 In the comparison of single precision real numbers, CBED means that
 each register has single precision (sign + exponent),
 (mantissa 1st and 2nd places), (mantissa 3th and 4th places), and
 (mantissa 5th and 6th places).

Floating-point input/output

F

| Label | Address | Function |
|-----------+-----------+---|
| FIN | 3299H | Stores a string representing the floating-point |
| | | number in DAC, converting it in real. |
|---|
| Entry condition HL <-- Starting address of the string |
| A <-- First character of the string |
| Return condition DAC <-- Real number |
| C <-- FFH: without a decimal point |
| 0: with a decimal point |
| B <-- Number of places after the decimal point |
D <-- Number of digits

-

| Label | Address | Function |
|-----------+-----------+---|
FOUT	3425H	Converts the real number in DAC to the string
		(unformatted)
PUFOUT	3426H	Converts the real number in DAC to the string
| | | (formatted) |
|---|
| Entry condition A <-- format |
| bit 7 0: unformatted 1: formatted |
| bit 6 0: without commas 1: with commas every three digits |
| bit 5 0: meaningless 1: leading spaces are padded with "." |
| bit 4 0: meaningless 1: "$" is added before the numerical value |
| bit 3 0: meaningless 1: "+" is added even for positive values |
| bit 2 0: meaningless 1: the sign comes after the value |
| bit 1 unused |
| bit 0: 0: fixed point 1: floating-point |
| B <-- number of digits before and not including the decimal point |
| C <-- number of digits after and including the decimal point |
Return condition HL <-- starting address of the string

-

| Label | Address | Function |
|-----------+-----------+---|
FOUTB	371AH	Converts 2-byte integer in DAC+2, 3 to a
		binary expression string.
FOUTO	371EH	Converts 2-byte integer in DAC+2, 3 to an
		octal expression string.
FOUTH	3722H	Converts 2-byte integer in DAC+2, 3 to a
| | | hexadecimal expression string. |
|---|
| Entry condition DAC + 2 <-- 2-byte integer |
| VALTYP <-- 2 |
Return condition HL <-- starting address of the string

-

Note: no strings are reserved. The starting address of the string in the
 output routine is normally in FBUFFR (from F7C5H). In some cases it
 may differ slightly. For the integer in DAC + 2, VALTYP (F663H) must
 be 2, even in cases other than FOUTB, FOUTO and FOUTH.

Type conversion

T

| Label | Address | Function |
|-----------+-----------+---|
FRCINT	2F8AH	Converts DAC to a 2-byte integer (DAC + 2, 3)
FRCSNG	2FB2H	Converts DAC to a single precision real number
FRCDBL	303AH	Converts DAC to a double precision real number
FIXER	30BEH	DAC <-- SGN(DAC) * INT(ABS(DAC))

-

Note: after execution, VALTYP (F663H) will contain the number (2, 4 or 8)
 representing DAC type. No registers are reserved.

Integer operation

I

| Label | Address | Function | Registers modified |
|-----------+-----------+----------------------+----------------------|
UMULT	314AH	DE <-- BC * DE	A, B, C, D, E
ISUB	3167H	HL <-- DE - HL	all
IADD	3172H	HL <-- DE + HL	all
IMULT	3193H	HL <-- DE * HL	all
IDIV	31E6H	HL <-- DE / HL	all
IMOD	323AH	HL <-- DE mod HL	alle
		(DE <-- DE/HL)	

--

Power

P

| Label | Address | Function | Base | Exp. | Result |
|-----------+-----------+----------------------------+------+------+--------|
SGNEXP	37C8H	power of single-prec. real	DAC	ARG	DAC
DBLEXP	37D7H	power of double-prec. real	DAC	ARG	DAC
INTEXP	383FH	power of 2-byte integer	DE	HL	DAC

-

Note: No registers are reserved.

NN

===

=

Changes from the original in APPENDIX 3:

C

none

n

-=-

--

APPENDIX 3 - BIT BLOCK TRANSFER

A

The bit block transfer corresponds to the COPY command in BASIC and is used
to transfer data from RAM, VRAM, and the disk. It is easily executed by the
routine in expansion ROM and available from the assembly language program.
Since it is in expansion ROM, use SUBROM or EXTROM of BIOS for this routine.

SS

1. Transferring in VRAM

1

* BLTVV (0191H/SUB)

*

 Function: transfers data in VRAM area

t

 Input: HL register <-- F562H
The following parameters should be set:

T

* SX (F562H, 2) X-coordinate of the source
* SY (F564H, 2) Y-coordinate of the source
* DX (F566H, 2) X-coordinate of the destination

* DY (F568H, 2) Y-coordinate of the destination
* NX (F56AH, 2) number of dots in the X direction
* NY (F56CH, 2) number of dots in the Y direction
* CDUMMY (F56EH, 1) dummy (not required to be set)
* ARG (F56FH, 1) selects the direction and expansion

RAM (same as VDP R#45)
* LOGOP (F570H, 1) logical operation code (same as the

logical operation code of VDP)

l

 Output: the CY flag is reset

t

 Registers: all

aa

2. Transferring data between RAM and VRAM

2

To use the routines below, the following memory space should be allocated as
graphic area for screen modes.

g

* screen mode 6
 number of dots in X direction times number of dots in Y direction/4 + 4

* screen mode 5 or 7
 number of dots in X direction times number of dots in Y direction/2 + 4

* screen mode 8
 number of dots in X direction times number of dots in Y direction/2 + 4

Note to raise fractions.

N

For disk or RAM, data to indicate the size is added as the array data. The
first two bytes of data indicate the number of dots in X direction; the next
two bytes indicate the number of dots in the Y direction.

tt

* BLTVM (0195H/SUB)

*

 Function: transfers the array to VRAM

t

 Input: HL register <-- F562H
The following parameters should be set:

T

* DPTR (F562H, 2) source address of memory
* DUMMY (F564H, 2) dummy (not required to be set)
* DX (F566H, 2) X-coordinate of the destination
* DY (F568H, 2) Y-coordinate of the destination
* NX (F56AH, 2) number of dots in the X direction

(not required to be set; this is
already in the top of data to be
transferred)

* NY (F56CH, 2) number of dots in the Y direction
(not required to be set; this is
already in the top of data to be
transferred)

* CDUMMY (F56EH, 1) dummy (not required to be set)
* ARG (F56FH, 1) selects the direction and expansion

RAM (same as VDP R#45)

* LOGOP (F570H, 1) logical operation code (same as the
logical operation code of VDP)

l

 Output: the CY flag is set when the number of data bytes to be
transferred is incorrect

t

 Registers: all

aa

* BLTMV (0199H/SUB)

*

 Function: transfers to the array from VRAM

t

 Input: HL register <-- F562H
The following parameters should be set:

T

* SX (F562H, 2) X-coordinate of the source
* SY (F564H, 2) Y-coordinate of the source
* DPTR (F566H, 2) destination address of memory
* DUMMY (F568H, 2) dummy (not required to be set)
* NX (F56AH, 2) number of dots in the X direction
* NY (F56CH, 2) number of dots in the Y direction
* CDUMMY (F56EH, 1) dummy (not required to be set)
* ARG (F56FH, 1) selects the direction and expansion

RAM (same as VDP R#45)

R

 Output: the CY flag is reset

t

 Registers: all

aa

3. Transferring between the disk and RAM or VRAM

3

The filename should be set first to use the disk (specify the filename as
BASIC). The following is an example:

B

.

.

.
LD HL,FNAME ; Get pointer to file name
LD (FNPTR),HL ; Set it to parameter area

.

.

.
FNAME: DB 22H,"B:TEST.PIC",22H,0 ; "TEST.PIC", end mark

D

When an error occurs, control jumps to the error handler of the BASIC
interpreter. Set the hook to handle the error in the user program or to call
this routine from MSX-DOS or a ROM cartridge. This hook is H.ERRO (FFB1H).

tt

* BLTVD (019DH/SUB)

*

 Function: transfers from disk to VRAM

t

 Input: HL register <-- F562H
The following parameters should be set:

T

* FNPTR (F562H, 2) address of the filename
* DUMMY (F564H, 2) dummy (not required to be set)
* DX (F566H, 2) X-coordinate of the destination
* DY (F568H, 2) Y-coordinate of the destination
* NX (F56AH, 2) number of dots in the X direction

(not required to be set; this is
already in the top of data to be
transferred)

* NY (F56CH, 2) number of dots in the Y direction
(not required to be set; this is
already in the top of data to be
transferred)

* CDUMMY (F56EH, 1) dummy (not required to be set)
* ARG (F56FH, 1) selects the direction and expansion

RAM (same as VDP R#45)
* LOGOP (F570H, 1) logical operation code (same as the

logical operation code of VDP)

l

 Output: the CY flag is set when there is an error in the parameter

t

 Registers: all

aa

* BLTDV (01A1H/SUB)

*

 Function: transfers from VRAM to disk

t

 Input: HL register <-- F562H
The following parameters should be set:

T

* SX (F562H, 2) X-coordinate of the source
* SY (F564H, 2) Y-coordinate of the source
* FNPTR (F566H, 2) address of the filename
* DUMMY (F568H, 2) dummy (not required to be set)
* NX (F56AH, 2) number of dots in the X direction
* NY (F56CH, 2) number of dots in the Y direction
* CDUMMY (F56EH, 1) dummy (not required to be set)

d

 Output: the CY flag is reset

t

 Registers: all

aa

* BLTMD (01A5H/SUB)

*

 Function: loads array data from disk

l

 Input: HL register <-- F562H
The following parameters should be set:

T

* FNPTR (F562H, 2) address of the filename
* SY (F564H, 2) dummy (not required to be set)
* SPTR (F566H, 2) the starting address for loading
* EPTR (F568H, 2) the end address for loading

t

 Output: the CY flag is reset

t

 Registers: all

aa

* BLTDM (01A9H/SUB)

*

 Function: saves array data to disk

s

 Input: HL register <-- F562H
The following parameters should be set:

T

* SPTR (F562H, 2) the starting address for saving
* EPTR (F564H, 2) the end address for saving
* FNPTR (F566H, 2) address of the filename

a

 Output: the CY flag is reset

t

 Registers: all

aa

===

=

Changes from the original in APPENDIX 4:

C

- Address of FLAGS variable is corrected from FB1BH to FB1CH.

-

- Address of MCLLEN variable is corrected from FB39H to FB3BH.

-

- Address of H.FIEL hook is corrected from DE2BH to FE2BH.

-

-=-

--

APPENDIX 4 - WORK AREA LISTING

A

Figure A.5 shows the map of the MSX2 work area. In this section, the system
work area and hook from F380H to FFCAH in the figure are described. The
following notation is used. Length is in bytes.

f

Label name (address, length)

L

Initial value, contents, purpose

II

 Figure A.5 Work area

FFFF ---------------------------
| slot selection register |

FFFC |-------------------------|
| reserved |

FFF8 |-------------------------|
FFF7 | MAIN-ROM slot address |

|-------------------------|
| register reservation |
| area for new |

FFE7 | VDP (9938) |
|-------------------------|
| program for |

FFCA | expansion BIOS calls |
|-------------------------|

| |
| hook area |

FD9A | |
|-------------------------|
| |
| system work area |

F380 | |

* Subroutines for read/write calls of the inter-slot

**

RDPRIM (F380H, 5)
 contents: read from basic slot

rr

WRPRIM (F385H, 7)
 contents: write to basic slot

ww

CLPRIM (F38CH, 14)
 contents: basic slot call

bbb

* Starting address of assembly language program of USR function, text screen

**

USRTAB (F39AH, 20)
 initial value: FCERR
 contents: starting address of assembly language program of USR function

(0 to 9); the value before defining assembly language program
points to FCERR (475AH).

pp

LINL40 (F3AEH, 1)
 initial value: 39
 contents: screen width per line at SCREEN 0 (set by WIDTH statement

at SCREEN 0)

aa

LINL32 (F3AfH, 1)
 initial value: 32
 contents: screen width per line at SCREEN 1 (set by WIDTH statement

at SCREEN 1)

aa

LINLEN (F3B0H, 1)
 initial value: 29
 contents: current screen width per line

cc

CRTCNT (F3B1H, 1)
 initial value: 24
 contents: number of lines of current screen

n

n

CLMLST (F3B2H, 1)
 initial value: 14
 contents: horizontal location in the case that items are divided by

commas in PRINT statement

ccc

* Work for initialisation

**

- SCREEN 0

--

TXTNAM (F3B3H, 2)
 initial value: 0000H
 contents: pattern name table

pp

TXTCOL (F3B5H, 2)
 contents: unused

uu

TXTCGP (F3B7H, 2)
 initial value: 0800H
 contents: pattern generator table

pp

TXTATR (F3B9H, 2)
 contents: unused

uu

TXTPAT (F3BBH, 2)
 contents: unused

uu

- SCREEN 1

--

T32NAM (F3BDH, 2)
 initial value: 1800H
 contents: pattern name table

pp

T32COL (F3BFH, 2)
 initial value: 2000H
 contents: colour table

cc

T32CGP (F3C1H, 2)
 initial value: 0000H
 contents: pattern generator table

pp

T32ATR (F3C3H, 2)
 initial value: 1B00H
 contents: sprite attribute table

s

s

T32PAT (F3C5H, 2)
 initial value: 3800H
 contents: sprite generator table

ss

- SCREEN 2

--

GRPNAM (F3C7H, 2)
 initial value: 1800H
 contents: pattern name table

pp

GRPCOL (F3C9H, 2)
 initial value: 2000H
 contents: colour table

cc

GRPCGP (F3CBH, 2)
 initial value: 0000H
 contents: pattern generator table

pp

GRPATR (F3CDH, 2)
 initial value: 1B00H
 contents: sprite attribute table

ss

GRPPAT (F3CFH, 2)
 initial value: 3800H
 contents: sprite generator table

ss

- SCREEN 3

--

MLTNAM (F3D1H, 2)
 initial value: 0800H
 contents: pattern name table

pp

MLTCOL (F3D3H, 2)
 contents: unused

uu

MLTCGP (F3D5H, 2)
 initial value: 0000H
 contents: pattern generator table

pp

MLTATR (F3D7H, 2)
 initial value: 1B00H
 contents: sprite attribute table

ss

MLTPAT (F3D9H, 2)
 initial value: 3800H

 contents: sprite generator table

sss

* Other screen settings

**

CLIKSW (F3DBH, 1)
 initial value: 1
 contents: key click switch (0 = OFF, otherwise = ON), set by

<key click switch> of SCREEN statement

<<

CSRY (F3DCH, 1)
 initial value: 1
 contents: Y-coordinate of cursor

YY

CSRX (F3DDH, 1)
 initial value: 1
 contents: X-coordinate of cursor

XX

CNSDFG (F3DEH, 1)
 initial value: 0
 contents: function key display switch (0 = display, otherwise = no

display), set by KEY ON/OFF statement

ddd

* Area to save VDP registers

**

RG0SAV (F3DFH, 1)
 initial value: 0

RG1SAV (F3E0H, 1)
 initial value: E0H

RG2SAV (F3E1H, 1)
 initial value: 0

RG3SAV (F3E2H, 1)
 initial value: 0

RG4SAV (F3E3H, 1)
 initial value: 0

RG5SAV (F3E4H, 1)
 initial value: 0

RG6SAV (F3E5H, 1)

 initial value: 0

RG7SAV (F3E6H, 1)
 initial value: 0

STATFL (F3E7H, 1)
 initial value: 0
 contents: stores VDP status (contents of status register 0, in MSX2)

ss

TRGFLG (F3E8H, 1)
 initial value: FFH
 contents: stores trigger button status of joystick

ss

FORCLR (F3E9H, 1)
 initial value: 15
 contents: foreground colour; set by colour statement

ff

BAKCLR (F3EAH, 1)
 initial value: 4
 contents: background colour; set by colour statement

bb

BDRCLR (F3EBH, 1)
 initial value: 7
 contents: border colour; set by colour statement

bb

MAXUPD (F3ECH, 3)
 initial value: JP 0000H (C3H, 00H, 00H)
 contents: used by CIRCLE statement internally

uu

MINUPD (F3EFH, 3)
 initial value: JP 0000H (C3H, 00H, 00H)
 contents: used by CIRCLE statement internally

uu

ATRBYT (F3F2H, 1)
 initial value: 15
 contents: colour code in using graphics

ccc

* Work area for PLAY statement

**

QUEUES (F3F3H, 2)
 initial value: QUETAB (F959H)
 contents: points to queue table at the execution of PLAY statement

pp

FRCNEW (F3F5H), 1)
 initial value: 255

 contents: used by BASIC interpreter internally

uuu

* Work area for key input

**

SCNCNT (F3F6H, 1)
 initial value: 1
 contents: interval for the key scan

ii

REPCNT (F3F7H, 1)
 initial value: 50
 contents: delay until the auto-repeat of the key begins

dd

PUTPNT (F3F8H, 2)
 initial value: KEYBUF (FBF0H)
 contents: points to address to write in the key buffer

pp

GETPNT (F3FAH, 2)
 initial value: KEYBUF (FBF0H)
 contents: points to address to read from key buffer

ppp

* Parameters for Cassette

**

CS120 (F3FCH, 5*2)

C

- 1200 baud

-

 contents: 83 (LOW01) Low width representing bit 0
92 (HIGH01) High width representing bit 0
38 (LOW11) Low width representing bit 1
45 (HIGH11) High width representing bit 1
HEADLEN * 2/256 High bytes (HEDLEN = 2000)

 of header bits for short
 header

- 2400 baud

-

 contents: 37 (LOW02) Low width representing bit 0
45 (HIGH02) High width representing bit 0
14 (LOW12) Low width representing bit 1
22 (HIGH12) High width representing bit 1
HEADLEN * 4/256 High bytes (HEDLEN = 2000)

 of header bits for short
 header

LOW (F406H, 2)
 initial value: LOW01, HIGH01 (by default, 1200 baud)
 contents: width of LOW and HIGH which represents bit 0 of current baud

rate; set by <cassette baud rate> of SCREEN statement

rr

HIGH (F408H, 2)
 initial value: LOW11, HIGH11 (by default, 1200 baud)
 contents: width of LOW and HIGH which represents bit 1 of current baud

rate; set by <cassette baud rate> of SCREEN statement

rr

HEADER (F40AH, 1)
 initial value: HEADLEN * 2/256 (by default, 1200 baud)
 contents: header bit for the short header of current baud rate

(HEADLEN = 2000); set by <cassette baud rate> of SCREEN
statement

ss

ASPCT1 (F40BH, 1)
 contents: 256/aspect ratio; set by SCREEN statement to use in CIRCLE

statement

ss

ASPCT2 (F40DH, 1)
 contents: 256 * aspect ratio; set by SCREEN statement to use in CIRCLE

statement

ss

ENDPRG (F40FH, 5)
 initial value: ":"
 contents: false end of program for RESUME NEXT statement

fff

* Work used by BASIC internally

**

ERRFLG (F414H, 1)
 contents: area to store the error number

aa

LPTPOS (F415H, 1)
 initial value: 0
 contents: printer head location

pp

PRTFLG (F416H, 1)
 contents: flag whether to send to printer

ff

NTMSXP (F417H, 1)
 contents: printer (0 = printer for MSX, otherwise not)

pp

RAWPRT (F418H, 1)
 contents: non-zero when printing in raw-mode

nn

VLZADR (F419H, 2)
 contents: address of character to be replaced by VAL function

a

a

VLZDAT (F41BH, 1)
 contents: character to be replaced with 0 by VAL function

cc

CURLIN (F41CH, 2)
 contents: currently executing line number of BASIC

cc

KBUF (F41FH, 318)
 contents: crunch buffer; translated into intermediate language from

BUF (F55EH)

BB

BUFMIN (F55DH, 1)
 initial value: ","
 contents: used in INPUT statement

uu

BUF (F55EH, 258)
 contents: buffer to store characters typed; where direct statements

are stored in ASCII code

aa

ENDBUF (F660H, 1)
 contents: prevents overflow of BUF (F55EH)

pp

TTYPOS (F661H, 1)
 contents: virtual cursor location internally retained by BASIC

vv

DIMFLG (F662H, 1)
 contents: used by BASIC internally

uu

VALTYP (F663H, 1)
 contents: used to identify the type of variable

uu

DORES (F664H, 1)
 contents: indicates whether stored word can be crunched

ii

DONUM (F665H, 1)
 contents: flag for crunch

ff

CONTXT (F666H, 2)
 contents: stores text address used by CHRGET

ss

CONSAV (F668H, 1)
 contents: stores token of constant after calling CHRGET

ss

CONTYP (F669H, 1)
 contents: type of stored constant

tt

CONLO (F66AH, 8)
 contents: value of stored constant

vv

MEMSIZ (F672H, 2)
 contents: highest address of memory used by BASIC

hh

STKTOP (F674H, 2)
 contents: address used as stack by BASIC; depending on CLEAR statement

aa

TXTTAB (F676H, 2)
 contents: starting address of BASIC text area

ss

TEMPPT (F768H, 2)
 initial value: TEMPST (F67AH)
 contents: starting address of unused area of temporary descriptor

ss

TEMPST (F67AH, 3 * NUMTMP)
 contents: area for NUMTEMP

aa

DSCTMP (F698H, 3)
 contents: string descriptor which is the result of string function

ss

FRETOP (F69BH, 2)
 contents: starting address of unused area of string area

ss

TEMP3 (F69DH, 2)
 contents: used for garbage collection or by USR function

uu

TEMP8 (F69FH, 2)
 contents: for garbage collection

ff

ENDFOR (F6A1H, 2)
 contents: stores next address of FOR statement (to begin execution from

the next of FOR statement at loops)

tt

DATLIN (F6A3H, 2)
 contents: line number of DATA statement read by READ statement

ll

SUBFLG (F6A5H, 1)
 contents: flag for array for USR function

ff

FLGINP (F6A6H, 1)
 contents: flag used in INPUT or READ

ff

TEMP (F6A7H, 2)
 contents: location for temporary reservation for statement code; used

for variable pointer, text address, and others

ff

PTRFLG (F6A9H, 1)
 contents: 0 if there is not a line number to be converted,otherwise not

00

AUTFLG (F6AAH, 1)
 contents: flag for AUTO command validity (non-zero = valid, otherwise

invalid)

ii

AUTLIN (F6ABH, 2)
 contents: last input line number

ll

AUTINC (F6ADH, 2)
 initial value: 10
 contents: increment value of line number of AUTO command

ii

SAVTXT (F6AFH, 2)
 contents: area to store address of currently executing text; mainly

used for error recovery by RESUME statement

uu

ERRLIN (F6B3H, 2)
 contents: line number where an error occurred

ll

DOT (F6B5H, 2)
 contents: last line number which was displayed in screen or entered

ll

ERRTXT (F6B7H, 2)
 contents: text address which caused an error; mainly used for error

recovery by RESUME statement

rr

ONELIN (F6B9H, 2)
 contents: text address to which control jumps at error; set by ON

ERROR GOTO statement

EE

ONEFLG (F6BBH, 1)
 contents: flag which indicates error routine execution

(non-zero = in execution, otherwise not)

((

TEMP2 (F6BCH, 2)
 contents: for temporary storage

ff

OLDLIN (F6BEH, 2)

 contents: line number which was terminated by Ctrl+STOP, STOP
instruction, END instruction, or was executed last

ii

OLDTXT (F6C0H, 2)
 contents: address to be executed next

aa

VARTAB (F6C2H, 2)
 contents: starting address of simple variable; executing NEW statement

causes [contents of TXTTAB(F676H) + 2] to be set

cc

ARYTAB (F6C4H, 2)
 contents: starting address of array table

ss

STREND (F6C6H, 2)
 contents: last address of memory in use as text area or variable area

ll

DATPTR (F6C8H, 2)
 contents: text address of data read by executing READ statement

tt

DEFTBL (F6CAH, 26)
 contents: area to store type of variable for one alphabetical

character; depends on type declaration such as CLEAR, DEFSTR,
!, or #

!!!

* Work for user function parameter

**

PRMSTK (F6E4H, 2)
 contents: previous definition block on stack (for garbage collection)

pp

PRMLEN (F6E6H, 2)
 contents: number of bytes of objective data

nn

PARM1 (F6E8H, PRMSIZ)
 contents: objective parameter definition table; PRMSIZ is number of

bytes of definition block, initial value is 100

bb

PRMPRV (F74CH, 2)
 initial value: PRMSTK
 contents: pointer to previous parameter block (for garbage collection)

pp

PRMLN2 (F74EH, 2)
 contents: size of parameter block

ss

PARM2 (F750H, 100)

 contents: for parameter storage

ff

PRMFLG (F7B4H, 1)
 contents: flag to indicate whether PARM1 was searched

ff

ARYTA2 (F7B5H, 2)
 contents: end point of search

ee

NOFUNS (F7B7H, 1)
 contents: 0 if there is not an objective function

00

TEMP9 (F7B8H, 2)
 contents: location of temporary storage for garbage collection

ll

FUNACT (F7BAH, 2)
 contents: number of objective functions

nn

SWPTMP (F7BCH, 8)
 contents: location of temporary storage of the value of the first

variable of SWAP statement

vv

TRCFLG (F7C4H, 1)
 contents: trace flag (non-zero = TRACE ON, 0 = TRACE OFF)

ttt

* Work for Math-Pack

**

FBUFFR (F7C5H, 43)
 contents: used internally by Math-Pack

uu

DECTMP (F7F0H, 2)
 contents: used to transform decimal integer to floating-point number

uu

DECTM2 (F7F2H, 2)
 contents: used at division routine execution

uu

DECCNT (F7F4H, 2)
 contents: used at division routine execution

uu

DAC (F7F6H, 16)
 contents: area to set the value to be calculated

aa

HOLD8 (F806H, 48)
 contents: register storage area for decimal multiplication

rr

HOLD2 (F836H, 8)
 contents: used internally by Math-Pack

uu

HOLD (F83EH, 8)
 contents: used internally by Math-Pack

uu

ARG (F847H, 16)
 contents: area to set the value to be calculated with DAC (F7F6H)

aa

RNDX (F857H, 8)
 contents: stores last random number in double precision real number;

set by RND function

sss

* Data area used by BASIC interpreter

**

MAXFIL (F85FH, 1)
 contents: maximum file number; set by MAXFILES statement

mm

FILTAB (F860H, 2)
 contents: starting address of file data area

ss

NULBUF (F862H, 2)
 contents: points to buffer used in SAVE and LOAD by BASIC interpreter

pp

PTRFIL (F864H, 2)
 contents: address of file data of currently accessing file

aa

RUNFLG (F866H, 2)
 contents: non-zero value if program was loaded and executed; used

by R option of LOAD statement

bb

FILNAM (F866H, 11)
 contents: area to store filename

aa

FILNM2 (F871H, 11)
 contents: area to store filename

aa

NLONLY (F87CH, 1)
 contents: non-zero value if program is being loaded

nn

SAVEND (F87DH, 2)
 contents: end address of assembly language program to be saved

ee

FNKSTR (F87FH, 160)
 contents: area to store function key string (16 character x 10)

aa

CGPNT (F91FH, 3)
 contents: address to store character font on ROM

aa

NAMBAS (F922H, 2)
 contents: base address of current pattern name table

bb

CGPBAS (F924H, 2)
 contents: base address of current pattern generator table

bb

PATBAS (F926H, 2)
 contents: base address of current sprite generator table

bb

ATRBAS (F928H, 2)
 contents: base address of current sprite attribute table

bb

CLOC (F92AH, 2)
 contents: used internally by graphic routine

uu

CMASK (F92CH, 1)
 contents: used internally by graphic routine

uu

MINDEL (F92DH, 1)
 contents: used internally by graphic routine

uu

MAXDEL (F92FH, 2)
 contents: used internally by graphic routine

uuu

* Data area used by CIRCLE statement

**

ASPECT (F931H, 2)
 contents: aspect ratio of the circle; set by <ratio> of CIRCLE

statement

ss

CENCNT (F933H, 2)
 contents: used internally by CIRCLE statement

uu

CLINEF (F935H, 1)
 contents: flag whether a line is drawn toward the center; specified

by <angle> of CIRCLE statement

bb

CNPNTS (F936H, 2)
 contents: point to be plotted

pp

CPLOTF (F938H, 1)
 contents: used internally by CIRCLE statement

uu

CPCNT (F939H, 2)
 contents: number of one eight of the circle

nn

CPNCNT8 (F93BH, 2)
 contents: used internally by CIRCLE statement

uu

CPCSUM (F93DH, 2)
 contents: used internally by CIRCLE statement

uu

CSTCNT (F93FH, 2)
 contents: used internally by CIRCLE statement

uu

CSCLXY (F941H, 1)
 contents: scale of x and y

ss

CSAVEA (F942H, 2)
 contents: reservation area of ADVGRP

rr

CSAVEM (F944H, 1)
 contents: reservation area of ADVGRP

rr

CXOFF (F945H, 2)
 contents: x offset from the center

xx

CYOFF (F947H, 2)
 contents: y offset from the center

yyy

* Data area used in PAINT statement

**

LOHMSK (F949H, 1)
 contents: used internally by PAINT statement

uu

LOHDIR (F94AH, 1)
 contents: used internally by PAINT statement

uu

LOHADR (F94BH, 2)
 contents: used internally by PAINT statement

uu

LOHCNT (F94DH, 2)
 contents: used internally by PAINT statement

uu

SKPCNT (F94FH, 2)
 contents: skip count

ss

MIVCNT (F951H, 2)
 contents: movement count

mm

PDIREC (F953H, 1)
 contents: direction of the paint

dd

LFPROG (F954H, 1)
 contents: used internally by PAINT statement

uu

RTPROG (F955H, 1)
 contents: used internally by PAINT statement

uuu

* Data area used in PLAY statement

**

MCLTAB (F956H, 2)
 contents: points to the top of the table of PLAY macro or DRAW macro

pp

MCLFLG (F958H, 1)
 contents: assignment of PLAY/DRAW

aa

QUETAB (F959H, 24)
 contents: queue table

+0: PUT offset
+1: GET offset
+2: backup character
+3: queue length
+4: queue address
+5: queue address

++

QUEBAK (F971H, 4)
 contents: used in BCKQ

uu

VOICAQ (F975H, 128)
 contents: queue of voice 1 (1 = a)

qq

VOICBQ (F9F5H, 128)
 contents: queue of voice 2 (2 = b)

qq

VOICCQ (FA75H, 128)
 contents: queue of voice 3 (3 = c)

qqq

* Work area added in MSX2

**

DPPAGE (FAF5H, 1)
 contents: display page number

dd

ACPAGE (FAF6H, 1)
 contents: active page number

aa

AVCSAV (FAF7H, 1)
 contents: reserves AV control port

rr

EXBRSA (FAF8H, 1)
 contents: SUB-ROM slot address

SS

CHRCNT (FAF9H, 1)
 contents: character counter in the buffer; used in Roman-kana

translation (value is 0 <=n <=2)

tt

ROMA (FAFAH, 2)
 contents: area to store character in the buffer; used in Roman-kana

translation (Japan version only)

tt

MODE (FAFCH, 1)
 contents: mode switch for VRAM size

m

(0000WVV0)

 |||
 |++--- 00 = 16K VRAM
 | 01 = 64K VRAM
 | 11 = 128K VRAM
 |
 +----- 1 = mask, 0 = no mask

 Flags whether to specify VRAM address
 ANDed with 3FFFH in SCREEN 0 to 3;
 in SCREEN 4 to 8, never masked

NORUSE (FAFDH, 1)
 contents: unused

uu

XSAVE (FAFEH, 2)
 contents: [I OOOOOOO XXXXXXXX]

[[

YSAVE (FB00H, 2)
 contents: [x OOOOOOO YYYYYYYY]

[

I = 1 lightpen interrupt request
OOOOOOO = unsigned offset
XXXXXXX = X-coordinate
YYYYYYY = Y-coordinate

YY

LOGOPR (FB02H, 1)
contents: logical operation code

ll

* Data area used by RS-232C

**

RSTMP (FB03H, 50)
 contents: work area for RS-232C or disk

ww

TOCNT (FB03H, 1)
 contents: used internally by RS-232C routine

uu

RSFCB (FB04H, 2)
 contents: FB04H + 0: LOW address of RS-232C

FB04H + 1: HIGH address of RS-232C

FF

RSIQLN (FB06H, 5)
 contents: used internally by RS-232C routine

uu

MEXBIH (FB07H, 5)
 contents: FB07H +0: RST 30H (0F7H)

FB07H +1: byte data
FB07H +2: (Low)
FB07H +3: (High)
FB07H +4: RET (0C9H)

FF

OLDSTT (FB0CH, 5)
 contents: FB0CH +0: RST 30H (0F7H)

FB0CH +1: byte data
FB0CH +2: (Low)
FB0CH +3: (High)
FB0CH +4: RET (0C9H)

FF

OLDINT (FB12H, 5)
 contents: FB12H +0: RST 30H (0F7H)

FB12H +1: byte data
FB12H +2: (Low)
FB12H +3: (High)

FB12H +4: RET (0C9H)

FF

DEVNUM (FB17H, 1)
 contents: used internally by RS-232C routine

uu

DATCNT (FB18H, 3)
 contents: FB18H +0: byte data

FB18H +1: byte pointer
FB12H +2: byte pointer

FF

ERRORS (FB1BH, 1)
 contents: used internally by RS-232C routine

uu

FLAGS (FB1CH, 1)
 contents: used internally by RS-232C routine

uu

ESTBLS (FB1DH, 1)
 contents: used internally by RS-232C routine

uu

COMMSK (FB1EH, 1)
 contents: used internally by RS-232C routine

uu

LSTCOM (FB1FH, 1)
 contents: used internally by RS-232C routine

uu

LSTMOD (FB20H, 1)
 contents: used internally by RS-232C routine

uuu

* Data area used by DOS

**

reserved (FB21H to FB34H)
 contents: used by DOS

uuu

* Data area used by PLAY statement
 (the following is the same as with MSX1)

PRSCNT (FB35H, 1)
 contents: D1 to D0 string parse

D7 = 0 1 pass

11

SAVSP (FB36H, 2)
 contents: reserves stack pointer in play

r

r

VOICEN (FB38H, 1)
 contents: current interpreted voice

cc

SAVVOL (FB39H, 2)
 contents: reserves volume for the pause

rr

MCLLEN (FB3BH, 1)
 contents: used internally by PLAY statement

uu

MCLPTR (FB3CH, 1)
 contents: used internally by PLAY statement

uu

QUEUEN (FB3EH, 1)
 contents: used internally by PLAY statement

uu

MUSICF (FC3FH, 1)
 contents: interrupt flag for playing music

ii

PLYCNT (FB40H, 1)
 contents: number of PLAY statements stored in the queue

nnn

* Offset from voice static data area
 (offset is in decimal)

METREX (+0, 2)
 contents: timer count down

tt

VCXLEN (+2, 1)
 contents: MCLLEN for this voice

MM

VCXPTR (+3, 2)
 contents: MCLPTR for this voice

MM

VCXSTP (+5, 2)
 contents: reserves the top of the stack pointer

rr

QLENGX (+7, 1)
 contents: number of bytes stored in the queue

nn

NTICSX (+8, 2)
 contents: new count down

nn

TONPRX (+10, 2)
 contents: area to set tone period

aa

AMPPRX (+12, 1)
 contents: discrimination of volume and enveloppe

dd

ENVPRX (+13, 2)
 contents: area to set enveloppe period

aa

OCTAVX (+15, 1)
 contents: area to set octave

aa

NOTELX (+16, 1)
 contents: area to set tone length

aa

TEMPOX (+17, 1)
 contents: area to set tempo

aa

VOLUMX (+18, 1)
 contents: area to set volume

aa

ENVLPX (+19, 14)
 contents: area to set enveloppe wave form

aa

MCLSTX (+33, 3)
 contents: reservation area of stack

rr

MCLSEX (+36, 1)
 contents: initialisation stack

ii

VCBSIZ (+37, 1)
 contents: static buffer size

sss

* Voice static data area

**

VCBA (FB41H, 37)
 contents: static data for voice 0

ss

VCBB (FB66H, 37)
 contents: static data for voice 1

ss

VCBC (FB8BH, 37)
 contents: static data for voice 2

sss

* Data area

**

ENSTOP (FBB0H, 1)
 contents: flag to enable warm start by [SHIFT+Ctrl+Kana key]

(0 = disable, otherwise enable)

((

BASROM (FBB1H, 1)
 contents: indicates BASIC text location (0 = on RAM, otherwise in ROM)

ii

LINTTB (FBB2H, 24)
 contents: line terminal table; area to keep information about

each line of text screen

ee

FSTPOS (FBCAH, 2)
 contents: first character location of line from INLIN (00B1H) of BIOS

ff

CODSAV (FBCCH, 1)
 contents: area to reserve the character where the cursor is stacked

aa

FNKSW1 (FBCDH, 1)
 contents: indicates which function key is displayed at KEY ON

(1 = F1 to F5 is displayed, 0 = F6 to F10 is displayed)

((

FNKFLG (FBCEH, 10)
 contents: area to allow, inhibit, or stop the execution of the line

defined in ON KEY GOSUB statement, or to reserve it for each
function key; set by KEY(n)ON/OFF/STOP statement
(0 = KEY(n)OFF/STOP, 1= KEY(n)ON)

((

ONGSBF (FBD8H, 1)
 contents: flag to indicate whether event waiting in TRPTBL (FC4CH)

occurred

oo

CLIKFL (FBD9H, 1)
 contents: key click flag

kk

OLDKEY (FBDAH, 11)
 contents: key matrix status (old)

kk

NEWKEY (FBE5H, 11)
 contents: key matrix status (new)

kk

KEYBUF (FBF0H, 40)

 contents: key code buffer

kk

LINWRK (FC18H, 40)
 contents: temporary reservation location used by screen handler

tt

PATWRK (FC40H, 8)
 contents: temporary reservation location used by pattern converter

tt

BOTTOM (FC48H, 2)
 contents: installed RAM starting (low) address; ordinarily 8000H

in MSX2

ii

HIMEM (FC4AH, 2)
 contents: highest address of available memory; set by <memory upper

limit> of CLEAR statement

ll

TRAPTBL (FC4CH, 78)
 contents: trap table used to handle interrupt; one table consists of

three bytes, where first byte indicates ON/OFF/STOP status
and the rest indicate the text address to be jumped to

a

FC4CH to FC69H (3 * 10 bytes) used in ON KEY GOSUB
FC6AH to FC6CH (3 * 1 byte) used in ON STOP GOSUB
FC6DH to FC6FH (3 * 1 byte) used in ON SPRITE GOSUB
FC70H to FC7EH (3 * 5 bytes) used in ON STRIG GOSUB
FC7FH to FC81H (3 * 1 byte) used in ON INTERVAL GOSUB
FC82H to FC99H for expansion

ff

RTYCNT (FC9AH, 1)
 contents: used internally by BASIC

uu

INTFLG (FC9BH, 1)
 contents: if Ctrl+STOP is pressed, setting 03H here causes a stop

ii

PADY (FC9CH, 1)
 contents: Y-coordinate of the paddle)

YY

PADX (FC9DH, 1)
 contents: X-coordinate of the paddle)

XX

JIFFY (FC9EH, 2)
 contents: used internally by PLAY statement

uu

INTVAL (FCA0H, 2)
 contents: interval period; set by ON INTERVAL GOSUB statement

ii

INTCNT (FCA2H, 2)
 contents: counter for interval

cc

LOWLIM (FCA4H, 1)
 contents: used during reading from cassette tape

uu

WINWID (FCA5H, 1)
 contents: used during reading from cassette tape

uu

GRPHED (FCA6H, 1)
 contents: flag to send graphic character (1 = graphic character,

0 = normal character)

00

ESCCNT (FCA7H, 1)
 contents: area to count from escape code

aa

INSFLG (FCA8H, 1)
 contents: flag to indicate insert mode (0 = normal mode,

otherwise = insert mode)

oo

CSRSW (FCA9H, 1)
 contents: whether cursor is displayed (0 = no, otherwise = yes);

set by <cursor swicth> of LOCATE statement

ss

CSTYLE (FCAAH, 1)
 contents: cursor shape (0 = block, otherwise = underline)

cc

CAPST (FCABH, 1)
 contents: CAPS key status (0 = CAP OFF, otherwise = CAP ON)

CC

KANAST (FCACH, 1)
 contents: kana key status (0 = kaka OFF, otherwise = kana ON)

kk

KANAMD (FCADH, 1)
 contents: kana key arrangement status (0 = 50-sound arrangement,

otherwise = JIS arrangement)

oo

FLBMEM (FCAEH, 1)
 contents: 0 when loading BASIC program

00

SCRMOD (FCAFH, 1)
 contents: current screen mode number

cc

OLDSCR (FCB0H, 1)
 contents: screen mode reservation area

ss

CASPRV (FCB1H, 1)
 contents: character reservation area used by CAS:

cc

BRDATR (FCB2H, 1)
 contents: border colour code used by PAINT; set by <border colour>

in PAINT statement

ii

GXPOS (FCB3H, 2)
 contents: X-coordinate

XX

GYPOS (FCB5H, 2)
 contents: Y-coordinate

YY

GRPACX (FCB7H, 2)
 contents: graphic accumulator (X-coordinate)

gg

GRPACY (FCB9H, 2)
 contents: graphic accumulator (Y-coordinate)

gg

DRWFLG (FCBBH, 1)
 contents: flag used in DRAW statement

ff

DRWSCL (FCBCH, 1)
 contents: DRAW scaling factor (0 = no scaling, otherwise = scaling)

DD

DRWANG (FCBDH, 1)
 contents: angle at DRAW

aa

RUNBNF (FCBEH, 1)
 contents: flag to indicate BLOAD in progress, BSAVE in progress,

or neither

oo

SAVENT (FCBFH, 2)
 contents: starting address of BSAVE

ss

EXPTBL (FCC1H, 4)
 contents: flag table for expansion slot; whether the slot is expanded

ff

SLTTBL (FCC5H, 4)
 contents: current slot selection status for each expansion slot

register

rr

SLTATR (FCC9H, 64)

 contents: reserves attribute for each slot

rr

SLTWRK (FD09H, 128)
 contents: allocates specific work area for each slot

aa

PROCNM (FD89H, 16)
 contents: stores name of expanded statement (after CALL statement) or

expansion device (after OPEN); 0 indicates the end

ee

DEVICE (FD99H, 1)
 contents: used to identify cartridge device

uuu

* Hooks

**

H.KEYI (FD9AH)
 meaning: beginning of MSXIO interrupt handling
 purpose: adds the interrupt operation such as RS-232C

aa

H.TIMI (FD9FH)
 meaning: MSXIO timer interrupt handling
 purpose: adds the timer interrupt handling

aa

H.CHPH (FDA4H)
 meaning: beginning of MSXIO CHPUT (one character output)
 purpose: connects other console device

cc

H.DSPC (FDA9H)
 meaning: beginning of MSXIO DSPCSR (cursor display)
 purpose: connects other console device

cc

H.ERAC (FDAEH)
 meaning: beginning of MSXIO ERACSR (erase cursor)
 purpose: connects other console device

cc

H.DSPF (FDB3H)
 meaning: beginning of MSXIO DSPFNK (function key display)
 purpose: connects other console device

cc

H.ERAF (FDB8H)
 meaning: beginning of MSXIO ERAFNK (erase function key)
 purpose: connects other console device

cc

H.TOTE (FDBDH)
 meaning: beginning of MSXIO TOTEXT (set screen in text mode)
 purpose: connects other console device

cc

H.CHGE (FDC2H)
 meaning: beginning of MSXIO CHGET (get one character)
 purpose: connects other console device

cc

H.INIP (FDC7H)
 meaning: beginning of MSXIO INIPAT (character pattern initialisation)
 purpose: uses other character set

uu

H.KEYC (FDCCH)
 meaning: beginning of MSXIO KEYCOD (key code translation)
 purpose: uses other key arrangement

uu

H.KYEA (FDD1H)
 meaning: beginning of MSXIO NMI routine (Key Easy)
 purpose: uses other key arrangement

uu

H.NMI (FDD6H)
 meaning: beginning of MSXIO NMI (non-maskable interrupt)
 purpose: handles NMI

hh

H.PINL (FDDBH)
 meaning: beginning of MSXIO PINLIN (one line input)
 purpose: uses other console input device or other input method

uu

H.QINL (FDE0H)
 meaning: beginning of MSXINL QINLIN (one line input displaying "?")
 purpose: uses other console input device or other input method

uu

H.INLI (FDE5H)
 meaning: beginning of MSXINL INLIN (one line input)
 purpose: uses other console input device or other input method

uu

H.ONGO (FDEAH)
 meaning: beginning of MSXSTS INGOTP (ON GOTO)
 purpose: uses other interrupt handling device

uu

H.DSKO (FDEFH)
 meaning: beginning of MSXSTS DSKO$ (disk output)
 purpose: connects disk device

cc

H.SETS (FDF4H)
 meaning: beginning of MSXSTS SETS (set attribute)
 purpose: connects disk device

cc

H.NAME (FDF9H)

 meaning: beginning of MSXSTS NAME (rename)
 purpose: connects disk device

cc

H.KILL (FDFEH)
 meaning: beginning of MSXSTS KILL (delete file)
 purpose: connects disk device

cc

H.IPL (FE03H)
 meaning: beginning of MSXSTS IPL (initial program loading)
 purpose: connects disk device

cc

H.COPY (FE08H)
 meaning: beginning of MSXSTS COPY (file copy)
 purpose: connects disk device

cc

H.CMD (FE0DH)
 meaning: beginning of MSXSTS CMD (expanded command)
 purpose: connects disk device

cc

H.DSKF (FE12H)
 meaning: beginning of MSXSTS DSKF (unusde disk space)
 purpose: connects disk device

cc

H.DSKI (FE17H)
 meaning: beginning of MSXSTS DSKI (disk input)
 purpose: connects disk device

cc

H.ATTR (FE1CH)
 meaning: beginning of MSXSTS ATTR$ (attribute)
 purpose: connects disk device

cc

H.LSET (FE21H)
 meaning: beginning of MSXSTS LSET (left-padded assignment)
 purpose: connects disk device

cc

H.RSET (FE26H)
 meaning: beginning of MSXSTS RSET (right-padded assignment)
 purpose: connects disk device

cc

H.FIEL (FE2BH)
 meaning: beginning of MSXSTS FIELD (field)
 purpose: connects disk device

cc

H.MKI$ (FE30H)
 meaning: beginning of MSXSTS MKI$ (create integer)
 purpose: connects disk device

c

c

H.MKS$ (FE35H)
 meaning: beginning of MSXSTS MKS$ (create single precision real)
 purpose: connects disk device

cc

H.MKD$ (FE3AH)
 meaning: beginning of MSXSTS MKD$ (create double precision real)
 purpose: connects disk device

cc

H.CVI (FE3FH)
 meaning: beginning of MSXSTS CVI (convert integer)
 purpose: connects disk device

cc

H.CVS (FE44H)
 meaning: beginning of MSXSTS CVS (convert single precision real)
 purpose: connects disk device

cc

H.CVD (FE49H)
 meaning: beginning of MSXSTS CVS (convert double precision real)
 purpose: connects disk device

cc

H.GETP (FE4EH)
 meaning: SPDSK GETPTR (get file pointer)
 purpose: connects disk device

cc

H.SETF (FE53H)
 meaning: SPCDSK SETFIL (set file pointer)
 purpose: connects disk device

cc

H.NOFO (FE58H)
 meaning: SPDSK NOFOR (OPEN statement without FOR)
 purpose: connects disk device

cc

H.NULO (FE5DH)
 meaning: SPCDSK NULOPN (open unused file)
 purpose: connects disk device

cc

H.NTFL (FE62H)
 meaning: SPCDSK NTFLO (file number is not 0)
 purpose: connects disk device

cc

H.MERG (FE67H)
 meaning: SPCDSK MERGE (program file merge)
 purpose: connects disk device

cc

H.SAVE (FE6CH)
 meaning: SPCDSK SAVE (save)

 purpose: connects disk device

cc

H.BINS (FE71H)
 meaning: SPCDSK BINSAV (save in binary)
 purpose: connects disk device

cc

H.BINL (FE76H)
 meaning: SPCDSK BINLOD (load in binary)
 purpose: connects disk device

cc

H.FILE (FD7BH)
 meaning: SPCDSK FILES (displey filename)
 purpose: connects disk device

cc

H.DGET (FE80H)
 meaning: SPCDSK DGET (disk GET)
 purpose: connects disk device

cc

H.FILO (FE85H)
 meaning: SPCDSK FILOU1 (file output)
 purpose: connects disk device

cc

H.INDS (FE8AH)
 meaning: SPCDSK INDSKC (disk attribute input)
 purpose: connects disk device

cc

H.RSLF (FE8FH)
 meaning: SPCDSK; re-select previous drive
 purpose: connects disk device

cc

H.SAVD (FE94H)
 meaning: SPCDSK; reserve current disk
 purpose: connects disk device

cc

H.LOC (FE99H)
 meaning: SPCDSK LOC function (indicate location)
 purpose: connects disk device

cc

H.LOF (FE9EH)
 meaning: SPCDSK LOC function (file length)
 purpose: connects disk device

cc

H.EOF (FEA3H)
 meaning: SPCDSK EOF function (end of file)
 purpose: connects disk device

cc

H.FPOS (FEA8H)
 meaning: SPCDSK FPOS function (file location)
 purpose: connects disk device

cc

H.BAKU (FEADH)
 meaning: SPCDSK BAKUPT (backup)
 purpose: connects disk device

cc

H.PARD (FEB2H)
 meaning: SPCDEV PARDEV (get peripheral name)
 purpose: expands logical device name

ee

H.NODE (FEB7H)
 meaning: SPCDEV NODEVN (no device name)
 purpose: sets default device name to other device

ss

H.POSD (FEBCH)
 meaning: SPCDEV POSDSK
 purpose: connects disk device

cc

H.DEVN (FEC1H)
 meaning: SPCDEV DEVNAM (process device name)
 purpose: expands logical device name

ee

H.GEND (FEC6H)
 meaning: SPCDEV GENDSP (FEC6H)
 purpose: expands logical device name

ee

H.RUNC (FECBH)
 meaning: BIMISC RUNC (clear for RUN)

BB

H.CLEAR (FED0H)
 meaning: BIMISC CLEARC (clear for CLEAR statement)

BB

H.LOPD (FED5H)
 meaning: BIMISC LOPDFT (set loop and default value)
 purpose: uses other default value for variable

uu

H.STKE (FEDAH)
 meaning: BIMISC STKERR (stack error)

BB

H.ISFL (FEDFH)
 meaning: BIMISC ISFLIO (file input-output or not)

BB

H.OUTD (FEE4H)
 meaning: BIO OUTDO (execute OUT)

BB

H.CRDO (FEE9H)
 meaning: BIO CRDO (execute CRLF)

BB

H.DSKC (FEEEH)
 meaning: BIO DSKCHI (input disk attribute)

BB

H.DOGR (FEF3H)
 meaning: GENGRP DOGRPH (execute graphic operation)

GG

H.PRGE (FEF8H)
 meaning: BINTRP PRGEND (program end)

BB

H.ERRP (FEFDH)
 meaning: BINTRP ERRPTR (error display)

BB

H.ERRF (FF02H)
 meaning: BINTRP

BB

H.READ (FF07H)
 meaning: BINTRP READY

BB

H.MAIN (FF0CH)
 meaning: BINTRP MAIN

BB

H.DIRD (FF11H)
 meaning: BINTRP DIRDO (execute direct statement)

BB

H.FINI (FF16H)
 meaning: BINTRP

BB

H.FINE (FF1BH)
 meaning: BINTRP

BB

H.CRUN (FF20H)
 meaning: BINTRP

BB

H.CRUN (FF20H)
 meaning: BINTRP

BB

H.CRUS (FF25H)
 meaning: BINTRP

BB

H.ISRE (FF2AH)
 meaning: BINTRP

BB

H.NTFN (FF2FH)
 meaning: BINTRP

BB

H.NOTR (FF34H)
 meaning: BINTRP

BB

H.SNGF (FF39H)
 meaning: BINTRP

BB

H.NEWS (FF3EH)
 meaning: BINTRP

BB

H.GONE (FF43H)
 meaning: BINTRP

BB

H.CHRG (FF48H)
 meaning: BINTRP

BB

H.RETU (FF4DH)
 meaning: BINTRP

BB

H.PRTF (FF52H)
 meaning: BINTRP

BB

H.COMP (FF57H)
 meaning: BINTRP

BB

H.FINP (FF5CH)
 meaning: BINTRP

BB

H.TRMN (FF61H)
 meaning: BINTRP

BB

H.FRME (FF66H)
 meaning: BINTRP

BB

H.NTPL (FF6BH)
 meaning: BINTRP

BB

H.EVAL (FF70H)
 meaning: BINTRP

BB

H.OKNO (FF75H)
 meaning: BINTRP

BB

H.FING (FF7AH)
 meaning: BINTRP

BB

H.ISMI (FF7FH)
 meaning: BINTRP ISMID$ (MID$ or not)

BB

H.WIDT (FF84H)
 meaning: BINTRP WIDTHS (WIDTH)

BB

H.LIST (FF89H)
 meaning: BINTRP LIST

BB

H.BUFL (FF8EH)
 meaning: BINTRP BUFLIN (buffer line)

BB

H.FRQI (FF93H)
 meaning: BINTRP FRQINT

BB

H.SCNE (FF98H)
 meaning: BINTRP

BB

H.FRET (FF9DH)
 meaning: BINTRP FRETMP

BB

H.PTRG (FFA2H)
 meaning: BIPTRG PTRGET (get pointer)
 purpose: uses variable other than default value

uu

H.PHYD (FFA7H)
 meaning: MSXIO PHYDIO (physical disk input-output)
 purpose: connects disk device

cc

H.FORM (FFACH)
 meaning: MSXIO FORMAT (format disk)
 purpose: connects disk device

cc

H.ERRO (FFB1H)
 meaning: BINTRP ERROR
 purpose: error handling for application program

ee

H.LPTO (FFB6H)
 meaning: MSXIO LPTOUT (printer output)
 purpose: uses printer other than default value

uu

H.LPTS (FFBBH)
 meaning: MSXIO LPTSTT (printer status)
 purpose: uses printer other than default value

uu

H.SCRE (FFC0H)
 meaning: MSXSTS SCREEN statement entry
 purpose: expands SCREEN statement

ee

H.PLAY (FFC5H)
 meaning: MSXSTS PLAY statement entry
 purpose: expands PLAY statement

eee

* For expanded BIOS

**

FCALL (FFCAH)
 contents: hook used by expanded BIOS

hh

DISINT (FFCFH)
 contents: used by DOS

uu

ENAINT (FFD4H)
 contents: used by DOS

uu

===

=

Changes from the original in APPENDIX 5:

C

- The original VRAM mapping figures have been converted to simple text
tables.

t

- In SCREEN 0 (WIDTH 80) map, different end addresses for the blink table are
indicated for 24 lines mode and 26.5 lines mode.

i

-=-

--

APPENDIX 5 - VRAM MAP

AA

* SCREEN 0 (WIDTH 40) / TEXT 1

*

0000H - 03BFH --> Pattern name table
0400H - 042FH --> Palette table
0800H - 0FFFH --> Pattern generator table

P

p

* SCREEN 0 (WIDTH 80) / TEXT 2

*

0000H - 077FH --> Pattern name table
0800H - 08EFH --> Blink table (24 lines mode)

090DH (26.5 lines mode)
0F00H - 0F2FH --> Palette table
1000H - 17FFH --> Pattern generator table

PP

* SCREEN 1 / GRAPHIC 1

*

0000H - 07FFH --> Pattern generator table
1800H - 1AFFH --> Pattern name table
1B00H - 1B7FH --> Sprite attribute table
2000H - 201FH --> Colour table
2020H - 204FH --> Palette table
3800H - 3FFFH --> Sprite generator table

SS

* SCREEN 2 / GRAPHIC 2

*

0000H - 07FFH --> Pattern generator table 1
0800H - 0FFFH --> Pattern generator table 2
1000H - 17FFH --> Pattern generator table 3
1800H - 18FFH --> Pattern name table 1
1900H - 19FFH --> Pattern name table 2
1A00H - 1AFFH --> Pattern name table 3
1B00H - 1B7FH --> Sprite attribute table
1B80H - 1BAFH --> Palette table
2000H - 27FFH --> Colour table 1
2800H - 2FFFH --> Colour table 2
3000H - 37FFH --> Colour table 3
3800H - 3FFFH --> Sprite generator table

SS

* SCREEN 3 / MULTI COLOUR

*

0000H - 07FFH --> Pattern generator table
0800H - 0AFFH --> Pattern name table
1B00H - 1B7FH --> Sprite attribute table
2020H - 204FH --> Palette table
3800H - 3FFFH --> Sprite generator table

SS

* SCREEN 4 / GRAPHIC 3

*

0000H - 07FFH --> Pattern generator table 1
0800H - 0FFFH --> Pattern generator table 2
1000H - 17FFH --> Pattern generator table 3
1800H - 18FFH --> Pattern name table 1
1900H - 19FFH --> Pattern name table 2
1A00H - 1AFFH --> Pattern name table 3
1B80H - 1BAFH --> Palette table
1C00H - 1DFFH --> Sprite colour table
1E00H - 1E7FH --> Sprite attribute table
2000H - 27FFH --> Colour table 1
2800H - 2FFFH --> Colour table 2

3000H - 37FFH --> Colour table 3
3800H - 3FFFH --> Sprite generator table

SS

* SCREEN 5, 6 / GRAPHIC 4, 5

*

0000H - 5FFFH --> Pattern name table (192 lines)
69FFH (212 lines)

7400H - 75FFH --> Sprite colour table
7600H - 767FH --> Sprite attribute table
7680H - 76AFH --> Palette table
7A00H - 7FFFH --> Sprite generator table

SS

* SCREEN 7, 8 / GRAPHIC 6, 7

*

0000H - BFFFH --> Pattern name table (192 lines)
D3FFH (212 lines)

F000H - F7FFH --> Sprite generator table
F800H - F9FFH --> Sprite colour table
FA00H - FA7FH --> Sprite attribute table
FA80H - FAAFH --> Palette table

PP

===

=

Changes from the original in APPENDIX 6:

C

none

n

-=-

--

APPENDIX 6 - I/O MAP

AA

00H to 3FH user defined

u

40H to 7FH reserved

r

80H to 87H for RS-232C
 80H 8251 data
 81H 8251 status/command
 82H status read/interrupt mask
 83H unused
 84H 8253
 85H 8253
 86H 8253
 87H 8253

8

88H to 8BH VDP (9938) I/O port for MSX1 adaptor
This is V9938 I/O for MSX1. To access VDP directly,
examine 06H and 07H of MAIN-ROM to confirm the port
address

a

8CH to 8DH for the modem

f

8EH to 8FH reserved

r

90H to 91H printer port
 90H bit 0: strobe output (write)

bit 1: status input (read)
 91H data to be printed

d

92H to 97H reserved

r

98H to 9BH for MSX2 VDP (V9938)
 98H VRAM access
 99H command register access
 9AH palette register access (write only)
 9BH register pointer (write only)

r

9CH to 9FH reserved

r

A0H to A3H sound generator (AY-3-8910)
 A0H address latch
 A1H data read
 A2H data write

d

A4H to A7H reserved

r

A8H to ABH parallel port (8255)
 A8H port A
 A9H port B
 AAH port C
 ABH mode set

m

ACH to AFH MSX engine (one chip MSX I/O)

M

B0H to B3H expansion memory (SONY specification) (8255)
 A8H port A, address (A0 to A7)
 A9H port B, address (A8 to A10, A13 to A15), control R/"
 AAH port C, address (A11 to A12), data (D0 - D7)
 ABH mode set

m

B4H to B5H CLOCK-IC (RP-5C01)
 B4H address latch
 B5H data

d

B6H to B7H reserved

r

B8H to BBH lightpen control (SANYO specification)
 B8H read/write
 B9H read/write
 BAH read/write
 BBH write only

w

BCH to BFH VHD control (JVC) (8255)
 BCH port A
 BDH port B
 BEH port C

p

C0H to C1H MSX-Audio

M

C2H to C7H reserved

r

C8H to CFH MSX interface

M

D0H to D7H floppy disk controller (FDC)
The floppy disk controller can be interrupted by an
external signal. Interrupt is possible only when the
FDC is accessed. Thus, the system can treat different
FDC interfaces.

F

D8 to D9H kanji ROM (TOSHIBA specification)
 D8H b5-b0 lower address (write only)
 D9H b5-b0 upper address (write)

b7-b0 data (read)

d

DAH to DBH for future kanji expansion

f

DCH to F4H reserved

r

F5H system control (write only)
setting bit to 1 enables available I/O devices

b0 kanji ROM
b1 reserved for kanji
b2 MSX-AUDIO
b3 superimpose
b4 MSX interface
b5 RS-232C
b6 lightpen
b7 CLOCK-IC (only on MSX2)

Bits to void the conflict between internal I/O
devices or those connected by cartridge. The bits
can disable the internal devices. When BIOS is initialised,
internal devices are valid if no external devices are
connected. Applications may not write to or read from here.

c

F8H colour bus I/O

c

F7H A/V control
b0 audio R mixing ON (write)
b1 audio L mixing OFF (write)
b2 select video input 21p RGB (write)
b3 detect video input no input (read)
b4 AV control TV (write)
b5 Ym control TV (write)
b6 inverse of bit 4 of VDP register 9 (write)
b7 inverse of bit 5 of VDP register 9 (write)

i

F8H to FBH reserved

r

FCH to FFH memory mapper

mm

===

=

Changes from the original in APPENDIX 8:

C

none

n

-=-

-

h

APPENDIX 8 - CONTROL CODES

A

| Code | Code | | Corresponding |
| (dec)| (hex)| Function | key(s) |
|------+------+-----------------------------------+---------------------|
0	00H		CTRL + @
1	01H	header at input/output of graphic	CTRL + A
		characters	
2	02H	move cursor to the top of the	CTRL + B
		previous word	
3	03H	end the input-waiting state	CTRL + C
4	04H		CTRL + D
5	05H	delete below cursor	CTRL + E
6	06H	move cursor to the top of the	CTRL + F
		next word	
7	07H	speaker output	CTRL + G
		(same as the BEEP statement)	
8	08H	delete a character before cursor	CTRL + H or BS
9	09H	move to next horizontal tab stop	CTRL + I or TAB
10	0AH	line feed	CTRL + J
11	0BH	home cursor	CTRL + K or HOME
12	0CH	clear screen and home cursor	CTRL + L or CLS
13	0DH	carriage return	CTRL + M or RETURN
14	0EH	move cursor to the end of line	CTRL + N
15	0FH		CTRL + O
16	10H		CTRL + P
17	11H		CTRL + Q
18	12H	insert mode ON/OFF	CTRL + R or INS
19	13H		CTRL + S
20	14H		CTRL + T
21	15H	delete one line from screen	CTRL + U
22	16H		CTRL + V
23	17H		CTRL + W

24	18H		CTRL + X or SELECT
25	19H		CTRL + Y
26	1AH		CTRL + Z
27	1BH		CTRL + [or ESC
28	1CH	move cursor right	CTRL + \ or RIGHT
29	1DH	move cursor left	CTRL +] or LEFT
30	1EH	move cursor up	CTRL + ^ or UP
31	1FH	move cursor down	CTRL + _ or DOWN
127	7FH	delete character under cursor	DEL

--

===

=

Changes from the original in APPENDIX 10:

C

none

n

-=-

--

APPENDIX 10 - ESCAPE SEQUENCES

AA

* Cursor movement

*

<ESC> A move cursor up
<ESC> B move cursor down
<ESC> C move cursor right
<ESC> D move cursor left
<ESC> H move cursor home
<ESC> Y <Y-coordinate+20H> <X-coordinate+20H>

move cursor to (X, Y)

mm

* Edit, delete

*

<ESC> j clear screen
<ESC> E clear screen
<ESC> K delete to end of line
<ESC> J delete to end of screen
<ESC> L insert one line
<ESC> M delete one line

dd

* Miscellaneous

*

<ESC> x4 set block cursor

<ESC> x5 hide cursor
<ESC> y4 set underline cursor
<ESC> y5 display cursor

dd

==

=

APPENDIX 7 - CARTRIDGE HARDWARE

A

and

a

APPENDIX 9 - CHARACTER SET

A

are not available here

a

