

1

JavaScript Web Tools
with Visual Studio 2015 and ASP.NET 5

April 2015.

2

Readme

Welcome! This document contains a set of articles that introduce the most commonly used

JavaScript/frontend web development tools (libraries, task runners, frameworks…). Frontend

development ecosystem is growing fast and getting complex, and we hope this brief doc will help you

put the pieces together and decide on the ones that best fit your needs.

You’ll be able to find updated versions of these articles (and more!) on the asp.net page at

http://aka.ms/webdevdocs.

You can get a good understanding just by reading the different articles, but we really recommend you

follow the step by step samples to gain exposure to these tools, we created the samples with the free

Visual Studio 2015 Preview.

We hope you find it useful!! If you have any question, comment or feedback about the articles, we’ll be

listening on the #jswebtoolsdoc hashtag on twitter.

- Developer Platform team at Microsoft

http://aka.ms/webdevdocs
http://go.microsoft.com/?linkid=9887693
http://go.microsoft.com/?linkid=9887693

3

Contents
Grunt and Gulp. JavaScript task runners. .. 6

Using Grunt ... 7

Preparing the Application ... 7

Configuring NPM ... 8

Configuring Grunt ... 10

All Together Now .. 14

Watching for Changes ... 15

Binding to Visual Studio Events ... 15

Using Gulp ... 16

NPM Package Differences ... 16

Gulpfile vs Gruntfile Examples .. 16

The Gulp Stream ... 17

All Together ... 17

Summary ... 18

Bower. Package Manager. ... 19

Getting Started .. 19

Exploring the Client Build Process .. 22

Define Packages .. 22

Install Packages to the Web Application ... 25

Reference Packages .. 26

Use the Installed Packages .. 27

Summary ... 28

Bootstrap. Responsive Web Framework. .. 29

Getting Started .. 29

Basic Templates and Features .. 30

The Bootstrap Theme ... 35

More Themes .. 39

Components .. 39

JavaScript Support .. 40

Summary ... 41

Less, Sass & Font Awesome. Styling applications ... 42

CSS Preprocessor Languages ... 42

4

Less .. 43

Getting Started .. 44

Sass .. 49

Less or Sass? .. 52

Font Awesome .. 53

Summary ... 54

TypeScript. Enterprise-scale JavaScript. .. 55

Getting Started .. 55

Language Features .. 57

TypeScript Ecosystem ... 61

Summary ... 63

Knockout.js . MVVM JavaScript Library... 64

Getting Started .. 64

Observables, ViewModels, and Simple Binding .. 65

Control Flow .. 69

Templates.. 72

Components .. 73

Communicating with APIs ... 73

Summary ... 73

Backbone.js. MVC Library ... 74

Getting Started .. 74

Backbone Objects ... 74

Views ... 78

Collections ... 80

Routers .. 81

Summary ... 83

Angular.js. SPA Framework. ... 84

Getting Started .. 84

Key components ... 85

Directives .. 85

Data Binding .. 86

Templates .. 86

Expressions .. 87

5

Repeaters .. 88

$scope ... 91

Modules .. 92

Controllers ... 93

Services ... 94

Using Services to talk to a REST endpoint ... 95

Routing and Multiple Views .. 98

Event Handlers .. 100

Future, Angular 2.0 ... 102

ReactJS. Reusable UI Components. ... 103

Getting Started with React.. 103

Class Properties ... 110

Class State ... 112

Style ... 114

Summary ... 115

6

Grunt and Gulp. Task Runners.

Both Grunt and Gulp are JavaScript task runners that automate script minification, TypeScript

compilation, code quality “lint” tools, CSS pre-processors, and just about any repetitive chore that needs

doing to support client development. Grunt is the Visual Studio 2015 default, but Gulp can be used in its

place.

What’s the difference between Grunt and Gulp? Grunt is an early entry in the client-build-tool space.

Grunt modules predefine most everyday tasks like linting, minimizing, and unit testing. Grunt is widely

adopted and downloaded thousands of times each day.

While Gulp is a later entry to the field, Gulp has gained popularity for crisp performance and elegant

syntax. While Grunt tends to read and write files to disk, Gulp uses a stream (Vinyl) object to pipe

method results to following methods, allowing calls to be chained together in a fluent syntax.

The statistics below are a snapshot from the npmjs (node package manager) home site downloads.

https://www.npmjs.com/package/vinyl
https://www.npmjs.com/

7

Using Grunt
Plumbing for NPM (Node Package Manager) and Grunt are ded in the Starter Web project template. This

example uses the Empty Web template to show how to automate the client build process from scratch.

The finished example cleans the target deployment directory, combines JavaScript files, checks code

quality, condenses JavaScript file content and deploys to the root of your web application. We will use

the following packages:

 grunt: The Grunt task runner package.

 grunt-contrib-clean: A task that removes files or directories.

 grunt-contrib-jshint: A task that reviews JavaScript code quality.

 grunt-contrib-concat: A task that joins files into a single file.

 grunt-contrib-uglify: A task that minifies JavaScript to reduce size.

 grunt-contrib-watch: A task that watches file activity.

Preparing the Application
To begin, set up a new empty web application and add TypeScript example files. TypeScript files are

automatically compiled into JavaScript using default Visual Studio 2015 settings and will be our raw

material to process using Grunt.

1. In Visual Studio 2015, create a new ASP.NET Web Application.

2. In the New ASP.NET Project dialog, select the ASP.NET 5 Empty template and click the OK

button.

3. In the Solution Explorer, review the project structure. The \src folder includes empty wwwroot

and Dependencies nodes.

4. Add a new folder named TypeScript to your project directory.

5. Before adding any file, let’s make sure that Visual Studio 2015 has the option ‘compile on save’

for TypeScript files checked. Tools > Options > Text Editor > Typescript > Project

8

6. Right-click the TypeScript directory and select Add > New Item from the context menu. Select

the JavaScript file item and name the file Tastes.ts (note the *.ts extension). Copy the line of

TypeScript code below into the file (when you save, a new Tastes.js file will appear with the

JavaScript source).

enum Tastes { Sweet, Sour, Salty, Bitter }

7. Add a second file to the TypeScript directory and name it Food.js. Copy the code below into the

file.

class Food {
 constructor(name: string, calories: number) {
 this._name = name;
 this._calories = calories;
 }

 private _name: string;
 get Name() {
 return this._name;
 }

 private _calories: number;
 get Calories() {
 return this._calories;
 }

 private _taste: Tastes;
 get Taste(): Tastes { return this._taste }
 set Taste(value: Tastes) {
 this._taste = value;
 }
}

Configuring NPM
Next, configure NPM to download grunt and grunt-tasks.

1. In the Solution Explorer, right-click the project and select Add > New Item from the context

menu. Select the NPM configuration file item, leave the default name, package.json, and click

the Add button.

2. In the package.json file, inside the devDepencies object braces, enter “grunt”. Select grunt from

the Intellisense list and press the Enter key. Visual Studio will quote the grunt package name,

and add a colon. To the right of the colon, select the latest stable version of the package from

the top of the Intellisense list (press Ctrl-Space if Intellisense does not appear).

9

Note: NPM uses semantic versioning to organize dependencies. Semantic versioning, also

known as SemVer, identifies packages with the numbering scheme <major>.<minor>.<patch>.

Intellisense simplifies semantic versioning by showing only a few common choices. The top item

in the Intellisense list (0.4.5 in the example above) is considered the latest stable version of the

package. The carat ^ symbol matches the most recent major version and the tilde ~ matches the

most recent minor version. See the NPM semver version parser reference as a guide to the full

expressivity that SemVer provides.

3. Add more dependencies to load grunt-contrib* packages for clean, jshint, concat, uglify and

watch as shown in the example below. The versions do not need to match the example.

 "devDependencies": {
 "grunt": "0.4.5",
 "grunt-contrib-clean": "0.6.0",
 "grunt-contrib-jshint": "0.11.0",
 "grunt-contrib-concat": "0.5.1",
 "grunt-contrib-uglify": "0.8.0",
 "grunt-contrib-watch": "0.6.1"
 }

4. Save the packages.json file.

5. In Solution Explorer, right-click Dependencies\NPM and select the Restore Packages context

menu option.

The packages for each devDependencies item will download, along with any files that each

package requires. You can find the package files in the node_modules directory by enabling the

Show All Files button in the Solution Explorer.

http://semver.org/
https://www.npmjs.com/package/semver

10

Configuring Grunt
Grunt is configured using a manifest named gruntfile.js that defines, loads and registers tasks that can

be run manually or configured to run automatically based on events in Visual Studio.

1. Right-click the project and select Add > New Item. Select the Grunt Configuration file option,

leave the default name, Gruntfile.js, and click the Add button.

The initial code includes a module definition and the grunt.initConfig() method. The initConfig()

is used to set options for each package, and the remainder of the module will load and register

tasks.

module.exports = function (grunt) {

 grunt.initConfig({
 });
};

2. Inside the initConfigt() method, add options for the clean task as shown in the example

Gruntfile.js below. The clean task accepts an array of directory strings. This task removes files

from wwwroot/lib and removes the entire /temp directory.

module.exports = function (grunt) {
 grunt.initConfig({
 clean: ["wwwroot/lib/*", "temp/"],
 });
};

3. Below the initConfig() method, add a call to grunt.loadNpmTasks(). This will make the task

runnable from Visual Studio.

grunt.loadNpmTasks("grunt-contrib-clean");

4. Save Gruntfile.js. The file should look something like the screenshot below.

11

5. Right-click Gruntfile.js and select Task Runner Explorer from the context menu. The Task

Runner Explorer window will open.

6. Verify that clean shows under Tasks in the Task Runner Explorer.

7. Right-click the clean task and select Run from the context menu. A command window displays

progress of the task.

Note: There are no files or directories to clean yet. If you like, you can manually create them in

the Solution Explorer and then run the clean task as a test.

8. In the initConfig() method, add an entry for concat using the code below.

The src property array lists files to combine, in the order that they should be combined. The

dest property assigns the path to the combined file that is produced.

concat: {
 all: {
 src: ['TypeScript/Tastes.js', 'TypeScript/Food.js'],
 dest: 'temp/combined.js'
 }
},

12

Note: The all property in the code above is the name of a target. Targets are used in some Grunt

tasks to allow multiple build environments. You can view the built-in targets using Intellisense or

assign your own.

9. Add the jshint task using the code below.

The jshint code-quality utility is run against every JavaScript file found in the temp directory.

jshint: {
 files: ['temp/*.js'],
 options: {
 '-W069': false,
 }
},

Note : The option “-W069” is an error produced by jshint when JavaScript uses bracket syntax to

assign a property instead of dot notation, i.e. Tastes[“Sweet”] instead of Tastes.Sweet. The

option turns off the warning to allow the rest of the process to continue.

10. Add the uglify task using the code below.

The task minifies the combined.js file found in the temp directory and creates the result file in

wwwroot/lib following the standard naming convention <file name>.min.js.

uglify: {
 all: {
 src: ['temp/combined.js'],
 dest: 'wwwroot/lib/combined.min.js'
 }
},

11. Under the call grunt.loadNpmTasks() that loads grunt-contrib-clean, include the same call for

jshint, concat and uglify using the code below.

grunt.loadNpmTasks('grunt-contrib-jshint');
grunt.loadNpmTasks('grunt-contrib-concat');
grunt.loadNpmTasks('grunt-contrib-uglify');

13

12. Save Gruntfile.js. The file should look something like the example below.

13. Notice that the Task Runner Explorer Tasks list includes clean, concat, jshint and uglify tasks.

Run each task in order and observe the results in Solution Explorer. Each task should run

without errors.

14

The concat task creates a new combined.js file and places it into the temp directory. The jshint

task simply runs and doesn’t produce output. The uglify task creates a new combined.min.js file

and places it into wwwroot\lib. On completion, the solution should look something like the

screenshot below:

Note: For more information on the options for each package, visit https://www.npmjs.com/ and

lookup the package name in the search box on the main page. For example, you can look up the

grunt-contrib-clean package to get a documentation link that explains all the parameters.

All Together Now
Use the Grunt registerTask() method to run a series of tasks in a particular sequence. For example, to

run the example steps above in the order clean -> concat -> jshint -> uglify, add the code below to the

module. The code should be added to the same level as the loadNpmTasks() calls, outside initConfig.

grunt.registerTask("all", ['clean', 'concat', 'jshint', 'uglify']);

The new task shows up in Task Runner Explorer under Alias Tasks. You can right-click and run it just as

you would other tasks. The all task will run clean, concat, jshint and uglify, in order.

https://www.npmjs.com/

15

Watching for Changes
A watch task keeps an eye on files and directories. The watch triggers tasks automatically if it detects

changes. Add the code below to initConfig to watch for changes to *.js files in the TypeScript directory. If

a JavaScript file is changed, watch will run the all task.

watch: {

 files: ["TypeScript/*.js"],

 tasks: ["all"]

}

Add a call to loadNpmTasks() to show the watch task in Task Runner Explorer.

grunt.loadNpmTasks('grunt-contrib-watch');

Right-click the watch task in Task Runner Explorer and select Run from the context menu. The command

window that shows the watch task running will display a waiting… message. Open one of the TypeScript

files, add a space, and then save the file. This will trigger the watch task and trigger the other tasks to

run in order. The screenshot below shows a sample run.

Binding to Visual Studio Events
Unless you want to manually start your tasks every time you work in Visual Studio, you can bind tasks to

Before Build, After Build, Clean, and Project Open events.

Let’s bind watch so that it runs every time Visual Studio opens. In Task Runner Explorer, right-click the

watch task and select Bindings > Project Open from the context menu.

16

Unload and reload the project. When the project loads again, the watch task will start running

automatically.

Using Gulp
Gulp configuration is similar to Grunt with some notable differences. The example below parallels the

Grunt example using Gulp packages and conventions.

NPM Package Differences
The devDependencies defined in package.json are specific to Gulp. To get the same result as the Grunt

walk-through, package.json should look something like the code below. You will need to change the

package versions in the devDependencies list to the latest version. You can get the correct version

number using Intellisense (Ctrl-space).

{
 "version": "1.0.0",
 "name": "GulpFromEmptyWeb",
 "private": true,
 "devDependencies": {
 "gulp": "3.8.11",
 "gulp-clean": "0.3.1",
 "gulp-jshint": "1.9.2",
 "gulp-concat": "2.5.2",
 "gulp-uglify": "1.1.0",
 "gulp-rename": "1.2.0"
 }
}

Gulpfile vs Gruntfile Examples
Instead of adding Gruntfile.js to the project, add a JavaScript file to the project and name it gulpfile.js. In

gulpfile.js, assign a series of objects using the node.js require() method. Make the assignment for Gulp

itself and for every package needed for automation. The code below assigns the same tasks used in the

Grunt example:

var gulp = require('gulp');
var clean = require('gulp-clean');
var concat = require('gulp-concat');
var jshint = require('gulp-jshint');
var uglify = require('gulp-uglify');

Below these assignments in gulpfile.js, call the gulp object task() method. The first parameter to task() is

the name of the task and the second is a function.

gulp.task("all", function () {

});

17

Just adding the empty task() method to gulpfile.js displays the all task in Task Runner Explorer.

Inside the task() function, use the objects defined earlier by require() to do the work. The example

below cleans any files from the wwwroot/lib directory.

gulp.task("all", function () {
 gulp.src('wwwroot/lib/*').pipe(clean());
});

The Gulp Stream
Gulp is a streaming object that includes methods src(), pipe() and dest().

 src() defines where the stream is coming from -- wwwroot/lib in our example. The method

returns a stream that can be passed to other Gulp plugins.

 pipe() pulls data from the stream and writes it to the destination parameter.

 dest() outputs streams to files.

The general coding pattern for Gulp looks like this partial example:

gulp.src()
 .pipe()
 .pipe()
 .pipe(dest());

The src() method gathers the initial raw materials. A series of pipe() calls allow Gulp plugins to operate

on the stream. Finally, the dest() method writes out the final results. The advantage to this flow is that

only one file read and one file write occur, making the whole process quicker.

All Together
Here’s the complete example that concatenates, lints, minifies and writes out the minified file. The

processing time is quite fast.

gulp.task("all", function () {
 gulp.src('wwwroot/lib/*').pipe(clean());
 gulp.src(['TypeScript/Tastes.js', 'TypeScript/Food.js'])
 .pipe(concat("combined.js"))
 .pipe(jshint())
 .pipe(uglify())
 .pipe(rename({
 extname: '.min.js'
 }))
 .pipe(gulp.dest('wwwroot/lib'))
});

Watcher tasks are similar to the Grunt parallel task and are simple to set up. Again, the gulp.task()

method names the task that will show in the Task Runner Explorer. The Gulp watch() method takes a

path or array of paths and second parameter is an array of tasks to run.

18

gulp.task("watcher", function () {
 gulp.watch("TypeScript/*.js", ['all']);
});

The Task Runner Explorer running Gulp tasks uses the same interface as Grunt. The screenshot below

shows the watcher task running.

Summary
Both Grunt and Gulp are powerful tasks runners that automate most client-build tasks. Grunt and Gulp

both require support from NPM to deliver their packages. While Grunt is configured using Gruntfile.js

and Gulp is configured using Gulpfile.js, both build tools play nicely in Visual Studio, automatically

sensing changes to the configuration files. Task Runner Explorer detects changes to configuration files

and provides a convenient interface to run tasks, view running tasks, and bind tasks to Visual Studio

events.

19

Bower. Package Manager.

Bower is a package manager that delivers groups of files used client-side at run-time. For example, with

Bower you can install CSS, fonts, frameworks, and JavaScript libraries from external sources. Bower

resolves dependencies and will automatically

download and install all the packages you need. For

example, if you configure Bower to load the Bootstrap

package, the proper jQuery package will automatically

come along for the ride.

Visual Studio developers are already familiar with the

NuGet package manager, so why not use NuGet instead of adding yet another tool? Mainly because

Bower already has a rich eco-system with about 18 thousand packages in play and because ASP.NET is

no longer strictly a Windows and Visual Studio space. Bower is accessible within Visual Studio, but also

from the command line and IDEs for other environments.

You could also use NPM (Node Package Manager), but NPM typically loads client development,

debugging, and testing tools like Less, JSLint, QUnit, and Grunt. While NPM uses a nested dependency

tree, Bower has a flatter structure and for that reason tends to be lighter weight. For example, in NPM

you can easily have different versions of the same component while Bower doesn’t allow two

components with the same name.

“Bower is optimized for the front-end. Bower uses a flat dependency tree, requiring

only one version for each package, reducing page load to a minimum.”

– from the http://bower.io main page

How does Bower Work – the Short Story

Bower works together with the NPM and Grunt (a client-side task runner). NPM first loads Grunt and a

Grunt task that supports Bower. Grunt then installs Bower. Finally, Bower resolves dependencies,

downloads packages, and deploys the packages to the root of your web site.

Bower packages are essentially Git repositories. Each package has a bower.json file that describes the

package, such as the name, version, and dependencies. You can add a bower.json file to your own

application that defines the packages your application needs.

Getting Started
The ASP.NET 5 Starter Web MVC project pre-constructs the client build process for you. The ubiquitous

jQuery and Bootstrap packages are installed, and plumbing for NPM, Grunt, and Bower are already in-

place. The screenshot below shows the initial project in the Solution Explorer.

http://bower.io/
https://www.nuget.org/
http://bower.io/stats/
https://www.npmjs.com/
http://www.jslint.com/
http://qunitjs.com/
http://gruntjs.com/
http://bower.io/
http://bower.io/

20

To use Bower, open the bower.json file. In the ASP.NET 5 Starter Web project, bower.json is ready to

load jQuery, jQuery validation, the Bootstrap framework, and Hammer (supports touch gestures in web

pages). Let’s add support for photo albums by installing the Fotorama jQuery plugin with Bower.

1. At the end of the dependencies properties listing in bower.json, add a comma and type

“fotorama”. Select “fotorama” from the drop down list.

2. Add a colon and then select the latest stable version of the package from the drop down list.

3. Save the bower.json file.

4. In the Solution Explorer, right-click the Dependencies\Bower node and select Restore Packages

from the drop down menu.

5. Navigate to the Task Runner Explorer by either right-clicking gruntfile.js and selecting the

context menu option or selecting the View > Other Windows > Task Runner Explorer menu

option.

6. Double-click the Tasks > bower option to trigger the Bower deployment.

http://fotorama.io/

21

7. In the Solution Explorer, open the wwwroot node. The \lib directory should have all the

dependencies listed in bower.json including the \fotorama directory you just added.

8. In the Solution Explorer, right-click the wwwroot node and select Add > New Item from the

context menu. Choose the HTML Page item, name the page Index.html, and click the Add

button.

9. Add references to the packages deployed by Bower to the web page.

 Drag fotorama.css from wwwroot\lib\fotorama to the head of the page.

 Drag jquery.js to the end of the body tag.

 Drag fotorama.js underneath jquery.js.

The page should now look like something like this:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Bower and Fotorama</title>
 <link href="lib/fotorama/fotorama.css" rel="stylesheet" />
</head>
<body>

 <script src="lib/jquery/jquery.js"></script>
 <script src="lib/fotorama/fotorama.js"></script>
</body>
</html>

10. Inside the body tag, above the script references, add a div element with a class “fotorama”.

Inside the div element, add a number of img tags. The example uses images currently available

inside wwwroot\images, but you can add any images on hand.

22

<div class="fotorama" data-nav="thumbs">

</div>

11. Press Ctrl-Shift-W to display the page in the browser. The control displays the images and allows

navigation by clicking the thumbnail list below the main image. This quick smoke test

demonstrates that Bower deployed the correct packages and dependencies.

Exploring the Client Build Process
The Visual Studio 2015 ASP.NET 5 Starter Web project has everything you need all set up, but it’s

difficult from a standing start to see how the component processes go together. This next walk-through

starts with an ASP.NET Empty project template and adds each piece manually so you can get feel for

how Bower is used in a project. See what happens to the project structure and the run-time output as

each configuration change is made to the project.

The general steps to use the client-side build process with Bower are:

 Define and download packages used in your project.

 Install the packages to the root of your web application.

 Reference packages from your web pages.

Define Packages
The first step is to define the packages your application needs and download them. This example uses

Bower to load jQuery and Bootstrap. Start by configuring NPM to install design-time packages such as

the Grunt task runner. Then use Grunt to run Bower so that Bower installs run-time packages jQuery and

Bootstrap.

1. In Visual Studio 2015, create a new ASP.NET Web Application.

2. In the New ASP.NET Project dialog, select the ASP.NET 5 Empty template and click the OK

button.

23

3. In the Solution Explorer, the empty project \src directory now includes a project.json file, and a

new wwwroot and Dependencies nodes. The project directory will look like the screenshot

below, where the Properties and wwwroot directories are empty.

4. In the Solution Explorer, enable the Show All Files button. At this point, there are no hidden files

that are not part of the project.

5. In the Solution Explorer, right-click the project and add

 NPM configuration file – Package.json

 Grunt configuration file – Gruntfile.js

 Bower configuration file – Bower.json

6. The package.json file is the NPM package definition that loads all the files, include the grunt and

grunt-bower-task dependencies.

7. In the gruntfile.js we should define a task that runs Bower. This is used later to manage run-time

packages, like jQuery or Bootstrap, on the client. The grunt.initConfig task options dictate that

files be copied to the wwwroot/lib directory. Grunt loads the grunt-bower-task that triggers

Bower to install packages to your web application.

24

module.exports = function (grunt) {
 grunt.initConfig({
 bower: {
 install: {
 options: {
 targetDir: "wwwroot/lib",
 layout: "byComponent",
 cleanTargetDir: false
 }
 }
 },
 });

 grunt.registerTask("default", ["bower:install"]);

 grunt.loadNpmTasks("grunt-bower-task");

};

8. In the Solution Explorer, right-click the Dependencies\NPM node and click on restore packages.

9. In the Solution Explorer, view the restored packages:

 Open the Dependencies\NPM\ grunt node to see all packages that Grunt depends on.

 Open the node_modules directory to view the files copied to your local machine during

the package restoration.

Note: If you don’t see the node_modules directory, make sure that the Show All Files

button is enabled in Solution Explorer’s toolbar.

10. Open bower.json and remove the exportsOverride section for the time being. We will replace it

later after you see how Bower deploys files without this section.

11. Add jquery and bootstrap to the dependencies section. The resulting bower.json file should

look something like the example here. The versions will change over time, so use the latest

stable build version from the drop down list.

{

 "name": "bower",

 "license": "Apache-2.0",

 "private": true,

 "dependencies": {

 "jquery": "2.1.3",

 "bootstrap": "3.3.2"

 }

}

12. Save the bower.json file, right-click on Dependencies > Bower > and click on Restore packages.

The project outline in Solution Explorer should now include \bootstrap and \jQuery directories in two

locations: \Dependencies\Bower and \bower_components.

25

Note: If you don’t see the bower_components directory, make sure that the Show All Files button is

enabled in Solution Explorer’s toolbar.

Install Packages to the Web Application
You’ve installed all the required files to your machine but haven’t deployed them yet. Use Bower to copy

from bower_components to the \lib directory under the web application root.

1. Right-click gruntfile.js and select Task Runner Explorer from the context menu. You can also

reach the Task Runner Explorer through the View > Other Windows menu.

2. In the Task Runner Explorer, right-click the Tasks > Bower entry and select Run from the context

menu. This step copies the Bower packages to the root of the project (the default is wwwroot)

under the \lib directory.

3. In Visual Studio, open the wwwroot\lib bootstrap and jquery directories. You should be able to

see the deployed files under their respective directories. The files show up in a flat list in their

26

respective directories.

4. In the Solution Explorer, delete the \wwwroot node. You will be able to replace it easily in the

next step.

5. Open bower.json and add the exportsOverride element as shown in the listing below.

 "exportsOverride": {
 "bootstrap": {
 "js": "dist/js/*.*",
 "css": "dist/css/*.*",
 "fonts": "dist/fonts/*.*"
 },
 "jquery": {
 "js": "dist/jquery.{js,min.js,min.map}"
 }
 }

The exportsOverride element defines source directories and target directories. For example,

bootstrap JavaScript files are copied from \bower_components\bootstrap\dist\js and copied to

\wwwroot\lib\bootstrap\js.

6. From the Task Runner Explorer, run the Bower task a second time. The files are now organized

under the target \css, \fonts, and \js directories.

Reference Packages
Now that Bower has copied the client support packages needed by the application, you can test that

an HTML page can use the deployed jQuery and Bootstrap functionality.

1. Right-click the wwwroot node and select Add > New Item > HTML Page from the context menu.

27

Note: If you’re editing an MVC application, you can add these references to

\Views\Shared_Layout.cshtml.

2. Add the CSS and JavaScript references.

 From the Solution Explorer wwwroot node, locate bootstrap.css and drag the file into

the head tag of the HTML page.

 Drag jquery.js and bootstrap.js to the end of the body tag.

Be sure to keep bootstrap.js below jquery.js so that jQuery is loaded first. The file should look

something like the example here:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Bower Example</title>
 <link href="lib/bootstrap/css/bootstrap.css" rel="stylesheet" />
</head>
<body>

 <script src="lib/jquery/jquery.js"></script>
 <script src="lib/bootstrap/js/bootstrap.js"></script>
</body>
</html>

Use the Installed Packages
Add jQuery and Bootstrap components to the page to verify that the web application is configured

correctly.

1. Inside the body tag, above the script references, add a div element with the Bootstrap

jumbotron class and an anchor tag as shown in the snippet below.

<div class="jumbotron">
 <h1>Using the jumbotron style</h1>
 <p>
 Stateful button</p>
</div>

2. Add a script tag below the jQuery and Bootstrap references.

<script>
 $(".btn").click(function() {
 $(this).text('loading')
 .delay(1000)
 .queue(function () {
 $(this).text('reset');
 $(this).dequeue()
 });
 }
);
</script>

3. Press Ctrl-Shift-W to view the HTML page in the browser. Verify that the jumbotron styling is

applied, the jQuery code responds when the button is clicked, and that the Bootstrap button

28

changes state.

Summary
Bower is a package manager optimized to deliver files to the front-end. Bower helps automate

searching, downloading and deployment of packages to your web application.

29

Bootstrap. Responsive Web Framework.

Bootstrap 3 is currently the most popular web framework for developing responsive web applications. It

offers a number of features and benefits that can improve your users’ experience with your web site,

whether you’re a novice at front-end design and development or an expert. Bootstrap is deployed as a

set of HTML, CSS and JavaScript files, and is designed to help your website or application scale efficiently

from phones to tablets to desktops.

Getting Started
There are several ways to get started with Bootstrap. If you’re starting a new web application in Visual

Studio, you can choose the default starter template for ASP.NET 5, in which case Bootstrap will come

pre-installed:

You can also install bootstrap using one of several package managers, such as bower, npm, or NuGet. In

each case, the process is essentially the same:

Bower
bower install bootstrap

npm
npm install bootstrap

NuGet
Install-Package bootstrap

If you’re referencing your own local versions of Bootstrap, you’ll need to reference them in any pages

that will use it. In the default ASP.NET site template, the _Layout.cshtml file does so like this:

30

You can also simply reference Bootstrap using its CDN (Content Delivery Network) links, which is how

you may wish to have your application reference bootstrap in production in any case. Simply replace the

two references above with these:

<!-- Latest compiled and minified CSS -->
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2/css/bootstrap.min.css">

<!-- Latest compiled and minified JavaScript -->
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2/js/bootstrap.min.js"></script>

Note that if you’re going to be using any of Bootstrap’s jQuery plugins, you will also need to reference

jQuery (as shown above on line 40). If you’re going the CDN route, you can of course use jQuery’s CDN

as well:

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js"></script>

Basic Templates and Features
The most basic Bootstrap template looks very much like the _Layout.cshtml file shown above, and

simply includes a basic menu for navigation and a place to render the rest of the page.

31

Basic Navigation

The default template uses a set of <div> elements to render a top navbar and the main body of the

page. If you’re using HTML5, you can replace the first <div> tag with a <nav> tag to get the same effect,

but with more precise semantics. Within this first <div> you can see there are several others. First, a

<div> with a class of “container”, and then within that, two more <div> elements: “navbar-header” and

“navbar-collapse”. The navbar-header div includes a button that will appear when the screen is below a

certain minimum width, showing 3 horizontal lines (a so-called “hamburger icon”). The icon is rendered

using pure HTML and CSS; no image is required. This is the code that displays the icon, with each of the

 tags rendering one of the white bars:

It also includes the application name, which appears in the top left. The main navigation menu is

rendered by the element within the second div, and includes links to Home, About, and Contact.

Additional links for Register and Login are added by the _LoginPartial line on line 29.

Below the navigation, the main body of each page is rendered in another <div>, marked with the

“container” and “body-content” classes. In the simple default _Layout file shown here, the contents of

the page are rendered by the specific View associated with the page, and then a simple <footer> is

added to the end of the <div> element. You can see how the built-in About page appears using this

template:

The collapsed navbar, with “hamburger” button in the top right, appears when the window drops below

a certain width:

32

Clicking the icon reveals the menu items in a vertical drawer that slides down from the top of the page:

Typography and Links

Bootstrap sets up the site’s basic typography, colors, and link formatting in its CSS file. This CSS file

includes default styles for tables, buttons, form elements, images, and more. One particularly useful

feature is the grid layout system, covered next.

Grids

One of the most popular features of Bootstrap is its grid layout system. Modern web applications should

avoid using the <table> tag for layout, instead restricting the use of this element to actual tabular data.

Instead, columns and rows can be laid out using a series of <div> elements and the appropriate CSS

33

classes. There are several advantages to this approach, including the ability to adjust the layout of grids

to display vertically on narrow screens, such as on phones.

Bootstrap’s grid layout system is based on twelve columns. This number was chosen because it can be

divided evenly into 1, 2, 3, or 4 columns, and column widths can vary to within 1/12th of the vertical

width of the screen. To start using the grid layout system, you should begin with a container <div> and

then add a row <div>, as shown here:

Next, add additional <div> elements for each column, and specify the number of columns that <div>

should occupy (out of 12) as part of a CSS class starting with “col-md-“. For instance, if you want to

simply have two columns of equal size, you would use a class of “col-md-6” for each one. In this case

“md” is short for “medium” and refers to standard-sized desktop computer display sizes. There are four

different options you can choose from, and each will be used for higher widths unless overridden (so if

you want the layout to be fixed regardless of screen width, you can just specify xs classes).

CSS Class Prefix Device Tier Width

col-xs- Phones <768px

col-sm- Tablets >=768px

col-md- Desktops >=992px

col-lg- Larger Desktop Displays >=1200px

When specifying two columns both with “col-md-6” the resulting layout will be two columns at desktop

resolutions, but these two columns will stack vertically when rendered on smaller devices (or a narrower

browser window on a desktop), allowing users to easily view content without the need to scroll

horizontally.

Bootstrap will always default to a single-column layout, so you only need to specify columns when you

want more than one column. The only time you would want to explicitly specify that a <div> take up all

12 columns would be to override the behavior of a larger device tier. When specifying multiple device

tier classes, you may need to reset the column rendering at certain points. Adding a clearfix div that is

only visible within a certain viewport can achieve this, as shown here:

34

In the above example, One and Two share a row in the “md” layout, while Two and Three share a row in

the “xs” layout. Without the clearfix <div>, Two and Three are not shown correctly in the “xs” view (note

that only One, Four, and Five are shown):

35

In this example, only a single row <div> was used, and Bootstrap still mostly did the right thing with

regard to the layout and stacking of the columns. Typically, you should specify a row <div> for each

horizontal row your layout requires, and of course you can nest Bootstrap grids within one another.

When you do, each nested grid will occupy 100% of the width of the element in which it is placed, which

can then be subdivided using column classes.

Jumbotron

If you’ve used the default ASP.NET MVC templates in Visual Studio 2012 or 2013, you’ve probably seen

the Jumbotron in action. It refers to a large full-width section of a page that can be used to display a

large background image, a call to action, a rotator, or similar elements. To add a jumbotron to a page,

simply add a <div> and give it a class of “jumbotron”, then place a container <div> inside and add your

content. We can easily adjust the standard About page to use a jumbotron for the main headings it

displays:

The Bootstrap Theme
In addition to the included features, you can also apply a standard theme to your site by using the

Bootstrap Theme. This theme includes a set of common styles for many standard elements, and is

already installed when you installed bootstrap. To start using it, add a reference to its CSS using either

its local path or a CDN. Here are both options, using the same default ASP.NET starter application we’ve

been working with thus far:

With this CSS included, we gain access to a large set of standard CSS classes that we can use to control

the appearance of many of our standard UI elements. For instance, any buttons our application requires

can use a standard palette of classes to help users visually distinguish between different buttons’

behaviors based on their color and appearance.

36

Buttons

Badges

Badges refer to small, usually numeric callouts next to a navigation item. They can indicate a number of

messages or notifications waiting, or the presence of updates. Specifying such badges is as simple as

adding a containing the text, with a class of “badge”:

Alerts

You may need to display some kind of notification, alert, or error message to your application’s users.

That’s where the standard alert classes come in. There are four different severity levels, with associated

color schemes:

37

Navbars and Menus

Our layout already includes a standard navbar, but the Bootstrap theme supports additional styling

options. We can also easily opt to display the navbar vertically rather than horizontally if that’s

preferred, as well as adding sub-navigation items in flyout menus. Simple navigation menus, like tab

strips, are built on top of elements. These can be created very simply by just providing them with

the CSS classes “nav” and “nav-tabs”:

38

Navbars are built similarly, but are a bit more complex. They start with a <nav> or <div> with a class of

“navbar”, within which a container div holds the rest of the elements. Our page includes a navbar in its

header already – the one shown below simply expands on this, adding support for a dropdown menu:

Additional Elements

The default theme can also be used to present HTML tables in a nicely formatted style, including support

for striped views. There are labels with styles that are similar to those of the buttons. You can create

custom Dropdown menus that support additional styling options beyond the standard HTML <select>

element, along with Navbars like the one our default starter site is already using. If you need a progress

39

bar, there are several styles to choose from, as well as List Groups and panels that include a title and

content. Explore additional options within the standard Bootstrap Theme here:

http://getbootstrap.com/examples/theme/

More Themes
You can extend the standard Bootstrap Theme by overriding some or all of its CSS, adjusting the colors

and styles to suit your own application’s needs. If you’d like to start from a ready-made theme, there are

several theme galleries available online that specialize in Bootstrap Themes, such as

WrapBootstrap.com (which has a variety of commercial themes) and Bootswatch.com (which offers free

themes). Some of the paid templates available provide a great deal of functionality on top of the basic

Bootstrap theme, such as rich support for administrative menus, and dashboards with rich charts and

gauges. An example of a popular paid template is Inspinia, currently for sale for $18, which includes an

ASP.NET MVC5 template in addition to AngularJS and static HTML versions. A sample screenshot is

shown below.

If you’re interested in building your own dashboard, you may wish to start from the free example

available here: http://getbootstrap.com/examples/dashboard/.

Components
In addition to those elements already discussed, Bootstrap includes support for a variety of built-in UI

components. These include icon sets from Glyphicons (http://glyphicons.com), with over 200 icons

freely available for use within your Bootstrap-enabled web application. Here’s just a small sample:

http://getbootstrap.com/examples/theme/
http://getbootstrap.com/examples/dashboard/
http://glyphicons.com/

40

Input groups allow bundling of additional text or buttons with an input element, providing the user with

a more intuitive experience:

Breadcrumbs are a common UI component used to show a user their recent history or depth within a

site’s navigation hierarchy. Add them easily by applying the “breadcrumb” class to any list element.

Include built-in support for pagination by using the “pagination” class on a element within a <nav>.

Add responsive embedded slideshows and video by using <iframe>, <embed>, <video>, or <object>

elements, which Bootstrap will style automatically. Specify a particular aspect ratio by using specific

classes like “embed-responsive-16by9”.

JavaScript Support
Bootstrap’s JavaScript library includes API support for the included components, allowing you to control

their behavior programmatically within your application. In addition, bootstrap.js includes over a dozen

custom jQuery plugins, providing additional features like transitions, modal dialogs, scroll detection

(updating styles based on where the user has scrolled in the document), collapse behavior, carousels,

and affixing menus to the window so they do not scroll off the screen. There’s not sufficient room to

cover all of the JavaScript add-ons built into Bootstrap – to learn more please visit

http://getbootstrap.com/javascript/.

http://getbootstrap.com/javascript/

41

Summary
Bootstrap provides a web framework that can be used to quickly and productively lay out and style a

wide variety of websites and applications. Its basic typography and styles provide a pleasant look and

feel that can easily be manipulated through custom theme support, which can be hand-crafted or

purchased commercially. It supports a host of web components that in the past would have required

expensive third-party controls to accomplish, while supporting modern and open web standards.

42

Less, Sass & Font Awesome. Styling applications

Users of web applications have increasingly high expectations when it comes to style and overall

experience. Modern web applications frequently leverage rich tools and frameworks for defining and

managing their look and feel in a consistent manner. Frameworks like Bootstrap can go a long way

toward defining a common set of styles and layout options for the web sites. However, most non-trivial

sites also benefit from being able to effectively define and maintain styles and cascading style sheet

(CSS) files, as well as having easy access to non-image icons that help make the site’s interface more

intuitive. That’s where languages and tools that support Less and Sass, and libraries like Font Awesome,

come in.

CSS Preprocessor Languages
Languages that are compiled into other languages, in order to improve the experience of working with

the underlying language, are referred to as pre-processors. There are two popular pre-processors for

CSS: Less and Sass. These pre-processors add features to CSS, such as support for variables and nested

rules, which improve the maintainability of large, complex stylesheets. CSS as a language is very basic,

lacking support even for something as simple as variables, and this tends to make CSS files repetitive and

bloated. Adding real programming language features via preprocessors can help reduce duplication and

provide better organization of styling rules. Visual Studio provides built-in support for both Less and

Sass, as well as extensions that can further improve the development experience when working with

these languages.

As a quick example of how preprocessors can improve readability and maintainability of style

information, consider this CSS:

.header {
 color: black;
 font-weight: bold;
 font-size: 18px;
 font-family: Helvetica, Arial, sans-serif;
}

.small-header {
 color: black;
 font-weight: bold;
 font-size: 14px;
 font-family: Helvetica, Arial, sans-serif;
}

Using Less, this can be rewritten to eliminate all of the duplication, using a mixin (so named because it

allows you to “mix in” properties from one class or rule-set into another):

.header {
 color: black;
 font-weight: bold;
 font-size: 18px;
 font-family: Helvetica, Arial, sans-serif;
}

.small-header {
 .header;

http://lesscss.org/
http://sass-lang.com/
http://fortawesome.github.io/Font-Awesome/

43

 font-size: 14px;
}

Visual Studio 2015 adds a great deal of built-in support for Less and Sass. You can also add support for

earlier versions of Visual Studio by installing the Web Essentials extension.

Less
The Less CSS pre-processor runs using Node.js. You can quickly install it using the Node Package

Manager (NPM), with:

npm install -g less

If you’re using Visual Studio 2015, you can get started with Less by adding one or more Less files to your

project, and then configuring Gulp (or Grunt) to process them at compile-time. Add a Styles folder to

your project, and then add a new Less file called main.less to this folder.

Once added, your folder structure should look something like this:

http://vswebessentials.com/

44

Now we can add some basic styling to the file, which will be compiled into CSS and deployed to the

wwwroot folder by Gulp.

Modify main.less to include the following content, which creates a simple color palette from a single

base color.

@base: #663333;
@background: spin(@base, 180);
@lighter: lighten(spin(@base, 5), 10%);
@lighter2: lighten(spin(@base, 10), 20%);
@darker: darken(spin(@base, -5), 10%);
@darker2: darken(spin(@base, -10), 20%);

body {
 background-color:@background;
}
.baseColor {color:@base}
.bgLight {color:@lighter}
.bgLight2 {color:@lighter2}
.bgDark {color:@darker}
.bgDark2 {color:@darker2}

@base and the other @-prefixed items are variables. Each of them represents a color. Except for @base,

they are set using color functions: lighten, darken, and spin. Lighten and darken do pretty much what

you would expect; spin adjusts the hue of a color by a number of degrees (around the color wheel). The

less processor is smart enough to ignore variables that aren’t used, so to demonstrate how these

variables work, we need to use them somewhere. The classes .baseColor, etc. will demonstrate the

calculated values of each of the variables in the CSS file that is produced.

Getting Started
If you don’t already have one in your project, add a new Gulp/Grunt configuration file, on this sample

we will do it with Gulp. Make sure package.json includes gulp in its devDependencies, and add “gulp-

less”:

"devDependencies": {

45

 "gulp": "3.8.11",
 "gulp-less": "3.0.2",
 "rimraf": "2.3.2"
 }

Save your changes to the package.json file, and you should see that the all of the files referenced can be

found in the Dependencies folder under NPM. If not, right-click on the NPM folder and select “Restore

Packages.”

Now open gulpfile.js. Add a variable at the top to represent less:

var gulp = require("gulp"),
 rimraf = require("rimraf"),
 fx = require("fs"),
 less = require("gulp-less");

and a variable to be able to access the project properties

var project = require('./project.json');

Next, add a task to run less, using the syntax shown here:

gulp.task("less", function () {
 return gulp.src('Styles/main.less')
 .pipe(less())
 .pipe(gulp.dest(project.webroot + '/css'))

});

Open the Task Runner Explorer (view>Other Windows > Task Runner Explorer). Among the tasks, you

should see a new task named ‘less’. Run it, and you should have output similar to what is shown here:

Now refresh your Solution Explorer and inspect the contents of the wwwroot/css folder. You should find

a new file, main.css, there:

46

Open main.css and you should see something like the following:

body {
 background-color: #336666;
}
.baseColor {
 color: #663333;
}
.bgLight {
 color: #884a44;
}
.bgLight2 {
 color: #aa6355;
}
.bgDark {
 color: #442225;
}
.bgDark2 {
 color: #221114;
}

Add a simple HTML page to the wwwroot folder and reference main.css to see the color palette in

action.

<!DOCTYPE html>

<html>
<head>
 <meta charset="utf-8" />
 <link href="css/main.css" rel="stylesheet" />
 <title></title>
</head>
<body>
 <div>
 <div class="baseColor">BaseColor</div>
 <div class="bgLight">Light</div>
 <div class="bgLight2">Light2</div>
 <div class="bgDark">Dark</div>
 <div class="bgDark2">Dark2</div>
 </div>

</body>
</html>

47

You can see that the 180 degree spin on @base used to produce @background resulted in the color

wheel opposing color of @base:

Less also provides support for nested rules, as well as nested media queries. For example, defining

nested hierarchies like menus can result in verbose CSS rules like these:

nav {
 height: 40px;
 width: 100%;
}
nav li {
 height: 38px;
 width: 100px;
}
nav li a:link {
 color: #000;
 text-decoration: none;
}
nav li a:visited {
 text-decoration: none;
 color: #CC3333;
}
nav li a:hover {
 text-decoration: underline;
 font-weight: bold;
}
nav li a:active {
 text-decoration: underline;
}

Ideally all of the related style rules will be placed together within the CSS file, but in practice there is

nothing enforcing this rule except convention and perhaps block comments.

Defining these same rules using Less looks like this:

nav {
 height: 40px;
 width: 100%;
 li {
 height: 38px;
 width: 100px;
 a {
 color: #000;
 &:link { text-decoration:none}
 &:visited { color: #CC3333; text-decoration:none}

48

 &:hover { text-decoration:underline; font-weight:bold}
 &:active {text-decoration:underline}
 }
 }
}

Note that in this case, all of the subordinate elements of nav are contained within its scope. There is no

longer any repetition of parent elements (nav, li, a), and the total line count has dropped as well (though

some of that is a result of putting values on the same lines in the second example). It can be very

helpful, organizationally, to see all of the rules for a given UI element within an explicitly bounded scope,

in this case set off from the rest of the file by curly braces.

The & syntax is a Less selector feature, with & representing the current selector parent. So, within the a

{…} block, & represents an a tag, and thus &:link is equivalent to a:link.

Media queries, extremely useful in creating responsive designs, can also contribute heavily to repetition

and complexity in CSS. Less allows media queries to be nested within classes, so that the entire class

definition doesn’t need to be repeated within different top-level @media elements. For example, this

CSS for a responsive menu:

.navigation {
 margin-top: 30%;
 width: 100%;
}
@media screen and (min-width: 40em) {
 .navigation {
 margin: 0;
 }
}
@media screen and (min-width: 62em) {
 .navigation {
 width: 960px;
 margin: 0;
 }
}

Can be better defined in Less as:

.navigation {
 margin-top: 30%;
 width: 100%;
 @media screen and (min-width: 40em) {
 margin: 0;
 }
 @media screen and (min-width: 62em) {
 width: 960px;
 margin: 0;
 }
}

Another feature of Less that we have already seen is its support for mathematical operations, allowing

style attributes to be constructed from pre-defined variables. This makes updating related styles much

easier, since the base variable can be modified and all dependent values change automatically.

49

CSS files, especially for large sites (and especially if media queries are being used), tend to get quite

large over time, making working with them unwieldy. Less files can be defined separately, then pulled

together using @import directives. Less can also be used to import individual CSS files, as well, if

desired.

Mixins can accept parameters, and Less supports conditional logic in the form of mixin guards, which

provide a declarative way to define when certain mixins take effect. A common use for mixin guards is to

adjust colors based on how light or dark the source color is. Given a mixin that accepts a parameter for

color, a mixin guard can be used to modify the mixin based on that color:

.box (@color) when (lightness(@color) >= 50%) {
 background-color: #000;
}
.box (@color) when (lightness(@color) < 50%) {
 background-color: #FFF;
}
.box (@color) {
 color: @color;
}

.feature {
 .box (@base);
}

Given our current @base value of #663333, this Less script will produce the following CSS:

.feature {
 background-color: #FFF;
 color: #663333;
}

Less provides a number of additional features, but this should give you some idea of the power of this

preprocessing language.

Sass
Sass is similar to Less, providing support for many of the same features, but with slightly different

syntax. It is built using Ruby, rather than JavaScript, and so has different setup requirements. The

original Sass language did not use curly braces or semicolons, but instead defined scope using white

space and indentation. In version 3 of Sass, a new syntax was introduced, SCSS (“Sassy CSS”). SCSS is

similar to CSS in that it ignore indentation levels and whitespace, and instead uses semicolons and curly

braces.

To install Sass, typically you would first install Ruby (pre-installed on Mac), and then run:

gem install sass

However, assuming you’re running Visual Studio, you can get started with Sass in much the same way as

you would with Less. Open package.json and add the “gulp-sass” package to “devDependencies” (note

that you can include both Less and Sass in your project, but in practice you will typically use one or the

other):

"devDependencies": {
"gulp": "3.8.11",
"gulp-less": "3.0.2",

50

"gulp-sass": "1.3.3",
"rimraf": "2.3.2"

}

Next, you can modify gulpfile.js to add a sass variable and a task to compile your Sass files and place the

results in the wwwroot folder:

var gulp = require("gulp"),

 rimraf = require("rimraf"),

 fs = require("fs"),

 less = require("gulp-less"),

 sass = require("gulp-sass");

…

gulp.task("sass", function () {

 return gulp.src('Styles/main2.scss')

 .pipe(sass())

 .pipe(gulp.dest(project.webroot + '/css'))

});

Now you can add the Sass file main2.scss to the Styles folder in the root of the project:

Open main2.scss and add the following:

$base: #CC0000;
body {
 background-color: $base;
}

Save all of your files. Now in Task Runner Explorer, you should see a sass task. Run it, refresh solution

explorer, and look in the /wwwroot/css folder. There should be a main2.css file, with these contents:

body {
 background-color: #CC0000; }

51

Sass supports nesting in much the same was that Less does, providing similar benefits. Files can be split

up by function and included using the @import directive:

@import 'anotherfile';

Sass supports mixins as well, using the @mixin keyword to define them and @include to include them,

as in this example from sass-lang.com:

@mixin border-radius($radius) {
 -webkit-border-radius: $radius;
 -moz-border-radius: $radius;
 -ms-border-radius: $radius;
 border-radius: $radius;
}

.box { @include border-radius(10px); }

In addition to mixins, Sass also supports the concept of inheritance, allowing one class to extend

another. It’s conceptually similar to a mixin, but results in less CSS code. It’s accomplished using the

@extend keyword. First, let’s see how we might use mixins, and the resulting CSS code. Add the

following to your main2.scss file:

@mixin alert {
 border: 1px solid black;
 padding: 5px;
 color: #333333;
}

.success {
 @include alert;
 border-color: green;
}

.error {
 @include alert;
 color: red;
 border-color: red;
 font-weight:bold;
}

Examine the output in main2.css after running the sass task in Task Runner Explorer:

.success {
 border: 1px solid black;
 padding: 5px;
 color: #333333;
 border-color: green;
 }

.error {
 border: 1px solid black;
 padding: 5px;
 color: #333333;
 color: red;
 border-color: red;
 font-weight: bold;
}

52

Notice that all of the common properties of the alert mixin are repeated in each class. Now replace the

alert mixin with a .alert class, and change @include to @extend (remembering to extend .alert, not

alert):

.alert {
 border: 1px solid black;
 padding: 5px;
 color: #333333;
}

.success {
 @extend .alert;
 border-color: green;
}

.error {
 @extend .alert;
 color: red;
 border-color: red;
 font-weight:bold;
}

Run Sass once more, and examine the resulting CSS:

.alert, .success, .error {
 border: 1px solid black;
 padding: 5px;
 color: #333333; }

.success {
 border-color: green; }

.error {
 color: red;
 border-color: red;
 font-weight: bold; }

Now the properties are defined only as many times as needed, and better CSS is generated.

Sass also includes functions and conditional logic operations, similar to Less. In fact, the two languages’

capabilities are very similar.

Less or Sass?
There is still no consensus as to whether it’s generally better to use Less or Sass (or even whether to

prefer the original Sass or the newer SCSS syntax within Sass). A recent poll conducted on twitter of

mostly ASP.NET developers found that the majority preferred to use Less, by about a 2-to-1 margin.

Probably the most important decision is to use one of these tools, as opposed to just hand-coding your

CSS files. Once you’ve made that decision, both Less and Sass are good choices.

53

Font Awesome
In addition to CSS pre-compilers, another great resource for styling modern web applications is Font

Awesome. Font Awesome is a toolkit that provides over 500 scalable vector icons that can be freely used

in your web applications. It was originally designed to work with Bootstrap, but has no dependency on

that framework, or on any JavaScript libraries.

The easiest way to get started with Font Awesome is to add a reference to it, using its public content

delivery network (CDN) location:

<link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-aw
esome.min.css">

Of course, you can also quickly add it to your Visual Studio 2015 project by adding it to the

“dependencies” in bower.json:

{
"name": "ASP.NET",
"private": true,
"dependencies": {
"bootstrap": "3.0.0",
"jquery": "1.10.2",
"jquery-validation": "1.11.1",
"jquery-validation-unobtrusive": "3.2.2",
"hammer.js": "2.0.4",
"bootstrap-touch-carousel": "0.8.0",
"Font-Awesome": "4.3.0"
}

Then, to get the stylesheet added to the wwwroot folder, modify gulpfile.js as follows:

gulp.task("copy", ["clean"], function () {
 var bower = {
 "angular": "angular/angular*.{js,map}",
 "boostrap": "bootstrap/dist/**/*.{js,map,css,ttf,svg,woff,eot}",
 "boostrap-touch-carousel": "bootstrap-touch-carousel/dist/**/*.{js,css}",
 "hammer.js": "hammer.js/hammer*.{js,map}",
 "jquery": "jquery/jquery*.{js,map}",
 "jquery-validation": "jquery-validation/jquery.validate.js",
 "jquery-validation-unobtrusive": "jquery-validation-unobtrusive/jquery.validate.unobtrusive.js",
 "font-awesome": "Font-Awesome/**/*.{css,otf,eot,svg,ttf,woff,wof2}"
 };

 for (var destinationDir in bower) {
 gulp.src(paths.bower + bower[destinationDir])
 .pipe(gulp.dest(paths.lib + destinationDir));
 }
});

Once this is in place (and saved), running the ‘copy’ task in Task Runner Explorer should copy the font

awesome fonts and css files to /lib/font-awesome.

Once you have a reference to it on a page, you can add icons to your application by simply applying Font

Awesome classes, typically prefixed with “fa-“, to your inline HTML elements (such as or <i>). As

a very simple example, you can add icons to simple lists and menus using code like this:

54

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title></title>
 <link href="lib/font-awesome/css/font-awesome.css" rel="stylesheet" />
</head>
<body>
 <ul class="fa-ul">
 <i class="fa fa-li fa-home"></i> Home
 <i class="fa fa-li fa-cog"></i> Settings

</body>
</html>

This produces the following in the browser:

You can view a complete list of the available icons here:

http://fortawesome.github.io/Font-Awesome/icons/

Summary
Modern web applications increasingly demand responsive, fluid designs that are clean, intuitive, and

easy to use from a variety of devices. Managing the complexity of the CSS stylesheets required to

achieve these goals is best done using a pre-processor like Less or Sass. In addition, toolkits like Font

Awesome quickly provide well-known icons to textual navigation menus and buttons, improving the

overall user experience of your application.

http://fortawesome.github.io/Font-Awesome/icons/

55

TypeScript. Enterprise-scale JavaScript.

TypeScript helps you build enterprise scale applications on the client with the same smooth

development experience, reliability, and scalability that you expect from a .NET language. TypeScript lets

you work with familiar abstractions like strong types, interfaces, classes, namespaces, enums, generics,

and lambda expressions. TypeScript code editors have intelligent code completion (Intellisense in Visual

Studio) and navigation between object definitions and their references. When you’re done coding,

TypeScript compiles to pure JavaScript, leaving no TypeScript artifacts behind.

TypeScript empowers you to write code that runs on any browser and operating system. You will have

access to a world of existing JavaScript libraries like node.js, angular, bootstrap, datejs, and hundreds of

others.

Getting Started
TypeScript brings familiar object oriented programming constructs like classes, interfaces, and modules

to the world of JavaScript.

You can try TypeScript right now by creating a .ts file in Visual Studio or by running the TypeScript

Playground in your browser. As you can see on the image below, the TypeScript Playground translates

TypeScript to JavaScript as you type.

Both options, Visual Studio and the playground, run the tsc.exe TypeScript compiler on your behalf.

TypeScript is sometimes described as the “syntactic sugar” that makes JavaScript logic easier to express

and read. For example, you can define a Food class and include properties with string, number, Boolean

and any type annotations:

class Food {
 Name: string;
 Calories: number;
 IsYummy: Boolean;
 Notes: any;
}

The Visual Studio screenshot below demonstrates creating a new TypeScript instance of Food and

assigning properties. If you assign the wrong type value to a property, the TypeScript editor will flag the

error right away without waiting to fail at run time.

https://github.com/borisyankov/DefinitelyTyped
https://github.com/borisyankov/DefinitelyTyped
http://www.typescriptlang.org/Playground
http://www.typescriptlang.org/Playground

56

1. When the TypeScript compiler generates JavaScript (ensure that Visual Studio 2015 has the

option ‘compile on save’ for TypeScript files checked. Tools > Options > Text Editor > Typescript >

Project), the type annotations boil away leaving pure JavaScript. Here they are side-by-side in

Visual Studio with the TypeScript file Food.ts on the left side and the generated JavaScript

Food.js on the right:

The TypeScript enum keyword is another a classic example where TypeScript puts a friendly face on

JavaScript. The Tastes enum below is easy to read at-a-glance:

enum Tastes { Sweet, Sour, Salty, Bitter };

The equivalent JavaScript is a little crankier and takes longer to read. The brevity and clarity of

TypeScript really stands out when compared to the JavaScript output.

Note:

As you can see in the JavaScript output, enum members number starting from zero, but you can assign

your own values. You can even treat the enum as a set and test members for inclusion very much like

the .NET flags annotation:

// assign each enum value by the power of 2, i.e. 1,2,4,8,16, etc.
enum Tastes4 { Sweet = 1, Sour = 2, Salty = 4, Bitter = 8 }

SweetOrSourSauce4.Taste = Tastes4.Sweet | Tastes4.Sour;

(SweetOrSourSauce4.Taste & Tastes4.Bitter) != 0; // false
(SweetOrSourSauce4.Taste & Tastes4.Salty) != 0; // false
(SweetOrSourSauce4.Taste & Tastes4.Sour) != 0; // true
(SweetOrSourSauce4.Taste & Tastes4.Sweet) != 0; // true

57

Language Features
TypeScript supports standard .NET language features like constructors, property accessors, and access

modifiers to control scope. By giving the Food class a constructor and adding property accessors get and

set, you control the flow of data to properties.

enum Tastes5 { Sweet, Sour, Salty, Bitter }

class Food5 {
 constructor(name: string, calories: number) {
 }

 private _name: string;
 get Name() {
 return this._name;
 }

 private _calories: number;
 get Calories() {
 return this._calories;
 }

 private _taste: Tastes5;
 get Taste(): Tastes5 { return this._taste }
 set Taste(value: Tastes5) {
 this._taste = value;
 }
}

var SweetOrSourSauce5 = new Food5("Sweet and Source Sauce", 52);
SweetOrSourSauce5.Taste = Tastes5.Sweet | Tastes5.Sour;

Add the private access modifier to members that shouldn’t be visible outside the class. Access modifiers

do not change the JavaScript output. Instead, the TypeScript editor display warnings that properties are

not accessible.

TypeScript also defines a protected scope that allows access within the class and derived classes. You

can explicitly mark a property with the default public access modifier to document that the member is

available outside the class.

Inheritance

In TypeScript lingo, inheritance is called heritage specification. Use the extends keyword to inherit from

a base class. The SweetOrSourSauce class below extends Food and populates its properties in the

constructor. The base class constructor is called using the super keyword. The constructor signature

does not need to match the base class.

class SweetOrSourSauce extends Food {
 constructor() {
 super("Sweet and Sour Sauce", 52);

58

 this.Taste = Tastes.Sweet | Tastes.Sour;
 }
}

var sauce = new SweetOrSourSauce();

Interfaces

An interface defines a series of public properties and methods that a class will implement. Interfaces

encourage loose coupling that large scale applications require. The ShelfLifeInterface below has a

Boolean IsBad property and a method to age the food a given number of days. The implementation will

determine how that aging takes place.

interface ShelfLifeInterface {
 IsBad: Boolean;
 Age(days: number);
}

The implements keyword requires a class to fulfill the properties and methods of an interface. The Food

class example below implements the ShelfLifeInterface. Also notice how the protected field

DaysRemaining as a countdown to when the IsBad property becomes true. The Age() method

decrements from the number of days remaining.

class Food implements ShelfLifeInterface {
 // omitted code

 protected DaysRemaining: number;

 get IsBad(): Boolean {
 return this.DaysRemaining < 0;
 }

 Age(days: number) {
 this.DaysRemaining -= days;
 }
}

Classes derived from Food can assign the protected DaysRemaining field and use the implemented

Age() and IsBad members.

class Chard extends Food {
 constructor() {
 super("Chard", 7);
 this.Taste = Tastes.Bitter;
 this.DaysRemaining = 2;
 }
}

var salad = new Chard();
salad.Age(3);
if (salad.IsBad) {
 alert("The " + salad.Name + " has gone bad");
}

TypeScript allows structural subtyping that lets you treat structurally compatible objects as

interchangeable. For example, we can create a new Twinkies class that has the same structure as the

59

ShelfLifeInterface, but does not use the implements keyword or directly reference the interface. Just

the same, you can assign Twinkies instance to a ShelfLifeInterface variable.

// does not implement ShelfLifeInterface
class Twinkies {
 get IsBad(): Boolean {
 // twinkies never go bad
 return false;
 }

 Age(days: number) {
 // does nothing
 }
}

// CupCakes is of type ShelfLifeInterface and
// allows the structural twin Twinkies class to be assigned.
var CupCakes: ShelfLifeInterface = new Twinkies();

Modules

Modules are analogous to namespaces in .NET and support encapsulation of classes, interfaces,

functions, and variables. Like namespaces, modules organize logic and prevent name clashes. Consider

the Tastes enumeration in previous examples. If you introduce a second Tastes with a different

fundamental meaning and purpose, you will get an error, but not an error a .NET programmer expects:

The error is In an enum with multiple declarations, only one declaration can omit an initializer for its first

enum element. TypeScript doesn’t have an issue with an enum with the same name, it minds that we’re

adding to the enumeration without telling TypeScript where the new enumeration members should be

placed ordinally. TypeScript is perfectly happy if you assign ordinal values for the new members,

although the resulting list makes no semantic sense:

To make a member unique, use the module keyword to create a distinct context. Use the export

keyword to mark members that should be visible outside the module. The example below establishes

Flavor and Fashion modules that have distinctive Tastes members, allowing you to address

Flavor.Tastes and Fashion.Tastes independently.

module Flavor {
 export enum Tastes { Sweet, Sour, Salty, Bitter }
}

60

module Fashion {
 export enum Tastes { Elegant, Refined, Passable, Tacky }
}

class Party {
 ChipsTaste: Flavor.Tastes = Flavor.Tastes.Salty;
 DecorTaste: Fashion.Tastes = Fashion.Tastes.Passable;
}

As your applications become larger, you can place modules in separate files. Use the reference directive

to use TypeScript files located at the path attribute location.

/// < reference path="Flavor.ts" />
/// < reference path="Fashion.ts" />

class Party {
 ChipsTaste: Flavor.Tastes = Flavor.Tastes.Salty;
 DecorTaste: Fashion.Tastes = Fashion.Tastes.Passable;
}

Visual Studio configures the TypeScript compiler to satisfy dependencies and creates the minimal

JavaScript output. The example generated JavaScript below still includes the reference paths as

comments, but no longer requires them.

/// < reference path="Flavor.ts" />
/// < reference path="Fashion.ts" />
var Party = (function () {
 function Party() {
 this.ChipsTaste = 2 /* Salty */;
 this.DecorTaste = 2 /* Passable */;
 }
 return Party;
})();

Note: The modules we have looked at here are referred to as internal modules. Another mechanism

called external modules supports creating declaration files that encapsulate existing JavaScript.

Generics

The TypeScript implementation of generics will look quite familiar to .NET programmers. Consider the

class List below of <T>. During development, you’re assured that items will contain only elements of

<T>.

class List<T> {
 items: Array<T> = new Array<T>();
 add(item: T) {
 this.items.push(item);
 }
}

The generics syntax disappears on compilation and leaves the generated JavaScript code without

artifacts.

var List = (function () {
 function List() {
 this.items = new Array();
 }
 List.prototype.add = function (item) {
 this.items.push(item);

61

 };
 return List;
})();

Once you establish the type of the class, you can operate in perfect type safety. The shoppingList

instance is a List of string and won’t accept other input. Again, this safety only exists during

development. If you were to edit the compiled JavaScript, the array will accept whatever you decide to

place into it.

var shoppingList = new List<string>();
shoppingList.add("Potatoes");
shoppingList.add("Eggs");
shoppingList.add("Artichokes");
shoppingList.add(123); // error: number is not assignable to string

You can use the same generic List<T> to hold instances of a new Item class without changing the List

logic.

class Item {

 constructor(name: string, count: number) {
 this.name = name;
 this.count = count;
 }
 name: string;
 count: number;
}

var shoppingList = new List<Item>();
shoppingList.add(new Item("Bananas", 6));
shoppingList.add(new Item("Eggs", 12));
shoppingList.add(new Item("Milk", 1));

The items member is an Array that includes a forEach() method. The argument to forEach() is a callback

function that is neatly handled using a lambda expression.

shoppingList.items.forEach(item => {
 console.log(item.count + " of " + item.name);
});

TypeScript Ecosystem
The external modules organized in declaration files with the extension .d.ts, functions as an interface to

existing JavaScript libraries. The DefinitelyTyped repository has hundreds of files wrapping popular

JavaScript libraries like jQuery, angularjs, Boostrap, d3, requirejs, knockout, and node.js to mention a

few. You can download the files from Github or Nuget.

http://definitelytyped.org/
http://definitelytyped.org/

62

For a minimal example, you can use the alertify.d.ts from the DefinitelyTyped repository. Alertify is a

small, focused library that presents alert and confirmation dialogs.

The repository usually includes a tests file companion for each declaration file. In this case, the file is

alertify-tests.ts and references the declaration file alertify.d.ts. These test files are great as informal

usage references.

You will still need to need the underlying JavaScript files that the declaration file is referencing. The

alertify-webpack package was added to handle styling. Here is the running example:

63

This example is trivial, but using the same mechanism, you can work with a growing bank of powerful

frameworks and components. It’s like having your own large general store where you can grab the client

software components you need, as you need them. For example, you could include the AngularJS

framework used to create single-page applications with a client-side model-view-controller architecture.

Use the popular BootStrap library to handle styling and you’re well on your way.

Note: TypeScript is written in TypeScript and has its own declaration file. This is some very elegant code

to learn and get ideas from.

Summary
TypeScript brings a rich development environment to help you build robust client-side applications,

using familiar, tried-and-true mechanisms. The tooling provides support for Intellisense, Peek and Goto

Definition, Find All References and pop-up hint windows. You can use modules to organize your code

into distinct partitions that you can combine without complication to produce large-scale applications.

Language features like type safety and generics help you build reusable components that you can rely

on. The large and diverse TypeScript ecosystem of existing code and new tooling makes TypeScript a

great fit for web developers.

64

Knockout.js . MVVM Library.

Knockout is a popular JavaScript library that simplifies the creation of complex data-based user

interfaces. It can be used alone or with other libraries, such as jQuery. Its primary purpose is to bind UI

elements to an underlying data model defined as a JavaScript object, such that when changes are made

to the UI, the model is updated, and vice versa. Knockout facilitates the use of a Model-View-ViewModel

(MVVM) pattern in a web application’s client-side behavior. The two main concepts one must learn

when working with Knockout’s MVVM implementation are Observables and Bindings.

Getting Started
Knockout is deployed as a single JavaScript file, so installing and using it is very straightforward. In Visual

Studio 2015, you can simply add knockout as a dependency and Visual Studio will use bower to retrieve

it. Assuming you already have bower and grunt configured (the ASP.NET 5 Starter Template comes with

them already set up), open bower.json in your ASP.NET 5 project, and add the knockout dependency as

shown here:

With this in place, you can then manually run bower by opening the Task Runner Explorer (under View >

Other Windows > Task Runner Explorer) and then under Tasks, right-click on bower and select Run. The

result should appear similar to this:

Now if you look in your project’s wwwroot folder, you should see knockout installed under the lib folder.

65

It’s recommended that in your production environment you reference knockout via a Content Delivery

Network, or CDN, as this increases the likelihood that your users will already have a cached copy of the

file and thus will not need to download it at all. Knockout is available on several CDNs, including the

Microsoft Ajax CDN, here:

http://ajax.aspnetcdn.com/ajax/knockout/knockout-3.3.0.js

To include Knockout on a page that will use it, simply add a <script> element referencing the file from

wherever you will be hosting it (with your application, or via a CDN):

<script type=”text/javascript” src=”knockout-3.3.0.js”></script>

Observables, ViewModels, and Simple Binding
You may already be familiar with using JavaScript to manipulate elements on a web page, either via

direct access to the DOM or using a library like jQuery. Typically this kind of behavior is achieved by

writing code to directly set element values in response to certain user actions. With Knockout, a

declarative approach is taken instead, through which elements on the page are bound to properties on

an object. Instead of writing code to manipulate DOM elements, user actions simply interact with the

ViewModel object, and Knockout takes care of ensuring the page elements are synchronized.

As a simple example, consider the following page. It includes a element with a data-bind

attribute indicating that the text content should be bound to authorName. Next, in a JavaScript block a

variable viewModel is defined with a single property, authorName, set to some value. Finally, a call to

ko.applyBindings is made, passing in this viewModel variable.

http://ajax.aspnetcdn.com/ajax/knockout/knockout-3.3.0.js

66

When viewed in the browser, the content of the element is replaced with the value in the

viewModel variable:

So, this is great, and we have simple one-way binding working. Notice that nowhere in the code did we

write JavaScript to assign a value to the span’s contents. If we want to manipulate the ViewModel, we

can take this a step further and add an HTML input textbox, and bind to its value, like so:

Reloading the page, we see that this value is indeed bound to the input box:

67

However, if we change the value in the textbox, the corresponding value in the element doesn’t

change. Why not?

The issue is that nothing notified the that it needed to be updated. Simply updating the

ViewModel isn’t by itself sufficient, unless the ViewModel’s properties are wrapped in a special type.

We need to use observables in the ViewModel for any properties that need to have changes

automatically updated as they occur. By changing the ViewModel to use ko.observable(“value”) instead

of just “value”, the ViewModel will update any HTML elements that are bound to its value whenever a

change occurs. Note that input boxes don’t update their value until they lose focus, so you won’t see

changes to bound elements as you type.

Note: Adding support for live updating after each keypress is simply a matter of adding valueUpdate:

“afterkeydown” to the data-bind attribute’s contents.

Our viewModel, after updating it to use ko.observable:

Knockout supports a number of different kinds of bindings. So far we’ve seen how to bind to text and to

value. You can also bind to any given attribute. For instance, to create a hyperlink with an anchor tag,

the ‘src’ attribute can be bound to the viewModel. Knockout also supports binding to functions. To

demonstrate this, let’s update the viewModel to include the author’s twitter handle, and display the

twitter handle as a link to the author’s twitter page. We’ll do this in three stages.

First, add the HTML to display the hyperlink, which we’ll show in parentheses after the author’s name:

68

Next, update the viewModel to include the twitterUrl and twitterAlias properties:

Notice that at this point we haven’t yet updated the twitterUrl to go to the correct URL for this twitter

alias – it’s just pointing at twitter.com. Also notice that we’re using a new Knockout function, computed,

for twitterUrl. This is an observable function that will notify any UI elements if it changes. However, for it

to have access to other properties in the viewModel, we need to change how we are creating the

viewModel, so that each property is its own statement.

The revised viewModel declaration is shown here. It is now declared as a function. Notice that each

property is its own statement now, ending with a semicolon. Also notice that to access the twitterAlias

property value, we need to execute it, so its reference includes ().

The result works as expected in the browser:

Knockout also supports binding to certain UI element events, such as the click event. This allows you to

easily and declaratively bind UI elements to functions within the application’s viewModel. As a simple

example, we can add a button that, when clicked, modifies the author’s twitterAlias to be all caps.

69

First, we add the button, binding to the button’s click event, and referencing the function name we’re

going to add to the viewModel:

Then, add the function to the viewModel, and wire it up to modify the viewModel’s state. Notice that to

set a new value to the twitterAlias property, we call it as a method and pass in the new value.

Running the code and clicking the button modifies the displayed link as expected:

Control Flow
Knockout includes bindings that can perform conditional and looping operations. Looping operations are

especially useful for binding lists of data to UI lists, menus, and grids or tables. The foreach binding will

iterate over an array. When used with an observable array, it will automatically update the UI elements

when items are added or removed from the array, without re-creating every element in the UI tree. The

following example uses a new viewModel which includes an observable array of game results. It is

bound to a simple table with two columns using a foreach binding on the <tbody> element. Each <tr>

element within <tbody> will be bound to an element of the gameResults collection.

70

Notice that this time we’re using ViewModel with a capital “V” because we expect to construct it using

“new” (in the applyBindings call). When executed, the page results in the following output:

To demonstrate that the observable collection is working, let’s add a bit more functionality. We can

include the ability to record the results of another game to the ViewModel, and then add a button and

some UI to work with this new function. First, let’s create the addResult method:

Bind this method to a button using the click binding:

71

Open the page in the browser and click the button a couple of times, resulting in a new table row with

each click:

There are a few ways to support adding new records in the UI, typically either inline or in a separate

form. We can easily modify the table to use textboxes and dropdownlists so that the whole thing is

editable. Just change the <tr> element as shown:

Note that $root refers to the root ViewModel, which is where the possible choices are exposed. $data

refers to whatever the current model is within a given context – in this case it refers to an individual

element of the resultChoices array, each of which is a simple string.

With this change, the entire grid becomes editable:

Now, if we weren’t using Knockout, we could achieve all of this using jQuery, but most likely it would not

be nearly as efficient. Knockout tracks which bound data items in the ViewModel correspond to which

UI elements, and only updates those elements that need to be added, removed, or updated. It would

72

take significant effort to achieve this ourselves using jQuery or direct DOM manipulation, and even then

if we then wanted to display aggregate results (such as a win-loss record) based on the table’s data, we

would need to once more loop through it and parse the HTML elements. With Knockout, displaying the

win-loss record is trivial. We can perform the calculations within the ViewModel itself, and then display

it with a simple text binding and a .

To build the win-loss record string, we can use a computed observable. Note that references to

observable properties within the ViewModel must be function calls, otherwise they will not retrieve the

value of the observable (i.e. gameResults() not gameResults in the code shown):

Bind this function to a span within the <h1> element at the top of the page:

The result:

Adding rows or modifying the selected element in any row’s Result column will update the record shown

at the top of the window.

In addition to binding to values, you can also use almost any legal JavaScript expression within a binding.

For example, if a UI element should only appear under certain conditions, such as when a value exceeds

a certain threshold, you can specify this logically within the binding expression:

<div data-bind=”visible: customerValue > 100”></div>

This <div> would only be visible when the customerValue is over 100.

Templates
Knockout has support for templates, so that you can easily separate your UI from your behavior, or

incrementally load UI elements into a large application on demand. We can update our previous

73

example to make each row its own template by simply pulling the HTML out into a template and

specifying the template by name in the data-bind call on <tbody>.

Knockout also supports other templating engines, such as the jQuery.tmpl library and Underscore.js’s

templating engine.

Components
Components allow you to organize and reuse UI code, usually along with the ViewModel data on which

the UI code depends. To create a component, you simply need to specify its template and its

viewModel, and give it a name. This is done by calling ko.components.register(). In addition to defining

the templates and viewmodel inline, they can be loaded from external files using a library like require.js,

resulting in very clean and efficient code.

Communicating with APIs
Knockout can work with any data in JSON format. A common way to retrieve and save data using

Knockout is with jQuery, which supports the $.getJSON() function to retrieve data, and the $.post()

method to send data from the browser to an API endpoint. Of course, if you prefer a different way to

send and receive JSON data, Knockout will work with it as well.

Summary
Knockout provides a simple, elegant way to bind UI elements to the current state of the client

application, defined in a ViewModel. Knockout’s binding syntax uses the data-bind attribute, applied to

HTML elements that are to be processed. Knockout is able to efficiently render and update large data

sets by tracking UI elements and only processing changes to affected elements. Large applications can

break up UI logic using templates and components, which can be loaded on demand from external files.

Currently version 3, Knockout is a stable JavaScript library that can improve web applications that

require rich client interactivity.

74

Backbone.js. MVC Library

Backbone.js is a light-weight JavaScript library that helps structure

web applications.

Backbone is not a framework that requires a particular approach. Instead, you can pick Backbone tools

and combine them with other libraries. For example, you could use a Backbone View object to render

data on a web page or you could swap in React.js to paint the page instead. You could use jQuery to

bind Backbone views to DOM objects on the page or use the light-weight, mobile-friendly, Zepto library

in its place.

Backbone has only one hard dependency, Underscore.js. The underscore.js library “…provides a whole

mess of useful functional programming helpers without extending any built-in objects”. Underscore is

handy on its own, particularly for manipulating Backbone collections.

Getting Started
While underscore.js is the only hard dependency, you will want to display Backbone views. This example

will use jQuery, but you could use Ender, Zepto, or some other DOM library. Download the jQuery,

Underscore and Backbone JavaScript files and copy them to your web application directory. You can also

use NPM, Gulp, Grunt, and Bower client build tools in Visual Studio 2015 to automate the process and

handle dependencies.

<!DOCTYPE html>

<html>
<head>
 <meta charset="utf-8" />
 <title>Backbone Example</title>
</head>
<body>

 <script src="lib/jquery/js/jquery.js"></script>
 <script src="lib/underscore/underscore.js"></script>
 <script src="lib/backbone/backbone.js"></script>

</body>
</html>

Backbone Objects
Backbone includes classes for models, collections, views and routes.

 Model: Stores data attributes, supports validation, change events and communication with a

server.

 Collection: Contains series of Model classes that can be manipulated and rendered as a group.

 View: Renders Model and Collection instances.

 Route: Reacts to URL changes and calls functions depending on the URL pattern.

http://backbonejs.org/
http://underscorejs.org/
https://jquery.com/download/
http://underscorejs.org/
http://backbonejs.org/
http://backbonejs.org/

75

Models

Models are the foundation of a web application. While you could use JSON literals as models, you would

miss out on the ability to inherit from other models, respond to events, validate attributes, and

communicate with a server.

To create your own model, add a <script> tag in your HTML page and use the Backbone.Model.extend()

function to create a model class. Then use the new keyword to create an instance of the class. If you

pass a JSON object to the constructor, the model attributes will be set automatically.

<script>
 var Painting = Backbone.Model.extend();

 var painting = new Painting({
 title: "Mona Lisa",
 image: "images/monalisa.jpg",
 artist: "Leonardo da Vinci",
 description: "The most famous portrait in the world"
 });
</script>

Use a browser console to dump the properties of the model. The Internet Explorer Developer Tools

console in the screenshot below shows the attributes of the painting model object.

Reading and Writing Model Attributes

Use the get() method and pass the name of an attribute to retrieve the attribute value. The browser

console output below shows the painting model title property value.

To modify a model attribute, call set() and pass both the attribute and a value:

76

Avoid assigning Model attributes directly. Using set() and get() methods ensures that the Model class

fires the change event and that model attributes are valid.

Validation

To verify the model’s integrity, implement the validate() method. The method is undefined by default so

you’re free to use any criteria to confirm model state. Return a message only if the validation fails.

var Painting = Backbone.Model.extend({
 validate: function (attrs, options) {
 if (attrs.title === " ") {
 return "Must have a title";
 }
 }
 // ...
});

The Model’s validate() method does not fire automatically when an attribute is set. Instead, you must

pass the validate: true option to the set() method:

var painting = new Painting();
painting.set("title", " ", { validate: true });

You can also use the Model isValid() method to trigger validation and return false if errors are returned

from validate(). Model validationError is handy for getting text for the last validation failure. The

screenshot of the browser console below shows the output where the painting object title attribute is

blank.

Events

Backbone objects support a number of built-in events for models, collections and routes. For example,

the invalid event fires when the validate() method returns an error message. Use the on() method to

listen for an event name and a function that will handle the event. The code snippet below establishes

an invalid event handler and logs the error message when model validation fails.

painting.on("invalid", function (model, error) {
 console.log(error);
});

painting.set("title", "", { validate: true });

You can also hook up events in during the Model’s initialize() method.

var Painting = Backbone.Model.extend({
 initialize: function (options) {
 this.on("invalid", function (model, error) {

http://backbonejs.org/#Events-catalog

77

 console.log(error);
 });
 },
 //...
});

Constructors, initialize() and calling ancestor methods

When an instance of a class is created, the constructor() method is called before the model is accessible.

At the end of the constructor, when the model is available, the initialize() method is called. If you decide

to override the constructor(), be sure to call the ancestor’s constructor. JavaScript doesn’t have a

constructor() or super() built-in. You must call the inherited constructor through the JavaScript

prototype of the Backbone object.

var Painting = Backbone.Model.extend({

 constructor: function (options) {

 console.log("Called before the model is built ");

 // call the ancestor constructor:

 Backbone.Model.prototype.constructor.apply(this, options);

 },

 initialize: function (options) {

 console.log("Called from constructor after model is available ");

 },

 //...

});

Default Attributes

You can avoid some issues with invalid data just by setting attribute values up front. Set initial values

and help document attributes by overriding Model defaults. Any values not set during initialization are

filled in by their defaults.

var Painting = Backbone.Model.extend({
 defaults: {
 title: "",
 image: "images/default.jpg",
 artist: "Unknown",
 description: "No description for this painting"
 },
});

var painting = new Painting({
 title: "Mona Lisa",
 image: "images/monalisa.jpg",
 artist: "Leonardo da Vinci"
});

Here is the output for the example in the browser console:

Here is the code listing for the painting model example we will use going forward.

78

var Painting = Backbone.Model.extend({
 initialize: function (options) {
 this.on("invalid", function (model, error) {
 console.log(error);
 });
 },
 defaults: {
 title: "",
 image: "images/default.jpg",
 artist: "Unknown",
 description: "No description for this painting"
 },
 validate: function (attrs, options) {
 if (this.get("title") === "") {
 return "Must have a title";
 }
 }
});

Views
Backbone views paint model content to the browser page. Override the View render() function to assign

the View.el or View.$el attributes with new HTML. The el attribute represents a DOM element for the

view while $el is a jQuery selector for the view element. The example below extends the Backbone.View

object and overrides the render() function to add the custom title attribute of the model. You should

return this to allow chaining.

// Extend view to customize the render function
var PaintingView = Backbone.View.extend({
 render: function () {
 this.$el.append(this.model.get("title"));
 return this;
 }
});

// create an instance of the view
var paintingView = new PaintingView({ model: painting });

// inject the view's HTML into the DOM
$('body').html(paintingsView.render().el);

The render output shows as <div>Mona Lisa</div> in the browser.

By default, the View el represents a <div> tag, but you can override tagName, id and className to

customize the element type, id attribute and CSS class, respectively.

var PaintingView = Backbone.View.extend({
 tagName: "h1",
 id: "painting",
 className: "painting-frame",
 render: function () {
 this.$el.append(this.model.get("title"));

79

 return this;
 }
});

The markup is rendered as this HTML fragment:

<h1 class="painting-frame" id="painting">Mona Lisa</h1>

Using JavaScript and jQuery (or a jQuery replacement), you can render arbitrarily complex elements.

The example below represents elements for the model’s title, description and image, and uses jQuery to

style elements inline, but you can also assign CSS classes for your custom styles or add Bootstrap to help

set the page’s look-and-feel.

var PaintingView = Backbone.View.extend({
 render: function () {
 var title = $('<h4 />').append(this.model.get("title"));
 var description = $('<p />').append(this.model.get("description"));
 var image = $('',
 {
 src: this.model.attributes.image
 });
 this.$el.css("width", "220px");
 this.$el.append(image).append(title).append(description);
 return this;
 }
});

Here is the view rendered in the browser:

View Events

The View class’s events attribute takes a list of delegated events. Each attribute of the object assigned

to events has an event name and the name of a callback function. What is the advantage of using events

over the on function? The delegated events are bound to the view so that this still refers to the View

object when the callback is invoked. The View example below responds to the DOM click event and fires

the clickHandler callback.

var PaintingView = Backbone.View.extend({
 events: {
 'click': 'clickHandler'
 },
 clickHandler: function () {
 alert('You clicked on the painting ' +
 this.model.get("title"))
 }
 // ...
});

80

The example running in the browser displays the View’s model data.

Collections
A Backbone Collection holds a list of Model objects that can be manipulated and rendered as a whole.

The example below specifies the type of model it expects, although the model attribute is not required.

var Paintings = Backbone.Collection.extend({
 model: Painting,
});

To populate a collection, you can pass an array of model instances to the constructor or use the add()

method. The example below creates an instance of the Paintings collection, then uses the add() method

to fill the list.

var paintings = new Paintings();

paintings.add([
 new Painting({
 title: "Mona Lisa",
 image: "images/monalisa.jpg",
 artist: "Leonardo da Vinci",
 description: "The most famous portrait in the world"
 }),

 new Painting({
 title: "The Milkmaid",
 image: "images/themilkmaid.jpg",
 artist: "Johannes Vermeer",
 description: "Rijksmuseum in Amsterdam, Netherlands"
 }),

 new Painting({
 title: "Cave of Altamira",
 image: "images/cave.jpg",
 artist: "Unknown",
 description: "Upper Paleolithic painting of a bison in the cave of Altimira"
 }),

 new Painting({
 title: "Woman with a Parasol",
 image: "images/womanwithparasol.jpg",
 artist: "Claude Monet",
 description: "Madame Monet and her son, 1875"
 })

81

]);

The Underscore library is required for Backbone and useful on its own to manipulate collections. For

example, the each() method operates on collection model instances. The example below creates a new

view for each model in the collection.

paintings.each(function (painting) {
 var view = new PaintingView({ model: painting });
 var element = view.render().$el
 .css("float", "left")
 .css("margin-right", "10px");

 $('body').append(element);
});

The example outputs a View for each Painting model instance:

Views can represent Collections as well as Models, so you can wrap the logic inside the render()

function. By default, this will refer to the global object (usually the browser window). Pass this as a

second parameter to the each() function so that this will represent the View.

paintings.each(function (painting) {
 var view = new PaintingView({ model: painting });
 var element = view.render().$el
 .css("float", "left")
 .css("margin-right", "10px");

 $('body').append(element);
});

To delete a painting from the list, call the remove() function and pass an instance of a model. The

example below uses the findWhere() function to locate the painting titled “Cave of Altamira” and

deletes it from the collection.

var cavePainting = paintings.findWhere({ "title": "Cave of Altamira" });
paintings.remove(cavePainting);

Routers
Backbone provides a simple client-side Router class that trigger actions when the browser URL changes.

The routes attribute contains route names and the functions that should run for each route. After

creating an instance of a router, call the Backone.history start() function.

82

The example below extends Backbone.Router and responds to a “paintings” route. When a fragment of

the browser URL contains “paintings”, a function renders the PaintingsView .

var GalleryRouter = Backbone.Router.extend({
 routes: {
 'paintings': function () {
 var view = new PaintingsView({ collection: paintings });
 $('#app').html(view.render().el);
 }
 }
});

var router = new GalleryRouter();
Backbone.history.start();

To navigate using the router, add a hash symbol and the route identifier to the URL. The example below

navigates to the ‘paintings’ route, instantiates the PaintingsView and renders the view to the page.

Note: Backbone Router class can also accommodate the HTML5 History API. For supported browsers,

make the call to start history setting the pushState option to true. Backbone.history.start({pushState:

true}); See the Backbone History documentation for more details.

You can further extend the router to include a detail page that will take a query string. The handler

function example below uses the query string to filter the collection and present a view for a single

model.

var GalleryRouter = Backbone.Router.extend({
 routes: {
 'paintings': function () {
 var view = new PaintingsView({ collection: paintings });
 $('#app').html(view.render().el);
 },

 'painting': function (query) {
 var title = decodeURI(query);
 var painting = paintings.findWhere({ "title": title })
 var view = new PaintingView({ model: painting });
 $('#app').html(view.render().el);
 }
 }
});

The route for a single painting is invoked using something like the path shown in the screen shot below.

http://www.w3.org/TR/html5/browsers.html#history
http://backbonejs.org/#History

83

Use the Backbone history class navigate() function to update the browser URL. The first parameter to

navigate() is the target for the URL. The trigger option calls the route() function. The example below

adds a click handler to each painting view. When the collection view of the paintings is showing and the

user clicks a single painting, the click event handler fires and navigates to the view for that painting.

var PaintingView = Backbone.View.extend({
 events: {
 'click': 'clickHandler'
 },
 clickHandler: function () {
 var target = "painting?" + this.model.attributes.title;
 Backbone.history.navigate(target, { trigger: true })
 }
 // ...
});

To define a default route, add a route “*path” at the end of your list of routes.

var GalleryRouter = Backbone.Router.extend({
 routes: {
 // ...

 '*path': function () {
 var view = new PaintingsView({ collection: paintings });
 $('#app').html(view.render().el);
 }
 }
});

Summary
Backbone is a library that helps structure applications with models, views, collections and routers.

Backbone will not dictate a particular approach but instead allows you to pick-and-choose functionality

from the library. Backbone requires only underscore.js and can use any library to bind views to the

DOM.

84

Angular.js. SPA Framework.

AngularJS is a modern JavaScript framework from Google to work with Single Page Applications (SPA).

AngularJS is open sourced under MIT license and the development progress of AngularJS can be

followed on its GitHub repository.

AngularJS is not a DOM manipulation library like jQuery but it uses a subset of jQuery called jQLite.

AngularJS is primarily based on declarative HTML attributes that you can add to your HTML tags. You can

try AngularJS in your browser using the Code School website.

V1.3.x is the current stable version and Angular team is working towards a big rewrite of AngularJS in its

V2.0 which is currently still in development. This article focuses on Angular 1.X with a note of where

Angular is header with 2.0.

Getting Started

Installation

There are several ways to add AngularJS to your application. If you’re starting a new web application in

Visual Studio 2015 and ASP.NET 5, you can add AngularJS using built-in NPM and Bower support.

Add the <script> tag to your main html file

https://github.com/angular/angular.js
http://campus.codeschool.com/courses/shaping-up-with-angular-js/intro

85

Key components
Below are the few major components of AngularJS, we will cover these topics in more detail in this

article.

 Directives

 Data Binding

 Templates and Expressions

 Repeaters

 $scope

 Modules

 Controllers

 Services / Factories / Providers

 Routing

 Event Handlers

Directives
AngularJS uses directives to extend HTML with custom attributes and elements. AngularJS directives are

defined via data-ng-* or ng-* prefixes. There are two types of AngularJS directives:

 Primitive Directives: These are pre-defined by the Angular team and are part of the AngularJS

framework.

 Custom Directives: These are custom directives that you can define.

One of the primitive directives used in all AngularJS applications is the ng-app directive used to

bootstrap the AngularJS application. This directive can be added to the whole document body or to

specific pieces of the body. Let’s see an example in action:

We decorated the body tag with ng-app directive to indicate this page is an AngularJS application. The

{{1+3}} is an Angular data binding expression that will learn more about in this article. Here is the result

if you run this application:

86

Other primitive directives in AngularJS include:

 ng-controller: Determines which JavaScript controller is bound to which view.

 ng-model: Determines what model the value of an HTML field properties is bound to.

 ng-init: Used to initialize application data in the form of an expression for the current scope.

 ng-if: If clause in your AngularJS applications, generally used with an expression.

 ng-repeat: Repeats given HTML over a set of data.

 ng-show: Shows or hides the given HTML element based on the expression provided.

For a full list of all primitive directives supported in AngularJS please read directive documentation

section on the AngularJS documentation website.

Data Binding
AngularJS provides data binding support out-of-the-box using either the ng-bind directive or a data

binding expression syntax such as {{expression}}. AngularJS supports two-way data binding where data

from a model is kept in synchronization with a view template at all time. Any changes to the view are

automatically reflected in the model and any changes in the model are reflected in the view.

Here is an example with AngularJS data binding in action:

When you run this file, you will see First Name and Last Name data bound to the view:

Templates
Templates in AngularJS are just plain HTML pages decorated with AngularJS directives and artifacts. A

template in AngularJS is a mixture of directives, expressions, filters, and controls that combine with

HTML to form the view.

Below is an example of a simple AngularJS template:

https://docs.angularjs.org/api/ng/directive

87

The template has AngularJS directives like ng-app, ng-init, ng-model and data binding expression syntax

to bind the personName property. Running in the browser, the view looks like the screenshot below:

If you change the name by typing in the input field, you will see the text next to the input field

dynamically update, showing Angular two-way data binding in action.

Expressions
Expressions in AngularJS are JavaScript -like code snippets that are written inside the {{ expression }}

syntax. The data from these expressions are bound to HTML the same way as ng-bind directives. The

main difference between AngularJS expressions and regular JavaScript expressions is that AngularJS

expressions are evaluated against the $scope object in AngularJS.

The AngularJS expressions in the sample below bind personName and a simple JavaScript calculated

expression:

88

The example running in the browser displays the personName data and the results of the calculation:

Repeaters
Repeating in AngularJS is done via a primitive directive called ng-repeat. The ng-repeat directive repeats

a given HTML element in a view over the length of a repeating data array. Repeaters in AngularJS can

repeat over an array of strings or objects. Here is a sample usage of repeating over an array of strings:

The repeat directive outputs a series of list items in an unordered list:

89

Here is an example that repeats over an array of objects. The ng-init directive establishes a names array,

where each element is an object contains first and last names. The ng-repeat assignment, name in

names, outputs a list item for every array element.

The HTML output is, as you would expect, a series of list items in an unordered list:

90

Use the $index, $even, $odd, $first and $last directives to determine where you are in the loop.

 Use $index in the ng-repeat loop to determine which index position your loop currently is on.

 Use $even in the ng-repeat loop to determine whether the current index in your loop is an even

indexed row. Similarly, use $odd to determine if the current index is an odd indexed row.

 Use $first in the ng-repeat loop to determine whether the current index in your loop is the first

row. Similarly, use $last to determine if the current index is the last row.

Below is a sample that shows $index, $even, $odd, $first, $odd in action:

91

Here is the result running in the browser:

$scope
$scope is a JavaScript object that acts as glue between the view (template) and the controller (explained

below). A view template in AngularJS only knows about the values that are set on the $scope object

from the controller.

92

Note: In the MVVM world, the $scope object in AngularJS is often defined as the ViewModel. The

AngularJS team refers to the $scope object as the Data-Model.

Below is a simple example showing how to set properties on $scope.

Observe the $scope parameter passed to the controller on line #3. This object is what the view knows

about. In line #4, we are setting a property called “name” to “Mary Jane”.

What happens when a particular property is not found by the view? The view defined below refers to

name and age properties:

Notice in line #9 that we are asking Angular to show the “name” property using expression syntax. Line

#10 refers to “age”, a property that does not exist. The running example shows the name set to “Mary

Jane” and nothing for age.

Modules
A module in AngularJS is a collection of controllers, services, directives etc. The angular.module()

function call is used to create, register and retrieve modules in AngularJS. All modules, including those

shipped by the AngularJS team and third party libraries should be registered using the angular.module()

function.

93

Below is a snippet of code that shows how to create a new module in AngularJS. The first parameter is

the name of the module. The second parameter defines dependencies on other modules. Later in this

articles we will be showing how to pass these dependencies in angular.module() method call.

Use the ng-app directive to represent an AngularJS module on the page. To use a module, assign the

name of the module, “personApp” in this example, to the ng-app directive in our template.

Note: Before Angular V1.3 having a module was an optional (but still highly recommended) feature.

Starting from Angular V1.3, The Angular team mandated the use of modules in order to work with

controllers.

Controllers
Controllers in AngularJS are the first point of entry for your code. The <module name>.controller()

function call is used to create and register controllers in AngularJS. The ng-controller directive is used to

represent an AngularJS controller on the HTML page. The role of the controller in Angular is to set state

and behavior of the data model ($scope). Controllers should not be used to manipulate the DOM

directly.

Below is a snippet of code that registers a new controller. The personApp variable in the snippet is an

Angular module.

The view using the ng-controller directive assigns the controller name:

94

The page shows “Mary” and “Jane” that correspond to the firstName and lastName properties assigned

to the $scope object.

Services
Services in AngularJS are commonly used shared code that are abstracted away into a file that can be

used throughout the lifetime of an angular application. Services are lazily instantiated, meaning that

there will not be an instance of a service unless a component that depends on the service gets used.

Factories in AngularJS are created using the myApp.factory() function call, where myApp is the module.

Below is an example that shows how to use factories in AngularJS:

To call this factory from the controller, pass personFactory as a parameter to the controller() function:

95

Using Services to talk to a REST endpoint
Below is an end-to-end example using services in AngularJS to interact with an ASP.NET MVC’s REST

endpoint. The example gets data from the service built using ASP.NET 5 and displays the data in a view

template. Let’s start with the view first:

In this view, we have an Angular module called “PersonsApp” and a controller called “personController”.

We are using ng-repeat to iterate over the list of persons. Notice that lines #17 to #19 reference three

new files: app.js, personFactory.js and personController.js.

The app.js file is used to register the PersonsApp module. The syntax is similar to previous examples. We

are using the angular.module() function to create a new instance of the module that we will be working

with.

Let’s take a look at personFactory.js. We are calling the module’s factory() method to create a factory.

Line #11 shows the built-in Angular $http service retrieving people information from a web service.

96

In personController.js, we are calling the module’s controller() method to create the controller. The

$scope people property is assigned data returned from the personFactory (line #13).

Let’s take a quick look at the ASP.NET 5 web service and the model behind it. The Person model is a

plain POCO (Plain Old CLR Object) with Id, FirstName and LastName properties.

97

The Person controller returns a JSON of list of Persons.

Let’s see the application in action:

Here is a snapshot of the application structure in Visual Studio:

98

Note: For more on structuring AngularJS applications, see John Papa's Angular Style Guide.

Note: To create AngularJS module, controller, factory, directive and view files easily, be sure to check

out Sayed Hashimi's SideWaffle template pack for Visual Studio. Sayed Hashimi is a Senior Program

Manager on the Visual Studio Web Team at Microsoft and SideWaffle templates are considered a gold

standard. At the moment of this writing, SideWaffle is only available for Visual Studio 2012 and 2013.

Routing and Multiple Views
AngularJS has a built-in route provider to handle SPA (Single Page Application) based navigation. To

work with routing in AngularJS you have to add the angular-route using NPM or Bower.

After you install the package, add the script reference your view.

Now let’s take the Person App we have been building and add navigation to it. Starting with the main

view, add a reference to angular-route (see line #13). Also add a div marked with the ng-view directive

(see line #8) as a placeholder to place views in.

https://twitter.com/john_papa
https://github.com/johnpapa/angular-styleguide
https://twitter.com/sayedihashimi
http://sidewaffle.com/

99

Let’s take a look at personModule.js file to see how we are instantiating the module with routing. We

are passing ngRoute as a library into the module. This module handles routing in our application.

The personRoutes.js file (see below) defines routes based on the route provider. Lines 4-7 define

navigation by effectively saying, when a URL with “/persons” is requested, use a template called

“partials/personList” by working through “personListController”. Lines 8-11 indicate a detail page with a

route parameter of personId. If the URL doesn’t match one of the patterns, Angular defaults to the

“/persons” view.

The personlist.html is a partial view, which only has HTML that is needed to show person list.

100

The controller is defined by using the module’s controller() function.

If we run this application and go to /persons URL we will see

If we navigate to a detail page, for example, /persons/2, we will see the detail partial view:

Event Handlers
There are a number of directives in AngularJS that add event-handling capabilities to the input elements

in your HTML DOM. Below is a list of these events that are built into AngularJS.

 ng-click

 ng-dbl-click

 ng-mousedown

 ng-mouseup

 ng-mouseenter

 ng-mouseleave

 ng-mousemove

 ng-keydown

 ng-keyup

 ng-keypress

101

 ng-change

Note: You can add your own event handlers using the custom directives feature in AngularJS.

Let’s look at ng-click event in more detail:

Notice in the eventHandlerController we now have a new sayName() function (line #6). All the method

is doing for now is showing a JavaScript alert to the user with a welcome message.

The view binds a controller function to an AngularJS event. Line #11 has a new <input> element of type

button marked with the ng-click angular directive that calls our sayName() function which is part of

$scope object passed to this view.

The running example demonstrates that the controller sayName() function is called automatically when

the button is clicked.

102

For more detail on AngularJS built-in event handler directives, be sure to head to the documentation

website of AngularJS

Future, Angular 2.0
Angular 2.0 is the next version of AngularJS, which is totally reimagined with ES6 and mobile in mind. It’s

built using Microsoft’s TypeScript language. Angular 2.0 is supposed to hit RTM towards the end of

calendar year 2015. There are lot of things that changed in Angular 2.0 when compared to 1.X but

Angular team is working hard to provide guidance to developers and things will become more obvious

closer to the release. If you wish to play with Angular 2.0 now, Angular team released a new website

Angular.io to show the progress and provide early documentation to gather feedback.

https://docs.angularjs.org/api/ng/directive/ngClick
http://www.typescriptlang.org/
https://angular.io/docs/js/latest/

103

ReactJS. Reusable UI Components.

The ReactJS JavaScript library helps build reusable components for the user interface. You can use React

with MVC and AngularJS frameworks, or simply replace a small slice of an existing user interface.

There is certain discussion around React’s design. For example,

Instagram’s Pete Hunt argues in React: Rethinking best

practices, that splitting markup and code is not separation of

concerns, but merely separation of technologies. Whatever

your take on React, the library is popular enough to get 19k

stars on GitHub at the time of this writing. The React

ecosystem has attracted development of components, add-ins,

utilities, templates, training, and connectivity to other popular

frameworks.

Getting Started with React
React is expressed with JavaScript or using an XML like syntax called JSX that compiles to JavaScript. You

can see both side-by-side at Facebook’s react home page. The JSX code appears as a mix of JavaScript

and HTML syntax. As you enter JSX, the results render to the right of the editor.

JSX syntax is optional. You can write JavaScript that works with React directly, without having to use JSX.

The screenshot below shows the equivalent JavaScript. Each JSX element, such as <div>, has been

converted to a React.createElement() JavaScript function.

https://www.youtube.com/watch?v=x7cQ3mrcKaY
https://www.youtube.com/watch?v=x7cQ3mrcKaY
https://github.com/search?utf8=%E2%9C%93&q=react
http://facebook.github.io/react/

104

Minimal React Class

You can use JSFiddle to try your hand at React without having to set up an environment. Facebook

maintains a JSFiddle integration library that lets you play with the syntax in real time.

To render a minimal React component using JSX, first create a class using the React createClass()

function. The class must have a render() function that returns markup.

// minimal example, single class
var App = React.createClass({
 render: function(){
 return <div>Hello world!</div>
 }
});

Next, call the React render() method. The first argument is a React class and the second is a DOM

element. When React renders the component, it creates the markup for the class and inserts the

markup into the DOM element.

React.render(<App />, document.getElementById('container'));

Project Setup
These examples use the Visual Studio client-side build process to deploy the React library and compile

JSX code on the fly.

1. In Visual Studio, select File > New Project from the main menu.

2. Select the ASP.NET Web Application project and click OK.

3. Select the ASP.NET 5 Empty template and click OK.

4. In the Solution Explorer, right-click the project node and select Add > New Item from the

context menu.

5. Select NPM configuration file, leave the defaults, and click the Add button.

6. Open the package.json file and edit the devDependencies node to include grunt, grunt-contrib-

copy, grunt-exec, react, react-tools, and zxcvbn2. The devDependencies node should look

something like the example below.

 "devDependencies": {
 "grunt": "0.4.5",
 "grunt-contrib-copy": "0.8.0",
 "grunt-exec": "0.4.6",
 "react": "0.13.1",
 "react-tools": "0.13.1",
 "zxcvbn2": "1.0.0"
 }

Note: Grunt packages manipulate files and push the results out to your web site. The react-tools

package contains a jsx command that compiles your jsx code into pure JavaScript. The react

package contains react.js, a file used at runtime by the React JavaScript on your page.

7. In the Solution Explorer, right-click the Dependencies > NPM node and select Restore Packages

from the context menu.

http://jsfiddle.net/reactjs/69z2wepo/

105

8. In the Solution Explorer, right-click the project node and select Add > New Item from the

context menu.

9. Select the Grunt configuration file, leave the defaults, and click the Add button.

10. Open Gruntfile.js for editing and replace the entire contents of the file with the code below.

module.exports = function (grunt) {
 grunt.initConfig({
 copy: {
 all: {
 files: [
 { // required to use React classes and rendering on the client
 expand: true,
 cwd: 'node_modules/react/dist/',
 src: "react.js",
 dest: 'wwwroot/lib/react/'
 },
 { // zxcvbn2 is used to measure password strength,
 // used in a demo and not a direct part of react.
 expand: true, cwd: 'node_modules/', src: "zxcvbn2/**",
 dest: 'wwwroot/lib/'
 },]
 }
 },
 exec: { // compiles jsx to JavaScript, results are placed in wwwroot/js

compile: 'node node_modules/react-tools/bin/jsx -x jsx -w --no-cache-dir
components/ wwwroot/js'

 }
 });

 grunt.loadNpmTasks("grunt-exec");
 grunt.loadNpmTasks("grunt-contrib-copy");
};

The Grunt copy task pushes JavaScript libraries to your web site. The exec task

runs the jsx compiler. The compiler converts jsx files in the /components folder to

JavaScript and places the results in wwwroot/js. The command also includes a file

watch option so that anytime you change a jsx file in /components, the compiler

automatically kicks in and sends the new results to the wwwroot/js folder.

11. In the Solution Explorer, right-click Gruntfile.js and select Task Runner Explorer from the

context menu. Double-click the copy task and let it run.

106

12. In the Solution Explorer, right-click the wwwroot node and select Add > New Item from the

context menu. Select the HTML Page item, name the page “Index”, and click the Add button.

13. Open Index.html and replace the contents with the markup below. The page has a single <div>

element that has an id attribute app.

<!DOCTYPE html>

<html>
<head>
 <meta charset="utf-8" />
 <title>React Example</title>
</head>
<body>
 <div id="app"></div>
</body>
</html>

14. In the Solution Explorer, open wwwroot\lib\react and drag react.js to the body of your HTML

page, just below the <div>.

15. In the Solution Explorer, right-click the project node and select Add > New Folder. Rename the

folder Components.

16. Right-click the Components folder and select Add > New Item from the context menu.

17. Select the JavaScript File type and name it app.jsx (note the jsx file extension).

107

18. Open app.jsx for editing and add the JSX code below.

The code creates a class called App. The App render() function returns a <div> element. The

React.render() binds the React App class to the app DOM element.

// minimal example, single class
var App = React.createClass({
 render: function(){
 return <div>Hello world!</div>
 }
});

React.render(<App />, document.getElementById('app'));

19. In the Task Runner Explorer, double-click the exec task to run the JSX compiler. The compiler

consumes Components/app.jsx and produces wwwroot/js/app.js.

20. Verify that the compiled code in wwwroot/js/app.js looks like the JavaScript below.

21. Open Index.html and drag app.js from wwwroot/js to the page, just below the reference to

react.js. The page should look like the screenshot below.

108

22. Save your files.

23. In the Solution Explorer, right-click Index.html, then select View In Browser from the context

menu. The page displays the Hello world message. The screenshot below shows the example

running in Firefox with no errors.

Now that the build mechanism is set, you can change the JSX code at will. Your changes will

automatically compile and be pushed out to your website for viewing.

Nesting Classes

React components are composable and can be deeply nested. For example, you can create a Login

component and nest it inside the App component. Let’s rewrite app.jsx to include a Login component.

1. Add the code below to define a Login class to the top of the file. The snippet below defines the

required call to React.createClass(), and implements the render() function.

var Login = React.createClass({
 render: function(){
 return <div>
 </div>

109

 }
});

Note: To avoid compiler errors, the markup returned by render() should start on the same line

as the return key word.

2. Using the example code below, add an <h1></h1> element to hold the login title. Below the

title, define labels and inputs for the login name and password.

var Login = React.createClass({
 render: function(){
 return <div>
 <h1>Login</h1>
 <div>
 <label>Name</label>
 <input type='text' />
 </div>
 <div>
 <label>Password</label>
 <input type='password' />
 </div>
 </div>
 }
});

Note: Notice that the collection of elements in the render() function are enclosed in a single

outer div. If you remove the outer div, the compiler will generate a parsing error “Adjacent JSX

elements must be wrapped in an enclosing tag”.

The compiled app.js includes the generated Login class, but it has not been bound to the DOM

and will not render.

3. Change the App class to return the Login component.

110

var App = React.createClass({
 render: function(){
 return <Login />
 }
});

4. Review app.jsx. The code should look like the complete example below. The Login class renders

the title, name and password elements, App renders the Login component, and the call to

React.render() at the bottom of the page binds the App component to an element in the DOM.

var Login = React.createClass({
 render: function(){
 return <div>

 <h1>Login</h1>
 <div>
 <label>Name</label>
 <input type='text' />
 </div>
 <div>
 <label>Password</label>
 <input type='password' />
 </div>

 </div>
 }
});

var App = React.createClass({
 render: function(){
 return <Login />
 }
});

React.render(<App />, document.getElementById('app'));

5. View Index.html to see the Login component rendered in the browser.

Class Properties
React props allow an owner component to set properties on components it owns. In the last example,

App was the owner component and Login the owned component. Soft-code the Login header by

including an attribute on the Login element during the App render() as shown in the JSX snippet below.

var App = React.createClass({
 render: function(){
 return <Login title="Sign in" />
 }
});

When App assigns the title attribute, React creates props.title in the Login component. The title

attribute is expressed inside the Login class as {this.props.title} where the curly braces contain

JavaScript. You can re-write the Login render function to look like the example below:

111

<h1>{this.props.title}</h1>

The running example displays the assigned title value in the heading.

Property Validation

Properties can be validated to verify they exist, are of a certain type, or even your own custom

validation, using React propTypes. You can check primitive types like array, boolean, function, number

object, and string. React also supports arrays of type, instances of a type, enumerations, and unions.

Search the react.js source file for var ReactPropTypes = { to see all possible property types that you can

validate.

The propTypes member takes an object with the properties you are expecting. The propTypes example

below defines an object that includes a title member and assigns a React.PropTypes member. This

example requires the title property, and that the value must be a string value.

var Login = React.createClass({
 propTypes: {
 title: React.PropTypes.string.isRequired
 },...

Test this by removing the title attribute from the Login element:

var App = React.createClass({
 render: function(){
 return <Login />
 }
});

The jsx file will compile without error but will generate a warning at runtime. Use the console of the

developer tools for your browser to display the message.

Default Properties

Another way to guarantee valid property values is to assign default properties. Use the

getDefaultProps() function to return an object that includes the properties to assign.

getDefaultProps: function() {
 return {
 title: 'Login'
 };
},...

If the owner component does not assign the title attribute, getDefaultProps() will initialize properties

before they are checked by propTypes validation.

112

Class State
React props are immutable and cannot be changed other than by initial owner assignment. If part of the

component changes independently from its owner, use the React state object to store and

communicate values. When component state changes, the component and its children are re-rendered,

keeping the component state and the DOM in sync. Whenever the user types into the input, the DOM

onChange event fires, and the input value displays in the console.

This next example shows how to manage state. When the user types into the password text input, the

password strength is calculated and stored in a state variable. When state changes, the component

renders to show the password strength in a label.

Encapsulate Password in its own Component

First, refactor Login to extract password functionality into its own component.

1. Create a new Login password class using the code below.

var Password = React.createClass({
 onChange: function(e){
 console.log(e.target.value);
 },
 render: function(){
 return <div>
 <label>Password</label>
 <input type='password' onChange={this.onChange} />
 </div>
 }
});

2. Change the Login component to render the Password component.

var Login = React.createClass({
 render: function(){
 return <div>
 <h1>{this.props.title}</h1>
 <div>
 <label>Name</label>
 <input type='text' />
 </div>
 <Password />
 </div>
 }
});

var App = React.createClass({
 render: function(){
 return <Login title="Login" />
 }
});

React.render(<App />, document.getElementById('app'));

113

3. Run the application in the browser. The console in the screenshot below shows password input

contents as the user types.

Add Password Strength Checking

Next, add the Dropbox zxcvbn library to judge password strength. The key function in the library is

zxcvbn(password). It takes a password string and returns a score from zero to four. The example

retrieves a description for strength (“weak”, “good”, etc.) and assigns that string to a state variable. The

Password component reflects the strength state in a label.

1. Drag the zxcvbn.js file from wwwroot/lib/zxcvbn2 and drop it into index.html, just before the

app.js script reference. The markup should look like the screenshot below.

2. On app.jsx, add strengthNames array declaration to the top of the file.

var strengthNames = ['Very weak', 'Weak', 'Good', 'Strong', 'Very Strong'];

3. Remove the code from Password onChange so that it is an empty function.

4. Add the code below to the onChange function.

 First call the zxcvbn() function, passing the text from the input and assigning the local

score variable.

 Use the score variable to index into the strengthNames array and assigns result to the

local strength variable.

114

 Finally call the React component’s built-in setState() method. Pass an object that

creates a new strength member and assigns it.

onChange: function(e){
 // get a numeric score from 0 to 4
 var score = zxcvbn(e.target.value).score;
 // get a name for the score, i.e. "weak", "good", etc.
 var strength = strengthNames[score];

 // create a state member called strength
 // and assign it the name.

 this.setState({strength: strength});
},

5. Add a call to getInitialState() to populate state.strength with a default value.

getInitialState: function(){
 return {strength: "Very weak"};
},

6. Use the new state member during the Password render. Add a new <label> element to the

render output. Assign {this.state.strength} to the <label> text. When state.strength is updated

during the onChange event, the Password component renders and the label displays the new

value.

render: function(){
 return <div>
 <label>Password</label>
 <input type='password' onChange={this.onChange} />
 <label>{this.state.strength}</label>
 </div>
}

7. View index.html in the browser. The label changes as the length and complexity of the password

changes.

Style
React inline styles are objects passed to the style attribute of an element. The example below defines

margin and text color for the <input> element. Hyphenated styles are camel-cased, so that margin-left

becomes marginLeft.

var inputStyle = {
 color: 'purple',
 marginLeft: '10',
 marginRight: '20'
};

...

render: function(){

115

 return <div>
 <input type='password' style={inputStyle} />
 </div>
}

See the React inline styles documentation for more details.

If you don’t care for React inline styles, you can add CSS classes to your markup as you would with any

web page. Just don’t call them classes. React cannot have JavaScript reserved words in markup,

including class. Instead, use className. The example below assigns the Bootstrap row style to a <div>

element.

<div className="row"></div>

Summary
The React JavaScript library helps build reusable components to construct user interfaces. React code

can be written directly as JavaScript or can be expressed in JSX syntax as a combination of markup and

code. React classes describe the layout and behavior of a component. Each React class must minimally

include a render() function. The React.render() function is required to bind a React class to an element

of the DOM.

https://facebook.github.io/react/tips/inline-styles.html

	Grunt and Gulp. Task Runners.
	Using Grunt
	Preparing the Application
	Configuring NPM
	Configuring Grunt
	All Together Now
	Watching for Changes
	Binding to Visual Studio Events

	Using Gulp
	NPM Package Differences
	Gulpfile vs Gruntfile Examples
	The Gulp Stream
	All Together

	Summary

	Bower. Package Manager.
	How does Bower Work – the Short Story
	Getting Started
	Exploring the Client Build Process
	Define Packages
	Install Packages to the Web Application
	Reference Packages
	Use the Installed Packages

	Summary

	Bootstrap. Responsive Web Framework.
	Getting Started
	Bower
	npm
	NuGet

	Basic Templates and Features
	Basic Navigation
	Typography and Links
	Grids
	Jumbotron

	The Bootstrap Theme
	Buttons
	Badges
	Alerts
	Navbars and Menus
	Additional Elements

	More Themes
	Components
	JavaScript Support
	Summary

	Less, Sass & Font Awesome. Styling applications
	CSS Preprocessor Languages
	Less
	Getting Started

	Sass
	Less or Sass?
	Font Awesome
	Summary

	TypeScript. Enterprise-scale JavaScript.
	Getting Started
	Language Features
	Inheritance
	Interfaces
	Modules
	Generics

	TypeScript Ecosystem
	Summary

	Knockout.js . MVVM Library.
	Getting Started
	Observables, ViewModels, and Simple Binding
	Control Flow
	Templates
	Components
	Communicating with APIs
	Summary

	Backbone.js. MVC Library
	Getting Started
	Backbone Objects
	Models
	Reading and Writing Model Attributes
	Validation
	Events
	Default Attributes

	Views
	View Events

	Collections
	Routers
	Summary

	Angular.js. SPA Framework.
	Getting Started
	Installation

	Key components
	Directives
	Data Binding
	Templates
	Expressions
	Repeaters
	$scope
	Modules
	Controllers
	Services
	Using Services to talk to a REST endpoint
	Routing and Multiple Views
	Event Handlers

	Future, Angular 2.0

	ReactJS. Reusable UI Components.
	Getting Started with React
	Minimal React Class
	Project Setup
	Nesting Classes

	Class Properties
	Property Validation
	Default Properties

	Class State
	Encapsulate Password in its own Component
	Add Password Strength Checking

	Style
	Summary

