|
|
|
|
|
|
NTC THERMISTOR는 일반적으로 Mn, Ni, Co, Fe, Cu 등의 천이금속 산화물을 2∼4종 혼합하여 어떤 형상으로 성형한 후에 1100℃ ∼ 1400℃의 고온 소결한 복합산화물 반도체 세라믹스로서 AB2O4의 SPINEL 구조를 형성한다. AB2O4의 SPINEL 구조를 보면 (NiMn)3O4, (NiMnCo)3O4, (NiMnFeCo)3O4 등의 형태이며 구체적으로는 P형
반도체로 M2M32O42(Ni0.6Mn2.4O4)의 구조를 가지며 전극은 Ag , Pt등이 사용된다. 써미스터의 제조공정은 출발원료 - 혼합 - SPRAY DRYER - 성형 - 소성 - 전극 인쇄 - 1차검사 - SOLDERING - COATING 및 경화 - 마킹 - 검사 - 포장의 순으로 제조된다.
|
|
|
|
(1) 무부하 저항치 (ROT) |
규정온도에서 전기적인 열방산이 없는 상태에서의 써미스터의 직류저항치 측정시 직류저항치의 변화가 ±0.01% 이내라야 한다. |
|
(2) 저항비 (R0T1/R0T2) |
임의의 T1,T2 온도에서의 무부하 저항치의 비. 일반적으로 아래 표시된 두 온도에서의 비를 저항비로 표시한다. (R00℃ / R50℃ ), (R25℃/ R85℃), (R25℃ / R125℃) |
|
(3) 저항온도계수 (αT) |
임의의 측정온도 T에서 써미스터의 저항이 온도 1℃당 어느 정도의 비율로 변화하는가를 나타내는 계수로서 단위는 % / ℃임. |
|
αT : 저항온도계수 (% / ℃) R : 절대온도 T(K)에서의 저항값(Ω) β : B정수 |
|
|
(4) B정수 (β) |
써미스터의 재료정수로서 저항 - 온도 특성에서 임의의 두 온도간 ( T1 , T2 )의 온도에 대한 저항 변화의 크기를 나타내는 정수로서 온도가 증가함에 따라 약간씩 증가하고 재료 및 온도 범위에 따라 차이가 있음. B정수가 크다는 것은 온도에 대한 저항 변화가 크다는 것을 말하며 일반적으로 다음식으로 표현된다.
|
|
별도의 지정이 없는한 β값은 0℃와 50℃, 25℃와 85℃혹은 25℃와 125℃ 사이의 값을 규정한다. B정수는 활성화에너지를 △E, 볼츠만 정수를 K(1.38×10-23 joule/K)라고 하면 β=△E/2k로 나타내며, 재료의 조성이나 소결조건에 의하여 결정된다.
|
|
(5) 열방산 정수(δ) |
임의의 특정 주변온도에서 써미스터로부터 발생하는 열과 이에 의한 써미스터의 온도 변화량과의 비를 말한다. 써미스터에 전류를 인가하면 써미스터가 자기발열을 하여 써미스터 자체의 온도가 상승된다 이때 주위온도 Ta(℃)와 자기발열에 소비된 전력W, 그리고 발열온도 To와의 사이에는 다음의 관계가 성립된다.
|
|
여기서 δ를 열방산 정수라 하며, "열평형상태에 있어서 써미스터 자체온도를 자기발열에 의해 1℃ 상승시키는데 필요한 전력" 이라 할 수 있고, 단위는 mW / ℃이다. δ의 값은 써미스터의 형상, 취부 상태, 주위매체의 종류등에 따라서 결정되며, 별도의 지정이 없는 한 열방산 정수는 측정되고자 하는 써미스터 부피의 1,000배 이상이 되는 항온조 내에서 주위온도 25℃에서 자기열화에 의해 75℃까지 온도 상승시킬 때 필요한 전력량을 온도 상승(△T)
50℃로 나눈 값으로 정한다.
|
|
(6) 열시정수(τ) |
써미스터의 주위온도나 써미스터에 흐르는 전류가 급격히 변했을 경우, 그 변화에 대하여 어느정도의 빠르기로 저항값이 변화하는가를 나타내는 정수로서 주위조건 변화에 대한 열 용량이 작을수록 빨리 응답하여 τ는 짧아진다. 써미스터의 열시정수 τ는 써미스터의 온도가 최초온도(Ti)와 최종온도(Te)차이가 63.2%만큼 처음온도로부터 변화될 때 까지의 소요시 간(t)를 의미하며, 이때의 온도(T)를 식으로 표시하면 다음과
같다. |
|
여기서 τ를 열시정수라함, 이것은 써미스터의 열용량 C와 열방산정수 δ에서 τ=C/δ의 관계가 있음. 위식에서 t와 τ가 같다고 하면, |
|
일반적으로 열시정수는 최대값으로 표시되며, 측정시 열방산과 마찬가지로 주변과의 열 전달 속도에 좌우 되기 때문에 써미스터가 위치하는 곳의 매체나 장착방법이 지정되어야 한다. |
|
(7) PEAK VOLTAGE (Vp) |
PEAK VOLTAGE란 전류-전압특성에서 전류의 증가에 따라 전압이 최대값을 갖고 감소하기 시작하는 점. 즉 dE/dI가 0이 되는 점을 말한다. |
|
(8) 최대 사용온도 |
최대사용온도란 써미스터의 특성이 안정성을 가지고 장기간 사용할 수 있는 최대온도. |
|
(9)최대 전력 |
써미스터의 특성이 안정성을 가지고 장기간 사용할 수 있는 써미스터의 최대전력. |
|
|
|
(1) 저항-온도 특성 |
써미스터는 주위 온도의 변화에 대해서 저항치의 변화가 음으로 극히 크고, 그 저항-온도 특성은 반도체 물성론에서 다음식으로 나타낼 수 있다. |
|
R : 절대온도 T(K)에서의 저항값 / R0 : 절대온도 T0(K)에서의 저항값 β : 써미스터의 B점수 / T To : 절대온도 ((K= ℃+273.15) |
|
|
|
여기에서, R 및 Ro는 각각 온도 T 및 To[K]일 때의 저항치를 나타내고, To는 일반적으로 298.15k(℃)를 기준으로 하는 때가 많다. 식(1)에서 알 수 있듯이 InR 과 1/T은, 직선관계를 갖고 직선의 구배가 B정수에 상당하며 B의 값은 다음식으로 나타낼 수 있다.
|
|
여기서 R1,R2는 각각 온도 T1, T2에서 측정한 저항치를 나타낸다. 그러나 실제로 사용하는 반도체 재료에 대해서 저항치와 온도의 관계를 실측하면 엄밀히 직선이 되지는 않는다. 따라서 정밀한 온도 특성이 필요한 경우에는, 저항-온도특성으로 다음식과 같이 나타내는 것이 적당하다.
|
|
여기에서 A,C 및 D는 재료조성에 의존하는 정수로 그 중에서 C는 양의 값 또는 음의 값을 나타낸다. 또 써미스터의 온도계수α는 다음식에 의해서 정의된다. |
|
따라서 온도계수 곡선 α는 제곱 곡선이어서, T에 의해서 크게 변하여 저온이나 고온이 될 수록 │α│가 커진다. |
|
(2)전류-전압 특성 |
임의의 규정온도에서 써미스터의 전류-전압사이 관계로 매우 적은 전류 범위에서는 써미스터의 자기발열이 작아서 전압이 전류에 비례하여 옴의 법칙을 따라서 직선으로 나타낸다.(E=IR) 그러나 전류가 증가하게 되면 써미스터의 자기발열 현상이 발생하여 써미스터의 온도를 상승시키고, 결국 써미스터의 저항이 감소하게 된다. 이러한 이유로 특정전류에서 전압이 최대값을 갖고 즉 , dE/dI가 계속적 으로 감소하게 되는 것을 말한다.
|
|
|
(3)전류-시간 특성 |
저항의 감소는 써미스터가 자기발열 될 정도의 충분한 전류가 가해져도 즉시에 감소되지 않으며 또 써미스터가 등가회로상에서 여기(EXCIT)될 때 평형 작동상태에 도달하기 전에 반드시 Time Delay 가 발생하게 된다. 이러한 특성을 전류-시간 특성이라 한다. 이러한 특성은 써미스터의 열방산, 열용량과 회로 구성에 의존한다.
|
|
|
|
|
|