

Solution:

- > Two threshold values V_{ThH} and V_{ThL}
- > Two distinct output values: V_{OH} and V_{OL}
- > the commutation takes place at V_{ThH} only if $v_0 = V_{OH}$
- > the commutation takes place at V_{ThL} only if $v_0 = V_{OL}$
 - ⇒ The threshold values should depend on the output value → The output voltage should be fed back to the input to contribute to the threshold values: *positive feedback* (PF) (to strengthen the effect)
 - Feeding back one fraction of the output voltage to the non-inverting input by means of a resistive divider

$$\Delta V_{Th} = V_{ThH} - V_{ThL} = \frac{R_1}{R_1 + R_2} (V_{OH} - V_{OL})$$

- >moving direction on the hysteresis
- > at a certain moment only one threshold is "active"
 - hysteresis comparators are bistable circuits
- The input signal triggers the switching of the output, the switching process being sustained by the PF

> suppose $V_O = V_{OL}$, $V_I > V_{ThL}$, $V_I \downarrow$, when v_I passes through V_{ThL}

 $V_{I}\downarrow, V_{D}\uparrow, V_{O}\uparrow, V^{\dagger}\uparrow, V_{D}\uparrow, V_{O}\uparrow$ **PF**

> once the v_0 starts to change its value the transition is sustained by the circuit itself due to its PF \Rightarrow fast (accelerated) switching

> Bistable multivibrator circuit or Schmitt triggers

4/8

