

===

ARE YOU SUCH A DREAMER TO PUT THE WORLD TO RIGHTS?
I STAY HOME FOREVER
WHERE 2 AND 2
ALWAYS MAKES A 5

 [THOM YORKE - 2 + 2 = 5]

===

 3

Table of Contents

Acknowledgement .. 5

About the Author[s] .. 5

Introduction .. 5

Data Types .. 6

Binary-Decimal-Hex Refresher ... 6

Negative numbers ... 7

Little Endian or Big Endian? ... 8

REGISTERS ... 9

The Stack ... 11

Caller - Callee Convention .. 11

Structure of Registers .. 12

NOP .. 17

PUSH ... 17

POP ... 18

CALL .. 19

CDECL .. 19

STDCALL .. 21

RET .. 21

MOV ... 22

ADD .. 26

SUB ... 26

LEA .. 26

SHL .. 26

SHR ... 27

AND .. 27

OR ... 28

XOR ... 29

Unconditional Jump... 36

JMP ... 36

Conditional Jumps ... 37

 4

EFLAGS Register .. 37

CMP .. 39

Jcc ... 39

JNE .. 39

IMUL ... 42

DIV .. 42

INC - DEC ... 47

SYSCALLS ... 50

 5

Acknowledgement

 I owe everything I know about x86 architecture to Xeno Kovah. A man who shared his
class videos and slides freely available to everyone which is a noble act. In return to his great
efforts, I decided to write this tutorial on x86 architecture and assembly and publish it for free
so whoever is interested can learn and contribute.

About the Author[s]

 Arash TC is the main author and maintainer of this book. He will appreciate readers'
comments, criticisms and contributions. His main interest is security at its deepest level.

 Special thanks to Gerardo Iglesias Galván for doing a full technical review.

 You can contact the author[s] by visiting http://www.kernelfarm.com/

Introduction

 This book/guide/tutorial/wiki is about assembly and x86 architecture. It's written by a low-
level security dude for low-level security dudes. If you want to learn Assembly and its structure,
reversing basics, Segmentation, Paging, etc. keep on reading. I highly recommend you check
opensecuritytraining.info website and watch Intro to x86 videos as you read this book.

 You need Intel Developer's Manual as a quick reference throughout this book. You can
download it from the link below:

https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

http://www.kernelfarm.com/
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

 6

Data Types

 There are 5 different data types to deal with in the world of Assembly. They are as follows:
 Byte: A byte is simply an 8-bit value (1 byte) and the C equivalent of a Byte is when you
define a character like:
 char alpha = 'a';

 Word: A word is twice the size of a byte; 16-bit value (2 bytes) and it translates to this
piece of code in C:
 short int = 'a'

 DoubleWord: As its name represents, a Double-Word or a DWORD is a 32-bit value
(4 bytes) and it would be translated to:
 int var = 3

 QuadWord: A 64-bit value (8 bytes) with the C equivalent of:
 long int var = ...

 Double-QuadWord: You do the math :)

Binary-Decimal-Hex Refresher

 If you don't know how to work with Hexadecimal and Binary values, I have to tell you to
stop reading this and go kill yourself. Seriously? Ok. Here's a refresher for you:

 7

Negative numbers

 Negative numbers in x86 architecture may seem a little bit weird at first. A negative
Number named N with the positive value of P, is P's two's complement which is equal to one's
complement plus one.
 Holy shit! What was that again? OK! It is very simple and clear if you see it in action.

 P = 1 in decimal = 0x01 in Hex = 00000001 in Binary.
 One's complement is when you flip all the bits of the number P. So:
 P = 00000001 and P's One's complement is all P's bits flipped which equals to:

 Flipped_P = 11111110 in Binary.
 Now what happens if you add one to it and convert it to Hex?
 Flipped_P + 1 = 11111110 + 00000001 = 11111111 ---> 0xFF in Hex.

 8

 So negative one in x86 Hex format would be 0xFF. You can take a look at the following
table to completely comprehend it.

 For signed integers, we have these scopes:

 -From byte 0x01 to byte 0x7F, all bytes are positive.

 -From byte 0x80 to byte 0xFF, all bytes are negative (They are in reversed order, 0xFF is -1
and as you approach a smaller hex value, you approach a smaller negative number).

 -From DWORD 0x00000001 to DWORD 0x7FFFFFFF, all DWORDs are positive.

 -From DWORD 0x80000000 to DWORD 0xFFFFFFFF, all DWORDs are negative (They are in
reversed order, which means that the last one (0xFFFFFFFF) is -1 all the way down to the
smallest).

Little Endian or Big Endian?

 Endianness comes from Jonathan Swifts' "Gulliver's Travels". It doesn't matter which
way you eat your eggs and it certainly matter in computer architecture, right? Well, I don't
know exactly. Probably not. But what matters is that Intel Architecture is "Little-Endian". So
what's up with that?

 In a Little-Endian Architecture, values are stored in RAM starting from the lowest byte. For
example, this is what happens if you want to store the address 0x12345678 in memory:

 0x12345678 --> 0x12 0x34 0x56 0x78 -->

 |

 |

 Into RAM <-- 0x78 0x56 0x34 0x12 <--

 9

 So it's simple. It just starts storing from that lowest byte up to the highest byte.

 In Big-Endian Architecture, values are stored in RAM as they are. Network traffic is Big-
Endian. PowerPC, ARM, SPARC, MIPS, etc. are Big-Endian unless otherwise configured.

 *** Note: Register values are always Big-Endian. Little-Endian only applies when writing to
and reading from RAM (Memory).

REGISTERS

 Registers are small memory storage areas built into the processor. They are still a volatile
type of memory storage so if you power off your PC, you're gonna lose the state of your
registers. Intel architecture defines 8 General Purpose Registers (GPR) for 32 bit platforms and
16 GRP for 64 bit platforms as follows:

 10

 Each of the registers above are 4 bytes long in the 32-bit version, and 8 bytes long in the
64-bit version. Beside those General Purpose Registers, we have EIP (RIP for 64-bit) which is
called the Instruction Pointer which holds the current flow of the execution; and we have
EFLAGS, which is a 32-bit long register of registers. Yeah, I know that might sound crazy but I
will explain them fully later.

 EAX is mostly used when a function wants to return a value and it is also used for lots of
different purposes. You have to see them in action in order to recognize its usability in different
scenarios. EBX is the Base Pointer for data section and EDX is the I/O pointer but let's save
these conventions for later. ECX is mostly used as a counter for repetitive instructions i.e. for a
loop. ESI and EDI are used as Source Index and Destination Index respectively i.e. copying a
string value. ESP is the stack pointer which always points to the top of the current stack. EBP is
the base pointer which always (actually not always :D) points to the bottom

 11

of the current stack frame by convention. I have to mention that these are only some
conventions and you don't have to use them in the exact way. It is simply for simplicity and
readability for your code.

The Stack

 Two very important concepts you need to know, Stack and Heap. I'm gonna tell you what
Stack is now. Stack is a conceptual area of memory (RAM) which mostly holds a function's local
variables. Stack has a Last-In-First-Out data structure, meaning that the first thing that is
pushed onto the stack is the last thing that is gonna pop out. Imagine a bucket full of apples.
The first apple that you put inside the bucket is the last one that you can pull out (of course if
you don't just turn the bucket upside down :D).
 Stack grows down from higher memory addresses to lower memory addresses. For
example, if the stack starts from address 0x7fff4444 (ESP), the next DWORD (4 bytes,
remember?) that you push onto the stack, decrements the stack by 4 bytes and then ESP will
point to 0x7fff4444 - 4 = 0x7fff4440. You will see this in greater detail in the next few
paragraphs.

 OK, you may want me to cut the bullshit and show you some real stuff, right? How
about we see a simple C program? Hell no! We're just getting started. Kidding aside, there are
still some major things you need to know in order to fully understand even a simple "Hello
World" code in Assembly. So stick with me and be patient.

Caller - Callee Convention

 Caller Save Registers mean that whenever you want to call a function, save these
registers (EAX,EDX,ECX 32-bit or RAX,EDX,ECX for 64-bit) somehow so when the execution is
handed over to the function, your data will remain intact. That means the caller is responsible
of saving these registers in order to prevent their destruction when the function modifies the
values held in these registers. The caller is also responsible for restoring the saved values in
registers when execution gets back to it.

 Callee Save Registers means that when the function (the callee) needs more registers
than those which are already saved by the caller, callee is responsible for saving those values
before going to its actual execution point. The registers that the callee is responsible for are
EBP, EBX, ESI, EDI (RBP, RBX, RSI, RDI 64-bit). The callee is responsible for restoring these saved
values back to their place before handing the execution back to the caller.

 12

Structure of Registers

 Every register is divided into some smaller pieces like below:

 13

 14

 15

 16

 You can access the small portions of registers in an assembly code. The concept of
accessing and using these small portions becomes clear in shellcoding when you want your
shellcode to be as small as possible.

 Here are some instructions for you but before you begin, you must know the basic
syntax of an assembly instruction. We have 2 different notations of assembly, Intel notation
and AT&T notation.

 17

 In Intel notation after the instruction, first the destination is mentioned followed by a
comma and the source.

 instruction destination, source

 In AT&T notation after the instruction, first comes the source followed by a comma and then
the destination. Every register has a percent sign(%) appended to the beginning of it. It looks
like this:

 instruction %source, %destination

*** NOTE: The percent sign is only applied to the registers. It is not applied to the immediate
values.

NOP

 YES! The first instruction for you to learn is NOP. NOP stands for No Operation. Better to wipe

that smile off your face and tell me what NOP does. Ha? Nothing? Well, you're wrong! NOP actually does

something. A NOP instruction is like this:

 XCHG eax,eax

 It conceptually does nothing, but behind the scene it exchanges (XCHG as you guessed)
the value in EAX with EAX.

PUSH

 PUSH instruction pushes either a byte, a word, a dword or a quadword onto the stack.
For this part of tutorial, I will only explain pushing a dword (4-byte value) onto the stack. The
rest of them takes seconds to understand. In order to fully understand what a push instruction
does, you have to see it by demonstration. For the following instructions:

(1) PUSH 0x41414141
(2) PUSH 0x42424242
(3) PUSH 0x43434343

 18

 Consider ESP points to some address that holds the content 0xDEADBEEF(0) before
executing the 3 lines above. After the execution of each PUSH instruction, ESP gets
decremented by 4 and the value will be pushed on to the stack and the new ESP will point to it.

POP

 POP is an instruction that is exactly the opposite of a PUSH instruction. It pops(moves)
whatever value that ESP is currently pointing at to another register and will increment ESP by
4(in the case of a DWORD). If you look at the demonstration below, assuming EAX holds the
value 0xDEADCE11 before the execution of the following 3 lines by issuing a PUSH EAX
instruction(1). The current value at the address that ESP is pointing to at the time (CCCC or
0x43434343) will be popped off the stack and it will show up in the EAX register and ESP will be
incremented by 4. Notice that popping values off the stack will not completely destroy the
popped value. It just moves it to the register as the instruction defines and adds 4 bytes to ESP.

(1) POP EAX
(2) POP EAX
(3) POP EAX

*** POP DWORD to a REGISTER

 19

CALL

 One of the most important instructions for you to understand is the CALL instruction
and its conventions. Understanding the calling conventions is crucial in the field of reverse
engineering. So before I tell you what happens while executing a CALL instruction, let's dive into
the calling conventions themselves. The calling conventions define how the code calls a
function(subroutine) and how the parameters are passed to the function. It is mostly
dependent on the compiler and it can be configured to use a certain convention. But there are
few of them and the most commonly used ones are CDECL and STDCALL conventions.

CDECL

 "C Declaration" is the most commonly used convention for all C code and some C++. In
CDECL, the caller must push the parameters of the function that are gonna be called(callee)
onto the stack from right to left. So for example if we have this function in C:

 func (int a, int b){
 ...
 ...
 }

 int main (){
 func(100,200);
 int var = 300;
 return 0;
}

 The value "b" and then "a" must be pushed onto the stack (right to left) before calling
"func". After calling the function "func", callee(func) must save the previous stack frame pointer
and create a new stack frame. Wait a minute! WTF? What's a stack frame? Oops! I forgot to tell
you that. (:D)
 Here, I will explain it now. Each function has its own stack frame. A stack frame is simply
(by convention) an area that is every function's playground in order to store local variables, etc.
By calling a function, after passing the parameters, the called function must set up its own new
stack frame by executing 2 simple instructions as below:

(1) PUSH EBP
(2) MOV EBP,ESP

 20

 Line(1) saves the current stack pointer onto the stack, then on line(2) it will copy it to
the EBP register which always points to the bottom (start of) the stack. Both EBP and ESP hold
the same value. Then after the function starts executing its main functions, ESP will point
somewhere lower than EBP (a frame full of local variables, etc.). A CALL instruction will push the
address of next instruction just after the CALL instruction onto to the stack and will change the
EIP with the address of the first line of the function's code section. Here's a demonstration for
you to see the whole picture:
.
.
.
(1) PUSH 0xC8
(2) PUSH 0x64
(3) CALL func
(4) PUSH 0x12C
.
.
.

Before the call:

After the call:

func:
(1) PUSH EBP
(2) MOV EBP,ESP
.
.
.

 21

 In CDECL calling convention, function's return value will be put in EAX or EDX:EAX for
primitive data types and after returning, caller is responsible for cleaning up the stack. So here
we wrap it up in the list below:

 1. Most common calling convention for all C code and some C++ code.
 2. The called function (the callee) expects its parameter to be pushed onto the stack from right
to left.
 3. First thing that the callee does is saving the old stack frame(PUSH EBP) and setting up a new
one (MOV EBP,ESP). This procedure is called "Function Prologue".

 4. Returns data in EAX or EDX:EAX registers.
 5. Caller is responsible for cleaning up the stack.

STDCALL

 The only difference between STDCALL and CDECL is that in STDCALL, the callee is
responsible for cleaning up the stack. This calling convention is mainly used by Microsoft C++
code (e.g. WIN32 API).

RET

We have 2 forms of Return Instruction:

 1. It translates to the instruction "POP EIP". It means it pops whatever value is on top of the
stack and puts it into EIP. This method is used by a CDECL convention as caller is responsible for
the stack clean-up.

 2. It does exactly as number 1, plus it increments ESP by a given value(i.e. "RET 0x08" in the
previous demonstration) after reverting the previous stack frame, it pops the value pointer by
ESP(address of (4)) and then increments ESP by 8 which will remove the arguments b and a that
were pushed on to the stack before. If you pay close attention, you will recognize that this

 22

action represents a STDCALL convention where the callee is responsible for cleaning up the
stack.

*** Note: In terms of exploitation, specifically buffer overflows, changing the return address
(address of (4) in above demonstration) means gaining control of the EIP register which holds
the key to the program's execution path.

MOV

 A MOV instruction simply copies from source to destination(notice that you have this in the
background process of your brain since we saw it when explaining the stack and calling
conventions). We can move data in 3 different ways:
 1. Register to Register
 2. Memory to Register / Register to Register
 3. Immediate to Register / Immediate to Memory

 As you it guessed the MOV instruction can't move data from memory to memory. The
memory addresses in most of the assembly instructions are used in a way called r/m32 which
will be explained.

Now let's take a look at a very simple piece of code:

*** Note: This piece of code is compiled without any optimization and security protection. Your
assembly instruction may look different but don't
worry because this example serves the educational purpose as we have it in the simplest way.
You will see more complicated and up-to-date instructions
as you go along in this book.

 If we assume that the first thing that's gonna start executing is main(), this piece of code
is gonna call the function sub() and then sub() is
gonna return the hex value 0xBEEF and main is not gonna use it in anyway and return 0xF00D
and exit.

 23

 In assembly code, we assume the entry point of our program is main(). The first 2
instructions are the function prologue as we discussed before. It saves the previous stack frame
(PUSH EBP). This is done based on a simple fact that main() is not the first function that is called
to start executing. There are tons of them, you can check it in gdb if you're interested but for
now we assume main() is the entry point. Later it creates its own stack frame (MOV EBP,ESP).
After executing those 2 lines, the stack should look like this:

 Now when the call Instruction is gonna execute, the address of the very next instruction
after the call instruction in main() is gonna get pushed on to the stack which in this case is
0x00401018 (MOV EAX,0xF00D) and EIP will be point to the first instruction in sub() which is
0x00401000 (PUSH EBP). See when that happens the stack will look like this:

 The only thing that sub() does is returning 0xBEEF. As it was mentioned before, the EAX
register is mostly used for the function's return value. After executing the function's
prologue(PUSH EBP and MOV EBP,ESP), the hex value 0xBEEF is gonna be put in EAX. Here's
how the stack will look like:

 24

 Now the return value of the function sub() has been put in EAX register, it's time get
back to main(). The next instruction to execute is the POP EBP instruction. As mentioned
before, a POP instruction, gets whatever value that ESP currently points at and puts in in the
register that is written in front of it. ESP currently has the value of 0x7FFFFF48 which points to
the value 50FFFF7F(Little-Endian). So after executing POP EBP instruction, the stack will look
like this:

 Now we got back to our previous stack frame by popping the saved EBP back to the EBP
register, it's time to go back to main. When RET is executed, what's gonna happen is that
whatever value that ESP currently points at is gonna pop off the stack and appear in the EIP
register. So here is the stack after executing the RET instruction:

 EIP points to the instruction just after the CALL sub() instruction which is MOV
EAX,0xF00D. Now after executing this, the EAX register will hold the value 0xF00D and the stack
will remain the same. Now what's gonna happen after executing the RET instruction in main()?
The same thing we saw in sub(). The saved EBP(previous stack frame before calling main()) will

 25

be popped off the stack and EBP will be reset again to that value. Then RET will put the saved
EIP value into EIP and decrement ESP by 4 and return to whatever function it was at(probably a
kernel module, I don't know).

 Well that was fairly easy but it was a fairly good example for you to understand how
calling and returning from calls work. Before we jump to our next example, here I introduce you
to R/M32:

 Whenever you see the term R/M32 in Intel's manual or such, it means it can get the
value you're looking for using a combination of a register pointing to a memory location plus
some offset or optionally a scale multiplier. I guess you may be doing your WTF gesture now
(:D). What that means is that you specify a register that points to a memory location that your
program needs and based on that address you may add some offset to it to access the exact
value you want. For example, imagine after calling a function, that function wants to move
some value from previous stack frame to some register to work with. That actually happens
every time a function wants to access the parameters passed to it. If you remember as
mentioned before, right before a call instruction, the parameters passed to the function must
be pushed onto the stack from right to left. So when the called function wants to access those
parameters, if we assume that the function's prologue is executed and the very first instruction
after it is to return its parameter back (just for the sake of simplicity), that instruction would be
as follows:

(00401003) mov eax, [ebp + 8] --> Take EBP, add 8 bytes to it, go to that memory address
 and take whatever is in there and put it in EAX.

 Now one thing you may have noticed is the brackets. So here's a rule which applies 99%
of the time you see a register inside brackets:

 A register(plus the index or scale) simply means that: go to the memory address at that
location and get whatever actual value is in there and do whatever is asked for. We need the
content in that memory address, not the address itself.

 So if we sum up R/M32 it would be:

 26

 [Base index*scale + displacement]

 Where Base is a register such as EAX, EBX, ESP, EBP, etc. and index again is another
register multiplied by a scale plus the displacement(offset). In the above example, we only used
Base plus displacement which happens to be the most common R/M32 form you will see.
Remember that all of these parts in the brackets are optional which means that you can put a
hardcoded memory address inside the bracket (i.e. [7FFFFF58]).

 Here are some new instructions for you to continue to the next example:

ADD

 Fairly easy, right? It takes the source and adds it to the destination and puts the final
value in the destination. For example:

 add eax,0x10 ---> will add decimal value 16(or hex 10) to EAX and
 updates EAX with the result.

SUB

 Exactly like the ADD instruction but it does subtraction instead of addition.

LEA

 Remember when I told you 99% of the time when you see R/M32 and the brackets, it
means go to the memory address and get the actual content not the memory address? Well
that 1% applies to the LEA instruction.

 lea eax,[ebp + 8]

 LEA (Load Effective Address) means that the program only needs the actual address not
the content. When you get the address, put it (load it) in the register specified as destination.
The above example means take the address in EBP and add it by 8 and put the result (which is
an address not the content pointed at by it) and put it in EAX.

SHL

 In order to understand SHL or Shift Logical Left we need to use a number as an example
and work with it. Imagine you have the instructions below which moves the hex value of 10 (or
16 decimal) in EAX and the does a SHL on EAX by 1:

 27

 mov eax, 0x10
 shl eax, 1

 if we turn 0x10 to binary it would be this:

 SHL is a bitwise operation which means it deals with the binary format data. We take
the binary value 00010000 and shift it once to left. The effect of this action is shown below:

 I think after seeing the result, you may have guessed that SHL multiplies an integer by 2
when the amount of shifting required is 1. So what about when it's 2 or 3? YES! It multiplies by
2 to the power of the amount of shifting required.

 shl register, n ---> register = register x 2^n

SHR

 SHR or Shift Logical Right is exactly the same as SHL but it shifts the bits to right. As you
probably guessed, it means division by powers of 2.

 mov eax, 0x10
 shr eax, 2

 After executing the instructions above, what would be the value of EAX? (DIY)

AND

 AND instruction and the next 2 instructions that you'll see are very useful in terms of
stack alignment, addressing, shellcoding and encoding the shellcode that you want to shove
into the stack (or heap or other locations when you use an egghunter). AND instruction takes
the source and the destination, turns them into binary, and performs a bit-by-bit AND
operation and puts the result in destination register. If you don't remember how the AND
operation works, here's a refresher:

 28

 If we have the instructions below:

 mov eax, 0x12345678
 and eax, 0x45454545

 0x12345678 -----> 0001 0010 0011 0100 0101 0110 0111 1000
 0x45454545 -----> 0100 0101 0100 0101 0100 0101 0100 0101
 AND ---
 0x00044440 <----- 0000 0000 0000 0100 0100 0100 0100 0000

 The new value which is 0x44440 will be put in EAX. The AND instruction accepts a
register or an R/M32(or an R/M64 for 64-bit) form as destination. As a source, you can use an
immediate, a register or an R/M32(or R/M64).

OR

 The OR instruction like AND instruction performs a bitwise operation. You can check the
table below as a refresher on the OR operation:

 If we have the instructions below:

 mov eax, 0x12345678
 and eax, 0x45454545

 29

 0x12345678 -----> 0001 0010 0011 0100 0101 0110 0111 1000
 0x45454545 -----> 0100 0101 0100 0101 0100 0101 0100 0101
 AND ---------- ---------------------------------------
 0x5775577D <----- 0101 0111 0111 0101 0101 0111 0111 1101

XOR

 XOR or "eXclusive OR" is a very useful instruction for zeroing out registers in terms of
shellcoding. The XOR operation is slightly different than the OR and AND operations.

 Imagine we're trying to encode our shellcode and we need a clean state of the EAX
register. You may say "Hah! I just do a MOV EAX,0" but are you sure that works? Think again!
You can't pass a Null-Byte(0x00) to your buffer so that is a big problem if you don't know about
XOR. Here's how we can zero out the EAX register with a bit of creativity:

 xor eax, eax

 That's all it takes. Remember the result of an XOR operation is 1 if and only if the
operands are different (look again at the table above). So XOR-ing a value with itself will always
result in zero.

 Now is the time for our second example but this time I want you to do some exercises step
by step. I'm using an Ubuntu VM version 16.04.1 LTS (on VMware). First of all, here's the code
in C which we are going to rip apart:

example2.c

#include <stdlib.h>
int sub(int x, int y){
 return 2*x+y;
}

int main(int argc, char ** argv){

 30

 int a;
 a = atoi(argv[1]);
 return sub(argc,a);
}

Compile and build the program using clang (not GCC) just for convenience:

 bash#> clang -o example2 example2.c -m32 -fno-stack-protector -Wl,-z,relro,-z,now,-
z,noexecstack -static

Now you need to create this file named cmd in order to make it easy for us while debugging
and checking registers:

 bash#> cat assembly/cmd
 display/10i $eip
 display/x $eax
 display/x $ebx
 display/x $ecx
 display/x $edx
 display/x $edi
 display/x $esi
 display/x $ebp
 display/16xw $esp
 break main

using our previous cmd file:

 bash#> gdb -x cmd example2

We configure the debugger to use Intel syntax for the code

 (gdb) set disassembly-flavor intel

Now issuing the commands:

 (gdb) disassemble main
 Dump of assembler code for the main function:
 0x080488a0 <+0>: push ebp
 0x080488a1 <+1>: mov ebp,esp
 0x080488a3 <+3>: sub esp,0x18
 0x080488a6 <+6>: mov eax,DWORD PTR [ebp+0xc]
 0x080488a9 <+9>: mov ecx,DWORD PTR [ebp+0x8]
 0x080488ac <+12>: mov DWORD PTR [ebp-0x4],0x0

 31

 0x080488b3 <+19>: mov DWORD PTR [ebp-0x8],ecx
 0x080488b6 <+22>: mov DWORD PTR [ebp-0xc],eax
 0x080488b9 <+25>: mov eax,DWORD PTR [ebp-0xc]
 0x080488bc <+28>: mov eax,DWORD PTR [eax+0x4]
 0x080488bf <+31>: mov DWORD PTR [esp],eax
 0x080488c2 <+34>: call 0x804d890 <atoi>
 0x080488c7 <+39>: mov DWORD PTR [ebp-0x10],eax
 0x080488ca <+42>: mov eax,DWORD PTR [ebp-0x8]
 0x080488cd <+45>: mov ecx,DWORD PTR [ebp-0x10]
 0x080488d0 <+48>: mov DWORD PTR [esp],eax
 0x080488d3 <+51>: mov DWORD PTR [esp+0x4],ecx
 0x080488d7 <+55>: call 0x8048880 <sub>
 0x080488dc <+60>: add esp,0x18
 0x080488df <+63>: pop ebp
 0x080488e0 <+64>: ret
 End of the assembler dump.
 (gdb) disassemble sub
 Dump of assembler code for the sub function:
 0x08048880 <+0>: push ebp
 0x08048881 <+1>: mov ebp,esp
 0x08048883 <+3>: sub esp,0x8
 0x08048886 <+6>: mov eax,DWORD PTR [ebp+0xc]
 0x08048889 <+9>: mov ecx,DWORD PTR [ebp+0x8]
 0x0804888c <+12>: mov DWORD PTR [ebp-0x4],ecx
 0x0804888f <+15>: mov DWORD PTR [ebp-0x8],eax
 0x08048892 <+18>: mov eax,DWORD PTR [ebp-0x4]
 0x08048895 <+21>: shl eax,0x1
 0x08048898 <+24>: add eax,DWORD PTR [ebp-0x8]
 0x0804889b <+27>: add esp,0x8
 0x0804889e <+30>: pop ebp
 0x0804889f <+31>: ret
 End of the assembler dump.

***Note: If you need some guidance or tutorial on using gdb or linux, look for it elsewhere, not
here!!

 Alright! We start analyzing the assembly line by line and match it with our high-level C
code. Starting with line <+0> of main(), we can see it's saving the old stack frame and creating
its own. Then it pushes ESP down by issuing a SUB ESP,0x18 on line <+3>. In order to make
sense of that, we convert 0x18 to decimal which gives us 24. So it is reserving 24 bytes on the
stack(why?). Here is how the stack looks like:

 32

Then we have these instructions:

 mov eax,DWORD PTR [ebp+0xc]
 mov ecx,DWORD PTR [ebp+0x8]

 ** NOTE: DWORD PTR is Double-Word Pointer. You can just ignore it!

 They are asking for some values beyond our current stack frame. Looks weird? No!
Remember the calling conventions and how the parameters of a function get pushed onto the
stack? That's exactly it and it's asking for main()'s parameters argc and *argv[]. One important
note here is that whenever you see EBP plus something, 99% of the time it's referring to some
parameters passed for the called function. In this case, some function called main() and main()
is asking for its parameters argc and argv. So we complete our picture of the stack:

 EAX = Pointer to the start of argv[] array

 33

 ECX = Holds the number of command line arguments when executing the program in
the command line. For example:

 bash#> ./program 100

has 2 command line arguments.

 Line <+12> corresponds to the first line in main(). The uninitialized variable "a" gets a
NULL(0x00) value. Quickly note that different compilers
and architectures handle the uninitialized variables differently. For example they may end up in
HEAP or even don't end up anywhere until they get
initialized.

 On lines <+19> and <+22> of main, those command-line arguments that we saw
previously which were moved to EAX and ECX, now get copied onto the stack. This time relative
addressing of EBP minus something is used. This type of addresses(EBP minus something) 99%
of the time represent local variables and the function's own variables and procedures. SO after
these 2 line:

 mov DWORD PTR [ebp-0x4],ecx
 mov DWORD PTR [ebp-0x8],eax

the stack will look like this:

 Line <+25> gets the pointer to the start of argv[] array and puts that address in EAX and
on line <+28> it says: go to the start of the array, then go 4 bytes forward and take whatever
value is in there and put it in EAX. If we picture it, it would make more sense:

 <+25>: mov eax,DWORD PTR [ebp-0xc]
 <+28>: mov eax,DWORD PTR [eax+0x4]

 34

 bash#> ./example2 256

 argv[0] is ./example2
 argv[1] is 0x100 or 256

 I hope it's clear now ;D

 Then on line <+31> just before we call atoi() funtion, we need to push its parameter
onto the stack which is argc.

 <+31>: mov DWORD PTR [esp],eax

 After that we call atoi on line <+34> which makes our stack like this:

 We're not gonna go through atoi() function right now. As we learned before, it's gonna
pick up its parameter from [EBP + 0x8] (note that after SAVED EIP is on address [EBP + 0x4]) and
return the value in EAX and use the saved EIP to get back to main(). Then the returned value in
EAX will be placed onto stack at [EBP - 0x10]. Then on line <+42> pointer to argv[] is copied to
EAX and on line <+45> the integer value of argc is copied to ECX. These values EXA,ECX will be
placed at [ESP] and [ESP + 0x4] respectively to be ready to call sub().

 35

 Now we have everything set up to call sub(). After calling sub() and past the function's
prologue, it reserves 8 bytes for its stack frame. On line <+6> and <+9> it takes the local
variables from previous stack frame(main()'s) and copies them in EAX and ECX respectively.
Then it places those values onto its own stack frame at [EBP - 0x4] for ECX and [EBP -0x8] for
EAX. Then again on line <+18> it places the value of [EBP - 0x4] which is integer value of 2 in
EAX. Then on line <+21> we have a shift logical left instruction with shifting of one bit which
translates to multiply by 2 to the power of one and then the next line of instruction, the value
of [EBP - 0x8] which is 256(the imaginary value we passed on command line) will be added to
EAX. The final result will be in EAX and returned to main().

 Now it's time to return to main(). Knowing that sub's return value of 260 in in EAX, it
wipes down its stack frame in line <+27> by adding 8 to ESP. Then it pops the value in ESP(after
adding 8 to ESP) which is the SAVED EBP into EBP register. Then it uses the SAVED EIP to return
to main() (line <+60>).

 The same story fits to the remaining instruction in main. It wipes up the stack frame by
adding 0x18(24 decimal) to ESP. Pops SAVED EBP back
to EBP register and returns to whoever called main().

 36

 Now that we successfully analyzed our second example, it's a good time to introduce
you to concept of jumps. There are some ways to change EIP's value in order to change the
execution path to somewhere else in the program.

 One way of doing that is by using a CALL instruction as mentioned earlier. Remember
that a CALL will push the address of the next instruction onto the stack which was referred to as
SAVED EIP in our demonstrations of stack. A JUMP instruction won't do that. It simply changes
the EIP value and this cause the execution to "jump" to that address and follow execution. We
have different kinds of jump and each of them are a convenient way to assemble a control flow
or a loop in a high-level language. JUMPs are categorized into 2 groups: Conditional and
Unconditional.

Unconditional Jump

JMP

 A JMP instruction is an unconditional jump. All it does is simply changing the value of EIP
with the given address. For example, the piece of code below will simply change the EIP value
with a hardcoded address:

 ____ EIP before = 0xsomething

 /

 JMP 0x00401000

 ______ EIP after = 0x00401000

 Using hardcoded addresses is rarely seen and also not recommended because it highly
reduces the reliability of code. Hence we use the relative form of addressing by using registers.
For example the assembly code below is highly used in vanilla stack-based overflows when we
want to redirect the execution flow to our injected shellcode on the stack:

 jmp esp

 ESP = 0x7fffff50 (start of our injected shellcode)

 Or when our shellcode is at some offset to the address pointed by EAX:

 sub eax,0x100
 jmp eax

 **NOTE: We're gonna see more in-depth discussions on stack overflows later. So don't
worry if you don't have a clue what I'm talking about. Just know that the JMP instruction is an
unconditional jump and will change the execution flow, no questions asked.

 37

Conditional Jumps

 A conditional jump is based on checking a single value in EFLAGS register that is the
result of a comparison. For us to understand how they work, we need to dive into explaining
the EFLAGS register and all of its tiny parts. Obviously that's not convenient to explain every
little thing inside it. You're not reading Intel's manual anyway. So here we go:

EFLAGS Register

 EFLAGS is a register that has a lot of flags! No, shit! (:D). But it is really what it's about.
Flags that control certain parts of the program and its connection with the OS. These flags are
the bits of the EFLAGS register which can be set to 1 or 0. These values are mostly changed
after a comparison or after executing some instruction that has a direct effect on the state of
these bits (flags). Here's the structure of EFLAGS register containing its different flags:

 38

 Well that's a long list and I don't expect you to memorize them. For now, we just have to
know about these flags:

 Zero Flag (ZF): This flag will be set to 1 if comparing 2 things results in equality.

 Sign Flag (SF): As its name represents, it determines if you're dealing with a signed
integer or an unsigned integer.

 39

 Carry Flag (CF): Remember when you were in elementary school and the teacher said if
we want to add 9 to 6:

 Ehem. That's the best way I can describe it. You will see it more in action later. What
were we talking about? Aha! Conditional jumps.

CMP

 Before learning a conditional jump, you need to know how condition is determined,
right? So CMP (Compare) instruction determines that condition. It compares the source and
destination value with each other and set the appropriate bits (flags) accordingly in EFLAGS
register. The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Jcc
 - Jump if Condition is Met

 Conditional jumps have too many different instructions, each designed for a specific
purpose. It's not really convenient to mention all of them here since it will not do you any good.
We just mention a couple of them here with examples. If you are interested to read more about
them (highly recommended), check the Intel's manual (Now you're old enough to check the
manual yourself :p).

JNE

 Jump if Not Equal or (JNE) checks if the Zero-Flag (ZF) is set or not. As the result of a
CMP instruction sets this flag, it will take jump if ZF is not set (0) and will pass to the next
instruction after the JNE instruction if ZF is set (1). Here's an example:

 (1) xor ecx,ecx
 (2) mov eax,0x10
 (3) inc ecx
 (4) cmp eax,ecx
 (5) jne (3)
 (6)

 40

 This piece of assembly represents a very simple and neat loop that loops 16 times. The
first instruction does an "exclusive OR" on ECX. If you remember correctly, this will zero out
ECX. On second line we put decimal value of 16 (hex 0x10) in EAX. After incrementing ECX by 1,
we compare ECX with EAX. Comparing the values 16 and 1 is done by subtracting 1 from 16.
Obviously ZF will not be set to 1 and the jump will be taken. After taking the jump, EIP will point
to line (3). This will increment ECX again by 1. After looping 16 times, ECX will be 0x10 and the
CMP instruction (subtracting 16 - 16) will result in 0 and ZF will be set to 1. This time the
condition for JNE is not met and jump will not be take and EIP will point to line (6).

 It's a good time to take a look at our 3rd example in order to better understand
conditional jumps. This time we won't show you the source code first and we dive into
assembly. This will be our first reversing experience. This time, our assembly is 64-bit.

(gdb) disassemble main
Dump of assembler code for function main:
 0x0000000100000f70 <+0>: push rbp
 0x0000000100000f71 <+1>: mov rbp,rsp
 0x0000000100000f74 <+4>: mov DWORD PTR [rbp-0x4],0x0
 0x0000000100000f7b <+11>: mov DWORD PTR [rbp-0x8],0x5
 0x0000000100000f82 <+18>: mov DWORD PTR [rbp-0xc],0x6
 0x0000000100000f89 <+25>: mov eax,DWORD PTR [rbp-0x8]
 0x0000000100000f8c <+28>: cmp eax,DWORD PTR [rbp-0xc]
 0x0000000100000f8f <+31>: jle 0x100000fa1 <main+49>
 0x0000000100000f95 <+37>: mov DWORD PTR [rbp-0x4],0xffffffff
 0x0000000100000f9c <+44>: jmp 0x100000fa8 <main+56>
 0x0000000100000fa1 <+49>: mov DWORD PTR [rbp-0x4],0x0
 0x0000000100000fa8 <+56>: mov eax,DWORD PTR [rbp-0x4]
 0x0000000100000fab <+59>: pop rbp
 0x0000000100000fac <+60>: ret
End of assembler dump.

 Okie Dockie! First two lines (line <+0> and <+1> in main) are pretty familiar; function
prologue. On line <+4> through <+18> after setting up the new stack frame, we save the value
zero at RBP - 4, value 5 at RBP - 8 and value 6 at RBP - 12. This pretty much looks like the
process of initializing local variables. We can be sure value 5 and 6 are local variables of integer
type but as we saw in our previous examples, 0 can be an uninitialized variable or something
that only exists in the assembly not the source. By now we can guess that our source code
might look like this:

main()
{
int a = 5;
int b = 6;
}

 41

 On line <+25> we see one of these local variables is moved to EAX followed by a
compare instruction that checks these 2 local variables together. On line <+31> we see a new
instruction (Here's a good time to check the manual ;p). JLE (Jump if Less than or Equal to) will
check the value at RBP - 12 which is number 6 with the value in EAX which is 5. This compare
instruction will change the affected flags as follows:

 ZF = 0
 SF = 1
 OF = 0
 CF = 1

 JLE instruction will take the jump if and only if ZF = 1 or SF not be equal to OF (Overflow
Flag). As we can see, EFLAGS register shows that this condition is met, so the jump is taken.
After taking the jump we land on line <+49> which will put zero in EAX, pop the previous stack
frame back into RBP and return. We now noticed that RBP - 4 (the suspicious value of 0) was
indeed something in assembly only and not in the source. It was only used for our return value.
Our best guess for the source code is:

int main() //int is used because the return values are integers
{
 int a = 5;
 int b = 6;
 if(a<b)
 return 0;
 else
 return -1; //if JLE does not meet its condition, the jump will not be
 //taken and the value 0xffffffff will be return which is -1
}

 That's pretty much the source code that was used but do you want to see the real
source code?

int main()
{
 int a = 5;
 int b = 6;
 if(a>b)
 return -1;
 else
 return 0;
}

 The noticeable difference is that in assembly, the condition is check differently
compared to the way it's checked in high level source code. This can be due to several reason

 42

like compiler conventions, optimization, OS, etc. First "else" condition is check which is a less
than or equal to b (opposite of a greater than b).

 By far we know 17 different instructions. 90% of any given program is filled with these
instructions that we learned thus far. But we keep pushing forward anyway. Next instruction.

IMUL

 IMUL is a Signed Multiply instruction. This instruction is used when we want to multiply
by any number that is not a power of 2. IMUL has three different ways to work with (Actually
it's not just 3 different ways. It's 13 but we only mention 3, maybe 4. You can take a look at all
13 different ways in Intel's Manual, volume 2A - Page 3-443. BTW it's Page 3-443 not page 3 to
443 :D)

 (1) --> imul r/m32 ---------> EDX:EAX = EAX x r/m32 --------> Final result 64 bits
 imul r/m64 ---------> RDX:EAX = RAX x r/m64 --------> Final result 128 bits

 In this way, it's gonna take the R/M32 value and multiply it by whatever is inside EAX
and put the result back in to EDX:EAX in a way that EDX will contain the higher 32 bits and EAX
will contain the lower 32 bits. For 64-bit version, you switch EDX and EAX with RDX and RAX
respectively.

 (2) --> imul reg32, r/m32 -------> reg32 = reg32 x r/m32
 imul reg64, r/m64 -------> reg64 = reg64 x r/m64

 You really want me to explain this one? Come on!

 (3) --> imul reg32, r/m32, immediate -----> reg32 = r/m32 x immediate
 imul reg64, r/m64, immediate -----> reg64 = r/m64 x immediate

 Yeah, Yeah! I know! It's the first time you see an instruction with 3 operands. Well, you
better look in the manual every once in a while. You may find interesting things in there :p

DIV

 DIV is Unsigned Division. It has 2 forms in general.

 (1) div r/m8

 This will divide AX by the given r/m8 and will store the quotient in AL and the remainder
in AH. These are small portions of EAX if remember, but I draw the table for you here again:

 43

 (2) div r/m16
 div r/m32
 div r/m64

 For r/m16 form, it takes the value DX:AX and divides it by the given r/m16 value. Then it
stores the quotient in AX and the remainder in DX. If you use your imagination now, for r/m32
and r/m64 it a matter of switch DX and AX with EDX, EAX, RDX and RAX respectively.

 Time for our next example. This time we're gonna see something a little bit different.
And again we're only gonna see the assembly and not the source code. Don't panic. Alright,
here we go:

 Before we begin reversing, we need to understand the first 3 lines and their purpose.
Now we start by asking ourselves, what is ESP + 0x4 ? Why is it copied into ECX? The first
instruction saves an special address which is an offset to ESP and pastes it into ECX. Now if you
take a look at the bottom of this chunk of assembly, on line <+69>, this address is recovered
back into ESP. So we understand the first line now: it's saving the ESP value before doing

 44

anything. But hey! Didn't we do that by the famous "Function Prologue" of "Push EBP" and
"MOV EBP,ESP"? Yes buy take a look at the next instruction on line <+4>. Let's break it down:

 and esp,0xfffffff0

 if we assume ESP is at address 0x7fffff56, this instruction will do a bitwise "AND"
operation to zero out that least significant nibble in ESP.

 and 7 f f f f f 5 6
 f f f f f f f 0

 7 f f f f f 5 0 ---> New ESP

 But why? Because of optimization and performance. In order to have a better
performance on memory calculations, OS optimizes the stack addresses to start at a 16-byte
boundary. This speeds up calculations and addressing which will result in a better performance.
I think you pretty much got the idea. On line <+7>, the real ESP which is at a 0x4-byte offset to
ECX, will be pushed onto the stack. If you take a look at 2-3 line after this, you see ECX is pushed
onto the stack. So why pushing [ECX-0x4]? This is getting complicated right? No! The answer
requires a keen memory.
 [ECX-0x4] is [ESP + 0x4 - 0x4] right? So it's [ESP] which holds the value of the very next
instruction after calling main(). It's the return address!

 Line <+10> and <+11> is what we new before about a function prologue. Now add those
3 new lines above it to your definition on function prologue. After that, ECX is pushed onto the
stack save its value if later instructions and function calls are gonna use ECX register. Maybe a
stack representation would give you the full picture. So after executing line <+14> which
reserves some space for main's local variables, stack should look like this:

**Note: There is an alternative good answer in this link:

 45

http://stackoverflow.com/questions/1147623/trying-to-understand-the-main-disassembly-
first-instructions

 Moving on to the next instructions, on line <+17> and <+24> we see two numbers are
placed on onto the stack. Number 5 will be placed at EBP - 0x14 and number 6 will be placed on
EBP - 0x10. Thus far, we have 2 should have 2 local variables:

 int a = 5;
 int b = 6;

**Note2: We can now recognize the sequence of instructions used to define local variables.

 Next, on line <+31> we see on of our local variables is copied into EAX followed by an
IMUL instruction. If we check closely, we can see, variable a or number 5, is copied into EAX and
then, on line <+34> we have:

 imul eax, DWORD PTR [EBP-0x10]

 ...which means multiply whatever is inside [EBP-0x10] by EAX and put the result back in
EAX. For this example, it multiplies 5 by 6 and EAX will hold the value 30. Later this value is
placed onto the stack at [EBP - 0xC]. Our Stack will be like this:

 Moving on to the next instruction, we see ESP is again subtracted by 0x8. Reserving
space again? Hmm... Although we have empty spaces in our stack but it is reserving more
space. Let's move on and see what happens next. We see the result of the multiply, is now push
onto the stack. The next two instructions after it, is pushing the address of the very next
instruction after the call and then calling printf(). Now we can be sure it is going to print the
value 30 on the screen.

0x08048437 <+44>: push DWORD PTR [ebp-0xc] ----> Pushing the
 parameter needed for the function
 printf() onto the stack.

http://stackoverflow.com/questions/1147623/trying-to-understand-the-main-disassembly-first-instructions
http://stackoverflow.com/questions/1147623/trying-to-understand-the-main-disassembly-first-instructions

 46

0x0804843a <+47>: push 0x80484e0 ----> pointer to
 the format string used with
 printf()

0x0804843f <+52>: call 0x80482e0 <printf@plt> ----> Calling printf();

 Rest of the instructions are closing scene. On line <+57>, we wipe off a part of the stack
by adding 16 bytes to it. This will recover ESP to point to "Previous ESP". Then the value 0 is put
inside EAX.

 0x08048444 <+57>: add esp,0x10
 0x08048447 <+60>: mov eax,0x0

 Now on line <+65> the saved value of ECX will be recovered into ECX again. And then on
line <+69> we use [ECX - 0x4] (ECX was a 4-byte offset to ESP, remember?) to restore the
original unaligned ESP. That's it!

 0x0804844c <+65>: mov ecx,DWORD PTR [ebp-0x4]
 0x0804844f <+68>: leave
 0x08048450 <+69>: lea esp,[ecx-0x4]
 0x08048453 <+72>: ret

 47

 I noticed that I haven't told you about "leave" instruction. Leave is nothing but:

 mov esp,ebp
 pop ebp

 which is the same as what we saw in previous examples when a function wants to
restore the caller's stack frame and return. So anyways, we reversed example4 completely and
here's the result we got for the high-level source code:

#include <stdio.h> // ---> because we used printf()
int main() //----> main() must be an integer because the final
 //return value which we saw in EAX on line <+60> is an
 //integer.
{
int a = 5;
int b = 6;
int c = a*b; //because of the IMUL instruction on our 2 local
 //variables above.

printf("%d", c); // ---> because the result of the multiplication was
 //printed to screen.

return 0; //---> the final return value in EAX is 0.
}

 While examining a program inside a debugger, often time we see 2 instructions that do
a very simple task. These 2 instructions are introduced
here as one:

INC - DEC

 Increment/Decrement instruction accepts only 1 r/m32 value and
increments/decrements it by 1. That doesn't need anymore explanation :D

 How about writing our "Hello World!" program in ASM now, hmm? Perhaps this is the
only time you see "Hello World" at almost the end of a book when learning a new language.
Well, there is a little twist here, I try to explain as clear as possible. First we need to know the
architecture of a program in Assembly. There are 3 different sections (Well, the most important
andgeneral ones) that forms up an assembly program:

 48

 .TEXT : .TEXT section is where all the code goes. In other words, it's the section that holds
the main execution flow of the program. You
 may hear folks refer to this section as "CODE" section.

 .DATA : In this section, all the constants are defined. You can not change the values here
throughout the execution.

 .BSS : ...and all the variables reside in this section.

 Alright, open up a new file and name it whatever you want and save it with ".asm"
extension (I'm doing it on Ubuntu). Let's define 2 sections that we need for our "Hello World"
program in the file "hello.asm", .TEXT and .DATA (Since we're only gonna use constants!):

hello.asm

SECTION .TEXT

SECTION .DATA

 This is the syntax that should be used to define sections in ASM. In almost every
programming language, the starting point of the program is the "main()" function. In Assembly,
the starting point is "_start" (Underline start). Since this function must be globally recognized
throughout whole program, we declare it as GLOBAL:

hello.asm

SECTION .TEXT
 global _start
_start:

SECTION .DATA

 49

 Now we can start writing our "Hello World" Program. Keep in mind that every function
that we have in our program, must be declared in .TEXT section before doing anything (right
after SECTION .TEXT). This should be done in order for the program to be linked correctly to its
binary executable.
 What should we do before printing to screen? Defining the string we want to print. We
do that in .DATA section. The syntax for it is:

 name_of_const db value ;This is a comment! Ehem, db is
 ;"Define Byte" and what it does is
 ;that it places the value in memory
 ;and labels it so we can access it
 ;by a name.

 Later, we need to specify the length of the constant (or string, in this case) that we
defined earlier. This may be a little bit tricky:

 name_of_const equ $ - name_of_const_in_question

 ...tha f**k? Yeah, I know :D. "equ" mean "=". $ means "here"! It literally means the
address of "here" exactly. This is mostly used right after declaring a variable or constant. So if
we say:

 something db "What?"
 length equ $ - something

 it means:

 Declare the string "what?" and save the address of its beginning to the constant
"something". Now something holds the address of the start of that string we declared. So here's
our hello.asm file now:

hello.asm

SECTION .TEXT
 global _start
_start:

SECTION .DATA:
message db "Hello World!",0xa ;0xa is "new-line" character.

length equ $ - message

 50

 Now that we have our constants set up, we still can't finish the "Hello World" program
and move on with our lives. We still miss something very important in our knowledge base.
That important something is "System Calls".

SYSCALLS

 A Sys Call or a System Call is a term used to define the process of handing execution to
the kernel. To be honest, in order to explain a sys call correctly, you also need to know
something called "Ring Level". But I don't wanna throw you in the rabbit hole. So I simplify it for
now and later in the 2nd volume, we're gonna live inside the rabbit hole, like it or not. We have
4 rings in computer architecture starting from ring 0 to ring 3. Ring 0 has the most privilege and
ring 3 has the least. Here I break it down for you:

 Ring 0 : Kernel or the OS, (Kernel Space)
 Ring 1 & 2: Nothing Special, it's not used by most of the OSs
 Ring 3: Programs, Users (User Space)

 A process in ring 3 can't do things in ring 0. It simply doesn't have the privilege. On the
other hand, a process in ring 0 can literally do
whatever it wants. So imagine a ring 3 process wants to execute something but that something
requires ring 0 privilege. What should be done here? The process should call some process in
ring 0 and hand the execution to ring 0. If the process (or the code) is legitimate and ok, ring 0
will accept the request, execute the requested code and returns the execution flow to the caller
with the appropriate result. This is called a Sys Call.(in a nutshell).

 Sys Calls on Linux are done by "int 0x80"(32-bit) or "syscall"(64-bit only) instruction.
Don't mistake it with integer, it's an interrupt. There is a reason why it's called an interrupt.
You'll see the magic in volume 2 when we read about Interrupt Handling and IRQL and
interrupts in general. On Windows, Sys Calls (or interrupts) are done differently. You'll learn
more about it in volume 2 when we talk about windows internals. For now, we focus on Linux.
On Linux, after calling the kernel by "int 0x80" or "syscall" instruction, the operator will pick up
the phone (this is serious :D) and tells you:

 press 0 if you need read sys_read fs/read_write.c
 press 1 if you need write sys_write fs/read_write.c
 press 2 if you need open sys_open fs/open.c
 press 3 if you need close sys_close fs/open.c
 press 4 if you need stat sys_newstat fs/stat.c
 press 5 if you need fstat sys_newfstat fs/stat.c
 press 6 if you need lstat sys_newlstat fs/stat.c
 press 7 if you need poll sys_poll fs/select.c
 press 8 if you need lseek sys_lseek fs/read_write.c
 …

 51

 And it goes on and on and on until it finishes all 313 options that they offer. (Please
don't make a conspiracy theory out of it.). Now we all know nobody is down with listening to all
313 options and then press the button, so we must pick our desired option in advance. For that,
we have a structure and based on that, we prepare everything that we need in advance and
then make the call. The list above is for 64-bit version. Sys call index numbers and order are
different in 64-bit mode and the option are also expanded to 313. Before they were only 190. It
is also very important to know that "int 0x80" and "syscall" handle the calls differently and each
of them have their own uses and conventions. and guess what, they are not the only
instructions for this purpose. 'int 0x80' is mostly referred to as "the legacy" way of calling the
kernel. So what we're gonna do is to write the hello.asm program in both versions so you would
have a clear understanding how they work and recognize their differences. Keep that in mind
that the version of the Linux kernel that your using may be also important but it doesn't affect
us now.

 First, we go for 32-bit, using "int 0x80" instruction. Wait a second, do we know how to
pass the arguments to the function which "int 0x80" is calling? As we learned before from
Caller-Callee conventions, in order to call a function, we need to push its required parameters
onto the stack or move them to proper registers right before the call instruction. The required
parameters for sys_write should be copied to EAX, EBX, ECX, EDX.

 EAX takes the index number (press 4 if you need sys_write... yeah! that one!)
 EBX takes the file descriptor. For standard output, the number is 1.

 ECX hold a pointer to the start of the string you want to print.

 EDX tells how much is the length of the string. (Where is the end? Until where you should
be printing...)

you may wonder how do I know these numbers? I googled. I'm not a robot. Believe me :D So
our hello.asm program will be like this:

hello.asm

SECTION .TEXT
 global _start
_start:
 mov eax,4
 mov ebx,1
 mov ecx,message ;message is a pointer to the start of our
 ;message. Look at .DATA section

 52

 mov edx,length ;length is telling how many characters should
 ;be printed starting from "the starting
 ;pointer"
 int 0x80

SECTION .DATA:
message db "Hello World!",0xa
length equ $ - message

 Haha! We did it. Yeees! No. I have to stop you there. What's gonna happen next? shouldn't
we close the damn program? :D. the index number forexiting a program is 1 for 32-bit and it
should be in EAX. So here will be our final hello.asm:

hello.asm

SECTION .TEXT
 global _start
_start:
 mov eax,4
 mov ebx,1
 mov ecx,message ;message is a pointer to the start of our
 ;message. Look at .DATA section
 mov edx,length ;length is telling how many characters should
 ;be printed starting from "the starting
 ;pointer"
 int 0x80

 mov eax,1
 int 0x80

SECTION .DATA:
message db "Hello World!",0xa
length equ $ - message

 Now go ahead and create an executable from hell.asm using NASM and execute it.
Here's the commands for it:

bash#> nasm -f elf hello.asm
bash#> ./hello
Hello World!
bash#>

 53

 A very important thing to know here is that I ran this code on Ubuntu. On FreeBSD and
other UNIX-like systems index numbers or the way we pass the arguments may be different.
For example on FreeBSD, you have to push the parameters onto the stack instead of moving
them into registers. As I promised before, we gonna write the hello.asm for 64-bit Linux
too. This time we use "syscall" instruction (Fast System Call as the manual says). As mentioned
before, index numbers in 64-bit mode is different than 32-bit mode. This time sys_write is at
index 1. It takes 3 parameters like before: stdout, message, length. These 3 parameters must be
in RDI, RSI,RDX respectively. RAX will hold the index number for syscall which is 1 (again,
sys_write is at index 1 on 64-bit mode).

hello64.asm

SECTION .TEXT
 global _start
_start:
 mov rax, 1 ; sys_write
 mov rdi, 1 ; stdout
 mov rsi, message ; pointer to the start of our string
 mov rdx, length ; length of our string
 syscall

SECTION .DATA:
 message db "Hello World!",0xa ;0xa is "new-line" character.
 length equ $ - message

 Again, we need to close and exit. Remember in C code we write, return(0)? That zero as
you know means successfully executed and now exit. We do that here when we use syscall.
Index number for exit in 64-bit mode is 60 (in EAX) and the return value (0) must be in RDI. Here
is our final program:

hello64.asm

SECTION .TEXT
 global _start
_start:
 mov rax, 1 ; sys_write
 mov rdi, 1 ; stdout
 mov rsi, message ; pointer to the start of our string
 mov rdx, length ; length of our string

 54

 syscall

 mov rax, 60 ; sys_exit
 mov rdi, 0 ; return value
 syscall

SECTION .DATA:
 message db "Hello World!",0xa ;0xa is "new-line" character.
 length equ $ - message

bash#> nasm -f elf64 -o hello64.o hello64.asm
bash#> ld -o hello64 hello64.o
bash#> ./hello64
Hello World!
bash#>

