
Chip Choices

USB Complete                                                                                                141

6

Chip Choices
When you need to select a USB controller for a project, the good news is
that there are plenty of chips to choose from. The down side is that deciding
what controller to use in a project can be overwhelming at first.

As with any project involving embedded systems, the decision depends on
what functions the chip has to perform, cost, availability, and ease of devel-
opment. Ease of development depends on the availability and quality of
development tools, device-driver software for the host, and sample code,
plus your experience with and preferences for device architecture and lan-
guage compilers.

This chapter is a guide to selecting a USB controller, including a tutorial
about what you need to consider and descriptions of a sampling of chips
with a range of abilities. The chips covered include inexpensive ones with
simple architectures and basic USB support as well as more full-featured,
high-end chips. Chapter 20 discusses controllers for use in USB
On-The-Go devices.



Chapter 6

142                                                                                                           USB Complete

Components of a USB Device
Every USB device must have the intelligence to implement the USB proto-
col. The device must detect and respond to requests and other events at its
USB port. The device must be able to provide data to be sent on the bus and
retrieve and use data received on the bus. A microcontroller or applica-
tion-specific integrated circuit (ASIC) typically performs these functions in
the device.

Controller chips vary in how much firmware support they require for USB
communications. Some controllers require little more than accessing a series
of registers to provide and retrieve USB data. Others require the device firm-
ware to handle more of the protocol, including managing the sending of
descriptors to the host, setting data-toggle values, and ensuring that the
appropriate handshake packets are sent.

Some controllers have a general-purpose CPU on chip. Others must inter-
face to an external CPU that handles the non-USB tasks and communicates
with the USB controller as needed. These chips are sometimes called USB
interface chips to distinguish them from microcontrollers with USB capabil-
ities. All USB controllers have a USB port along with whatever buffers, reg-
isters, and other I/O capabilities the controller requires to accomplish its
tasks. A controller chip with a general-purpose CPU has either program and
data memory on-chip or an interface to these in external memory.

For high-volume applications that require fast performance, another option
is to design and manufacture an ASIC. Several sources offer synthesizable
VHDL and Verilog Source code for use in custom ASICs.

Not all controller chips support all four transfer types, and a controller may
support one or more bus speeds. Many controllers support fewer than the
maximum number of endpoint addresses (1 control endpoint and 30 other
endpoint addresses) because few devices need the maximum number.



Chip Choices

USB Complete                                                                                                143

The USB Controller
A typical USB controller contains a USB transceiver, a serial interface
engine, buffers to hold USB data, and registers to store configuration, status,
and control information relating to USB communications.

The Transceiver

The USB transceiver provides a hardware interface between the device’s
USB connector and the circuits that control USB communications. The
transceiver is typically on-chip, but some controllers allow interfacing to an
external transceiver.

The Serial Interface Engine

The circuits that interface to the transceiver form a unit called the serial
interface engine (SIE). The SIE typically handles the sending and receiving
of data in transactions. The SIE doesn’t interpret or use the data, but just
sends the data that has been made available and stores any data received. A
typical SIE does all of the following:

• Detect incoming packets.

• Send packets.

• Detect and generate Start-of-Packet, End-of-Packet, Reset, and Resume
signaling.

• Encode and decode data in the format required on the bus (NRZI with
bit stuffing).

• Check and generate CRC values.

• Check and generate Packet IDs.

• Convert between USB’s serial data and parallel data in registers or mem-
ory.

Implementing these functions requires about 2500 gates.

Buffers

USB controllers use buffers to store recently received data and data that’s
ready to be sent on the bus. In some chips, such as PLX Technology’s



Chapter 6

144                                                                                                           USB Complete

NET2272, the CPU accesses the buffers by reading and writing to registers,
while others, such as Cypress Semiconductor’s EZ-USB, reserve a portion of
data memory for the buffers.

Buffers that hold transmitted or received data are often structured as FIFO
(first in, first out) buffers. Each read of a receive FIFO returns the byte that
has been in the buffer the longest. Each write to a transmit FIFO stores a
byte that will transmit after all of the bytes already in the buffer have trans-
mitted. An internal pointer to the next location to be read or written to
increments automatically as the firmware reads or writes to the FIFO.

In some chips, such as Cypress’ enCoRe series, the USB buffers are in ordi-
nary data memory and the firmware explicitly selects each location to read
and write to. There is no pointer that increments automatically when the
firmware reads or writes to the buffers. The bytes in the USB transmit buffer
go out in order from the lowest address to the highest, and the bytes in a
USB receive buffer are stored in the order they arrive, from lowest address to
highest. These buffers technically aren’t FIFOs, but are sometimes called
that anyway.

To enable faster transfers, some chips have double buffers that can store two
full sets of data in each direction. While one block is transmitting, the firm-
ware can write the next block of data into the other buffer so the data will be
ready to go as soon as the first block finishes transmitting. In the receive
direction, the extra buffer enables a new transaction’s data to arrive before
the firmware has finished processing data from the previous transaction.
The hardware automatically switches, or ping-pongs, between the two buff-
ers. Some high-speed controllers, such as Cypress’ EZ-USB FX2 series, sup-
port quadruple buffers.

Configuration, Status, and Control Information

USB controller chips typically have registers that hold information about
what endpoints are enabled, the number of bytes received, the number of
bytes ready to transmit, Suspend-state status, error-checking information,
and other information about how the interface will be used and the current
status of transmitted or received data. For example, setting a bit in a config-



Chip Choices

USB Complete                                                                                                145

uration register may enable an endpoint. The number of registers, their con-
tents, and how to access them vary with the chip family. Because these
details vary with the chip or chip family, the low-level device firmware for
USB communications is specific to each chip or chip family.

Clock

USB communications require a timing source, typically provided by a crys-
tal oscillator. Low-speed devices can sometimes use a less expensive ceramic
resonator. Some controllers have on-chip clock circuits and don’t require an
external timing source.

Other Device Components
In addition to a USB interface, the circuits in a typical USB device include a
CPU, program and data memory, other I/O interfaces, and additional fea-
tures such as timers and counters. These circuits may be in the controller
chip or in separate components.

CPU

A USB device’s CPU controls the chip’s actions by executing instructions in
the firmware stored in the chip. If the USB controller has a CPU on-chip,
the CPU may be based on a general-purpose microcontroller such as the
8051 or PICMicro, or the CPU may be an architecture developed specifi-
cally for USB applications. An interface-only USB controller can interface
to any CPU with a compatible interface.

Program Memory

The program memory holds the code that the CPU executes. The program
code assists in USB communications and carries out whatever other tasks
the chip is responsible for. This memory may be in the microcontroller or in
a separate chip.

The program storage may use any of a number of memory types: ROM,
EPROM, EEPROM, Flash memory, or RAM. All except RAM (unless it’s
battery-backed) are nonvolatile; the memory retains its data after powering
down. The amount of program memory may range from a couple of kilo-



Chapter 6

146                                                                                                           USB Complete

bytes on up. Chips that can access memory off-chip may support a Mega-
byte or more of program memory.

Another name for the code stored in program memory is firmware, which
indicates that the memory is non-volatile and not as easily changed as pro-
gram code that can be loaded into RAM, edited, and re-saved on disk. In
this book, I use the term firmware to refer to a controller’s program code,
with the understanding that the code may be stored in a variety of memory
types, some more volatile than others.

ROM (read-only memory) must be mask-programmed at the factory and
can’t be erased. It’s practical only for product runs in the thousands.

EPROM (erasable programmable ROM) is user-programmable. Many chips
have inexpensive programming hardware and software available. To erase an
EPROM, you insert the chip into an EPROM eraser, which exposes the cir-
cuits beneath the chip’s quartz window to ultraviolet light. Data sheets rarely
specify the number of erase/reprogram cycles that the chip can withstand,
but it’s typically at least 100.

OTP (one-time programmable) PROMs are a cheaper, non-erasable alterna-
tive to erasable EPROMs. Internally, they’re identical to EPROMs, and you
program them exactly like EPROMs. The difference is that the chips lack
the window for erasing. The erasable varieties are useful for product devel-
opment. Then to save cost, you can switch to OTP PROMs for the final
product run. Many microcontrollers have both EPROM and OTP PROM
variants.

Flash memory is another electrically-erasable memory technology that is
popular because it doesn’t need a quartz window and often doesn’t need the
special programming voltage required by other EPROMs. Current
Flash-memory technology enables around 100,000 erase/reprogram cycles.
Because Flash memory is easily reprogrammable, it’s handy for making
changes during project development and for programming the final firm-
ware in low-volume projects

EEPROM (electrically erasable PROM) also doesn’t need a window, nor
does it need the special programming voltage required by other EPROMs.
EEPROMs tend to have longer access times than Flash memory. EEPROMs



Chip Choices

USB Complete                                                                                                147

are available both with the parallel interface used by EPROMs and Flash
memory, and with a variety of synchronous serial interfaces: Microwire, I2C,
and SPI. Serial EEPROMs are useful for storing small amounts of data that
changes only occasionally, such as configuration data, including the Vendor
ID and Product ID. Cypress’ EZ-USB controllers can store their firmware
in a serial EEPROM and load the firmware into RAM on powering up.
Current EEPROM technology enables around 10 million erase/reprogram
cycles.

RAM (random-access memory) can be erased and rewritten endlessly, but
the stored data disappears when the chip powers down. It’s possible to use
RAM for program storage by using battery backup or by loading the code
from a PC on each power-up. Any CPU with external program memory can
use battery-backed RAM for program storage. Cypress Semiconductor’s
EZ-USB chips can use RAM for program storage, along with special hard-
ware and driver code that loads code into the chip on power up or attach-
ment. Host-loadable RAM has no limit on the number of erase/rewrite
cycles. For battery-backed RAM, the limit is the battery life. Access times for
RAM are fast.

Data Memory

Data memory provides temporary storage during program execution. The
contents of data memory may include data received from the USB port,
data to be sent to the USB port, values to be used in calculations, or any-
thing else the chip needs to remember or keep track of. Data memory is usu-
ally RAM. Typical amounts of internal data memory are 128 to 1024 bytes.

Other I/O

Every USB controller has an interface to the world outside of itself in addi-
tion to the USB port. An interface-only chip must have a local bus or other
interface to the device’s CPU. (An exception is FTDI Chip’s controllers used
in Bit Bang mode to implement basic inputs and outputs.) Most chips also
have a series of general-purpose input and output (I/O) pins that can con-
nect to other circuits. A chip may have built-in support for other serial inter-
faces, such as an asynchronous interface for RS-232, or synchronous



Chapter 6

148                                                                                                           USB Complete

interfaces such as I2C, Microwire, and SPI. Some chips have special-purpose
interfaces. For example, the Philips UDA1325 is a stereo USB codec for
audio applications and contains an I2S (Inter-IC Sound) digital stereo play-
back input and output.

Other Features

A device controller chip may have additional features such as hardware tim-
ers, counters, analog-to-digital and digital-to-analog converters, and
pulse-width-modulation (PWM) outputs. Just about anything that you
might find in a general-purpose microcontroller is likely to be available in a
USB device controller.

Simplifying Device Development 
In selecting a chip for a project, an obvious consideration is finding a con-
troller that meets the hardware requirements of the product being designed.
In addition, project development will be easier and quicker if you select a
controller chip with all of the following:

• A chip architecture and programming language that you’re familiar with.

• Detailed and well-organized hardware documentation.

• Well-documented, bug-free example firmware for an application similar
to yours.

• A development system that enables easy downloading and debugging of
firmware.

In addition, your project will progress more quickly if the host system can
use a class driver included with the operating system or a well-documented
and bug-free driver provided by the chip vendor or another source and
usable as-is or with minimal modifications.

These are not trivial considerations! The right choices will save you many
hours and much aggravation.



Chip Choices

USB Complete                                                                                                149

Device Requirements
In selecting a device controller suitable for a project, these are some of the
areas to consider:

How fast does the data need to transfer? A device’s rate of data transfer
depends on whether the device supports low, full, or high speed, the transfer
type being used, and how busy the bus is. As a device designer, you don’t
control how busy a user’s bus will be, but you can select a speed and transfer
type that give the best possible performance for your application.

If a product requires no more than low-speed interrupt and control trans-
fers, a low-speed chip may save money in circuit-board design, components,
and cables. HID-class devices can use low-speed chips. But remember that
low-speed devices can transfer only eight data bytes per transaction, and the
USB specification limits the guaranteed bandwidth for an interrupt end-
point to 800 bytes/second, which is much less than the bus speed of 1.5
Megabits/second. Even if low speed is feasible, don’t rule out full or high
speed automatically. Implementing low speed’s slower edge rates increases
the manufacturing cost of low-speed controllers, so the controller chips
themselves may not be cheaper. You may find a full-speed or even a
high-speed chip that can do the job at the same or even a lower price.

Compared to low and full speed, circuit-board design for high-speed devices
is more critical and can add to the cost of a product. In most cases, devices
that support high speed should also support full speed to enable them to
work with 1.x hosts and hubs.

How many and what type of endpoints? Each endpoint address is config-
ured to support a transfer type and direction. A device that does only con-
trol transfers needs just the default endpoint. Interrupt, bulk, or
isochronous transfers require additional endpoint addresses. Not all chips
support all transfer types. Most support fewer than the maximum possible
number of endpoints.

Must the firmware be easily upgradable? For program memory, some
devices use windowed EPROM, OTP PROM, or other memory that isn’t
easily erased and re-written. To change the program, you need to insert a



Chapter 6

150                                                                                                           USB Complete

new chip or remove, erase, re-program, and replace the chip. Cypress’
EZ-USB has an easier way, with the ability to load firmware from the host
into RAM on each power up or attachment. Another option is to store the
program code in electrically reprogrammable Flash memory or EEPROM.
This memory can be in the device controller or in an external chip. The
Device Firmware Upgrade class specification describes a mechanism for load-
ing firmware from a host to a device. Chapter 7 has more about this class.

Does the device require a flexible cable? One reason why mice are almost
certain to be low-speed devices is that the less stringent requirements for
low-speed cables mean that the cable can be thinner and more flexible.
However, USB 2.0-compliant low-speed cables have the same requirements
as full and high speed except that the braided outer shield and twisted pair
are recommended, but not required.

Does the device require a long cable? A cable that attaches to a low-speed
device can be no longer than three meters, while full-speed cables can be five
meters.

What other hardware features and abilities are needed? Other things to
consider are the amount of general-purpose or specialized I/O, the size of
program and data memory, on-chip timers, and other special features that a
particular device might require.

Chip Documentation
Most vendors supplement their chips’ data sheets with technical manuals,
application notes, example code, and other documentation. The best way to
get a head start on writing firmware is to begin with example code that’s
similar to your application. Working from an example is much easier than
trying to put something together from scratch. Chip and tool vendors vary
widely in the amount and quality of documentation and example code pro-
vided, so it’s worth checking the manufacturers’ Web sites to find out what’s
available before you commit to a chip. In some cases you can find code
examples from other sources, especially via the Internet, from other users
who are willing to share what they’ve written.



Chip Choices

USB Complete                                                                                                151

Driver Choices
The other side of programming a USB device is the driver and application
software at the host. Here again, examples are useful.

If your device fits into a class supported by the operating systems the device
will run under, you don’t have to worry about writing or finding a device
driver. For example, applications can access a HID-class device using stan-
dard API functions that communicate with the HID drivers included with
Windows.

Some vendors provide a generic driver that you can use to exchange data
with the device. An examples is Cypress’ CyUsb driver, which is a gen-
eral-purpose driver suitable for communicating with any device that con-
tains a Cypress controller and doesn’t belong to a standard class. Silicon
Laboratories is another manufacturer that provides a general-purpose driver
for use with the company’s chips. Chapter 7 and Chapter 8 have more about
classes and device drivers.

Debugging Tools
Ease of debugging also makes a big difference in how easy it is to get a
project up and running. Products that can help include development boards
and software offered by chip vendors and other sources. A protocol analyzer
is also very useful during debugging. Chapter 17 has more about protocol
analyzers.

Development Boards from Chip Vendors

Chip manufacturers offer development boards and debugging software to
make it easier for developers to test and debug new designs. A development
board enables you to load a program from a PC into the chip’s program
memory, or into circuits that emulate the chip’s hardware.

Silicon Laboratories’ C8051F32x controllers include a dedicated 2-wire
debugging interface that uses no additional memory or port bits on the
chip. These chips don’t require using an emulator or assigning of chip
resources to debugging.



Chapter 6

152                                                                                                           USB Complete

The debugging software provided with a development board is typically a
monitor program that runs on a PC and enables you to control program
execution and watch the results. Standard features include the ability to step
through a program line by line, set breakpoints, and view the contents of the
chip’s registers and memory. You can run the monitor program and a test
application at the same time. You can see exactly what happens inside the
chip when it communicates with your application.

If you have a development system for your favorite microcontroller family,
you may be able to use the system for USB developing as well.

Boards from Other Sources

If you’re on a strict budget, inexpensive printed-circuit boards from a variety
of vendors can serve as an alternative to the development kits offered by chip
manufacturers. You can also use these boards as the base for one-of-a-kind or
small-scale projects, saving the time and expense of designing and making a
board for the controller chip.

I/O Boards. A typical board contains a USB controller and connector along
with a variety of I/O pins that you can connect to external circuits of your
own design. The EZ-USB family is a natural choice for this type of board
because its firmware is downloadable from the host, so you don’t have to
worry about programming hardware. Several sources offer boards with
EZ-USB chips.

The USB I2C/IO board from DeVaSys Embedded Systems (Figure 6-1)
contains an AN2131 EZ-USB chip, a connector with 20 bits of I/O, an I2C
interface for synchronous serial communications, and an asynchronous
serial interface. The on-board 24LC128 is an I2C EEPROM that can store
16 kilobytes of data, including a Vendor ID, Product ID, and firmware. The
board can load its firmware from EEPROM or from the host on attachment
or power-up.

DeVaSys provides the board’s schematic and a free custom device driver and
firmware that enable applications to open communications and read and
write to ports, including the I2C port. If you prefer, you can load your own



Chip Choices

USB Complete                                                                                                153

firmware into the device and use your own driver or a driver provided by
Windows.

Other sources offer similar boards using the EZ-USB and other controllers.

Emulating a Device with a PC. Another option that can be useful in the
early stages of developing is using a PC to emulate a device. You can use the
compilers, debuggers, and other software tools you’re familiar with on your
PC and compile, run, and debug the device code on the PC.

PLX Technology’s NET2272 PCI-RDK is a development kit that enables
using a PC as a device when developing code using PLX Technology’s
NET2272 USB interface chip. The kit includes a PCI card with a header
that attaches to a daughter card that contains a NET2272. You can install
the PCI card in a PC and write applications that perform the role of device
firmware that communicates with the interface chip. The application can
run as a console application on the PC.

Figure 6-1: The USB I2C/IO board from DeVaSys contains an EZ-USB and a 
variety of options for I/O.



Chapter 6

154                                                                                                           USB Complete

The USB connector on the PCI card can connect to any USB host. When
development on the emulated device is complete, you can port the firmware
to run on the CPU that the final design will use. If you want to use the
development kit’s circuits, you can remove the daughter board from the PCI
card and wire the daughter board to your device’s hardware.

Of course, there may be timing differences on the emulated device, and the
PC won’t have the same hardware architecture as the device, but the ease of
developing on a PC can help in getting the code for enumerating and basic
data transfers working quickly.

Controllers with Embedded CPUs
The following descriptions of USB controllers with embedded CPUs will
give an idea of the range of chips available. The chips described are a sam-
pling, and new chips are being released all the time, so any new project war-
rants checking the latest offerings.

If you have a favorite CPU family, the chances are good that a USB-capable
variant is available. Controllers that are compatible with existing chip fami-
lies have two advantages. Many developers are already familiar with the
architecture and instruction set. And selecting a popular family means that
programming and debugging tools are available, and example code and
other advice is likely to be available from other users.

The family with the most sources for device controllers is the venerable
8051. Intel originated the 8051 family and was the first to release
8051-compatible USB controllers (the 8x930 and 8x931). Intel no longer
offers USB-capable 8051s, but other manufacturers do. Controllers compat-
ible with other families are available as well, including Atmel’s AVR, Micro-
chip’s PICmicro, and Freescale Semiconductor’s 68HC05 and 68HC08.
Table 6-1 lists a variety of chips that are compatible with popular microcon-
troller families.

Some device controllers contain CPUs designed specifically for USB appli-
cations. Instead of adding USB capability to an existing architecture, the



Chip Choices

USB Complete                                                                                                155

designs are optimized for USB from the start. Cypress Semiconductor’s
enCoRe family is an example.

For common applications such as keyboards, drives, and interface convert-
ers, there are application-specific controllers that include hardware to sup-
port a particular application. The vendor often provides example firmware

Table 6-1: USB controller chips that are compatible with popular microcontroller 
families are available from many sources.
Compatibility Manufacturer Chips Bus Speed

Atmel AVR Atmel AT43USB35x, 
AT76C713 

Full

Freescale/Motorola 
68HC05

Freescale 
Semiconductor

68HC05JB3/4 Low

Freescale/Motorola 
68HC08

Freescale 
Semiconductor

68HC08JB8 Low

Freescale/Motorola 
PowerPC

Freescale 
Semiconductor

MCF5482 Full/High

Infineon C166 Infineon C161U Full

Intel 80C186 AMD Am186CC Full

Intel 8051 Atmel AT89C513x Full

Cypress 
Semiconductor

EZ-USB, EZ-USB FX Full

EZ-USB FX2 Full/High

Prolific Technology PL-23xx Full

PL-25xx Full/High

Silicon Laboratories C8051F32x Full

Standard 
Microsystems 
Corporation (SMSC)

USB97Cxxx, 
USB222x

Full, Full/High

Texas Instruments TUSB3210/3410 Full

TUSB6250 Full/High

Microchip PIC16 Microchip 
Technology

PIC16C7x5 Low

Microchip PIC18 Microchip 
Technology

PIC18F2455/2550/
4455/4550

Full/High

STMicroelectronics 
ST7, ST9

STMicroelectronics ST7265X, ST7263, 
ST92163

Low, Full



Chapter 6

156                                                                                                           USB Complete

and software drivers when needed as well. Chapter 7 has more about con-
trollers for specific applications.

The chips described below each contain a CPU and a USB controller. 

Microchip PIC18F4550
Microchip Technology’s PICmicro microcontrollers have many fans because
of the chips’ low cost, wide availability, many variants, speed, and low power
consumption. The PIC18F4550 is a PICmicro microcontroller with a USB
controller that can function at low and full speeds. Microchip offers several
other full-speed variants with different combinations of features.

Architecture

The chip is a member of Microchip’s high-performance, low-cost PIC18
series. Program memory is Flash memory. The chip also has 256 bytes of
EEPROM. A bootloader routine can upgrade firmware via the USB port.

The chip has 34 I/O pins that include a 10-bit analog-to-digital converter, a
USART, a synchronous serial port that can be configured to use I2C or SPI,
enhanced PWM capabilities, and two analog comparators.

The USB module and CPU can use separate clock sources, enabling the
CPU to use a slower, power-saving clock.

USB Controller

The USB controller supports all four transfer types and up to 30 endpoint
addresses plus the default endpoint. The endpoints share 1 kilobyte of
buffer memory, and transfers can use double buffering. For isochronous
transfers, USB data can transfer directly to and from a streaming parallel
port.

For each enabled endpoint address, the firmware must reserve memory for a
buffer and a buffer descriptor. The buffer descriptor consists of four regis-
ters. The status register contains status information and the two highest bits
of the endpoint’s byte count. The byte count register plus the two bits in the
status register contain the number of bytes to be transmitted or sent in an
IN transaction or the number of bytes expected or received in an OUT



Chip Choices

USB Complete                                                                                                157

transaction. The address low register and address high register contain the
starting address for the endpoint’s buffer in RAM.

The microcontroller’s CPU and the USB SIE share access to the buffers and
buffer descriptors. A UOWN bit in the buffer descriptor’s status register
determines whether the CPU or SIE owns a buffer and its buffer descriptor.
The SIE has ownership when data is ready to transmit or when waiting to
receive data on the bus. When the SIE has ownership, the CPU should not
attempt to access the buffer or buffer descriptor, except to read the UOWN
bit. When readying an endpoint to perform a transfer, the last operation the
firmware should perform is updating the status register to set UOWN to
pass ownership to the SIE. When a transaction completes, the SIE clears the
UOWN bit, passing ownership back to the CPU.

Each endpoint number also has a control register that can enable either a
control endpoint, an IN endpoint, an OUT endpoint, or a pair of IN and
OUT endpoints with the same endpoint number. Other bits in the register
can stall the endpoint and disable handshaking (for isochronous transac-
tions).

Additional registers store the device’s address on the bus and contain status
and control information for USB communications and interrupts.

Microchip provides USB Firmware Framework code and example applica-
tions for USB communications. The firmware is written for Microchip’s
C18 C compiler. The Framework code is structured to make it as easy as
possible to develop firmware for devices in different classes and vendor-spe-
cific devices. Chapter 11 has more about using this chip. 

Two other USB-capable microcontrollers from Microchip are the
PIC16C745 and PIC16C765. These are less flexible because they support
low speed only and their program memory is EPROM instead of Flash
memory.

Cypress EZ-USB
Cypress Semiconductor’s EZ-USB family includes full-speed and full/high
speed controllers. The chips support a variety of options for storing firm-



Chapter 6

158                                                                                                           USB Complete

ware, including loading firmware from the host on each power-up or attach-
ment.

The EZ-USB family originated with Anchor Chips, which Cypress acquired
in 1999. You may see the name Anchor in older documentation.

Architecture

The EZ-USB’s architecture is similar to Maxim Integrated Products/Dallas
Semiconductor’s DS80C320, which is an 8051 whose core has been rede-
signed for enhanced performance. The chip uses four clock cycles per
instruction cycle, compared to the original 8051’s twelve. Each instruction
takes between one and five instruction cycles. On average, an EZ-USB is 2.5
times as fast as an 8051 with the same clock speed.

The instruction set is compatible with the 8051’s. All of the combined code
and data memory is RAM. There is no non-volatile memory on-chip. How-
ever, the chips support non-volatile storage in I2C serial EEPROM and in
external parallel memory.

The EZ-USB family includes three series: the basic EZ-USB (AN21XX),
the FX (CY7C646XX), and the FX2 (CY7C68013). Within each series are
chips that vary in features such as the number of I/O pins or availability of
an external data bus. Table 6-2 summarizes the features of each series. The
FX series adds faster I/O and a general programmable interface that sup-
ports configurable, automated handshaking. The FX2 series adds support
for high speed.

Keil Software has a C compiler for the EZ-USB family, or you can use
assembly code. The compiler has a limited but free evaluation version.
Cypress provides Frameworks firmware in C to handle much of the work of
USB communications.

USB Controller

Some of the EZ-USB chips support the maximum number of endpoints
and all four transfer types. Chips with fewer endpoints are also available.
The EZ-USB’s many options for storing firmware make its architecture



Chip Choices

USB Complete                                                                                                159

more complicated compared to other chips. The options are useful because
they make the chip very flexible, so I’ll describe them in some detail.

When an EZ-USB wants to use firmware stored in the host, the device enu-
merates twice. On boot up or device attachment, the host attempts to enu-
merate the device. But how can the host enumerate a device with no stored
firmware? Every EZ-USB contains a core that knows how to respond to
enumeration requests and can control communications when the device first
attaches to the bus. The EZ-USB core is independent from the 8051 core
that normally controls the chip after enumeration. The EZ-USB core com-
municates with the host while holding the 8051 core in the reset state.

The EZ-USB core also responds to vendor-specific requests that enable the
chip to receive, store, and run firmware received from the host. For basic

Table 6-2: Cypress Semiconductor’s EZ-USB family is compatible with the 8051 
microcontroller.
Feature AN21xx 

(EZ-USB)
CY7C646xx 
(EZ-USB-FX)

CY7C68013
(EZ-USB-FX2)

Speed Full Full Full/High

Number of endpoints 13, 16, 31 31 11

Compatibility 80C320, 8051 80C320, 8051 80C320, 8051

RAM (bytes) 256 + 4-8K combined 
data and program 
memory

256 + 4-8K combined 
data and program 
memory

256 + 8K combined 
data and program 
memory

Program memory 
type

RAM, serial 
EEPROM, external 
parallel

RAM, serial 
EEPROM, external 
parallel

RAM, serial 
EEPROM, external 
parallel

Internal program 
memory (bytes)

4–8K combined data 
and program memory

4–8K combined data 
and program memory

8K combined data and 
program memory

External memory bus 
(bytes)

64K 64K one or two 64K buses

General-purpose I/O 
pins

16–24 16–40 16–40

Other I/O 2 UARTs, I2C 2 UARTs, I2C 2 UARTs, I2C

Power Supply Volt-
age

3–3.6 3–3.6 3–3.6

Number of Pins 44, 48, 80 52, 80, 128 56, 100, 128



Chapter 6

160                                                                                                           USB Complete

testing, the core circuits also enable the device to transfer data using all four
transfer types without any firmware programming.

A ReNum register bit determines whether the EZ-USB or 8051 core
responds to requests at Endpoint 0. On power-up, ReNum is zero and the
EZ-USB core controls Endpoint 0. When ReNum is set to one, the 8051
core controls Endpoint 0.

The source of an EZ-USB’s firmware depends on two things: the contents of
the initial bytes in an external EEPROM and the state of the chip’s EA
input. On power-up and before enumeration, the EZ-USB core attempts to
read bytes from a serial EEPROM on the chip’s I2C interface. The result,
along with the state of the chip’s EA input, tell the core what to do next: use
the default mode, load firmware from the host, load firmware from
EEPROM, or boot from code memory on the external parallel data bus
(Table 6-3). Chips in all three EZ-USB series can use the methods described
below. The values in the first EEPROM locations vary depending on
whether the chip is an EZ-USB, EZ-USB-FX or EZ-USB-FX2. The
description below uses the values for the basic EZ-USB. Table 6-3 has the
values for the other series.

Default Mode. The default mode is the most basic mode of operation and
doesn’t use the serial EEPROM or other external memory. The EZ-USB
core uses this mode if EA is logic low and either the core detects no
EEPROM or the first byte read from EEPROM is not B0h or B2h.

When the host enumerates the device, the EZ-USB core responds to
requests. During this time, the 8051 core is in the reset state. This reset state
is controlled by a register bit in the chip. The host can request to write to
this bit to place the chip in and out of reset. This reset affects the 8051 core
only and is unrelated to USB’s Reset signaling.

The descriptors retrieved by the host identify the device as a Default USB
Device. The host matches the retrieved Vendor ID and Product ID with val-
ues in a Cypress-provided INF file that instructs the host to load one of
Cypress’ general purpose drivers (either the CyUsb driver or the older Gen-
eral Purpose Driver) to communicate with the chip. The ReNum bit
remains at zero.



Chip Choices

USB Complete                                                                                                161

This default mode is intended for use in debugging. You can use this mode
to get the USB interface up and transferring data. In addition to supporting
transfers over Endpoint 0, the Default USB Device can use the other three
transfer types on other endpoints. All of this is possible without having to
write any firmware or device drivers.

Load Firmware from the Host. The core can also read identifying bytes
from the EEPROM on power up and provide this information to the host
during enumeration. If the first value read from the EEPROM is B0h, the
core reads EEPROM bytes containing the chip’s Vendor ID, Product ID,
and release number. On device attachment or system boot up, the host uses
these bytes to find a matching INF file that identifies a driver for the device.
The driver contains firmware to download to the device before re-enumerat-
ing. Cypress provides instructions for building a driver with this ability.

The driver uses the vendor-specific Firmware Load request to download the
firmware to the device. The firmware contains a new set of descriptors and
the code the device will run. For example, a HID-class device will have
report descriptors and code for transferring HID report data.

On completing the download, the driver causes the chip to exit the reset
state and run the firmware. By writing to a register that controls the chip’s

Table 6-3: An EZ-USB can run firmware from four sources.
Firmware Source State of EA pin First Byte in Serial EEPROM

Load from host on 
re-enumerating

Don’t care EZ-USB: B0h
EZ-USB-FX: B4h
EZ-USB-FX2: C0h

Load from serial EEPROM Don’t care EZ-USB: B2h
EZ-USB-FX: B6h
EZ-USB-FX2: C2h

Default USB Device L No EEPROM present or
EZ-USB: not B0h or B2h,
EZ-USB-FX: not B4h or B6h, 
EZ-USB-FX2: not C0h or C2h, 

External parallel memory H No EEPROM present or
EZ-USB: not B0h or B2h,
EZ-USB-FX: not B4h or B6h, 
EZ-USB-FX2: not C0h or C2h



Chapter 6

162                                                                                                           USB Complete

DISCON# pin, the firmware causes the device to electrically emulate
removal from, then reattachment to the bus. The pin either pulls up or
floats one end of a resistor whose opposite end connects to D+. The pin
indicates device attachment when pulled up and device removal when float-
ing. The firmware also sets ReNum to 1 to cause the 8051 core, instead of
the EZ-USB core, to respond to requests at Endpoint 0.

On detecting the emulated re-attachment, the host enumerates the device
again, this time retrieving the newly stored descriptors and using the infor-
mation in them to select a device driver to load.

The obvious advantage to storing the firmware on the host is easy updates.
To update the firmware, you just store the new version on the host and the
driver sends the firmware to the device on the next power up or attachment.
There’s no need to replace the chip or use special programming hardware or
software. The disadvantages are increased complexity of the device driver,
the need to have the firmware available on the host, and longer enumeration
time.

Load Firmware from EEPROM. A third mode of operation provides a way
for the chip to store its firmware in an external serial EEPROM. If the first
byte read from the EEPROM is B2h, the core loads the EEPROM’s entire
contents into RAM on power-up. The EEPROM must contain the Vendor
ID, Product ID, and release number as well as all descriptors required for
enumeration and whatever other firmware and data the device requires. On
exiting the reset state, the device has everything it needs for USB communi-
cations. The core sets the ReNum bit to 1 on completing the loading of the
code. When enumerating the device, the host reads the stored descriptors
and loads the appropriate driver. There is no re-enumeration.

Run Code from External Parallel Memory. If no EEPROM is detected, or
if the first byte isn’t B0h or B2h, and if EA is a logic high, the chip boots
from code memory on the external parallel data bus. This memory can be
EPROM, EEPROM, Flash memory, or battery-backed RAM. The memory
contains the descriptors and other firmware. ReNum is set to 1. The host
enumerates the device and loads a driver, and there is no re-enumeration.



Chip Choices

USB Complete                                                                                                163

Cypress enCoRe II

The chips in Cypress Semiconductor’s enCoRe II series (yes, that odd capi-
talization is how Cypress has trademarked the name) are inexpensive,
low-speed controllers with an instruction set optimized for USB communi-
cations. 

CPU Architecture

The enCoRe II series is the latest in Cypress’ offerings of low-speed control-
lers. The chips are similar to the original enCoRe controllers except that the
program memory is Flash memory instead of OTP EPROM. The architec-
ture is unique to Cypress, so to program in assembly code, you’ll need to
learn a new instruction set. However, the instruction set is small and learn-
ing the syntax should be fairly painless if you have experience with assem-
bly-code programming. A C compiler is also available.

The series includes chips with varying amounts of program memory, num-
ber of I/O pins, and packaging. The options include up to 256 bytes of
RAM, 8 kilobytes of Flash memory, and 36 I/O pins, with two of the pins
serving as the USB interface.

The chips contain internal oscillators that eliminate the need to add external
crystals or resonators. The USB port can be configured for PS/2 (synchro-
nous serial) communications to enable a pointing device to support both
interfaces. When USB mode is disabled, the two USB pins can serve as a
serial-programming-mode interface for Flash programming.

USB Controller

The enCoRe II controllers have three endpoints, the required Endpoint 0
plus endpoints 1 and 2 for interrupt transfers. The chip can support one
interrupt IN endpoint and one interrupt OUT endpoint, or two interrupt
endpoints in the same direction. Each endpoint has an 8-byte buffer in
RAM. USB communications require a fair amount of firmware support, so
example code is helpful.



Chapter 6

164                                                                                                           USB Complete

Freescale MC68HC908JB16
Freescale Semiconductor’s MC68HC08 family of 8-bit microcontrollers
includes chips with Flash memory and support for low-speed USB. The
MC68HC908JB16 is an example. Freescale Semiconductor was created in
2004 when Motorola, Inc., spun off its Semiconductor Products sector.

Architecture

The MC68HC08 family is an upgrade to Freescale’s popular MC68HC05
family. The ’HC08 chips are faster and more efficient, and the object code is
upward compatible with ’HC05 code.

The ’HC908JB16 contains 16 kilobytes of Flash memory and 21 I/O pins.
Two of the I/O pins are the USB interface. Some of the other I/O pins have
hardware support for synchronous serial communications and a keyboard
interface. A monitor ROM enables Flash-memory programming and
debugging over an asynchronous serial interface using a single pin on the
chip.

USB Controller

The USB controller is low speed and supports Endpoint 0, one interrupt IN
endpoint, and one endpoint that can be configured as interrupt IN or inter-
rupt OUT.

Freescale MCF5482 ColdFire
An example of a high-end controller with USB capability is Freescale Semi-
conductor’s MCF5482 ColdFire microprocessor. The chip contains a 32-bit
CPU and a full/high-speed USB device controller plus an Ethernet control-
ler and plenty of other I/O. A request processor automatically processes
many standard USB requests. For example, on receiving a Get_Descriptor
request, the request processor retrieves the requested descriptor from RAM
and returns the descriptor to the host. The chip supports Endpoint 0 and
seven additional endpoint addresses.



Chip Choices

USB Complete                                                                                                165

Controllers that Interface to External 
CPUs

A controller that interfaces to an external CPU enables you to add USB to
just about any microcontroller circuit. A disadvantage is the need to use two
chips, while other controllers combine the CPU and USB controller on one
chip. Also, example circuits and code for USB communications using your
CPU may not be available.

Controllers that interface to an external CPU may support a command set
for USB-related communications, or the controller may just use a series of
registers to store USB data and configuration, status, and control informa-
tion.

Most interface chips have a local data bus that uses a parallel interface to
communicate with the CPU. For fast transfers with external memory, many
chips support direct memory access (DMA). In a device with a DMA con-
troller, the CPU can set up a transfer that reads or writes a block of data into
or from data memory without CPU intervention. For CPUs that don’t have
external parallel buses, a few controllers can use a synchronous or asynchro-
nous serial interface. An interrupt pin can signal the CPU when the control-
ler has received USB data or needs new data to send.

Table 6-4 compares a selection of interface chips. The following descriptions
will give an idea of the range of chips available. New chips are being released
all the time, so any new project warrants checking the latest offerings.

National Semiconductor USBN9603
National Semiconductor’s USBN9603 can interface to any CPU with a par-
allel data bus, a Microwire interface, or even just four spare I/O pins con-
trolled entirely in firmware to support Microwire communications.

Architecture

The ’9603 has a serial interface engine for handling USB communications,
USB endpoint buffers, and status and control registers. A CPU can access



Chapter 6

166                                                                                                           USB Complete

the endpoint buffers and status and control registers at addresses 00h
through 3Fh via an external, local bus.

The chip offers three options for accessing the local data bus: non-multi-
plexed parallel, multiplexed parallel, and Microwire synchronous serial.

Most CPUs with external data buses can use one of the parallel interfaces
with little or no additional logic. For faster transfers of blocks of data, the
chip supports a burst mode where the CPU writes a starting address to the
controller chip, then transmits or receives multiple bytes at consecutive
addresses. The external CPU must also support this mode. The parallel
interfaces also support DMA transfers.

For microcontrollers that don’t have an external parallel data bus, the ’9603
offers a solution in its Microwire interface. Microwire requires just four lines
and can interface to just about any microcontroller with four spare I/O pins.
The interface uses data lines serial in (SIN) and serial out (SOUT), a chip
select (CS), and a clock line (SYNC). Command/address and data bytes
shift in and out, bit by bit, using transitions on the SYNC line as a timing
reference. The external CPU controls SYNC. There is no minimum SYNC
frequency, and the signal doesn’t have to have a constant frequency; the
CPU can toggle the line as needed. The interface just has to be fast enough
to keep up with the USB traffic. If the USB port transfers only small, occa-
sional blocks of data, you can program Microwire communications in firm-

Table 6-4: A Selection of USB Controllers that Interface to an external CPU.
Company Chips CPU Interface Bus Speed

Agere Systems USS-820D Parallel Full

FTDI Chip FT232BM Asynchronous serial Full

FT245BM Parallel Full

National 
Semiconductor

USBN9603/4 Parallel, Microwire Full

Philips 
Semiconductors

PDIUSBD12, 
ISP1181/83

Parallel Full

ISP1581 Parallel Full/High

PLX Technology NET22272 Parallel Full/High



Chip Choices

USB Complete                                                                                                167

ware. Some microcontrollers, such as National Semiconductor’s COP888,
have support for Microwire built in.

USB Controller

The ’9603 supports seven endpoint addresses: Endpoint 0 for control trans-
fers, three IN endpoints, and three OUT endpoints. Endpoint 0’s buffer is 8
bytes; the others are 64 bytes. An endpoint can receive a packet larger than
the buffer size if the firmware reads incoming data fast enough to prevent
the buffer from overflowing. In a similar way, an endpoint can send a packet
larger than the buffer size if the firmware writes to the buffer fast enough to
prevent the buffer from emptying. The USBN9604 is an identical chip
except that its chip reset also resets the chip’s clock-generation circuit. The
’9604 is recommended for use in bus-powered devices.

Philips Semiconductors ISP1181B
The ISP1181B from Philips Semiconductors is a full-speed chip that inter-
faces to an external CPU over a parallel interface. 

Architecture

The chip has a serial interface engine for handling USB traffic, a config-
urable 8- or 16-bit data bus, and a 2-bit address bus. The controller commu-
nicates with a CPU via a command set. When address bit A0 = 1, the
controller interprets the lower byte on the data bus as a command. For com-
mands that are followed by data, the CPU sets address bit A0 = 0 and trans-
fers data to or from a register or endpoint buffer.

The chip supports multiplexed and non-multiplexed address buses and
DMA transfers.

The ISP1183 is a low-power version with an 8-bit data bus and 32 pins,
compared to 48 pins on the ’1181. An earlier Philips chip, the
PDIUSBD12, has a similar architecture but is less capable, with a slower
data bus and fewer USB endpoints.

TE
AM
 F
LY



Chapter 6

168                                                                                                           USB Complete

USB Controller

The ’1181B’s USB controller supports Endpoint 0 plus up to 14 additional
endpoint addresses. All enabled endpoints share 2462 bytes of buffer mem-
ory. The control endpoint has 64-byte buffers. The amount of memory allo-
cated to each of the other endpoint addresses is configurable. Isochronous
and bulk endpoints are double buffered.

Firmware controls when the chip attaches to the bus. The chip appears
detached from the bus until the external CPU sends a command to switch
an internal pull-up resistor onto the bus’s D+ line. The firmware-controlled
connection can give the chip time to initialize on power up before being
enumerated by the host.

A status output can connect to an LED that lights when a USB connection
has been established and blinks on data transfers.

Philips Semiconductors ISP1581
The ISP1581 from Philips Semiconductors is a full/high-speed controller
that interfaces to an external CPU over a parallel interface.

Architecture

The chip has a serial interface engine for handling USB traffic, a 16-bit data
bus, and an 8-bit address bus. An external CPU can communicate with the
controller by accessing a series of registers. The controller supports multi-
plexed and non-multiplexed address buses and DMA transfers.

USB Controller

The USB controller supports full and high speeds. In addition to Endpoint
0, the chip can support up to seven IN endpoint addresses and seven OUT
endpoint addresses. All enabled endpoints share 8 kilobytes of buffer mem-
ory. The control endpoint has 64-byte buffers. The amount of memory allo-
cated to each of the other endpoint addresses is configurable, and any of
these endpoint addresses can use double buffering.

Firmware controls when the chip attaches to the bus. An external pull-up
resistor connects to the chip’s RPU pin and to a pull-up voltage. After a



Chip Choices

USB Complete                                                                                                169

hardware reset, the chip appears detached from the bus until the external
CPU sets a register bit that causes the chip to switch the pull-up onto the
bus’s D+ line. This firmware-controlled connection can give the chip time to
initialize on power up before being enumerated by the host.

PLX Technology NET2272
PLX Technology, Inc.’s NET2272 is a full/high-speed chip that interfaces to
an external CPU over a parallel interface. PLX Technology acquired Netchip
Technology, Inc. and its USB controllers in 2004.

Architecture

A series of registers hold configuration data and other information. Packet
buffers hold USB data that has been received and data that is ready to trans-
mit. The parallel interface has 5 address bits and 16 data bits. Transfers to
and from the packet buffers can be 8 or 16 bits.

The registers store status and control information and the data received in
the last Setup transaction. The CPU also uses registers to read and write
endpoint data from and to the packet buffers.

The ’2272 supports three modes for accessing its registers. In direct address
mode, the five address bits specify a register to read or write to. In multi-
plexed address mode, the CPU places the register address on the data bits
and the ’2272 reads the address on the falling edge of the ALE control sig-
nal. In indirect address mode, the CPU uses the lowest address bit to distin-
guish between a register address pointer (0) and data (1). The CPU writes a
register address pointer to specify a configuration register and then reads or
writes data at the address pointed to. Direct and multiplexed address modes
can access only the registers from 00h to 1Fh, which typically contain the
information accessed most frequently. Indirect address mode can access all
registers. The controller also supports DMA transfers. A CPU can write to
the ’2272 at up to 60 Megabytes/sec. and can read from the ’2272 at up to
57 Megabytes/sec (in DMA mode).

To access endpoint data in the packet buffers, the CPU selects an endpoint
by writing to the Endpoint Page Select register or the DMA Endpoint Select



Chapter 6

170                                                                                                           USB Complete

register and then accesses the data by reading or writing to the Endpoint
Data register.

USB Controller

The ’2272’s USB controller supports full and high speeds and all four trans-
fer types. The controller has three physical endpoints in addition to End-
point 0. A device that needs more endpoints can use virtual endpoints,
where one or more logical endpoints share a physical endpoint’s resources.
The device firmware must switch resources between the logical and physical
endpoints as needed.

Endpoint 0 has a 128-byte buffer, and the other endpoints share 3 kilobytes
of packet buffers. Two of the endpoints can use double buffers. On receiving
a Setup packet, the device firmware must read the request and provide any
data to return to the host. After a failed IN or OUT transaction, an end-
point automatically recovers and waits for the host to retry.

FTDI Chip FT232BM and FT245BM
Future Technology Devices International (FTDI) Chip offers controllers
that take a different approach to USB design. The FT232BM USB UART
and FT245BM USB FIFO are interface chips that manage enumeration and
other bus communications completely in hardware. The chips are designed
for use with host drivers provided by FTDI Chip. The controllers require no
USB-specific firmware at all, though you can use an EEPROM to store val-
ues for some items in the descriptors. The device firmware only needs to
provide data for the controller to send and retrieve received data. Because
the USB communications are handled entirely in hardware and use FTDI
Chip’s driver, you can even use FTDI Chips’ Vendor ID in devices you
develop and market.

These controllers can be a good solution if your device doesn’t require a
standard class driver and you need no more than one bulk or isochronous
port in each direction



Chip Choices

USB Complete                                                                                                171

Architecture

Both chips are full speed. The FT245BM has a parallel interface and the
FT232BM has an asynchronous serial interface.

Table 6-5 shows the functions of the pins on the ’245BM. The parallel
interface has 8 data lines and four handshaking signals. The names of the
handshaking signals are from the perspective of the external CPU that inter-
faces to the chip. The RXF# output is low when the CPU can read a byte
received from the host. The CPU strobes RD# to read the byte. In the other
direction, the TXE# output goes low when the CPU can write a byte to
send to the USB host, and the CPU strobes WR to write the byte into the
’245BM’s buffer. The external CPU can use a data bus or any spare port
pins to access the ’245BM. 

The ’232BM converts between USB and an asynchronous serial interface.
Table 6-6 shows the functions of the pins. The serial interface includes a
TXD data output, an RXD data input, and pins for standard RS-232 hand-
shaking signals (RTS, CTS, DTR, DSR, DCD, and RI). A TXDEN output
is high when data is transmitting on TXD. This output can interface
directly to the transmit-enable input of an RS-485 transceiver, eliminating
the need to enable the transmitter using firmware and additional hardware.
The ’232BM functions as a DTE as defined by the EIA/TIA-232 standard.
(The RS-232 ports on PCs are also DTEs.) On a DTE, the TXD, RTS#,
and DTR signals are outputs, and the RXD, CTS#, and DSR signals are
inputs. A device that functions as a DCE has complimentary signals. (For
example, TXD is an input and RXD is an output.) To connect two DTEs to
each other, use a null-modem cable that swaps the signal pairs so each out-
put connects to its corresponding input.

To create a USB/RS-232 converter, use a Maxim MAX3245 or similar chip
to convert between the ’232BM’s 5V logic signals and RS-232 voltages. In a
similar way, you can interface the ’232BM to an RS-485 transceiver. Chap-
ter 7 has more about using the ’232BM to convert devices to USB from
these legacy interfaces.

Both chips also support a Bit Bang mode, where the chip operates as a very
basic controller without requiring a connection to an external CPU. On the



Chapter 6

172                                                                                                           USB Complete

Table 6-5: Pinout of the FT245BM USB FIFO.
Pin Name I/O Description

1 EESK Output EEPROM clock

2 EEDATA Output EEPROM data

3 VCC Power +4.35 to 5.25V

4 RESET# Input Reset the chip

5 RSTOUT# Output Output of the Reset Generator

6 3V3OUT Output Regulated +3.3V output

7 USBDP I/O D+ USB data

8 USBDM I/O D- USB data

9 GND Power Ground

10 PWREN# Output Goes low when device is configured, goes high in Suspend state

11 SI/WU IN Send USB data on next bulk IN/request remote wakeup

12 RXF# Output Goes low when the FIFO contains data that the CPU can read

13 VCCIO Power +3.0 to 5.25V

14 TXE# Output Goes low when the CPU can write data into the FIFO

15 WR Input On H > L transition, writes D0–D7 to the transmit FIFO buffer

16 RD# Input On H > L transition, places a byte from the receive FIFO buffer 
on D0–D7 for the CPU to read

17 GND Power Ground

18 D7 I/O Data bit 7

19 D6 I/O Data bit 6

20 D5 I/O Data bit 5

21 D4 I/O Data bit 4

22 D3 I/O Data bit 3

23 D2 I/O Data bit 2

24 D1 I/O Data bit 1

25 D0 I/O Data bit 0

26 VCC Power +4.35 to 5.25V

27 XTIN Input Crystal oscillator cell input

28 XTOUT Output Crystal Oscillator cell output

29 AGND Power Analog ground

30 AVCC Power Analog power supply

31 TEST Input Bring high to enable Test mode

32 EECS I/O EEPROM Chip Select



Chip Choices

USB Complete                                                                                                173

Table 6-6: Pinout of the FT232BM USB UART.
Pin Name I/O Description

1 EESK Output EEPROM clock

2 EEDATA Output EEPROM data

3 VCC Power +4.35 to 5.25V

4 RESET# Input Reset the chip

5 RSTOUT# Output Output of the Reset Generator

6 3V3OUT Output Regulated +3.3V output

7 USBDP I/O D+ USB data

8 USBDM I/O D- USB data

9 GND Power Ground

10 SLEEP# Output Goes low in Suspend state

11 RXLED# Output Receive LED driver, open-collector

12 TXLED# Output Transmit LED driver, open-collector

13 VCCIO Power +3.0 to 5.25V

14 PWRCTL Input Tie low for bus power, high for self power

15 PWREN# Output Goes low when device is configured, goes high in Suspend state

16 TXDEN Output Transmit enable for RS-485

17 GND Power Ground

18 RI# Input Ring Indicator

19 DCD Output Data Carrier Detect

20 DSR# Input Data Set Ready

21 DTR# Output Data Terminal Ready

22 CTS# Input Clear To Send

23 RTS# Output Request To Send

24 RXD Input Receive Data

25 TXD Output Transmit Data

26 VCC Power +4.35 to 5.25V

27 XTIN Input Crystal oscillator cell input

28 XTOUT Output Crystal Oscillator cell output

29 AGND Power Analog ground

30 AVCC Power Analog power supply

31 TEST Input Bring high to enable Test mode

32 EECS I/O EEPROM Chip Select



Chapter 6

174                                                                                                           USB Complete

’245BM, the data-bus pins function as an 8-bit I/O port. On the ’232BM,
the data and handshaking pins are the I/O port. You can use FTDI Chip’s
driver to configure the pins as inputs or outputs in any combination. The
outputs can control LEDs, relays, or other circuits. The inputs can interface
to switches and logic-gate outputs. Host applications can read and write to
the I/O pins over the USB connection.

USB Controller

Unlike other device controllers, the ’232BM and ’245BM aren’t designed as
general-purpose devices that can be programmed to use any host driver.
Instead, FTDI Chip offers two driver options, a Virtual COM Port Driver
and a D2XX Direct Driver.

With the Virtual COM Port driver, the device appears to the host as if the
device were connected to a COM (RS-232) port. In most cases, an RS-232
device converted to USB with a ’232BM requires no changes to application
software that accesses the device. Under Windows, applications can access a
device with a ’232BM using standard API functions (ReadFile, WriteFile) or
other classes, libraries, or toolkits for COM-port communications. The
’245BM can use the Virtual COM Port driver as well.

If you don’t want to use COM-port programming, need faster performance,
or want to use Bit Bang mode, FTDI Chip provides the D2XX Direct
Driver, which provides a series of vendor-specific functions that applications
can use to communicate with the device.

The chips support a Microwire interface to an EEPROM that can store ven-
dor-specific values for items such as a Vendor ID, Product ID, strings that
contain a serial number, manufacturer, and product description, and speci-
fying whether the device is bus- or self-powered. If there is no EEPROM
data for an item, the controller uses a default value. FTDI Chip provides a
utility that programs the information into an EEPROM connected to a
’232BM or ’245BM.

With no EEPROM, the chips use FTDI Chips’ Vendor ID and Product ID.
On request, FTDI Chip will also grant the right for your device to use their
Vendor ID and a Product ID that FTDI Chip assigns to you. Eliminating



Chip Choices

USB Complete                                                                                                175

the need to buy a Vendor ID is a huge advantage for developers of inexpen-
sive products that sell in small quantities.

Both chips have a 384-byte transmit buffer and a 128-byte receive buffer.
The ’245BM’s data bus can transfer data at up to 1 Megabyte/sec. The
’232BM’s asynchronous serial port can transfer data at up to 3 Million
baud, which works out to 300 kilobytes/sec. with one Start bit and one Stop
bit per byte. 

The chips use bulk transfers by default. A driver for isochronous transfers is
also available.

Another controller from FTDI Chip is the FT2232C Dual USB
UART/FIFO. The chip contains two controllers that each support several
configurations. The options include the equivalent of a ’232BM or ’245BM
interface, a synchronous serial interface, and an 8051-compatible parallel
interface. A fast, optoisolated serial-interface mode enables creating an iso-
lated synchronous interface using external optoisolators. A high-drive-level
option enables the I/O pins to source and sink up to 6 milliamperes (at 3.2V
minimum for source current and 0.6V maximum for sink current).

Figure 6-2: For easy prototyping with FTDI Chips’ controllers, use DLP 
Design’s DLP-USB232M and DLP-USBS245M modules.



Chapter 6

176                                                                                                           USB Complete

All of the chips are available in surface-mount packages only. For easy proto-
typing, a variety of sources provide circuit boards that contain a controller
chip, EEPROM, a USB connector, and headers for easy attachment to your
CPU and other circuits. One source is DLP Design, whose DLP-USB232M
and DLP-USBS245M modules are circuit boards mounted on 24-pin DIP
sockets (Figure 6-2). The circuits on the boards are similar to those in FTDI
Chip’s example schematics.

Chapter 14 has more about designing devices using these chips, including
example applications.


