
Device Classes

USB Complete 177

7

Device Classes
This chapter is an introduction to the defined USB classes including how to
decide whether a new design will fit a defined class or will require a custom
driver.

About Classes
Most USB devices have much in common with other devices that perform
similar functions. All mice send information about mouse movements and
button clicks. All drives transfer files. All printers receive data to print and
send status information back to the host.

When a group of devices or interfaces share many attributes or provide or
request similar services, it makes sense to define the attributes and services in
a class specification. The specification can serve as a guide for developers
who design and program devices in the class and for programmers who write
device drivers for host systems that communicate with the devices. Operat-
ing systems can provide drivers for common classes, eliminating the need for
device vendors to provide drivers for devices in those classes.

Chapter 7

178 USB Complete

When a device in a supported class has unique features or abilities not
included in a class’s driver, a device vendor sometimes can provide a filter
driver to support the added features and abilities, rather than writing a com-
plete device driver. In other cases, a filter driver isn’t feasible and the device
requires a custom driver.

Even if a device’s class isn’t supported by the operating system, a class may be
supported in a future edition of the operating system. Firmware that com-
plies with a class specification is likely to be compatible with any driver
added in future editions of the operating system.

Device Working Groups
The USB-IF releases class specifications developed by Device Working
Groups, whose members have expertise and interest in a particular area. A
special case is the hub class, which is defined in the main USB 2.0 specifica-
tion rather than in a separate document. Every operating system must sup-
port the hub class because the host requires a root hub to do any
communications.

The defined classes cover most common device functions. A specification
with a version number of 1.0 or higher is an approved specification and is
suitable for use as a reference in developing devices and drivers for commer-
cial release. Table 7-1 lists the classes with approved specifications.

Windows includes drivers to support many of these classes. As Windows
and the class specifications have evolved, the number of supported classes
and the level of support for the classes have improved. For some of the more
obscure classes, such as Device Firmware Upgrade, Windows doesn’t provide
a driver even though the specification was approved years ago. Chapter 4
listed the defined class codes devices may have in their device and interface
descriptors. Table 7-2 shows the class drivers added in each edition of Win-
dows.

Elements of a Class Specification
All USB class specifications are based on the Common Class specification,
which describes what information a class specification should contain and

Device Classes

USB Complete 179

how to organize a specification document. A class specification defines the
number and type of required and optional endpoints devices in a class may
have. A specification may also define or name formats for data to be trans-
ferred, including both application data (such as keypresses or video data)
and status and control information relating to the device and its operation.
Some class specifications define functions or capabilities that describe how
the data being transferred will be used. For example, the HID class has
Usage Tables that define how to interpret data sent by keyboards, mice, joy-
sticks, and other HIDs. Some classes use USB to transfer data in a format
defined by another specification. An example is the SCSI commands used
by mass-storage devices.

A class specification may define values for items in standard descriptors as
well as defining class-specific descriptors, interfaces, endpoint uses, and con-
trol requests. For example, the device descriptor for a hub includes a
bDeviceClass value of 09h to indicate that the device belongs to the hub
class. The hub must have a class-specific hub descriptor with a descriptor
type of 29h. Hubs must also support class-specific requests. For example,
when the host sends a Get_Port_Status request to a hub with a port number
in the Index field, the hub responds with status information for the port. A

Table 7-1: These classes have approved class specifications.
Class Descriptor Where Class Is Declared

Audio Interface

Chip/Smart Card Interface Interface

Communication Device or Interface

Content Security Interface

Device Firmware Upgrade Interface (subclass of Application Specific Interface)

Human Interface (HID) Interface

IrDA Bridge Interface (subclass of Application Specific Interface)

Mass Storage Interface

Printer Interface

Still Image Capture Interface

Test and Measurement Interface (subclass of Application Specific Interface)

Video Interface

Chapter 7

180 USB Complete

class may also require a device to support specific endpoints or comply with
tighter timing for standard requests.

Table 7-2: Microsoft has added USB class support with each release of
Windows. The releases are listed top to bottom from earliest to latest. Except as
noted, each release also includes the drivers provided with earlier releases.
Windows Edition USB Version Compli-

ance
USB Drivers Added

Windows 98 Gold
(original release)

1.0 Audio

HID 1.0

Video
(USB camera minidriver library USBCAMD
1.0; not supported under Windows 2000)

Windows 98 SE 1.1 Communication device: modem

HID 1.1 (adds the ability to do interrupt OUT
transfers)

Still image (first phase/preliminary)

Windows 2000 1.1
(2.0 support added in
Service Pack 4 (SP4)

Mass storage. Support for multiple LUNs
(partitions) added in Service Pack 3 (SP3).

Printer

Communication device: Remote NDIS
(Network Device Interface Specification)

Still image (much improved)

Chip/Smart Card Interface
(available from Windows update)

Windows Me 1.1 Audio: MIDI

Video
(USB camera minidriver library USBCAMD
2.0)

Windows XP 1.1;
2.0 support added in
Service Pack 1 (SP1);
interface association
descriptor support added
in Service Pack 2 (SP2).

Audio: MIDI, improved

Video-class driver added in Service Pack 2
(SP2).

Device Classes

USB Complete 181

Defined Classes
The following sections introduce the defined classes. I don’t attempt to
repeat every detail in the specification documents. Instead, my goal is to give
enough information to help you decide what class a new design might fit
into, what resources a device requires to support a class’s communications,
examples of device controllers to use for devices in the class, and what level
of support, if any, to expect for the class under Windows.

Audio
The audio class is for devices that send or receive audio data, which may
contain encoded voice, music, or other sounds. Audio functions are often
part of a device that also supports video, storage, or other functions. Audio
devices can use isochronous transfers for audio streams or bulk transfers for
data encoded using the MIDI (Musical Instrument Digital Interface) proto-
col.

This section describes version 1.0 of the audio specification. At this writing,
version 2.0 is under development. Version 2.0 will not be backwards com-
patible with version 1.0. In other words, a 2.0 device won’t work with a 1.0
host driver. The proposed changes in version 2.0 include complete support
for high-speed operation, use of the interface association descriptor, and
support for many new capabilities and controls.

Documentation

The audio specification has separate Device Class Definition documents for
Audio Devices, Audio Data Formats, Terminal Types, and MIDI Devices.
At this writing, the latest version of each of these is 1.0. The MIDI standard
is available from the MIDI Manufacturers Association at www.midi.org.

Overview

Each audio function in a device has an Audio Interface Collection that con-
sists of one or more interfaces. The interfaces include one AudioControl
(AC) interface, zero or more AudioStreaming (AS) interfaces and zero or
more MIDIStreaming (MS) interfaces (Figure 7-1). In other words, every

Chapter 7

182 USB Complete

Audio Interface Collection has an AudioControl interface, while Audio-
Streaming and MIDIStreaming interfaces are optional.

An AudioControl interface can enable accessing controls such as volume,
mute, bass, and treble. An AudioStreaming interface transfers audio data in
isochronous transfers. A MIDIStreaming interface transfers MIDI data.
MIDI is a standard for controlling synthesizers, sound cards, and other elec-
tronic devices that generate music and other sounds. A MIDI representation
of a sound includes values for pitch, length, volume, and other characteris-
tics. A pure MIDI hardware interface carries asynchronous data at 31.25
kilobits/sec. A USB interface that carries MIDI data uses the MIDI data for-
mat but doesn’t use MIDI’s asynchronous interface. Instead, the MIDI data
travels on the bus in bulk transfers.

A device can have multiple Audio Interface Collections that are active at the
same time, with each collection controlling an independent audio function.

Descriptors

Each audio interface type uses standard and class-specific descriptors to
enable the host to learn about the interface, its endpoints, and what kinds of
data the endpoints expect to transfer.

Figure 7-1: Each audio function has an Audio Interface Collection that contains
one or more interfaces.

Device Classes

USB Complete 183

The AudioControl Interface. Figure 7-2 shows the descriptors in an
AudioControl interface. In the AudioControl interface descriptor,
bInterfaceClass = 01h to identify the interface as audio class and
bInterfaceSubclass = 01h to identify the subclass as AudioControl.

Following the AudioControl interface descriptor is a Class-specific AC inter-
face descriptor, which consists of a series of descriptors for the AudioControl
interface. The Class-specific AC Interface Header descriptor contains the
total length of itself and all of the Terminal and/or Unit descriptors in the
interface.

A Terminal descriptor contains information about an addressable logical
object that represents a USB endpoint or other interface to the outside
world. Every IN or OUT isochronous endpoint in an audio interface must
have an associated Output or Input Terminal with a Terminal descriptor.
The audio function receives audio information from the host at an Input
Terminal and transmits audio information to the host at an Output Termi-
nal. Note that the terms Input Terminal and Output Terminal are from the
perspective of the audio function, while USB endpoints are named from the
perspective of the host. So an IN endpoint has an associated Output Termi-

Figure 7-2: An AudioControl interface contains descriptors for audio Terminals
and Units.

Chapter 7

184 USB Complete

nal, while an OUT endpoint has an associated Input Terminal. Other Ter-
minals in a function can represent interfaces to audio components such as
microphones and speakers.

An audio function might receive a microphone’s output at an Input Termi-
nal and transmit the received audio data to the host at an Output Terminal
that represents a USB IN endpoint. Or an audio function might receive
audio data from the host at an Input Terminal that represents an OUT end-
point and send the received data to a speaker at an Output Terminal.

A Unit descriptor contains information about an addressable logical object
that represents a subfunction within an audio function. Table 7-3 shows the
Unit types defined in the specification.

If the AudioControl Interface has an interrupt endpoint, the interface
includes an endpoint descriptor for the endpoint.

The AudioStreaming Interface. Following the AudioControl interface
descriptor, an Audio Interface Collection may have one or more
AudioStreaming interface descriptors with bInterfaceClass field = 01h to
identify the interface as audio class and bInterfaceSubclass = 02h to identify
the subclass as AudioStreaming. Figure 7-3 shows the descriptors.

Following each AudioStreaming interface descriptor is a class-specific
AudioStreaming interface descriptor, which identifies the Terminal associ-
ated with the interface and contains information about the data format and
any delay the function requires for internal processing. The Audio Data For-
mats specification lists the supported formats, which include Pulse Code
Modulation (PCM), Digital Audio Compression (AC-3), and MPEG. A
class-specific AS Format Type descriptor contains more information about
the format. Some formats require an additional AS Format-specific Type
descriptor.

Each AudioStreaming interface can have one isochronous endpoint. The
endpoint has a standard endpoint descriptor and a class-specific AS Isochro-
nous Audio Data endpoint descriptor. The class-specific descriptor indicates
which audio controls the endpoint supports, specifies whether the endpoint
requires all except zero-length data packets to contain wMaxPacketSize

Device Classes

USB Complete 185

bytes, and can provide synchronizing information. Some endpoints also
have a class-specific AS Isochronous Synch endpoint descriptor.

The MIDIStreaming Interface. To support MIDI data, an Audio Interface
Collection can have one or more MIDIStreaming interfaces. Figure 7-4
shows the descriptors. In the MIDIStreaming interface descriptor,
bInterfaceClass = 01h to identify the interface as audio class and
bInterfaceSubclass = 03h to identify the subclass as MIDIStreaming.

Following this descriptor is a class-specific MIDIStreaming (MS) interface
descriptor that consists of a series of descriptors for the interface. The first
descriptor in the series is the class-specific MS Interface Header descriptor,
which contains the total length of itself plus all of the Jack and/or Element
descriptors that follow.

Figure 7-3: An AudioStreaming interface contains descriptors for an
isochronous endpoint that carries audio data.

Chapter 7

186 USB Complete

An Element converts between MIDI and audio data streams or other MIDI
streams. A MIDI IN Jack receives data from the outside world, and a MIDI
OUT Jack provides data to the outside world. An Embedded MIDI Jack is a
jack that represents a USB endpoint. An Embedded MIDI OUT Jack repre-
sents an IN endpoint, and an Embedded MIDI IN Jack represents an OUT
endpoint. (The MIDI OUT and MIDI IN names are from the perspective
of the MIDI function, while the IN endpoint and OUT endpoint names are
from the perspective of the USB host.) An External MIDI Jack is a physical
jack that connects to a MIDI device.

Every USB MIDI device contains a USB/MIDI converter that converts
between USB data and the data at the Embedded MIDI Jack(s). Each USB
endpoint can connect to up to 16 Embedded MIDI Jacks. Data travels in
32-bit USBMIDI Event Packets, with the first 4 bits designating a specific

Figure 7-4: A MIDIStreaming interface contains descriptors for bulk endpoints
that carry MIDI data.

Device Classes

USB Complete 187

Embedded MIDI Jack. Inside a device, External Jacks connect to Embedded
MIDI Jacks, other External MIDI Jacks, or Elements. Multiple External
MIDI OUT Jacks can implement MIDI PARALLEL OUT. Each Element,
MIDI IN Jack, and MIDI OUT Jack has a class-specific descriptor.

A MIDIStreaming interface can have one or more Standard MS Bulk Data
endpoints and one or more Class-specific MS Transfer Bulk Data endpoints.
Many MIDI interfaces handle all traffic with one Standard Bulk Data IN
endpoint and one Standard Bulk Data OUT endpoint. For audio streams
that require more bandwidth, an interface can have one or more MS Trans-
fer Bulk Data endpoints. A host can use the class-specific
Set_Endpoint_Control request to dynamically allocate a Transfer Bulk Data
endpoint to an Element. Typical applications for a Transfer Bulk Data end-
point are transferring DownLoadable Sounds (DLS) to a Synthesizer Ele-
ment and transferring program code to a programmable Element.

Table 7-3: The specification for the audio class defines these Unit types.
Unit Type Description

Mixer Transforms a number of logical input channels into a num-
ber of logical output channels.

Selector Selects from n audio channel clusters and routes them unal-
tered to a single output audio channel cluster

Feature Provides controls such as volume, tone control, and mute

Processing Transforms multiple logical input channels into a single
audio channel cluster

Up/Down-mix Processing Provides facilities to derive m output audio channels from n
input audio channels.

Dolby Prologic Processing Extracts additional audio data (a specialized derivative of
the Up/Down-mix Processing Unit)

3D-Stereo Extender Processing Processes an existing stereo sound track to add a
spaciousness effect.

Reverberation Processing Adds room-acoustics effects.

Chorus Processing Adds chorus effects.

Dynamic Range Compressor Intelligently limits the dynamic range.

Extension Unit Enables adding vendor-specific building blocks.

Chapter 7

188 USB Complete

Each endpoint of either type has a standard endpoint descriptor. Each Stan-
dard Bulk Data endpoint also has an MS Bulk Data endpoint descriptor
that names the Embedded MIDI Jacks associated with the endpoint.

Class-specific Requests

The audio class defines optional class-specific requests for setting and get-
ting the state of audio controls, accessing memory, and requesting status
information.

Chips

USB-capable chips are available with built-in support for audio functions.
The support includes codec (compressor/decompressor) functions, ana-
log-to-digital converters (ADCs), digital-to-analog converters (DACs), and
support for Sony/Philips Digital Interface (S/PDIF) encoding for transmit-
ting audio data in digital format.

Texas Instruments’ PCM2900 is a stereo audio codec with a full-speed USB
port and 16-bit ADC and DAC. The chip has an AudioControl interface,
an AudioStreaming interface for each direction, and a HID interface that
reports the status of three pins on the chip. The chip requires no user pro-
gramming but has the option to use a vendor-specific Vendor ID, Product
ID, and strings. The PCM2902 adds support for S/PDIF encoding.
Another option for a USB codec is Philips Semiconductors UDA1325.

Texas Instruments’ PCM2702 is a 16-bit stereo DAC with a full-speed USB
interface. The chip can accept data sampled at 48, 44.1, and 32 kilohertz
using either 16-bit stereo or monaural audio data. The chip supports digital
attenuation and soft-mute features.

Texas Instruments’ TUSB3200A USB Streaming Controller contains an
8052-compatible microcontroller that supports up to seven IN endpoints
and seven OUT endpoints. The audio support includes a codec port inter-
face, a DMA controller with four channels for streaming isochronous data
packets to and from the codec port, and a phase lock loop (PLL) and adap-
tive clock generator (ACG) to support synchronization modes.

Device Classes

USB Complete 189

Windows Support

Under Windows, the usbaudio.sys minidriver supports USB audio devices,
including MIDI devices. In Windows editions up to and including Win-
dows XP, the driver supports a subset of the features in the USB audio spec-
ification. Microsoft’s Universal Audio Architecture (UAA) initiative
promises an improved driver architecture for future Windows editions. USB
Audio Devices and Windows is a white paper from Microsoft that details the
abilities and limits of Windows XP’s audio driver.

Applications can access USB audio devices using the DirectMusic and
DirectSound components of Windows’ DirectX technology or using Win-
dows Multimedia audio functions.

Chip/Smart Card Interface
Smart cards are the familiar plastic cards used for phone calls, gift cards, key-
less entry, access to toll roads and mass transit, storing medical and insur-
ance data, enabling of satellite TV receivers, and other applications that
require storing small-to-moderate quantities of information with easy and
portable access.

Each card contains a module with memory and often a CPU. Many cards
allow updating of their contents, to change a monetary value or an entry
code, for example. Some cards have exposed electrical contacts, while others
communicate via embedded antennas. Another term for smart card is chip
card.

To access a smart card, you connect it to a Chip Card Interface Device
(CCID), typically by inserting the card into a slot or waving a contactless
card by a reader. A popular term for CCID is smart-card reader, though
many CCIDs can also write to cards. USB enters the picture because some
CCIDs have USB interfaces for communicating with USB hosts.

Documentation

The specification USB Chip/Smart Card Interface Devices defines a protocol
for CCIDs with USB interfaces. The current version at this writing is 1.0.
The ISO/IEC 7816 standard (available from www.iso.ch) defines the physi-

Chapter 7

190 USB Complete

cal and electrical characteristics and commands for communicating with
smart cards.

Overview

Every CCID must have a bulk endpoint in each direction. All readers with
removable cards must also have an interrupt IN endpoint.

The host and device exchange messages on the bulk pipes. A CCID message
consists of a 10-byte header followed by message-specific data. The specifi-
cation defines 14 commands that the host can use to send data and status
and control information in messages. Every command requires at least one
response message from the CCID. A response contains a message code and
status information and may contain additional requested data. The device
uses the interrupt endpoint to report errors and the insertion or removal of a
card.

Descriptors

A CCIS function is defined at the interface level. In the interface descriptor,
bInterfaceClass = 0Bh to indicate the CCID class. Following the interface
descriptor is a class-specific CCID Class descriptor with bDescriptorType =
21h. The class descriptor contains parameters such as the number of slots,
slot voltages, supported protocols, supported clock frequencies and data
rates, and maximum message length.

Device Classes

USB Complete 191

Class-specific Requests

There are three class-specific control requests:

Chips

A CCID can use just about any full- or high-speed device controller. Some
controllers have support for CCID functions built in. Alcor Micro Corpora-
tion has the AU9510 CCID chip with a USB interface. Winbond Electron-
ics Corporation’s W81E381D is an 8052-compatible microcontroller with
USB and smart-card-reader interfaces.

Windows Support

A Windows USB driver for communicating with CCIDs wasn’t included
with Windows editions up to and including Windwos XP, but a driver is
available for Windows 2000 and later via Windows update. Applications use
DeviceIoControl API functions to communicate with CCIDs. The driver
doesn’t support PIN entry or multi-slot readers.

Communication Devices: Modems and Networks
The communication-device class encompasses two broad device types: tele-
phones and “medium-speed” networking devices. Telephones include analog
phones and modems, ISDN terminal adapters, and digital phones. Net-
working devices include ADSL modems, cable modems, and 10BASE-T
Ethernet adapters and hubs. The USB interface in a communication device
typically carries data that uses application-specific protocols such as V.250

Request bRequest Required?

Abort 01h yes

Get_Clock_Frequencies 02h yes, if the CCID doesn’t support automatic
selection of clock frequency (as specified in
the CCID class descriptor, dwFeatures, bit
10h)

Get_Data_Rates 03h yes, if the CCID doesn’t support automatic
selection of clock frequency (as specified in
the CCID class descriptor, dwFeatures, bit
20h)

Chapter 7

192 USB Complete

for modem control or Ethernet for local-network traffic. The communica-
tion-device class is also an option for other devices accessed via COM-port
functions on the host.

Documentation

The main documentation for communication devices is the specification for
the communication-device class (CDC). Two subclasses have their own doc-
uments. The Wireless Mobile Communications (WMC) subclass includes
terminal equipment for wireless devices that can perform multiple functions
such as audio and data communications. The Ethernet Emulation Model
(EEM) Devices subclass includes devices that send and receive Ethernat
frames. At this writing, the latest specification versions are 1.1 for CDC and
1.0 for WMC and EEM. The V.250 standard (formerly known as V.25ter
and encompassing the Hayes AT command set) is available from the Inter-
national Telecommunication Union at www.itu.int. The Ethernet standard,
IEEE 802.3, is available from www.ieee.org.

The Remote Network Driver Interface Specification (NDIS) defines a pro-
tocol for using USB and other buses to configure network interfaces and to
send and receive Ethernet data. Remote NDIS is based on NDIS, which
defines a protocol to manage communications with network adapters and
higher-level drivers. NDIS and Remote NDIS are supported by Windows,
but not by other operating systems. Documentation for NDIS and Remote
NDIS are available from www.microsoft.com.

Overview

A communication device is responsible for the tasks of device management,
call management (optional), and data transmission. Device management
includes controlling and configuring a device and notifying the host of
events. Call management involves establishing and terminating telephone
calls or other connections. Not all devices require call management. Data
transmission is the sending and receiving of application data such as phone
conversations or files sent over a modem or network.

The communication device class supports three basic models for communi-
cating. The POTS (Plain Old Telephone Service) model is for communica-

Device Classes

USB Complete 193

tions via ordinary phone lines. The ISDN model is for communications via
phone lines with ISDN interfaces. The Networking model is for communi-
cations via Ethernet or ATM (Asynchronous Transfer Mode) networks.
Some USB/Ethernet devices use the POTS model with a vendor-specific
protocol.

Notifications, which announce events such as ring detect and network con-
nect or disconnect, can travel to the host in an interrupt or bulk pipe. Most
devices use interrupt pipes. Each notification consists of an 8-byte header
followed by a variable-length data field.

Descriptors

A communication function can be defined at either the device or interface
level. If defined at the device level, all of the device’s interfaces belong to the
communication function. In the device descriptor, bDeviceClass = 02h to
indicate the communication-device class (Figure 7-5). If the communication

Figure 7-5: A communication-class interface has descriptors for endpoints that
carry communication-device class data.

Chapter 7

194 USB Complete

function is defined at the interface level, an associated interface descriptor
can specify which interfaces belong to the communication function, assum-
ing that the operating system supports the associated interface descriptor.
The 1.1 communication-device class specification doesn’t mention the asso-
ciated-interface descriptor by name but says that a method for associating
interfaces is under development and that such a method would be a valid
option.

Every communication device must have an interface descriptor with bInter-
faceClass = 02h to indicate a Communication interface. This interface han-
dles device management and call management. The bInterfaceSubClass field
specifies a communication model. Table 7-4 shows defined values. The
bInterfaceProtocol field can name a protocol supported by a subclass. Table
7-5 shows defined values for protocols.

Following the Communication interface descriptor is a class-specific Func-
tional descriptor consisting of a Header Functional descriptor followed by
one or more descriptors (also called Functional descriptors) that provide
information about a specific communication function. Table 7-6 shows
defined values for these descriptors.

One of these descriptors, the Union Functional descriptor, has the special
function of defining a relationship among multiple interfaces that form a
functional unit. The descriptor designates one interface as the master or
controlling interface, which can send and receive certain messages that apply
to the entire group. For example, a Communication interface can be a mas-
ter interface for a group consisting of a Communication interface and a
Data interface. The interfaces that make up a group can include communi-
cation-class interfaces as well as other related interfaces such as audio and
HID.

If the Communication interface has a bulk or interrupt endpoint for event
notifications, the endpoint has a standard endpoint descriptor.

A communication device may also have an interface descriptor with bInter-
faceClass = 0Ah to indicate a Data interface. A Data interface can have bulk
or isochronous endpoints for carrying application data. Each of these end-
points, when present, has a standard endpoint descriptor. Some devices use

Device Classes

USB Complete 195

other class or vendor-specific interfaces for data transmission. For example, a
telephone might use an audio interface to send and receive voice data.

A USB/Ethernet converter that functions as a Remote NDIS device consists
of a Communication interface and a Data interface. In the Communication
interface, bInterfaceSubClass = 02h to specify the Abstract Control Model
and bInterfaceProtocol = FFh to specify a vendor-specific protocol. (Remote
NDIS devices don’t use the communication class’s Ethernet Control
Model.) The Communication interface has an interrupt endpoint. The
Data interface has two bulk endpoints. Each endpoint has an endpoint
descriptor.

Table 7-4: In the interface descriptor for a communication device, the
bInterfaceSubClass field indicates the communication model the device
supports.
Code bInterfaceSubClass Application

00h RESERVED –

01h Direct Line Control Model Telephone modem with the host providing any
data compression and error correction. The
device or host may provide
modulation/demodulation of the modem data.

02h Abstract Control Model Telephone modem with the device providing
any data compression, error correction, and
modulation/demodulation of the modem data.

03h Telephone Control Model Telephone.

04h Multi-Channel Control Model ISDN device with multiple, multiplexed chan-
nels.

05h CAPI Control Model ISDN device with support for
COMMON-ISDN-API (CAPI) commands
and messages.

06h Ethernet Networking Control
Model

Device that exchanges Ethernet-framed data.

07h ATM Networking Control Model ATM device.

08h–0Bh WMC models Wireless mobile communications device.

0Ch Ethernet Emulation Model (EEM) Device that exchanges Ethernet frames.

0Dh–7Fh Reserved Future use.

80h–FEh Reserved Vendor specific.

Chapter 7

196 USB Complete

The Ethernet Emulation Model Devices subclass defines an alternate way to
use USB to send and receive Ethernet frames. The EEM subclass is intended
to be less expensive and more efficient than the Ethernet Networking Con-
trol Module subclass defined in the communication-device class specifica-
tion.

Class-specific Requests

The communication-device class has a variety of class-specific requests for
getting and setting status and control information. Not every request is valid
for every device. For example, Set_Hook_State requests to place a phone
line on or off hook, and Set_Ethernet_Packet_Filter requests to filter Ether-
net traffic according to specified settings.

Chips

For modems, Cypress Semiconductor provides several reference designs
using EZ-USB controllers and modem components from partner compa-
nies.

For USB/Ethernet bridges, Asix Electronics Corporation has several chips,
including the AX88172 controller, which converts between full- or high-
speed USB and 10- or 100-Mbps Ethernet. The chip’s Ethernet interface
connects to an external Ethernet PHY. An external serial EEPROM can
store the device’s Ethernet hardware address, USB descriptors, and configu-
ration data for the converter. The chip has two bulk endpoints for Ethernet

Table 7-5: In the interface descriptor for a communication device, the
bInterfaceProtocol field can indicate a protocol the communications model
supports.
Code Description

00h No class-specific protocol required

01h AT commands (specified in ITU V.250)

02h–06h AT commands for WMC devices

07h–FDh Future use

FEh External protocol for WMC devices

FFh Vendor specific

Device Classes

USB Complete 197

data and an interrupt endpoint for sending notifications. A series of ven-
dor-specific requests enable configuring and reading status information
from the chip and accessing three I/O bits.

Kawasaki Microelectronics has several chips that each contain Ethernet,
USB, and serial-EEPROM interfaces and a 16-bit CPU. Freescale Semicon-
ductor’s 32-bit MCF5482 ColdFire microprocessor contains a
full/high-speed USB device controller and an Ethernet controller.

Windows Support

The modem driver included with Windows 98 SE and later (usbser.sys) is
compatible with modems that use the Abstract Control Model. A modem

Table 7-6: A Functional descriptor consists of a Header functional descriptor
followed by one or more function-specific descriptors.
bInterfaceSubClass Functional Descriptor Type

00h Header

01h Call Management

02h Abstract Control Management

03h Direct Line Control Management

04h Telephone Ringer

05h Telephone Call and Line State Reporting Capabilities

06h Union

07h Country Selection

08h Telephone Operational Modes

09h USB Terminal

0Ah Network Channel Terminal

0Bh Protocol Unit

0Ch Extension Unit

0Dh Multi-channel Management

0Eh CAPI Control Management

0Fh Ethernet Networking

10h ATM Networking

11h–18h WMC Functional Descriptors

19h–FFh Reserved

Chapter 7

198 USB Complete

used by applications that use the Windows Telephony Application Program-
ming Interface (TAPI) must have its own INF file. Microsoft provides a
Modem Development Kit with tools, sample INF files, and information for
creating and testing INF files for modems.

Devices other than modems can use the usbser.sys driver as well. To enable
host applications to access a device using COM-port functions (a virtual
COM port), bInterfaceSubClass must be set to the Abstract Control Model.
For better performance, however, most device developers use a driver from
another source.

Under Windows 2000 and later, the usb8023.sys driver maps Remote NDIS
to USB.

Content Security
The Content Security class defines a way for content owners to control
access to files, music, video, or other data transmitted on the bus. The con-
trol can use either of two defined Content Security Methods: Basic Authori-
zation or Digital Transmission Content Protection (DTCP).

Documentation

In addition to the main Content Security specification, each content secu-
rity method (CSM) has its own specification document. At this writing, the
latest edition of the specifications is 1.0. The DTCP specification and
license information are available from the Digital Transmission Licensing
Administrator (www.dtcp.com).

Overview

The class defines a protocol for activating and deactivating a content secu-
rity method and for associating a content security method to a channel. A
channel represents a relationship between an interface or endpoint and one
or more CSMs. Only one CSM can be active on a channel at a time.

Basic Authorization, also known as Content Security Method 1, or CSM-1,
consists only of the class-specific request Get_Unique_ID, which enables a
host to request an ID value from a device.

Device Classes

USB Complete 199

CSM-2 is DTCP, which was developed to prevent unauthorized copying of
audio and video entertainment content via USB and other buses. A content
owner can use DTCP to specify whether copying is allowed, identify autho-
rized users, and specify an encryption method. A DTCP interface must have
an interrupt endpoint in each direction for sending and receiving event noti-
fications. A content provider who wants to use DTCP must sign a license
agreement and pay an annual (not trivial) fee.

Two additional CSMs that don’t have USB specifications at this writing are
Open Copy Protection System (CSM-3) and Elliptic Curve Content Protec-
tion Protocol (CSM-4).

Descriptors

A Content Security function is defined at the interface level, with
bInterfaceClass = 0Dh to indicate the Content Security class.

There are four class-specific descriptors:

CSM-2 also defines a String descriptor for the string “Digital Transmission
Content Protection Version 1.00”.

Class-specific Requests

Two class-specific requests apply to all CSM interfaces.
Get_Channel_Settings enables the host to learn what CSM is assigned to a
channel. The Set_Channel_Settings request enables the host to assign a
CSM to a channel or deactivate a previously assigned CSM.

Descriptor Name Description Use

CS_GENERAL Identifies the Content Security Interface version number. One per
interface

Channel Identifies one or more CSMs for a channel, which can be
specified by interface number endpoint address.

One per
channel

Content Security
Method

Describes a CSM implemented on a device. One per
CSM

Content Security
Method Variant

Describes a variant of the associated CSM. Not used by
CSM-1 or
CSM-2

Chapter 7

200 USB Complete

CSM-2 has additional control requests to transfer Authentication and Key
Exchange (AKE) commands and responses.

Chips

For a device using content security, the choice of a USB controller depends
mainly on the capabilities needed to exchange the content being protected.
Adding a Content-Security function requires only the occasional use of the
control endpoint and for CSM-2, two interrupt endpoints.

Windows Support

Windows doesn’t include a driver for the Content Security class, except for
one function. Under Windows XP and later, if a device has a CSM-1 inter-
face, an application can call the DeviceIoControl function with the
dwIoControlCode parameter set to this value:

IOCTL_STORAGE_GET_MEDIA_SERIAL_NUMBER

The function requests the device’s serial number from Windows’ generic
parent driver.

Device Firmware Upgrade
The Device Firmware Upgrade (DFU) class defines a protocol to enable a
host to send firmware enhancements and patches to a device. After receiving
the firmware upgrade, the device re-enumerates using its new firmware.

Documentation

The Device Firmware Upgrade specification defines the class. At this writing,
the current version is 1.0.

Overview

To perform a firmware upgrade as described in the specification, a device
must have two complete sets of descriptors: run-time and DFU-mode. The
run-time descriptors are for normal operation and also include descriptors
that inform the host that the device is capable of firmware upgrades. The
DFU-mode descriptors are a separate set of descriptors for use when the

Device Classes

USB Complete 201

device is upgrading its firmware. For example, a keyboard using its run-time
descriptors enumerates as a HID-class device and sends keypress data to the
host. During a firmware upgrade, the device suspends normal operations as
a keyboard and uses the DFU-mode descriptors to communicate with the
DFU driver on the host.

The upgrade process has four phases. In the first phase, device enumeration,
the device sends its run-time descriptors to the host and operates normally.
In the reconfiguration phase, the host sends a DFU_Upgrade request and
then resets and re-enumerates the device, which returns its DFU-mode
descriptors. In the transfer phase, the host transfers the firmware upgrade to
the device. The manifestation phase begins when the device informs the
host that the upgrade has been received. The host resets the bus, and the
device enumerates using its upgraded firmware and resumes normal opera-
tion. During the upgrade process, the device transitions through defined
states such as dfuIdle (waiting for DFU requests) or dfuError (an error has
occurred).

An upgrade file stored on the host contains the firmware for the upgrade,
followed by a DFU suffix that the host can use to help ensure that the firm-
ware is valid and appropriate for a particular device. The suffix contains an
error-checking value, a signature consisting of the ASCII codes for the text
“DFU”, and optional values for the Vendor ID, Product ID, and product
release number the firmware is appropriate for. The suffix is for the host’s
use only; the host doesn’t send the suffix to the device.

To ensure that the host will load a new driver for the firmware-upgrade pro-
cess, the device should use different Product IDs in its run-time and
DFU-mode device descriptors.

DFU communications use only the control endpoint.

Descriptors

The DFU function is defined at the interface subclass level. In a device that
supports DFU, both the run-time and DFU-mode descriptors include a
standard interface descriptor with bInterfaceClass = FEh to indicate an
Application Specific class and bInterfaceSubClass = 01h to indicate the

Chapter 7

202 USB Complete

Device Firmware Upgrade class. In DFU mode, the DFU interface must be
the only active interface in the device.

Both descriptor sets include a Run-time DFU Functional descriptor that
specifies whether the device can communicate on the bus immediately after
the manifestation phase, how long to wait for a reset after receiving a
DFU_Upgrade request, and the maximum number of bytes the device can
accept in a control Write transfer during a firmware upgrade.

Class-specific Requests

There are seven class-specific requests:

Chips

The choice of USB controller depends mainly on the requirements of the
device in run-time mode. The device must have enough memory and other
resources to store and implement the upgraded firmware.

Windows Support

Windows doesn’t provide a driver for this class. STMicroelectronics has a
Windows driver and firmware examples for use with its ST7 microcontrol-
lers with Flash memory.

Request Description

DFU_Detach If a bus reset occurs within the time period specified in the DFU
Functional descriptor, enumerate using the DFU-mode descriptors.

DFU_Dnload Accept new firmware in the request’s Data stage. A request with
wLength = 0 means that all of the firmware has been transferred.

DFU_Upload Send firmware to the host in the request’s Data stage.

DFU_GetStatus Return status and error information. On error, enter the dfuError state.

DFU_ClrStatus Clear the dfuError state reported in response to a DFU_GetStatus request
and enter the dfuIdle state.

DFU_GetState Same as DFU_GetStatus but with no change in state on error.

DFU_Abort Return to the dfuIdle state.

Device Classes

USB Complete 203

Human Interface
The Human Interface Device (HID) class includes keyboards, pointing
devices, and game controllers. With these devices, the host reads and acts on
human input such as keypresses and mouse movements. Hosts must
respond quickly enough so users don’t notice a delay between an action and
the expected response. Some devices that perform vendor-specific functions
can also use the HID class.

All HID data travels in reports, which are structures with defined formats.
Usage tags in a report tell the host or device how to use received data. For
example, a Usage Page value of 09h indicates a button, and a Usage ID value
tells which button, if any, was pressed.

Windows and other operating systems have included HID drivers beginning
with the earliest editions with USB support. The availability of class drivers
has helped to make the HID class popular for devices besides obvious
human-interface applications. A HID can exchange any type of data, but
can use only control and interrupt transfers. Chapter 11, Chapter 12, and
Chapter 13 have more about using HIDs in custom devices.

Documentation

The HID specification is in several documents. At this writing, the current
version of the HID specification is 1.11. The main change from version 1.0
is enabling the host to send reports in interrupt OUT transfers. In a HID
1.0 interface, the host must send all reports in control transfers.

Several documents define Usage-tag values for different device types. HID
Usage Tables has values for keyboards, pointing devices, various game con-
trollers, displays, telephone controls, and more. Four other device types have
their own documents:

Class Definition for Physical Interface Devices (PID) defines values for
force-feedback joysticks and other devices that require physical feedback in
response to inputs.

Chapter 7

204 USB Complete

The Monitor Control class specification defines values for user controls and
power management for display monitors. (The HID interface controls the
display’s settings only. The image data uses a different hardware interface.)

Usage Tables for HID Power Devices defines values for Uninterruptible Power
Supply (UPS) devices and other devices where the host monitors and con-
trols batteries or other power components.

Point of Sale (POS) Usage Tables defines values for bar-code readers, weigh-
ing devices, and magnetic-stripe readers.

Overview

HIDs communicate by exchanging reports using control and interrupt
transfers. Input and Output reports may use control or interrupt transfers.
Feature reports use control transfers. A report descriptor defines the size of
each report and Usage values for the report data.

Descriptors

A HID function is defined at the interface level. In the interface descriptor,
bInterfaceClass = 03h to indicate the HID class. The bInterfaceSubClass
field indicates whether the HID supports a boot protocol, which is a proto-
col that a host can use instead of the report protocol defined in the device’s
report descriptor. Mice and keyboards may support a boot protocol to
enable using the devices before the full HID drivers are loaded.

Following the interface descriptor is a class-specific HID descriptor, which
contains the size of the report descriptor. The report descriptor contains
information about the data in the HID reports. An optional Physical
Descriptor can describe the part(s) of the human body that activate a con-
trol.

Class-specific Requests

HIDs have six class-specific control requests to enable sending and receiving
reports, setting and reading the Idle rate (how often the device sends a report
if the data is unchanged), and setting or reading the currently active proto-
col (boot or report). To obtain a report descriptor or physical descriptor, the

Device Classes

USB Complete 205

host sends a Get_Descriptor request to the interface with the high byte of
wValue set to 01h to indicate a class-specific descriptor and the low byte of
wValue set to 22h to request a report descriptor or 23h to request a physical
descriptor.

Chips

For devices with a human interface, low speed is fast enough to enable act-
ing on received user input with no detectable delay. Many HIDs use low
speed because the device needs a more flexible and/or cheaper cable. A HID
may use any speed, however.

A variety of controllers include additional support for keyboards, mice, and
game controllers. Atmel Corporation’s AT43USB325 contains an AVR
microcontroller and a 5-port hub. One of the hub’s ports connects to an
embedded function with support for a 20 x 8 keyboard matrix. The control-
ler supports low and full speeds. The AT43USB325 is similar but supports
an 18 x 8 keyboard matrix. Other vendors with controllers designed for use
in keyboards include Alcor Micro and Winbond Electronics Corporation.
Some general-purpose controllers, such as Cypress’ CY7C63743, support
both USB and PS/2 interfaces to make it easy to design a dual-interface
device.

Code Mercenaries offers programmed chips for use in pointing devices, key-
boards, and joysticks. The MouseWarrior series has interfaces for sensors
and buttons and supports four interfaces: USB, PS/2, asynchronous serial,
and Apple Desktop Bus (ADB). The KeyWarrior series supports USB, PS/2,
and ADB and has interfaces to keyboard matrixes and optional support for
keyboard macros. The JoyWarrior series supports a variety of game-control-
ler inputs.

Windows Support

Applications can communicate with HIDs using API functions. The API
functions for exchanging reports include ReadFile and WriteFile as well as
HID-specific APIs such HidD_SetFeature and HidD_GetFeature. Applica-
tions that access game controllers can use DirectX’s DirectInput component
for fast, more direct access.

Chapter 7

206 USB Complete

Windows requests exclusive access to Input reports from system keyboards
and pointing devices, so applications can’t directly read the reports that
describe keypresses, mouse movements, and mouse-button clicks. Instead,
the operating system handles this data at a lower level. For example, a
Visual-Basic application doesn’t have to read mouse clicks to find out if a
user has clicked on an option button because the button’s click event exe-
cutes automatically on a button click.

If a system has multiple keyboards or pointing devices, Windows treats
them all as a single “virtual” keyboard or pointing device. If you want to
limit the applications that can access a keyboard or pointing device, or if you
want to determine which keyboard or pointing device is the source of input,
you need to either provide a digitally signed filter driver or design a ven-
dor-specific device that the host doesn’t identify as a system mouse or key-
board.

IrDA Bridge
The IrDA (Infrared Data Association) interface defines hardware require-
ments and protocols for exchanging data over short distances via infrared
energy. A USB IrDA bridge converts between USB and IrDA data and
enables a host to use USB to monitor, control, and exchange data over an
IrDA interface.

Documentation

The specification for USB IrDA bridges is IrDA Bridge Device Definition.
The current version at this writing is 1.0. The IrDA specifications are avail-
able from www.irda.org.

Overview

The data in an IrDA link uses the Infrared Link Access Protocol (IrLAP),
which defines the format of the IrDA frames that carry data, addresses, and
status and control information. The IrLAP Payload consists of the address,
control, and optional information (data) fields in an IrLAP frame. In addi-
tion to the IrLAP Payload, each frame contains an error-checking value and
markers for the beginning and end of the frame.

Device Classes

USB Complete 207

A USB IrDA bridge uses bulk pipes to exchange data with the host. The
host and bridge place status and control information in headers whose for-
mat is defined in the IrDA bridge specification On receiving data from the
IrDA link, the IrDA bridge extracts the IrLAP Payload, adds a header, and
passes the data and header to the host. The header can contain values for the
IrDA link’s Media_Busy and Link_Speed parameters. On receiving IrDA
data from the host, the IrDA bridge removes the header added by the host.
The header can specify new values for Link_Speed and the number of
beginning-of-frame markers. The bridge then places the IrDA Payload in an
IrDA frame for transmitting.

Descriptors

An IrDA-bridge function is defined at the interface subclass level. In the
interface descriptor, bInterfaceClass = FEh to indicate an application-spe-
cific interface and bInterfaceSubclass 02h to indicate an IrDA Bridge
Device. A class-specific descriptor contains IrDA-specific information such
as the maximum number of bytes in an IrDA frame and supported Baud
rates.

Class-specific Requests

There are five class-specific control requests:

Chips

SigmaTel, Inc.’s STIR4000 is an IrDA USB bridge chip that contains a
full-speed USB transceiver and an interface to an IrDA transceiver. The host
communicates with the chip by accessing a series of registers that enable
configuring, obtaining status information, and exchanging data. The chip

Request bRequest Description

Receiving 1 Is the device currently receiving an IrLAP
frame?

Check_Media_Busy 3 Is infrared traffic present?

Set_IrDA_Rate_Sniff 4 Accept frames at any speed or at a single speed.

Set_IrDA_Unicast_List 5 Accept frames from the named addresses only.

Get_Class_Specific_Descriptors 6 Return the class-specific descriptor.

Chapter 7

208 USB Complete

supports vendor-specific control requests for reading and writing to the reg-
isters. The STIR4200 is a high-speed version of the chip.

Another approach to adding IrDA to a USB host is to use a USB/asynchro-
nous-serial converter with an IrDA interface. Texas Instruments’
TUSB3410 is a USB/asynchronous-serial converter for use in wired and
IrDA serial interfaces. For a wired link, the chip’s internal UART interfaces
to serial-data pins. For an IrDA link, the UART interfaces to an internal
IrDA encoder/decoder, which in turn connects to an external IrDA trans-
ceiver.

Windows Support

Windows XP supports IrDA communications via two software profiles. The
dial-up networking profile enables using IrDA to connect a PC and a
mobile phone. The LAN access profile enables using the Point-to-Point Pro-
tocol (PPP), a direct peer-to-peer network connection, or a direct connec-
tion to a network access point. Windows XP doesn’t include a generic driver
for the USB-IrDA-bridge function, but SigmaTel provides a driver for use
with their chips.

Mass Storage
The mass-storage class is for devices that transfer files in one or both direc-
tions. Typical devices are floppy, hard, CD, DVD, and Flash-memory
drives. Cameras can use the mass-storage class to enable accessing picture
files in a camera’s memory. In Windows computers, devices that use the
mass-storage driver appear as drives in My Computer and the file system
enables users to copy, move, and delete files in the devices.

Documentation

The USB specification for mass storage devices is in four documents: an
overview (version 1.2), specifications for the bulk-only transport protocol
(version 1.0) and the control/bulk/interrupt (CBI) transport protocol (ver-
sion 1.1) and commands for the Universal Floppy Interface (UFI) (version
1.0).

Device Classes

USB Complete 209

Each media type has an industry-standard command-block set to enable
controlling devices and reading status information. These are specifications
that define command-block sets for device types supported by the
mass-storage class:

ATAPI CD/DVD devices use the ATA/ATAPI specification from
www.t13.org and the MultiMedia Command (MMC) Set from www.t10.org.
(An earlier version of the ATA/ATAPI specification was called SFF 8020i.)

ATAPI removable media uses SFF-8070i: ATAPI Removable Rewritable
Media Devices, available from www.sffcommittee.com. This document is a
supplement to the ATA/ATAPI specification. Floppy drives often belong to
this subclass.

Generic SCSI media uses the mandatory commands from the SCSI Primary
Command (SPC) Set and SCSI Block Command (SBC) Set from
www.t10.org.

QIC-157 tape drives use the Common SCSI/ATAPI Command Set for
Streaming Tape, available from www.qic.org.

UFI uses the UFI Command Specification from www.usb.org. The com-
mands are based on the SCSI-2 and SFF-8070i command sets.

Overview

Mass-storage devices use bulk transfers to exchange data. Control transfers
send class-specific requests and can clear Stall conditions on bulk endpoints.
For exchanging other information, a device may use either of two transport
protocols: bulk only or control/bulk/interrupt (CBI). CBI is approved for
use only with full-speed floppy drives. Bulk-only is recommended for new
devices of all types.

In the bulk-only protocol, a successful data transfer has three stages: com-
mand transport, data transport, and status transport. In the com-
mand-transport stage, the host sends a command in a structure called a
Command Block Wrapper (CBW). In the data-transport stage, the host or
device sends the requested data. In the status-transport stage, the device

Chapter 7

210 USB Complete

sends status information in a structure called a Command Status Wrapper
(CSW). Some commands have no data-transport stage.

Table 7-7 shows the fields in the CBW, which is 31 bytes. The meaning of
the command-block value in the CBWCB field varies with the command set
specified by the interface descriptor’s bInterfaceSubClass field.

On receiving a CBW, a device must check that the structure is valid and has
meaningful content. A CBW is valid if it is received after a CSW or reset, is
31 bytes, and has the correct value in dCBWSignature. The contents are
considered meaningful if no reserved bits are set, bCBWLUN contains a
supported LUN value, and bCBWCBLength and CBWCB are valid for the
interface’s subclass.

Table 7-8 shows the fields in the CSW, which is 13 bytes. On receiving a
CSW, a device must check that the structure is valid and has meaningful
content. A CSW is valid if it has 13 bytes, has the correct value in

Table 7-7: The CBW contains a command block and other information about the
command.
Name Bits Description

dCBWSignature 32 The value 43425355h, which identifies the structure as
a CBW.

dCBWTag 32 A tag that associates this CBW with the CSW the
device will send in response.

dCBWDataTransferLength 32 The number of bytes the host expects to transfer in the
data-transport stage.

bmCBWFlags 8 Specifies the direction of the data-transport stage. Bit 7
= 0 for an OUT (host-to-device) transfer. Bit 7 = 1 for
an IN (device-to-host) transfer. All other bits are zero.
If there is no data-transport stage, bit 7 is ignored.

Reserved 4 0

bCBWLUN 4 For devices with multiple LUNs, specifies the LUN the
command block is directed to. Otherwise the value is
zero.

Reserved 3 0

bCBWCBLength 5 The length of the command block in bytes (1–16)

CBWCB 128 The command block for the device to execute.

Device Classes

USB Complete 211

dCSWSignature, and has a dCSWTag value that matches dCBWTag of a
corresponding CBW. The contents are considered meaningful if
bCSWStatus equals 02h or if bCSWStatus equals either 00h or 01h and
dCSWDataResidue is less than or equal to dCBWDataTransferLength.

Descriptors

The mass-storage function is defined at the interface level. In the device’s
interface descriptor, bInterfaceClass = 08h to indicate that the interface
belongs to the mass-storage class.

The bInterfaceSubClass field indicates the supported command-block set:

Table 7-8: The CSW contains status and related information about a command.
Name Bits Description

dCBWSignature 32 The value 53425355h, which identifies the structure as a
CSW.

dCBWTag 32 The value of the dCBWTag in a CBW received from the
host.

dCSWDataResidue 32 For OUT transfers, the difference between
dCBWDataTransferLength and the number of bytes the
device processed. For IN transfers, the difference between
dCBWDataTransferLength and the number of bytes the
device sent.

bCSWStatus 8 00h = command passed
01h = command failed
02h = phase error

bInterfaceSubClass Subclass Description

02h ATAPI CD/DVD devices

03h QIC-157 tape devices

04h USB Floppy Interface (UFI)

05h ATAPI removable media

06h Generic SCSI media

Chapter 7

212 USB Complete

The bInterfaceProtocol field indicates the supported transport protocol:

Every bulk-only mass-storage device must have a serial number of at least 12
characters using only the characters in the range 0–9 and A–F. The serial
number enables the operating system to retain properties such as the drive
letter and access policies after a user moves a device to another port or
attaches multiple devices with the same Vendor ID and Product ID. The
device descriptor’s iSerialNumber field contains an index to the serial num-
ber, which is stored in a string descriptor. The value must be different from
any serial number used by other devices with the same values in the idVen-
dor, idProduct, and bcdDevice fields in the device descriptor.

A mass-storage device must have a bulk endpoint for each direction.

Class-specific Requests

The bulk-only protocol has two defined control requests: Bulk Only Mass
Storage Reset (reset the device) and Get Max Lun (get the number of logical
units, or partitions, that the device supports). All other commands and sta-
tus information travel in bulk transfers.

The control/bulk/interrupt (CBI) protocol has one defined control request:
Accept Device-Specific Command (ADSC). The Data stage of the request
carries the command. A device can use an interrupt transfer to indicate that
the device has completed a command’s requested action.

Chips

A mass-storage device can use just about any full- or high-speed controller
chip, but several manufacturers have controllers designed specifically for use
in mass-storage devices. Prolific Technology and Standard Microsystems
Corporation (SMSC) each have a variety of chips with interfaces to a variety
of mass-storage device types. Controllers with direct interfaces to

bInterfaceProtocol Protocol Description

00h CBI with command completion interrupt transfers

01h CBI without command completion interrupt transfers

50h bulk only

Device Classes

USB Complete 213

ATA/ATAPI devices include Philips Semiconductor’s ISP1183, Texas Instru-
ments’ TUSB6250, and Cypress Semiconductor’s EZUSB AT2.

Windows Support

Windows 2000 and later include a driver that supports bulk-only and CBI
devices. When a device’s descriptors identify the device as mass-storage class,
the operating system loads the USB storage port driver (usbstor.sys). This
driver manages communications between the lower-level USB drivers and
Windows’ storage-class drivers. When the device is formatted using a sup-
ported file system, the operating system assigns a drive letter to the device
and the device appears in My Computer.

The mass-storage driver in Windows XP supports bInterfaceSubClass codes
02h, 05h, and 06h. Support for drives with multiple Logical Unit Numbers
(LUNs) was added in Windows 2000 SP3.

One point of confusion relating to the mass-storage support under Win-
dows is the difference between removable devices and removable media. All
USB drives are removable devices because they’re easily attached and
detached from the PC. A removable device may have removable or
non-removable media. CD, DVD, and floppy drives have removable media.
A hard disk is a non-removable medium because you can’t easily remove the
disk from the drive. Windows’ Autorun capability (also called AutoPlay)
applies to devices with removable media. Autorun enables the operating sys-
tem to run a program, play a movie, or perform other actions when a disk or
other removable media is inserted.

Printers
The printer class is for devices that convert received data into text and/or
images on paper or other media. The most basic printers print lines of text
in a single font. Most laser and inkjet printers understand one or more page
description languages (PDLs) and can print text in any font and complex
images.

Chapter 7

214 USB Complete

Documentation

The USB Printing Devices specification is for printers of all types. At this
writing, the current version of the specification is 1.1. The IEEE-1284 stan-
dard from www.ieee.org describes the interface used by parallel-port printers
and includes information, such as the format for Device IDs, used by USB
printers.

Overview

Printer data uses a bulk OUT pipe. The host obtains status information in
control requests or an optional bulk IN pipe.

Descriptors

The printer function is defined at the interface level. In the interface
descriptor, bInterfaceClass = 07h to specify the printer class.

The interface descriptor’s bInterfaceProtocol field contains a value that
names a type of printer interface:

With all three interface protocols, the host uses the bulk OUT endpoint to
send data to the printer. With the unidirectional protocol, the host retrieves
status information by sending a class-specific Get_Port_Status request. With
the bidirectional protocol, the host can retrieve status information using
Get_Port_Status or the bulk IN pipe, which can provide more detailed
information. The IEEE-1284.4-compatible bidirectional protocol is like the
bidirectional protocol but with added support to enable communications
with individual functions in a multifunction peripheral.

bInterfaceProtocol Type

01h Unidirectional

02h Bidirectional

03h IEEE-1284.4-compatible Bidirectional

Device Classes

USB Complete 215

Class-specific Requests

The printer class has three class-specific requests:

In response to a GET_DEVICE_ID request, the device returns a Device ID
in the format specified by the IEEE-1284 standard. The first two bytes of
the Device ID are the length in bytes, most significant byte first. Following
the length is a string containing a series of keys and their values in this for-
mat:

key: value {,value};

All Device IDs must contain the keys MANUFACTURER, COMMAND
SET, and MODEL, or their abbreviated forms (MFG, CMD, and MDL).
The COMMAND SET key names any PDLs the printer supports, such as
Hewlett Packard’s Printer Control Language (PCL) or Adobe Postscript.
Additional keys, which may be vendor-defined, are optional.

Here is an example Device ID:

MFG:My Printer Company;
MDL:Model 5T;
CMD:MLC,PCL,PML;
DESCRIPTION:My Printer Company Laser Printer 5T;
CLASS:PRINTER;
REV:1.3.2;

In response to the GET_PORT_STATUS request, the device returns a byte
that emulates the Status-port byte on a parallel printer port. Three bits in
the byte contain status information:

Request bRequest

Get_Device_ID 0

Get_Port_Status 1

Soft_Reset 2

Bit Name meaning when = 1 meaning when = 0

3 Not Error no error error

4 Select printer selected printer not selected

5 Paper Empty out of paper not out of paper

TE
AM
 F
LY

Chapter 7

216 USB Complete

A printer that can’t obtain the status information should respond with 18h
to signify no error, printer selected, and not out of paper. Parallel-port printers
have two additional status bits, Busy and Ack, which are used in handshak-
ing and don’t apply to USB printers.

On receiving a Soft_Reset request, a device should flush all buffers, reset the
interface’s bulk pipes to their default states, and clear all Stall conditions.

In a Soft_Reset request, the bmRequestType value in the Setup transaction
should be 21h to signify a class-specific request that is directed to an inter-
face and has no Data stage. However, version 1.0 of the printer-class specifi-
cation incorrectly listed the bmRequestType for Soft_Reset as 23h. So to be
on the safe side, devices should respond to hosts that use a bmRequestType
of 23h with this request, and hosts should try the incorrect value on receiv-
ing a STALL in response to this request using the correct value.

Chips

Just about any full- or high-speed controller will have the one or two bulk
endpoints for a printer function. For converting parallel-port printers to
USB, Prolific Technology has the PL-2305 USB-to-IEEE-1284 Bridge
Controller. The chip supports three endpoints: one bulk IN, one bulk
OUT, and one interrupt IN. The chip’s IEEE-1284 parallel port can inter-
face to an existing parallel port on a printer or other peripheral.

Windows Support

Windows includes drivers that handle tasks common to both non-Postscript
and Postscript printers. A printer manufacturer can customize a driver for a
specific printer by providing a minidriver that consists of one or more text
files with the customization information. The Windows DDK has informa-
tion on how to create printer minidrivers.

When an application requests to print a file, the printer driver sends the
printer data to the print spooler’s print processor. If the printer has a USB
interface, the print processor sends the data either directly to the Usbmon
port driver or to a language monitor that modifies the data stream and

Device Classes

USB Complete 217

passes it on to Usbmon. Usbmon in turn communicates with lower-level USB
drivers that access the port.

Usbmon and the Usbprint driver provide a software interface that is similar
to the interface for accessing parallel-port printers. In many cases, a printer
can use the same printer driver and language monitor for both parallel-port
and USB interfaces. If needed, a language monitor or other upper-level soft-
ware can support USB-specific, vendor-specific requests.

Still Image Capture: Cameras and Scanners
The still-image class encompasses cameras that capture still images (in other
words, not video) and scanners. The main job of a still-image device’s USB
interface is to transfer image data from the device to the host. Some devices
can receive image data from the host as well. If all you need is a way to trans-
fer image files from a camera, another option is to use the mass-storage
driver.

Documentation

The USB class specification, Still Image Capture Device Definition, includes
features and commands from PIMA 15740: 2000 Picture Transfer Protocol,
which describes requirements for transferring files and controlling digital
still cameras. At this writing, the current version of the still-image specifica-
tion is 1.0. The PIMA document is available from the International Imaging
Industry Association (I3A) at www.i3a.org.

Overview

A still-image device has one bulk IN endpoint and one bulk OUT endpoint
for transferring both image data and non-image data. The specification also
requires an interrupt IN endpoint for event data.

In the bulk and interrupt pipes, information travels in structures called con-
tainers. The four container types are the Command Block, Data Block,
Response Block, and Event Block. The bulk OUT pipe carries Command
and Data Blocks. The bulk IN pipe carries Data and Response Blocks. The
interrupt IN pipe carries Event Blocks.

Chapter 7

218 USB Complete

On the bulk pipes, the host communicates by using a protocol with three
phases: Command, Data, and Response. A short packet indicates the end of
a phase. In the Command phase, the host sends a Command Block that
names an operation defined in PIMA 15740. The Command Block con-
tains an operation code that determines if the operation requires a data
transfer and if so, the direction of data transfer. If there is a data transfer, the
data travels in a Data Block in the Data phase. The first four bytes of the
Data Block are the length in bytes of the data being transferred. Some oper-
ations have no Data phase. The final phase is the Response phase, where the
device sends a Response Block containing completion information.

On the interrupt pipe, an Event Block can contain up to three Event Codes
with status information such as a low-battery warning or a notification that
a memory card has been removed. The Check Device Condition Event
Code requests the host to send a class-specific Get_Extended_Event_Data
request for more information about an event.

A device using the bulk-only protocol cancels a transfer by stalling the bulk
endpoints. The host then sends a class-specific Get_Device_Status request
and uses the Clear_Feature request to clear the stalled endpoints. The host
cancels a transfer by sending a class-specific Cancel_Request request. A
device is ready to resume data transfers when it returns OK (PIMA 15740
Response Code 2001h) in response to a Get_Device_Status request.

Descriptors

A still-image function is defined at the interface level. In the interface
descriptor, bInterfaceClass = 06h to indicate a still-image device, bInterface-
Subclass = 01h to indicate an image interface, and bInterfaceProtocol = 01h
to indicate a still-image capture function. The interface must have descrip-
tors for the bulk IN, bulk OUT, and interrupt IN endpoints.

Device Classes

USB Complete 219

Class-specific Requests

There are four class-specific control requests:

With Cancel_Request, the host requests to cancel the PIMA 15740 transac-
tion named in the request. With Get_Extended_Event_Data, the host
requests extended information regarding an event or vendor condition.
With Device_Reset_Request, the host requests the device to return to the
Idle state. The host can use this request after a bulk endpoint has returned a
STALL or to clear a vendor-specific condition. With Get_Device_Status,
the host requests information needed to clear halted endpoints. The host
uses this request after a device has canceled a data transfer.

Chips

Just about any full- or high-speed USB controller will have the three end-
points required by the still-image class.

Windows Support

Recent Windows editions support the Windows Image Acquisition (WIA)
API for communicating with devices in the still-image class. Applications
communicate with devices by using ReadFile, WriteFile, and DeviceIoCon-
trol commands. The drivers that add USB support to WIA are usbscan.sys in
Windows XP and later and usbscn9x.sys in Windows Me.

Under Windows XP, cameras that use the Picture Transfer Protocol (PTP)
described in the PIMA 15740 standard require no vendor-provided driver
components, though vendors can provide a minidriver to enhance the driver
and support vendor-specific features and capabilities. For scanners, the ven-
dor must provide a microdriver, which is a “helper DLL” that translates
between the driver’s communications and a language the scanner under-

Request bRequest Required?

Cancel_Request 64h yes

Get_Extended_Event_Data 65h no

Device_Reset_Request 66h yes

Get_Device_Status 67h no

Chapter 7

220 USB Complete

stands, or a minidriver to work with the provided drivers to enable commu-
nications with the device.

Windows 98 and Windows 2000 use an earlier Still Image architecture
(STI). Product vendors must provide a user-mode driver to work with the
provided STI driver.

Test and Measurement
The test-and-measurement class (USBTMC) is suited for instrumentation
devices where the data doesn’t need guaranteed timing. These devices typi-
cally contain components such as ADCs, DACs, sensors, and transducers. A
device may be a stand-alone unit or a card in a larger computer.

Before USB, many test-and-measurement devices used the IEEE-488 paral-
lel interface, also known as the General Purpose Interface Bus (GPIB). The
USB488 subclass of the test-and-measurement class defines protocols for
communicating using IEEE-488’s data format and commands.

Documentation

The class’s specifications include the main Test and Measurement Class speci-
fication and a separate document for the USB488 subclass. At this writing,
the current version of both documents is 1.0. The IEEE-488 standards are
available from www.ieee.org.

Overview

A test-and-measurement device requires a bulk OUT endpoint and a bulk
IN endpoint. An interrupt IN endpoint is required for devices in the
USB488 subclass and otherwise is optional for returning event and status
information.

The bulk pipes exchange messages, with each message consisting of a header
followed by data. The bulk OUT endpoint receives command messages,
and the bulk IN endpoint sends response messages. The header for a com-
mand message contains a message ID, a bTag value that identifies the trans-
fer, and message-specific information. The header for a response message
contains the message ID and bTag values of the command that prompted

Device Classes

USB Complete 221

the response, followed by message-specific information. The message ID
specifies whether a command is device-dependent or vendor-specific and
whether the host expects a response.

Descriptors

A test-and-measurement function is specified at the interface subclass level.
In the interface descriptor, bInterfaceClass = FEh to indicate an applica-
tion-specific interface and bInterfaceSubClass = 03h to indicate the
test-and-measurement class. There are no class-specific descriptors.

Class-specific Requests

The class defines eight control requests for controlling and requesting the
status of an interface or transfer and requesting information about the inter-
face’s attributes and capabilities.

Chips

Just about any full- or high-speed device will have the two or three end-
points this class requires.

Windows Support

Windows doesn’t include a driver for this class. National Instruments pro-
vides a driver for use with its hardware. Other options for test-and-measure-
ment devices that use bulk transfers include the mass-storage class or a
vendor-specific driver. A HID-class device can also perform test and mea-
surement functions. For an existing device with an IEEE-488 interface, the
quick solution is to use a commercial IEEE-488/USB converter.

Video
The video class supports digital camcorders, webcams, and other devices
that send, receive, or manipulate transient or moving images. The class also
supports transferring still images from video devices. Because transmitting
high-quality video requires a lot of bandwidth, using USB for video has
become a more attractive option since high-speed hosts and devices have
become available.

Chapter 7

222 USB Complete

Documentation

A variety of documents make up the video specification. The Video Class
Definition defines standard and class-specific descriptors and class-specific
control requests for video devices. The Media Transport Terminal specifica-
tion defines descriptors and requests for devices such as video cameras and
digital VCRs, which stream data stored in sequential media and may require
functions such as play, record, rewind, and eject. Separate payload specifica-
tions contain format-specific information for a variety of video formats such
as MJPEG, MPEG2-TS, DV, and uncompressed video. Version 1.1 of the
video class specification (under development at this writing) will retire some
additional 1.0 formats and add generic frame-based and generic
stream-based formats. Other specification documents include a video cam-
era example, an FAQ, and an Identifiers document that gathers together
identifier values defined in the other video-class specifications. At this writ-
ing, the current version of all of these specifications is 1.0.

Overview

Figure 7-6 shows the elements that make up a video function in a USB
device. Every function must have a VideoControl interface, which provides

Figure 7-6: A video interface consists of a VideoControl interface and zero or
more VideoStreaming interfaces.

Device Classes

USB Complete 223

information about inputs, outputs, and other components of the function.
Most functions also have one or more VideoStreaming interfaces that enable
transferring video data. A Video Interface Collection consists of a Video-
Control interface and its associated VideoStreaming interfaces. (A function
with only a VideoControl interface isn’t part of a Video Interface Collec-
tion.) A device can have multiple, independent VideoControl interfaces and
Video Interface Collections.

The VideoControl interface uses the control endpoint and may use an inter-
rupt IN endpoint. Each VideoStreaming interface has one isochronous or
bulk endpoint for video data and an optional bulk endpoint for still-image
data.

Descriptors

The video class defines an extensive set of descriptors that enable devices to
provide detailed information about the device’s abilities. Each Video Inter-
face Collection must have an interface association descriptor that specifies
the interface number of the first VideoControl interface and the number of
VideoStreaming interfaces associated with the function.

The VideoControl Interface. The VideoControl interface (Figure 7-7) has
a standard interface descriptor with bInterfaceClass = 0Eh to indicate the
video class, plus a class-specific VideoControl interface descriptor, which
consists of a VideoControl interface header descriptor followed by one or
more Terminal and/or Unit descriptors. A Terminal is the starting or ending
point for information that flows into or out of a function. A Terminal may
represent a USB endpoint or another component such as a CCD sensor, dis-
play module, or composite-video input or output. A Terminal descriptor
can describe an Input Terminal or Output Terminal. The descriptor’s wTer-
minalType field names the function of the terminal the descriptor is associ-
ated with, such as camera, media transport input, or media transport
output. A Unit transforms data flowing through a function. There are three
types of Unit descriptors: Selector Unit for routing a data stream to an out-
put, Processing Unit for controlling video attributes, and Extension Unit for
vendor-defined functions.

Chapter 7

224 USB Complete

If the interface has an interrupt endpoint, the endpoint has a standard end-
point descriptor followed by a class-specific endpoint descriptor.

The VideoStreaming Interface. Each VideoStreaming interface (Figure
7-8) has a standard interface descriptor. Following the standard interface
descriptor, an interface with an IN endpoint has a class-specific Video-
Streaming Input Header descriptor, and an interface with an OUT endpoint
has a class-specific VideoStreaming Output Header descriptor.

Following the Header descriptor is a Payload Format descriptor for each
supported video format. For frame-based formats, the Payload Format
descriptor is followed by one or more Frame descriptors that describe the

Figure 7-7: The VideoControl interface provides information about inputs,
outputs, and other components of a video function.

Device Classes

USB Complete 225

dimensions of the video frames and other characteristics specific to a format.
A Payload Format can also have a Color Matching descriptor to describe a
color profile. Each VideoStreaming interface has one isochronous or bulk
endpoint descriptor for video data and an optional bulk endpoint descriptor
for still-image data.

Class-specific Requests

Class-specific control requests enable setting and reading the states of con-
trols in VideoControl and VideoStreaming interfaces.

Chips

Vista Imaging’s ViCAM-III chip contains a programmable digital imaging
engine with extensive support for video functions and a USB controller.
Cypress Semiconductor has partnered with several companies to offer refer-
ence designs that use EZ-USB controllers in various video applications.

Figure 7-8: A VideoStreaming interface has an endpoint for video data and an
optional endpoint for still-image data.

Chapter 7

226 USB Complete

Windows Support

A driver compatible with the video class (usbvideo.sys) was released in Win-
dows XP SP2. Vendors of video-class devices that use the driver don’t need
to provide any driver software but can provide a Control or Streaming
extension to support vendor-specific functions or features.

Applications can access video devices using the DirectShow component of
DirectX. The usbvideo.sys driver is supported beginning with DirectX ver-
sion 9.2.

For earlier Windows editions, manufacturers of video devices must provide a
minidriver to specify a format for streaming video, implement device-spe-
cific functions and properties, and perform bulk transfers if required for
video data. Windows’ USBCAMD driver manages isochronous data trans-
fers, including synchronizing, starting, and stopping communications and
recovering from errors. The driver communicates with Windows’
stream-class driver and with the lower-level USB drivers.

Implementing Non-standard Functions
Some devices don’t have an obvious match to a defined class. Examples
include some data-acquisition devices and controllers for motors, relays, or
other circuits. Another common application that doesn’t fit into an obvious
class is linking two hosts. Before USB, these types of applications used the
legacy serial and parallel ports. USB is flexible enough to accommodate
these and other vendor-specific applications.

Standard or Custom Driver?
When possible, it’s almost always preferable to use a class that has drivers
provided by the operating systems the device will operate under. Using a
provided driver saves much time and effort.

Some devices with vendor-specific functions can be designed as HIDs. A
HID doesn’t have to be a standard device type and doesn’t even need a
human interface. The only requirements are that the descriptors must meet

Device Classes

USB Complete 227

the class’s requirements, and the device must transfer data using only inter-
rupt or control transfers as defined in the HID specification.

The mass-storage class is another option for devices that exchange data in
files and support a file system the host understands.

Some devices need to provide their own drivers. Using a driver provided by a
chip manufacturer is one option. This approach saves you from having to
develop a driver but leaves you dependent on the chip vendor to fix bugs
and keep up with new operating-system editions. Chapter 8 has more about
creating custom drivers.

Converting from RS-232
The RS-232 serial port has been with the PC since its beginning. The port
has been used in thousands of peripherals. Just about any device that uses
RS-232 can be implemented with USB. There are several approaches to
making the switch.

First determine if the device fits into a defined class. Modems should use the
communication-device class. Pointing devices, uninterruptible power sup-
plies, and point-of-sale devices should be designed as HIDs.

For many other devices, FTDI Chip’s FT232BM USB UART introduced in
Chapter 6 provides a quick way to upgrade a design to USB. The chip can
convert an existing RS-232 device to USB with minimal design changes and
in most cases no changes to host software.

Figure 7-9 shows an example. A typical device with an RS-232 interface
contains a UART that converts between the serial data used in RS-232 com-
munications and the parallel data the CPU uses. The signals on the line side
of the UART connect to converters that translate between RS-232 voltages
and the 5V logic used by the UART. The line side of the converter connects
to a cable to the remote computer with an RS-232 interface. To convert
from RS-232 to USB, you replace the RS-232 converter with a ’232BM.
On the host computer, FTDI Chip’s Virtual COM port driver enables
applications to access the device using the same functions used for RS-232
communications.

Chapter 7

228 USB Complete

An even easier solution is to use an RS-232/USB converter module. These
typically contain little more than an FT232BM or similar chip, an RS-232
interface chip, an RS-232 connector, and a USB connector. Users then have
a choice of using the original interface or adding the converter and using
USB.

Figure 7-9: FTDI’s USB UART can convert devices with RS-232 interfaces to
USB. A driver provided by FTDI causes the device to appear like a conventional
COM-port device to host applications.

Device Classes

USB Complete 229

When using a USB/RS-232 converter, devices that use the status and con-
trol signals in unconventional ways and with critical timing requirements
may require modifications to device hardware or firmware or application
software.

Converting from the Parallel Port
Another port that all PCs had from the beginning was the parallel port. The
port was originally intended for connecting printers, but many other device
types took advantage of the port as well. The parallel interface is faster than
RS-232 and thus became a favored connection for scanners and external
drives. Scanners, drives, and printers can now use USB and the standard
classes for these device types.

For other devices, there are several options for converting to USB. A periph-
eral-side parallel-port interface has 8 bidirectional data pins, 5 status out-
puts, and 4 control inputs. A USB controller with 17 or more I/O bits can
emulate a parallel port. Prolific Technology’s PL-2305 has a USB interface
and a complete PC-side IEEE-1284 parallel port that can interface directly
to existing parallel-port devices.

For the firmware and driver, devices that can function using only control
and interrupt transfers may be able to use the HID class. The device will
need new application software to communicate with the HID drivers in
place of the driver that accessed the parallel port. If you want to make mini-
mal changes to the application software, you can provide a custom driver
that provides functions that emulate the functions called by the original
application.

PC-to-PC Communications
Every USB communication must be between a host and a device. USB
doesn’t allow hosts to exchange data with each other directly. Yet because
every PC has a USB port, it’s natural to want to use the interface to connect
PCs to each other, especially when the PCs don’t have Ethernet ports.

USB On-The-Go enables a device to also function as a host. Most PCs don’t
contain On-The-Go host controllers, however. Another solution is to use a

Chapter 7

230 USB Complete

host-to-host bridge cable that contains two serial interface engines. Each PC
has a USB connection to one of the SIEs, and the two devices communicate
with each other via a shared buffer (Figure 7-10). Data sent by a PC travels
to one of the SIEs, through the shared buffer, and out the other SIE to the
remote PC.

Prolific Technology’s PL-2501 Hi-Speed USB Host to Host Bridge Control-
ler is a single chip designed for this type of host-to-host application. The
chip contains an 8032 microcontroller and two USB SIEs that can access a
common buffer. The PL-2301 is a full-speed version. Many commercial
“data-link file-transfer cables” contain one of these chips. Typically, the driv-
ers enable each PC to see the other as a network-connected computer.

An alternate approach is to use two FTDI Chip USB UARTs and cross-con-
nect the asynchronous interfaces in a “null modem” configuration. The PCs
then see each other as COM-port devices. Yet another option is to establish
a network connection by attaching a USB/Ethernet converter to each PC
and connecting each converter to a local network.

Figure 7-10: To enable two USB hosts to communicate with each other, two
USB serial interface engines can share a buffer. Each SIE copies received USB
data into the shared buffer, and the other device retrieves the data from the
buffer and sends the data to the other host.

Device Classes

USB Complete 231

Using a Generic Driver
For devices that don’t fit into a standard class, a generic driver can be a solu-
tion. Generic drivers typically enable applications to request control, inter-
rupt, bulk, and isochronous transfers using a driver-specific API. Two such
options are the DriverX USB toolkit from Tetradyne Software, Inc. and the
USBIO Development Kit from Thesycon Systemsoftware & Consulting
GmbH. (Yes, that spelling is correct.)

The DriverX USB toolkit includes a generic driver, header and library files
for use with Visual C++ and Borland C++ Builder, and additional support
for Delphi and Visual Basic.

To communicate with the driver included with the USBIO Development
Kit, applications can use standard Windows API functions (ReadFile, Write-
File, DeviceIoControl), a C++ class library, native Delphi and Java inter-
faces, or a USBIO COM interface based on Microsoft’s Component Object
Model (COM) technology.

Chapter 7

232 USB Complete

