
Detecting Devices

USB Complete 281

10

Detecting Devices
This chapter shows how applications can obtain information about attached
devices, request a handle for communicating with a device, and detect when
a device is attached or removed. Each of these tasks involve using Windows
API functions and the device interface GUIDs introduced in Chapter 8. As
an aid to those with limited experience with API functions, the chapter
begins with a short tutorial on the topic.

A Brief Guide to Calling API Functions
You can do a lot of programming without ever calling an API function.
Microsoft’s .NET Framework provides classes that support common tasks
such as creating user interfaces, accessing files, manipulating text and graph-
ics, accessing common peripheral types, networking, security functions, and
exception handling. Internally, the classes’ methods are likely to call API
functions, but the classes offer a safer, more secure, and more modular,
object-oriented way to accomplish the tasks. Languages that support using

Chapter 10

282 USB Complete

the .NET Framework include Visual Basic .NET, Visual C# .NET, and
Visual C++ .NET.

But the .NET Framework doesn’t handle every task. Applications still need
to call API functions for some things. A .NET application can use the .NET
Framework where possible and API calls when needed. Applications in lan-
guages that predate the .NET platform, such as Visual Basic 6, sometimes
need to call API functions as well. The examples in this chapter are written
for Visual Basic .NET and Visual C++. NET.

Because calling API functions can be an obscure art at times, this section
includes an introduction to some things that are useful to know when using
the Windows API.

Managed and Unmanaged Code
Understanding how to call API functions in Visual Basic .NET applications
requires understanding the difference between managed and unmanaged
code. Windows API functions use unmanaged code. Their DLLs contain
compiled machine code that executes directly on the target CPU. In Visual
Basic .NET and Visual C# .NET, all program code is managed code that
compiles to the Microsoft Intermediate Language (MSIL). The .NET plat-
form’s common language runtime (CLR) environment executes the MSIL
code.

Managed code has advantages. Because all .NET languages use the same
CLR, components written in different .NET languages can easily interoper-
ate. For example, a Visual Basic .NET application can call a function writ-
ten in Visual C# .NET without worrying about differences in calling
conventions. The CLR also simplifies programming by using garbage collec-
tion to manage memory.

A .NET application can call functions that use unmanaged code, including
Windows API functions. But Visual Basic .NET and Visual C# .NET appli-
cations must take special care to ensure that any data being passed survives
the trip from managed to unmanaged code, and back if necessary.

Detecting Devices

USB Complete 283

To use data returned by an API function, a Visual Basic .NET or Visual C#
.NET application often must marshal the data to make it available to the
managed code. Marshaling means doing whatever is needed to make the
data available and typically involves copying data into managed memory
and/or converting data from one type or format to another.

The .NET Framework’s Marshal class provides methods for allocating mem-
ory that unmanaged code will use, for copying blocks of unmanaged mem-
ory to managed memory, and for converting between managed and
unmanaged data types. For example, the PtrToStringAuto method accepts a
pointer to a string in unmanaged memory and returns the string being
pointed to. This Visual-Basic code retrieves a string from a pointer (IntPtr
pdevicePathName) returned by an API function:

Dim DevicePathName as String
DevicePathName = _
 Marshal.PtrToStringAuto(pdevicePathName)

Arrays that will contain data copied from unmanaged code must use the
MarshalAs attribute to define the size of the array. This Visual-Basic code
declares a 16-byte array that will hold a GUID copied from a structure
returned by an API call:

<MarshalAs(UnmanagedType.ByValArray, _
 ArraySubType:=UnmanagedType.U1, SizeConst:=16)> _
 Public dbcc_classguid() _
 As Byte

The GUID is marshaled into the byte array as an
UnmanagedType.ByValArray. The ArraySubType field defines the array’s
elements as unsigned, 1-byte (U1) values and the SizeConst field sets the
array’s size as 16 bytes.

What about Visual C++ .NET? A Visual C++ .NET application can com-
pile to managed code, unmanaged code, or even some of each. The language
also incorporates the “It Just Works” technology, which enables managed
code to call API functions in exactly the same way that unmanaged code
does, without the marshaling required by other .NET languages. This versa-
tility means that Visual C++ .NET code that calls API functions can often

Chapter 10

284 USB Complete

be simpler and more concise than equivalent code in Visual Basic .NET or
Visual C# .NET.

Documentation
The Windows API functions are in various DLLs and libraries whose docu-
mentation is spread among several areas in the Windows DDK and Plat-
form SDK. Functions related to detecting devices are in setupapi.dll and are
documented in the Windows DDK under Device Installation and also in
the Platform SDK under Base Services > Device Management. Functions
relating to opening communications with devices are in kernel32.dll and are
documented in the Platform SDK under Base Services in Storage > File
Management and in Device Input and Output Control. Functions relating
to device notifications are in user32.dll and are documented in the Platform
SDK under Base Services > Device Management.

The header files for the DLLs often have useful comments as well. A func-
tion’s documentation typically names the header file. If not, a quick way to
find it is to use Windows’ Search > For Files or Folders utility available from
the Start menu. In the text box for file names, enter *.h, and in the text box
for words or phrases, enter the name of the function whose declaration you
want to find. Be sure that Include Subfolders is checked, and let Windows go
to work finding the file for you.

Using Visual C++ .NET
To use an API function, a Visual C++ application needs three things: the
ability to locate the file containing the function’s compiled code, a function
declaration, and a call that causes the function to execute.

Each DLL has two or more companion files, a library file (setupapi.lib,
kernel32.lib, user32.lib) and one or more header files (setupapi.h, kernel32.h,
user32.h). The library file eliminates the need for the application to get a
pointer to the function in the DLL. The header file contains the prototypes,
structures, and symbols for the functions that applications may call.

A DLL contains compiled code for the functions the DLL exports, or makes
available to applications. For each exported function, the DLL’s library file

Detecting Devices

USB Complete 285

contains a stub function whose name and arguments match the name and
arguments of one of the DLL’s functions. The stub function calls its corre-
sponding function in the DLL. During the compile process, the linker
incorporates the code in the library file into the application’s executable file.
When the application calls a function in the library file, the function of the
same name in the DLL executes.

The DLLs included with Windows are typically stored in the
%SystemRoot%\system32 folder. Windows searches this folder when an
application calls a DLL function. The library and header files for Windows
API functions are included in the Windows DDK.

To include a API function in an application, you need to do the following:

1. Add the library files to the project. In Visual Studio, click Project > Prop-
erties > Linker > Input. In the Additional Dependencies box enter the names
of the .lib files. If needed, you can enter a path for the library files in the
Linker > General window under Additional Library Directories.

2. Include the header files in one of the application’s files. Here is an exam-
ple:

extern "C" {
#include "hidsdi.h"
#include <setupapi.h>
}

The #include directive causes the contents of the named file to be
included in the file, the same as if they were copied and pasted into the file.
The extern "C" modifier enables a C++ module to include header files
that use C naming conventions. The difference is that C++ uses name deco-
ration, also called name mangling, on external symbols.

To add a path to an include directory, in Visual Studio, click Project > Prop-
erties > Resources > General. In the Additional Include Directories box enter
the path(s) to your .h files. (On a command line, these paths are in the com-
piler’s /I option.)

The punctuation around the file name determines where the compiler will
search for the file, and in what order. This is relevant if you have different
versions of a file in multiple locations! Enclosing the file name in brackets

Chapter 10

286 USB Complete

(<setupapi.h>) causes the compiler to search for the file first in the path
specified by the compiler’s /I option, then in the paths specified by the
Include environment variable. Enclosing the file name in quotes
("hidsdi.h") causes the compiler to search for the file first in the same
directory as the file containing the #include directive, then in the directo-
ries of any files that contain #include directives for that file, then in the
path specified by the compiler’s /I option, and finally in the paths specified
by the Include environment variable.

The header files for many functions are included automatically when you
create a project. For example, afxwin.h adds headers for common Windows
and MFC functions.

3. Call the function. Here is code that declares the variable HidGuid and
passes a pointer to it in the function HidD_GetHidGuid in hid.dll:

GUID HidGuid;
HidD_GetHidGuid(&HidGuid);

Using Visual Basic .NET
To use an API function in a Visual Basic .NET program, you need three
things: the DLL containing the function, a declaration that enables the
application to find the function, and a call that causes the function to exe-
cute.

Compared to Visual C++, Visual Basic .NET has additional considerations
when calling API functions. The information in the C include files must be
translated to Visual-Basic syntax and data types, and the managed .NET
code often requires marshaling to enable accessing the unmanaged data
returned by an API function.

Instead of a C include file, a Visual Basic .NET application must have
Visual-Basic declarations for a DLL’s functions and structures. Visual Basic
requires references only to the DLLs, not to the library files.

The code to call an API function (or any function in a DLL) follows the
same syntax rules as the code to call other Visual-Basic functions. But
instead of placing the function’s executable code in a routine within the

Detecting Devices

USB Complete 287

application, the application requires only a declaration that enables Win-
dows to find the DLL containing the function’s code.

Microsoft’s documentation for API functions uses C syntax to show how to
declare and call the functions. To use an API function in Visual Basic, you
need to translate the declaration and function call from C to Visual Basic.
The process is more complicated than simple syntax changes, mainly
because many of the variable and structure types don’t have exact equivalents
in Visual Basic.

The Declaration

This is a Visual-Basic declaration for the API function RegisterDeviceNoti-
fication, which applications can use to request to be informed when a device
is attached or removed:

 <DllImport("user32.dll", CharSet:=CharSet.Auto)> _
 Function RegisterDeviceNotification _
 (ByVal hRecipient As IntPtr, _
 ByVal NotificationFilter As IntPtr, _
 ByVal Flags As Int32) _
 As IntPtr
 End Function

The declaration contains this information:

• A DllImport attribute that names the file that contains the function’s exe-
cutable code (user32.dll). The optional CharSet field is set to Char-
Set.Auto to cause the operating system to select ANSI (8-bit) or Unicode
(16-bit) characters according to the target platform. ANSI is the default
for Windows 98 and Windows Me. Unicode is the default for Windows
2000 and Windows XP.

• The function’s name (RegisterDeviceNotification).

• The parameters the function will pass to the operating system
(hRecipient, NotificationFilter, Flags).

• The data types of the values passed (IntPtr, Int32).

• Whether the parameters will be passed by value (ByVal) or by reference
(ByRef). All three parameters in this declaration are passed ByVal.

Chapter 10

288 USB Complete

• The data type of the value returned for the function (IntPtr). A few API
calls have no return value and may be declared as subroutines rather than
functions.

The declaration must be in the Declarations section of a module.

Providing the DLL’s Name

Each declaration must name the file that contains the function’s executable
code. The file is a DLL. When the application runs, Windows loads the
named DLLs into memory (unless they’re already loaded).

In most cases, the declaration only has to provide the file name and not the
location. The DLLs containing Windows API functions are stored in stan-
dard locations (such as %SytemRoot%\system32) that Windows searches
automatically. For some system files, such as kernel32.dll, the .dll extension
is optional in the declaration.

Data Types

A Visual Basic .NET application can use Visual Basic’s data types or their
equivalent data types in the .NET Framework. For example, Visual Basic’s
Integer type is equivalent to a System.Int32 in the .NET Framework.

The C header files for API calls often use additional data types defined in
the Platform SDK but not explicitly defined by Visual Basic. So creating a
Visual-Basic declaration often requires additional translating. To specify a
variable type for an API call, in many cases all you need to do is determine
the variable’s length, then use a Visual-Basic type that matches. For example,
a DWORD is a 32-bit integer, so a Visual-Basic .NET application can
declare a DWORD as an Integer. An LPDWORD is a pointer to a
DWORD, and can be declared as an Integer passed by reference. A parame-
ter defined in C as a HANDLE can use the System.IntPtr type, which is an
Integer with a platform-specific size. A GUID translates to the System.Guid
type.

Detecting Devices

USB Complete 289

ByRef and ByVal

In calling a function, you can pass the arguments, or parameters, by refer-
ence (ByRef) or by value (ByVal). Often either will work. But the concept is
important to understand when calling API functions, because many of the
functions have variables that must be passed a specific way.

ByRef and ByVal determine what information the call passes to enable the
function to access the variable. Every variable has an address in memory
where the variable’s value is stored. When passing a variable to a function, an
application can pass the variable’s address or the value itself. The informa-
tion is passed by placing it on the stack (a temporary storage location).

Passing a variable ByRef means that the function call places the address of
the variable on the stack. If the function changes the value by writing a new
value to the address, the new value will be available to the calling application
because the value will be stored at the address where the application expects
to find the variable. The address passed is called a pointer, because it points
to, or indicates, the address where the value is stored.

Passing a variable ByVal means that the function call places the value of the
variable on the stack. The value at the variable’s original address in memory
is unchanged. If the function changes the value, the calling application won’t
know about the change because the function has no way to pass the new
value back to the application.

Passing ByVal is the default under Visual Basic .NET. If you want to pass a
parameter ByRef, you must specify it in the declaration. (Passing ByRef is
the default in Visual Basic 6.)

Except for strings, you must pass a variable ByRef if the called function
changes the value and the calling application needs to use the new value.
Passing ByRef enables the calling application to access the new value.

Strings are a special case and should be passed ByVal to API functions. If you
pass a string ByVal to an API function, Visual Basic actually passes a pointer
to the string, as if the string had been declared ByRef. If the function will
change the contents of the string, the application should initialize the string
to be at least as long as the longest expected returned string.

Chapter 10

290 USB Complete

Passing Structures

Some API functions pass and return structures, which contain multiple
items that may be of different types. The documentation for the API func-
tions also documents the structures that the functions pass. The header files
contain declarations for the structures in C syntax.

A Visual Basic .NET application can usually declare an equivalent structure
in a structure or a class. To ensure that the managed and unmanaged code
agree on the layout and alignment of the structure’s members, a structure’s
declaration or class definition can set the StructLayout attribute to Layout-
Kind.Sequential:

<StructLayout(LayoutKind.Sequential)>

As with function declarations, the CharSet attribute can determine whether
strings are converted to ANSI or Unicode before passing the strings to
unmanaged code:

<(CharSet:=CharSet.Auto)>

A structure can be passed to an API function ByVal, or the application can
pass a pointer to the structure using ByRef.

Some structures are difficult or impractical to duplicate in Visual Basic. A
solution is to use a generic buffer of the expected size. The application can
fill the buffer before passing it and extract returned data from the buffer as
needed.

Calling a Function

After declaring a function and any structures or classes to be passed, an
application can call the function. This is a call to the RegisterDeviceNotifi-
cation function declared earlier:

Public Const DEVICE_NOTIFY_WINDOW_HANDLE As Integer _
 = 0

deviceNotificationHandle = _
 RegisterDeviceNotification _
 (formHandle, _
 DevBroadcastDeviceInterfaceBuffer, _
 DEVICE_NOTIFY_WINDOW_HANDLE)

Detecting Devices

USB Complete 291

The DEVICE_NOTIFY_WINDOW_HANDLE constant is defined in
dbt.h. The formHandle and DevBroadcastDeviceInterfaceBuffer parameters
are IntPtr variables. The function returns an IntPtr in deviceNotification-
Handle.

Finding Your Device
The Windows API provides a series of SetupDi_ API functions that enable
applications to find all devices in a device interface class and to obtain a
device path name for each device. The CreateFile function can use the
device path name to obtain a handle for accessing the device.

Obtaining a device path name requires these steps:

1. Obtain the device interface GUID.

2. Request a pointer to a device information set with information about all
installed and present devices in the device interface class.

3. Request a pointer to a structure that contains information about a device
interface in the device information set.

4. Request a structure containing a device interface’s device path name.

5. Extract the device path name from the structure.

The application can then use the device path name to open a handle for
communicating with the device.

Table 10-1 lists the API functions that applications can use to perform these
actions. The functions can be useful for finding devices that use some ven-
dor-specific drivers and HID-class devices that perform vendor-specific
functions. For many devices that perform standard functions, applications
have other ways to find and gain access to devices. For example, to access a
drive, the .NET Framework’s Directory class includes a GetLogicalDrives
method that enables applications to find all of the logical drives on a system
(whether or not they use USB). You can then use methods of the Directory
and File classes to access files on the drives.

Chapter 10

292 USB Complete

The following code shows how to use API functions to find a device and
obtain its device path name. For complete Visual C++ .NET and Visual
Basic .NET applications that demonstrate how to use these functions, go to
www.Lvr.com.

Obtaining the Device Interface GUID
As Chapter 8 explained, for many drivers, applications can obtain a device
interface GUID from a C header file or Visual-Basic declaration provided
with the driver. For the HID class, Windows provides an API function to
obtain the GUID, which is also defined in hidclass.h.

Visual C++

This is the function’s declaration:

VOID
 HidD_GetHidGuid(
 OUT LPGUID HidGuid
);

This is the code to call the function:

HidD_GetHidGuid(&HidGuid);

Table 10-1: Applications use these functions to find devices and obtain device
path names to enable accessing devices.
API Function DLL Purpose

HidD_GetHidGuid hid Retrieve the device interface GUID for
the HID class

SetupDiDestroyDeviceInfoList setupapi Free resources used by
SetupDiGetClassDevs.

SetupDiGetClassDevs setupapi Retrieve a device information set for the
devices in a specified class.

SetupDiGetDeviceInterfaceDetail setupapi Retrieve a device path name.

SetupDiEnumDeviceInterfaces setupapi Retrieve information about a device in a
device information set.

Detecting Devices

USB Complete 293

Visual Basic

The function has no return value, so it’s declared as a Sub:

<DllImport("hid.dll")>
Sub HidD_GetHidGuid _
 (ByRef HidGuid As System.Guid)
End Sub

This is the code to call the function:

Dim HidGuid As System.Guid
HidD_GetHidGuid(HidGuid)

Requesting a Pointer to a Device Information Set
The SetupDiGetClassDevs function can return a pointer to an array of
structures containing information about all devices in the device interface
class specified by a GUID.

Visual C++

This is the function’s declaration:

HDEVINFO
 SetupDiGetClassDevs(
 IN LPGUID ClassGuid, OPTIONAL
 IN PCTSTR Enumerator, OPTIONAL
 IN HWND hwndParent, OPTIONAL
 IN DWORD Flags
);

This is the code to call the function:

HANDLE DeviceInfoSet;

DeviceInfoSet = SetupDiGetClassDevs
 (&HidGuid,
 NULL,
 NULL,
 DIGCF_PRESENT|DIGCF_INTERFACEDEVICE);

Chapter 10

294 USB Complete

Visual Basic

This is the function’s declaration:

<DllImport("setupapi.dll", CharSet:=CharSet.Auto)> _
Function SetupDiGetClassDevs _
 (ByRef ClassGuid As System.Guid, _
 ByVal Enumerator As String, _
 ByVal hwndParent As Integer, _
 ByVal Flags As Integer) _
 As IntPtr
End Function

This is the code to call the function:

Public Const DIGCF_PRESENT As Short = &H2S
Public Const DIGCF_DEVICEINTERFACE As Short = &H10S

Dim DeviceInfoSet As IntPtr

DeviceInfoSet = SetupDiGetClassDevs _
 (HidGuid, _
 vbNullString, _
 0, _
 DIGCF_PRESENT Or DIGCF_DEVICEINTERFACE)

Details

For HID-class devices, the ClassGuid parameter is the HidGuid value
returned by HidD_GetHidGuid. For other drivers, the application can pass
a reference to the appropriate GUID. The Enumerator and hwndParent
parameters are unused in this example. The Flags parameter consists of sys-
tem constants defined in setupapi.h. The flags in this example tell the func-
tion to look only for device interfaces that are currently present (attached
and enumerated) and that are members of the device interface class identi-
fied by the ClassGuid parameter.

The value returned, DeviceInfoSet, is a pointer to a device information set
that contains information about all attached and enumerated devices in the
specified device interface class. The device information set contains a device
information element for each device in the set. Each device information ele-

Detecting Devices

USB Complete 295

ment contains a handle to a device’s devnode (a structure that represents the
device) and a linked list of device interfaces associated with the device.

When finished using the device information set, the application should free
the resources used by calling SetupDiDestroyDeviceInfoList, as described
later in this chapter.

Identifying a Device Interface
A call to SetupDiEnumDeviceInterfaces retrieves a pointer to a structure
that identifies a specific device interface in the previously retrieved Device-
InfoSet array. The call specifies a device interface by passing an array index.
To retrieve information about all of the device interfaces, an application can
loop through the array, incrementing the array index until the function
returns zero, indicating that there are no more interfaces. The GetLastError
API function then returns No more data is available.

How do you know if a device interface is the one you’re looking for? The
application may need to request more information before deciding to use a
device interface. On detecting multiple interfaces, the application can inves-
tigate each in turn until finding the desired device or determining that the
device isn’t present.

Visual C++

This is the declaration for DeviceInterfaceData’s type:

typedef struct _SP_DEVICE_INTERFACE_DATA {
 DWORD cbSize;
 GUID InterfaceClassGuid;
 DWORD Flags;
 ULONG_PTR Reserved;
} SP_DEVICE_INTERFACE_DATA,
*PSP_DEVICE_INTERFACE_DATA;

Chapter 10

296 USB Complete

This is the function’s declaration:

BOOLEAN
 SetupDiEnumDeviceInterfaces(
 IN HDEVINFO DeviceInfoSet,
 IN PSP_DEVINFO_DATA DeviceInfoData, OPTIONAL
 IN LPGUID InterfaceClassGuid,
 IN DWORD MemberIndex,
 OUT PSP_DEVICE_INTERFACE_DATA DeviceInterfaceData
);

And this is the code to call the function:

BOOLEAN Result;
SP_DEVICE_INTERFACE_DATA MyDeviceInterfaceData;

MyDeviceInterfaceData.cbSize =
 sizeof(MyDeviceInterfaceData);
MemberIndex = 0;

Result=SetupDiEnumDeviceInterfaces
 (DeviceInfoSet,
 0,
 &HidGuid,
 MemberIndex,
 &MyDeviceInterfaceData);

Visual Basic

This is the declaration for the DeviceInterfaceData structure:

<StructLayout(LayoutKind.Sequential)> _
Public Structure SP_DEVICE_INTERFACE_DATA
 Dim cbSize As Integer
 Dim InterfaceClassGuid As System.Guid
 Dim Flags As Integer
 Dim Reserved As Integer
End Structure

Detecting Devices

USB Complete 297

This is the function’s declaration:

<DllImport("setupapi.dll")> _
Function SetupDiEnumDeviceInterfaces _
 (ByVal DeviceInfoSet As IntPtr, _
 ByVal DeviceInfoData As Integer, _
 ByRef InterfaceClassGuid As System.Guid, _
 ByVal MemberIndex As Integer, _
 ByRef DeviceInterfaceData As _
 SP_DEVICE_INTERFACE_DATA) _
 As Boolean
End Function

This is the code to call the function:

Dim MemberIndex As Integer
Dim MyDeviceInterfaceData As SP_DEVICE_INTERFACE_DATA
Dim Result As Boolean

myDeviceInterfaceData.cbSize = _
 Marshal.SizeOf(myDeviceInterfaceData)
MemberIndex = 0

Result = SetupDiEnumDeviceInterfaces _
 (DeviceInfoSet, _
 0, _
 HidGuid, _
 MemberIndex, _
 MyDeviceInterfaceData)

Details

In the SP_DEVICE_INTERFACE_DATA structure, the parameter cbSize
is the size of the structure in bytes. Before calling SetupDiEnumDevice-
Interfaces, the size must be stored in the structure that the function will
pass. The sizeof operator in Visual C++ or the Marshal.SizeOf method in
Visual Basic retrieves the size. The other values in the structure should be
zero.

The HidGuid and DeviceInfoSet parameters are values retrieved previously.
DeviceInfoData is an optional pointer to an SP_DEVINFO_DATA struc-
ture that limits the search to a particular device instance. MemberIndex is an
index to a structure in the DeviceInfoSet array. MyDeviceInterfaceData is

Chapter 10

298 USB Complete

the returned SP_DEVICE_INTERFACE_DATA structure that identifies a
device interface of the requested type.

Requesting a Structure Containing the Device Path Name
The SetupDiGetDeviceInterfaceDetail function returns a structure that
contains a device path name for a device interface identified in an
SP_DEVICE_INTERFACE_DATA structure.

Before calling this function for the first time, there’s no way to know the
value of the DeviceInterfaceDetailDataSize parameter, which must contain
the size in bytes of the DeviceInterfaceDetailData structure. Yet the function
won’t return the structure unless the function call contains this information.
The solution is to call the function twice. The first time, GetLastError
returns the error The data area passed to a system call is too small, but the
RequiredSize parameter contains the correct value for DeviceInterfaceDe-
tailDataSize. The second time, you pass the returned size value and the
function returns the structure.

Visual C++

This is the declaration for DeviceInterfaceDetailData’s structure:

typedef struct _SP_DEVICE_INTERFACE_DETAIL_DATA {
 DWORD cbSize;
 TCHAR DevicePath[ANYSIZE_ARRAY];
} SP_DEVICE_INTERFACE_DETAIL_DATA,
*PSP_DEVICE_INTERFACE_DETAIL_DATA;

This is the function’s declaration:

BOOLEAN
 SetupDiGetDeviceInterfaceDetail(
 IN HDEVINFO DeviceInfoSet,
 IN PSP_DEVICE_INTERFACE_DATA DeviceInterfaceData,
 OUT PSP_DEVICE_INTERFACE_DETAIL_DATA
 DeviceInterfaceDetailData, OPTIONAL
 IN DWORD DeviceInterfaceDetailDataSize,
 OUT PDWORD RequiredSize, OPTIONAL
 OUT PSP_DEVINFO_DATA DeviceInfoData OPTIONAL
);

Detecting Devices

USB Complete 299

This is the code to call the function the first time:

BOOLEAN Result;
PSP_DEVICE_INTERFACE_DETAIL_DATA DetailData;
ULONG Length;

Result = SetupDiGetDeviceInterfaceDetail
 (DeviceInfoSet,
 &MyDeviceInterfaceData,
 NULL,
 0,
 &Length,
 NULL);

The code then allocates memory for the DetailData structure, sets the
cbSize property of DetailData, and calls the function again, passing the
returned buffer size in Length:

DetailData =
 (PSP_DEVICE_INTERFACE_DETAIL_DATA)malloc(Length);

DetailData -> cbSize =
 sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA);

Result = SetupDiGetDeviceInterfaceDetail
 (DeviceInfoSet,
 &MyDeviceInterfaceData,
 DetailData,
 Length,
 &Length,
 NULL);

Chapter 10

300 USB Complete

Visual Basic

The Visual-Basic code doesn’t explicitly declare an
SP_DEVICE_INTERFACE_DETAIL_DATA structure for the Device-
InterfaceDetailData parameter. Instead, the code reserves a generic buffer,
passes a pointer to the buffer, and extracts the device path name directly
from the buffer. So the application doesn’t use the following declaration, but
I’ve included it to show what the returned buffer will contain:

<StructLayout(LayoutKind.Sequential)> _
Public Structure SP_DEVICE_INTERFACE_DETAIL_DATA
 Dim cbSize As Integer
 Dim DevicePath As String
End Structure

This is the function’s declaration:

<DllImport("setupapi.dll", CharSet:=CharSet.Auto)> _
Function SetupDiGetDeviceInterfaceDetail _
 (ByVal DeviceInfoSet As IntPtr, _
 ByRef DeviceInterfaceData _
 As SP_DEVICE_INTERFACE_DATA, _
 ByVal DeviceInterfaceDetailData As IntPtr, _
 ByVal DeviceInterfaceDetailDataSize As Integer, _
 ByRef RequiredSize As Integer, _
 ByVal DeviceInfoData As IntPtr) _
 As Boolean
End Function

This is the code for the first call:

Dim BufferSize As Integer
Dim Success As Boolean

Success = SetupDiGetDeviceInterfaceDetail _
 (DeviceInfoSet, _
 MyDeviceInterfaceData, _
 IntPtr.Zero, _
 0, _
 BufferSize, _
 IntPtr.Zero)

After calling SetupDiGetDeviceInterfaceDetail, BufferSize contains the
value to pass in the DeviceInterfaceDetailDataSizebuffer parameter in the

Detecting Devices

USB Complete 301

next call. But before calling the function again, we need to take care of a few
things.

The function will return a pointer (DetailDataBuffer) to an
SP_DEVICE_INTERFACE_DETAIL_DATA structure in unmanaged
memory. The Marshal.AllocGlocal method uses the returned BufferSize
value to reserve memory for the structure:

Dim DetailDataBuffer As IntPtr
DetailDataBuffer = Marshal.AllocHGlobal(BufferSize)

The cbSize member of the structure passed in DetailDataBuffer equals four
bytes for the cbSize integer plus the length of one character for the device
path name (which is empty when passed to the function). The Mar-
shal.WriteInt32 method copies the cbSize value into the first member of
DetailDataBuffer:

Marshal.WriteInt32 _
 (DetailDataBuffer, _
 4 + Marshal.SystemDefaultCharSize)

The second call to SetupDiGetDeviceInterfaceDetail passes the Detail-
DataBuffer pointer and sets the DeviceInterfaceDetailDataSize parameter
equal to the BufferSize value returned previously in RequiredSize:

Success = SetupDiGetDeviceInterfaceDetail _
 (deviceInfoSet, _
 MyDeviceInterfaceData, _
 DetailDataBuffer, _
 BufferSize, _
 BufferSize, _
 IntPtr.Zero)

When the function returns, DetailDataBuffer points to a structure contain-
ing a device path name.

Extracting the Device Path Name
The device path name is in the DevicePath member of the
SP_DEVICE_INTERFACE_DETAIL_DATA structure returned by Setup-
DiGetDeviceInterfaceDetail.

Chapter 10

302 USB Complete

Visual C++

The device path name is in DetailData -> DevicePath.

Visual Basic

The string containing the device path name is stored beginning at byte 5 in
DetailDataBuffer. (The first four bytes are the cbSize member.) The pDevi-
cePathName variable points to this location:

Dim DevicePathName(127) As String

Dim pDevicePathName As IntPtr = _
 New IntPtr(DetailDataBuffer.ToInt32 + 4)

The Marshal.PtrToString method retrieves the string from the buffer:

DevicePathName = _
 Marshal.PtrToStringAuto(pDevicePathName)

We’re finished with DetailDataBuffer, so we should free the memory previ-
ously allocated for it:

Marshal.FreeHGlobal(DetailDataBuffer)

Closing Communications
When finished using the DeviceInfoSet returned by SetupDiGetClassDevs,
the application should call SetupDiDestroyDeviceInfoList.

Visual C++

This is the function’s declaration:

BOOL SetupDiDestroyDeviceInfoList(
 HDEVINFO DeviceInfoSet);

This is the code to call the function:

SetupDiDestroyDeviceInfoList(DeviceInfoSet);

Detecting Devices

USB Complete 303

Visual Basic

This is the function’s declaration:

<DllImport("setupapi.dll")> Function
SetupDiDestroyDeviceInfoList _
 (ByVal DeviceInfoSet As IntPtr) _
 As Integer
 End Function

This is the code to call the function:

SetupDiDestroyDeviceInfoList (deviceInfoSet)

Obtaining a Handle
An application can use a retrieved device path name to obtain a handle that
enables communicating with the device. Table 10-2 shows the API func-
tions related to requesting a handle.

Requesting a Communications Handle
After retrieving a device path name, an application is ready to open commu-
nications with the device. The CreateFile function requests a handle to an
object, which can be a file or another resource managed by a driver that sup-
ports handle-based operations. For example, applications can request a han-
dle to use in exchanging reports with HID-class devices.

Visual C++

This is the function’s declaration:

HANDLE CreateFile(
 LPCTSTR lpFileName,
 DWORD dwDesiredAccess,
 DWORD dwShareMode,
 LPSECURITY_ATTRIBUTES lpSecurityAttributes,
 DWORD dwCreationDisposition,
 DWORD dwFlagsAndAttributes,
 HANDLE hTemplateFile
);

Chapter 10

304 USB Complete

This is the code to call the function:

HANDLE DeviceHandle;

DeviceHandle=CreateFile
 (DetailData->DevicePath,
 GENERIC_READ|GENERIC_WRITE,
 FILE_SHARE_READ|FILE_SHARE_WRITE,
 (LPSECURITY_ATTRIBUTES)NULL,
 OPEN_EXISTING,
 0,
 NULL);

Visual Basic

This is a declaration for the the SECURITY_ATTRIBUTES structure:

<StructLayout(LayoutKind.Sequential)> _
Public Structure SECURITY_ATTRIBUTES
 Dim nLength As Integer
 Dim lpSecurityDescriptor As Integer
 Dim bInheritHandle As Integer
End Structure

Table 10-2: Applications can use CreateFile to request a handle to a device and
CloseHandle to free the resources used by a handle.
API Function DLL Purpose

CloseHandle kernel32 Free resources used by CreateFile.

CreateFile kernel32 Retrieve a handle for communicating
with a device.

Detecting Devices

USB Complete 305

This is the function’s declaration:

<DllImport("kernel32.dll", CharSet:=CharSet.Auto)>
Function CreateFile _
 (ByVal lpFileName As String, _
 ByVal dwDesiredAccess As Integer, _
 ByVal dwShareMode As Integer, _
 ByRef lpSecurityAttributes As _
 SECURITY_ATTRIBUTES, _
 ByVal dwCreationDisposition As Integer, _
 ByVal dwFlagsAndAttributes As Integer, _
 ByVal hTemplateFile As Integer) _
 As Integer
End Function

This is the code to call the function:

Public Const GENERIC_READ = &H80000000
Public Const GENERIC_WRITE = &H40000000
Public Const FILE_SHARE_READ = &H1
Public Const FILE_SHARE_WRITE = &H2
Public Const OPEN_EXISTING = 3
Dim DeviceHandle As Integer
Dim Security As SECURITY_ATTRIBUTES

Security.lpSecurityDescriptor = 0
Security.bInheritHandle = CInt(True)
Security.nLength = Len(Security)

DeviceHandle = CreateFile _
 (DevicePathName, _
 GENERIC_READ Or GENERIC_WRITE, _
 FILE_SHARE_READ Or FILE_SHARE_WRITE, _
 Security, _
 OPEN_EXISTING, _
 0, _
 0)

Details

The function passes a pointer to the device-path-name string returned by
SetupDiGetDeviceInterfaceDetail. The dwDesiredAccess parameter
requests read/write access to the device. The dwShareMode parameter allows
other processes to access the device while the handle is open. The lpSecu-

Chapter 10

306 USB Complete

rityAttributes parameter is a pointer to a SECURITY_ATTRIBUTES struc-
ture. The dwCreationDisposition parameter must be OPEN_EXISTING
for devices. The final two parameters are unused in this example.

Closing the Handle
Chapter 13 shows how to use a handle to exchange information with a
HID-class device. For other device classes, the details will vary with the
driver. When finished communicating with a device, the application should
call CloseHandle to free the resources used by CreateFile.

Visual C++

This is the function’s declaration:

BOOL CloseHandle(
 HANDLE hObject);

This is the code to call the function:

CloseHandle(DeviceHandle);

Visual Basic

This is the function’s declaration:

<DllImport("kernel32.dll")> Function CloseHandle _
 (ByVal hObject As Integer) _
 As Integer
End Function

This is the code to call the function:

CloseHandle(DeviceHandle)

Detecting Attachment and Removal
Many applications find it useful to know when a device has been attached or
removed. An application that detects when a device has been attached can
begin communicating automatically on attachment. An application that
detects when a device has been removed can stop attempting to communi-

Detecting Devices

USB Complete 307

cate, notify the user, and wait for reattachment. Windows provides
device-notification functions for this purpose.

About Device Notifications
To request to be informed when a device is attached or removed, an applica-
tion’s form can register to receive notification messages for devices in a
device interface class. The messages are WM_DEVICECHANGE messages
that the operating system passes to the form’s WindowProc (WndProc in
Visual Basic) method. An application can override the WindowProc method
in a form’s base class with a method that processes the messages and then
passes them to the base class’s WindowProc method. Each notification con-
tains a device path name that the application can use to identify the device
the notification applies to. Table 10-3 lists the API functions used in regis-
tering for device notifications. The example that follows shows how to use
the functions.

Registering for Device Notifications
Applications use the RegisterDeviceNotification function to request to
receive notification messages. The function requires a pointer to a handle for
the window or service that will receive the notifications, a pointer to a
DEV_BROADCAST_DEVICEINTERFACE structure that holds informa-
tion about the request, and flags to indicate whether the handle is for a win-
dow or service status.

In the DEV_BROADCAST_DEVICEINTERFACE structure passed to
RegisterDeviceNotification, the dbcc_devicetype member is set to
DBT_DEVTYP_DEVICEINTERFACE to specify that the application
wants to receive notifications about a device interface class, and classguid is
the GUID of the device interface class (HidGuid in the examples).

When the WM_DEVICECHANGE messages are no longer of interest, the
application should call UnregisterDeviceNotification, as described later in
this chapter.

Chapter 10

308 USB Complete

Visual C++

The declaration for the DEV_BROADCAST_DEVICEINTERFACE
structure is this:

typedef struct _DEV_BROADCAST_DEVICEINTERFACE {
 DWORD dbcc_size;
 DWORD dbcc_devicetype;
 DWORD dbcc_reserved;
 GUID dbcc_classguid;
 TCHAR dbcc_name[1];
} DEV_BROADCAST_DEVICEINTERFACE
*PDEV_BROADCAST_DEVICEINTERFACE;

This is the function’s declaration:

HDEVNOTIFY RegisterDeviceNotification(
 HANDLE hRecipient,
 LPVOID NotificationFilter,
 DWORD Flags
);

This is the code to call the function:

HDEVNOTIFY DeviceNotificationHandle;

DEV_BROADCAST_DEVICEINTERFACE
 DevBroadcastDeviceInterface;

DevBroadcastDeviceInterface.dbcc_size =
 sizeof(DevBroadcastDeviceInterface);

DevBroadcastDeviceInterface.dbcc_devicetype =
 DBT_DEVTYP_DEVICEINTERFACE;

DevBroadcastDeviceInterface.dbcc_classguid = HidGuid;

Table 10-3: These functions enable an application to request to receive or stop
receiving notifications about device attachment and removal.
API Function DLL Purpose

RegisterDeviceNotification user32 Request to receive device notifications

UnregisterDeviceNotification user32 Request to stop receiving device
notifications

Detecting Devices

USB Complete 309

DeviceNotificationHandle = RegisterDeviceNotification
 (m_hWnd,
 &DevBroadcastDeviceInterface,
 DEVICE_NOTIFY_WINDOW_HANDLE);

Visual Basic

The device-notification functions use several constants defined in header
files. These are from dbt.h:

Public Const DBT_DEVTYP_DEVICEINTERFACE As Integer = 5
Public Const DEVICE_NOTIFY_WINDOW_HANDLE As Integer _
 = 0
Public Const WM_DEVICECHANGE As Integer = &H219

These are from setupapi.h:

Public Const DIGCF_PRESENT As Short = &H2S
Public Const DIGCF_DEVICEINTERFACE As Short = &H10S

The DEV_BROADCAST_DEVICEINTERFACE structure has this decla-
ration:

 <StructLayout(LayoutKind.Sequential)> _
 Public Class DEV_BROADCAST_DEVICEINTERFACE
 Public dbcc_size As Integer
 Public dbcc_devicetype As Integer
 Public dbcc_reserved As Integer
 Public dbcc_classguid As Guid
 Public dbcc_name As Short
End Class

This is the declaration for RegisterDeviceNotification:

<DllImport("user32.dll", CharSet:=CharSet.Auto)> _
Function RegisterDeviceNotification _
 (ByVal hRecipient As IntPtr, _
 ByVal NotificationFilter As IntPtr, _
 ByVal Flags As Int32) _
 As IntPtr
End Function

Chapter 10

310 USB Complete

This is the code to call the function:

Dim DevBroadcastDeviceInterface _
 As DEV_BROADCAST_DEVICEINTERFACE = _
 New DEV_BROADCAST_DEVICEINTERFACE()
Dim DevBroadcastDeviceInterfaceBuffer As IntPtr
Dim DeviceNotificationHandle As IntPtr
Dim Size As Integer
Friend frmMy As frmMain

The Marshal.SizeOf method retrieves the size of the
DEV_BROADCAST_DEVICEINTERFACE structure, which is then
stored in the structure’s dbcc_size member:

Size = Marshal.SizeOf(DevBroadcastDeviceInterface)

DevBroadcastDeviceInterface.dbcc_size = Size
DevBroadcastDeviceInterface.dbcc_devicetype = _
 DBT_DEVTYP_DEVICEINTERFACE
DevBroadcastDeviceInterface.dbcc_reserved = 0
DevBroadcastDeviceInterface.dbcc_classguid = _
 HidGuid

Marshal.AllocGlobal reserves memory for a buffer that will hold the
DEV_BROADCAST_DEVICEINTERFACE structure. The
Marshal.StructureToPointer method copies the structure into the buffer.
The application is then ready to call RegisterDeviceNotification:

DevBroadcastDeviceInterfaceBuffer = _
 Marshal.AllocHGlobal(Size)

Marshal.StructureToPtr _
 (DevBroadcastDeviceInterface, _
 DevBroadcastDeviceInterfaceBuffer, _
 True)

DeviceNotificationHandle = _
 RegisterDeviceNotification _
 (frmMy.Handle, _
 DevBroadcastDeviceInterfaceBuffer, _
 DEVICE_NOTIFY_WINDOW_HANDLE)

Detecting Devices

USB Complete 311

When finished using DevBroadcastDeviceInterfaceBuffer, the application
should free the memory allocated for it by AllocHGlobal:

Marshal.FreeHGlobal _
 (DevBroadcastDeviceInterfaceBuffer)

Capturing Device Change Messages
The WindowProc function processes messages received by a form, dialog
box, or other window.

Visual C++

To receive WM_DEVICECHANGE messages, a dialog box’s message map
must contain the line ON_WM_DEVICECHANGE():

BEGIN_MESSAGE_MAP(MyApplicationDlg, CDialog)
 //{{AFX_MSG_MAP(MyApplicationDlg)
 .
 .
 .
 //}}AFX_MSG_MAP
 ON_WM_DEVICECHANGE()
END_MESSAGE_MAP()

Visual Basic

This is the code for a WndProc routine that overrides the base form’s default
WndProc routine:

Protected Overrides Sub WndProc(ByRef m As Message)

 If m.Msg = WM_DEVICECHANGE Then
 OnDeviceChange(m)
 End If

 MyBase.WndProc(m)

End Sub

On receiving a WM_DEVICECHANGE message, the method calls the
OnDeviceChange method and then passes the message to the WndProc
method in the form’s base class.

TE
AM
 F
LY

Chapter 10

312 USB Complete

Reading Device Change Messages
On receiving a WM_DEVICECHANGE message, a window’s OnDevice-
Change method executes. The method can examine the message’s contents
and take any needed action. The message contains two pointers: lParam and
wParam.

The wParam property is a code that indicates device arrival, removal, or
another event.

The lParam property is a device management structure. There are several
types of device-management structures, but all begin with the same header,
which has three members. The header is a DEV_BROADCAST_HDR
structure whose dbch_devicetype member indicates the type of device-man-
agement structure that lParam points to.

If dbch_devicetype = DBT_DEVTYP_DEVICEINTERFACE, the struc-
ture is a DEV_BROADCAST_INTERFACE and the application can
retrieve the complete structure, read the device path name in the dbcc_name
member, and compare the name to the device path name of the device of
interest.

Visual C++

This is the declaration for the DEV_BROADCAST_HDR structure:

typedef struct _DEV_BROADCAST_HDR {
 DWORD dbch_size;
 DWORD dbch_devicetype;
 DWORD dbch_reserved;
} DEV_BROADCAST_HDR, *PDEV_BROADCAST_HDR;

Detecting Devices

USB Complete 313

This is the code for the OnDeviceChange function:

BOOL CUsbhidiocDlg::OnDeviceChange
 (WPARAM wParam,
 LPARAM lParam)
{
 switch(wParam)
 {
 case DBT_DEVICEARRIVAL:
 // Find out if the device path name matches
 // wParam.
 // If yes, perform any tasks required
 // on device attachment.

 return TRUE;

 case DBT_DEVICEREMOVECOMPLETE:

 // Find out if the device path name matches
 // wParam.
 // If yes, perform any tasks required
 // on device removal.

 return TRUE;

 default:
 return TRUE;
 }
}

Visual Basic

These constants are from dbt.h:

Public Const DBT_DEVICEARRIVAL As Integer = &H8000
Public Const DBT_DEVICEREMOVECOMPLETE As Integer _
 = &H8004

Chapter 10

314 USB Complete

This is the declaration for the DEV_BROADCAST_HDR structure:

<StructLayout(LayoutKind.Sequential)> _
Public Class DEV_BROADCAST_HDR
 Public dbch_size As Integer
 Public dbch_devicetype As Integer
 Public dbch_reserved As Integer
End Class

This is code to check for device arrival and removal messages:

Friend Sub OnDeviceChange(ByVal m as Message)

 If (m.WParam.ToInt32 = DBT_DEVICEARRIVAL) Then

 ' Find out if the device path name matches
 ' wParam.
 ' If yes, perform any tasks required
 ' on device removal.

 ElseIf (m.WParam.ToInt32 = _
 DBT_DEVICEREMOVECOMPLETE) Then

 ' Find out if the device path name matches
 ' wParam.
 ' If yes, perform any tasks required
 ' on device removal.

 End If

End Sub

Retrieving the Device Path Name in the Message
If the message indicates a device arrival or removal (or another event of
interest), the application can investigate further.

In the structure that lParam points to, if dbch_devicetype contains
DBT_DEVTYP_DEVICEINTERFACE, the event relates to a device inter-
face. The structure in lParam is a DEV_BROADCAST_INTERFACE
structure, which begins with a DEV_BROADCAST_HDR structure. The
dbcc_name member contains the device path name of the device the mes-
sage applies to.

Detecting Devices

USB Complete 315

The application can compare this device path name with the device path
name of the device of interest. On a match, the application can take any
desired actions.

Visual C++

This is the code to retrieve the device path name and look for a match:

PDEV_BROADCAST_HDR lpdb = (PDEV_BROADCAST_HDR)lParam;

if (lpdb->dbch_devicetype ==
 DBT_DEVTYP_DEVICEINTERFACE)
{
 PDEV_BROADCAST_DEVICEINTERFACE lpdbi =
 (PDEV_BROADCAST_DEVICEINTERFACE)lParam;

 CString DeviceNameString;

 DeviceNameString = lpdbi->dbcc_name;

 if
 ((DeviceNameString.CompareNoCase
 (DetailData>DevicePath)) == 0)
 {
 // The names match.
 }
 else
 {
 // It’s a different device.
 }
}

Chapter 10

316 USB Complete

Visual Basic

The application uses two declarations for the
DEV_BROADCAST_DEVICEINTERFACE structure. The first declara-
tion, presented earlier, is used when calling RegisterDeviceNotification. The
second declaration, DEV_BROADCAST_DEVICEINTERFACE_1,
enables marshaling the data in dbcc_name and classguid:

<StructLayout _
 (LayoutKind.Sequential, _
 CharSet:=CharSet.Unicode)> _
Public Class DEV_BROADCAST_DEVICEINTERFACE_1
 Public dbcc_size As Integer
 Public dbcc_devicetype As Integer
 Public dbcc_reserved As Integer
 <MarshalAs _
 (UnmanagedType.ByValArray, _
 ArraySubType:=UnmanagedType.U1, _
 SizeConst:=16)> _
 Public dbcc_classguid() As Byte
 <MarshalAs _
 (UnmanagedType.ByValArray, sizeconst:=255)> _
 Public dbcc_name() As Char
 End Class

This is the code to retrieve the device path name and look for a match:

Dim DevBroadcastDeviceInterface As _
 New DEV_BROADCAST_DEVICEINTERFACE_1()
Dim DevBroadcastHeader As New DEV_BROADCAST_HDR()

Marshal.PtrToStructure(m.LParam, DevBroadcastHeader)

If (DevBroadcastHeader.dbch_devicetype = _
 DBT_DEVTYP_DEVICEINTERFACE) Then
 Dim StringSize As Integer = _
 CInt((DevBroadcastHeader.dbch_size - 32) / 2)
 ReDim DevBroadcastDeviceInterface.dbcc_name _
 (StringSize)

 Marshal.PtrToStructure _
 (m.LParam, DevBroadcastDeviceInterface)

Detecting Devices

USB Complete 317

 Dim DeviceNameString As New String _
 (DevBroadcastDeviceInterface.dbcc_name, _
 0, _
 StringSize)

 If (String.Compare _
 (DeviceNameString, _
 DevicePathName, _
 True) = 0) Then
 'The name matches.
 Else
 'It's a different device.
 End If
End If

MarshalPtrToStructure copies the message’s lParam property into a
DEV_BROADCAST_HDR structure. If lParam indicates that the message
relates to a device interface, the application retrieves the device path name.

The name is in a Char array in unmanaged memory. The application needs
to retrieve the Char array and convert it to a String.

The dbch_size member of DEV_BROADCAST_HDR contains the num-
ber of bytes in the complete DEV_BROADCAST_INTERFACE structure.
To obtain the number of characters in the device path name stored in
dbch_name, subtract the 32 bytes in the structure that are not part of the
name and divide by 2 because there are 2 bytes per character.

DevBroadcastDeviceInterface is a DEV_BROADCAST_INTERFACE_1
structure that marshals the data in the classguid and dbcc_name members.
A ReDim statement trims dbcc_name to match the size of the device path
name. Marshal.PtrToStructure copies the data from the unmanaged block in
lParam to the DevBroadcastDeviceInterface structure. The Char array con-
taining the device path name is then stored as a String in Device-
NameString, and the String.Compare method looks for a match.

Stopping Device Notifications
To stop receiving device notifications, an application calls UnregisterDevice-
Notification. The application should call the function before closing.

Chapter 10

318 USB Complete

Visual C++

This is the function’s declaration:

BOOL UnregisterDeviceNotification(
 HDEVNOTIFY Handle
);

This is the code to call the function:

UnregisterDeviceNotification(
 DeviceNotificationHandle);

Visual Basic

This is the function’s declaration:

<DllImport("user32.dll")> Function
UnregisterDeviceNotification _
 (ByVal Handle As IntPtr) _
 As Boolean
 End Function

This is the code to call the function:

UnregisterDeviceNotification _
 (DeviceNotificationHandle)

