BUILD YOUR OWN
280 COMPUTER

by Steve Ciarcia

A Note about this book and its free availability online

Readers are encouraged to download this book of design guidelines and application notes from Steve
Ciarcia, founder and editorial director of Circuit Cellar magazine. Although the original title first
appeared in 1981, pre-dating Circuit Cellar “the magazine,” | still get a number of purchase requests
each year from electronics enthusiasts. Some are just interested in Steve’s brand of designing and ability
to overcome obstacles, while others still find themselves tweaking projects that use parts described in
Steve’s projects.

Please note: The original work was only available as a hard copy. Thanks to Andrew Lynch and Bill
Bradford for their work in creating the PDF and getting permission from copyright holder Steve Ciarcia
to release it. Scanning done by Bill Bradford.

You will be pleased to know that the same style of embedded computing articles can be found each
month through Circuit Cellar magazine. Please visit www.circuitcellar.com to learn about this monthly

resource for professional designers and electronics enthusiasts alike.

Please enjoy “Build Your Own Z80 Computer” as a great blast from the past. Its style is the foundation
on which Circuit Cellar magazine was built and continues to grow. | look forward to seeing you become a
part of the ongoing Circuit Cellar success story.

Sincerely,

Sean Donnelly, Publisher — Circuit Cellar
circuitcellar@circuitcellar.com

GIRGUIT
GELLAR

I'HE MAGAZINE FOR COMPUTER APPLICATIONS

http://www.circuitcellar.com/
mailto:circuitcellar@circuitcellar.com

Build Your Own
Z80 Computer

Design Guidelines
and

Application Notes

Steve Ciarcia

;
{
i

BYTE Books/A McGraw-Hill Publication/70 Main St/Peterborough New Hampshire 03458

Build Your Own Z80 Computer

Copyright © 1981 by Steve Ciarcia. All rights reserved. Printed in the United States
of America. No part of this book may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the author.

The author of the circuits and programs provided with this book has carefully re-
viewed them to ensure their performance in accordance with the specifications
described in this book. Neither the author nor BYTE Publications Inc., however,
make any warranties concerning the circuits or programs and assume no respon-
sibility or liability of any kind for errors in the circuits or programs, or for the con-
sequences of any such errors. The circuits and programs are the sole property of the
author and have been registered with the United States Copyright Office.

The author would like to acknowledge that portions of this book have been re-
printed by permission of the manufacturers. The instruction codes in Chapter 3 and
Z80 CPU technical information have been reprinted by permission of Zilog, Inc.
Chapter 9 is based on an application note reprinted by permission of SMC
Microsystems Corporation,

Library of Congress Cataloging in Publication Data

Ciarcia, Steve.
Build your own Z80 computer.

Includes index.)

1. Electronic digital computers--Amateurs’ manuals.
2. Zilog Model Z-80 (Computer) I. Title.
TK9969.C52 621.3819'582 81-4335
ISBN 0-07-010962-1 AACR2

Text set in Paladium by BYTE Publications
Edited by Bruce Roberts and Nicholas Bedworth
Design and Production Supervision

by Ellen Klempner

Production by Mike Lonsky

Cover Photo by Charley Freiberg

Copy Edited by Rich Friedman and Peg Clement
Figure and Table Illustrations *
by Tech Art Associates

Printed and bound using 45# Bookmark

by Kingsport Press, Kingsport, Tennessee

Build Your Own
Z80 Computer

To my wife Joyce,

Steve Sunderland, and Judy and Lloyd Kishinsky

Introduction

A few years ago, when microprocessors were first introduced, computer enthusiasts
and electrical engineers were one and the same, Those of us who lived only to solder
kluge after kluge basked in our glory. Now, however, the prices of completely assem-
bled and packaged systems have plummeted. Today anyone with an interest, almost
regardless of technical capabilities, can own and operate a computer. Buying a com-
puter is now similar to purchasing a television set and the ranks of computer en-
thusiasts have swelled accordingly.

With any popular movement, the available literature reflects the concerns of a ma-
jority of the followers. And, consistent with the popularization of computer science,
the technical emphasis on computer bookshelves has shifted away from hardware
design. Other than introductory texts called, say, How Logic Gates Work, most com-
puter books either treat microcomputer hardware simplistically or attempt to be
“catch-all” cookbooks, sometimes omitting tasty ingredients. Often, the only alter-
natives are engineering texts and trade journals, tedious reading at best.

For a number of years, I have been writing a column for BYTE magazine, and reader
response has shown that there still exists a great deal of interest in hardware design and
do-it-yourself projects. At the same time, I've been painfully aware of the lack of
materials for such people. Most queries come from technical or high school students
who have read all the descriptions and studied the block diagrams, but who crave prac-
tical answers and system examples. Unfortunately, there are very few books I can sug-
gest.

Build Your Own Z80 Computer is a book written for technically minded individuals
who are interested in knowing what is inside a microcomputer. It is for persons who,
already possessing a basic understanding of electronics, want to build rather than pur-
chase a computer. It is not an introductory electronics handbook that starts by describ-
ing logic gates nor on the other hand is it a text written only for engineering students.
While serving to educate the curious, the objective of this book is to present a practical,
step-by-step analysis of digital computer architecture, and the construction details of a
complete and functional microcomputer.

The computer to be constructed is called a Z80 Applications Processor—ZAP com-
puter for short. It is based on the industry standard Zilog Z80 microprocessor chip.
This chip was chosen on the basis of its availability and low cost, as were the other
components for ZAP. To further help the homebrew enthusiast, and for those ex-
perimenters who prefer to start a book at the back, I have listed in Appendix A a com-
pany that supplies parts and programmed EPROMs (erasable-programmable read-only
memory).

I have structured the book as a logical sequence of construction milestones in-
terspersed by practical discussions on the theory of operation. My purpose is twofold:
to help a potential builder gain confidence, and to make the material more palatable
through concrete examples.

Though this is basically a construction manual, considerable effort is given to the
“why’s” and "how’s” of computer design. The reader is exposed to various subjects, in-
cluding: the internal architectures of selected microprocessors, memory mapping,
input/output interfacing, power supplies, peripheral communication, and program-
ming. All discussions try to make the reader aware of each individual component’s ef-
fect on the total system. Even though I have documented the specific details of the ZAP
computer, it is my intention (and the premise of the book) that the reader will be able
to configure a custom computer. ZAP is an experimental tool that can be expanded to
meet a variety of applications.

vii

Tl

viii

ZAP is constructed as a series of subsystems that can be checked and exercised in-
dependently. The first item to be built is the power supply. This is a good way to test
ability and provide immediate positive reinforcement from successful construction.
The three-voltage supply is both overvoltage and overtemperature protected and has
adequate current for an expanded ZAP system.

Next, the reader learns why the Z80 was chosen for ZAP and the architectural con-
siderations that affect component selection on the other subsystems. A full chapter is
devoted to the Z80 chip. Each control signal is explained in detail and each instruction
is carefully documented.

The hardware construction proceeds in stages with intermediate testing in order to
ensure success. The basic elements of the computer are assembled first and then
checked out. The reader selects which peripherals are to be added. The book contains
sections on the construction of a hexadecimal display, keyboard, EPROM program-
mer, RS-232C serial interface, cassette mass storage system, and fully functional CRT
terminal. In addition, a chapter addresses interfacing the ZAP to analog signals. I pro-
vide specific circuits that can convert ZAP into a digital speech synthesizer or a data ac-
quisition system and data logger.

A special 1 K (1024 bytes) software monitor coordinates the activities of the basic
computer system and the peripherals. Software is explained through flow diagrams and
annotated listings. With this monitor as an integral component, ZAP can function as a
computer terminal, a dedicated controller, or a software development system.

Build Your Own Z80 Computer is a book for hardware people. It cuts through the
theoretical presentations on microcomputers and presents a real “How-to” analysis
suitable for the reader with some electronics experience or for the novice who can call
someone for supervision. From the power supply to the central processor, this book is
written for people who want to understand what they build.

Steve Ciarcia
May 1981

TABLE OF CONTENTS

Introduction
Chapter1 Power Supplycovvviiiiiii i, 1
Chapter 2 Central Processor Basicsoooiiiit, 21
Chapter 3 ~ The Z80 Microprocessorc.covvevivvveennn. 27
Chapter 4 Build Your Own Computer - Start With the Basics ... 91
Chapter 5 The Basic Peripherals 129
Chapter 6 The ZAP MONITOR Software 151
Chapter 7 Programming anEPROM 173
Chapter 8 Connecting ZAP to the Real World 183
Chapter 9 BuildaCRT Terminal 213
Appendix A Construction Techniques 225
Appendix B ASCIICodescovviiiiiniiiieniennnannn, 229
Appendix C Manufacturers’ Specification Sheets 233
C1 2708 8K (1K X 8) UV ErasablePROM 235
C2 271616K (2K X 8) UV ErasablePROM, 239
C3 2102A1K X 1BitStaticRAMovvvvviin it 243
C4 2114A 1K X 4 BitStaticRAM ...vvvvnuenien i, 247
C5 8212 8-Bit Input/Qutput Portoovvvvvvnn i, 251
C6 KR2376-XX Keyboard Encoder Read-Only Memory 259
C7 COM2017 Universal Asynchronous Receiver Transmitter . 263
C8 CRT 5027 CRT Video Timer and Controller 271
C9 CRT 8002 Video Display Attributes Controller 279
C10 COM8046 Baud Rate Generatorco.vvvviuun... 287
Appendix D ZAP Operating System 293
Appendix E Z80 CPU Technical Specifications 307
E1 Electrical Specificationscociiivviniien, 309
E2 CPUTIMING . oottt iiiiienr e ceeiiinnaeraseernnnns 313
E3 Instruction Set Summaryccoviiiiiiiiiiiiian 321
GlOSSaIY .+ v tieeeee sttt e i i e 325
1o L= e 329

CHAPTER 1
POWER SUPPLY

It's not enough to build a central processor card with a little input/output (I/0) and
memory, and call it a computer. From the time you walk over to the computer and flip
the switch, the system is completely dependent upon the proper operation of its power
supply. A book concerned with building a computer system from scratch would be
completely inadequate without a description of how to construct an appropriate power
supply.

Much has been written on the subject of direct current (DC) power supplies. There
are DC to DC and AC (alternating current) to DC converters, switching and shunt
regulators, constant voltage transformers, and so on. It's not my intention to make a
power supply expert out of everyone. Instead, I will outline the design of the specific
DC power supply which we will use to power the Z80 Applications Processor (ZAP).

In large computers, the DC supplies convert enormous amounts of power to run
thousands of logic chips; by necessity, manufacturers choose the most efficient
methods of power conversion, These state of the art methods would be expensive and
difficult for the hobbyist to build in prototype form. Fortunately, the power demands
for ZAP are much less than those of the large computers; we can take advantage of
established design methods while incorporating the latest advances in regulator
technology. Figure 1.1 is a block diagram of the power supply for ZAP.

Each of the three DC supplies necessary to power ZAP consists of three basic
modules: a transformer section to reduce the 120 VAC line voltage to the lower voltage
used by the computer; an input rectifier/filter to convert AC to low ripple DC; and a
regulator which stabilizes the output at a fixed voltage level. Overvoltage protection
circuitry will be discussed separately.

1AMP 5 AMP
FUSE FUSE
o—o\o—— —o "\ o—] ———— +5 vOLTS
RECTIFIER OVERVOLTAGE @ 5amPs
120 VOLTS AC | TRANSFORMER AND SERIES PROTECTION
INBUT RE GULATOR GIRCUITRY
FILTER
o CIRCUIT GND
1 AMP
FUSE POSITIVE OVERVOLTAGE
—o\o— SERIES PROTECTION +12 VOLTS
REGULATOR CIRCUITRY @ 1amp
REGTIFIER
AND
INPUT
FILTER L amp
FusE NEGATIVE OVERVOLTAGE
L o -12VOLT
SERIES PROTECTION 2 VOLTS
REGULATOR CIRCUITRY @ 1ampP

Figure 1.1 A block diagram of the basic power supply for the Z80 Applications Processor (ZAP).

POWER SUPPLY 1

120 VOLT
AC
INPUT

The proper specification of the transformer and input filter is often neglected by hob-
byists who overlook the consequences of a poorly designed filter. This is caused, in
part, by the abundant technical information circulated by semiconductor manufac-
turers extolling the virtues of their regulator circuits. One can easily conclude from this
“publicity gap” that the regulation section of the power supply is the only component
worthy of consideration; and in fact, advances in regulator design and the advent of
high-power, three-terminal regulators have reduced the need for the analog designer in
the application. In the past, 25-odd components and considerable calculations were
necessary to produce an adequate voltage regulator. Now, however, the majority of
applications can be accommodated with a single, compact device. Even so, an input
filter section should not be taken lightly and still requires thorough consideration and a
modest amount of computation for each application.

There are three supply voltages necessary to operate ZAP. Each supply incorporates
an input filter section. Because the +5 V supply is the most important, it receives the
most attention. For the purposes of this discussion, we will divide the supply into two
sections: transformer/input filter, and output regulator.

A standard input filter block diagram is shown in figure 1.2. In its simplest form, it

consists of three components that function as follows:

e A transformer that isolates the supply from the power line and reduces the 120 VAC
input to usable, low-voltage AC.

o A bridge rectifier that converts AC to full-wave DC and satisfies the charging cur-
rent demands of the filter capacitor.

o A filter capacitor that maintains a sufficient level between charging cycles to satisfy
the regulator input voltage limitations.

Photo 1.1 720 VAC RMS Photo 1.2 Rectifier waveform. Photo 1.3 Ripple waveform at
input/output waveform of a various loads.
saturated transformer.
TRANSFORMER RECTIFIER CAPACITOR FILTER
z
- N DC QUTPUT
[2 § TO REGULATOR
J & o
| [T
| | |
| | i il
} | |
| i |
| | | .
_
DA VAWV ATATAY =
PRIMARY INPUT VOLTAGE SURGE CURRENT SURGE CURRENT RATING
SECONDARY QUTPUT VOLTAGE CAPABILITY VOLTAGE RATING
CONTINUOUS CURRENT OUTPUT VOLTAGE DROP RIPPLE VOLTAGE
SECONDARY IMPEDANCE CONTINUQUS CURRENT

RATING

Figure 1.2 A block diagram of a standard input filter.

2 POWER SUPPLY

DESIGNING AN INPUT FILTER

You would think that specifying the transformer would be the first consideration
when designing a power supply. Yes and no. The approximate output voltage can be
determined by rule of thumb, but the exact requirements are deduced only by a
thorough analysis that proceeds from the desired output voltage back. In practice, the
difference between a reasonable guess and a laborious analysis will be important only
to a person capable of manufacturing his own transformer. In most instances, the hob-
byist will have to rely upon readily acquired transformers with standard output
voltages. For this reason, my approach is predicated on the practical aspects of power
supply design rather than on the minute engineering details that have no real bearing
on the outcome.

A 120 VAC RMS (root mean square) sine wave is applied to the primary of the
transformer. Figure 1.2 illustrates the waveforms anticipated at selected points through
the filter section. Photo 1.1 shows that 120 VAC is actually 340 V peak to peak; care
should be used in the insulation and mounting of components.

The secondary output of the transformer will be a similar sine wave, reduced in
voltage. It is then applied to a full-wave bridge and the waveform will appear as in
photo 1.2. You'll notice a slight flat spot between “humps.” As a result of dealing with
actual electronic components rather than mathematical models, we should be aware of
certain peculiarities. Silicon diodes exhibit threshold characteristics and, in fact, have a
voltage drop of approximately 1 V across each diode. This voltage drop becomes
significant in full-wave bridge designs and, as figures 1.3a, 1.3b, and photo 1.2 il-
lustrate, can accumulate as diodes are added in series. The 2 V loss in the bridge is an
important consideration and should be reflected in the calculations.

The voltage regulator requires a certain minimum DC level to maintain a constant
output voltage. Should the applied voltage dip below this point, output stability is

a) b)

Figure 1.3 The direction of the current flow through the full-wave bridge.

a) During the positive half of the AC cycle, current flow is through D, and Ds; D, and D,

are not conducting. Vo, + Vos = 2 volts.

b) During the negative half of the AC cycle, current flow is through D, and Da; D, and D,

are not conducting. Vox + Vs = 2 volts.

POWER SUPPLY 3

4 POWER SUPPLY

severely degraded. Thus, a filter capacitor is used to smooth out the “humps” in the
rectified sine wave. When the diodes are conducting, the capacitor stores enough charge
to maintain the minimum voltage required until the next charge cycle. (In practice, we
wouldn’t want to cut it that close.) The input to the transformer is 60 Hz, but because
of the characteristics of full-wave rectification, the charging cycles occur at 120 Hz.
The capacitor charges up during one 8.3 ms cycle, and, as the regulator draws power
from it to satisfy the load demands, it must continue to provide at least the highest
minimum input voltage required by the regulator until the next charge cycle, 8.3 ms
later. This periodic charge/discharge phenomenon is shown in photo 1.3. The
magnitude of the voltage fluctuation between the two peaks of the cycle is referred to
as ripple. The highest magnitude of the waveform including the ripple is designated as
peak voltage. Both are important to remember and are shown in figure 1.4.

VRIPPLE /Z/W—[/—]

VPEAK Ve

0 VOLTS
Vpeak=YrippLE*YC

Figure 1.4 Output voltage as a combination of a certain steady-state voltage (Vc) plus a ripple voltage

Given a basic understanding of the individual components at this stage, we can pro-
ceed to the case at hand: a 5 V, 5 A power supply. For reasons we'll discuss later, the
5 V regulator section of this supply will require an absolute minimum of 8.5 V for
proper operation. This means that whatever the magnitude of Verax and Vs, the
final V¢ level must not go below 8.5V, or the regulator will not work. By giving
ourselves some leeway, say Ve = 10 V, we can take a little more poetic license with
the calculations and still produce a good design. Going much above 10 V, while still
satisfying the input criteria, would increase power dissipation and possibly destroy the
regulator. There is an answer to this vicious circle and that's to be conservative. Ex-
perience shows that adding a little insurance is worthwhile.

Now that 10 V is the goal, we can appropriately select the other filter components to
meet it. Figure 1.5 is the filter circuit of our 5 V supply. Rs is the resistance of the sec-
ondary winding of the transformer. For a 5 to 8 A transformer, it will average about
0.1 ohms. The first values to recognize follow:

Ve = Vrscuraror mmvmum weur vorrace = 10 \Y
Iovr = lrecuzaror 1oap = 5 A
Rs = Rrransrormer seconpary resistance = 0.1 ohms

Veeax can be any voltage up to the maximum input for which the regulator is rated.
However, this will increase the circuit power dissipation. The rule of thumb I use when
designing supplies of this type is that Vreax should be approximately 25% higher than
Ve. In this way, the capacitor value will be kept within reasonable limits. The ratio of
Ve to (Veeax — Vi) is referred to as the ripple factor of the filter capacitor.

Y, = Veeax — Ve — 12.5 — 10
F Ve 10

= 25%

A ripple factor of 25% at 5 A will fall well within the acceptable capacitor ripple cur-
rent ratings and eliminate the need for the hobbyist to dig into manufacturers’ specifi-
cations of capacitors. This ripple factor is arbitrary, but it is best to keep it as low as
possible. ‘

R
o A ryLL-wave
BRIDGE

TRANSFORMER
SECONDARY

~ :E R Ve
REGULA-
TOR
LOAD

>

o
A
/
3

Figure 1.5 The input filter circuit of the 5 V power supply.

SIZING THE CAPACITOR
We now know that the capacitor must sustain 10 V from a peak input of 12.5 V.

VPEAK = 12.5 V
Ve=10V } Ve = Vegax — Vrirrie
Vewprre = 2.5V

The next consideration is to choose a capacitor that will accomplish this goal. Another
rule of thumb calculation that saves considerable labor is

_dt
C= Iv I
where C = capacitor value in farads = ?

I = maximum regulator current = 5 A
dt = charging time of capacitor = 8.3 ms (120 Hz)
dv = allowable ripple voltage = 2.5V

Plugging in the values of our circuit,

(5)(8.3%107%)

2.3) = 16.6X10° farads

C=

or,
C = 16,600 microfarads (uF)

Generally available commercial electrolytic capacitors have a tolerance of +50 and
—20%. To be on the safe side and to make it easier to find a standard stock compo-
nent, a value of 20,000 uF is better. The added 3,400 uF reduces the ripple by another
0.4 V and gives us a little “insurance.” The only other item to consider with the capaci-
tor is operating voltage. Because the design dictates that Vezax is 12.5 V, this should
be a satisfactory rating. However, experience shows that transformers end up running
at higher output voltages than labeled and that 12.5 V at 115 VAC hits 13.6 V when
the line voltage goes up to 125 VAC. A capacitor voltage of 15 VDC would appear to
satisfy the requirement, but I recommend using the next increased standard value of
20 VDC.

The capacitor is therefore 20,000 xF at 20 VDC. The rectifier can be a monolithic
full-wave bridge, or it can be four discrete diodes. Note that because a bridge is usual-
ly encapsulated, the four terminals are labeled instead of showing the polarity mark-
ings of the individual diodes. The designations for the four terminals are two AC input
terminals, and a + and — output terminal.

POWER SUPPLY 5

6 POWER SUPPLY

THE RECTIFIER

There are three considerations when choosing a rectifier: surge current rating, con-
tinuous current, and PIV (peak inverse voltage) rating. These choices are not inconse-

~ quential and must be considered carefully.

When a power supply is first turned on, the capacitor is totally discharged. In fact, it
will instantaneously appear to be a 0 ohm impedance to the voltage source. The only
aspect of the circuit that limits the initial current flow is the resistance of the secondary
transformer windings and the connecting wiring; designers often add a series resistance
to limit surge current.

The surge current in this circuit is

Verax 12.5
1

ISURGE = Rs = 0_ =125 A

and the time constant of the capacitor is
T=Rs X C= (0.1)20X10°*) = 2 ms

As a rule of thumb, the surge current will cause no damage to the diode if Lsyrcz is less
than the surge current rating of the diode and if

T < 8.3 ms (which it is)

We can't check surge rating until after we choose a diode bridge, but the other two
parameters can be defined.
The bridge can be either of the following:

Motorola MDA 980-2: ICONT =12 A, ISURGE = 300 A, PIV = 100 V
MOtOTOla MDA 990-2: ICONT = 27 A, ISURGE = 300 A, PIV = 100 V

Both of the above bridges have a surge current rating of 300 A, so our surge require-
ment is also satisfied.

PIV

PIV (peak inverse voltage) is the maximum voltage that may appear across the diode
before it self-destructs. Diodes, unlike capacitors, are unforgiving; transients will wipe
them out. It is not unusual to have 400 V transients on the 115 VAC input line. This
causes our 12.5 V to shoot up momentarily to 43 V! The bridge rectifier should there-
fore have a minimum PIV rating of 50 V. For a few pennies more, you can get a bridge
rated for 100 PIV. Remember, insurance costs less than computers.

CONTINUQUS CURRENT

The last consideration is continuous current rating. Whereas the regulator may be
designed for a 5 A output, the particular regulator I have chosen will draw 7 A if
shorted. This is not standard operating procedure, but it can happen. The suggested
standard component would be a 12 A, 50 PIV bridge. A preferred component would be
one rated for 12 A at 100 PIV or, for an additional 15% cost premium, a 27 A at 100
PIV. This last design choice is strictly brute force, but it saves the diode bridge should
the capacitor ever short-out accidentally. A 6 A transformer might put out more than
12 A in a short-circuit mode, but it’s unlikely that it would be capable of 27 A. Either
choice will satisfy the design, but only one saves the design from the builder.

THE TRANSFORMER
Now let’s consider the transformer. We have determined the voltage drops across the
various components. The values are used to calculate the required RMS (root mean

square) secondary voltage in the following way:

Ve +V +V
Vseewms) = — R':;%E RET Vreer = Voltage drop across each diode—

(approximately 1 V per diode)

10+ 2.5+ 2.0
= 1.414

= 1025V

In practice, a 10 V, 6 A standard value transformer will be close enough.

The components of the + and —12 V supplies are chosen in a similar manner, with
the exception that required current is only 1 A, and a 200 PIV bridge is recommended
because of the particular rectifier configuration. The finished schematic of the trans-
former and filter section of our computer is illustrated in figure 1.6.

MDA 990-2
o AC
1:5 amPs
10 VAC _ PN _— _Vg=10VOLTS
@ 6 AMPS VRIPPLE =2.5VOLTS
= 20,000uF
No’AC Tao VDG
. GROUND
120VAC
MDA S70-3
30 VOLT AC
CENTER TAP
@ 2 AMPS =1 ave
CT. - + o - VC=15 VOLTS
VRIPPLE = 4 VOLTS
A +
¢ 2000uF
Tzsvoc
L
2000 uF
25VDC
I =1aMP
. n— Ve:-15VOLTS

VRIPPLE:=-4VOLTS

Figure 1.6 A schematic diagram of a transformer and input filter section.

VOLTAGE REGULATORS

The voltage regulator section of our power supply is the next consideration. All
voltage regulators perform the same task: they convert a given DC input voltage into a
specific, stable DC output voltage and maintain this setpoint over wide variations of
input voltage and output load. The typical voltage regulator, as shown in figure 1.7,
consists of the following:

@ a reference element that provides a known stable reference voltage
e a voltage translation element that samples the output voltage level

e a comparator element that compares the reference and output level to produce an
error signal

e a control element that can utilize this error signal to provide translation of the input
voltage to produce the desired output

The control element depends on the design of the regulator and varies widely. The
control determines the classification of the voltage regulator: series, shunt, or switch-

POWER SUPPLY 7

8 POWER SUPPLY

ing. For the series regulator, the control element regulates the output voltage by
modulating the series element, usually a transistor, and causes it to act as a variable
resistor (figure 1.8). As the input voltage increases, the series resistance Ry also in-
creases, causing a larger voltage drop across it. In this way, the output voltage (Vour) is
maintained at a constant level.

UNREGULATED INPUT! SERIES ouTPUT REGULATED
INPUT » CONTROL ouTPUT
VOLTAGE ELEMENT VOLTAGE
$ CONTROL
VOLTAGE
TRANSLA-
TOR
VOLTAGE VREF COMPARATOR
REFERENCE
Vegs /L

Figure 1.7 A block diagram of a typical voltage regulator.

a) b)
'Load
" o CT TR 0
—L_—_ e | e |
IN [ovouUT VIN ¢ T Vourt
{ Rs l | i
| |
e [N
— CCNTROL
l'Loap
Vout * VInN- ((Rs’('LOADD VouT = Vin-VeE

WHERE VCE = (ILOAD) Rg

Figure 1.8 A series control element in the voltage regulator.
a) The series control element acts as a variable resistance, Rs.
b) The series element is most often a transistor.

To accomplish this closed-loop control, a reference comparison and feedback system
is incorporated into the hardware. A fixed and stabilized reference voltage is easily pro-
duced by a zener diode. The current produced is low, however; the device could not
serve as a power regulator by itself.

The voltage translator connected to the output of the series control element produces
a feedback signal that is proportional to the output voltage. In its simplest form, the
voltage translator is a resistor-divider network. The two signals, reference and feed-
back, provide the necessary information to the voltage comparator for closed loop
feedback to occur (figure 1.9). The output of the comparator effectively drives the base
of the series pass transistor so that the voltage drop across the transistor will be main-
tained at a stabilized preset value when subtracted from the input voltage.

Modern power supply designers can still use individual components to construct the
modular elements of a series voltage regulator, but most reserve this laborious
endeavor for specialized applications. The ZAP computer system outlined here re-
quires +5V, +12V, and —12 V. The combined temperature, stability, and drift

tolerances cannot exceex +5% on any of the three set points. The easiest way to
minimize risk is to reduce the number of circuit components to the bare minimum.
Other designers had the same idea and thus the three-terminal regulator was invented.
Figure 1.10 is the block diagram of such a device.

VeE
————————— ILoaD
[_ = - } Lo
VIN * 1 C * Vout
1
R L[R1 R1
2 = Yv
VouTt 1+(RZ)(REF}
VREF
vz Ra
COMPARATOR
Vout =VIN-VCE THIS IF YOU THINK OF IT AS A TRANSISTOR
AND
VCE *lLoaD (Rg)
VOUT = VIN —(ILOAD (Rs)) THIS IF YOU THINK OF IT AS A SERIES
RESISTANCE

Figure 1.9 A schematic diagram of a series voltage regulator.

—— —
| |
' |
SERIES-PASS |
UNREGULATED ‘ TRANS.STOR | REGULATED
VIN T 1 VouT
l |
! |
| |
CURRENT
CURRENT
i SOURCE $h) 1
b4
o tem———— |
| S I
| & l
g l
@
& | OPERATING [
I:Ct) AREA ’
&2 <
513 '
$§-———--——— Y 2y
x ERROR
VOLTAGE |
THERMAL AMPLIFIER
| oTORWN ! REFERENCE !
| |
| | . l
| |
| |
U J
GROUND
Figure 1.10 A block diagram of a three-terminal voltage regulator. .

Basically, a three-terminal regulator incorporates all the individual transistors,
resistors, and diodes into a single integrated circuit. While simple to use, these devices
have a far more complicated internal structure than the series regulator of figure 1.9.
Only three terminals are necessary in applications where the fixed output is a standard
value suchas: +5V, £6 V, £8V, £12V, 15 V or £24 V. The three connections
are unregulated DC from our input filter, a ground reference, and finally, regulated DC
output.
e
y
¢

POWER SUPPLY 9

In a three-terminal regulator, the voltage reference is the most important part
because any abnormality or perturbation will be reflected in the output. Therefore, the
reference must be stable and free from noise or drift. More advanced designs use band-
gap reference circuits rather than zener diodes. Because of its complexity, such an ap-
proach is practical only in the integrated circuit (IC) environment. Essentially, a band-
gap reference voltage is derived from the predictable temperature, current, and voltage
relationships of a transistor base-emitter junction.

Another advantage of the three-terminal regulator is that in monolithic circuits,
stable current sources can easily be realized by taking advantage of the good matching
and tracking capability of monolithic components. Also, as in the previous case, the
designer can add as many active devices as necessary without significantly increasing
the IC circuit area. Operation of the reference circuit at a constant current level reduces
fluctuations due to line-voltage variation. Thus, the output has increased stability. The
error amplifier is also operated at a constant current to reduce line-voltage influence.

The most important consideration for the hobbyist is that these chips incorporate
protective circuitry, guarding the regulator from certain types of overloads. They pro-
tect the regulator against short-circuit conditions (current limit); excessive input/out-
put differential condition (safe operating area); and excessive junction temperatures
(thermal limit). Of course, all this circuitry is designed to protect the regulator, not the
computer.

CHOQSING A REGULATOR

The 5 A £A78HO05 hybrid voltage regulator has all the inherent characteristics of the
monolithic three-terminal regulator (ie: full protective circuitry). Each hermetically-
sealed TO-3 package contains a ©A78M05 monolithic regulator chip driving a discrete
series-pass transistor Q1 and two short-circuit-detection transistors Q2 and Q3 (see
figure 1.11). The pass transistor is mounted on the same beryllium oxide substrate as
the regulator chip, thus insuring nearly ideal thermal transfer between Q1 and the tem-
perature-sensing circuit of the 78MO05.

- ~~HYBOID SERIES-

{_ (1 INPUT (V)
|

,‘ PASS SECTION
!

78HOS

T * ‘ K Q-1
|
CURRENT SOURZE! |
ruzavaL | SERIES-
S=LTCOWN | Q-3 LI MENT
| AN L-- -7 R-3
START VOLTAGE N | |
| | CtrcuIT | {REGULATOR
ERROR |
AMP []
Rsg |
| |
‘. R
PRCTECTION | (2} QUTPUT {voyr)

OUTPUT CIRCUIT
-]
Ra

/ (3) COMMON

78HGOS

—————
[
[

78v05
MONQL!THIC CHIP

{210UTPUT (VoyuT)
p——o
QUTPUT CIRCUIT

(3)CONTROL

{4)COMMON

Figure 1.11 A block diagram of a 5 A uyA78H05
and pA78HGOS5 hybrid voltage regulator.

10 POWER SUPPLY

ELECTRICAL CHARACTERISTICS: T = 25°C, loyt = 2.0 A unless otherwise specified.

HAT8HOSC
CHARACTERISTICS CONDITIONS UNITS
MIN | TYP MAX

Output Voltage IouT=20A VN =10V 48 50 52 v
Line Regulation VIN=851025V 10 50 mvV
Load Regulation 1OmMASIQUTS50A VN=10V 10 50 mv
Quiescent Current louT= 0. VIN=VouT + 50V 10 mA
Ripple Rejection louT = 1.0A. f=210H2 50V P-P 60 dB
Output Noise 10Hz < <100 kHz. Viy = VoyuT + S50V 40 HVAMS

I0=50A 30 %
Dropout Voltage

o= 30A 26 v
Short Circuit Current Limit ViNF 10V 70 Apk

Figure 1.12 Electrical characteristics of the uA78H05 voltage regulator.

The output circuit is designed so that the worst-case current requirement of the Q1
base, added to the current through R2, always remains below the current-limit thresh-
old of the 78M05. Resistor R1, in conjunction with Q2 and Q3, makes up a current
serse and limit circuit to protect the series-pass device from excessive current drain.

Safe area protection is achieved by brute force and is designed with the hobbyist in
mind. The series-pass transistor is capable of handling the short-circuit current at the
maximum input voltage rating of the 78HO05. (See figure 1.12 for the electrical charac-
teristics of the 78HO05.)

The output of the device is nominally 5.0 V but can vary between 4.8 and 5.2 V. Even
though this falls within the 5.0 V £15% tolerance necessary to run the computer, there
might be a problem with the voltage drop in the cabling between the power supply and
the computer. Up to 0.5 V could be lost in the wiring and connectors. Remember that
at5 A, a resistance of only 0.1 ohms can cause a 0.5 V drop. Unfortunately, the 78H05
is a fixed-output device when referenced to ground. If 4.8 V happens to come out,
“that’s all you gets” (sic). But, in a classic case of engineering razzle-dazzle, we can fool
the regulator by making the ground reference adjustable. Figure 1.13 shows the circuit
that makes this possible. A potentiometer sourced from the —12 V supply creates a
relative-ground reference for the 78H03. If the particular device in question had an out-
put of 4.95 V, and we adjusted R1 for a potential of 0.20 V on the common regulator
pin, the output referenced to ground would change to 4.95 + 0.20, or 5.15 V. For the
fanatics in the crowd, this particular circuit also allows a high-output device to be
reduced to 5.00 V by selecting an appropriate negative voltage ground reference pin.

1 2
ViNPUT IN cuT VouTpPuT
1oV ATBHCSKC +5VE5%
covwan
3
L 1uF 1200 R1
T35V 1}—-——Wy——>§‘
SOLID 1K
TANTALUM = 10uF
Y

|
|
»

FROM 12V
REGULATED OUTPUT

Figure 1.13 Adding "trim adjust’" to the pA78HO5 three-terminal voltage regulator.

POWER SUPPLY 11

12 POWER SUPPLY

With the 5 V supply complete, our next concern is the +12 V and —12 V supplies.
Other devices within the 7800 family of regulators will satisfy the requirements. The
7812 and a 7912 are 1 A positive and negative regulators respectively; they exhibit the
same protection_characteristics as the 78H05. Figures 1.14 and 1.15 outline the exact
specifications. Because we are dealing with much lower currents than the +5 V supply,
there is considerably less concern over voltage losses through connecting cables, and it
is unnecessary to add trim adjustment circuitry. Figure 1.16 is the finished schematic of
the ZAP power supply. Additional regulator circuit diagrams (figures 1.17a, b, ¢ and
d) are included to demonstrate how the 7800 series of regulators can be used in our ap-
plication. Are we finished yet? Of course not. Close examination of figure 1.16 shows
two items not discussed previously: heat sinks and overvoltage protection. These two
subjects and a short discussion of the importance of correct layout complete the
chapter.

pA7812 é
ELECTRICAL CHARACTERISTICS: Vin = 19 V, gyt = 500 mA, —55°C < Tj € 150°C, Cypy = 0.33 wF, Coyt = 0.1 wF,
unless otherwise specified,

CHARACTERISTICS CONDITIONS MIN TYP MAX UNITS
Qutput Veitage Ty=25C 115 120 125 v
Line Regutation 1,=25°C 145VVIN<30V 10 120 mv
BVeVINS 22V 30 60 mV
Losd Regalation T, 25°¢ 5mA<IguT< 1.5A 12 120 mv
250 mA < toyT < 750 mA 4.0 60 mny
155VAVINK2TY
Output Voltage SmMALIgyT<1.0A 1.4 126 \4
¢ P<1SW
Quiescent Current T;=25°C 43 | 80 mA
. with line 1ISVAVN<30V 0.8 mA
Quiescent Current Change
with load SmAKIgUT<1.0A 05 mA
Qutput Noise Voitage TA=25°C.10 Hz < t < 100 kM2 8 40 luV/Vourt
Ripple Rejection t=120H2, 18V QV|N<25V 61 Al a8,
Dropout Voltage louT =1.0A, T3=25°C 20 25 v
Qutput Resistance f=1xHz 18 ms
Short Circuit Current Ty=25°C.ViN =35V 0.75 1.2 A
Peak Qutput Current Ts=25C 1.3 22 3.3 A
—55°C < Ty <+25°C 04 | mvrct

Average Temperature Coefficient of Output Voltage [1oy = 5 mA

+25°C < T3 < +150°C 0.3 | Vout

Figure 1.14 Electrical characteristics of the uA7812 voltage regulator.

uA7912

ELECTRICAL CHARACTERISTICS: Vin = —19 V, IguT = 500 mA, Cjpy = 24F,CoyT = 1#F, —55°C < T < 150°C, unless otherwise

specif.ed.

CHARACTERISTICS CONDITIONS MIN TYP MAX UNITS

Output Voltage Ty=25°C 115 | =120} —125 v
—145V K V|N& —

Line Regulation T,=25°C 145V VNS 30V 10] 120 mv
—16VEViNS =22V 3.0 60 mV
5mA < <

Load Reguiation 7,-25°c LomA<lour<15A 12| 120 mv
250 mA < 10yT < 750 mA 40 60 mV

158V V<27V

Output Vohage SmA<igyT<10A 114 -12.6 v

p<15W

Quiescent Current T4=25°C 1.5 3.0 mA

ith | -15VveaVv -

Quiescent Current Changs wf‘ ik 19 INS-30V 1.0 mA

with load S5mMAKIoyT<10A 05 mA

Output Noise Voitage TA=25°C,10Hz < < 100 kHz 25 80 | uV/Vour

Rippis Rejection f=120Hz, -16 VK VN < 25V 54 60 dB

Dropout Voltage lout =1.0 A, Ty=25°C 1.4 2.3 v

- Peak Output Current Ty=25°C 1.3 2.1 3.3 A

Aversge Temperature Coefficient of R o o mv/Cl

Output Voltage IguT =6 mA, -55°C < T; < 160°C 03 | Vour
Short Circuit Current ViN=-35V,T)=25C 1.2 A

Figure 1.15 Electrical characteristics of the pA7912 voltage regulator.

120 vac

NOTES

MDAS90-2

Tl

1 AMP

2

+5v

pA/tsHOSKCI

10xF
25V

F—t

. 1N4002

1K
VIRIM

~

5 olz
o IR
hel
| |

gy]

v
4

GND
+12v

1 *HEAT SINK REQUIRED (SEE TEXT)

e woe

THE FUSE IS ATTACHED TO THE REGULATCR

1uF/35V CAPACITOR IS SOLID TANTALUM
NOTE THAT THERE 1S A TERMINAL CESIGNATION DIFFERENCE BETWEEN THE 7812 AND THE 7912
iNPUT AND BETWEEN THE FILTER CAPACITOR AND

DIODE BRIDGE

AC
%
o h_x-i—lz
MCA970-3 ot LRTBIZKE I ’ »>
3 104F |o
+ + 25V .1~ ~
2000 =< 1uF g v
uF 35v ANe002! ¢
25VDC ‘
.
. . W0pF _|+
2000pF =3 g 2BV o
zsvec Z 1na002] v
P
1 *
2

Figure 1.16 A schematic diagram of the finished power supply for the ZAP computer.

2N4398
¢]NNPPUETGULATED N\
68 +5V
a) 3w 1] uarsmos |2 %
louT 2 5aMPS
! 3 +
5 33.F /l I~ 10pF
GV v
I /’7[2he:38
UNREGULATED fsc ’_@—_
INPUT
b)
+5V
VARIABLE VOLTAGE RECU_ATOR wAT8MOS 4
ADJUSTABLE 3 oyt « (BEL2NEL24)
770 30V L Rsc
- UNREGULATED 1 A @1 ame /l J: 10uF
INPUT #A7805 10V
10-33V
3
= 0.33ufF *
d 1oov# ™ ;gc
c)
531?1\’(@1AMP
Figure 1.17 Additional voltage regulator circuit]) 8
diagrams to demonstrate how the 7800 series of *+UNREG IN WA7812
regulators can be used. 4.7%
a) A high-current voltage regulator us- Lo anar /Jj L
. ing a 500 mA 78MO5 three-terminal d) 100y COMMON
regulator. °—;| . e
b) A high-current short-circuit pro- 6128 ™
tected voltage regulator, an en-
—-UNREG IN o 6

hanced version of figure 1.17a.

¢) Using a 7805 +5V voltage reg-

ulator to produce a higher output
voltage.

d) Adual £12V tracking voltage reg-

ulator.

DUAL %12 VOLT TRACKING REGULATOR

-12¥
ouT(@ 1 AMP

POWER SUPPLY 13

LAYOUT IS IMPORTANT

Integrated circuit regulators employ wide-band transistors in their construction to
optimize response. As a result, they must be properly compensated to ensure stable
closed-loop operation. Their compensation can be upset by stray capacitance and line
inductance of an improper layout. Circuit lead lengths should be held to a minimum,
and external bypass capacitors in particular should be located as close as possible to the
regulator control circuit.

Figure 1.18a illustrates a typical layout of the components of our supply, and figure
1.18b details the areas that can cause problems, Improper placement of the input ca-
pacitor can induce unwanted ripple on the output voltage. This occurs when the current
flowing in the input circuit influences the common ground line of the regulator. The
voltage drop produced across R2 will cause the output of the regulator to fluctuate in
the same manner as the voltage trim circuit we discussed previously. The peak currents
in the input circuit (which consists of the rectifier and filter capacitor) can be tens of
amperes during charge cycles. These high-current spikes can cause substantial voltage
drops on long-lead lengths or thin-wire connections. They can also degrade perfor-
mance to the point that proper input voltage to the regulator cannot be maintained ex-
cept during low-current operation.

The output current loop is also susceptible to circuit layout. In a three-terminal
regulator, the fixed-output voltage Vour(rzs, is referenced between “out” and “com-
mon’ of the chip. Because the load current flows through R2', R3’, and R4’, as well as
the load itself, these combined voltage losses may reduce Vour to an intolerable level.
Notice that the ground for this circuit is at point C while the present R load is between
points A and B. If another load, more memory for example, is connected to this supply
between points A and C, it would have a different Vour. Adjusting the trim setting of
such a seesaw supply can be dangerous; it's possible to have one load completely
within tolerance and another over or under voltage. One last point to consider is that
R4’ serves to negate the purpose of the regulator because it continually reduces Vour as
the load current increases.

TRANSFORMER RECTIFIER REGULATOR
N ouTt
COMMON I
a) LOAD
fECw
” { s RLoan
$
77
R4' A
- +—IN out
l COMMON
T v 2Reoan
b) OUT(REG) $
v
” In ouT
‘)R ' |
$ 2 LOAD
Rl' ¢ R3’
WA— v 3
Vi

Figure 1.18 A typical layout of the power supply components and associated problems.
a) A typical layout.
b) Errors contributed by the layout in figure 1.18a.

14 POWER SUPPLY

Figure 1.19 is the block diagram of a proper layout. All high-current paths should
use heavy wire to minimize resistance and resultant voltage drops. You'll notice now
that the input and output circuit current paths are separated effectively. Note that the
wires from the rectifier go directly to the capacitor and that two wires from the capaci-
tor send power to the rest of the circuit. If you follow this convention and use two
separate pairs of leads, you can eliminate input-circuit induced errors.

Finally, we need to discuss the concept of the single-point ground. One point in the
power supply must be designated as ground; the grounds of all other supplies and loads
are connected to it. In practical terms, the best way to implement this ground connec-
tion is to use a metal strip or several lengths of heavy wire soldered together. The strip
is a ground bus with such a low resistance that a voltage measured between point A
and any place along the bus will be virtually undetectable. Another +5 V bus should
be connected to the output of the supply so that voltage distribution throughout the
circuit is consistent. Use thick wire in power supplies. Even if zero-resistance wire isn't
easily obtainable, always remember—there is no such thing as wire that is too thick!

TRANSFORMER RECTIFIER REGULATOR

IN ouT

COMMON
bin I oa0
lres
¢
IN
” $RLoa
/
- >
/77\\1
|

LOAD IS HIGH CURRENT PATH SINGLE PoINT
GRIIND FC

| REG 15 LOW CURRENT PATH TIN5 FOR ALL
I'IN IS HIGH CURRENT PATH EggngT.ohs

vour

Figure 1.18 A block diagram of a proper layout for the power sugply components.

THERMAL CONSIDERATIONS

You've just built the power supply I've outlined, flipped on the power, and every-
thing works. After a few minutes, something happens and the computer suddenly stops
running. Naturally, you start looking around and touching things. Eventually, your
fingers will end up on the regulator chip. Immediately you scream, jump back, and in
the process knock over the computer and your celebration martini. If you are lucky,
your fingers will be the only thing burned!

When not properly cooled, the regulators will protect themselves from destruction
by reducing their output or completely shutting off. In this case, the system could cease
to function. A more catastrophic problem arises from ICs that use all three voltages for
normal operation. Loss of one or more of these voltages could permanently damage the
device. This will never happen if power dissipation is limited and the proper cooling
methods are employed.

The first step is to check the power dissipation of our design with the ratings of the
particular devices. In practical terms, power, expressed in watts, is volts times
amperes:

P, =E X1

In our 5 V regulator we have Ve = 10 V and Vpeax = 12.5 V at 5 A.

POWER SUPPLY 15

7
e

16 POWER SUPPLY

PD(NOM) = (Vc - Vour) X 5A
= (10 —5) X 5
=25W

Poceeaxy= (Veeax — Vour) X 5 A
= (12.5—5) X §

=375W

37.5 + 25
PD(AVERAGE)= —2—_ = 31.25W

This means that under full load conditions, about 30 W of heat will be produced by the
v8H05. The device is fortunately rated for 50 W at 25°C and is still capable of handling
30 W up to 75°C.

Although the internal power dissipation is limited, the junction temperature must be
kept below the maximum specified temperature (125 °C) in order for the device to func-
tion at all. To calculate the heat sink required, there are specific equations to solve.

The required thermal data and calculations follow:

Typical 6,c = 2.0 Maximum f,c = 2.5
Typical 8,4 = 32 Maximum 6;, = 38

T - T
PD(MAX) = %A_A for 0(:,1 = 0(;5 + 05,4
Solving for T,

T, = Ta + Pollic + bca)

or without a heat sink,
Togany = Ta

Po (MAX) = 6,

Tj = TA + PDQJA

where T, = junction temperature
T, = ambient temperature
Pp = power dissipation
f,c = junction to case thermal resistance
0,4 = junction to ambient thermal resistance
f.4 = case to ambient thermal resistance
fcs = case to heat sink thermal resistance
0s4 = heat sink to ambient thermal resistance
o =]
00 = T, PDTA — 1253525‘/2\]5 C _ 3.2°C/W

Because 6,4 as calculated is less than 6,4 from the specification sheet, a heat sink is
definitely required, and a TO-3 type heat sink of 3.2°C/W is the minimum desired.

Before you size a heat sink for the 78H05, realize that there are two more regulators
and two bridge rectifiers that will need heat sinking. Each 12 V regulator will average
about 5 W dissipation. The diode bridge associated with the +5 V supply (remember
the 2 V drop) dissipates about 10 W while the other is good for 2 W. Therefore, any
heat sinks in the power supply must handle more than 50 W.

WHAT IS THE PRACTICAL METHOD FOR CHOOSING HEAT SINKS?
Choosing a heat sink can be easy or hard depending upon your outlook on rule of

thumb measures. We already know that we need a 50 W heat sink. It’s easy to assume
that buying one “rated for 50 W" from a local electronics supply will solve the prob-
lem. What this rating usually means, however, is that if 50 W is applied through a tran-
sistor to this sink, and the ambient temperature is 25°C, the surface temperature of the
sink will climb to 100°C. Fried eggs anyone?

We must not forget that manufacturers’ specs always refer to limiting maximum
junction temperature, not to keeping the case cool enough to touch. Personally, [hate
red-hot power supplies. To get a heat sink that would take our 50 W and stay about
60-70°C would probably mean getting one rated for 200-300 W! Remember that heat
sinks are expensive—and big.

The simplest solution is best. I prefer forced air cooling. Put the 50 W on an
economical heat sink of, say, a 100 W rating and put your money into a good fan. You
can still run through all the calculations and determine how many square inches you
need, but the effect of blowing a little air over a heat sink multiplies its capabilities
enormously.

OVERVOLTAGE PROTECTION

The final area to be addressed in the power supply is overvoltage protection. As
designed by manufacturers, regulators protect themselves by reducing output voltage
or complete shutoff. The chances of computer component damage from low voltage is
miniscule by comparison to overvoltage. It is unlikely to happen, but if the 78H05 were
to accidentally short out, as much as 12.5 V would be applied to the +5 V bus. You
could then kiss the computer good-bye!

+5 volt OVP 12 volt OVP
D, 5.6V 1N4734 D, 13V 1N4743
SCR; 50V 25A 2N682 SCR; 50V 8A 2N4441
Fuse 6amp fast-blow Fuse 1.5amp fast-blow

The semiconductor components of this
12 volt QVP are reversed in polarity
for the —12 volt OVP.

ove

REGULATCR|

]
o—ffu\si—[::_\ o | COMPUTER
REGULATOR . . * BUS -
ouTPUT i | |
J
|
|

SCRy

1IN4QO4 |4
10uF

Figure 1.20 A simple overvoltage protection circuit.

The circuit of figure 1.20 is a simple OVP (over-voltage protector). It can be used as
shown on the 5V and 12 V supplies. The appropriate components are listed in the
tables of figure 1.20. You'll notice that the fuses are rated higher than the output we've
previously discussed. The fuse is for the OVP and not to protect the regulators. Unfor-
tunately, the nature of fast-blow fuses is not to pass 5 A, if itisa 5 A fuse, but to open
at 5 A. The fuse must have a higher rating in order to allow circuit operation at 5 A.

POWER SUPPLY 17

18 POWER SUPPLY

FUSE

FROM INPUT
FILTER

Figure 1.21 A schematic diagram of a more complex overvoltage protection circuit. The crowbar sec-
tion of the OVP can be located next to the fuse while the OVP sensor Z, is located at the regulator out-
put. This is a preferred placement of the parts if the sensor and clamp can be adequately separated.
Low-current sensor Z, fires SCR, in an overvoltage condition. SCR, in turn fires high-current SCR.. The
combination of SCRs allows considerable leeway in the choice of SCR, since the question of gate cur-

rent becomes less relevant.

Because the short-circuit current of the 78H05 is 7 A, the 25 A silicon-controlled rec-
tifier (SCR) will certainly make short work of the fuse if it triggers. Figures 1.21 and

N\ o—

REGULATOR

&

1008

QUTPUT

_L 0.02uF
:J: 100V

5608

Z,=56V FOR
5V SUPPLY
= I3V FOR
12V SUPPLY

1.22 are slightly more complex OVP circuits and can also be used.

2N3906 %o.ou& 1.2k

5600
* 1/2W

AAA

31.2K 10K | VTRIGGER
a) S ADJUST
15K
VVv
2N3904

0.01uF 1K 3
2200
S1/2W

o
FROM
REGULATOR e ’ » TO LOAD
gsen
IN914
SCR 2N2904
2N681
5008
b)
l ;
,1\001PF 21008 .
. s GND

Figure 1.22 Schematic diagrams of adjustable-voltage overvoltage protection circuits.

a) An adjustable-voltage OVP circuit with an internal current amplifier to drive the SCR gate.

b) An alternate circuit for a simple adjustable-voltage OVP circuit.

What does an OVP (often called an “overvoltage crowbar”) do? It monitors a par-
ticular bus voltage and shuts it down if it goes above a predetermined level. OVP cir-
cuits can be designed to trigger 1 mV above our 5% tolerance band. Such circuits are
not only complicated, but they may also create additional problems through accidental
triggerings. The failure modes that are most likely to occur concern a regulator short or
accidentally tying two buses together, for example the +5 V and +12 V. In either
case, the result is a rapid voltage rise on the output lines. As voltage rises above the
zener value, current flows into the SCR gate. At a certain point, usually below where
any components would have been damaged, the SCR fires and shorts the output line to
ground. The excessive current blows the fuse, eliminating the problem regulator or
regulators (both fuses would blow if the +5 V and +12 V were connected). All this
occurs very fast. The test circuit of figure 1.23 demonstrates what happens when the
+5 V OVP suddenly has +12 V applied. Test circuits are the only way you ever want
to see the action of an OVP. If your power supply functions properly, it should never
trigger. The SCR never allows the line to go to 12 V before clamping it to ground. Re-
placing the fuse with a 220 ohm resistor allows multiple applications of the push button
without replacing fuses.

+12V

PUSH BUTTON
'PRESS TO CREATE OVERVOLTAGE'

1008
QSCILLCSCOPE

1008

V<O

GND

i

e}
=
VERTICAL INPUT

+2V/DIV
1 ms/cm

GND

Figure 1.23 A test circuit to demonstrate the action of the overvoltage protector.

POWER SUPPLY 19

CHAPTER 2
CENTRAL PROCESSOR
BASICS

There are many different microprocessors on the market and while instruction
nomenclature is somewhat different for each one, the basic logical computing processes
are similar in all devices. The rule to remember the next time a discussion turns to the
capabilities of two computers is that “a computer is a computer.” I don't wish to imply
that they are all the same, but similarities abound and I would not like to spend a life-
time analyzing instruction sets and interfacing details before choosing one.

I once had lunch with the designer of one of the largest selling personal computer sys-
tems on the market. Thousands of computers had been sold, generating immense prof-
its for the manufacturer. Our conversation eventually centered on the cost-effective-
ness of his design. I had fanciful thoughts of a design team spending months reducing
component count and analyzing instruction sets to determine minimum memory re-
quirements. In actuality, my designer friend was given two months to come up with a
manufacturable design. The investors’ only question was the price and availability of
the particular components he had chosen. Being an avid personal computer enthusiast,
he simply built a computer around the microprocessor he already owned. The eventual
advertising for his system touted the advanced architecture embodied in the central
processor, but no machine-language programming facility was available to the user. It
had only a high-level language BASIC interpreter and was, from an engineering point
of view, simply a black-box computer. He could have used any microprocessor. So
much for textbook engineering design.

Unfortunately, the hobbyist who is building a microcomputer from scratch, and
who won't be making a black box, has to try to pick a device that is somewhere in the
middle of the performance and capability spectrum. The general rule that all computers
perform similar functions is true, but a printed-circuit board is a luxury. The hobbyist
who has to do all the wiring by hand will surely be interested in efficient design. It's a
fact that some of the more esoteric microprocessors require very expensive peripheral
circuitry. Even devices that seem quite straightforward, with limited instruction sets,
can require 50 or more ICs as interface elements. The ultimate configuration should be
a trade-off between circuit complexity, ease of testing, and component price.

MICROPROCESSOR ARCHITECTURE

The internal architecture of the microprocessor determines the support devices re-
quired to make a microcomputer system. Perhaps the best place to start is to briefly
discuss the major architectural differences.

Definition: A microcomputer is a logical machine that manipulates binary numbers
(data) and processes this information by following an organized sequence of program
steps referred to as instructions.

All microcomputers, like all computers, have the following features:

=

Input — Facilities must exist to allow the entrance of data or instructions.

2. Memory — The program sequence must be stored before and after execution, and
resources must be available to store the result of any computations.

3. Arithmetic logic unit — Performs arithmetic operations on input or stored data.

CENTRAL PROCESSOR BASICS 21

4. Control section — Makes decisions regarding program flow and process control
based on internal states of the results of arithmetic computations.

5. Output — The results are delivered to the user or stored in an appropriate
medium.

The microprocessor is the single integrated circuit around which a microcomputer is
constructed. The microprocessor is a device; the microcomputer is a system. In their
least complex form, microprocessors include only the functions of items three and four
and must rely on external devices attached to buses to perform the other tasks. Figure
2.1 is the basic block diagram of an 8-bit microcomputer and shows the interconnec-
tion of these buses and support elements. The computer in figure 2.1 uses six separate
buses: memory address, memory data in and out, I/O address, and data input and out-
put. The microprocessor contains a central processor that consists of the circuitry re-
quired to access the appropriate memory and 1/O locations and interpret the resulting
instructions that are also executed in this unit. The central processor also contains the
ALU (Arithmetic and Logic Unit), which is a combination network that performs arith-
metic and logical operations on the data. Additionally, the central processor includes a
control section that governs the operations of the computer, and the various data
registers used for manipulation and storage of data and instructions.

MEMORY
DATA QUT (8)

MEMORY DATA REGISTER MEMORY DATA IN (8)
=
MEMORY
MICROPROCESSOR | :
= MEMORY ADDRESS REGISTER T
V E MEMORY ADDRESS
) (16}
© ARITHMETIC/LCGIC UNIT
ACT.MULATOR
CATA OUT 1170 DATA IN
i8) (8)
cLmeuT INPUT

Figure 2.1 A basic block diagram of a microcomputer illustrating the data busing concept. Numbers
in parer:eses are the usual required quantity of physical wires to perform bus functions for an 8-bit
mICroprecessor.

22 CENTRAL PROCESSOR BASICS

Actually few microprocessors support six separate buses. The number of pins that
would be required on the IC is out of the question. Instead, to reduce pinouts, compo-
nent manufacturers often combine the data input and output buses and make them “bi-
directional.” During an output instruction, data flows from the microprocessor to the
output device and vice versa during an input instruction. To further cut the number of
pins required on the central processor, the memory address bus can also serve as the
address bus for input and output devices. During input/output instructions, the ad-
dress present on the address lines references a particular input/output device(s). The
resulting reduced configuration is shown in figure 2.2.

The concept of two buses is easy to understand and, from a hardware point of view,
easy to utilize. The buses are time and function multiplexed. That is, during memory
operations, the bits on the address bus refer to a memory location, and data on the data
bus represent the content of memory. The direction of the data flow (to or from the
central processor) is controlled within the microprocessor. Activities with input/out-
put devices are performed in a similar fashion. During those instructions, input or out-
put data and device addresses occupy the buses.

MICROPROCESSOR |

1/\,)

MEMORY ADDRESS

BUS
(16}

DATA
BUS
(8)

INPUT

)
| ::) QUTPUT
LT

Figure 2.2 A block diagram of @ microcomputer utilizing multiplexed bi-directional busing techniques

to reduce pinout.

The number of bus wires can be further reduced by combining both data and address
on the same lines and time multiplexing the data transfer along them. Figure 2.3 il-
lustrates this final configuration. This method requires additional circuit elements to
demultiplex and store pertinent data. The additional external components necessary to
use this architectural feature defeat its purpose and make its use inadvisable for the
hobbyist. There are other microprocessors that are simpler to use.

NIt

S'NZLE CCMBINATION BI-DIRECTIONAL ADDRESS/DATA BUS

MICROPROCESSOR
}
STATUS
—————————) SN
TIMING ——J] MEMORY K
AND
CONTROL
Logic .
ouTPUT
SR —
.
INPUT

DERIVED ADDRESS

Figure 2.3 A block diagram of a microcomputer utilizing a single multiplexed bi-directional bus for

both memory and input/output functions.

When building rather than buying a personal computer, the following criteria must
be carefully considered:

1. Circuit complexity — Keep components to a reasonable minimum. The more com-
ponents in a design, the more likelihood of wiring errors and faulty devices.

2. Cost — While cost is important, it should not be the primary consideration. Any
microprocessor function could be simulated by using small scale integrated logic;
however, indirect costs resulting from using 200 chips to replace 3 or 4 LSI (large
scale integration) devices would negate the value of using cheaper parts initially.
On the other hand, in the semiconductor industry, density means dollars. The
more functions a device can provide, and the fewer components necessary to ac-

CENTRAL PROCESSOR BASICS 23

complish these tasks, the higher the price. The level of integration incorporated in
a homebrew computer should fit somewhere in the middle. The ZAP computer
outlined in this book is a prime example of this philosophy. It uses a combination
of cost-effective LSI (large scale integration) and inexpensive SSI (small scale in-
tegration) to produce a computer that the hobbyist can truly build, test, and use.

3. Software compatibility and availability — Building the hardware of a microcom-
puter is only half the job. It must be programmed to perform useful work. Initially,
the builder will by necessity hand code and assemble his own programs. Eventual-
ly, however, the need may arise for the computer to do a task requiring a very
large program which cannot be easily hand assembled. The user must rely upon an
assembler program in a larger machine. The assembler program would, of course,
have to be compatible with the instruction set of the microcomputer.

A further consideration is that personal computer enthusiasts are forever ex-
changing software. It is possible to convert programs to run on any central pro-
cessor, but the effort would be the same as writing the entire program from
scratch. This defeats the purpose of exchanging software. The personal computer
owner should choose a microprocessor that is somewhat compatible with the com-
puters already on the market. My statement that all computers are alike is theoreti-
cally true, but a book on how to build an esoteric one-of-a-kind computer is of lit-
tle practical value.

Each criterion could be analyzed and answered individually, but we must give some
credit to the manufacturers of personal computers for doing some of the thinking for us
already. The fact that so many personal computers are in use has established de facto
standardization of central processor choice. To be compatible with existing software
and to have sufficient documentation available, the builder should consider choosing
among those central processors in commercial use. The four most used microproces-
sors are

Intel 8080A
Motorola 6800

MOS Technology 6502
Zilog Z80

- en e

As a result of each device's wide following, documentation and software are readily
available. The availability of 8080A compatible software is highest; cost is low, but its
circuit complexity is also the greatest of the above. The 8080A, while described as a
“single-chip computer,” relies on various external drivers and support devices. Its
minimum functional configuration consists of three chips as shown in figure 2.4. Its
central processor bus structure is similar to figure 2.3, but when combined with the
8224 and 8228 support chips, it emulates the more desirable bus architecture outlined in

figure 2.2,
) ADDRESS BUS
¥
80804
PROCESSOR
8224
cLock T
bRIVER ::::::::> 8228) Data 8US
8US iy

CONTROLLER % CONTROL BUS

TIMING & STATUS

Figure 2.4 A minimum three-chip 8080A configuration illustrating the necessary support devices. The
control bus contains the timing functions necessary to decode the contents of the data and address
buses.

24 CENTRAL PROCESSOR BASICS

The best of both worlds is incorporated within the Z80. Not only does it execute the
complete instruction set of the 8080A, but it also has additional instructions that serve
to make it a very powerful processor. The Z80 bus structure is illustrated in figure 2.5.
The Z80 is slightly more expensive than the other processors listed. However, its re-
duced external circuitry results in an effective cost comparison. Further, the ease of in-
terfacing the Z80 makes it the natural choice when building a microcomputer from

scratch.

{16)
(8)

L) CONTROL BUS
(13)

280

Figure 2.5 A block diagram of the Zilog Z80 bus structure.

CENTRAL PROCESSOR BASICS 25

CHAPTER 3
THE Z80
MICROPROCESSOR

Many books have been written on the software and hardware attributes of the Z80.
Although I am not attempting to duplicate the efforts of other authors, any book
dedicated to the construction of a microcomputer would be incomplete without a sec-
tion describing the processor in some detail. By completely understanding the internal
logic and external control functions of the central processor, you will be able to under-
stand better the way I've designed the rest of the system hardware. You have many op-
tions when constructing a computer from scratch. The deeper your degree of under-
standing, the greater your confidence in the outcome, and it is more likely that you will
add enhancements to your own design.

The ZAP computer allows considerable latitude in the selection of peripheral inter-
facing. The choice depends primarily upon the design philosophy of the system, which
starts with the central processor.

CENTRAL PROCESSOR ARCHITECTURE

The Z80 is a register-oriented microprocessor. Eighteen 8-bit and four 16-bit registers
within the central processor are accessible to the programmer and function as static
programmable memory. These registers are divided into two sets, main and alternate,
each of which contains six general purpose 8-bit registers that may be used either in-
dividually, or as three pairs of 16-bit registers. Also included are two sets of ac-
cumulators and flag registers. Figure 3.1 illustrates the internal architecture of the Z80
central processor. Figure 3.2 shows that within the Z80 there are accumulators and flag
registers, along with general and special purpose registers.

280 CPU BLOCK DIAGRAM
8-8IT
DATA BUS
DATA BUS
CONTROL
INST. | A ﬁ
INSTRUCTION (REG INTERNAL DATA Busv ALY
DECODE
9!

cPU
cPy
<:_—_—-_> CONTROL REGISTERS

13

CPU AND > CPU
SYSTEM CONTROL
CONTROL
ADDRESS
T T T CONTROL

SIGNALS
+5V GND CLOCK 16-81T
ADDRESS BUS

-

Figure 3.1 A block diagram of the internal architecture of the Z80 central processor.

THE Z80 MICROPROCESSOF

MAIN REGISTER SET

ALTERNATE REGISTER SET

r h) o
ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A" i
: ;
8 c GENERAL 8 J
D E PURPOSE D' e
REGISTERS - -
H L H L
INTERRUPT MEMORY
lVECTOR REFRESH
R
INDEX REGISTER IX SPECIAL
PURPOSE
INDEX REGISTER 1Y REGISTERS
STACK POINTER SP
PROGRAM COUNTER PC

Figure 3.2 Z80 central processor register configuration.

The following is a description of the function and structure of the major components
of the central processor.

1. Registers
A. Accumulators and Flag Registers
The centra! processor contains two independent accumulator and flag-
register pairs, one in the main register set and the other in the alternate
register set. The accumulator receives the results of all 8-bit arithmetic
and logical operations, whereas the flag register indicates the occur-
rence of specific logical or arithmetic conditions in the processor such
as parity, zero, sign, carry, and overflow. A single exchange instruc-
tion allows the programmer to select either accumulator or flag-regis-
ter pair.
B. General Purpose Registers
There are two similar sets of general purpose registers. The main regis-
ter set contains six 8-bit registers called B, C, D, E, H, and L; the al-
ternate register set also contains six 8-bit registers referred to as B,
C', D, E, H, and L'. For 16-bit operations, these registers can be
grouped in 16-bit pairs (BC, DE, HL or BC’, DE’, HL). A single ex-
change instruction allows the programmer to alternately choose be-
tween the register-pair sets.
C. Special Purpose Registers
1. PC (program counter)
The program counter contains a 16-bit address in memory
from which the current instruction will be fetched. Follow-
ing execution of the instruction, the PC counter is either in-
cremented, if the program is to proceed to the next byte in
memory, or the present PC contents are replaced with a
new value, if a jump or call instruction is to be executed.
2. SP (stack pointer)
The Z80 allows several levels of subroutine nesting
through use of a “stack” and a “stack pointer”: when cer-
tain instructions are executed, or when calls to subroutines
are made, the PC counter and other pertinent data can be
temporarily stored on a stack. A stack is a reserved area of
several memory locations, the top of which is indicated by
the contents of the stack pointer. That is to say, the stack
pointer shows the address of the most recently made entry,
because the memory locations are organized as a last-in,
first-out file. By looking at particular entries in the stack,

28 THE Z80 MICROPROCESSOR

D.

the central processor returns to a main program regardless

of the depth of nested subroutines. Theoretically, the stack

could be 64 K bytes long; however, program space must

not be overwritten by an expanding stack.
IX and IY Index Registers
These registers facilitate table data manipulation. They are two in-
dependent 16-bit registers that hold the base addresses used in indexed
addressing modes, and point to locations in memory where pertinent
data is to be stored or retrieved. Incorporated within the indexed in-
structions is a two’s complement signed integer that specifies displace-
ment from this base address.
Interrupt Page Address Register (I)
This is an 8-bit register that can be loaded with a page address of an in-
terrupt service routine. During a mode 2 interrupt program, control
will vector to this page address.
Memory Refresh Register (R)
To enable dynamic memories for the Z80, a 7-bit memory refresh
register is automatically incremented after each instruction fetch.

II. Arithmetic and Logic Unit

Arithmetic manipulations and logical operations are handled eight bits at a time
in the Z80 ALU (arithmetic and logic unit). The ALU communicates internally
to the central processor registers and is not directly accessible by the program-

mer. The ALU performs the following operations:

LEFT or RIGHT SHIFT
INCREMENT
DECREMENT
ADD
SUBTRACT
AND

OR
EXCLUSIVE OR
COMPARE
SET BIT

RESET BIT
TEST BIT

HI. Instruction Register and Central Processor Control

The instruction register holds the contents of the memory location addressed by
the PC (program counter) and is loaded during the fetch cycle of each instruc-
tion. The central processor control unit executes the functions defined by the in-
struction in the instruction register and generates all control signals necessary to

transmit the results to the proper registers.
IV. Central Processor Hardware

A.

Figure 3.3 details the pinout of the Z80. It comes in an industry stan-
dard 40 pin dual in-line package. The following is a listing and ex-
planation of the pin functions:

A,—A,s Three-state output, active high. A;—A,s constitute a
(Address 16-bit address bus. These signals provide the address for

Bus)

Do'—D

memory data exchanges (up to 64 K bytes) and for IO
device data exchanges. I/O addressing uses the eight
lower address bits to allow the user to directly select up
to 256 input or 256 output ports. A, is the least signifi-
cant address bit. During refresh time, the lower seven
bits contain a valid refresh address.

, Three-state input/output, active high. D,—D; consti-

(Data Bus) tute an 8-bit bi-directional data bus which is used for

M1

data exchanges with memory and I/O devices.

Output, active low. M1 indicates that the current ma-

(Machine chine cycle is the operation-code fetch cycle of an in-

THE 280 MICROPROCESSOR 29

30 THE Z80 MICROPROCESSOR

Cycle One) struction execution. Note that during execution of

MREQ
(Memory
Request)

IORQ
(Input/
Output
Request)

RD
{Memory
Read)

WR
(Memory
Write)

RFSH
(Refresh)

HALT
(Halt
State)

WAIT
(Wait)

INT
(Interrupt)

NMI
(Non-
Maskable

2-byte opcodes, M1 is generated as each opcode byte
is fetched. These 2-byte opcodes always begin with
CBH, DDH, EDH, or FDH. M1 also occurs with
IORQ to indicate an interrupt acknowledge cycle.

Three-state output, active low. The memory request
signal indicates that the address bus holds a valid ad-
dress for a memory-read or memory-write operation.

Three-state output, active low. The IORQ signal indi-
cates that the lower half of the address bus holds a valid
1/0O address for an 1/0 read or write operation. An
IORQ signal is also generated with an M1 signal when
an interrupt is being acknowledged to indicate that an
interrupt response vector can be placed on the data bus.
Interrupt acknowledge operations may occur during
"M1 time while I/O operations are prohibited.

Three-state output, active low. RD indicates that the
central processor wants to read from memory or an1/O
device. The addressed I/O device or memory should use
this signal to gate data onto the central processor data
bus.

Three-state output, active low. WR indicates that the
central processor data bus holds valid data to be stored
in the addressed memory or 17O device.

Output, active low. RFSH indicates that the lower
seven bits of the address bus contain a refresh address
for dynamic memories and the current MREQ signal
should be used to do a refresh read to all dynamic
memories.

Output, active low. HALT indicates that the central
processor has executed a HALT instruction and is
awaiting either a nonmaskable or a maskable interrupt
(with the mask enabled) before operation can resume.
While halted, the central processor executes NOPs (no
operation) to maintain memory refresh activity.

Input, active low. WAIT indicates to the Z80 central
processor that the addressed memory or I/O devices are
not ready for a data transfer. The central processor con-
tinues to enter wait states as long as WAIT is active;
this signal allows memory of I/O devices to be syn-
chronized to the central processor.

Input, active low. The Interrupt request signal is gener-
ated by I/0 devices. A request will be honored at the
end of the current instruction if the internal software
controlled interrupt enable flip-flop is enabled and if the
BUSRQ signal is not active. When the central pro-
cessor accepts the interrupt, an acknowledge signal
(IORQ during M1 time) is sent out at the beginning of
the next instruction cycle. The central processor can re-
spond to an interrupt in the three different modes.

Input, negative edge triggered. The nonmaskable inter-
rupt request line has a higher priority than INT and is
always recognized at the end of the current instruction,

Interrupt) regardless of the status of the interrupt-enable flip-flop.
NMI forces the Z80 central processor to restart to loca-
tion 0066,s. The program counter is automatically saved
in the external stack so that the user can return to the
program that was interrupted. Note that continuous
WAIT cycles can prevent the current instruction from
ending, and that a BUSRQ will override an NMI.

— 7 N
[1 «—2 :—?—— AG
19 32 Al
MREQ ‘T T’ A2
SYSTEM IORQ ‘—T T’ A3
CONTROL) 4—2—; Sl
A6
[28 280 37
| RFSA +— CPU 58~ A7 \ ADDRESS
. 18 o~ A8 (BUS
HALT —— A9
40
—= Al0
— 24 1
WAIT L All
coy ” —i—— A12
CONTROL T 1 : Al3
NMi " Al
26 " ALS)
RESET
- 25
CPU BUS (uqSPQ 23 "
CONTRGL kEuSAK 4—55 00
DEERG
4‘—85 D2
6 <> D3 \ paTA
CLOCK o > D4 [BUS
+5Y 4? 05
enp —22 «—— D6
41—3—-§ D7 J

Figure 3.3 Pin configuration for the Z80 microprocessor.

The actual timing of these signals will be discussed in the hardware sections.

V. Z80 Instruction Types
The Z80 can execute 158 separate instructions including all 78 of the 8080A.
They can be grouped as follows:

A. LOAD AND EXCHANGE
Load instructions move data between registers or between registers
and memory. The source and destination of this data is specified
within the instruction. Exchange instructions swap the contents of two
registers.

B. ARITHMETIC AND LOGICAL
These instructions operate on data in the accumulator, a register, or a
designated memory location. Results are placed in the accumulator
and flags are set accordingly. Arithmetic operations include 16-bit ad-
dition and subtraction between register pairs.

C. BLOCK TRANSFER AND SEARCH
The Z80 uses a single instruction to transfer any size block of memory
to any other group of contiguous memory locations. The block search
uses a single command to examine a block of memory for a particular
8-bit character.

D. ROTATE AND SHIFT
Data can be rotated and shifted in the accumulator, a central pro-
cessor register, or memory. These instructions also have binary-coded

THE Z80 MICROPROCESSOR 31

decimal (BCD) handling facilities.

E. BIT MANIPULATION
Bit manipulation includes set, reset, and test functions. Individual bits
may be modified or tested in the accumulator, a central processor, or
memory. The results of the test operations are indicated in the flag
register.

F. JUMP, CALL AND RETURN

A jump is a branch to a program location specified by the contents of
the program counter. The program counter contents can come from
three addressing modes: immediate, extended, or register indirect. A
call is a special form of jump where the address following the call in-
struction is pushed onto the stack before the jump is made. A return is
the reverse of the call. This category includes special restart instruc-
tions.

G. INPUT AND OUTPUT

These instructions transfer data between register and memory to ex-
ternal 1/O devices. There are 256 input and 256 output ports avail-
able. Special instructions provide for moving blocks of 256 bytes to or
from 1/0 ports and memory.
H. CPU CONTROL
These instructions include halting the CPU or causing a NOP (no
operation) to be executed. The ability to enable or disable interrupt in-
puts is a further control capability.
VI. Instruction and Data Formats

Memory for the Z80 is organized into 8-bit quantities called bytes (see figure

3.4). Each program byte is stored in a unique memory position and is referenced

by a 16-bit binary address.

Total direct addressing capability is 65,536 bytes (64 K) of memory, which
may be any combination of ROM (read-only memory), EPROM (erasable-pro-
grammable read-only memory), or programmable memory. Data is stored in
the formats of figure 3.5.

D7 o3 D5 D4 D3 D2 DI 0o

! l I | 1 | !
MsB LSB
(MOST SIGNIFICANT BIT) (LEAST SIGNIFICANT BIT)

Figure 3.4 Organization of a data byte in the Z80.

SINGLE-BYTE INSTRUCTIONS THREE-BYTE INSTRUCTIONS

BYTE 1l | D7———— DO | OPCODE 8YTE 1 p7 ——— DO | OPCODE
DATA OR

ADDRESS
BYTE 3 | D7 ————— DO
TWO-BYTE INSTRUCTIONS FOUR-BYTE INSTRUCTIONS
BYTE1 |D7——————DO0 | OPCODE BYTE1 | D7 ——————D0
A OR OPCODE
BYTE2 | D7 ————— 00 | SbORESS 8YTE2 | D7 ———— 0O

DATA OR
ADDRESS

Figure 3.5 Machine-language instruction formats for the Z80.

32 THE Z80 MICROPROCESSOR

VII. Z80 Status Flags
The flag register (F and F’) supplies information to the user regarding the status

of the central processor at any given time. There are four testable and two
nontestable flag bits in each register. Figure 3.6 shows the position and identity
of these flag bits.

BIT 7 BIT6 BITS BIT4 BIT3 BIT2 BIT1 BITO

S z X H X P/vV N C

MSB LS8

C=CARRY FLAG
N=ADD/SUBTRACT FLAG
P/V=PARITY/OVERFLOW FLAG
H=HALF-CARRY FLAG
Z=Z2ERQ FLAG

S=SIGN FLAG

X =NOT USED

Figure 3.6 Position and identity of status flag bits in the flag register.

Instructions set (flag bit = 1) or reset (flag bit = 0) flags in a manner rele-
vant to the particular operation being executed.

VIII. The Z80 Instruction Set
The following symbols and abbreviations are used in the subsequent description

of the Z80 instructions:

Symbol Meaning
accumulator Register A
address A 16-bit address quantity

high-order address The most significant 8 bits of the 16-bit address
low-order address The least significant 8 bits of the 16-bit address
data An 8- or 16-bit quantity

high-order data The most significant 8 bits of the 16-bit data
low-order data The least significant 8 bits of the 16-bit data

port An 8-bit address of an I/0 device
r, One of the registers A, B, C, D, E, H, or L
n A 1-byte expression in the range of 0 thru 255
nn A 2-byte expression in the range of O thru 65,535
d A 1-byte expression in the range of —128 to 127
b An expression in the range of 0 thru 7
e A 1-byte expression in a range of —126 to 129
cc The state of the flags for conditional JR and JP instructions:
cc Condition Relevant Flag
¥ 000 NZ non zero z
{ 001 Z zero Z
0 o010 NC non carry C
r 011 C carry C
W 100 PO parity odd P/V
- 101 PE parity even P/V
110 P sign positive S
111 M sign negative S
XXH Denotes hexadecimal address value
aq Any one of the register pairs BC, DE, HL, or AF
ss Any one of the register pairs BC, DE, HL, or SP

THE Z80 MICROPROCESSCR 33

34 THE Z80 MICROPROCESSOR

pp
IT

s
dd
m
(HL)

(nn)

PC

SP

t
C,N,P/V,H,Z,5

I+ <o >

1

Any one of the register pairs BC, DE, IX, or SP

Any one of the register pairs BC, DE, IY, or SP

Any of r, n, (HL), (IX+d), or (IY+d)

Any one of the register pairs BC, DE, HL, or SP

Any of r, (HL), (IX+d), or (IY+d)

Specifies the contents of memory at the location addressed
by the contents of the register pair HL

Specifies the contents of memory at the location addressed
by the 2-byte expression in nn

Program counter

Stack pointer

An expression in the range of 0 thru 7.

Condition flags:

C Carry

N Add/Subtract
P/V Parity/Overflow

H Half-Carry

Z Zero

S Sign

“is transferred to”
Logical AND
Exclusive OR
Inclusive OR
Addition
Subtraction

“is exchanged with”

EIGHT-BIT LOAD GROUP

IDr, 1t

r—r

The contents of any register r’ are loaded into any other register r.

Cycles:
States:
Flags:

LDr n
I —n

1
4

T T 1 T T T
)]e—yp—at—p—>
U D W A SR S |

none

The 8-bit integer n is loaded into any register r.

Cycles:
States:
Flags:

LD r, (HL)
r — (HL)

2
7

T T T
0 Q=—pr—1 1 0
1 | 1 1 | 1 I

none

The 8-bit contents of memory location (HL) are loaded into register r. @

T T T T T 1 /:,’ A
0 l*=——pr—>1 1 0 /
]]] | | 1 1

Cycles: 2
States: 7
Flags: none

LD r, (IX+d)
' r — (IX+d)

The operand (IX+d) (the contents of the Index Register IX summed with a
displacement integer d) is loaded into register r.

{ J I I

Cycles: 5

States: 19

Flags: none
LD r, (IY+d)

r — (IY+d)

The operand (IY +d) (the contents of the Index Register IY summed with a

, ,
11011101
1 1 1 1 1 1

7 T T T T 1
0 l1<=—r—=1 1 0

displacement integer d) is loaded into register r.

T T T T T
111111001
I R TN T R R

T T 1T T T 1
0 l=—y—1 1 0

Cycles: 5

States: 19

Flags: none
LD (HL), r

(HL) ~ r

The contents of register r are loaded into the memory location specified by
the contents of the HL register pair.

Cycles: 2
States: 7
Flags: none

LD (IX+d), r
(IX+d) - r

T T
0111 0=-—pr—

1 L 1 | 1

I

=

R
i

The contents of register r are loaded into the memory address specified by the
contents of Index Register IX summed with d, which is a two’s complement

displacement integer.

Cycles:
States:
Flags:

5
19
none

THE Z80 MICROPROCESSOR 35

LD (IY+d), r
(IY4+d) - 1
The contents of register r are loaded into the memory address specified by the
sum of the contents of the Index Register IY and d, a two's complement
displacement integer.

1 1 1 | I i i
11111101
| 1 |

H It 1 1

T T T T T 1
0111 0e—r—
P R N S S T |

Cycles: 5
States: 19 T T T T T 1
Flags: none

1 ! 1 1 1 | 1

LD (HL), n
(HL) =~ n
Integer n is loaded into the memory address specified by the contents of the
HL register pair.

Cycles: 3 n >
States: 10
Flags: none

LD (IX+d), n
(IX+d) — n
The n operand is loaded into the memory address specified by the sum of the
contents of the Index Register IX and the two's complement displacement

operand d. e
11011101
R TR N SR NN D |
T T T T T 1
00110110
' S TRat N SRAN Wi
i i 1 1 T I 1
- d >
TN NS T N R B
Cycles: 5
States: 19 T 1 1 T T T 1
Flags: none 7 . "7 1 1
LD {IY+d), n
(IY+d) — n

Integer n is loaded into the memory location specified by the contents of the
Index Register Y summed with a displacement integer d.

1 T | 1] 1 1
11111101
[T N NN T B

1 1] 1 i 1 1 1
0 0110110
Lt 1 L

1

1 T I 1 i 1 1

- d >
RS W TS OV H S
Cycles: 5
States: 19 DAL
Flags: none L g n TR T T |

36 THE Z80 MICROPROCESSOR

LD A, (BC)

A ~ (BO)
The contents of the memory location specified by the contents of the BC
register pair are loaded into the Accumulator.

1 1 I]] i 1
00001010
TG N WS W R T

Cycles: 2

States: 7

Flags: none
LD A, (DE)

A — (DE)

The contents of the memory location specified by the register pair DE are
loaded into the Accumulator.

¥ 1

T 1 ¥ 1 i
0 00110 0
i 1 ! 1 1 3| |
Cycles: 2
States: 7
Flags: none
LD A, (nn)
A — (nn)

The contents of the memory location specified by the operands nn are loaded
into the Accumulator. The first n operand is the low-order byte of a 2-byte
memory address. 5 L

J i t T 1
000111010

1 1 | 1 i ! 1

I i 1 1 i i |

J
>
A

I 1 | | 1 I |

Cycles: 4
States: 13 s n L
Flags: none SN R S S N B

LD (BC), A

(BC) — A
The contents of the Accumulator are loaded into the memory location
specified by the contents of the register pair BC.

L 1 1 T 1 1 I
0 00nDO0O010
TR WS U N T

Cycles: 2

States: 7

Flags: none

LD (DE), A
(DE) — A

The contents of the Accumulator are loaded into the memory location
specified by the DE register pair.

111 _ 1 1.1
0 0010010
|

| L | 1] 1

Cycles: 2
States: 7
Flags: none

THE Z80 MICROPROCESSOR 37

LD (nn),

LDA,I

LD A, R

LDI A

38 THE Z80 MICROPROCESSOR

A

(nn) - A
The contents of the Accumulator are loaded into the memory address
specified by the operands nn. The first n operand is the low-order byte of
operand nn.

T T _ T _ 71T 1 1
00110010
|

| 1 L 1 1 |

-— n >
[S Y R T R
Cycles: 4
States: 13 ——— n LN
Flags: none U RS NN MO B M
A-1

The contents of the Interrupt Vector Register 1 are loaded into the
Accumulator.

1 § I 1 i I I
11101101
RS R TR SRS WO B

¥ 1 i 1 i 1 1
01010111
Cycles: 2 D DU DU VRN SO B
States: 9
Flags: S,Z,H,N,P/V

S: setif I < 0; reset otherwise
Z: set if [=0; reset otherwise
H.N: reset

P/V: contains contents of [FF2

A-R
The contents of Memory Refresh Register R are loaded into the Accumulator.

T _ 7T _ 1 _ 1.1 1
11101101
]

| | 1 | | 1

1 T 1 i 1 1 1
Cycles: 2 01 011111
States: 9 A
Flags: S,Z,H,N,P/V

S: set if R < 0; reset otherwise
Z: set if R=0; reset otherwise

H,N: reset

P/V: contains contents of IFF2

I—-A
The contents of the Accumulator are loaded into the Interrupt Control Vec-
tor Register 1.

I I 1 I 1 i 1
11101101
{ 1 1 1 1 1 1

1 I I I I 1 1
Cycles: 2 011|010|01111|1
States: 9
Flags: none

LDR, A
R—-A

The contents of the Accumulator are loaded into the Memory Refresh

Register R.

Cycles: 2
States: 9
Flags: none

T I 4 1 1 ¥ 1
11101101
1 L 1 1 I 1 1

I 1 T T | 1 T
01001111
1 1 1 1 1 1 1

SIXTEEN-BIT LOAD INSTRUCTIONS

LD dd, nn
dd — nn

The 2-byte integer nn is loaded into the dd register pair, where dd defines the
BC, DE, HL, or SP register pairs, assembled as follows in the object code:

Pair
BC
DE
HL
SP

Cycles: 3
States: 10

dd
00
01
10
11

Flags: none .

LD IX, nn
IX « nn

\

T T T T T 1
0 0ddoO0oO0O01
P S B N S

T I 1 I I I 1

Integer nn is loaded into the Index Register IX.

Cycles: 4

States: 14

Flags: none
LD 1Y, nn

IY — nn

I I T I I i 1
1101110
1 i

1 1 1 1]

T T T T 1
001 0O0O0O01
]]

|
1 Il | 1 |

1 [I | | 1 I

- n >
] 1 I] 1 T

1 T 1 1 I Ll 1

- n —

| I 1 1 1 I 1

Integer nn is loaded into the Index Register IY.

Cycles: 4
States: 14
Flags: none

1’17111 10 1
]

[1 1 1 1 1

00010000 1
]]

L 1 1 | 1

T 1 1 ! I I I

1 1 1 1 L | 1

i I I I i i 1

THE Z80 MICROPROCESSOR 39

0 THE Z80 MICROPROCESSOR

LD HL, (nn)

H — (nn+1), L «~ (nn)
The contents of memory address nn are loaded into register L, and the con-
tents of the next highest memory location (nn+1) are loaded into register H.

Cycles:
States:
Flags:

LD dd, (nn)

5
16
none

0000100101 0

I 1 I i 1 ! 1

| 1 1 | | 1 i

1 1 1 1 i 1 1

ddy — (nn+1), dd; ~ (nn)
The contents of address nn are loaded into the low-order portion of register
pair dd, and the contents of the next highest memory address (nn+1) are

loaded into the high portion of dd.

Cycles:
States:
Flags:

LD IX, (nn)

6
20
none

O
1'1'1'0 110 1
1 | |] 1] |
1 1 1 i l‘?>l |
0'1'dd1011
lllllll»
1 { 1 1 i] 1
-t n >
| 1 1] 1 i 1
1 1 I 1 I] I
- n >

IXy ~ (nn+1), IX, — (nn)
The contents of the address nn are loaded into the low-order portion of Index
Register IX, and the contents of the next highest memory address (nn+1) are
loaded into the high-order portion of IX.

Cycles:
States:
Flags:

LD IY, (nn)

6
20
none

1’10111 01

1 L 1 I | i |

000101010

1 1 | 1 1 1 i

| I 1 1 ¥ 1 1

I | 1 1 ! 1 |

¥ 1 i 1 ¥ 1 1

1Yy — (nn+1), IY; — (nn)
The contents of address nn are loaded into the low-order portion of Index
Register IY, and the contents of the next highest memory address (nn+1) are
loaded into the high-order portion of LY.

LA

LD (nn),

LD (nn),

LD (nn),

LD (nn),

T T T T
11111101
FUENS TR TR N T M

1 i { 1 1 1 i
00101010
PR WO SR N O B
i 1 1 1 1 1 1
- n >
Cycles: 6 S W W S Y B |
States: 20 e —T—T— T
Flags: none - n >
R SR SN A SO S
HL

(nn+1) — H, (nn) -~ L
The contents of register L are loaded into memory address nn, and the con-
tents of register H are loaded into the next highest address location nn+1.

i 1 I T i i 1
00100010
T WO IS N N B

T 1 1 1 I 1 1

1 1 1 1 I ! |

Cycles: 5
States: 16 T T T T T T
Flags: none

{ l |]] L 1

dd

(nn+1) —~ ddy, (nn) — dd;

The low-order byte of register pair dd is loaded into memory address nn; the
upper byte is loaded into memory address nn+1.

1110110 1
1

| i 1 i Il I

T T v P
01 dd 0011

1 1 1 1 1 | [

Cycles: 6 T T T T T
States: 20 h n g
S SR N SO B
Flags: none
1 1 I Ll 1 i 1
-— n >
1 | | | | 1 I
IX
(hn+1) — IXy, (nn) — IX,
The low-order byte in Index Register IX is loaded into memory address nn;
the upper-order byte is loaded into the next highest address nn+1.
I T 1 1 1 1 1
11011101
L
1 1 1 1 1 I L
00100010
1 1 | 1] 1 1
Cycles: 6 T T T T T
States: 20 < | ' n T >
Flags: none : '
1 I T J T 1 I
- n >
1 | i] 1 1)|
IY

(nn+1) — IYy, (nn) — IY;
The low-order byte in Index Register IY is loaded into memory address nn;
the upper-order byte is loaded into memory location nn+1.

THE Z80 MICROPROCESSOR 41

Cycles: 6 —
States: 20 -— n -
Flags: none I T [N S

LD SP, HL
SP — HL
The contents of the register pair HL are loaded into the SP (stack pointer).

1 I 1 1 1 I i
Cycles: 1 1|1|1111110|011
States: 6

Flags: none

LD SP, IX
SP — IX
The 2-byte contents of Index Register IX are loaded into the SP (stack
pointer). T 1 1T 1 71 1
11011101
|] 1 i 1 1 |
Cycles: 2 T 11 71 7T 1
States: 10 11111001
Flags: none I NS N WS T

LD SP, IY
SP - IY
The 2-byte contents of Index Register IY are loaded into the SP (stack
pointer).
J L} I i 1 T 1
11111101
| | L4 1 | 1
Cycles: 2 ———T—TTT—T
States: 10 11111001
Flags: none e ——————
PUSH qq

(SP—2) «~ qq,, (SP—1) -~ qq,

The contents of the register pair qq are pushed into the external memory
LIFO (last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the
16-bit address of the current “top” of the Stack. This instruction first
decrements the SP and loads the high order byte of register pair qq into the
memory address now specified by the SP; then decrements the SP again and
loads the low order byte of qq into the memory location corresponding to
this new address in the SP.

42 THE Z80 MICROPROCESSOR

Cycles: 3 llllqlqlollloll
States: 11 U N NN NN U R
Flags: none

PUSH IX

PUSHIY

POP qq

POP IX

(SP—2) ~ IX,, (SP—1) — IXy

The contents of the Index Register IX are pushed into the Stack. This instruc-
tion first decrements the SP and loads the high-order byte of IX into the
memory address now specified by the SP; it then decrements the SP again
and loads the low-order byte into the memory location corresponding to this
new address in the SP.

llllollllllloll
| 1

111lllololll0l1
1 1 i 1 I

Cycles: 3 L
States: 15
Flags: none

(SP=2) « 1Y, (SP—1) « IYy

The contents of the Index Register IY are pushed into the Stack. This instruc-
tion first decrements the SP and loads the high-order byte of IY into the
memory address now specified by the SP; it then decrements the SP again
and loads the low-order byte into the memory location corresponding to this
new address in the SP.

Cycles: 4 . s |
States: 15
Flags: none

qq, — (SP+1), qq, — (SP)

The top 2 bytes of the Stack are popped into register pair qq. This instruction
first loads into the low-order portion of qq the byte at the memory location
corresponding to the contents of SP; then SP is incremented and the contents
of the corresponding adjacent memory location are loaded into the high-
order portion of qq, and the SP is now incremented again.

1|1|qlq|01010|1
| S W N (N BUN B |

Cycles: 3
States: 10
Flags: none

IXy ~ (SP+1), IX; — (SP)
The top 2 bytes of the Stack are popped into Index Register IX. This instruc-
tion first loads into the low-order portion of IX the byte at the memory loca-
tion corresponding to the contents of SP; the SP is incremented and the con-
tents of the corresponding adjacent memory location are loaded into the
high-order portion of IX. The SP is now incremented again.

lll IO |1|1 11 loll

l 1 1 1 1 1 1

1 I 1 1 1 1 1
Cycles: 4 1 1100001
States: 14 L
Flags: none

THE 280 MICROPROCESSOR 43

44 THE Z80 MICROPROCESSOR

POP IY

IYy — (SP+1), IY, — (SP)
The top 2 bytes of the Stack are popped into Index Register IY. This instruc-
tion first loads into the low-order portion of 1Y the byte at the memory loca-
tion corresponding to the contents of SP; then the SP is incremented and the
contents of the corresponding adjacent memory location are loaded into the
high-order portion of IY. The SP is now incremented again.

Cycles:
States:
Flags:

4
14
none

1

™
111
4

1 1

0 1
L1

1

I

T T T T
11000 0.1
[T B

1

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

EX DE, HL

DE -~ HL
The 2-byte contents of register pairs DE and HL are exchanged.

Cycles: 1

States: 4

Flags: none
EX AF, AF

AF -~ AF

T

1

1

1

1

I { 1 I 1
01011
i 1 1 1

The 2-byte contents of the register pairs AF and AF’ are exchanged.

Cycles:
States:
Flags:

EXX

1
4
none

T T T T T T
0 00 01O0O0°O
TS VR TR N SR B

(BC) —~ (BC), (DE) ~ (DE'), (HL) «~ (HL)

Each 2-byte value in register pairs BC, DE, and HL is exchanged with the

2-byte value in BC’, DE’, and HL' respectively.

Cycles:
States:
Flags:

1
4
none

I) I i I I i
11011001
1 1 1 ! 1 1 !

EX (SP), HL

H ~ (SP+1), L ~ (SP)

The low-order byte contained in register pair HL is exchanged with the con-
tents of the memory address specified by the contents of register pair SP, and
the high-order byte of HL is exchanged with the next highest memory address
(SP+1).

T T T T T
11100011
R T H TR TR S|

Cycles: 5
States: 19
Flags: none

EX (SP), IX

IXy - (SP+1), IX, —~ (SP)

The low-order byte in the Index Register IX is exchanged with the contents of
the memory address specified by the contents of register pair SP, and the
high-order byte of IX is exchanged with the next highest address (SP+1).

T T T 1 | 1 I
11011101
1 1 ! [

! 1 1

T [1 i I 1 |
Cycles: 6 11 100011
States: 23 el
Flags: none

EX (SP), 1Y

LDI

IYy = (SP+1), IY, —~ (SP)

The low-order byte in Index Register 1Y is exchanged with the contents of the
memory address specified by the contents of register pair SP, and the high-
order byte of 1Y is exchanged with the next highest memory address.

T T T T T
11111101
[R S T

] |

I { I 1 i 1 1
Cycles: 6 11100011
States: 23 e
Flags: none

(DE) — (HL), DE —~ DE+1, HL — HL+1, BC — BC-1

A byte of data is transferred from the memory location addressed by the con-
tents of the HL register pair to the memory location addressed by the contents
of the DE register pair. Then both register pairs are incremented and the BC
(byte counter) register pair is decremented.

] 1 V T I 1 I
11101101
1 1 I 1

1 1 Il

Cycles: 4 1010000 0
States: 16 L 1
Flags: H,N,P/V

H,N: reset

P/V: set if BC—1+0; reset otherwise

THE 280 MICROPROCESSOR 45

46 THE Z80 MICROPROCESSOR

LDIR

LDD

LDDR

(DE) — (HL), DE — DE+1, HL — HL+1, BC — BC-1

This 2-byte instruction transfers a byte of data from the memory location ad-
dressed by the contents of the HL register pair to the memory location ad-
dressed by the DE register pair. Then, both register pairs are incremented and
the BC (byte counter) register pair is decremented. If decrementing causes the
BC to go to 0, the instruction is terminated. If BC is not 0, the program
counter is decremented by 2 and the instruction is repeated. Note: if BC is set
to O prior to instruction execution, the instruction will loop through 64 K
bytes. Also, interrupts will be recognized after each data transfer.

T T T T T 1
11101101
Lt

! I I I I I I
10110000
1 1 1

L [| 1

For BC+0:
Cycles: 5
States: 21
For BC=0:
Cycles: 4
States: 16

Flags: H,N,P/V: reset

(DE) — (HL), DE — DE—-1, HL — HL-1, BC -~ BC—-1

This 2-byte instruction transfers a byte of data from the memory location ad-
dressed by the contents of the HL register pair to the memory location ad-
dressed by the contents of the DE register pair. Then both register pairs in-
cluding the BC (byte counter) register pair are decremented.

I 1 | I i I ¥
11101101
| 1 1

1 1 | i

¥ I | 1 ¥ 1 I
101010 00
1 1 I 1

Il 1 Il

Cycles: 4

States: 16

Flags: H,N,P/V
H,N: reset

P/V: set if BC—1+0; reset otherwise

(DE) — (HL), DE — DE—1, HL — HL-1, BC — BC-1

This 2-byte instruction transfers a byte of data from the memory location ad-
dressed by the contents of the HL register pair to the memory location ad-
dressed by the contents of the DE register pair. Then both registers, as well as
the BC (byte counter), are decremented. If decrementing causes the BC to go
to 0, the instruction is terminated. If BC is not 0, the program counter is
decremented by 2 and the instruction is repeated. Note: if BC is set to 0 prior
to instruction execution, the instruction will loop through 64 K bytes. Also,
interrrupts will be recognized after each data transfer.

CPI

CPIR

For BC ¢ O: IR 1 1
Cycles: 5

States: 21

For BC=0:

Cycles: 4

States: 16

Flags: H,N,P/V: reset

A—(HL), HL — HL+1, BC — BC-1

The contents of the memory location addressed by the HL register pair are
compared with the contents of the Accumulator. In case of a true compare, a
condition bit is set. Then HL is incremented and the byte counter (register
pair BC) is decremented.

I t 1 1 1 T i
11101101
§ H 1 1 | |

1

1 1 I i
Cycles: 4 1010000 1
States: 16 e

Flags: S,Z,H,N,P/V

S: set if result is negative; reset otherwise

Z: set if A=(HL); reset otherwise

H: set if no borrow from bit 4; reset otherwise
N: set

P/V: set if BC—1+0; reset otherwise

A—(HL), HL — HL+1, BC — BC-1

The contents of the memory location addressed by the HL register are com-
pared with the contents of the Accumulator. In case of a true compare, a con-
dition bit is set. The HL is incremented and the BC is decremented. If
decrementing causes the BC to go to 0 or if A=(HL), the instruction is ter-
minated. If BC is not 0 and if A# (HL), the program counter is decremented
by two, and the instruction is repeated. Note: if BC is set to 0 before instruc-
tion execution, the instruction will loop through 64 K bytes, if no match is
found. Also, interrupts will be recognized after each data comparison.

For BC#0 and A+ (HL):
Cycles: 5
States: 21

For BC=0 or A=(HL):
Cycles: 4

THE Z80 MICROPROCESSOR 47

48 THE Z80 MICROPROCESSOR

CPD

CPDR

States: 16
Flags: S,Z,H,N,P/V

S: set if result is negative; reset otherwise

Z: set if A=(HL); reset otherwise

H: set if no borrow from bit 4; reset otherwise
N: set

P/V: set if BC—1%0; reset otherwise

A~-(HL), HL — HL-1, BC — BC—-1
The contents of the memory location addressed by the HL register pair are
compared with the contents of the Accumulator. In case of a true compare a

condition bit is set. The HL and the BC are decremented.
T t 1 | i | i
1110110
SR TS TSN T B

1

{ I I ! i T i
Cycles: 4 110;1|O|1|0101
States: 16
Flags: S,Z,H,N,P/V

S: set if result is negative; reset otherwise

Z: set if A=(HL); reset otherwise

H: set if no borrow from bit 4; reset otherwise
N: set

P/V: set if BC—1#0; reset otherwise

A—(HL), HL — HL-1, BC — BC—-1
The contents of the memory location addressed by the HL register pair are
compared with the contents of the Accumulator. In case of a true compare a
condition bit is set. The HL and BC register pairs are decremented. If
decrementing causes the BC to go to 0 or if A=(HL), the instruction is ter-
minated. If BC is not 0 and A # (HL), the program counter is decremented by
2 and the instruction is repeated. Note: if BC is set to 0 prior to instruction ex-
ecution, the instruction will loop through 64 K bytes if no match is found.
Also, interrupts will be recognized after each data comparison.

T i T I 1 I 1

— T T T T T T
10111001
I HR I N B TR

For BC#0 and A# (HL):
Cycles: 5
States: 21

For BC=0 or A=(HL):

Cycles: 4
States: 16

Flags: S,Z,H,N,P/V

S: set if result is negative; reset otherwise

Z: set if A=(HL); reset otherwise

H: set if no borrow from bit 4; reset otherwise
N: set

P/V: set if BC—1%0; reset otherwise

EIGHT-BIT ARITHMETIC AND LOGICAL GROUP

ADDA, r

A~ A+r

The contents of register r are added to the contents of the Accumulator, and

the result is stored in the Accumulator.

Cycles:
States:
Flags:
C
P
ADD A, n
A~ A+n

The integer n is added to the contents of the Accumulator, and the results are

T T T T T T T
1 00 0 0=-—r—
[T R S B S W

Z,H,N,C,P/V

set if result is negative; reset otherwise

1
4
S,
S:
Z: set if result is O; reset otherwise
H
N

. set if carry from bit 3; reset otherwise
: reset
. set if carry from bit 7; reset otherwise

/V: set if overflow; reset otherwise

stored in the Accumulator.

Cycles:
States:
Flags:

ADD A, (HL)

2
7
Sr

S:
Z:
H:
N:
C:

S S e N L
11000110
P SN N ES S

1

Z,H,N,C,P/V

set if result is negative; reset otherwise
set if result is 0; reset otherwise

set if carry from bit 3; reset otherwise
reset

set if carry from bit 7; reset otherwise

P/V: set if overflow; reset otherwise

A — A+(HL)

The byte at the memory address specified by the contents of the HL register
pair is added to the contents of the Accumulator, and the result is stored in

the Accumulator.

Cycles:
States:
Flags:

2
7

1 i

T T T T T T
1 0000110
P S N B

S,Z,H,N,C,P/V

S:
Z:
H:
N:
C:

set if result is negative; reset otherwise
set if result is 0; reset otherwise

set if carry from bit 3; reset otherwise
reset

set if carry from bit 7; reset otherwise

P/V: set if overflow; reset otherwise

THE Z80 MICROPROCESSOR 49

ADD A, (IX+d)
A — A+ (IX+d)
The contents of the Index Register IX are added to a displacement d to point
to an address in memory. The contents of this address are then added to the
contents of the Accumulator, and the result is stored in the Accumulator.

1 1 I I 1 i I
11011101
1 | 1 1 i 1

L

T 1 I I | I I
10000110
I I 1 1 L 1 1

Cycles: 5
States: 19
Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise

H: set if carry from bit 3; reset otherwise
N: reset

C: set if carry from bit 7; reset otherwise
P/V: set if overflow; reset otherwise

ADD A, (IY+d)
A — A+(Y+d)
The contents of the Index Register IY are added to a displacement d to point
to an address in memory. The contents of this address are then added to the
contents of the Accumulator, and the result is stored in the Accumulator.

Cycles: 5
States: 19
Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
. set if result is O; reset otherwise

: set if carry from bit 3; reset otherwise
: set

. set if carry from bit 7; reset otherwise
P/V: set if overflow; reset otherwise

V4
H
N
C

50 THE Z80 MICROPROCESSOR

ADCA, s
A~ A+s+CY
The s operand is any of r, n, (HL), (IX+d), or (IY+d) as defined for the
analogous ADD instruction. These various possible opcode operand com-
binations are assembled in the object code as follows:

1 1 1
ADCA, r 1 00 0 1-—r—
ADC A, n [N T TR SR

- n >
| N HE N NN DU B |
1 T T 1 T 1
ADC A, (HL) 10001110
[N P SO B B |
| B 1 1 1
ADC A, (IX+d) 1101110 1
[WO DY DU B B |

¥ i i I | i I
10001110
1 I} 1 1 1 1 |

i I 1 1 1 | i

T T
ADC A, (IY+d) 1 ‘1 1111 I0 1
R R SR R

The s operand, along with the Carry Flag (“C” in the F register) is added to
the contents of the Accumulator, and the result is stored in the Accumulator.

Instruction Cycles States
ADCA,r 1 4
ADCA, n 2 7
ADC A, (HL) 2 7
ADC A, (IX+d) 5 19
ADC A, (IY+d) 5 19

Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise

H: set if carry from bit 3; reset otherwise
N: reset

C: set if carry from bit 7; reset otherwise
P/V: set if overflow; reset otherwise

THE Z80 MICROPROCESSOR 51

SUB s
A~ A-s
The s operand is subtracted from the contents of the Accumulator, and the
result is stored in the Accumulator.

T T T T

SUB r 100 1 0e—yr—
Lo
—T—T T T T _1

SUB n 11010110
TS WA N S T W |
T T T T T 1

- n -
IS N N N B B
i i 1 i 1 i 1

SUB (HL) 10010110
[TR T TR W
T T T T T 1

SUB (IX+d) 111101111111011

SUB (1Y +d) 11111101
[| | 1 | | §

T T T T T
10010110
AN TS WA TR S M

- d >
| i | 1] | 1

Instruction Cycles States

SUB r 1 4

SUB n 2 7

SUB (HL) 2 7

SUB (IX+d) 5 19

SUB (IY+d) 5 19

Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise

Z: set if result is 0; reset otherwise

H: set if no borrow from bit 4; reset otherwise
N: set

C: set if no borrow; reset otherwise

P/V: set if overflow; reset otherwise

52 THE Z80 MICROPROCESSOR

SBCA,s
A-A-s—-CY

The s operand, along with the Carry Flag (“C” in the F register) is subtracted
from the contents of the Accumulator, and the result is stored in the

Accumulator.

SBCA, r

SBCA, n

SBC A, (HL)

SBC A, (IX+d)

SBC A, (IY+d)

Instruction

SBCA, r

SBC A, n

SBC A, (HL)
SBC A, (IX+d)
SBC A, (IY+d)

Flags: S,Z,H,N,C,P/V

1
100 1 1e—r—
J N AR S P S e |
| D DL D L L
11011110
f 1 ! 1 1 {1
Tr ©r ©r 1 1 | 1
- n >
¢ 4 ¢y 1 1 |
LR L L. L
10011110
{ ¢ 41 1 1 1 1
1T 1T "§ "1 1T 1
11011101
J S I R D B T |
DL DL R I e |
10011110
) I I N O P R |
L L R D!
- d —
Lt 1 1 1 1 1
| L L L D R)
11111101
) S S B SR N R |
1'0 0 1'1'1'1'0
1 1t 1 1 |
L L R L D L
-t d >
{1 1 1 | 1|
Cycles States
1 4
2 7
2 7
5 19
5 19

set if result is negative; reset otherwise
set if result is 0; reset otherwise

set

S:
Z:
H: set if no borrow from bit 4; reset otherwise
N:
C:

set if no borrow; reset otherwise
P/V: set if overflow; reset otherwise

THE 280 MICROPROCESSOR 53

AND s
A~ Ars
A logical AND operation, bit by bit, is performed between the byte specified
by the s operand and the byte contained in the Accumulator; the result is
stored in the Accumulator.

1 1 | I | i |

AND r 110|l|0101‘_|Y‘l—’
1 i i 1 1 1 1

AND n 1111110101111|o
1 i T 1 1 1 I
- n >
| 1 [1 L 1 1
I i I T [] 1

AND (HL) 1 01 00 110
1 | 1 1 1 I 1
I I 1 1] 1 i

AND{IX+d) 1101 1101
! i 1 |

1 1 1
10100110
[B T |

- d >

AND(IY +d) 11111101
|]

- d >
i 1 1 1] 1 !
Instruction Cycles States
AND r 1 4
AND n 2 7
AND (HL) 2 7
AND (IX+d) 5 19
AND (IX+d) 5 19

Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise

H: set

N: reset

C: reset

P/V: set if parity even; reset otherwise

54 THE Z80 MICROPROCESSOR

ORs
A~ Avs
A logical OR operation, bit by bit, is performed between the byte specified
by the s operand and the byte contained in the Accumulator; the result is
stored in the Accumulator.

ORr 101 1 0Qe—r—
1 1 | 1 1 { L
1 I I]] 1 1
OR n 1 11 10110
1 1] | 1 1 1
1 I) | | I 1
- n
1 1 1 1 1 1]
OR(HL) 10110110
1 1 | 1 1 | |
1 I I i 1 I I
OR(IX+d) 11011101
| 1 |] 1 1 1
1 I I 1 1 1 1
1 011 0110
] 1 1 | 1 1 Il
{ 1 1 1] i 1
-— d >
] L 1 | | 1 1
1 1 i I t 1 I
ORAY+d) 111 11101
L Il 1 | 1 1 |
1 [1 1 I I 1
1 01 101 10
1 1 1 | 1 [|
1 1 I I] 1 i
- d >
I D R N N N
Instruction Cycles States
ORr 1 4
ORn 2 7
OR (HL) 2 7
OR (IX+d) 5 19
OR (IY+d) 5 19
Flags: S,Z,H,N,C,P/V
S: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise
H: set
N: reset
C: reset
P/V: set if parity even; reset otherwise

THE Z80 MICROPROCESSOR 55

XOR s
A~ Aes
A logical exclusive-OR operation, bit by bit, is performed between the byte
specified by the s operand and the byte contained in the Accumulator; the
result is stored in the Accumulator.

T T T T T 1T
XORr 1 010 le—yr—
R N A S IO |
T T T T _ T 1
XOR n 11101110
N DO VRN NN N SO |
T T T T T 71
- n ->
SR DR NS (N N B
T T T T _ T 1
XOR (HL) 1 0101110
SO VR N N D N |
T T T T T 1
XOR (IX+d) 11011101

XOR (IY+d) 11111101

< d >
| | |] { | 1
Instruction Cycles States
XORr 1 4
XOR n 2 7
XOR (HL) 2 7
XOR (IX+d) 5 19
XOR (IY+d) 5 19

Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
Z: set if result if 0; reset otherwise

H: set

N: reset

C: reset

P/V: set if parity even; reset otherwise

56 THE 280 MICROPROCESSOR

CPs

A-s

The contents of the s operand are compared with the contents of the Ac-

cumulator. If there is a true compare, a flag is set.

CPr

CPn

CP (HL)

CP (IX+d)

CP (IY+d)

Instruction

CPr

CPn

CP (HL)
CP (IX+d)
CP (IY+d)

Cycles States

4
7
7
19
19

(S J0 I SO 0 S 2]

Flags: S,Z,H,N,C,P/V

S:
Z:
H:
N:
C:

set if result is negative; reset otherwise

set if result is O; reset otherwise

set if no borrow from bit 4; reset otherwise
set

set if no borrow; reset otherwise

P/V: set if overflow; reset otherwise

THE Z80 MICROPROCESSCR 57

INCr
r—r+1

Register r is incremented.

Cycles:
States:
Flags:

" INC (HL)

T T T T T T
0 Qe—r—1 0 0
AT SUN TN S N

1
4
S,Z,H,N,P/V

S: set if result is negative; reset otherwise

Z: set if result is 0; reset otherwise

H: set if carry from bit 3; reset otherwise

N: reset

P/V: set if r was 7FH before operation; reset otherwise

(HL) — (HL)+1

The byte

contained in the address specified by the contents of the HL register

pair is incremented.

Cycles:
States:
Flags:

INC (IX+d)

I I ' ! I 1 I
00110100
1 1 l 1 | | i

3
11
S.Z,H,N,P/V

S: set if result is negative; reset otherwise

Z: set if result is O; reset otherwise

H: set if carry from bit 3; reset otherwise

N: reset

P/V: set if (HL) was 7FH before operation; reset otherwise

(IX+d) —« IX+d)+1

The contents of the Index Register IX are added to a two’s complement
displacement integer d to point to an address in memory. The contents of this
address are then incremented.

Cycles:
States:
Flags:

INC (IY+d)

T T T T T
11011101
L

H 1 ! 1 1

T T T T T T
00110100
L R T S B

1

6 ! ! 1 Il L 1 1

23
S,Z,H,N,P/V

S: set if result is negative; reset otherwise

Z: set if result is 0; reset otherwise

H: set if carry from bit 3; reset otherwise

N: reset

P/V: set if (IX+d) was 7FH before operation; reset otherwise

(IY+d) — (IY+d)+1
The contents of the Index Register IY are added to a two's complement

58 THE Z80 MICROPROCESSOR

DEC m

displacement integer d to point to an address in memory. The contents of this

address are then incremented.

I I 1 I I I 1
11111101
| I

i 1 1

I ¥ 1 1 1 1 1
00110100
1 1 1 1 | l 1

Cycles: 6 Lo

States: 23
Flags: S,Z,H,N,P/V

S: set if result is negative; reset otherwise
Z: set if result is O; reset otherwise
H: set if carry from bit 3; reset otherwise

N: reset

P/V: set if (IY+d) was 7FH before operation; reset otherwise

m—m-—1
The byte specified by the m operand is decremented.
T i ¥ 1 1 I ¥
DECr 0 0e—r—m1 0 1
)] 1 1 1 |
| I | i T) I
DEC (HL) 0011010 1
l i 1 | | i L
I 1 I i i i I
DEC (IX+d) 1 19111 0 1
)| 1 1 | [] 1
| I 1 1 1 1
001 10 1 0 1
] L Il [1] l
i T i [| 1 ¥
- d >
| 1 1 1 Il 1 1
¥ 1 T 1 I 1 |
DEC (IY+d) 111 11101
1 1 |] 1 1 1
i 1 I I | | ¥
6011010 1
| 1 1 Il | 1 1
1 i 1 1 1 1 I
» d >
1 A] 1 |] Il
Instruction Cycles States
DECr 1 4
DEC (HL) 3 11
DEC (IX+d) 6 23
DEC (IY+d) 6 23

Flags: S,Z,H,N,P/V

S: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise
H: set if no borrow from bit 4; reset otherwise

N: set

P/V: set if m was 80H before operation; reset otherwise

THE 280 MICROPROCESSOR 59

60 THE Z80 MICROPROCESSOR

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

CPL

NEG

CCF

SCF

A-A
Contents of the Accumulator are inverted (1's complement).

1 i I i

1 I i
0 0101111
1 | | I 1 1 !

Cycles: 1
States: 4
Flags: H,N
H: set
N: set
A—-0—-A

The contents of the Accumulator are negated (two’s complement). This is the
same as subtracting the contents of the Accumulator from 0.

I I 1 i i ¥ i
11101101
| 1 I | 1 1 1

i i | |] { I
Cycles: 2 01 0 0 0 100
States: 8 L

Flags: S,Z,H,N,C,P/V

set if result is negative; reset otherwise

. set if result is 0; reset otherwise

. set if no borrow from bit 4; reset otherwise

. set

. set if Accumulator was not 00H before operation; reset other-
wise

P/V: set if Accumulator was 80H before operation; reset otherwise

NZIN®D

CYy - CY
The C flag in the F register is inverted.

T T ¢t 1 T 1
oo 111111
I

L 1 - 1 1 H

Cycles: 1
States: 4
Flags: H,N,C

H: previous carry will be copied
N: reset
C: set if CY was O before operation; reset otherwise

Cy -1
The C flag in the F register is set.

— T T 1T _ T T T
006110111
I

1 1 ! ! 1 |

Cycles: 1
States: 4
Flags: H,N,C

H: reset

N: reset
C: set
NOP
The central processor performs no operation during this machine cycle.
1 i 1 1 1 i ¥
000 0O0CDNOD 0O
| It 1 Il I] 1
Cycles: 1
States: 4
Flags: none
DAA
This instruction conditionally adjusts the Accumulator for BCD addition and
subtraction operations. For addition (ADD, ADC, INC) or subtraction (SUB,
SBC, DEC, NEG), the following table indicates the operation performed:
HEX HEX
VALUE VALUE NUMBER
C IN H IR ADDED | C
BEFORE UPPER BEFORE| LOWER TO AFTER
OPERATION | DAA DIGIT DAA DIGIT BYTE DAA
(bit (bit
7=4) 3-0)
0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0
ADD 0 A-F 0 0-9 60 1
ADC 0 9-F 0 A-F 66 1
INC 0 A-F 1 0~3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1
SUB 0 0-9 0 0-9 00 0
SBC 0 0-8 1 6~F FaA 0
DEC 1 7-F 0 0-9 AQ 1
NEG 1 6-F 1 6-F 9A 1
M CYCLES: 1 T STATES: 4 4 MHZ E.T.: 1,00
Cycles: 1
States: 4
Flags: S,Z,H,C,P/V

S: set if most significant bit of Accumulator is 1 after operation;

reset otherwise
Z: set if Accumulator is O after operation; reset otherwise
H: see instruction
C: see instruction

P/V: setif Accumulator is even parity after operation; reset other-

wise

THE Z80 MICROPROCESSOR 61

62 THE Z80 MICROPROCESSOR

HALT

DI

El

IMO

M1

The HALT instruction suspends the central processor operation until a subse-
quent interrupt or reset is received. While in the halt state, the processor will
execute NOPs to maintain memory refresh logic.

I i] 1 1 1 1
01110110
L i 1

1 1 i !

Cycles: 1
States: 4
Flags: none

IFF -0

DI disables the maskable interrupt by resetting the interrupt enable flip-flops
(IFF1 and IFF2). Note: this instruction disables the maskable interrupt during
its execution.

T T T T T
11110011
L

A

Cycles: 1
States: 4
Flags: none

IFF — 1

El enables the maskable interrupt by setting the interrupt enable flip-flops
(IFF1 and IFF2). Note: this instruction disables the maskable interrupt during
its execution.

Cycles: 1
States: 4
Flags: none

The IM 0 instruction sets interrupt mode 0. In this mode the interrupting
device can insert any instruction on the data bus and allow the central pro-
cessor to execute it.

T T T T T
11101101
P SN WY R R T

I] I I 1 I I
01000110
1 ! 1 i | 1

L

Cycles: 2
States: 8
Flags: none

The IM 1 instruction sets interrupt mode 1. In this mode the processor will
respond to an interrupt by executing a restart of location 0038H.

T T T
11101101
I U S |

Il [

Cycles: 2 0'1'01 011 0
States: 8 ! |]]]] 1
Flags: none

IM 2
The IM 2 instruction sets interrupt mode 2. This mode allows an indirect call
to any location in memory. With this mode, the central processor forms a
16-bit memory address. The upper 8 bits are the contents of the Interrupt
Vector Register I and the lower 8 bits are supplied by the interrupting device.
i | ¥ T i L i
11101101
|] 1 1 | 1

1

i ¥ 1 ! I | ¥
01 01111
Cycles: 2 S S T T T 0
States: 8
Flags: none

SIXTEEN-BIT ARITHMETIC GROUP

ADD HL, ss
HL — HL+ss
The contents of register pair ss are added to the contents of register pair HL
and the result is stored in HL.

T T T T T 1

0 0s s 1 0 0 1
P U S S I S |

Cycles: 3

States: 11

Flags: H,N,C
H: set if carry out of bit 11; reset otherwise
N: reset

C: set if carry from bit 15; reset otherwise

ADC HL, ss
HL —~ HL+ss+CY
The contents of register pair ss are added with the Carry Flag to the contents
of the register pair HL, and the result is stored in HL.

T T T T T 1
11101101
1 1 1 I 1

A 1

T T T T 17
Cycles: 4 011.51511:01110
States: 15

Flags: S,Z,H,N,C,P/V

: set if result is negative; reset otherwise
Z: set if result is O; reset otherwise

H: set if carry out of bit 11; reset otherwise
N: reset

C: set if carry from bit 15; reset otherwise
P/V: set if overflow; reset otherwise

[92]

THE 280 MICROPROCESSOR 63

SBC HL, ss
HL ~ HL—-ss—CY
The contents of the register pair ss and the Carry Flag are subtracted from the
contents of register pair HL, and the result is stored in HL.
1'1'1'0'1°10'1

1 J I 1 | l 1

s 0'1's's' 0010

| I 1 L 1 1 |

Cycles:
States: 15
Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise

Z: set if result is 0; reset otherwise

H: set if no borrow from bit 12; reset otherwise
N:

C:

set
set if no borrow; reset otherwise
P/V: set if overflow; reset otherwise

ADD IX, pp
IX = IX+pp
The contents of register pair pp are added to the contents of the Index
Register IX, and the results are stored in IX.

1'1'0'1'1'1° 01

1 1 1 1 i i 1

Cycles: 4

States: 15

Flags: H,N,C
H: set if carry out of bit 11; reset otherwise

N: reset
C: set if carry from bit 15; reset otherwise

Ololplplllololl
1 ! 1 1] 1 1

ADDIY, rr
IY « IY+r1r
The contents of register pair rr are added to the contents of Index Register 1Y,
and the result is stored in IY.

T T T T 1

11111101

1 | 1 I\ I 1 H

T T T _ 7 _ T 1
0 0 r r 1 0 0 1
Cycles: 4 1 {] 1 1 l 1
States: 15

Flags: H,N,C

H: set if carry out of bit 11; reset otherwise
N: reset
C: set if carry from bit 15; reset otherwise

INC ss
ss — ss+1
The contents of register pair ss are incremented.

0'0's's' 0011

1 1 1 1 1 1

64 THE 280 MICROPROCESSOR

INCIX

INCIY

DEC ss

DECIX

DECIY

Cycles: 1
States: 6
Flags: none

IX — IX+1

The contents of the Index Register IX are incremented.

T T . T T. T 1
11011101
1 1 1

1 i 1] 1 1 { |
Cycles: 2 0 01 00011
States: 10 e
Flags: none

IY — IY+1

The contents of the Index Register 1Y are incremented.

1 | ! i
Cycles: 2 001000 11
States: 10 —
Flags: none

ss — ss—1
The contents of register pair ss are decremented.

T T T T T
0 0 s s 1011

Il 1 1 i i} ! |

Cycles: 1
States: 6
Flags: none

IX - IX—-1

The contents of the Index Register IX are decremented.

I i 1 1

171011 1 0 1

Cycles: 2 00
States: 10
Flags: none

Iy - IY—-1

The contents of the Index Register IY are decremented.

T T T T T 1
920101011
A DO T W R B

THE Z80 MICROPROCESSOR 65

66 THE Z80 MICROPROCESSOR

Cycles: 2
States: 10
Flags: none
ROTATE AND SHIFT GROUP
rRLcA LT 7‘_":
A

The contents of the Accumulator are rotated left. The content of bit 7 is
copied into the Carry Flag, and also into bit 0.

i 1 I i I I i
00000111
L 1 | 1 1 1

Cycles: 1

States: 4

Flags: H,N,C
H: reset
N: reset

C: data from bit 7 of Accumulator

7<—0<l

A
The contents of the Accumulator are rotated left. The content of bit 7 is
copied into the Carry Flag, and the previous content of the Carry Flag is
copied into bit 0.

T
0 0010 111
|

1 | 1 | 1 -1
Cycles: 1
States: 4
Flags: H,N,C
H: reset
N: reset

C: data from bit 7 of Accumulator.

7—>0

A
The contents of the Accumulator are rotated right. The content of bit 0 is
copied into bit 7 and also into the Carry Flag.

T
0 0

I

1 1 1 1
c 01 1 11
1 1 | 1 1 1 [

Cycles: 1
States: 4
Flags: H,N,C

H: reset

N: reset

C: data from bit 0 of Accumulator.

L7—>0

A
The contents of the Accumulator are rotated right. The content of bit 0 is
copied into the Carry Flag, and the previous content of the Carry Flag is

copied into bit 7.

Cycles: 1

States: 4

Flags: H,N,C
H: reset
N: reset

C: data from bit 0 of Accumulator.

CY 7
RLCr . -0

r

The 8-bit contents of register r are rotated left. The content of bit 7 is copied

into the Carry Flag and also into bit 0.

Cycles: 2
States: 8

T T T T T T
11001011
1 | 1 1 1

1 |

1 T 1T T 1 1
0 0 0 0 0w——r—
L Lt 11

Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
Z: set if result is O; reset otherwise

H: reset
N: reset
C: data from bit 7 of source register
P/V: set if parity even; reset otherwise

RLC (HL)

1

The contents of the memory address specified by the contents of register pair
HL are rotated left. The content of bit 7 is copied into the Carry Flag and also

(HL)

into bit 0.
Cycles: 4
States: 15

L
1 100

I
J I 1 |

I I I
1 011
Il 1 1

Pt T T T
000 0O0T1T10

) | I L 1 1 1

Flags: S,Z,H,N,C,P/V

S:

Z:
H:
N:
C:

set if result is negative; reset otherwise
set if result is 0; reset otherwise

reset
reset

data from bit 7 of source register
P/V: set if parity even; reset otherwise

7<—-0]

RLC (IX+d) B:

The contents of the memory address, specified by the sum of the contents of
the Index Register IX and a two's complement displacement integer d, are
rotated left. The content of bit 7 is copied into the Carry Flag and also into bit

0.

(I1X+d)

THE Z80 MICROPROCESSOR 67

68 THE 280 MICROPROCESSOR

RLC (IY+d)

RL m

0000 0'11 0

Cycles: 6 R
States: 23
Flags: S,Z,H,N,C,P/V
S: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise
H: reset
N: reset
C: data from bit 7 of source register

The contents of the memory address, specified by the sum of the contents of
the Index Register IY and a two’s complement displacement integer d, are
rotated left. The content of bit 7 is copied into the Carry Flag and also into bit

0.

Cycles:
States:
Flags:

P/V: set if parity even; reset otherwise

1

(1Y +d)

6
23

r_. 1.1 _° 1 1
11111101

. 1 1] [| 1

1'1'000 10 11

! . i I ! [1

I I I 1 i 1 I

| 1 1] ! | 1

0000011 0

! Il 1 1 I | |

S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise

H: reset
N: reset

C: data from bit 7 of source register
P/V: set if parity even; reset otherwise

o=

] <'|

The contents of the m operand are rotated left. The content of bit 7 is copied
into the Carry Flag and the previous content of the Carry Flag is copied into

bit 0.

m

RRC m

RLr

RL (HL)

RL (IX+d)

Instruction

RLr

RL (HL)
RL (IX+d)
RL (IY+d)

1'1'00'10'1'1

l 1 4 | l I 1

RL (IY+d)

T T T T T
0 0 0 1 0we—yp—
TR TR WS SN R S

T
1111
L]

I

T T
1101
L1 1

1 ¥ 1 1 1 1 !
11001011
1 1 | 1 1 1 1

T T T T
11001011
R SO B

T T T T T
00010110
N SR OOS MY SY|

1

| SN N A S RS
1101110
i

T
1
L1 L

T_ T T T T T 1
1 1001011
|

L AN L L L
00010110

1 L | | | 1 1

Cycles States
2 8
4 15
6 23
6 23

Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise

H: reset
reset

N:

C: data from bit 7 of source register
P/V: set if parity even; reset otherwise

1—>0

m

The contents of the operand m are rotated right. The content of bit 0 is copied

into the Carry Flag and also into bit 7.

RRCr

RRC (HL)

RRC (IX+d)

i 1 I i 1 1 ¥
11001011
| 1

] l ! 1 J

' i i T i i i
0 0 0 0 1<-—r—
I 1 i I ! | 1

T T 1. T T 1
11001011
1

] ! | { 1 |

T _ T _T1T_T1T 1. 7
00001110
]

] 1 1 | | H

LA AL L L
11011101

I | 1 1 1 1 i
00010110
I T TR T R T

THE Z80 MICROPROCESSOR 69

70 THE Z80 MICROPROCESSOR

RR'm

RRC (IY+d) 1’11111 0 1
| 1]

Instruction Cycles States
RRCr 2 8
RRC (HL) 4 15
RRC (IX+d) 6 23
RRC (IY+d) 6 23
Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
Z: set if result is O; reset otherwise

H: reset

N: reset

C: data from bit 0 of source register
P/V: set if parity even; reset otherwise

L 7——»0-’

m

The contents of operand m are rotated right. The content of bit 0 is copied in-
to the Carry Flag, and the previous content of the Carry Flag is copied into

bit 7.
T T T T T 1
RRr 11001011
S WY TR TR T BN
T T T T T 1
0 00 1 1e—r—
[T EY T M R B
T T T T T
RR (HL) 111|010111011|1
T T T T T
00011110
IR VR T B B B
[N S . . B N
RR (IX+d) 111|011|111|O|1

SLAm

RR IY+d)

Instruction

RRr

RR (HL)
RR (IX+d)
RR (IY+d)

Cycles States
2 8
4 15
6 23
6 23

Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise

Z: set if result is O; reset otherwise

H: reset
N: reset

C: data from bit 0 of source register
P/V: set if parity even; reset otherwise

A aad!

m

An arithmetic shift left is performed on the contents of operand m. Bit 0 is
reset. The content of bit 7 is copied into the Carry Flag.

SLATr

SLA (HL)

SLA (IX+d)

-0

=TT T T T T
11001011
L)

1 1 1 T 17
0 01 0 0=—r-—
W Y N VR T S |

1] I I 1 I T
11001011
i] Il 1 1

I H

I | I 1 1 i 1
00100110
L | l | 1 1

T T T T T
11011101
[T B

1 Il 1

THE Z80 MICROPROCESSOR 71

1 i I I i
11001011
1 1 1 ! 1 1 i

i

T T T T 1
00100110
I TR T SR B

—T T T 1
SLA (IY+d) 1111111]11].'0‘1

T T T T T 1
11001011
I T N T I

1

Instruction Cycles States
SLATr 2 8
SLA (HL) 4 15
SLA (IX+d) 6 23
SLA (IY+d) 6 23

Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise

H: reset

N: reset

C: data from bit 7

P/V: set if parity even; reset otherwise

71— -»

m

SRAm

An arithmetic shift right is performed on the contents of operand m. The con-
tent of bit 0 is copied into the Carry Flag, and the previous content of bit 7 is

unchanged.

1 1 1 i 1 1 i

SRATr 11001011
I] ! | 1 1 I
1 1 1 1 1 i 1

0 01 0 1le—r—
1 | | 1 | I 1
1 i i i i 1 1

SRA (HL) 11001011
I i] 1] | 1
1 1 1 i 1 1 |

i 00101110
| 1 1 | i | |
i I 1 1 1 1 1

SRA (IX+d) 1|11011111110|1

72 THE 280 MICROPROCESSOR

SRL m

SRA (IY+d) 11111101

Instruction Cycles States
SRATr 2 8
SRA (HL) 4 15
SRA (IX+d) 6 23
SRA (IY+d) 6 23
Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
Z: set if result is O; reset otherwise

H: reset

N: reset

C: data from bit 0 of source register
P/V: set if parity even; reset otherwise

S P

m

The contents of operand m are shifted right. The content of bit 0 is copied in-
to the Carry Flag and bit 7 is reset.

T T T T
SRL r 11001011
N S DO S TR T |
l 1 H I 1] 1
0 01 1 le—r—
IS S N S B
T T T T T
SRL (HL) 11001011
IS S N T SO
| B B B e m
00111110
RS R T S T S
T T T T T
SRL (IX+d) 11011101
TR R T S N B

THE Z80 MICROPROCESSOR 73

74 THE Z80 MICROPROCESSOR

RLD

I}
SRL (Y+d) 17111110 1
[] 1 1

T T T T
11001011
P SO T T R T

T T T T T 1
0 0111110
P T TN S W

—T T T T T 1
11001011

i I I I] I I

1 Il I L ! 1 !

Instruction Cycles States
SRLr 2 8
SRL (HL) 4 15
SRL (IX+d) 6 23
SRL (IY+d) 6 23
Flags: S,Z,H,N,C,P/V

S: set if result is negative; reset otherwise
Z: set if result is 0; reset otherwise

H: reset

N: reset

C: data from bit 0 of source register
P/V: set if parity even; reset otherwise

A I (HL)
\]

The contents of the low-order 4 bits of memory location (HL) are copied into
the high-order 4 bits of that same memory location. The previous contents of
those high-order 4 bits are copied into the low-order 4 bits of the Ac-
cumulator, and the previous contents of the low-order 4 bits of the Ac-
cumulator are copied into the low-order 4 bits of the memory location (HL).
The contents of the high-order 4 bits of the Accumulator are unaffected.

Cycles:
States:
Flags:

I] 1 i I 1 i
11101101
! 1 1 1 {

T T T T T 1

5 001 101111
. | l 1 | | |

18

S,Z,H,N,P/V

S: set if Accumulator is negative after operation; reset otherwise

Z: set if Accumulator is 0 after operation; reset otherwise

H: reset

N: reset

P/V: set if parity of Accumulator is even after operation; reset
otherwise

RRD

I |
A7 af3 o} [7 a3 ofwu)

The contents of the low-order 4 bits of memory location (HL) are copied into
the low-order 4 bits of the Accumulator. The previous contents of the low-
order 4 bits of the Accumulator are copied into the high-order 4 bits of loca-
tion (HL), and the previous contents of the high-order 4 bits of (HL) are
copied into the low-order 4 bits of (HL). The contents of the high-order 4 bits
of the Accumulator are unaffected.

T T T T T
11101101
I 1 | 1 I L

{ 1 I I 1 1 I
Cycles: 5 01 100111
States: 18 . . I l I . .
Flags: S,Z,H,N,P/V

S: set if Accumulator is negative after operation; reset otherwise

Z: set if Accumulator is O after operation; reset otherwise

H: reset

N: reset

P/V: set if parity of Accumulator is even after operation; reset
otherwise

BIT SET, RESET AND TEST GROUP

BIT b, r

Z— T,
After execution of this instruction, the Z flag in the F register will contain the
complement of the indicated bit within the indicated register.

T T 1T . T T 1
11001011
1 1 | 1 !

| 1

T T T T T 1
0] e—b—r e—r—
[VRN NS S SO S

Cycles: 2
States: 8
Flags: S,Z,H,N,P/V

S: unknown
Z: set if specified bit is O; reset otherwise

H: set
N: reset
P/V: unknown
BIT b, (HL)
Z — (HL)s

After the execution of this instruction, the Z flag in the F register will contain
the complement of the indicated bit within the contents of the HL register

pair.
T T T .71 _1._1
1 1001 011
1 1 1 1 i | 1
T 1 T 1 1.1 1
Cycles: 3 0 le—b—s1 10
States: 12 S

Flags: S,Z,H,N,P/V

S: unknown

Z: set if specified bit is 0; reset otherwise
H: set

N: reset

P/V: unknown

THE 280 MICROPROCESSOR 75

BIT b, (IX+d)
Z — (IX+d),
After the execution of this instruction, the Z flag in the F register will contain
the complement of the indicated bit within the contents of the memory loca-
tion pointed to by the sum of the contents of register pair IX and the two’s
complement displacement integer d.

1'1'01 1101

1

1] 1 1 1 L

1'1'0001 0 1'1
]

=TT T T_ T _1
Cycles: 5 0 1e«e—b—s1 10
States: 20 e
Flags: S,Z,H,N,P/V

S: unknown

Z: set if specified bit is 0; reset otherwise
H: set

N: reset

P/V: unknown

BIT b, (IY+d)
Z — (IY+d),
After the execution of this instruction, the Z flag in the F register will contain
the complement of the indicated bit within the contents of the memory loca-
tion pointed to by the sum of the contents of register pair IY and the two's

complement displacement integer d.

1711717110 1

1 1 i 1 1 Il Il

171001011

Cycles: 5 0'] e—mbewl 1 0
States: 20 T B e
Flags: S,Z,H,N,P/V

S: unknown

Z: set if specified bit is 0; reset otherwise
H: set

N: reset

P/V: unknown

SET b, r

r,,'—l

Bit b (any bit, 7 thru 0) in register r is set.
1'1'00'10'1"

1 ! 1 1 L | i

Cycles: 2 1'1' 'b' l<—lr‘l
States: 8 T

Flags: none

76 THE 280 MICROPROCESSOR

SET b, (HL)

(HL)b b
Bit b in the memory location addressed by the contents of register pair HL is

set.

Cycles:
States:
Flags:

SET b, (IX+d)

(IX+d)s
Bit b in the memory location addressed by the sum of the contents of the IX

register pair and the two’s complement displacement integer d is set.

Cycles:
States:
Flags:

SET b, (IY+d)

(IY+d),
Bit b in the memory location addressed by the sum of the contents of the IY

register pair and the two’s complement displacement integer d is set.

Cycles:
States:
Flags:

1

4
15

none

-1

6
23

none

~1

6
23
none

1‘1IOIOI1|0I1'1
| 1

1] H 1 !

11 —bew1 1 0
1 | 1 { []]

T T T T T
11111101
RS T B

T T T T
11001011
!

! I 1 !

THE Z80 MICROPROCESSCR 77

RES b, m
Sp ~— 0
Bit b in operand m is reset.

T T T T T T
RES b, r 11001011
!

| 1 1 | i I}

T T T T T T T
]l 0 «—b——r—p
1 L 1 L 1 1 L

RES b, (HL) 1100101 1
]

1 1 1 1 I Il

1 0 a—bew1'1 0

RES b, (IX+d) 11011101

1 1 1 I

T

I B N S
11001011
1 1 1 1 1] 1

l 0 e—h—>1 1 0
R TR T S B A

T T T T T
RES b, (Y +d) 11111101
1 1 1 ! 1 §

I

T T T T
110010 11
1 | | I 1 1]

Instruction Cycles States
RESb, r 4 8
RES b, (HL) 4 15
RES b, (IX+d) 6 23
RES b, (IY+d) 6 23

Flags: none

JUMP GROUP

JP nn
PC — nn
Operand nn is loaded into register pair PC (program counter) and points to
the address of the next program instruction to be executed.

78 THE Z80 MICROPROCESSOR

JP ¢c, nn

JRe

Cycles:
States:
Flags:

3
10
none

IF cc TRUE, PC - nn

If condition cc is true, the instruction loads operand nn into register pair PC,
and the program continues with the instruction beginning at address nn. If
condition cc is false, the program counter is incremented as usual, and the
program continues with the next sequential instruction.

Cycles: 3
States: 10
Flags: none
PC — PC+e

This instruction provides for unconditional branching to other segments of a
program. The value of the displacement e is added to the PC and the next in-
struction is fetched from the location designated by the new contents of the
PC. This jump is measured from the address of the instruction opcode and

1 J I 1 1 i]
] le—cc—=0 10
!]] | 1 | 1

1 1 I i i | |

1 L 1 1 1 1 1

has a range of —126 to +129 bytes.

Cycles:
States:
Flags:

3
12
none

T T T T T 1
00011000
1 i 1 1 | i 1

THE Z80 MICROPROCESSOR 79

80 THE Z80 MICROPROCESSOR

JRC, e

JRNC, e

JRZ, e

If C=0, continue

If C=1, PC — PC+e

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Carry Flag. If the flag is set,
the value of the displacement e is added to the PC, and the next instruction is
fetched from the location designated by the new contents of the PC. If the
flag is reset the next instruction is taken from the location following this in-
struction,

1 1 1 1 i 1 1
0011100
1

1 i

If the condition is met:

Cycles: 3
States: 12

If the condition is not met:

Cycles: 2
States: 7

Flags: none

If C=1, continue
If C=0, PC — PC+e
This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Carry Flag. If the flag is
reset, the value of the displacement e is added to the PC, and the next instruc-
tion is fetched from the location designed by the new contents of the PC. If
the flag is set, the next instruction to be executed is taken from the location
following this instruction.
{ 1 1 1 1 1 4
001 100O0O0TO
1 1 | 1

! ! l

If the condition is met:

Cycles: 3
States: 12

If the condition is not met:

Cycles: 2
States: 7

Flags: none

If Z=0, continue

If Z=1, PC — PC+e

If the Zero Flag is set, the value of the displacement e is added to the PC and
the next instruction is fetched from the location designated by the new con-
tents of the PC. If the Zero Flag is reset, the next instruction to be executed is
taken from the location following this instruction,

I 1 1 t 1 1 1

6 01 010000
1 1 J I 1 1 1 L
T 1 I 1 i] 1

- e-2 >
A } | 1 | 1 |

If the condition is met:

Cycles: 3
States: 12

If the condition is not met:

Cycles: 2
States: 7

Flags: none

JRNZ, e
If Z=1, continue
If Z=0, PC — PC+e
If the Zero Flag is reset, the value of the displacement e is added to the PC,
and the next instruction is fetched from the location designated by the new
contents of the PC. If the Zero Flag is set, the next instruction to be executed
is taken from the location following this instruction.

L L L L
001 00O0O0DO

If the condition is met:

Cycles: 3
States: 12

If the condition is not met:

Cycles: 2
States: 7

Flags: none

JP (HL)
PC — HL
The PC is loaded with the contents of the HL register pair. The next instruc-
tion is fetched from the location designated by the new contents of the PC.
1110100 1

1 I} 1 Il I 1 1

Cycles: 1
States: 4
Flags: none

JP (IX)
PC — IX
The PC is loaded with the contents of the IX Register Pair. The next instruc-
tion is fetched from the location designated by the new contents of the PC.

THE Z80 MICROPROCESSOR 81

1101110 1

1 | | 1 i 1 !

7 _ T v 1T 7T 1
11101001

| 1 1 i 1 i 1

Cycles: 2
States: 8
Flags: none

JP (1Y)
PC — IY
The PC is loaded with the contents of the I'Y Register Pair. The next instruc-
tion is fetched from the location designated by the new contents of the PC.

—TTT T T 1
11111101
I R B B

1 i

1 1 I 1 I | 1
11101001
S R T T T T

Cycles: 2
States: 8
Flags: none

DINZ, e
The B register is decremented, and if a non 0 value remains, the value of the
displacement e is added to the PC. The next instruction is fetched from the
location designated by the new contents of the PC. If the result of decrement-
ing leaves B with a 0 value, the next instruction to be executed is taken from
the location following this instruction.

1 1 1 I 1 | I
0 0010O0O00
L1111 11

- e-2 —p-
L

If B£0:

Cycles: 3

States: 13

If B=0:

Cycles: 2

States: 8

Flags: none

CALL AND RETURN GROUP

CALL nn
(SP—1) «~ PCu, (SP~2) — PC,, PC ~ nn
After pushing the current contents of the PC onto the top of the external
memory stack, the operands nn are loaded into PC to point to the address in
memory where the first opcode of a subroutine is to be fetched. Note:
because this is a 3-byte instruction, the PC will have been incremented by
three before the push is executed.

82 THE 280 MICROPROCESSOR

T T T . T .11
11001101
1 1 1 1] d

I I ! 1 | I 1

1 1 | 1 | | d

1 I I I 1 I i

Cycles: 5
States: 17
Flags: none

CALL cc, nn

RET

RET cc

If cc TRUE: (SP—1) ~ PCy, (SP—2) — PC,, PC ~ nn

If condition cc is true, this instruction pushes the current contents of the PC
onto the top of the external memory stack, then loads the operands nn into
PC to point to the address in memory where the first opcode of a subroutine
is to be fetched.

I i I]]] |
1 1<—cc—1 0 0
)]]]] 1 Ji

L L

- n -
1 i | 1]] 1
1T 1T T T 1T

. * n >

If cc is true: l 1 1 L L 1 |

Cycles: 5

States: 17

If cc is false:

Cycles: 3
States: 10

Flags: none

PC, — (SP), PCy — (SP+1)

Control is returned to the original program flow by popping the previous
contents of the PC off the top of the external memory stack, where they were
pushed by the CALL instruction. On the following machine cycle, the central
processor will fetch the next program opcode from the location in memory
now pointed to by the PC.

T T T T T 1
11001001
1 1 1] 1 1 L

Cycles: 3
States: 10
Flags: none

If cc TRUE: PC, — (SP), PCy — (SP+1)

If condition cc is true, control is returned to the original program flow by
popping the previous contents of the PC off the top of the external memory
stack where they were pushed by the CALL instruction. On the following
machine cycle, the central processor will fetch the next program opcode from

THE Z80 MICROPROCESSOR 83

84 THE Z80 MICROPROCESSOR

RETI

RETN

RST p

the location in memory now pointed to by the PC. If condition cc if false, the
PC is simply incremented as usual, and the program continues with the next
sequential instruction.

llll—.lCCT 101010
1 1 1 1 H 1 1

If cc is true:

Cycles: 3
States: 11

If cc is false:

Cycles: 1
States: 5

Flags: none

Return from interrupt
This instruction is used at the end of an interrupt service routine to

1. Restore the contents of the PC.
2. Signal an 170 device that the interrupt routine has been completed.

The RETI instruction facilitates the nesting of interrupts allowing higher
priority devices to suspend service of lower priority service routines. This in-
struction also resets the IFF1 and IFF2 flip-flops.

T _ T _T_T_T 1
11101101
1 H 1 | 1 1 1

T T T 7.1 _1
01 001101
1 1

1 } ! 1 1

Cycles: 4
States: 14
Flags: none

Return from nonmaskable interrupt

Used at the end of a service routine for a nonmaskable interrupt, the instruc-
tion executes an unconditional return which functions identically to the RET
instruction. Control is now returned to the original program flow; on the
following machine cycle the central processor will fetch the next opcode from
the location in memory now pointed to by the PC. Also, the state of IFF2 is
copied back into IFF1 to the state it had prior to the acceptance of the NMI.

T T T T _ T T 1
11101101
| ! 1 !

1 1 i

r—T T T _ T_ T 1
01 000101
1 i L | 1 I]

Cycles: 4
States: 14
Flags: none

(SP—1) « PCy, (SP—-2) ~ PC,, PCy — 0, PC, ~ p
The current PC contents are pushed onto the external memory stack, and the

page zero memory location given by operand p is loaded into the PC. Pro-
gram execution then begins with the opcode in the address now pointed to by
PC. The restart instruction allows for a jump to one of 8 addresses as shown
in the table below. The operand p is assembled into the object code using the
corresponding t state.

1] et e 1

1 | 1

T _ 1
11
1 1

I 1

p t
OOH 000
08H 001
10H 010
18H 011
20H 100
28H 101
30H 110
38H 111

Cycles: 3

States: 11

Flags: none

INPUT AND OUTPUT GROUP

IN A, (n)
A~ (n)
The operand n is placed on the bottom half of the address bus to select the
1/0 device at one of 256 possible ports. The contents of the Accumulator also
appear on the top half of the address bus at this time. One byte from the
selected port is then placed on the data bus and written into the Accumulator
in the central processor.

- n -
I 1 | | | 1 I
Cycles: 3
States: 11
Flags: none
INr, (O
r— (C)

The contents of register C are placed on the bottom half of the address bus to
select the 170 device at one of 256 possible ports. The contents of register B
are placed on the top half of the address bus at this time. One byte from the
selected port is then placed on the data bus and written into register r in the
central processor.

i i 1 i ! I 1
1110110
! !

! | 1 ! 1

I I I | I I !
0 le—r—0 0 O
L ! | i 1 i |

Cycles: 3
States: 12
Flags: S,Z,H,N,P/V

THE Z80 MICROPROCESSCR 85

86 THE Z80 MICROPROCESSOR

INI

INIR

S: set if input data is negative; reset otherwise
Z: set if input data is O; reset otherwise

H: reset

N: reset

P/V: set if parity is even; reset otherwise

(HL) - (C), B~ B-1, HL ~ HL+1

The contents of register C are placed on the bottom half of the address bus to
select the I/0 device at one of 256 possible ports. Register B may be used as a
byte counter, and its contents are placed on the top half of the address bus.
One byte from the selected port is then placed on the data bus and written to
the central processor. The contents of the HL register pair are then placed on
the address bus, and the input byte is written into the corresponding locaticn
of memory. Finally, the byte counter is decremented, and register pair HL is
decremented.

T T T T T 1
11101101

| E— ! 1 It Il |

i i | 1 | 1 |
1 01 00010
Cycles: 4 W VR S S SR SN |
States: 16
Flags: S,Z,H,N,P/V

S: unknown

Z: set if B—1=0; reset otherwise
H: unknown

N: set

P/V: unknown

(HL) — (C), B — B—1, HL — HL+1

The contents of register C are placed on the bottom half of the address bus
to select the I/O device at one of 256 possible ports. Register B is used as
a byte counter, and its contents are placed on the top half of the address
bus. One byte is selected and is placed on the data bus and written into the
central processor. The contents of the HL register pair are placed on the
address, and the input byte is written into the corresponding memory loca-
tion. The byte counter is then decremented and the HL register pair is in-
cremented. If decrementing causes B to go to O, the instruction is ter-
minated. If B is not 0, the PC is decremented by two and the instruction
repeated. Interrupts will be recognized after each data transfer.

T T T _ 1T _ T _ 1 1
11101101
i

1 1 1 } ! I

I | | | I 1
1 0110010
!

If B0 L1 I N
Cycles: 5

States: 21

If B=0:

Cycles: 4

States: 16

Flags: S,ZH,N,P/V

IND

INDR

S: unknown
Z: set

H: unknown
N: set

P/V: unknown

(HL) - (C), B — B—1, HL — HL-1

The contents of register C are placed on the bottom half of the address bus
to select the I/O device. Register B may be used as a byte counter, and its
contents are placed on the top half of the address bus. One byte from the
selected port is placed on the data bus and written to the central pro-
cessor. The contents of the HL register pair are placed on the address
bus, and the input byte is written into the corresponding memory location.
Finally, the byte counter and register pair HL are decremented.

T T T T T
11101101
I TOR M T T T |

10101010
Cycles: 2 TR R
Flags: S,Z,H,N,P/V

S: unknown

Z: set if B—1=0; reset otherwise
H: unknown

N: set

P/V: unknown

(HL) — (C), B~ B—1, HL — HL-1

The contents of register C are placed on the bottom half of the address bus to
select the 170 device. Register B is used as a byte counter, and its contents are
placed on the top half of the address bus. One byte from the selected port is
placed on the data bus and written to the central processor. The contents of
the HL register pair are placed on the address bus and the input byte is writ-
ten into the corresponding memory location. The HL register pair and the
byte counter are then decremented. If decrementing causes B to go to 0, the
instruction is terminated. If B is not 0, the PC is decremented by 2, and the in-
struction is repeated. Interrupts will be recognized after each data transfer.

i 1 1 | I
If B£0O: 1 011 101@Q¢0
[U S N B
Cycles: 5
States: 21
If B=0:
Cycles: 4
States: 16

Flags: S,Z,H,N,P/V

S: unknown
Z: set

H: unknown
N: set

P/V: unknown

THE 280 MICROPROCESSCR 87

88 THE Z80 MICROPROCESSOR

OUT (n), A

n) - A

The operand n is placed on the bottom half of the address bus to select the
1/0 device. The contents of the Accumulator appear on the top half of the
address bus. Then the byte contained in the Accumulator is placed on the
data bus and written into the selected peripheral device.

T T T T T
11010011
[N TN S T B

Cycles: 3
States: 11
Flags: none

OouT (C), r

OUTI

(C)—r

The contents of register C are placed on the bottom half of the address bus to
select the I/O device. The contents of register B are placed on the top half of
the address bus. The byte contained in register r is placed on the data bus and
written into the selected peripheral device.

Cycles: 3
States: 12
Flags: none

(C) — (HL), B~ B—1, HL — HL+1

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is tem-
porarily stored in the central processor. After the byte counter (B) is
decremented, the contents of register C are placed on the bottom half of the
address bus to select the I/O device. Register B may be used as a byte
counter, and its decremented value is placed on the top half of the address
bus. The byte to be output is placed on the data bus and written into the
selected peripheral device. Finally, the register pair HL is incremented.

T T T T T 1
11101101
YN TR TR BN N B

T T T T 1
10100011
T TS T N W

Cycles: 4
States: 16
Flags: S,Z,H,N,P/V

S: unknown

Z: set if B—1=0; reset otherwise
H: unknown

N: set

P/V: unknown

OTIR

OUTD

(C) - (HL), B~ B—1, HL — HL+1
The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is tem-
porarily stored in the central processor. After the byte counter (B) is
decremented, the contents of register C are placed on the bottom half of the
address bus to select the 1/O device. Register B may be used as a byte
counter, and its decremented value is placed on the top half of the address
bus at this time. The byte to be output is placed on the data bus and written
into the selected peripheral device. Then register pair HL is incremented. If
the decremented B register is not 0, the PC is decremented by two and the in-
struction is repeated. If B is 0, the instruction is terminated. Interrupts will be
recognized after each data transfer.

| | | 1 1 ¥ 1
1 1101101

1 J A

)| 1 1)|

T T T
1 0110011
i 1 1

1 1 1]

If B£0:
Cycles: 5
States: 21
If B=0:
Cycles: 4
States: 16

Flags: S,Z,H,N,P/V

S: unknown
Z: set

H: unknown
N: set

P/V: unknown

(C) -~ (HL), B—B—1, HL — HL-1

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is tem-
porarily stored in the central processor. Then, after the byte counter (B) is
decremented, the contents of register C are placed on the bottom half of the
address bus to select the I/O device. Register B may be used as a byte
counter, and its decremented value is placed on the top half of the address
bus. The byte to be output is placed on the data bus written into the selected
peripheral device. Finally, the register pair HL is decremented.

1’11011 0 1

| 1 1 | S I |

1001010 11

1 1 | i 1 1 |

Cycles: 4
States: 16
Flags: S,Z,H,N,P/V

S: unknown

Z: set if B—1=0; reset otherwise
H: unknown

N: set

P/V: unknown

THE Z80 MICROPROCESSOR 89

90 THE Z80 MICROPROCESSOR

OTDR

(C) -~ (HL), B— B—1, HL — HL-1

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is tem-
porarily stored in central processors. Then, after the byte counter (B) is
decremented, the contents of register C are placed on the bottom half of the
address bus to select the I/O device. Register B may be used as a byte
counter, and its decremented value is placed on the top half of the address
bus. The byte to be output is then placed on the data bus and written into the
selected peripheral device. Register pair HL is then decremented. If the
decremented B register is not 0, the PC is decremented by 2, and the instruc-
tion is repeated. If register B is 0, then the instruction is terminated. Inter-
rupts will be recognized after each data transfer.

T T T T T 1
11101101
1 1 I | | 1 |

T T T T T 1
1 0 111|110|11

1 i 1

If B£0:
Cycles: 5
States: 21
If B=0:
Cycles: 4
States: 16

Flags: S,Z H,N,P/V

S: unknown
Z: set

H: unknown
N: set

P/V: unknown

CHAPTER 4
BUILD YOUR OWN

COMPUTER—Start With
the Basics

The computer to be built from the design described in this book is called ZAP, for
Z80 Applications Processor. Building a computer from scratch is both educational and
utilitarian (and it saves money). I explain each section of the construction process in
detail. Ideally, each step should be tested before proceeding on to the next stage. While
this is not possible in all cases, there is a beneficial side effect in taking this route. Often
good designs fail to work because the level of construction is beyond the ability of the
builder.

I've made the assumption that most hobbyists do not possess sophisticated test
equipment, such as oscilloscopes or logic analyzers, and as a result, I've kept testing
procedures as simple as possible. By dividing ZAP into logical milestones for checkout
and test (and using proven components), problems can be identified at earlier stages
and rectified more easily.

The initial implementation of ZAP will constitute a minimum operable configura-
tion. It is important that this works before you attempt to add any of the optional pe-
ripherals. Every effort will be made to familiarize the reader with the components of
each section and the philosophy of design. While it is necessary to assemble all the
components of this minimum configuration completely in order to check proper central
processor operation, comprehensive subassembly pretesting should (I hope) correct
any wiring errors.

The basic ZAP is divided into four major subassemblies: Z80 busing and control,
memory and I/0 chip select decoding, memory, and input/output registers. These
major divisions are further divided at the component level. Schematics include a com-
plete explanation of their logical function, and test procedures are outlined after each
construction presentation.

The Processor
Figure 4.1 is a detailed block diagram of the basic ZAP computer.

1. Z80 Busing and Control Logic
A. Clock Generation

The ZAP computer runs on a 2.5 MHz TTL clock. Unlike the 8080A, the
Z80 requires only a single-phase clock and can be driven from DC to
2.5 MHz (the Z80A runs to 4 MHz). Figure 4.2 illustrates the basic timing
cycle of the computer.

Each basic operation (My) of the computer is completed in three or six
clock periods. Figure 4.2 shows a typical instruction cycle which consists of
three machine cycles: fetch, memory read, and memory write. After the op-
code of the instruction is fetched during M1, the subsequent cycles move the
data between memory and the central processor.

Figures 4.3a and 4.3b illustrate two possible clock designs for the Z80. Both
clock circuits have a 330 ohm pull-up to +5 V. This will satisfy both the AC
and DC clock signal requirements, but it is best to use a separate inverter gate

BUILD YOUR OWN COMPUTER 91

92 BUILD YOUR OWN COMPUTER

section to drive the pull-up whatever the oscillation technique.

The crystal controlled circuit of figure 4.3a is preferred if consistent execu-
tion time is to be maintained. Thus, the circuit of figure 4.3b, though other-
wise acceptable, should be avoided if the computer is to be used as an event
timer. It can serve a very useful purpose in the development stages, however,
by allowing the user to slow the clock down (by increasing the values of R
and C) to a rate where it is possible to directly monitor the central processor
operation. Should it ever be necessary to single-step the clock, the circuit in
figure 4.4 should be used. Given the multiple clock cycles necessary to ex-
ecute a single instruction, it would take a lot of button pushes to follow a pro-
gram through execution.

A much easier diagnostic method would be to use an instruction single-
stepping circuit. The circuit, shown in figure 4.5, is not part of the finished
schematic of ZAP because it is necessary only if the builder has a problem
and needs to follow the execution of a program instruction by instruction.
This single-stepping function is accomplished by using the control signals
generated by the Z80 during program execution. The two particular signals
of concern are M1 and WAIT. M1 is an output, and WAIT is an input.
As shown in figure 4.6, M1 goes to a logic 0 level at the beginning of every
instruction fetch cycle. M1 signifies that the computer has completed one in-
struction and is starting on the next. The objective is to stop the microproces-
sor before it executes this next instruction,

The WAIT input to the Z80 does just that. A logic 0 level applied to this in-
put will suspend the program execution of the computer and indefinitely hold
it in the M1 cycle. During T,, the central processor samples the WAIT in-
put line with the trailing edge of the clock. If, at this time, WAIT is at a
logic 0 level, an additional wait state will be entered, and the line will be
sampled again. The central processor will hang in this mode until WAIT is
raised to a logic 1. It should be noted that this is not a computer halt com-
mand.

The real purpose behind these signals is to allow the relatively slow mem-
ory and peripherals to be used with a very fast central processor. Extra wait
states should be inserted only when necessary for the central processor to ac-
cess these devices. The effect is to synchronize the timing between the central
processor and its I/O devices. The circuit of figure 4.5 allows us to control
the WAIT state and to execute only one instruction with each press of the
button. The output at IC 1, pin 8 (the WAIT input) is normally low, causing
an indefinite wait. When the button is pushed, a single debounced pulse
clocks IC 2, which is a D-type flip-flop. The duration of this pulse (the time
you hold the button down) is irrelevant, because the flip-flop is edge trig-
gered and is only concerned with the leading edge. Pressing the button sets
IC 2 and raises the WAIT line. No longer told to wait, the central processor
executes the instruction at full clock speed. As it is about to start the next in-
struction fetch cycle, M1 goes low as before, and triggers the one-shot.
When it fires, IC 3 resets IC 2 and returns the central processor to a wait con-
dition until the next time the button is pushed.

The single-step feature isn’t of much use in a computer unless there is some
way to monitor the contents of all the registers and to determine what the
computer is trying to do at any one time. To accomplish this, ZAP must be
completely operational and be running a breakpoint-monitor program which
allows the user to single-step with a software routine. We'll discuss such pro-
grams later.

This fact is of small consolation to a person with a partially debugged com-
puter or hardware error that keeps side-tracking large programs. While it
would be nice to see all the register contents, it is virtually impossible to do so
without having a central processor that can run a dump and display routine.
This cannot be done using the hardware stepping circuit of figure 4.5. It is
possible, however, to look at the contents of the address and data buses while
the central processor is stopped. This should give a good indication as to

whether the computer is operating properly.

Many instruments can be used to read the TTL levels on the buses. A scope
or high-impedance voltmeter can be used, but a visible display of the bus
contents is a better idea. The circuits in figure 4.7 show simple methods to
display the contents of the address and data buses. The circuits are included
as aids and are not necessary for the operation of ZAP.

Basically, the circuit of figure 4.7a is a simple LED driver that is duplicated
16 times for the address bus and 8 times for the data bus. Because the Z80
should drive only one TTL load from each output pin (bus driver inputs are
already attached), any display drivers of this type must be attached on the
output side of the bus drivers. This circuit will serve as a rudimentary front
panel for any builders who feel a computer isn't complete without flashing
lights.

Sometimes the need arises to monitor a single point in a circuit and watch
for level changes. While the LED driver of figure 4.7a would detect a slowly
changing level, it would miss short pulses such as M1. To monitor the occur-
rence of such events, especially if no oscilloscope is available for testing pur-
poses, it is advisable to build the circuit in figure 4.7b. This simple logic
probe is adequate for most applications, but care must be taken in its use. It
cannot detect an open circuit and the pulse detector only triggers on the
negative edge of any transition. Should that present any problems, add the
optional circuit using the 7486; that will allow it to detect either edge.

The logic probe or similar logic level detector (scope, DVM, VOM, etc.) is
necessary to statically test the subassemblies.

POWER
cLOCK SUPALY

9 k.

RESET

289
M.CRCPRCCESSOR

7

ADDREZSS 3US
U J EXTERNAL

INTERFACES

<:> EPROM y
MEMORY > [: TAI
>

\

AND
170

U ADDRESS
DECCODERS

PARALLEL PARALLEL

> RAM l INPUT QUTPUT

Figure 4.1 A block diagram of a minimum ZAP system.

fe——sja— T CYCLE
| | | | | ! I | !

I Iy

T1|T2|T3|T4 T1lT2|T3 T1lT2|T3

MACHINE CYCLE
M1 M2 -l M3
(OP CODE FETCH) (MEMORY READ) (MEMORY WRITE)

INSTRUCTION CYCLE

Figure 4.2 An example of timing during a typical instruction cycle.

DATA BUS J\/]/\[

BUILD YOUR OWN COMPUTER 93

94 BUILD YOUR OWN COMPUTER

CRYSTAL

2.5 MHz
1N
IUI
1K 1K
AR NN——@
a) +5V
14 7400

VALUES OF R AND C
SET OUTPUT FREQUENCY

Figure 4.3 Typical 2.5 MHz clock circuits for the Z80.
a) With crystal control.
b) With a variable-frequency osciliator.

MOMENTARY

Figure 4.4 A single-cycle clock-generator circuit.

+5v
3308
CLOCK
+5V
3300
6
CLOCK
+5v
3308
CLOCK

MOMENTARY

M1
780 PIN 27

+5V

Figure 4.5 An instruction single-stepping circuit.

+5V
14
47K
Q
Ic2
7474
7400
s
Q lc 8 WAIT
10 280 PiN24
CLR +5v
+5Y :
0.001 1K 47K
10 11 14
RUN MODE © §PDT
Ic3 Q o‘//}>_;;7
74121 STEP MODE
{1
3—
”
My CYCLE |
T, T3 T4

VAR

INSTRUCTION OPCODE FETCH TIMING

Figure 4.6 /nstruction operation-code fetch (M1) timing.

BUILD YOUR OWN COMPUTER 95

a)

+5V
3308 3308
A
Vd or LED
LED c
10K
B 2N2222
INPUT INPUT OR EQUAL
E
INPUT
0 LIGHT OFF
1 LIGHT ON

+5

v

3908 +5V

”
LED LoGIC "o +5V 3908
4 2*‘[_‘ 33k p
" n
+5Y 1 + PULSE
10 11 14
3

N, . AT o “DQIO
b) INPUT 1 4 . _

0.1 SEC
7 Q

., g
1/ 7404
s +5V FpGE DETECTOR FOR SLOW PULSES
9 INSERT AT POSITION ‘A’ ABOVE (OPTIONAL)
FROM 1 14
IC1 PIN 2 3 4
2 m e
5
8 = 3 . IC2 PIN3
” +5V 7486 A
. 1K VWA
LoGIC"1"
jjo.m
+5v 3908

Figure 4.7 Typical LED drivers and a simple logic probe to monitor logic level changes.
a) Visible logic level indicators that can be attached to the address and data buses to provide
a display.
b) A simple logic probe.

96 BUILD YOUR OWN COMPUTER

B. Reset Circuit

Often ignored, the reset function is one of the most necessary controls of a
computer. Its importance is immediately recognized when running an incor-
rectly executing program. The reset command on the Z80 stops execution and
loads the program counter with 00 hexadecimal (the lowest memory
address). This allows the programmer to restart the program. When com-
bined with the instruction single-stepping circuit previously outlined, pro-
grams may be started, stopped, and started again at any time.

A reset input can be manual, automatic, or a combination of both. Figure
4.8a is a standard push-to-reset circuit. Its output is normally high until the
button is pushed, and then it goes low. The Z80 will remain reset for as long
as the button is held and will only begin to execute again when released.
Manual reset is a necessity for initial program checkout, and this circuit is
employed in the basic ZAP.

When computers are used in applications where no human attendant is
present, such as a traffic light controller, the manual reset cannot be used; an
automatic reset must be employed instead. Figure 4.8b is the circuit of a total-
ly automatic power-on reset. When power is first applied to the computer,
the 10 mF capacitor will be completely discharged. The resultant logic 0 level
on the input of the 7404 pin 1 will be mzintained for approximately 50 ms,
long after the +5 V supply has powered up the rest of the computer. The
long charging rate of the capacitor will, in turn, generate a logic 0 (a reset
condition) to the computer until the input level rises to approximately 2 V (a
TTL logic 1). Once full power is applied, the time it takes the reset circuit to
reach 2 V will constitute about a 35 ms power-on Reset pulse. Resetting the
machine would require turning the power off.

Manual and automatic reset are combined in figure 4.9. This circuit allows
the computer to start program execution immediately after power is turned
on. The program can be stopped and restarted by pressing the reset button.
Slightly different components and additional functions are included in this
diagram. Schmitt-triggered inverters (7414s) increase the reliability of the de-
sign. When the power is turned off, the use of a diode to discharge the capaci-
tor quickly assures that a pulse will be generated if power is suddenly reap-
plied. Because power line glitches are usually short in duration, the discharge
rate of the capacitor has to be fast enough not to miss generating a reset pulse
once power is restored.

While this reset circuit is not necessary for initial computer check-out, it
should eventually be employed if ZAP is to be expanded to include any of the
options outlined later. To synchronize the central processor and peripherals,
they should be tied into the reset signal from this circuit.

+5V
+5V
2.2K
PUSHBUTTON 7404 "
. S
' ! 2 8 4 RESET Z80 PIN 28
h! ;
+5V
a) I
< 15K
0.001
N
71
+5V
7404
2 3 ¢ 4 —
! -+ RESET ZB0 PIN26
= 10uF 7
Figure 4.8 Reset circuits. I
a) A manual reset circuit.
b) An automatic power-in reset circuit. b)

BUILD YOUR OWN COMPUTER 97

98 BUILD YOUR OWN COMPUTER

+5V

RESET

TO OTHER
PERIPHERALS

INS14

+5v
10K
PUSHBUTTON

14
1 9 9 8 11 10 RESET
,)7 = e TO Z80 PIN 26
PUSH TO RESET 4+ 7414 7
j:47,u.F

RESET
TO OTHER PERIPHERALS

Figure 4.9 A circuit to combine manual and automatic reset functions.

C. Address Bus and Control Qutput Buffering

The Z80 has the ability to directly address 65,536 (often called 64 K) indi-
vidual bytes of program memory and 256 individual input and output ports.
Because the microprocessor is a binary device, it is only natural that this ad-
dress be binary. There are 16 binary address lines labeled A0 thru A15. A0 is
the LSB (least significant bit), and A15 is the MSB (most significant bit).

The logic levels on this bus are not arbitrary. The control section of the
central processor sets the program counter to the next instruction to be ex-
ecuted, and on the fetch cycle, it places the program counter contents on the
address bus. During 1/O instructions, additional timing cycles place the /O
device address on the 8 least significant bits (A0 thru A7). Because this bus
has to drive the inputs of many parallel devices, all of which draw some input
power, the address bus must have an output current that will meet the load
demand. The Z80 by itself can sink 1.8 mA maximum or one TTL load on
each pin. This is no problem if the designer uses low power memories and pe-
ripheral interface chips. These are expensive devices, and their use would not
necessarily serve to educate the builder in the same way as configurations of
less complex circuits.

Using lower density ICs and TTL devices for decoding functions is less ex-
pensive but requires considerably more power from the bus. The following
table lists the input loading of various devices:

Device Worst case input current

Standard TTL (7404, 7442, etc) 1.6 mA
Low-power Schottky TTL (741504, etc) 0.18 mA

2708 (1K X8 EPROM) 10 A

2114 (1K X4 programmable memory) 10 A

2716 (2K X8 EPROM) 10 uA

2102 (1K X1 programmable memory) 10 uA

8212 (8-bit latch) 0.25 mA

8T97 (6-bit driver) 1.0 mA

It is easy to see that the real power eaters are TTL devices. Low-power
Schottky TTL (LSTTL) devices can be substituted throughout the ZAP com-
puter. They save power at slightly additional cost, but the circuit has suffi-
cient power to support straight TTL. If LSTTL is substituted, it must be sub-
stituted throughout.

The loading caused by memory, especially with only 2 K bytes in the basic
ZAP unit, is insignificant. With 1.8 mA drive current available from the Z80,
we could use LSTTL for the I/O and memory address decoding but would
have to limit the fanout (total input connections) on each address line to 9
LSTTL inputs. This is sufficient for the basic ZAP and would probably be an

acceptable procedure, but it is not recommended.

The first time a user attaches the logic probe (figure 4.7b) to an unbuffered
address line, the computer may die. The load presented by the probe, as well
as by the other circuitry, will exceed the drive capability of the bus. It's im-
portant that the monitoring devices not impede circuit operation.

Rather than try to optimize the design to a degree that forces the user to be
aware of every uA (microampere) consumed by test probes and LED drivers,
it's easier to add buffering that increases the bus output power to a point
where loading is not an important factor. This is the philosophy behind ZAP
busing, and as a side benefit, it will provide enough power to expand ZAP to
64 K should the user ever desire to do so. It also allows the user to add his
own TTL circuitry without becoming overly concerned with bus loading.

To achieve high power output from the address bus, a buffering device
(called a non-inverting bus driver) is used. The AQ thru A15 outputs of the
Z80 make only one connection: to the drivers’ input. All other devices that
use the address are attached to the output of the drivers.

Figure 4.10 is the diagram and truth table of the 8T97 bus driver. (An
equivalent bus driver is the 74367.) This three-state device is capable of sink-
ing 48 mA and can accommodate any combination of TTL, LSTTL, and
memory connections a user would want to make. The final address bus con-
figuration is shown in figure 4.11.

The three-state function of the 8T97 is controlled by the BUSAK signal.
This signal turns over control of the address bus to an external device during
direct memory access operations, In a non-DMA situation, BUSAK is high
and the 8T97 passes all outputs from the Z80. When a DMA request is ac-
knowledged, BUSAK goes low, putting the 8T97 in a high impedance output
mode. This facility allows memory to be written into or read by an external
device and is usually reserved for high-speed operations that are faster than
the central processor can achieve.

+5v

TIG
v TRUTH TABLE
ce
1 8797 DATA
CONTROL INPUT —{D01S4 74357 DIS4 DISy INPUT QUTPUT
2
DiS4 —Z outiP— 0 0 0 0
4 5 0 0 1 1
N2 OuT, — X 1 X HIGH Z
5 7 1 X X HIGH Z
—|IN3 OUT3[—— \BUFFERED
DATA IN 10 9 DATA OUT
| OuTe I — X =DON'T CARE
_12] o HIGH Z 1S A TRISTATE QUTPUT
M TS CONDITION
— Ing ouTg F—
15
CONTROL INPUT —— DIS,
DISy
GND

Figure 4.10 The pinout and truth table of an 8T97/74367 bus driver.

BUILD YOUR OWN COMPUTER 99

100 BUILD YOUR OWN COMPUTER

7404 +5V
23
BUSAK 10 L L <
A0 4 CEA
Al P—-sn
az 22 6] €3 |2, a2
33 14| 8797/ [13
A3T3a 2] 74387 [na A3
A4T3s 10 9 A4
A5 - 45
15 |1
ic2 .,__l_.l
Z80
+5V
TIG 8
ol T
AT 5 7 A7 1 16-BIT BUFFERED
1ca . -
A8 39 14 87977 {13 A8 TRISTATE ADDRESS BUS
AT 2] 74367 i1 A% [1gyr TYPICAL 48mA
ALof 5 2+ A10
All a1l
RE
o——l—J
+5v
Tls
a1z} i a2
ALl i . —3——>A13
ala 1c5 L Al14
5 To] 8T97/ |3
AlS 74367 -8—-’/\15,

| IE

Figure 4.11 The final buffered address bus configuration.

D. Data and Control Bus

The fourth and last area of direct central processor connections is the data
bus and the remaining lines of the control bus. The reason for buffering the
data bus is similar to the argument for the address bus with one exception—
the data bus is bi-directional.

A bi-directional bus means, of course, that data flows in both directions.
When the Z80 is writing a byte of data into a memory location, the data
flows from the central processor to memory. When the central processor is
reading a memory byte, data flows from memory to the central processor.
The bi-directional nature of the data bus requires that the bus drivers be
either bi-directional internally, or attached in such a way that the same func-
tion is performed.

One way of making this bi-directional driver is to use two 8212s. The 8212
(figure 4.12) was originally conceived and produced by Intel as an 8-bit
latched input or output port. The 8212 can be Jatched continuously so that
data flows through it, or it can be turned off to block the flow. It is well
suited to this application because it has a three-state output.

Two 8212s (figure 4.13) are wired in opposite directions. IC 6 directs data
from the central processor toward memory, while IC 7 channels data into the
Z80. Control is exercised through a single line connected to the RD control
signal of the central processor. RD is normally low except during write oper-
ations. This causes IC 6 to be off, in a three-state mode, and IC 7 on, which
allows data from memory or I/O devices to reach the central processor.
When RD goes high during a write operation, the process is reversed; IC 6
turns on and IC 7 turns off. It is only necessary to use the RD line to control
data direction. We're assuming, of course, that when the central processor
isn't writing data, it must be reading it. While not exactly true, the concept

works well enough in practice, and the two 8212s are connected schemati-
cally as in figure 4.14.

It is not absolutely necessary to use 8212s to perform this function. Either
8T97s or 74367s work equally well but take 4 IC packages. If you don't mind
the extra wiring and have a source for 8T97s, they can be wired as illustrated
in figure 4.15.

The final connections to the central processor to be discussed are the con-
trol bus signals, shown in figure 4.16. They coordinate peripherals and chan-
nel data and addresses into and out of the central processor at the proper
times. Each was briefly explained on the Z80 pinout. Exact timing will be
detailed when we discuss attachments of memory, I/O, and enhancements to
ZAP. For the time being, unused control inputs are tied high (through
resistors) to inhibit false triggering.

The output lines are buffered for the same reasons as was the address bus.
Furthermore, because this is a development computer, with expansion in
mind, both the inverted and noninverted control signals are brought out to
the user.

The areas discussed thus far are combined into a single diagram (figure
4.17) called the Z80 bus and control diagram.

g21e2

LOGIC DIAGRAM

) o=
MD] WR
STB -r———————n
i [y |
{ | %
PINOUT
5V DIl] D Q | ' 0ol
| o |
Tza : ‘r : [
DATA LATCH p |
Vee T~ ?_—'r | |
1 — |23 | i !
——{ D51 INT DI2 0 Q D02
2 1 | [l
Mo I oc I
r—2lon bo1 |- { R |
K
> o2 8212 002 [I 1_4.{ !
i3 003 F— DI3 e o - 003
DATA 12 Dla D04 Z }"—CR I
INPUT oI5 oos 12 I
L3 P 006 FZ { ¢
| !
20 DI7 Do7 & pi4 i o Q | | 0o4
L 22l o8 pos |22 Iu—cR {
— |14
— g R = }‘
13 L_.
pDS2 [——
. Di5 D Q : &——005
!
&—{C
GND R I
/J712 |
|
DI D Q 1 - 0os
i - I !
MD MODE R 1
ST8 STROBE [
D51 DEVICE SELECT1 | ?__. : |
DS2 DEVICE SELECT 2 L
iNT INTERRUPT o7 1 0 Q | Do7
CLR CLEAR | e, {
|
L‘.l
DI8 : D Q l - DO8
. . e . [
Figure 4.12 The pinout and logic diagram of the | Cr !
8212 8-bit input/output port. } T {
CLR :-l >0— ® |
| !
| I, I IO

BUILD YOUR OWN COMPUTER 101

+5V

STB CLR DS2
IC6 v,
g2i2 ce
lon 001
S DATA BUS FROM 280 H !
S Y1ipis D08
—] 051
GND MD
|
7
DATA BUS CONTROL = esy
CLR Vg
L bs2
po1 DIl
008 DI8
DATA BUS CONTROL
INeUT DATA FLOW 22
LOGIC 1 RIGHT TO LEFT
LOGIC O LEFT TO RIGHT _
DS1_MD GND

(|

BUFFERED BI-DIRECTIONAL
DATA BUS TO MEMORY

AND INPUT/QUTPUT
DEVICES

I0L= 14 mA

Figure 4.13 Two 8212s configured as bi-directional data bus drivers.

14 |24
icé
8212
Do oIl 0o1 00
D1 o1z poz}t D1
D2 21b13 po3f® D2
9 10
FROM 03 Di4 o4 D3 16 MEMORY
80 o, 16] 01 bosl2 pa AND 170
s 17 loL = 15mA
D5 DI6 D06 D5
06 204517 po7pe D6
D7 22518 posf D7
T 1z |2
Ic8 I
7404 L
_ 2 7
RDJDo
+5v
s
L
13 24 14
8212
L 4b01 prif
S1bo2 pi2f2
81503 p13}
190504 pial2
151p05 pispE
506 pisl8
191po7 017}22
24 Y pisj2
Tz 12
777

Figure 4.14 A schematic diagram of two 8212 8-bit latches configured as bi-directional data bus
drivers.

102 BUILD YOUR OWN COMPUTER

+5Y
16

Po 2 2397/ . o
0y 4 74367 |5 o1
D,] 7 02
0y 12| ? 0
oM ! ’J78 TO MEMORY
80 Al AND
170 DEVICES
i ts
' 2l c2 P 04
Dg o s e s
og 6 7 .
Dy — 10 ;4 7)
7404 8
>4 w7
CONTROL Tw
E) BT N L
Rt Figure 4.15 A schematic diagram of a data
7 (3 . . .
Y " bus driver configured with 8T97s.
13
Jaos (Z Lt
12 +5v
f] ?xe
3 ™ 2
| 879 |,
74367
7 6
g 10
J:
7404
— 6
Busak |22 3ico BUSAK
WR
T
G o
wa 22 | § 9 8 | R
' D I
i |
l I RD
45V |
| <o |
CONTRO 21 2 3 ¢ -
ouwurg RO —ID"_‘ RD
I 7 }
‘ | IORQ
| |
| |
{ |
MREQ
MREQ MREQ
Z80
2.2K Figure 4.16 Control input connections and output
BUSR [——n butfering of the basic ZAP design.
Wit i2s 2.2K +5v
CONTROL
INPUTS ‘}——?
— |17 2.2K
NMI AM
s ae 22K

BUILD YOUR OWN COMPUTER 103

[L] oy ym M bdavosi d3wol [ELL] [LT
ﬁ 2t v
Q)
et z] D
iad L T 5 "welibeip 104u0d pue snq 0gZ L'y ainbig
B 61
— B
1
ovay =y 8t a ok t
31HM=0 91 1
219 ¢ 21z o >
¢ oy g T ¢ (1
VL 6-891 3 9 T
zt2e £-991 = =
L9EVL/L618 S§-EDI 62 02 AS+
082 231 vl tt] ve] et TE) RTT
00¥¢L 191
uM)
AS 4+ 144 Ml E 61
] 2 T 7O 2]
a dusng
Mm T 7z 3 Mo 2 XN
0 3 0z o] g VAN S+ SNOILYENS14NOD
[43 -— 81 2 o =—la FERA TYNOILd0 ¥04
SNE viva | v0 < >— T 3T 7 N AS+ 1x3L 335 -S3INIY
, mmommto:_m £a <> = = =1 €9 B zcwxsuu 1 L0dNI LeNYYTLING
¥YNOILI3NIQI8 20 < > = NWNOQ. 7 T zZa AG+ ANV T041NOD
10 1ivm
10 < > v S o1 — [z we'z
00 <>— : : oo ae+
ve] vif €1] 1t sty
5
> I TELPINED
AS+ €1V HINL10 OL
£laty 1353y
z
1353y
S — N
MM v
2 M
¢ 1 ¢v
8] coewm L1
ﬁ Ty = §] /¢sL8 for Ll B
"y < J— S01 SE
frv - 7 3 v [SLTELPINED
3 v LA P ¥3H10 OL
v 3 s 2 £,y %2079 b 1353y
91 ZE
1] st w 3
¢ AS+ 5e1°Y
]
1y Tm N €2 :F
o <} | weve 31 A+
sna 6v Au,lllmﬂ ZLIC 13$3¥ 0L HSNd - NOLLNBHSNd
ssaugay (8 < *I.l~ LET o
Q3434406 w OI.II.M >
9y A.n.Tlll’m 3
Sh
51
AS+ f
sy <} 3 o
S T} coewe [o1 !
&y <} 5 BOCH
v <} > LRI
v <} 3 . ot
ﬁ o <J— 5 3
91 + S+
h - AS A I
5 ¥avsna
AS+ ¥Jysna THAS'E

104 BUILD YOUR OWN COMPUTER

E. Testing

Insert all ICs except the Z80 and turn on the power. Each section is then in-
dividually tested as follows:

Clock — Testing the 2.5 MHz clock of figure 4.3a will require an oscilloscope
or frequency counter to register the exact clock rate. Using the logic
probe from figure 4.7b to monitor this clock rate would light all three
LEDs. This indicates that the clock functions, but it will not indicate the
rate. A similar test can be performed on figure 4.3b.

Single Cycle — The logic probe (without the addition of the 7486 edge
detector) is perfect for checking the single-cycle circuit of figure 4.4.
With the probe on section C pin 8, the indication should be low. Press-
ing and holding the button down should change the indication to a high
level and cause the “pulse” LED to flash once. Releasing the button
should not flash the pulse indicator as it returns to its initial logic condi-
tion.

Single Step — With the switch in the single-step mode position (figure 4.5),
take a clip lead and momentarily ground IC 3, pin 3. The output at
IC 1, pin 8 should be low. Pressing the single-step button will cause this
output to go high. It will stay high until IC 3, pin 3 is momentarily
grounded again. Check out the pushbutton debouncing circuit (which
consists of IC 1 sections a and b) in the same manner as you did the
single-cycle test. Finally, with the switch on the run mode, IC 1, pin 8
should always be high.

Power-on Reset — The circuits of figures 4.8a and 4.8b should have a nor-
mally high output. When power is first applied to figure 4.8b, or the
button pressed in figure 4.8a, the output should go low. Either situation
will cause a logic low level to occur from the circuit of figure 4.9.

Address Bus Drivers — The Z80 should not be inserted! With IC 9, pin 5
grounded, all outputs of ICs 3, 4, and 5 on schematic figure 4.11 should
appear high. In actuality, this will be the three-state output mode and
the proper test equipment will register them as open circuits. Tying
IC 9, pin 5 to 45 V through a 2.2 K resistor will turn on all the bus
drivers. Their outputs will all be iogic high levels. Successively ground-
ing the AO thru A15 lines at the Z80 connector should result in a low-
level indication on the respective buffered output line. When all 16 lines
can do this successfully, the address bus checks out.

Bi-directional Data Bus — The data bus is tested in a similar manner except
that the procedure is done twice—for data flow in either direction.

N Grounding KC'8, pin 1 (figure 4.14) simulates a read condition. Data
AN should flow from right to left. Applying ground and +5 V (through a
2.2 K resistor) alternately to the data input pins of IC 6 should produce

v similar levels on DO1 thru DO8 of IC 6. Raising IC 8, pin1to +5V

allows similar data transfer, but only from left to right this time.

Control Bus — Referring to the schematic of figure 4.16, testing is simply a
case of applying a known logic level to the input side of the series in-
verters and noting the output levels one gate at a time. For example, if
Z80 pin 19 was a logic low, IC 9, pin 2 would be a logic high and con-
versely, IC 9, pin 4 would be low. Each inverter section which the
signal passes through inverts the signal.

" II. Memory and I/0 Decoding

Before we can utilize the memory or I/O devices we must learn how the Z80 address-
ing works. Remember, the address FF hexadecimal could refer to memory, or an input
or an output port. The computer must have the ability to differentiate among the three

BUILD YOUR OWN COMPUTER 105

possible meanings.

The control outputs of the Z80 contain the necessary routing information, and by
properly gating them together, the correct signals are obtained. For basic /O and mem-
ory operations, the four signals of particular interest are MREQ, IORQ, RD, and
WR. Their definitions are as follows:

A. MREQ
Memory Request. Whenever a transaction occurs between the central proces-
sor and memory, the MREQ line goes to a logic 0.

B. IORQ
Input/Output Request. Whenever a transaction occurs between the central
processor and either an input port or an output port, the IORQ line goes to a
logic 0.

C. RD
Read Request. Whenever the central processor reads input data from either
memory or an input port, the RD line goes to a logic 0.

D. WR
Write Request. Whenever the central processor is writing data to either mem-
ory or to an output port, the WR line goes to a logic 0.

__To differentiate between input and output ports during 1/0O instructions, IORQ,
RD, and WR are gated together as shown in figure 4.18. In a similar manner, MREQ),
RD and WR are gated during memory transfers as shown in figure 4.19. Unlike the
1/0 decoding, but similar to the address bus driver discussed earlier, a memory-read
condition does not have to be decoded. It is assumed that when the memory is not in a
write mode, it is in the read state.

The resulting three decoded strobes define the operations of Input Port Read (IORD),
Output Port Write IOWR), and Memory Write (MEMWR). If only three functions
were required in your particular computer configuration, then no other decoding
would be necessary. Such a computer would have one input port, one output port, and
one bank of memory. To alleviate this problem, additional decoding of 1/O and
memory is necessary so that these control strobes can serve more than a single device.
With the extra circuitry, the Z80 can independently address 256 input and output ports
and 64 K bytes of memory.

During an I/O request (either input or output), the 8-bit binary address of the par-
ticular I/O port appears on lines A0 thru A7 of the address bus. An explanation of ad-
dress coding is shown in figure 4.20. Additional examples are illustrated in figure 4.21.

Using this information, if an instruction were to designate output port 7 as its
destination, then the circuitry of figure 4.22 could be used. When a code of 007 octal
(07 hexadecimal or 00000111 binary) appears on the address lines with an JOWR
strobe, the signals present on the data bus would be stored in an 8-bit register as output

data.
. l_ 7404 —.!
oRQ l > | ' r
| 7400 170 WRITE STROBE (IOWR)
WR L > '
| ‘
cPy [:
SIGNALS I |
' |
| |
|

7400 170 READ STROBE (IORD)
\ RD 'l>ﬁﬁ |
L _

IORQ GOES TO LOGIC O ON AN INPUT/OUTPUT OPERATION

WR GOES TO LOGIC O WHEN THE CPU ATTEMPTS TO WRITE DATA TO AN
OUTPUT OR MEMORY

RD GOES TO LOGIC 0 WHEN THE CPU ATTEMPTS TO READ DATA FROM
MEMORY OR AN INPUT DEVICE

Figure 4.18 /nput/output read and write decoding.

10¢ BUILC' YOUR OWN COMPUTER

(MREQ Do
WR {>c
cP8)
SIGNALS —
RD

~MEMRD NOT NECESSARY -

MEMORY IS LEFT IN THE READ STATE
WHEN NOT IN A WRITE OPERATION

MREQ GOES TO A LOGIC 0 DURING MEMORY OPERATIONS

MEMWR
] (MREQ- WR)

|
|
|
|
I Figure 4.19 Memory read and write decoding.
!
|
|
|

BINARY WEIGHTING

Ad

A3

A2

Al

AQ

N="0

27 XN = 128 X
26xN= 64 X
25N = 32X
24XN = 16 X
23XN = 8 X

22 XN = 4 X

21 XN = 2 X
20 XN = 1 X
" OR "i" LOGIC LEVEL

Figure 4.20 An explanation of input/output address codes.

a)

A6

AS

A4

A3

A2

Al

AQ

TYPICAL PORT CODE HARDWARE DECODER

=128 1"
+ 64 "1
C o e

<0 0 e DECODED
0 >) STAGBE
. 4 e

I

= +1 "

: ?;7—10

32:‘1’6 PORT NUMBER

= 110001012

Figure 4.21 Address decoding logic.
a) For address FFe.
b) For address 00s.

BUILD YOUR OWN COMPUTER 107

A1s

Alg

A3

NOT USED FOR
170 OPERATIONS

A1y

A0

Ag

Ag
ADDRESS
BUS

7 DEVICE NO."7" DECODER

Az

8-BIT LATCHED
QUTPUT DATA

Ag

As

i

Ag

Az

YYYVYY

8-BIT REGISTER

A2

H LATCH DIy ~Dig

Al

I

S
2]
e

/ - 8-BIT DATA BUS Ls\l

NOTE: DATA FLOW IS FROM THE CPU TO THE OQUTPUT PORT
DURING IOWR OPERATIONS.

Figure 4.22 A possible method for decoding a single 8-bit output port address. The circuit is for a 007s
device code.

108 BUILD YOUR OWN COMPUTER

1/0 Decoding

Of course, ZAP needs more than 1 port, even as a basic system. In fact, if it is ex-
panded to include some of the optional peripherals, it will require 6 or 8 ports.
Decoding these additional ports need not require 8 separate circuits like figures 4.20 or
4.21. By incorporating a 4 to 10 line demultiplexer into the design, 8 port strobes can be
derived. The circuit of figure 4.23 can be used for either input or output port decoding
(by selecting RD or WR) and is addressed for 000 octal to 007 octal. It works by select-
ing either of the two unconnected outputs (IC 3, pin 9 or 10) when an undecodable ad-
dress is presented on the address bus. A3 thru A7 still must be treated in the same man-
ner as that presented in figure 4.20, but AO thru A2 serve as the 7442 address inputs.
These 3 bits will designate 1 of 8 possible lines when IC 1's output goes low.

Duplicating this circuit to provide 8 separate input and output stobes (addressed 000
thru 007) would require a total of 7 chips. The number of chips can be reduced to 3 if
we take a little poetic license with the design. So far, we have decoded all 8 bits of the
1/0O portion of the address bus, making our decoder select 1 of 256 or, as in the
previous circuit, 8 of 256. In either case, only the designated addresses are of any im-
portance; all others are meaningless. For all practical purposes we could decode lines
A0 thru A2 and ignore the rest. A circuit that does just that is shown in figure 4.24.

The difference between this circuit and those previously described, besides having
fewer chips, is that this one requires an intelligent user to recognize the advantages and
disadvantages of taking such liberties. As in figure 4.23, this circuit decodes ports 000
octal thru 007 octal. What the user should realize, however, is that it also decodes 010
thru 017 and 020 thru 027, etc. The 3 LSB (least significant bits) repeat every 8 ad-

dresses. This is not a problem as long as the user is aware of repetitive addressing and
watches his programming. Should more than 8 stobes be required, the 7442 can be re-
placed with a 74154 (4 to 16 decoders). This will give 16 1/O port strobes that repeat

every 16 addresses.

Al

AQ

La
ic3
7442

10

o]
c
B
A

NC

NC

PORT 7
PORT 6
PORT 5
PORT 4
PORT 3
PORT 2
PORT 1
PORT 0

S N

Figure 4.23 A formal input/output port address decoding method that decodes all 8 address lines.

+5Y

16

RD 113
9
. 7442 S
iC11 6 1ORD 12 7
5| 7400)C e 06
: ‘ o
— A\ 5
[ORQ —————— & o
4
-
A2 13 v (:3
Al 14lg 2
1
A0 1544 o

ig
+5V
Tie

ic1a 9
9 7442 o>
—ic11 \8 IOWR 12 7
WR 10]7400 .
o
5
o
X
13) 3
14 2
1
1], 5

Figure 4.24 A method for decoding input/output strobes with a reduced amount of circuitry.

5

DS4 RD 1/0 READ
INPUT
DS3 RD STROBES

DS4 WR | 1/0 WRITE
QUTPUT
DS3 WR | STROBES

BUILD YOUR OWN COMPUTER 109

Memory Decoding

Decoding the memory address bus is accomplished in a similar manner. It is inadvis-
able to take the same tack and allow repetitive memory addressing because there is
more likelihood of error. Even though 16 lines are involved, in actual application,
memory decoding turns out to be less complicated. ZAP uses 1 K X 8-bit banks of
programmable memory and 1 K-byte erasable read-only memory. Both of these de-
vices require 10 address lines to define the 1 of 1024 locations in each bank. This leaves
only 6 lines that have to be individually decoded to define any 1 K block of memory.
Figure 4.25 illustrates how this can be accomplished. A 7442 (4- to 10-line decoder) is
used to generate 8 separate chip-select lines. Because the address lines of the 7442 are
tied to A10 thru A12, each strobe pulse will have a boundary of 1 K. It is not by chance
that 1 K X 8 was chosen as the memory capacity of each bank.

+5V
TIS
MREQ o ! , I
b o N.C.
1 2 2 10
A15 o >0 e 1 o2 o N.C.
aa ot ¢ 7420 D b 57K TO 8K
©
| b’ 06K TO 7K
Aal3o—250% 7442 bS5k TO 6K
5 TO OTHER
b 4K T
7404 13 4 4K TOSK) MEMORY BANKS
Al2 o c b 03K TO 4K
A1l o~ 18 b3 52K TO 3K
AL0 o 151a b2 51K TO 2K)
S
CHIP SELECT
8 BANK #0
LOCATION 0 TO 1K BYTES
A9 o~ CS
Ago
A7o
A6 o
1K x 8
A5 o— ‘ MEMORY
Ado— BANK
A3 e
A2 o
Al o
AOO

Figure 4.25 Memory bank decoding for 8 K of memory.

S

While the basic configuration of ZAP provides decoding for 8 K of memory and 8 in-
put and output ports, not all of these chip selects and port strobes are used. The extra
lines are left for expansion. Figure-4.26 is a completed schematic of the I/O and mem-
ory decoder for the builder to add to the circuit in figure 4.17.

110 BUILD YOUR OWN COMPUTER

Testing

After you have added the components of figure 4.26 to figure 4.17, you are ready to
test the memory and 1/0 decoding. Insert ICs 10, 11, 12, 13, and 14, but don't insert
IC 20 yet. ICs 1, 3, and 9 should remain inserted from the previous test. The Z80
should still be left out. The logic level at the D address input of each of the 7442s (ICs
12, 13, and 14) should be high. Pulling out ICs 8 and 9 (with power off) will cause this
input to immediately change to a logic low level.

Next, ground pins 30, 31, and 32 and tie 23 high on the Z80 socket. With the address
bus buffers enabled, and a 000 address jumpered on AQ thru A2, a chip-select low
should appear on the lowest strobe address. In this case, pin 1 of ICs 13 and 14 should
be low and the other strobe lines high. Changing the 3 jumpers on A0 thru A2 will
enable other device chip-select strobes. The memory bank decoder works the same way
except that the jumpering should be applied to address lines A10 thru A12.

After testing, insert all chips except the Z80.

+5V

Fi

1IC12
7442

MREQ

v
=
3]
w
~

=
O
%
@

=
O
[
o

|

MEMORY
BANK CHIP
SELECT LINES

=
(e}
v
rS

v

= =
olo
wl v
ol w

=i lw e oo |wo

£+
O
o
—

|

(=R SR AR . S

N
=
3]
«
o

\

2 11 MEMWR

+5v

7400 TIG

o =
o
o |
-
u
[+,
)
o
o
-
N
o
v
ojo
ol o
|~
ol
Olo

13 1C13
A2 C 7442

1/0 READ
PORT SELECT
STROBES

Iy

Al
AQ

V' \/N
o
o
w
E)
o

[
O =N WO
—ln]wls oo |w]o

Vv
©
@
o
X
o

|
@ o &

+5V

10 11 D

13 ¢ 1IC14
7442

WR

170 WRITE
PORT SELECT
DS3WR | STROBES

IC10 7420 A
IC11 7400 8

1C12-14 7442
1C20 7404 /7‘;

=loiw e oo | w

._.
>
O =W OO N
NN\
o
o
-3
b3
o

Figure 4.26 The memory and input/output decoding section of ZAP.
a) Memory bank chip-select strobes. -
b) Input/output device chip-select strobes.

BUILD YOUR OWN COMPUTER 111

112 BUILD YOUR OWN COMPUTER

III. Memory

Of course, a major consideration for any computer system is memory. Both program
instructions and data must be stored and recalled at the appropriate time so the com-
puter can perform its function. Even though the Z80 central processor has a quantity of
8-bit storage registers, these can be only used for temporary manipulation of data and
cannot store program instructions. Program instructions must be stored in external
memory elements.

The external memory may be divided into two broad classes: ROM (read-only mem-
ory) and RWM (read/write memory). ROM is used to store specific, unchanging pro-
gram steps or data. The contents of these memory locations are considered permanent
and cannot be easily changed. Read/write memory, on the other hand, is used to store
data that changes while the computer is operating. Examples would be the resuits of
calculations or programs that change frequently. For either type of memory, the
ultimate function is still the same: to provide, on demand, either an instruction for ex-
ecution or a location where data may be stored.

Read-Only Memory

ROM (read-only memory) is an important part of the computer system. ROM func-
tions as a memory array whose contents, once set by special programming techniques,
cannot be altered by the central processor. There are few exceptions to this rule.

By its nature, ROM is non-volatile. When power is turned off, the program contents
are not lost. Reapplication of power allows immediate program execution.

Within this basic category of ROMs there are three subcategories — ROM, PROM,
and EPROM — which are defined more by usage and application than their names
might imply.

ROM — Read-Only Memory

This is storage which can be written into only once. The information is fixed and
cannot be changed. A ROM is usually mask programmed by the manufacturer
and is bought with a preset bit pattern. These types of ROMs are considered to be -
custom programmed.

PROM — (User) Programmable Read-Only Memory

This storage can also be written into only once and the information is fixed.
These devices are typically bipolar fusable link PROMs, which are programmed
by the user rather than the manufacturer. ROMs and PROMs do not generally
use the same semiconductor construction technology. Storage is much denser on
a ROM than on a PROM, and cost-per-bit is generally lower on a ROM.

EPROM — Erasable-Programmable Read-Only Memory

This device combines the best parts of a ROM and a PROM. When received from
a manufacturer, all storage locations are unprogrammed. Using a special inter-
face, the EPROM can be programmed by the user as a PROM would be, with the
result utilized as a ROM. If the EPROM content must be changed, it can be erased
and reprogrammed. Depending upon the particular device, an EPROM can be
either electronically alterable (often differentiated by the separate abbreviation
EAROM) or ultraviolet erasable. The latter is sometimes called a UVEPROM, but
is more often just called an EPROM. They are easily recognizable because they
have a quartz window over the integrated circuit. This window is transparent to
ultraviolet light and facilitates erasure.

While there can be considerable discussion as to the merits of each option, all ROMs
perform the same ultimate function. For each independently addressable location,
there is specific stored-bit pattern. Only the processor can determine whether this is
data or an instruction. The method of storage is the same in either case. Figure 4.27
details the block diagram of a ROM.

A ROM is simply a logical block which, under program control, provides a preset

pattern. Figure 4.28 is a 3-bit read-only memory. When switch SW1 is closed (the posi-
tion it would take when the central processor wanted the stored information), the 3-bit
code of “101"” would appear at the outputs. The diode grounds the input signals to the
7404 inverters when SW1 is closed. Expanding to more than 3 bits is simply a matter of
adding more diodes, resistors and buffer stages. Such a circuit is referred to as a diode-
matrix ROM and in this case would be a 1-line by n-bit ROM.

A 3-bit memory is not much use. This concept can easily be expanded to 16 bytes by
adding an address decoder as diagrammed in figure 4.29. A completed schematic with
the diodes specifically arranged to perform a simple 9-byte program is illustrated in
figure 4.30. This short test program will be used later during the checkout phase.

The diode-matrix ROM is presented for its educational value only. This is not a
method that should be employed in the ZAP computer. Realizing that there are inte-
grated circuits that would successfully fulfill the requirements in each of three
categories, we must analyze our needs a little more closely.

The pertinent questions are: memory size, and the cost and ease of programming.
The size of a ROM is determined by the user. When power is first applied, how much
effort does the user want to expend to make the computer execute a specific program?
ZAP has no front panel and no banks of address and data switches to toggle in instruc-
tions. This being the case, ZAP must have a program that executes immediately (when
power is applied or the reset button is pushed), and that allows the central processor to
communicate with its peripherals and set itself in a mode that is directly programmable
through these devices. Once power is applied, a simple 50- to 100-byte program can be
written, which facilitates keyboard to memory loading. But perhaps we need to enter a
large program in memory? Are we to enter it all through the keyboard?

High-speed data entry can be accommodated through a serial interface. This can be
added at the expense of another 100 or 200 bytes. Another consideration is the necessi-
ty for some operator address and data display to ease program development.

In conclusion, to incorporate all the functions necessary for a single-board develop-
ment system, the ROM can easily require 500 to 1,000 bytes of storage. Many comput-
er systems use a 64- to 256-byte ROM to store a bootstrap program. A bootstrap is a
program that coordinates the minimum amount of necessary peripherals to load a
larger program into the computer. In most personal computer systems, this bootstrap
controls a cassette interface, and the program that is subsequently loaded is calied a
monitor,

A monitor (explained in Chapter 6) is a very important piece of software that re-
quires about 1 K of program storage. Our decision is whether to make the monitor
totally resident in ROM (ready for immediate execution), or to reduce ROM to the
barest minimum and load the monitor from either a keyboard or a cassette storage sys-
tem.

This is an important consideration for someone building a computer from scratch.
When given a choice, I feel, you should almost always opt for the solution that calls for
the fewest components and you should include the ROM monitor in the hardware. It's
like putting the cart before the horse to require that a cassette interface be used to load
all the diagnostic software. It's quite possible that the monitor program, resident in a
1 K ROM, would be required to troubleshoot and align the serial interface and cassette
modem sections. A further consideration is that the ZAP computer can be brought on
line sooner. With a ROM monitor, useful programs can be entered via the keyboard
without having to build a serial interface.

I suggest that the preferred ROM memory size for ZAP be 1 K. As previously men-
tioned, ROM is mask-programmed by the manufacturer. However, let's not forget that
for a home-built computer, you are the manufacturer. Fusable link PROMs are an ex-
pensive proposition when configured in a 1 K block. As a 64-byte bootstrap loader
they are ideal.

The suggested alternative for the ZAP read-only memory is to use an EPROM that is
programmed by the user. A 1 K EPROM such as the 2708 (or the 2 K 2716) is cost-
effective for the home-built computer. The Intel 2708 ultraviolet erasable read-only
memory is recommended for this application. (The 2716 is a 2 K EPROM with a single
+5 V power supply.)

BUILD YOUR OWN COMPUTER 113

114 BUILD YOUR OWN COMPUTER

ADDRESS MEMORY MEMORY QUTPUT
INPUTS ADDRESS STORAGE BUFFER OUTPUT
DECODER ARRAY AMPLIFIER M OUTPUT
BITS FOR
(Mx N} EACH OF N
INPUTS
Figure 4.27 A block diagram of a read-only memory.
+5V +5V +5V +5V
$2.2K %zzx lz.zK 2.2k
0 A nor o A |
w1 /K‘ IN914
1 3 S e e - - - —-— -
0=NO DIODE 7404
1=DIODE INSTALLED " A s
1 0 1 BIT N
DATA QUTPUT
Figure 4.28 A simple 3-bit read-only memory (1 X 3 bits).
cs o——l
AD o——f —-]—’] Do
Al —] 1 0OF 16 : :]
16 x8 BIT QUTPUT
2 Sggggzi 16 LINES ARRAY 8 LINES BUFFERS :
A3 o— ‘ |

Figure 4.29 A block diagram of a 16-byte read-only memory.

+5V

A 8-81T DATTXTOUTPUT
S R
Figure 4.30 A diode-matrix read-only memory with a test program. %/

EPROMs

The EPROM is a read-mostly memory. It is used as a ROM for extended periods of
time, erased occasionally and reprogrammed as necessary. Erasure is accomplished by
exposing the chip substrate, covered by a transparent quartz window, to ultraviolet
light. The EPROM memory element used by Intel in the 2708 is a stored-charge type
called a FAMOS transistor (Floating-gate Avalanche injection Metal Oxide Semicon-
ductor storage device). It is similar to a p-channel silicon gate field-effect transistor
with the lower or “floating” gate totally surrounded by an insulator of silicon dioxide.
The 1 or 0 storage value of the FAMOS cell is a function of the charge on the floating
gate. A charged cell will have the opposite storage output of an uncharged cell. By ap-
plying a 25 V charging voltage to selectively addressed cells, particular bit patterns that
constitute the program can be written into the EPROM. Surrounded by insulating
material, the charge can last for years. When this silicon dioxide insulator is exposed to
intense ultraviolet light it becomes somewhat conductive and bleeds off the charge on
the floating gate. The result is erasure of all programmed information.

Appendices C1 and C2 detail the pin layout and electrical specifications of the 2708
and the 2716 respectively. Chapter 7 explores various methods to program and test the
chip.

BUILD YOUR OWN COMPUTER 115

Sggggzi MEMORY STORAGE ARRAY
L O o
ey ALL w36 35 3 s3 22 st Sook(veFoR®) L
I DIODES 1 .
ING14
28 0R91]] 4]] 1
EQUIV)K x)“ INSTRUCTION ,/], R
1 FI7 B S
b ¢ « ¢ « « ¢ STEP 1 333 : ‘
INPUT PORT O ,
b2 STEP 2 000 -
VR = |« ¢ “ STEP 3 oL
_— 18
CS"'EZ 61 oUTPUT PORT. ? n
Bda2 & STEP 4
p 4 >
. XM | N ¥ ¥ L
el o> ¢ « « « « STEP 5
74154 _)K')g" OUTPUT PORT 5
g ¢ i STEP 6
" A K X ¥
/7,% 12 o’ VAR I « > STEP 7
g STEP 8 JMP TO 0
E STEP 9
10
STEPS 10 THRU 16 NOT CONNECTED
D C B A 1 5 11 1
20 [21 je2 23 - ‘ / 1C2 & 1C3:
c2 ;; c2 ;;‘cz ;; s OUTPUT BUFFERS
2 3 5 9 10 13 2 3 7404
bbb 4 +5V PIN 14
A3 A2 Al AD 1c2 1c2 1c2 1C3 GND PIN 7
(— 5 Ta s 12 4
ADDRESS ' ' " .
INPUT - v
9 Lo T 07 06 D8 D4 . D3 02 D1 DOJ

roi
e

H

116 BUILD YOUR OWN COMPUTER

Read/Write Memory

Read/write memory is just what its name implies. Such memory allows data to be
written into it as well as be read from it. Read/write memory for microcomputers is
generally configured from semiconductor programmable memory devices that retain
data only while the power is on.

ROM s are technically random access devices; however, read/write memory, which
is composed of semi-conductor devices and is primarily intended for use in microcom-
puters, has come to be called RAM (random access memory). From this point on, we
shall refer to RAM as programmable memory.

There are two classes of programmable memories: static and dynamic. Static pro-
grammable memory stores each bit of information in a bi-stable storage cell such as a
flip-flop. This information is retained as long as the power is supplied to the circuit.
Dynamic programmable memories have a simpler internal structure, smaller size, dissi-
pate less power, and are inherently faster. They store information as an electric charge
on the gate to substrate of a MOS transistor. This charge lasts only a few milliseconds
and must be refreshed. This necessity to refresh the stored information is one of the ma-
jor distinctions between static and dynamic programmable memories.

Refreshing dynamic memories can be bothersome, however. The process requires
that all storage cells be addressed at least once every few (usually 2) milliseconds. A
counter circuit is usually incorporated to exercise the memory address lines when the
computer is not accessing memory. In most systems, memory refresh requires addi-
tional external circuitry. The Z80 contains this circuitry within the central processor
chip and greatly facilitates the use of dynamic memory. However, this facility is lost
when the Z8) is reset. Therefore, extra refresh circuitry is necessary.

The choice between dynamic and static programmable memory technology is
predicated on cost and convenience. Even with the expense of external refresh circuitry,
dynamic memory is less costly. In a prototype system such as ZAP, however, dynamic
memory is more trouble than it is worth. Once built and operational, dynamic memory
might well be the best answer to memory expansion. But at this point in the building
process, the inclusion of dynamic memory would over-complicate the design. This
book, which emphasizes getting a beginner on-line, deals exclusively with semiconduc-
tor static programmable memory applications.

Static Programmable Memory

Figure 4.31 is a block diagram of a static programmable memory element typical of
the type used in the ZAP computer. There are five basic components of a program-
mable memory: 1) address input lines, 2) data input, 3) data output, 4) chip select,
and 5) a read/write- or write-enable strobe line. The address input lines are connected
to the address bus of the computer. In the case of a N by M bit programmable memory,
where N is the number of words and M is the length of each word, there must be
enough address lines to address all N bytes. For example, in a 1 K programmable mem-
ory it would take 10 bits to address all 1024 bytes within this memory (eg: 2'°=1024).
Static programmable memory chips that contain fewer bytes of data, such as a 64-byte
programmable memory, would obviously require fewer address lines. For a 64-byte
memory, only 6 bits of address are necessary.

Because the function of a static programmable memory device is to allow storage
and retrieval of data, provisions must be made for data input and data output from the
device. The data input and data output lines (shown in figure 4.31) are designated as
separate functions.

During the read function, the stored data within the addressed memory cell is avail-
able on the data output lines. During the write function, data that is placed upon the
data input lines would be stored at the address designated by the code on the address
input lines. It is not necessary that static programmable memory devices have indepen-
dent data input and data output lines.

In most cases, these devices are configured with three-state outputs. Data input and
data output can be attached together to a bi-directional data bus, or they can be the

same lines and time multiplexed. Figure 4.31 illustrates a three-state method of data
busing. During a read function, the data input lines are disabled internally within the
memory device. The contents of the memory cell addressed by the address input lines
are available on data out and are fed directly to the bi-directional data bus. During a
write function, the opposite is true. The data output lines are set in the three-state mode
(which you may recall is effectively an open circuit), and draw no current from the bi-
directional data bus. The contents of the bi-directional data bus are stored at the
designated memory cell.

All of these multiplexing functions are dependent upon the read/write and chip-
select lines. No operation can occur without the memory device being selected through
the chip-select line. To select a particular bank, as outlined earlier, it is necessary to
have decoding logic that enables these banks through the chip-select lines. Once a chip
or bank of chips has been selected, the computer determines whether data should be
read from or written into these memory locations. Under normal operation all static
programmable memory is left in the read state, and only enabled during a write com-
mand by setting a level O on the write enable. This is called a write-enable strobe.

Figure 4.32 is a detailed timing diagram of the memory read and write cycles. The
write/enable is a combination of memory request and write. A read/enable is a com-
bination of memory request and read. Proper decoding of these signals and the chip
select were discussed previously. In its basic form, ZAP has 8 chip-select lines, each ad-
dressing a 1 K bank of memory.

Figure 4.33 illustrates the memory map of the basic ZAP computer. As initially con-
figured, ZAP contains 3 K bytes of memory. Location 0 thru 3FF is a 1 K EPROM.
Locations 400 thru BFF are static programmable memory locations. The 1 K EPROM is
configured to reside in locations O thru 3FF so that ZAP can be easily started with a
power-on reset. Programmable memory located at locations 400 and above is con-
sidered to be user programmable memory. At least 2 K is recommended for satisfac-
tory operation. ZAP will work with 1 K, but 2 K is recommended for basic peripheral
expansion,

Figure 4.33 also shows how memory is attached to the computer. All three banks of
memory are attached in parallel between the address and data buses. Each bank has a
separate decoded chip-select. When the EPROM is enabled and MCS0 is at a logic
level 0, EPROM data is impressed upon the data bus lines. The other two banks of
memory are in the three-state mode and have no effect on the bus. When the computer
accesses programmable memory, the chip for that particular bank of memory is set to a
logic 0, and only that bank of memory has access to the data bus.

While all banks of memory would have the same address applied to them, only the
selected bank would be in the active mode. The logic flow is similar for the computer to
write into a bank of memory. You will notice that there are write-enable lines leading to
each of the 1 K static programmable memory banks, but not to the1 KEPROM. A1 K
EPROM can only be written into with a special interface. Therefore, the write-enable
strobe is only attached to the programmable memories.

If, for example, the computer were to write into location 400, the chip-select for
bank 1 and the write enable for bank 1 would both have to be at a logic 0 to allow data
on the data bus to be stored into location 400. This type of programmable memory
configuration is both multiplexed and three-state. In the read mode, data flows from
the programmable memory chip; in the write mode it flows into it, and when not se-
lected it’s three-state.

Up to this point, we have discussed block diagrams of static programmable memory.
To produce an operational computer, it’s necessary to configure this memory with ac-
tual parts. Unfortunately, single chip 1 K by 8-bit programmable memories were ex-
tremely expensive when ZAP was designed. Therefore, these 1 K blocks are designed
from multiple components. Two relatively inexpensive and popular static program-
mable memory chips are the Intel 2102A (Appendix C3) and the Intel 2114 program-
mable memory (Appendix C4).

The 2102Aisa1 K X 1 static programmable memory. Configuringa 1 K X 8block
of memory requires eight 2102s attached in parallel. By comparison, configuring a
1 K X 8block with 2114s would require only two chips. This is because the 2114 has a
higher internal density than the 2102. Because the objective of any hand-wired comput-

BUILD YOUR OWN COMPUTER 117

118 BUILD YOUR OWN COMPUTER

er project is to get the device on line easily, 2114s are the recommended programmable
memory devices for ZAP. While 2102s will work, the added wiring necessary to use
these devices far outweighs the additional cost of the 2114s.

Figure 4.34 illustrates how two 2114s are attached together to produce a 1K X 8
programmable memory bank. They share a common chip-select line. The data input
lines are divided so that 4 bits of data are stored on each chip. Because each has a
1024-byte address capability, the 10-bit address lines are commonly shared. To build
the basic ZAP, two circuits of the type illustrated in figure 4.34 should be constructed.
The total memory for the basic computer is 3 K. It can be expanded to 8 K without ad-
ditional address decoding. It is not absolutely necessary to have 2 K of programmable
memory if the user wishes only to check the operation of the system. At a minimum,
the EPROM must be wired as 1 bank of memory.

The 1 K EPROM contains the monitor which allows ZAP to function. This monitor
contains many smaller programs that are called subroutines. When the main program
calls a subroutine, it places the return address on a software stack located in program-
mable memory. At the conclusion of the subroutine, the central processor pulls this ad-
dress from the stack and returns to the main program. Usually the stack requires no
more than 64 bytes. However, it is no less trouble to wire two 2114s fora full 1K X 8
bank of memory than to try to wire a 64-byte memory.

An additional bank of 1 K, designated as bank 2, could be added at the user’s discre-
tion. This bank is necessary if you plan to write programs that will occupy more than
1 K of memory including the stack. As the computer is presently configured, 1 K may
appear adequate; however, for the additional programs outlined in this book, 2 K is
recommended. This is especially true when a buffer area is required to communicate
with external peripherals. The schematic for the final memory configuration is shown
in figure 4.35. It should be added to the circuitry of figures 4.17 and 4.26.

Unlike the other sections of the computer, the memory cannot be checked except
under program control. Theoretically, the address lines can be preset and data read or
stored, but it’s not worth the effort. Memory checks will occur after the input/output
section is wired. Basically, it will be checked first with EPROM alone, then with the ad-
dition of the programmable memory. I mentioned previously that EPROM and pro-
grammable memory are related yet operate independently. While a program is often
stored in PROM, it usually requires programmable memory for proper execution.

In a short program that loads the accumulator, writes to an output port, and jumps
back to itself again, with no subroutine calls, programmable memory is not necessary.
It can be completely located on EPROM. The exact procedure for this test will be out-
lined at the end of the I/O section.

fNDPDURTESS DATA IN BI-DIRECTIONAL DATA BUS
STATIC Y Tt T =

—_— RAM
WRITE ENABLE MEMORY
OR DEVICE

NxMBIT a5t T

READ/WRITE =

CHIP SELECT =g

Figure 4.31 A block diagram of a static programmable memory element of N X M bits.

[¢————————— MEMORY READ CYCLE MEMORY WRITE CYCLE —————— ¥

T T2 T3 T T2 T3

o L_J I L

AO-AlS x MEMORY | ADDR. x MEMORY { ADDR. x

DATA BUS

(00- 07) “ IN } { DATA| OUT)-—

LA A VO A Y VO U W

Figure 4.32 A timing diagram of the memory read or write cycles for the Z80. This diagram does not
include WAIT states.

BANK 0 BANK 1 BANK 2
MCS0 o——— MCS1 o——— MCS2 o—
Ag-Ag ADDRESS BUS \1
Ag-Ag cs Ag-Ag CS Ap-Ag €S
1K EPROM 1K RAM 1K RAM
{00 TO 3FF HEX) (400 TO 7FF HEX) (800 TO BFF)
Dp-07 Dg-Dy WE Dg-07 WE
4 Dg-D7 BI-DIRECTIONAL DATA BUS ‘\
WRITE ENABLE
MEMWR

Figure 4.33 A block diagram of the memory map for the ZAP computer.

BUILD YOUR OWN COMPUTER 119

BANK CHIP SELECT

__ ___1Kx 85 RAM MEMORY | BANK __ __
- 5
|
| . |
l cs
Ag i :65 Ms8 1704 1 ! D7
ij [17 |
fg | 1 2 e | og
As | 2] 2114 |
A N 3 1Kx4
As ! s RN ot L L,
7
v : |
' ! .lis8 170, fe2 : D4
| WE
| T |
WRITE ENABLE I
[s |
| Ts |
| 11: MSB 110, ¢11——|—»03
l 17 l
1 12
] 2 2114 1/03 4———|—’Dz
| 3 1Kx4 I
RAM
| ‘; 170, <—13——T——01
| 6 I
| 5ulise 1o et 1 w0
| WE |
+5-PIN 18 | TIO |
GND-PING | |

Figure 4.34 A 1 K X 8 programmable memory bank constructed by using two 2114 1 K X 4-bit pro-
grammable memory chips.

-
-

MCs2 01uf
WSl § 5v +5v +5v +8v 5 e by e 2 l_/—717
5 t6 |7 |a {3 f2 |1 ho|is)is s 5 12 4 f3 |2)1 lisheis 5 6 b7 Jaf3 j2 1 Ji7hiefis 5 f6 12 [a |3 {2 1t fi7halis LR 3 2 [t |23(2 iov
A0 ereemeem— A§ |18 A ————————————— 29 |18 AQ ————————————— 29 |I8 AD ~—— e —————— A9 |!8, AQ =49 [y, 0uf
iy o o = 29 _
U 116 L3lcs 117 e ic18 & ic19 201~ ic15 19
3 o o 0 P

2118 51 | 2708

_ 2114 2114 24
wEwwn —e-L §E ot o | e o ” 12
1204 1703 1702 /01 1704 1703 102 1/0t 1/04 1703 1/02 1701 (/04 1703 1702 1/01 LS8 0luf
|n 12 13 [1 1z |13 Tie |11 12 13 14 il 12 13 |ia l17 16[15]1a [13 J1i{10]9 |‘77

Ji MS8 | Ls8

>
Mo

|

s
E
m
5 ‘
x
E
z
&
@

07
06
DS
0¢
b3
02
D1
0o

Figure 4.35 A schematic diagram of the final memory configuration for the basic ZAP computer.

120 BUILD YOUR OWN COMPUTER

—~~ \

IV. Input/Output

Thus far we have discussed the central processor control and memory decoding. The
input and output functions are equally important. For the computer to display useful
information, it must be “interfaced” to peripherals. “Interface” is an overworked term
that refers to a capability of communicating with external devices such as keyboards,
video or LED displays, and memory storage systems. Communication can be either
data input or output.

Input data can come from keyboards, audio cassette mass storage, or special data ac-
quisition interfaces. Similarly, output data flows from the computer to peripherals (eg:
video displays, numeric readouts, printers, and external control interfaces). The func-
tion and format of the data communication between the central processor and the pe-
ripherals might vary considerably, but the internal routing of the data is fundamentally
the same.

The Z80 microprocessor provides both an input and output instruction. An output
from the processor is logically the same as writing to memory, and receiving an input
from an external device is similar to a memory-read command. They are differentiated
from memory operations by gating the read and write status lines with the 1/O request
control line. Logical concurrence of an I/O request and a read or write status output
designates the direction of the communication with the peripheral device. Simulta-
neously with the control signals, the address code (1 of 256) of the subject device is
placed on the address bus. A timing diagram of these signals is shown in figure 4.36.
The decoding logic was detailed in section II of this chapter.

Wiring the I/O ports for ZAP is a two-stage process. When hand wiring a computer,
the most important consideration is to see that the input/output function works by the
least complicated method. A successful test of the ZAP I/O section also indirectly tests
memory. This is so because input and output instructions cannot be exercised except by
a program stored in memory.

Z80 input and output is handled 8 bits at a time. It does not matter whether the exter-
nal interface configuration is serial or parallel. Data transfer between the central pro-
cessor and 1/0 is 8 bits parallel and basically occurs as follows.

T1 T2 Tw T3 1
Y I WY [VY R VY B R
AQ-A7 x PCRT | ACDRESS r

B —
DATA BUS IN
|

DATA BUS —'———'(ouT)——

Figure 4.36 A timing diagram of input or output cycles for the Z80.

READ CYCLE

WRITE CYCLE

BUILD YOUR OWN COMPUTER

122 BUILD YOUR OWN COMPUTER

Output Instruction

OUT(n), A

When this instruction is executed, the contents of the accumulator A are placed on
the data bus and written into device n. The address of device n is located on address
lines AOQ thru A7.

If the accumulator contains 40 hexadecimal when the instruction QUT 23, A is ex-
ecuted, 40 hexadecimal will be written into the peripheral device (also called “port
number”) decoded as 23 hexadecimal.

While there are other more complicated output instructions available in the Z80 in-
struction set, they all pass data through the data bus to the external device. Because the
data bus is used for transfer of information between the central processor and memory
as well as 170, the computer must be allowed to continue executing its program. Data
cannot remain on the data bus waiting for the peripheral (the central processor can be
made to do this but such abstract configurations would be confusing at this time). The
data is valid for only a few clock cycles and must be stored if needed for a longer
period.

Figure 4.37 diagrams a typlcal 8-bit storage register. It consists of 8 individual stor-
age elements with a common “store enable” input. In its simplest form, the single stor-
age cells can be D-type flip-flops such as shown in figure 4.38. Input data (ie: the data
bus) is attached to the D input lines and is only clocked onto the output lines (Q and
Q) during an I/0 write strobe. Using 7474s would require 4 chips for an 8-bit word. A
better method is to use the improved circuits of figure 4.39.

Input Instruction

IN A, (n)

When this instruction is executed, the data from the selected port (n) is placed on the
data bus and loaded into the accumulator.

If the subject external device reads 10 hexadecimal when the instruction IN A, 20 is
executed, the value 10 hexadecimal read from device number 20 hexadecimal would be
loaded into the accumulator,

There are other more complicated input instructions but as was the case with output
instructions, the route for all data is still the data bus. To keep the data bus from being
dominated by a single device attached to it, all input devices (ie: the output from them)
must be three-state. This can be accomplished either by using interface logic such as
UARTS and peripheral interface adapters that are designed to be three-state, or by add-
ing three-state input buffers such as illustrated in figure 4.40 (the block diagram of the
typical 8-bit, parallel-input port).

Whatever is on input lines B, thru B, during an I/O read instruction will be directed
to the central processor. Using these direct read instructions there is no interaction be-
tween the central processor and the external hardware attached to the input port. Addi-
tional logic is required to coordinate the exact timing between the computer and an ex-
ternal peripheral. The solution is called “handshaking.” Such a capability requires
either more sophisticated input port hardware, connection to the central processor, in-
terrupt logic, or additional I/O ports to coordinate the timing.

Checking out the basic ZAP hardware is best accomplished by using the least com-
plicated hardware. A simple input port is illustrated in figure 4.41 and consists of 2
quad three-state buffers. Should there be any brave experimenters who wish to have
full handshaking on 170 ports or need more than the 8 mA output drive capabilities of
a LSTTL device, input and output ports can easily be configured using Intel 8212s. The
specifications described in Appendix C5 demonstrate its versatility.

Input/Qutput Checkout

Ultimately, ZAP could have a keyboard, RS232 serial CRT terminal, audio cassette
interface, and analog, as well as digital 17O capabilities. Trying to attach all these pe-

ripherals together and checking everything simultaneously is a monumental undertak-
ing. A more methodical approach is to construct the minimum hardware and software
that proves operational and then build upon it. That is the route taken thus far.

With the exception of memory, we have attempted to eliminate any potential prob-
lems by static testing where possible. The simple 1/O devices of figures 4.39 and 4.41
lend themselves easily to this situation. To test I/O fully requires one input port and
one output port. It should be wired as shown in figure 4.42. Only port 0 need be con-
nected at this time. The additional circuitry included in this diagram can be ignored.
Only ICs 21 thru 23 are of concern presently. The other devices are enhancements to
the basic ZAP and will be discussed later.

Static Test

With power off, remove all ICs previously installed. Insert ICs 20, 21, 22, and 23.
Turn on power. Temporarily ground DSOWR and DSORD. This maneuver, impossible
under direct computer control, allows data bus access to both input port 0 and output
port 0 at the same time. With the two ports connected in this manner applied input data
should be available immediately at the output port. With the input lines of ICs 21 and
22 open and power applied, the outputs of IC 23 should be at a high level. Sequential
grounding of input lines B, thru B, should be reflected on lines B, thru B, of IC 23. A
final test is to disconnect the temporary ground on DSOWR while one of the input lines
of IC 21 and 22 is grounded. The logic 0 output of IC 23 should remain low even when
the input line is no longer grounded. The result is that the data is “latched.” It will re-
main until updated by another write strobe.

07
Dsg

Ps

b BI-DIRECTIONAL
4 DATA BUS FROM
D3 o cPu

Dy o

Dy e

0o J

1/0 WRITE STROBE
- o——— 8-BIT REGISTER

[TTITIIT o

87 Bg Bg By E3 Br By B
7654321J

LATCHED PARALLEL OUTPUT

Figure 4.37 A block diagram of a typical latched parallel output port configured with an 8-bit storage

register.

BUILD YOUR OWN COMPUTER 123

DATA BUS { D, 0g

D-TYPE
FLIP-FLOPS
SIMILAR TO D Q7 D Qp— o} QF—

7474
\\“--__________’ Ics ic7 _wez-6) |

¢ Q ¢ o ¢ Q
170 -~ E
WRITE -® ————
STROBE

4
LATCHED 87 Bf me m e e Bo
QUTPUT Ms8 LS8

Figure 4.38 A block diagram of a latched parallel output port using D-type flip-flops as a storage

register.
DATA BUS DATA BUS
/ N 4 N
DSXWR Dy Dg D5 D4 b3 D2 Dy Dp DSXWR D7 Dg Dg D4 D3 D2 Dy Do
2 |3 ls |2 *5v 2 |3 ls |7 +5v 2 |3 le2 e 11 1o |15 is *3Y
13 5 13 5 24
4 74L575 12 4 74L875 12 74100 .

16 [15 [10 |9 16 {15 [10 |9 5 |4 (19 |20 [8 {9 [18 [17

a) b)
By 8g Bg By B3 B By Byg B; Bg Bs By Bz Bp By 8p
AN J \ _/

8-BIT LATCHED 8-BIT LATCHED
PARALLEL OUTPUT PARALLEL OUTPUT
DATA BUS
A
r N
. D7 Dg Dg Dy D3 D2 Dy Do
DSXWR r5y
18 [17 {14 [13 |8 |7 a4 I3
20
1 745273 !
10
19 [16 [15 {12 |9 [6 |5 {2 :h
c)

By Bg Bs Bg B3 By By Bp
\ _J

Y
8-BIT LATCHED
PARALLEL OUTPUT

Figure 4.33 Schematic diagrams of 8-bit latched parallgl output ports.
a) Using two 4-bit LSTTL latches.
b) Using a traditional 8-bit TTL latch. Note that non-LSTTL devices can be substituted but
care should be taken to observe the total bus loading.
¢)- Using a newer 8-bit LSTTL latch.

124F . /R OWN COMPUTER

D7 M
Dg

Ds

Da BI-DIRECTIONAL
DATA BUS FROM

D3 CPU

D2
D1
Do -

1/70 READ ., A" | o ® Py ° Py - Py

STROBE 8-BIT THREE-STATE
NON-INVERTING
\ X \ \ X & x X BUFFERS

By Bg Bg Bg B3 87 By Bg
N J

8-8IT PARALLEL INPUT

IN®UT CURRENT THREE-STATE
WwCRST CASE BLFFER CTL iN ouT
LSTTL IjN=0.4mA
T 1 X |THREE-STATE
IN ou 5 5 o
0 1 1
CcTL X = DON'T CARE
Figure 4.40 4 b'ock diagram of a typical 8-bit parallel input port.
DATA BUS
r Y
Dy 06 Dg Da D3 Dy Dy Do
‘ W
DSXRD)- »
3 s [s o *BY s s s |n *IY
13 14 i 13 14 i
10 10
1 74L8125 1 7408125
7 7
: % . 7
Jf Jj Jj Jiz Jj Jj Jj Jiz
By Bg Bg By B3 By By B
AN J

8-BIT PARALLEL INPUT PORT

Figure 4.41 A schematic diagram of an 8-bit parallel input port for the ZAP computer.

BUILD YOUR OWN COMPUTER 125

"DIRMIJOS JONLIOW dYZ 8yl YIIM 8SN 10j palinbal SIUBLIBIURYUS [BUOH
-IDPEB YlIM JaINdiod dyZ o1Seq ayi jo spod indinoindui [sjeied e jo weibeip oewsyos y gy y eanbi4

0 1¥0d LNdNY ¥ LY0d LNdNI 0 L¥0d LNd1N0

- Is N 4 N
0g lg 2g €g vg Sg 9g lg omﬁmwmmm vg Sa 9g L@ 0g Ig 2g g ¥g Sa % (g

#\ SAV1dSIa 431

47100 TYWI03QYXIH OL G928 OVELdH
Nﬂ\ 1£-92 S,
¢l 21l 6| s| @ (| et sl sl e bzl el s 2 ¢l et el s| ez zl sl ol 6| erf sty ot} 61
v

(310N
Vv vE ve VI Vv vE ve vl Vv vE vz vl Vv ve ve VI
F a2y 227 az or
§21810L oty S2ISTPL ANy szisiee VYT P §21S14L a9 £L251%L
1201 J¢ 2zl J¢€ 2ol 1y o~ ¥ 4]} ot}—o €291 1t
o1 o1 o1 ot B
or s} aIvl—¢ oV —e 02901
AV _AE AZ AL €T AV _AE AZ AL (€T Av A€ AZ AT JEI AV A€ AZ AL |er 0z
mmm 1] 11} 8| 9 € v@ 1] 8] 9o ¢ vi[1i[s[of € iﬁw i 8 9f € R I EEREEE g 5 4M0sa
AS+ AG+ 887 asw
4710°0 ® ayosa
AS+ —_—
_m { ayrsa
47100 v -
AG+
oa
1a
za
€Q sng
va viva
sq
94
La
1] z| ¢ %_Qmﬁmm %_Qmﬂwm n_QwMNm wﬂ\mﬁmm mﬁmmw_n\
v g a
89 v 8 0 a v_e 9 @ va o a v_a 9 @ v 8 2 a OvELdH TE-9201
| | | [| 1 [] | oveLdH §2181%L 62-¥29I
—_— 1eoi {5l s — 0£91 e 6221|515 — 8201 — t221 §5Ys — 920 £22876L €201
) L. L] L1 L1 I 1 §21570L 22-1201
voyL 020l
as1 @ asw @ as1 @ asw as1 m,_~ asw L mlh_t
AG+ AS+ AS+ AG+ Ao+ 371070
¥MiSa
¥mosa
¥MSSa

126 BUILD YOUR OWN COMPUTER

V. Dynamic Checkout of the Basic Computer

All systems, with the exception of memory, should have successfully passed the
static checkout procedures. The memory wiring should be checked for continuity.
Because ZAP has no front panel or indicator (unless you wish to add one), the full sys-
tem can only be tested by executing a program that dynamically exercises all the system
hardware. This is easier than it sounds. For the computer to output a number to a spe-
cific port address, the central processor must be operational and have reset properly to
execute the instruction. The memory read must work or the central processor wouldn't
know what to do. The memory and I/O decoding must work for the data stored in
memory to arrive at the right output port. And finally, for the data to be read at the
port, the output port must function as well. In short, if you can execute a program, the
computer works.)

We can make the process simpler by using the fewest program steps possible and by
initially eliminating the necessity for programmable memory. Remember, ZAP has
both EPROM and programmable memory. With no monitor or front panel, program-
mable memory cannot be loaded directly to run a test program. The test program must
be already loaded in ROM (in our case EPROM). By carefully selecting the instructions
used in the test program, programmable memory can be left out entirely when we run
the first test. Why complicate matters by having more hardware than is necessary?

Few instructions are required to test the operation of the processor, reset, memory
and I/0. Usually the central processor either works or it doesn't. Central processor
failure is rarely a case of one of the instructions executing improperly. If ZAP can read
in data at port 0 and output the same value to output port 0, we can assume it all
works. For the data to reach output port 0, it must travel through the central processor
(assuming you have removed the temporary grounds on the I/O strobe lines) under

program control. Y
Such a test program is: A v -
OCTAL HEXADECIMAL
INA, O 333 000 DB 00 read port 0 in
OUT o0, A 323000 D3 00 write to port 0 out
JP NN 303 000 €00 C3 0000 jump to beginning

This 7-byte program will read input port 0 data into the accumulator and then write
this same data to output port 0. The jump instruction will cause the program to repeat
this action continuously. The program requires no programmable memory to store
either intermediate data or the stack pointer. Because only the accumulator is affected,
the 7-byte program can be completely contained in ROM. In this case, ROM can be
either a 2708 EPROM programmed manually as described in Chapter 7.or a simulated
ROM as shown in figure 4.30. If you use a simulated ROM, it may be necessary to
reduce the 2.5 MHz clock rate to compensate for the capacitance of the external cir-
cuitry. Figure 4.30 also includes an output to port 5 that tests a data display to be added
later. Rather than rewrite the EPROM or rewire the pseudo-ROM, you may wish to
add this instruction now.

The final test of the basic ZAP is to exercise a program that uses both programmable
memory and EPROM. Again, the philosophy is that if it can store and retrieve 1 byte
from programmable memory, then all 1 K of that bank should work. A slightly longer
program is used this time. The following program is stored in EPROM and the pro-
grammable memory is used by the central processor to store the stack:

OCTAL HEXADECIMAL
LD SP,nn 061 000 006 310006 set stack pointer to
middle of bank 1

programmable memory

INA, O 333 000 DB 0 read port 0 input
CALL TEST 315 014 000 CDOD 00 call program test
OuTo, A 323 000 D3 00 write data to port 0 out
JP nn 303 000 000 C30000 jump to beginning
TEST RET 311 9 return to main program
A oL N ‘\ e

BUILD YOUR OWN COMPUTER 127

128 BUILD YOUR OWN COMPUTER

When assembled, the 14-byte program would be loaded as follows (in hexadecimal):

Location Program
00/00 31 00 06
03 DB 00
05 CD 0D 00
08 D3ge. D7
0A C3 00 00
oD C9

The operation of this program is similar to the previous example. A byte is read from
input port 0 and then read back out to output port 0. In between these operations there
is a call to a subroutine that is just a return instruction. When the call is executed, the
location where the program is to resume operation after the call is put on the stack in
programmable memory. At the conclusion of the call (the return instruction), the ad-
dress is popped off the stack and placed in the program counter so that the program can
resume where it left off. The only way for the input data from input port 0 to get to
output port 0 is for this call to be executed properly. Of course, this requires that pro-
grammable memory work properly.

Many other programs that would further enhance the diagnostic checkout pro-
cedures can be written. In my experience, however, if it executes these two programs,
you can count on everything running.

Once these milestones are reached, the experimenter has a truly operational comput-
er. The next step is to expand this basic unit and make ZAP somewhat more versatile
by adding address and data displays, a hexadecimal keyboard, a serial interface, along
with an operating system that coordinates the activities of these peripherals. While the
present system is a computer, these additions are necessary to move beyond an ex-
perimenter’s breadboard project.

D
—3

CHAPTER 5
THE BASIC PERIPHERALS

Once the basic ZAP computer has been constructed and tested, we are ready to add a
few necessary peripherals that will greatly increase the system’s utility. External periph-
erals facilitate the input and output capabilities of the computer. They include such
items as printers, cathode-ray tubes (CRTs), tape drives, and disks. Peripherals of this
magnitude, however, are usually used on larger systems. For our Z80-based ZAP,
useful peripherals include a keyboard to ease data and program entry; a visual display
to allow the computer to indicate a logical conclusion in readable form; a serial com-
munications interface, which allows ZAP to “talk” to another computer; and an inter-
face to an audio cassette mass storage device. These four ingredients are the difference
between an experimental breadboard and a useful personal computer.

The keyboard can be either a small keypad for limited data entry or an alpha-numer-
ic “typewriter”-style ASCII (American Standard Code for Information Interchange)
keyboard for text editing and high-level language programming. The visual display
could range from a hexadecimal LED readout to a full 24-line by 80-character CRT ter-
minal. The serial port, in conjunction with the audio cassette interface, could be used
to cold start the computer and load application programs.

As with the previous circuits in this book, I've tried to provide various alternative
designs so that you, the builder, may construct a truly personal system. Each of the
four peripheral devices will be explained in detail and numerous design examples will
be provided; both limited function hexadecimal input and full ASCII keyboards will be
addressed. In the case of the visual display, we will discuss a rudimentary LED octal
and a hexadecimal readout for ZAP. For more sophisticated visual interaction, a CRT
terminal is required. Because this unit is much more complicated than a keyboard or an
LED display, an entire chapter has been dedicated to it. My basic premise is to start
with the essentials, provide a thorough understanding of their applications, then move
to more complex, more useful add-ons.

The expansion of the basic ZAP into an interactive microcomputer system requires
the addition of a software program to synchronize and exercise the new peripherals.
This software is called a monitor and is discussed in a later chapter. Peripherals merely
provide the means for added data entry and display capability.

I. KEYBOARDS

The only way the Z80 can communicate to an external device is through the input/
output bus structure previously described. (While more esoteric methods such as direct
memory access exist, they will be ignored for the present.) When the processor wishes
to signal the user that an event has occurred, it can do so by changing the output level
on one bit of a parallel-output port. For example, the end of program execution can be
designated by bit 7 on port 0 going from a logic 0 to a logic 1. Using this concept, 8
separate elements could be individually designated and controlled from the 8 bits of
output provided on the single “basic ZAP" port.

Information input is just as simple. The numbers 0 thru 7 could correspond to 8
switches on the 8 input bits of port 0. This is shown graphically in figure 5.1. When

THE BASIC PERIPHERALS 129

bit-7 switch is pressed, grounding the input, the logic level transition can signify a nu-
meric entry of 7 to the computer; many microprocessor applications require only these
few bits of 1/0. A traffic light controller, for example, with a single red, yellow, and
green light would need only three bits of output.

The program to control the lights would have been written, assembled, and pro-
grammed into some type of non-volatile storage. However, ZAP must interact with a
human operator in such a way that programs can be developed and tested. The major
difference between the traffic light controller and ZAP would be the peripherals and
not the microprocessor’s capabilities.

In our example, we could put 8 switches on an input port. To enter information, we
have only to write a short program that reads the data on port 0 into the accumulator
and then stores or acts upon it. The chapter on monitor software will address these
manipulations, but one problem must be solved first: synchronizing peripherals to the
computer.

How does the computer know when the data on the switches is or is not valid? And,
could we make a timer in software or hardware that reads the port every second, on the
second? Can you, for example, see yourself trying to flip all the switches in time or to
make the computer wait?

1(:2
7406
O
4 PBl— swel \Sw5| \swa| \Sw3i \swz2| \sw1 SWO
/4
63 LED
TIL-209A [
Yo iaaL ? . . * * . ®
FOR 8 Ve
470 1K S1Kk S1K S1K Sk Si1k 31Kk 3K
i I I :) :) i :, +5V

SWOQ- SW6 AND PB ARE SPODT

Figure 5.1 A parallel input/output interface with LED readout and switch input.

130 THE BASIC PERIPHERALS

The most popular method of synchronizing a peripheral that has slow data input to a
computer with fast program execution is to use “data ready” strobe pulses. (Interrupts
may also be used but they involve complicated programming and will not be con-
sidered here.) The program is written to read and check the logic level of one bit only.
By substituting a push button for one of the eight switches, say bit 7, we can simulate
the strobe. To accomplish this, first set data on the other seven switches; then, with the
program sitting in a loop checking bit 7, press the push button to generate a logic tran-
sition. The program, sensing that a “data ready” strobe is present, reads in the entire
port and uses the other 7 bits of data.

Frequently, it is not practical to limit ourselves to just 7 symbolic interpretations
when using 7 bits of input. A more logical approach is to code the input and let the 7
bits represent up to 128 individual symbols. The choice between a coded versus a
straight parallel input is governed by the application. If the computer is part of a
burglar alarm, with each input bit representing a door or window switch, then it is im-
portant to know individual and simultaneous bit transitions. In this application, it is
necessary to have parallel signal input. On the other hand, alpha-numeric entry from a
typewriter keyboard is by nature serial, one letter at a time. Therefore, nothing is
gained by using 128 parallel input bits for a 128-key keyboard. A 7-bit code is more
cost-effective.

The most widely used keyboard code is ASCII (American Standard Code for Infor-
mation Interchange). Appendix B lists the code and the characters it represents. Any
homebrew keyboard should reflect this coding to be compatible with commercially
available software such as BASIC.

There are a number of methods that can be used to generate suitable key codes.
Figures 5.2 and 5.3 reflect hardware and software approaches, respectively. The block
diagram outlined in figure 5.2 is a hardware scanning system suitable for a 64-key key-
board. A 6-bit counter progressively enables each column while scanning all rows in
each step. Should any key be pressed, a logic 0 will be routed through the 8-input
multiplexer to the scan control logic. This signal is used to generate a key-pressed
strobe (also called data-ready strobe) to the computer. The row and column address
lines from the counter are read and indicate the binary matrix address of the pressed
key. Compatibility with the ASCII code is simply a matter of placing the proper key at
the correct address within the matrix.

Another suitable encoding method is outlined in figure 5.3. This technique, which
uses software logic to scan the matrix, should be used only when computer program ex-
ecution speed is not critical. While reducing the circuitry to one chip, the trade-off in
this approach requires both an input and output port. It functions in the same way as
figure 5.2. The computer sets a 4-bit column counter code on the decoder. Then it
searches the parallel input port for the row with the logic level 0 signifying a pressed
key. While this may seem to be an easy way to decode 128 keys, there are certain soft-
ware considerations.

¢

B 3-TO-8 DECODER
. — A
85
84 0UTy7 OUTg OUTg OUT4 OUT3 OUTp OUT] OUTp
B3
25 —
QUT=1IF NO KEY
28 PRESSED
6-8IT QUT =0 IF ADDRESS
BINARY 23 KEY COINCIDENT WIiTH
6-BIT COUNTER PRESSED KEY
BINARY TYP (64) ”
CODE 22 3, >/
VA—E IN7
)1 ouT
Lw. INg
20
CLOCK A
& N5 g-inpUT
MULTIPLEXER
82 LM INg
Bl 4
|80 N INg
1‘\——%‘. N2
L«N. IN1
2w No ¢ B &
j
KEY SCAN CONTROL
PRESSED *— | ¢0GIC
STROBE
r
CLOCK INPUT

Figure 5.2 A matrix keyboard scanner for a 64-key keyboard.

THE BASIC PERIPHERALS 131

132 THE BASIC PERIPHERALS

+5V

saits 1 — e ﬂj
oean |2 e 74154 a8
ouTPUT § 51 5—22] g 4-T0-16 DECODER o
PORT 23 12
80 >—=2 A
15141312 1110 9 8 7 6 5 4 3 2 1

17|16 15|14 |13 {11 [10(9 |8 {7 |6 [5 |4 |3 |2

bl

!
3

T0
PARALLEL B3 =«
INPUT
PORT

87

Figure 5.3 A software-driven 128-key encoder circuit.

3

The key-pressed or data-ready strobe in any keyboard serves two purposes: it signi-
fies that data is present and ready, and it is timed so the strobe is not generated until
after a mechanical debounce time period has elapsed. The reason for the delay is ob-
vious. Remember, these microprocessors can execute 200,000 instructions a second. A
program written to look for a strobe and read the data would run a hundred times on a
single keypress because of contact bounce. The mechanical making and breaking of the
contact could appear like 100 data-ready strobes if we aren't careful. A true data-ready
strobe is not generated until after a debounce time-out and then it should be fast-rise-
time (<200 ns) pulse with a rate exceeding the cycle time of the computer. The dura-
tion of the pulse should be long enough to allow the scanning program to catch it even
if it is off doing some other task, and short enough so that the central processor doesn’t
see the same strobe twice. :

There are two techniques to combat the problem of strobe duration. One is to set a
flip-flop with the rising edge of the strobe and tie the clear line of the flip-flop to an out-
put bit. After reading in the data, the program can clear the “data-ready” condition by
resetting the flip-flop. This is usually employed in cases where the response time to a
keyboard or other device is variable. This method also guarantees that an event will be
registered and not missed due to time delays. Of course, most keyboard encoders do
not latch their output data. If a key is released, even if the strobe has been set in a flip-
flop, no data will be present when the computer reads the keyboard. There are ways to
get around this but they all involve additional hardware.

Usually the experimenter’s problem is reading a strobe twice rather than not waiting
Jong enough to acknowledge it. Instead of using a hardware flip-flop, most program-
mers employ a software flag, the second technique in dealing with strobe duration.
When a key-pressed strobe is sensed, the program sets a flag in a memory location,
reads the data, then checks the strobe again. If the strobe is high, the flag is checked
and the data is not read. Only when the strobe returns to a logic zero is the flag reset,
enabling data input the next time.

It's not easy to construct keyboard encoders for 64- or 128-key ASCII keyboards. It's
simpler to use a commercially available, scanning, read-only memory encoder such as
the one documented in Appendix Cé.

As far as ZAP is concerned, it is important to learn to walk before we run. Most peo-
ple would consider ZAP to be a learning tool that could be eventually expanded into a
full-blown microcomputer system. A full 128-key ASCII keyboard could prove to be as
expensive as the entire ZAP computer. To minimize expense and retain the experimen-

tal qualities of this endeavor, a limited keyboard, suitable for hexadecimal entry, is
suggested as the first level of expansion. With a limited number of keys to encode,
hardwired TTL circuitry offers a reasonable cost advantage over expensive encoder
read-only memories.

Figure 5.4 is a hexadecimal keyboard interface designed specifically for the ZAP soft-
ware monitor. A hexadecimal keyboard allows data and instruction entry as 2 digit
hexadecimal numbers. In addition to the 16 numeric keys, there are 3 command keys
designated “EXEC” (for execute), “NEXT,” and “SHIFT.” EXEC and NEXT will be ex-
plained in the monitor section. The SHIFT is similar to a regular keyboard and is used
to double the number of key codes by allowing a SHIFT 1, SHIFT 2, etc. The particular
significance of each code will be explained later.

+5v
A 0.01uf
+5V 2200 +—)
& 001uF +
T
ngn "
———
1 1 N2 kHz
Wy 2 Q
¢—0 3 1
)] apn] 7 §
5
1 ngn A 4 Y
¢ —————0 o - 5
w 6 IC3
1 e 8], 74154 BJS
9
. 19]° 1cs
¢ ° 9 7412
ul, 1
¢————— o—nén——— 13 11 1 7
[wqe N PP zf 13 _/7‘7
7 1513 12
l "8“ 13 14
) B¢ 8 &
L v 20 |21 |22 |23
b Be
L ovan g1 | 4BIT BINARY
o-F
— B2
L g ; i HEXADECIMAL
© |l i2 +5v . + B84 FUNCTION #1
L uge .
—— 5o © INE & B B W |5 11} — 85 FUNCTION #2
Pl D - B6 SHIFT KEY
1 "p" IC2 7493 SLOOK 14 L.—+» B7 KEYPRESSED
b ° ° RO{2) RO(1) ic4 STROBE
] ngw 3 2 Tio JL 10ms
\ 73 |12
L e 777
+5V +5Y
0.014F 161 7418
}77 iC2 7493
10K \ IC3 74154
1 "gxgc" 220 . PN 2 ~ IC4 7400
— Y " ‘ ey ic5 74121
;4.7#F iIc1
1c1
10K :
VVAV . 2 -
*‘L +5Y
;4-7;& 7414
Ic1
K
1_ “SHIFT" 220 _ 10 5
VW — $
'L4.7;.:.F 7

Figure 5.4 A hexadecimal keyboard interface.

e THE BASIC PERIPHERALS 133

The keyboard required to support the ZAP software monitor has 19 keys. The en-
coder in figure 5.4 is a combination scanner and hard-wired parallel output. Encoding
depends upon the particular key pressed. The hexadecimal keys O thru F are sensed
through a multiplexed scanner, IC 2 and IC 3. As IC 2 counts, it sequentially places a
logic 0 on each of the 16 output lines of IC 3. If any key is pressed, that low level is
routed back to IC 4 and stops the clock. The counter is then locked on the address of
the particular key being pressed. The same action that stops the clock also triggers a
one-shot IC 5 which generates a key-pressed strobe. The output lines BO thru B3 will
contain the binary value of the pressed key while bit 7 is reserved for the strobe. The
three function keys are directly tied to input bits 4, 5, and 6. Three sections of IC 1
serve to dampen contact bounce. The EXEC and NEXT are tied in so they will generate
a key-pressed strobe when activated. Because the shift key is always used in conjuction
with another key, it is not connected to the strobe circuit.

It is important to recognize that the coding of this 19-key circuit is not ASCII. An
ASCII keyboard cannot be used directly with the software monitor outlined in this
book, unless you use only those ASCII keys that correspond to the coding of figure 5.4,
or rewrite the software monitor to accept ASCII rather than binary codes for each key.

II. ADDING A VISUAL DISPLAY

Once a keyboard has been added to ZAP, we are ready for program development.
The other key ingredient is a visual display that allows the programmer to examine in-
struction statements and data. The least costly configuration is an LED display, prefer-
ably hexadecimal because the software monitor is written that way. For the octal die-
hards, ['ve also included an octal display.

Hexadecimal displays may seem a trivial addition to an expensive computer system,
but it is sometimes these little helpful add-ons that make program debugging easier. I
don't intend that it should replace a CRT, but it's a necessary tool when debugging a
program and a necessity for using the ZAP monitor. It will never replace a stepper or a
break-point-monitor program, but it's great to display keyboard or I/O data quickly
with a single output instruction.

There are many ways to display hexadecimal on a 7-segment LED. Figure 5.5 is an

+5V
1K

134 THE BASIC PERIPHERALS

2N2222
TYP(7)
220
a
) +5Y
1K
220
+5Y
1K
+5V +5v FAIRCHILD FND-70Q
7-SEGMENT LED
5 16 220
7 9 13 oo ¢
D [>—40 4Q A3 » +5V
5 10 12 ot " d
¢ [>—— 30 3Q A2 oz _—
3 15 11 4 &
8 [>——¢20 2Q Al D3 220
5 N> 9 T
2 16 10 04 M
A >——w 1Q AQ s +5v l l
D5 1K fol
IC1 1c2 7
7475 82523 DS
12 N a
] — D7 N.C.
a4
. A4 TS 220 R

14 15 8§

+5vV

+5v

220

220

INPUT CODE 82523 PROGRAM 7-SEGMENT DISPLAY
C D7D6D5D4D3D2D1D0

b)

HRHERRRRRBROoOOO0COOCOCOOT
HRPOORHROOHRROORKOOW
HOROHOHOROROHOHO)
COCOHOORRRROOR R FH R
FRORORRREREREREHEHORROR
RPRORRPRREPRPROHRREEFEOOOR
FRREORRRMRERORRERRERRERAPROO
PFRRRRERHOHOHNROOOROR
ORRPRRHRRFROOHOHHORROR
CORORRMEMREERMHPM P PROR R
TMMANT H>PORICUN B WN RO

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

HRREFOOOORRFHLPRMNROOOO

Figure 5.5 A possible method for a hexadecimal latch/decoder/driver using a standard 7-segment

LED.

a) This entire circuit would be needed to replace one HP7340. CS on the 82523 can perform

the blanking function.
b) The program for the 82523 (IC 2).

example of the usual brute force method using a PROM as a hexadecimal decoder. (A
method of programming the 82523 was described in the article in the November 1975
issue of BYTE magazine entitled “A Versatile Read-Only Memory Programmer,” if you
choose to use this circuit.)

However, this approach uses an excessive number of components and most people
would not want to program a PROM. One alternative is to allow the computer to per-
form the decoding and drive the 7-segment display through the transistors directly
from a latched 8-bit output port. Another way puts additional logic around a standard
7-segment decoder driver for the extra requirements. The former case necessitates a
computer program while the latter can involve as many components as figure 5.5.

Fortunately, there is a product on the market that can solve the problem. It is the
HP7340 hexadecimal LED display (from Hewlett Packard; equivalent displays are
available from other manufacturers). These hexadecimal digits depart from the stan-
dard 7-segment format by using dots instead of bars and being capable of displaying a
capital “B” and “D" in hexadecimal. This is accomplished by controlling the corner
dots, which gives the appearance of “rounding.” This ability discriminates a “B” from
an “8" or a “D” from a “0.” There are 16 distinctly different characters.

An additional feature of the HP7340 is that each display circuit contains a 4-bit latch
and decoder/driver. This allows the display to be attached directly to the data bus. The
result is a single 8-pin hexadecimal display that successfully accomplishes the function
of all the circuitry of figure 5.5. The specifications of the individual pins are given in
figure 5.6.

5080-7340 PIN CONNECTIONS

REAR VIEW PIN FUNCTION
I l . l 1 INPUT B
5 7
I E l u 2 INPUTC
3 INPUTD
4 BLANK CONTROL (BLANK=+5V}
)
.. 5 LATCH ENABLE (LATCH=0V)
5082-7340 6 GROUND
7 +5VOLTS
X X X X 8 INPUT A
u . . I Figure 5.6 The pin layout and functions for the HP7340 BCD to hexadecimal display. Similar displays
I .3 .2 .1 are produced by Dialite and Texas Instruments.

THE BASIC PERIPHERALS 135

Figures 5.7 and 5.8 demonstrate how the HP7340 can be configured to function as a
2-digit hexadecimal output port or a 3-digit octal port. An 8-bit latch is not required
because it already contains one. The HP7340s can be attached to the data bus as simply
as any other parallel output port and are strobed from the chip-select decoder outlined
earlier in the section on I/0 decoding.

To utilize the software monitor properly, 6 hexadecimal displays (separated into 3
single byte displays) are necessary. Three bytes are required to display a particular H
and L address and the data contents of that location. The 6 hexadecimal displays
should have the following decoded strobes:

Qutput Port # Logic Line Display Parameter IC#
5 DS5WR MSD address field 30, 31
6 DS6WR LSD address field 28, 29
7 DS7WR data field 26, 27

MSD — Most Significant Digit
LSD — Least Significant Digit

A more complete description of each display function is described within the
monitor section, and a completed schematic showing how the 6 displays are attached
to the data bus is illustrated in figure 5.9.

07 D——a—o HP 7340 +5v
06 [o>—c I I !
bs C>—s I / 2
oa >——H
777
DECODED ’5
STROBE D—‘—‘——‘s
03 [>— o "P 7380 iy 31, HP 7340 +5V
02 >—c I / ! 2|c / I 7
—_— 77
01 >—s / l h oy o s l——, 4
[y S—_ 6 8 5
bo A pd o6 [o—4 ' pd
5
i i ; ; 3 HP 7340 +5v
Figure 5.7 An HP7340 hexadecimal latch/decoder/driver display. 5] b
ps >—2{c l [J’
ps >—Hs I I :
s >——a — |
- ”m
L——————————4D
3 o HP 7340 +5Y
R A T
2 —2c I !
b1 [>—s l I :
oo [> * 1 -
1r ls 77

DECODED
STROBE =

Figure 5.8 An HP7340 octal latch/decoder/driver display. The HP5082-7300 can be substituted for the

HP5082-

136 THE BASIC PERIPHERALS

7340 in octal display applications. The HP7300 displays numerics only.

)
o
<

=

Q
Q
D

‘Aejdsip 37 jewioopexsy pajs|dwod 8yl jo weibeip ojewayos v 66 ainbi4

0 180d LNdNI ¥ 140d LN4NI 0 140d 1NdLNO
‘08 18 28 €8 ve 8 98 /8 ‘08 18 za ¢a v8 68 98 /8 “08 19 zo €8 v8 58 98 (8"
SAV1dSIQ 37
IVWI93QYX3H 0L €08
OVELdH 1E-92 5.0t
310N
Mﬁ\ﬁ 6l s| 2z Mﬂ\ﬁ 6 sl 2 Mﬁ.\ﬁ 6| o] 2 M_Qm: 6f s| z CU18T| 6| 8]0zl 61 v] S|
Vo vE ve VI Vv vE vZ VI Vo vE ve VI VP vE ve VI S8 SS8B8 o8
ozfy 225 ozl GH s 2 B R S
a1 a1 I1}—e f—e 4
S2IST0L 1 §21510L 1 S21ST¥L 1 TACREY] & £4257%L
2oy ot 2zor ot ¥eot OE——e Gzol ot—¢0 T €291 913
ol ool O 2l 0] °F e ™ DD e e e * < ymosa
Qo o —_—
Ay AE Az AL €I v AE AZ_AL JEL v At Az AL Jer Av AE AZ AL [er T i 38229 3 9| =@ 6
vi]] 8] o ¢ 2%: 8] 9] ¢ vi[11] 8] o ¢ zh: 8] 9] ¢ 1] s1| o] t1] 1e[e €] @ YovL
nf 3, e 9, RS asw 0201
4710°0 37100 a¥0sa
AS+ 7T e
Aot aursa
0a
10
za
€0 \gna
ya (viva
56
s
La
M_Qmﬂum M_Qwﬁwm nﬁ\wﬁmm M_Qwﬁmm M_Qmﬁmm M_Qmﬁmm
v 8 0 @ v 8 0 a v 8 0 @ v 8 0 @ v 8 0 a v 8 0 a
] Tl O I O I 1l O o
S 1£0) ! 0£01 M- 620 __ 8201 — 1291 — $291
. L as’ @ asw @ asi N.,_V aswW asi N_N asw ¢ 4
00 AS+ AS+ AG+ AG+ R
AG+ uMLSa
4M9sa
umssa

THE BASIC PERIPHERALS 137

COMPUTER

SO

III. SERIAL INTERFACE

A serial communication capability is not absolutely necessary to make ZAP work,
although the software monitor supplied in this book supports a serial interface.

First a word about concept before we pursue the design details. Why would ZAP
need to communicate? When we discuss the serial cassette interface, you will under-
stand that there are more advantages to it than appear presently. If future expansion is
in mind or commercially made peripherals such as a CRT or printer are ever added,
their interface will most likely be serial.

This last sentence is significant. Realize that I said nothing about communicating
with another computer. While talking to another computer over telephone lines re-
quires a serial link, in general, standard peripherals such as CRTs and printers also
“talk” serially. Therefore, by designing a serial port to accommodate a printer, we also
gain the ability to talk with another computer.

Communication is simply the transfer of information from one device to another. In
the case of a CRT display unit, the computer sends character information for screen
display while the keyboard relays the user’s input to the computer. Each end of the full-
duplex communication line must have a transmitter and a receiver. In both cases, the
information being transferred is ASCII data probably consisting of a 7-bit code and, in
some cases, an additional parity bit for error checking. This 7-bit data (ignoring the
parity bit) will appear on the lines of a parallel port. These 7 lines plus a ground
reference and a strobe (remember we have to tell the receiver when the data is valid)
can be brought out to the CRT input. Keeping that as a dedicated line from the comput-
er to the CRT, we now want a similar line between the keyboard output and an 8-bit
parallel port on the computer. This requires an additional 9 lines. To further com-
plicate matters, let's separate the terminal and the computer by 300 to 400 feet, as
might happen in some commercial computer systems. The result is that 400 feet of 18
lead (17 if you combine ground references) cable will cost more than the terminal. Also
realize that the TTL parallel output should not be used to drive lines longer than 20 feet
without special buffers/drivers; otherwise data errors could occur.

The solution to this costly wiring problem is to use serial rather than parallel com-
munication. The parallel data is converted to serial and sent one bit at a time down a
single twisted pair wire. If buffers/drivers are needed for long distances, less are re-
quired with the serial approach. Specially encoded “start” and “stop” bits included in
the serial transmission notify the receiver that valid data is being sent. For the above
example, only two pairs of wire are needed to perform “full-duplex” interaction (see
figure 5.10). In “half-duplex” mode this can be reduced to a single twisted pair, but syn-
chronization of the shared communication line is more complicated. All serial
transmission references I shall make will be limited to full-duplex operation.

SERIAL
RECEIVER
AND
TRANSMITTER

S

150 RS-232C
RS-232C oI
BS-2320 TTL

- - 10
TTL RS-232C

Figure 5.10 A block diagram of a full-duplex RS-232C communication link.

138 THE BASIC PERIPHERALS

Now that we agree that the communication should be serial, how do we accomplish
the parallel to serial conversion? The answer is a device called a UART (Universal
Asynchronous Receiver/Transmitter). Appendix C7 gives the specification informa-
tion for the SMC COM2017 UART which is equivalent in function to the AY-5-1013A
(General Instruments). To minimize power supply requirements, a single +5V
AY-3-1015 or TR1602 (Western Digital) can be substituted as I have done. The only
change from the specification sheet is that pin #2 is no longer tied to —12 V.

A UART's internal structure consists of a separate parallel-to-serial transmitter and
serial-to-parallel receiver joined by common programming pins. This means that the
two sections of the UART can be used independently, provided they adhere to the same
bit format that is hard-wire or software selectable on the chip.

The transmission from the computer to the CRT is done asynchronously and in one
direction only. The computer likewise receives data directly from the keyboard
through a dedicated line. As far as the computer is concerned, after reconversion to
parallel in the UART, this input device is communicating parallel data.

Actual data transmission follows the asynchronous serial format illustrated in figure
5.11. Using the keyboard as an example, when no data is being transmitted, the data
line is sitting at a mark (or “1” level) waiting for a key-pressed strobe. A key-pressed
strobe is a 1 to 5 ms positive pulse (it can be as short as 200 ns) indicating that a key-
board key has been pressed, and that an ASCII code of that key is available for
transmission. This key-pressed strobe, which is attached to the data strobe of the
UART, causes the ASCII data to be loaded into a parallel storage buffer and starts the
UART transmission cycle. The serial output will then make a transition fromaltoa0.
This mark-to-0 start bit is 1 clock period long and indicates the beginning of a serially
transmitted word. Following the start bit, up to 8 bits of data follow, each data bit tak-
ing 1 clock period. At the conclusion of the data bits, parity and stop bits are output by
the UART to signify the end of transmission. If another key is pressed, the process
repeats itself.

vy START DATAL DATA2 DATA3 CATAS DATAS DATA6 DATA7 DATA5 PARITY STOPI1
—_— I____I__.__

| | |
| | | | A |

ugn | S U S —

Figure 5.11 A single data byte as it is transmitted in asynchronous serial format.

On the receiving end, the UART is continuously monitoring the serial input line for
the start bit. Upon its occurrence, the 8 bits of data are slipped into a register and the
parity checked. At the completion of the serial entry, an output signifying data avail-
able is set by the UART and can be used as an input strobe to the computer. The UART
will not process additional serial inputs unless the data available flag is acknowledged,
and the data available reset line is strobed. Actual transmission can include or exclude
parity, have 1 or 2 stop-bits, and data can be in 5- to 8-bit words. These options are pin
selectable.

The following is a pin function description for the AY-5-1013, COM2017, or
AY-3-1015.

Pin # NAME SYMBOL FUNCTION
1 Ve Power Supply Vee +5 V Supply
2 Vg Power Supply Ve —12V Supply (not con-
nected on AY-3-1015)
3 Ground GND Ground
4 Received Data Enable RDE A logic “0" on the receiver

enable line places the re-
ceived data onto the output

STOP2

START DATAL

—"_‘T——_r—__l___—l_"_T__—T___[—— [

THE BASIC PERIPHERALS 139

140 THE BASIC PERIPHERALS

thru

12

13

14

15

16

17

18

19

20

21

22

Received Data Bits

Parity Error

Framing Error

Over-Run

Status Word Enable

Receiver Clock

Reset Data Available

N \
Data Available N

Serial Input

External Reset

0

)
Transmitter Buffer Empty

RDS8
thru
RD1

PE

FE

OR

SWE

RCP

RDAV

DAV

SI

XR

TBMT

lines.

These are the eight data
output lines. Received char-
acters are right justified; the
LSB always appears on RD1.
These lines have three-state
outputs.

This line goes to a logic “1”
if the received character
parity does not agree with
the selected parity. Three-
state,

This line goes to a logic “1”
if the received character has
no valid stop bit. Three-
state.

This line goes to a logic “1”
if the previously received
character is not read (DAV
line not reset) before the
present character is trans-
ferred to the receiver hold-
ing register. Three-state.

A logic “0” on this line
places the status word bits
(PE, FE, OR, DAV, TBMT)
onto the output lines. Three-
state,

This line should have as an
input a clock whose fre-
quency is 16 times (16X)
the desired receiver data
rate.

A logic “0” will reset the
DAV line.

This line goes to a logic “1”
when an entire character
has been received and trans-
ferred to the receiver hold-
ing register. Three-state.

This line accepts the serial
bit input stream. A marking
(logic “1”) to spacing (logic
“0") transition is required
for initiation of data recep-
tion.

Resets shift registers. Sets
SO, EOC, and TBMT to a
logic “1.” Resets DAV and
error flags to “0.” Clears in-
put data buffer. Must be
tied to logic “0” when not in
use.

The transmitter buffer
empty flag goes to logic “1”
when the data bits holding

23 Data Strobe DS
24 End of Character EOC
25 Serial Qutput 50
26 Data Bit Inputs BD1
thru thru
33 BD8
34 Control Strobe CS
35 No Parity NP
36 Number of Stop Bits TSB
37 Number of Bits/ NB2,
38 Characters NB1

register may be loaded with
another character. Three-
state.

A strobe on this line will
enter the data bits into the
data bits holding register.
Initial data transmission is
initiated by the rising edge
of DS. Data must be stable
during entire strobe.

This line goes to a logic “1”
each time a full character is
transmitted. It remains at
this level until the start of
transmission of the next
character.

This line will serially, bit by
bit, provide the entire trans-
mitted character. It will re-
main at logic “1” when no
data is being transmitted.

There are up to eight data
bit input lines available.

A logic “1” on this lead will
enter the control bits (EPS,
NB1, NB2, TSB, NP) into
the control bits holding
register. This line can be
strobed or hard-wired to a
logic “1” level.

A logic “1” on this lead will
eliminate the parity bit
from the transmitted and
received character (no PE
indication). The stop bit(s)
will immediately follow the
last data bit. If not used,
this lead must be tied to a
logic “0.”

This lead will select the
number of stop bits, one or
two, to be appended im-
mediately after the parity
bit. A logic “0” will insert 2
stop bits. A logic “1” inserts
1 stop bit.

These two leads will be in-
ternally decoded to select
either 5, 6, 7 or 8 data bits/
character.

NB2 NB1 Bits/Character

0 0 5
0 1 6
1 0 7
1 1 8

THE BASIC PERIPHERALS 141

142 THE BASIC PERIPHERALS

39 Odd/Even Parity EPS The logic level on this pin
Select selects the type of parity
that will be appended im-
mediately after the data
bits. It also determines the
parity that will be checked
by the receiver. A logic “0”
will insert odd parity, and a
logic “1” will insert even
parity.

40 Transmitter Clock TCP This line should have as an
input a clock whose fre-
quency is 16 times (16X)
the desired transmitter data
rate.

The final serial interface configuration is shown in figure 5.12. Because a UART is a
three-state device, it can be attached directly to the data bus. Data is written into or
read from it 8 bits parallel as any other I/O port manipulation. To the computer, the
UART appears as one output and two input registers: status, transmitted data, and
received data. As with all data bus manipulations, data transfers are synchronized
through decoded strobes. The ZAP software monitor uses three port addresses to coor-
dinate the hardware and software. To be compatible, they should be wired as follows:

Port # Logic Line Signal

02 INPUT DS2RD READ DATA
03 INPUT DS3RD READ STATUS
02 OUTPUT DS2WR WRITE DATA

The primary focus of this chapter is the hardware section of the serial interface.
When connected directly to the data bus in this manner, there is no way to operate the
UART except under program control. Explanation of the protocol and the significance
of each UART register can be found in the section on the ZAP monitor.

There are two remaining hardware considerations: data rate and transmission signal
level. Data rate can be loosely termed as bits per second and refers to the transmission
speed along the twisted pair. Keep in mind that at lower data rates, only 8 of 11 bits of
each transmitted word are data; 1 start bit and 2 stop bits are used. While any transmis-
sion frequency can be set on a UART, by adjusting the clock rate there are eight fre-
quently used standard asynchronous transmission rates:

110 bps
150 bps
300 bps
600 bps
1200 bps
2400 bps
4800 bps
9600 bps

Using a special data rate generator chip and switch selector network shown in figure
5.12, ZAP can accommodate any of these specific frequencies. In normal operation,
most teletypes run at 110 bps, printers such as the DECwriter II at 300 bps, acoustic
telephone modems at 300 bps, and video terminals from 1200 to 19,200 bps. As you
can see, in theory, we can communicate with them.

Transmission rate is only part of inter-communication prerequisites. A computer
could be all TTL level logic while a peripheral used 15 V CMOS. They would be com-
pletely incompatible. Therefore, it is necessary to have one additional standard that
governs the signal level of the transmissions. The most widely accepted and generally

a3sn LON 82-92

(774

¢I| €| p1] SY| 91

§3f ¥Of €9] ¢9] 10

‘uoneInBIjuod 8orIBIUI [BI19S [RUl 8Y[Z1'§ 8inbBid

AAA,

\AAZ

AAA,

VW

AAA,

VW

AAA

VW

6t| 8f| (€] 9€] G¢

Sd1 ¢HN 18N 851 dN

40y 0s
FET AvOY
1wal 1S
A3 gror-g-ay YX
¥ e
33 Ims
d 304
1ea 8s1 104
290 zay
£aa €ay
vaa vay
580 say
980 90y
{80 04
ga@ 8SAN 8ay

AANA
VWA

1IN
I S |
| |
| |
| |
| |
! _
: | 1wa1 4o AVa NO |
| NOILdNHYILNI
| 30nA0¥d |
| 01 1INJYID } | 2Mms
i TVNOILAO i
|
A1ddns 319 | _
-NIS 170A S+ V¥ H1IM I
Q3sn 38 0S¥ NVD | |
L¥YN VPIOI-S-AY NY 310N i |
| Ims !
L=
NO/L23FTIS LYY Vivad
! 31vy vlva X1
¥I010 IAITDIY
£} IEE] 6 oLl {0
175 ST 0St LYY VIV X 91
00 ¥0010 LIWSNVEL Ov
£} BEE] i
009 2
c] 8 Z1
0021 61
vl va €1
| e 7Ty 0ore 51
008?
1 L) St o1
171070 0096
1| 18 T o3vy T r
ams viva . 52
vzl et
AG+ J Le
5 g| sv 6 | oit 8¢c
y g v ot NNM T
1 637 9] 9v T Em—
009
gy 8413 5[sv et
¢
HIy v v - Fr ¢ ooet
AS+ sifs T v ST 0072 e
yvtow €4t T 2v ST P 008y P
2831 o, = 0096
2x x |1 A 9 s3lvy
12 02 oMS viva
ZHW ZEYS T
VLSAYD

(S)%LY
v
AS+
N (134317 741)
52 7 1Nn0 1VIY¥3s
8l (13737 111)
NI TVIN3S
0¢
11-621 (Mol
Tz 13538 1x3 13534 ATIVAWHON)
umzsa
€2 Viva 3LIEM e
ayesa
91 SNLV1S avay =
v Viva qv3d qaesa
Z1
11
ot
6
8
L
9
S
0a
10
za
€a \ sna
ya (viva
sa
99

LQ

THE BASIC PERIPHERALS 143

+5vV

TTL

Figure 5.13 TTL to RS-232C drivers.

a)

used standard is EIA RS-232C.

Although TTL levels could be used for communication, they are not suitable for
carrying signals more than 10 or 20 feet. The problem stems from the fact that only 2 V
separates a logic 1 or O rather than speed or drive capabilities. With only 2 V immunity
to noise, communication would be susceptible to interference from motors and
switches.

An industrial committee agreed to a standard interface to solve this problem as well
as to suggest standards for the industry. Modem equipment uses EIA RS-232C. This
specification applies not only to the specific voltages assigned to logic 0 and 1, but also
to the type of plug, pin assignments, source and load impedances, as well as to a vari-
ety of other related functions.

The signal levels of RS-232C are bipolar and use a negative voltage between —3 and
—15 V to represent a logic 1 and a positive 3 to 15 V to represent a logic 0. The region
between —3 V and +3 V helps our noise immunity and is a dead region. Even though
+ and —15 V would provide optimum transmission, +3 V and —7 V are also accept-
able. However, try to maintain equal bipolar levels over long distances.

The basic ZAP computer requires +12, +5, and —12 V (=5 V is necessary for the
EPROM memory and is derived from the —12 V supply) supplies for operation. We
can use the positive and negative supplies to generate RS-232C voltage levels in a num-
ber of ways. Figure 5.13 illustrates some R5-232C drivers, and figure 5.14 shows a cou-
ple of receiver circuits. One from each selection would have to be attached to the serial
1/0 pins of the UART for it to have complete RS-232C compatibility.

+5 T0+12V +5 T0 +12V
A
2N2219
________ |
|
l
RS-232C
WK ! RS-232C
|
PR G S (S |
-5V TO -12v K
T
-5V TO -12V
b)

PINQUT OF MC1488
TTL TO RS-232C DRIVER

a) Using two transistors as a level shifter. TTL

b) Using an opto-isolator as a level shifter.
¢) Using a standard RS-232C line driver.

144 THE BASIC PERIPHERALS

TTL R$-232C ~—

+5v PINOUT OF MC1489
RS§-232C TO TTL RECEIVER

a) 1K b)
TTL

RS-232C CTL TTL RS-232C CTL TTL

10K
RS-232C) AN 9

2N2222

INS14

RS-232C CTL TTL RS-232C CTL TTL
Figure 5.14 RS-232C to TTL receivers.

a) Using a transistor.
b) Using a standard RS-232C line receiver.

IV. CASSETTE STORAGE INTERFACE

The last but by no means least of the enhancements we should add to ZAP is a cas-
sette interface. With the keyboard and display, an operator will be able to write some
elaborate programs but, unless they are transferred into read-only memory storage,
they will be lost when power is turned off. Of course, the computer’s power can be left
on constantly. But what if you want to develop a second program that must occupy the
same memory address space? The preferable solution is to have some medium that tem-
porarily stores large memory blocks.

In large computer systems, this capability is achieved through hard-disk and 9-track
magnetic tape systems. These high-speed, high-volume media are beyond the personal
computing budget, but their value in large systems is obvious. A low price, lower per-
formance alternative is an audio cassette storage system.

In general, a cassette storage interface consists of three major subsystems: a serial
transmitter/receiver; a hardware assembly that converts serial TTL data so it's audio
cassette compatible, and an application program that keeps track of what's going out
to tape and can load it back into the correct place. The basic configuration is illustrated
in block diagram form in figure 5.15.

UART CASSETTE INTERFACE
s BN 7
| |
l [| Fioure 5.18 !
| i
|| parALLEL I TTL sERIAL | FsK |
. IQPIAL | ouTPUT L, DRIVER l
124 a2 . i T
24P 2 | | converTER | so | I RECORDER
COMPUTER £ : I } ! AUX INPUT
o | i | >
-t I
@ | ‘ | |
= | |
= : i i = EARPHONE
a4
g l | | FIGURE 5.17 ! —
=] | TTL SERIAL | |
@ | SERIAL | INPUT i FSK I
© e | 70 Y] RECEIVER I
| PARALLEL | i |
| | conveRTer | | I
| | | |
| I |
[FIGURE 5.12 | I, J

Figure 5.15 A block diagram of an audio cassette storage system.

THE BASIC PERIPHERALS 145

146 THE BASIC PERIPHERALS

.

UART
SERIAL

The serial transmitter/receiver section is nothing more than the UART serial inter-
face which we have already added. With MC1488 and 89 converters on its serial lines,
it communicates via a RS-232C. However, if you attach a cassette interface to these
lines, it can double as a storage device. An additional benefit is that serial data gener-
ated by the UART will offer some compatibility between personal computing systems;
standard data rates and standard serial communication protocol will promote this.

The output of the UART is TTL. Even with the RS-232C drivers, the logic output is
still a DC level. Because audio recorders cannot record DC, the UART output must be
converted in some way. The solution is FSK (frequency shift keying). The TTL output
from the UART is converted into audio tones. One frequency represents a lggic 0, and
a second represents a logic 1.

Figure 5.16 shows a circuit that will produce frequency shift keyed tones. A 4800 Hz
reference frequency is derived from the MC14411 data rate generator previously in-
stalled. IC 2A and 2B function as a programmable divider chain. Witha TTL logic 1 on
the input IC 2 divides the 4800 Hz by 2, giving a 2400 Hz output. When the input level
is changed to logic 0, it divides by 4, producing a 1200 Hz output. The FSK frequencies
are generated at a serial output rate of 300 bps and connected directly to the recorder
through the microphone or auxiliary input. (These frequencies and data rate are often
referred to as the Kansas City Standard.)

+5V

L
10K l (=
L 4 Y

oUTPUT >
1C33-25
FIG. 5.12

4800Hz

5

3 +ZV 0.01uF
cD4049 ‘H}_/; RECORDER
9 ‘ 7 16 INPUTS

2 10 s 15 ol S L 47K AUX INPUT
J Q J Q A~ > 1 VOLT
l PEAK TO PEAK
(C2A Ic28
13 CD4027 3 CDa027 0-0051F <10k
(] ~ T <
sLock cLock MIKE INPUT
0.1 VoLT
L PEAK TO PEAK
Ll 4 51k g1k
+5V R R /7\7
0.01uF
12 |8 4
0—‘ /J7 NOTE:
77 LOGIC "ONE" IN PRODUCES 2400 Hz OUTPUT
. 6 LOGIC “ZERQ" IN PRODUCES 1200 Hz OUTPUT

1€32-2
MC14411
FIG. 5.12

CD4049

Figure 5.16 A 300 bps serial output driver to an audio recorder.

Getting the recorded tones off the audio tape requires the circuit shown in figure
5.17. In general, it consists of a pair of band-pass filters and a voltage comparator. The
recorder is set to an output level of approximately 1 V peak to peak. This level is not
critical because it is amplified and limited as it passes through IC 1. IC 2 and IC 3 are
band-pass filters with center frequencies of 2400 Hz and 1200 Hz, respectively. The
output of IC 1 is fed into both of them, but should be passed by only one. IC 4 com-
pares the outputs of the two filters and generates a TTL logic 1 when a 2400 Hz tone is
received and a logic 0 with a 1200 Hz tone. Tuning the interface will be explained later.

The choice of the FSK frequencies and data rate are not left to chance. They are a
function of receiver response speed and recorder bandwidth. Most cassette recorders
have a frequency response of around 8 kHz. Less expensive units can be as low as 5 or
6 kHz. It is unwise to try to record tones at this upper limit. The center of the frequency
range offers more reliability, so the logic “1” FSK tone should be set less than 3 kHz
(2400 Hz in our case). In addition, it takes time for the receiver to recognize a particular
frequency. The circuit of figure 5.17 takes 2 or 3 cycles to respond. This means that at
the low frequency of 1200 Hz, each logic 0 bit will need 3 cycles at 1200 Hz to be recog-
nized.

AZ1- 4
mimo.O/Pu
|

N¥Nny 01

"8]]8SSEO 0IpNe UB WOIf 10A18084 Indut [el118s SAG 00E ¥ Z1'S @inBi4

NY¥Nn1 o0t
AL~ bRt
2]

%S MY/1 SHOLSISIH 11V
SHOLIOVdYO 47100 3LYNOSHYIATOd ¥O HY AW

NOG
€y MOI

14vNQ
ol

N1
11

VI6NIT - |
* |

37100
4710°0

N02l < 2OI
AL~ 3

ZH 002/
HILTS SSVIINVE

AL+

ezeehe

YOLVHVIWNOI
A EL

(Movr
ot *—N INOHJHY3)
(g)yienT HOI ind1Lno

311388VD

N3Niot

(Z2YVI6NT

¢

Aﬂ YILINIT

ZH 00+Z
YILUA SSVdan v g

THE BASIC PERIPHERALS 147

N |

148 THE BASIC PERIPHERALS

If we consider a worst case condition of sending all zeros, the transmission rate
would have to be slower than 400 bps to be accurately received. The closest standard
data rate to this value is 300 bps. Raising the 1200 Hz tone to increase the transmission
speed only complicates the filter design the closer it is to 2400 Hz. This interface has
been tested at 600 bps but it requires precise alignment to achieve faster speeds. The
low frequencies and moderate data rate are chosen specifically to increase the prob-
ability of successful construction rather than to compete with high speed data storage
systems.

The final point to consider is the software that runs the hardware. The ZAP monitor,
as it now stands, does not directly support a cassette interface even though it does han-
dle all the serial housekeeping. Until you write the cassette driver into an EPROM, you
will have to type in a short “bootstrap” program. To read the cassette, the logic of the
program would follow the flow diagram in figure 5.18.

First, a pointer is set in the H and L registers to designate where the cassette data will
be stored in programmable memory and an address where it will end. Next, taking ad-
vantage of the serial communication routine in the ZAP monitor, we simply call
“SERIAL IN"” which returns with a byte of data from the UART. This byte is stored in
memory, and the HL register pair is decremented and compared to a predetermined
stop address. If not equal, it repeats the process of getting another byte of data.

Storing memory is equally straightforward and is diagrammed in figure 5.19. Again,
a pointer is set to the beginning and the memory area to be written to tape. Next, the
“SERIAL OUT” routine is called from the ZAP monitor, which sends the byte of data
to the cassette. Finally, the pointer is decremented and compared to the end address to
see if more data is to be written.

These are relatively easy routines to write and short enough that they may be
squeezed into the few empty bytes within the ZAP monitor EPROM. Whatever the
case, you will soon realize the versatility and capability that such a simple interface
adds to a computer system. The 2 K of programmable memory on the basic ZAP will
become resident program space while the cassette will be a potential megabyte file stor-

age system for it.

SET POINTERS
FOR START AND
END OF READ BLOCK

CALL SERIAL IN
{ZAP MONITOR)

DECREMENT
POINTER REGISTER

POINTER AT NO
END OF READ BLOCK
ADDRESS
?

Figure 5.18 A flowchart of software to read a cassette.

SET POINTERS
FOR START AND
END OF DATA BLOCK

»

CALL SERIAL OUT
(ZAP MONITOR)

DECREMENT
POINTER REGISTER

POINTER AT

Figure 5.19 A flowchart of software to write a cassette.

TUNING THE CASSETTE INTERFACE

To test the cassette interface, it is necessary first to construct the circuit from figure
5.16. Use a frequency counter to determine that the input to IC 1, pin 5 is 4800 Hz.
With no UART installed, the frequency at pin 1 of IC 2b should be 2400 Hz. Ground-
ing IC 2b, pin 1 should change this output to 1200 Hz. In both cases, voltages of 1 and
0.1 V should be present on the cassette auxiliary and microphone inputs respectively.

The receiver uses the frequencies generated by the output section previously de-
scribed to set the calibration. With the output section set to 2400 Hz, attach a jumper
from the output interface to the input of the receiver circuit (figure 5.17). Using an
oscilloscope, check that the waveform at IC 1, pin 6 is a square wave of 2400 Hz. Next,
with the scope attached to IC 2, pin 6, adjust R1 until the voltage at that point is max-
imum. Moving the scope probe to IC 3, pin 6, and changing the input frequency to
1200 Hz, repeat the procedure by adjusting R2 until the voltage peaks.

R3 sets the point at which the comparator switches between logic levels when the in-
put frequencies change. The proper way to set this is to use a function generator on the
input and set R3 to switch at exactly 1800 Hz. The result should be clean logic level
switching at IC 4, pin 6, as the frequency is cycled between 1200 Hz and 2400 Hz. Gen-
erally speaking, the comparator setting is not especially critical.

THE BASIC PERIPHERALS 149

CHAPTER 6
THE ZAP MONITOR ,
SOFTWARE

The function of an operating system is to provide the programmer with a set of tools
to help him in developing, debugging and executing a program. In general, the operat-
ing system assists the programmer by managing the resources of the computer, and by
eliminating his involvement with repetitive machine-code manipulations. Operating
systems span a broad spectrum of complexity. Small systems, for example, provide
only a rudimentary means for a programmer to enter and read 8-bit data from mem-
ory; large systems, on the other hand, can dynamically manage the allocation of all
memory and peripherals.

Large systems allocate computer resources to more than one user in a multiprogram-
ming, multitasking, or a time sharing environment. A system of this magnitude far ex-
ceeds the capabilities of the computer described in this book. This being the case, what
would be a suitable operating system for the ZAP computer? As previously stated, the
objective of an operating system is to manage the resources of the computer. The ZAP
computer described in the previous chapters, and enhanced with the minimum periph-
erals, contains the following resources:

Z80 microprocessor

1024 bytes of EPROM memory

1024 bytes of programmable memory (2048 optional)
Nineteen-key keyboard

Two-character data display

Four-character address display

UART for serial I/O

The operating system must provide access to these resources and give the user a way
to manage them during execution of programs. The operating system designed for ZAP
will include the following facilities and functions:

Cold start

Warm start

Memory display and replace

Register display and replace

Execute (begin program execution at a
designated point)

6. Serial input and output

Rl ol ol o

Each will be explained in detail concerning its functions and program implementa-
tion.

I. OPERATING SYSTEM FUNCTIONS

Cold Start Operation
The operating system must be available immediately after power is applied to

THE ZAP MONITOR SOFTWARE 151

152 THE ZAP MONITOR SOFTWARE

the computer. In the past, some systems provided this capability by storing, in
read-only memory, a small “bootstrap” routine. This bootstrap routine was then
used to load the operating system into memory from another device, such as a
paper-tape reader or a cassette recorder. New technology eliminates thi$ tedieus
step. The operating system for your computer resides permanently on the
EPROM (erasable-programmable read-only memory) chip and is ready to be ex-
ecuted as soon as power is applied and the “RESET” button is pressed. The
depression and release of the “RESET” button sets the Z80 PC (program counter)
to zero.

With the next machine cycle, the processor begins execution of the instruction
located at 00,6 (location 00 hexadecimal) in memory. The operating system of the
Z80 microprocessor provides the instructions to begin execution. This particular
series of program instructions constitutes a “cold start” procedure and establishes
the required start up conditions for the operating system. The operating system
then initializes the SP (stack pointer) to an area in programmable memory for
maintaining the “push-down/pop-up” stack. This stack is required for execution
of any of the “RESTART" and “CALL" instructions provided by the Z80 instruc-
tion set. If it were not initialized before the execution of a “CALL"” or "RESTART"”
instruction, the effects of the instruction would be unpredictable. In this
operating system, the stack pointer is set to programmable memory location
07C446.

Warm Start Operation

After initializing the SP address, the operating system enters a command
recognition module. Before discussing this feature of the operating system, some
of the other restart features should be explained. The Z80 gives the user eight
address-vectored “RESTART” instructions (see Chapter 3 for a description of the
instructions). For example, the execution of a RST 08, will store the current PC
on the “STACK" and program execution will begin at location 08,s.

The following “RESTART" instructions are available within the operating
system:

RST 10:
RST 18
RST 206
RST 286
RST 30:
RST 386

The execution of any of these instructions causes the operating system to jump
to a location in programmable memory. At that location the user executes a jump
instruction to vector the computer to a new location.

RST 00,6 and RST 08,¢ have been reserved for use by the operating system for
special functions and will not result in a jump to a location in programmable
memory. These two RST instructions can be utilized in the debugging of pro-
grams. RST 00,6 will perform the same function as pressing the “RESET" button;
or it will reinitialize the stack pointer and enter the command recognition module
through execution of the “cold start” routine.

The execution of a RST 08,s by the Z80 will result in the “warm start” module
being entered. This module saves the existing data in all the registers in the “regis-
ter save area” located in programmable memory (see the listing of the ZAP oper-
ating system in Appendix D). The module will also extract from the stack the
user's restart address and save this in the register save area. The operating system
then enters the command recognition mode to wait for the next command. The
use of this feature allows the programmer to save register, pointer, flag, and pro-
gram counter data, prior to using any additional debugging features in the oper-
ating system. A detailed description of the “warm start” module is provided in
section IL.2 of this chapter.

Program Development and Debugging Services

The cold start and warm start procedures exit to the command input sequence.
With these command procedures, the programmer is able to examine and replace
ddta in memory or registers, and to begin execution at a user-specified location.
Upon entry to the command input module, the operating system displays “FFFF”
on the address section, and “FF” on the data section of the six character hexa-
decimal LED display. The user then implements one of the three command func-
tions by holding down the “SHIFT" key and pressing the “0,” “1,” or “2" keys. A
“SHIFT 0" (the SHIFT key and O key are pressed simultaneously) tells the
operating system to enter the memory display and replace function; “SHIFT 1”
enters the register display and replace function, and a “SHIFT 2" enters the go ex-
ecute module.

Memory Display and Replace

The memory display and replace function allows the user to examine the con-
tents of both read-only memory and programmable memory. During operation
the address and the contents of that location are shown on the respective dis-
plays.

The memory display and replace function is entered by executing a “SHIFT 0”
when the system is in the command recognition mode (address display = FFFF
and data display = FF). At this time, the operating system is waiting for the user
to enter an address of one to four hexadecimal digits from the keyboard. As
entered, these shift into the display area sequentially. If more than four digits are
entered, only the last 4-digit value (shown in the address display) will be used as
the address. Inputting of address data is terminated by pressing the "NEXT" key.
This causes the contents of the indicated address to be displayed on the two digit
hexadecimal data display. If the user wishes to display subsequent memory loca-
tions, he need only continue pressing the “"NEXT" key. This will step the memory
display program to the next higher memory location and display the new address
and memory contents. If the user wishes to change the contents of a displayed
memory location, he may enter new data by typing a two-digit value for that
location before hitting the next key. This new value is loaded into the indicated
address when the “NEXT" key is pressed. Pressing the “NEXT" key continues the
sequential display of address and data.

Termination of this function is accomplished by pressing the “RESET” or
“EXEC” buttons. Control is returned to the command recognition portion of the
operating system.

Display Memory Example

Key Address Display Data Display
FFEF FF
“SHIFT 0" 0000 FF
1 0001 FF
A 001A FE
F 01AF FE
“NEXT"” 01AF 01
“NEXT"” 01B0 1C
“RESET” FFFF FF

Memory Replace Example

Key Address Display Data Display
FFFF FF
“SHIFT 0” 0000 FF
4 0004 FF
0 0040 FF
0 0400 FF

THE ZAP MONITOR SOFTWARE 153

154 THE ZAP MONITOR SOFTWARE

“NEXT” 0400 01

2 0400 02
1 0400 21
“NEXT” 0401 05
6 0401 06
A 0401 6A
IIEXEC ”
The results will be: Address Data
0400 21

0401 6A

Register Display and Replace

The register display and replace function allows the user to examine and
change the contents of the saved Z80 registers. This is accomplished by executing
a RST 1 (warm start) during the execution of the program. During execution of
this function, the contents of the registers are shown on the address display.
Eight-bit registers will be displayed on the lower two digits of the address display.
(The upper two digits will be zeros during the display of 8-bit registers.) A code
that indicates which register is being displayed is shown on the data display.
Table 6.1 describes the codes that have been assigned to the register display and
replace function, as well as the key that initiates a particular register display se-
quence.

Code Z80 Register Initiating Key
(shown on data display) (shown on address display)
02 IX 2
03 IY 3
04 SP 4
05 PC 5
06 I 6
07 R 7
08 L 8
09 H 9
0A A A
0B B B
0C C C
0D D D
OE E E
OF F F
40 L “SHIFT 0"
41 H “SHIFT 17
42 A “SHIFT 2"
43 B’ “SHIFT 3"
44 C “SHIFT 4"
45 D’ “SHIFT 5"
46 E’ “SHIFT 6"
47 F “SHIFT 7"

Table 6.1 Display code/Z80 register/Initiating key correspondence.

The register display and replace function is entered by pressing a “SHIFT 1”
when the system is in the command recognition mode (address display = FFFF
and data display = FF). At this time the operating system is waiting for the pro-
grammer to enter the one-digit register code (see table 6.1). If more than one digit
is entered, only the last code indicated on the data display will be used as the reg-

ister identifier. When the central processor detects that the “NEXT” key has been
depressed, the contents of the indicated register are displayed on the address dis-
play.

If the user wishes to display subsequent registers he need only press the
“NEXT" key. This causes the next register to come up with the register code and
its contents. To change the contents of a displayed register the value is entered
and loaded when the “NEXT" key is pressed. For 16-bit registers, the last four
hexadecimal digits will be accepted if more than four characters have been
entered. For 8-bit registers the last two hexadecimal digits will be accepted. When
replacing register data, the “NEXT" key also causes the register code to be in-
dexed to the next register (see table 6.1) and its contents to be displayed.

The user may terminate this function by pressing the “EXEC” key. Control is
returned to the command recognition portion of the operating system.

Display Register Example

Key Data Display Address Display
(register code) (register contents)
FF FFFF
“SHIFT 1” 00 FFFF
A 0A FFFF
“NEXT” 0A 005C
“NEXT"” 0B 0063
“RESET” FF FFFF

Register Replace Example

Key Data Display Address Display
(register code) (register contents)
FF FFFF
“SHIFT 1” 00 FFFF
5 05 FFFF
“NEXT” 05 043A
4 05 0004
2 05 . 0042
C 05 042C
“NEXT” 06 OOFF
“NEXT” 07 0003
“EXEC”

Go Execute (“EXEC”)

The “go execute” (“EXEC”) function allows the user to change the contents of
the PC (program counter) register in order to direct execution of instructions at
the user-selected address.

The “go execute” function is entered by pressing a “SHIFT 2” when the system
is in the command recognition mode. Now the user must enter an address of one
to four hexadecimal digits. If more than four digits are entered, only the value
shown in the address display is used as the address to begin program execution.
Execution begins when the “NEXT” or “EXEC" keys are pressed. This causes the
Z80 registers to be stored in the register save area (see the operating system listing
in Appendix D) and execution begins at the user-specified address.

THE ZAP MONITOR SOFTWARE 155

156 THE ZAP MONITOR SOFTWARE

GO EXECUTE Example

Key Address Display Data Display

FFFF FF

“SHIFT 2" 0000 FF

1 0001 FF

A 001A FF

F 1ACF FF
“NEXT"”

or

“EXEC”

Serial 1/0 Services

_The ZAP computer includes a serial input/output capability that is imple-
mented with a UART. This interface allows serial communication between the
computer and peripheral devices such as a printer or a CRT. To aid the user in
utilizing this capability, the operating system has a UART diagnostic module, a
serial input module, and a serial output module. The input and output modules
are set up as subroutines that can be called during program execution and that are
not necessarily keyboard and display limited.

UART Diagnostic Module

The UART diagnostic module provides a means for checking the performance
of the UART. To utilize this feature the user must first attach the serial output
and input lines together so that data output from the UART may be read by the
same device. The serial diagnostic subroutine is initiated by using the “go
execute” function. Execution starts at 032D;s.

Once started, the diagnostic module (UATST) begins by sending data to the
UART and waiting for data to become available. The status of the UART is
checked to verify that no fault conditions are present. In the event that a fault is
detected, the status of the UART is displayed on the two low-order digits of the
address display. (See table 6.2 for error codes.) If there are no errors, the data is
read and displayed on the two-digit-data display. A comparison is made between
the input and output data. If the 2 bytes are equal, the output character is incre-
mented and another byte is sent to the UART to continue the sequence. This pro-
cedure continues until the “RESET” button is pressed, or until an error is
detected. In the event that the input character does not equal the output charac-
ter, a OFy is displayed in the two lower digits of the address display and the
diagnostic is halted. Figure 6.1 details the logic flow of this software routine.

Displayed Code Error
12,6 or 13,6 Parity Error
0A;s or 0Bys Framing Error
06,6 Or 0736 Overrun Error
00 Transmitter Buffer Not Empty
OFs Input Character # Output Character

Table 6.2 UART error codes.

UATST

INITIALIZE
QUTPUT CHARACTER

TRANSMITTER
BUFFER EMPTY
?

NO

YES

P

A
)
OUTPUT CHARACTER

TO UART

DISPLAY STATUS
IN LSD SECTION
OF ADDRESS

OUTPUT CHARACTER DISPLAY

TO MSD's OF
ADDRESS DISPLAY

DISPLAY INPUT
) CHARACTER IN
DATA DISPLAY

DATA
AVAILABLE FOR

C-43ACTER =
N°JT CHAR-
AZTER
3

SET STATUS TO
IOFl

INCREMENT
OUTPUT CHARACTER

Figure 6.1 A flowchart of the UART diagnostic module (UATST).

Serial Input Module

The serial input module has been included so the user can read serial data from
external devices. To utilize this capability, the user must set aside a program-
mable memory buffer where the input data is to be stored, and designate the
number of input characters expected. The input buffer address is stored at address
07F9,6 in memory (see Appendix D), and the number of characters is stored at ad-
dress 07FD,s. The communication reception begins when the TTYINP module is

called.

Serial Input Initiation Example
TTYINP EQU 035F; Address of input module
BUFFER EQU 07F9;s Input buffer address
NCHAR EQU 80 Number of characters to be received
TTYIBU EQU 07F9; Operating system address constant
TTYIC EQU 07FDss Operating system address constant

LD HL, BUFFER Set buffer for operating system
LD (TTYIBU), HL

THE ZAP MONITOR SOFTWARE 157

LD A, NCHAR Set character count for operating system
LD (TTYIC), A
CALL TTYINP Call UART serial input routine

The data read by the serial input module will be stored in the user-specified
buffer until the input sequence is terminated. When this occurs, control is re-
turned to the user’s program at the next instruction. Termination of the input pro-
cess may be due to any of the following conditions:

® A status error is detected

® The number of characters read equals preset count

® The receipt of a carriage return as an input
character (ASCII 0D;s)

In the event that a status error is detected, the A register will be equal to 8046
when control is returned to the user. If termination results from filling the charac-
ter buffer correctly, the A register will be equal to 00,s. However, if termination is
the result of a carriage return, the A register will be equal to the number of char-
acters remaining to be input. Figure 6.2 details the logic flow of the TTYINP soft-
ware module.

OBTAIN USERS
INPUT BUFFER
ADDRESS AND
NUMBER OF INPUT
CHARACTERS

INPUT DATA
AVAILABLE
?

IS
UART STATUS
CLEAR

NO RETURN
TO USER

INFUT CHARACTER Figure 6.2 A serial input module (TTYINP) flowchart.

FROM UART

SAVE CHARACTER
IN USERS BUFFER

IS
CHARACTER
A CARRIAGE
REEyRN

OUTPUT A
CARRIAGE RETURN
LINE FEED TO
SENDING DEVICE

OUTPUT CHARACTER
TO SENDING DEVICE

HAVE
ALL INPUT
CHARACTERS
BEEN RE-
CEgED

YES

RETURN
TO USER

158 THE ZAP MONITOR SOFTWARE

Serial Output Module

The serial output module is provided to assist the user in communicating serial
output data to external devices. To use this module, the operator designates an
output data buffer address and the the number of characters (bytes) to be trans-
mitted. The output buffer address must be stored at 07FB,s in memory (see Ap-
pendix D) and the number of characters to be sent is stored at address 07FEs.
Data transmission starts when TTYOUT is called.

Serial Qutput Initiation Example

TTYOUT EQU 039E;s Address of output module

BUFFER EQU 07FB;s Output buffer address

NCHAR EQU 35 Number of characters to be transmitted
TTYOBF EQU 07FBis Operating system address constant
TTYOC EQU O07FEs Operating system address constant

LD HL, BUFFER
LD (TTYOBF), HL
LD A, NCHAR
CALL TTYOUT

Set buffer address for operating system

Set character count for operating system
Call UART serial output routine

Control will be returned to the user when

e The output buffer is empty
® The transmit buffer does not become available,
indicating an error

In the event that a normal termination occurs, the A register will be equal to
00;s when control is returned to the user. However, if a premature termination
and return are required, the A register will be equal to 01,. Figure 6.3 details the
logic flow of the serial output software module.

OBTAIN USERS
QUTPUT BUFFER

ADDRESS AND THE
NUMBER OF
CHARACTERS TO
BE QUTPUT

1S
UART
OUTPUT BUFFER
EMPTY

DELAY
COUNT=5
?

RETURN

GET CHARACTER
TO USER

FROM USERS
QUTPUT BUFFER

l

QUTPUT CHARACTER
TO DEVICE

ALL
CHARACTERS
QUTPUTED

RETURN
TO USER

Figure 6.3 A serial output module (TTYOUT) flowchart.

THE ZAP MONITOR SOFTWARE 159

160 THE ZAP MONITOR SOFTWARE

II. Operating System Module Description

II.1 Warm Start Module

The warm start module (WARM]1) is responsible for saving all Z80 registers in
the register save area allocated in the reserved portion of programmable memory
(see Appendix D). Upon entry, the user’'s A, H, and L registers are saved to pro-
vide working registers for the remainder of the module operation. Next, the user’s
PC is removed from the stack and is saved in the memory locations reserved for
it.

The AF register pair is pushed onto the stack and popped off into the HL regis-
ter pair. This procedure enables the flag register to be saved in the register save
area. The remainder of the user’s working and alternate registers are examined
and transferred to the register save area. Upon completion of this task, the
module exits to the command recognition module. (See Appendix D for addi-
tional details.) Figure 6.4 details the logic flow of the warm start module.

‘ WARM1 >

SAVE USERS
A,H, & L
REGISTERS

GET USERS PC
ADDRESS FROM
STACK AND

SAVE IN REGISTER
SAVE AREA

SAVE USERS
FLAG REGISTERS
IN REGISTER
SAVE AREA

SAVE USERS
IX, 1Y, AND
SP REGISTERS

SAVE USERS
l, R, B,C,D, &
E REGISTERS
IN SAVE AREA

GET USERS
ALTERNATE
REGISTERS AND
SAVE IN REGISTER
SAVE AREA

‘ WARM2 ’

Figure 6.4 A flowchart of the warm start module (WARM1).

I1.2 Command Recognition Module

The command recognition module (WARM2) is entered after the completion of
a cold or warm start sequence. When initiated, the module clears the keyboard
input buffer and the keyboard flags. This removes ambiguity for future opera-
tions. The module will set the data display to FF and the address display to FFFF.
When completed, the module enters the KEYIN subroutine to get an input charac-
ter from the keyboard. Any input character is checked to see if it corresponds to
one of the three allowable functions. If so, control is transferred to the proper
function; otherwise, the input is ignored and the module waits for the next input
from the keyboard. (See Appendix D for additional details.) Figure 6.5 illustrates
the logic flow of the command recognition module.

‘ WARM2 ’

P

CLDIS

CLEAR DISPLAY,
BUFFER, AND FLAGS

DISPLAY FFFF

ON ADDRESS
DISPLAY & FF

CN DATA DISPLAY

KEYIN

GET REQUEST
FRCM KEYBCARD

MEMORY

REGISTER
FUNCTION
f

REGIST

Figure 6.5 A flowchart of the command recognition module (WARM2).

THE ZAP MONITOR SOFTWARE 161

I1.3 Restart Module

The restart module (RESTRT) takes the values stored in the programmable
memory register save area. It then restores the user’s 8- and 16-bit registers before
returning control to the location specified in the PC save area. This procedure
restores the alternate registers, and then the working registers. In either instance,
the flag registers are restored by pushing the data onto the stack and then popping
if off to the F register. In order to exit to the user’s restart address, the saved PC is
pushed onto the stack and a “RET” (return instruction) is executed. (See Appen-
dix D for additional details.) Figure 6.6 details the logic flow of the restart
module.

‘ RESTRT)

GET USERS
ALTERNATE
REGISTERS
FROM REGISTER
SAVE AREA

RESTORE USERS
FLAG REGISTER
AND WORKING
REGISTERS

RESTORE USERS
STACK POINTER
FROM REGISTER
SAVE AREA

OBTAIN USERS
RESTART ADDRESS
FROM REGISTER
SAVE AREA AND
PLACE ON STACK

RESTORE USERS
H&L REGISTERS

RETURN
TO USER

Figure 6.6 A flowchart of the restart module (RESTRT).

162 THE ZAP MONITOR SOFTWARE

11.4 Keyboard Input Module

The keyboard input module (KEYIN) provides the primary interface between
the computer and the user. Upon entry, it begins to read data from the keyboard
input port. It stays in a loop, checking the MSB (most significant bit) of the data.
The MSB is the key-pressed strobe. When it goes to a logic one level, the seven
LSBs (least significant bits) of the keyboard input port are retained as the desired
input character. The module then returns to the user’s program with the key-
board character in the accumulator. (See Appendix D for additional details.)
Figure 6.7 details the logic flow of the keyboard input module.

(KEYIN)

-

INPUT DATA
FROM KEYBOARD
INPUT PORT
(PORT 0)

STROBE BIT (7)

SAVE DATA

IS
STROBE BIT
RESET=0
°

CLEAR STROBE
BIT FROM
INPUT DATA

‘ RETURN)

Figure 6.7 A flowchart of the keyboard input module (KEYIN).

THE ZAP MONITOR SOFTWARE 163

164 THE ZAP MONITOR SOFTWARE

I1.5 One Character Input Module

The function of this module (ONECAR) is to input one or more characters
from the keyboard. This module also indicates the last character and whether it
was accompanied by a “NEXT” or “EXEC" key.

Upon entry, the input buffer and keyboard flags are cleared. (The data display
may or may not be cleared depending on the requirements of the calling module.)
The module waits for an input character to be passed to it. When it receives a
character, it checks to see if it is a “NEXT"”, "EXEC", or valid data. In the event
that the input is a “NEXT" or “"EXEC”, the appropriate keyboard flag is set along
with the no data flag and control returned to the user (see figure 6.8).

If an invalid data character is received, the module is reinitiated. Upon receipt
of valid data, the data is stored in a 1-byte input buffer, and the module waits for
the next input character. This character is processed in a manner similar to the
one just described with the following exception: in the event that the input char-
acter is a “NEXT"” or “EXEC”, only the appropriate flag is set before returning
control to the user. (See Appendix D for additional details.) Figure 6.9 shows the
logic flow of the one character input module.

BiIT 7 6 5 4 3 2 1 0
DIE]|N

l-—---NEXT FLAG

EXEC FLAG -
NO DATA FLAG

Figure 6.8 The configuration of the keyboard flags.

(ONECAR ’

[N

CLEAR DISPLAY
INPUT FLAGS AND

INPUT BUFFER Figure 6.9 A flowchart of the one character input module (ONECAR)

KEYIN

INPUT
CHARACTER FROM
KEYBOARD

I

DISPLAY
CHARACTER ON
DATA DISPLAY

CHARACTER
='NEXT'
?

SET 'NEXT'AND
"NO DATA' FLAGS RETURN

SET 'EXEC'AND
‘ND DATA' FLAGS

CHARACTER
='EXEC'

CHARACTER
=gt - E

SAVE CHARACTER
IN INPUT
BUFFER

KEYIN

INPUT CHARACTER
FROM KEYBOARD

SET 'NEXT' FLAS

SET 'EXEC' FLAG

I1.6 Two Character Input Module

The function of this module (TWOCAR) is to input one or more characters
from the keyboard and transfer to the user the last two characters when a
“NEXT” or “EXEC" key is pressed. The module also notifies the user of the type
of termination that took place.

Upon entry, the input buffer and keyboard flags are cleared. (The data display
may or may not be cleared depending on the requirements of the calling module.)
This module calls the keyboard input module to obtain its input data. The first
character is checked to determine if it is a “NEXT" or “EXEC"; the appropriate
keyboard flag is set along with the no data flag, and control is returned to the user
(see figure 6.8). If an invalid character is received, the module is reinitiated.

THE ZAP MONITOR SOFTWARE 165

166 THE ZAP MONITOR SOFTWARE

The receipt of valid data will cause the module to format the data as a two-digit
value in the keyboard input buffer. It then returns to the user with the ap-
propriate flags set. (See Appendix D for additional details.) Figure 6.10 details the
logic flow of the two character input module.

(TWOCAR)

CLDAT

CLEAR DATA
DISPLAY, FLAGS,
AND INPUT BUFFER

KEYIN

INPUT CHARACTER
FROM KEYBOARD

CHARACTER
= 'NEXT
?

SET 'NEXT' AND
‘NO DATA' FLAGS RETURN

CHARACTER
='EXEC'
?

SET "EXEC' AND
'NO DATA' FLAGS

FOR NEW T :

ADD IN NEW 2 3.7
TO DATA AND
STORE IN

INPUT DATA &
DISPLAY DATA

KEYIN

INPUT CHARACTER
FROM KEYBOARD

CHARACTER
='NEXT'

SET 'NEXT'FLAG RETURN

CHARACTER

X SET 'EXEC'FLAG
='EXEC'
P

Figure 6.10 A flowchart of the two character input module (TWOCAR).

I1.7 Four Character Input Module

The function of this module (FORCAR) is to input one or more characters from
the keyboard and to transfer to the user the last four characters when a “NEXT”

or "EXEC" key is pressed. In the event that less than four characters are input, the
higher order digits will be set to zero. The module also notifies the user via the

keyboard flags (see figure 6.8).

The operation of this module is very similar to the two character input module.
The main difference lies in the manner in which the new data (input from the key-
board) is merged into previous input data from the keyboard. (See Appendix D
for additional details.) Figure 6.11 shows the logic flow of the four character in-

put module.

(FORCAR }

CLDIS

CLEAR DISPLAY,
FLAGS, AND
INPUT BUFFER

KEYIN

INPUT CHARACTER
FROM KEYBOARD

Figure 6.11 A flowchart of the four character input module (FORCAR,).

CHARACTER
='NEXT'

SET "NEXT'AND

] 'NO DATA' FLAGS

CHARACTER

SET'EXEC'AND
'NO DATA' FLAGS

='EXEC
°

—{ RETLRN

CHARACTER
rArY

SAVE INPUT
CHARACTER

ADJUST PREVIOUS
FOUR DIGITS
FOR NEW DIGIT

ADD IN NEW
DIGIT AND SAVE
FOUR DIGITS IN
INPUT BUFFER

I

CUTPUT FOUR
C'GiTS TO
ATSRESS DISPLAY

KEYIN

INPUT CHARACTER
FRCM KEYBOARD

SET'NEXT'FLAG

CHARACTER

='EXEC'
°

SET'EXEC'FLAG

NO

< RETURN ’

THE ZAP MONITOR SOFTWARE 167

168 THE ZAP MONITOR SOFTWARE

I1.8 Memory Display and Replace Module

The memory display and replace function is one of the three major modules of
the operating system. Upon entry (see command recognition module), this
module (MEMORY) makes a call to FORCAR (four character input module) to
get the base memory address at which to begin displaying the memory contents.
When it returns from FORCAR, the keyboard flags are examined to determine if
the “EXEC” flag is set (=1). In the event that the “EXEC" flag is set, control is
transferred to the restart module (RESTRT). If the “EXEC” flag is not set (=0),
the address location and memory contents are output to the appropriate displays.
The TWOCAR (two character input module) is called to obtain new data from

the displayed memory location.

CLEAR BASE
MEMORY ADDRESS

FORCAR

GET BASE
MEMORY ADDRESS

YES
=G

NO

SET BASE
MIMCRY ADDRESS

DISPLAY CONTENTS
OF REQUESTED

MEMORY ADDRESS
ON DATA DISPLAY

TWOCAR

GET NEW DATA

IS
'EXEC'FLAG
SET
?

"NO DATA'
FLAG SET
?

YES
WARM2

GET NEW DATA
FROM INPUT BUFFER

REPLACE OLD
DATA IN MEM
WITH NEW DATA

1S
'EXEC'FLAG
SET
?

NO

INCREMENT BASE
MEMORY ADDRESS

l

Figure 6.12 A flowchart of the memory display and replace module (MEMORY).

Motiade

-

When control is returned from TWOCAR, the module checks the “no data”
flag in the keyboard flag word. If this flag is set (=1), the "EXEC" flag is exam-
ined. If that is set, control is transferred to the command recognition module
(WARM2). If, on the other hand, the “EXEC" flag is reset (=0), the user’s
memory address is incremented, displayed on the address display, and its con-
tents are displayed on the data display.

If, on return from TWOCAR, the “no data” flag is reset (=0), the new data is
extracted from the keyboard input buffer and stored in the displayed memory
location. At this time, the module determines if TWOCAR was exited via an
“EXEC” or “NEXT" directive. In the event that the “EXEC" flag is set (=1), con-
trol is transferred to the command recognition module (WARM?2). If, however,
the flag is reset (=0), the user’s memory address is incremented, displayed on the
address display, and its contents are displayed on the data display. Then the two
character input module is called to get the next directive for the memory display
and replace module. (See Appendix D for additional details.) Figure 6.12 shows
the logic flow of the memory display and replace module.

I1.9 Register Display and Replace Module

The register display and replace module (REGIST) is one of the three major
modules of the operating system. This medule calls the ONECAR (one character
input module) to get the initial register display code from the user (see table 6.1).
Upon return from ONECAR, the "EXEC" flag is checked. If this flag is set (=1),
control is transferred to the command recognition module (WARM2). If the
“EXEC” flag is reset (=0), the base register display index is calculated from the
user’s register display code.

At this time, the register index is checked to see if the register request is an 8- or
16-bit register. If the user requests a 16-bit register, the appropriate register code
is displayed in the data display, and the requested register data is obtained from
the register save area and displayed in the address display. The module then
makes a call to the FORCAR (four character input module) to get new data for
the register. Upon return, the “no data” flag is checked. If this flag is set and the
“EXEC"” flag is set, control is transferred to the RESTRT (restart module). If the
“no data” and “NEXT" flags are set, the register display index is incremented and
displayed in the data display. The new register data is obtained from the register
save area and displayed on the address display.

If an 8-bit register has been requested, the register code (see table 6.1) is dis-
played in the data display, and the appropriate data is obtained from the register
save area and displayed on the address display. At this time, the module calls
TWOCAR to get new data from the displayed register. \When the two character
input module returns control, the module determines the mode of execution by
examining the keyboard flags. If the “no data” and "EXEC" flags are set, control
is transferred to the command recognition module (WARM?2). If the “no data”
and “NEXT" flags are set, the register index is incremented and the register con-
tents channeled to the appropriate display.

If the “no data” flag is reset, the new register data is obtained from the key-
board input buffer and stored in the appropriate register save location. At this
time the “EXEC” flag is checked and, if set, control is transferred to the command
recognition module (WARM2). If the “EXEC” flag is reset, the register data is dis-
played and the user directive processed. (See Appendix D for additional details.)
Figure 6.13 details the logic flow of the register display and replace module.

THE ZAP MONITOR SOFTWARE 169

‘ REGIST '

ONECAR TWOCAR
T
((SIE_F)BASE REGISTER GET NEW DATA
'S
YES "EXEC'FLAG
SET
NO WARM2 WARM2
BASE INDEX GET NEW DATA
= BASE REG - 1 FROM INPUT BUFFER
REPLACE OLD DATA
NO_EASE INDEX WITH NEW DATA
<0
?
YES
INCREMENT
BASE INDEX

DISPLAY IX IN L
ADDRESS DISPLAY

BASE INDEX

BASE INDEX DECREMENT
=F QR D BASE INDEX
BASE INDEX INCREMENT N
=1 BASE INDEX ss_ayv
INCREMENT 3
NO BASE INDEX
BASE INDEX o

= BASE INDEX + 2

SAVE BASE INDEX

BASE INDEX BASE INDEX
=CORE
?

BASE INDEX

NO YES <1
BASE INZEX BASE INDEX NO
= BASE INJEX -1 =BASE INDEX+1

L I3

GET REGISTER
DATA FROM TABLE

DISPLAY DATA ON
ADDRESS DISPLAY

Figure 6.13 A flowchart of the register display and replace module (REGIST).

170 THE ZAP MONITOR SOFTWARE

11.10 Go Execute Module

The go execute module (GOREQ) is the last of the three major functions of the
operating system. Upon entry (see command recognition module), this module
calls FORCAR to get the address where execution is to begin. Upon return from
FORCAR, the “no data” flag is examined to determine the mode of execution. If
this flag is set (=1), control is immediately transferred to RESTRT. This restores
the Z80 registers and resumes execution at the PC address currently contained
from the keyboard input buffer and stored in the PC save location in the register
save area. Control is then transferred to the command recognition module
(WARM?2) which will restore the registers with the saved data, and begin execu-
tion of the user’s program at the specified address. (See Appendix D for addi-
tional details.) Figure 6.14 details the logic flow of the go execute module.

(GOREQ)

FORCAR

GET RESTART
ADDRESS

IS
‘NO DATA'
FLAG SET
?

SAVE NEW
RESTART ADDRESS
IN REGISTER

SAVE AREA

‘ RESTRT)

Figure 6.14 A flowchart of the go execute module (GOREQ).

THE ZAP MONITOR SOFTWARE 171

CHAPTER 7
PROGRAMMING AN
EPROM

The ZAP computer has been designed to be inexpensive, reliable, and easy to con-
struct. To keep costs and complexity to a minimum, some computer features that could
be helpful to a beginner have been eliminated. The most visible of the missing features
are a front panel and display. While this in no way detracts from the operation of the
computer, its inclusion would make initial checkout and program development easier.

To properly test ZAP, a program must be in memory. This program does not have
to be very long—only a few instructions are necessary to determine whether the com-
puter runs at all. The problem arises when the user wishes to run a program of 50 or
100 bytes in length. e end up with a “catch-22" situation. To effectively enter ma-
chine code into ZAP’s programmable memory, a program that coordinates this activity
must be running in EPROM. Such a program is called a monitor and is outlined in
Chapter 6. The catch is that writing the monitor software into an EPROM automatical-
ly requires the monitor to be running the programmer. Fortunately, if one has an alter-
nate way of writing the 1 K ZAP monitor into EPROM, this is no longer a problem.

Rather than leaving the experimenter to his own devices, this section includes infor-
mation on programming EPROMs. To solve the startup situation, I've outlined a de-
sign for a couple of manual EPROM programmers. Loading programs on a manual
programmer is tedious. They are primarily intended for much shorter routines such as
checking basic system operations. However, one manual unit can be modified to load
the full 1 K monitor software. When ZAP is fully operational, you can use it in con-
junction with an automatic programmer. This will help in writing a number of
EPROMs. In the event that you do not wish to write your own EPROM, consult Ap-
pendix A for the availability of preprogrammed EPROMs.

A Quick Review of EPROMs

It is often desirable to have the non-volatility of ROMs but the read/write capa-
bilities of semiconductor programmable memories. An effective compromise is the
EPROM. This is a read-mostly memory. It is used as a ROM for extended periods of
time, occasionally erased and reprogrammed as necessary. Erasure is accomplished by
exposing the chip substrate, covered by a transparent quartz window, to ultraviolet
light. We'll cover erasure at the end of this chapter.

The EPROM memory element used by Intel and most other manufacturers is a stored
charge type called a FAMOS transistor (Floating-gate Avalanche injection Metal Oxide
Semiconductor) storage device. By selectively applying a 25 V charging voltage to ad-
dressed cells, particular bit patterns that constitute the program can be written into the
EPROM. This charge, because it is surrounded by insulating material, can last for
years. Exposure to intense ultraviolet light drains the charge and results in the erasure
of all programmed information.

There are many EPROMs on the market—2708s, 2716s, and 2732s are the major
ones. For the most part, computerists have moved away from the very difficult-to-
program 1702s and have opted for the more easily programmed 2708s and 2716s. An
added benefit is their greater storage density. The newer EPROMs on the market are
considerably more expensive than the 2708. All things considered, the 2708 is the best

PROGRAMMING AN EPROM 173

174 PROGRAMMING AN EPROM

buy for the money. At slightly greater expense, you could use the 2758 for a single sup-
ply operation. For these reasons, the EPROM programmer outlined in this chapter is
the 2708.

Figure 7.1 is the circuit for a manual 2708 programmer. IC 5 and two sections of IC 3
provide the +25 V program pulse to the EPROM. IC 5 is set for a duration of 1 ms and
is triggered by a logic 0 to 1 transition at its input. The EPROM both sources and sinks
current through programming pin 18. A combination of devices rather than a simple
open-collector driver is necessary. In the write mode, when CS/WE pin 20 is at
+12 V and between programming pulses, pin 18 has to be pulled down by an active
device because it sources a small amount of current. The programming pulse itself is
about 30 mA and cannot easily be accommodated without emitter-follower configured
Q1. This pulse should be between 25 and 27 V at pin 18. Three 9 V batteries will suf-
fice. (An alternative is to use a commercial encapsulated 24 V, 50 mA puwer supply.
The encapsulated supply can be resistor trimmed to produce the desired 25 to 27 V.)

To write a byte into the EPROM, a 10-bit address designating which of the 1024
bytes will receive the data is preset on switches SW 1 thru SW 10. To start at location
0, all switches will be in the closed position. Next, the 8 bits that are to be stored are set
on switches SW 12 thru SW 19. This data byte should be reflected on the output dis-
play LED 1 thru LED 8. Finally, to get the programmer in the write mode, switch
SW 11 is set open. Actual insertion of the data occurs when the write pulse pushbutton
PB 1is pressed. This fires a 1 ms pulse of 25 V into the 2708 program pin. According to
manufacturer's specifications, no single programming pulse should be longer than
1 ms. For maximum data retention, 100 of these programming pulses are reccommended
(totalling 100 ms per byte).

Unfortunately, 100 ms cannot be applied to a single address all at once. Manufac-
turers specify that it should be done sequentially and should consist of 100 1-ms ap-
plications. In short, it means that for a 25-byte program, each address should be writ-
ten with one pulse and then the loop repeated up to 100 times. I have never tried to
lengthen the pulse and program a 2708 faster than called for. Experience has shown,
however, that some EPROMs are completely written with as few as 2 or 3 loops. Ob-
viously, for full retention each address should be rewritten on an automatic program-
mer.

Reading back the stored contents of a 2708 is easy on the same manual programmer.
First, all data input switches SW 12 thru SW 19 are opened to the “1” state and then
“read ‘write” switch SW 11 is set in the closed or “read” mode. No other pulsing or
clocking is necessary. The output display will show the contents of the byte pointed to
by the address input switches SW 1 thru SW 10. It will remain constant until set to
another address. Reading out the contents is simply a matter of incrementing this 10-bit
address through the range of program addresses.

A slightly more complex manual programmer is demonstrated in figure 7.2. Three
presettable counters are inserted between the address input switches and the EPROM.
Instead of changing the switch positions for each address, they are now used only to
preset the counters to some beginning address. If we want to program an EPROM start-
ing at hexadecimal 3AA, the switches would be set to that address and the “address
preset” switch pressed. The 10 LEDs, LED A0 thru LED A9, would read 3AA as the ad-
dress. The data to be programmed is set on SW 12 thru SW 19. Pressing the “write
data” push button PB1 (the renamed “address increment”) stores the data from the
switches. Successive memory locations are programmed by setting SW 12 thru SW 19
and pressing PB1. Resetting the address counter to zero is accomplished by pressing the
clear button,

It is easy to see how this manual programmer, while not greatly improving program-
ming time, facilitates reading memory. Put all the data input switches to the logic 1
level, set the interface to the read mode, and preset and load a start address. Readout is
accomplished simply by repeated operation of the address increment button.

An Automatic Programmer

You will need an operational ZAP computer to build an automatic programmer. The

Jswwesboid gosz [enuew B jo welbeip ojeweyos v 'L ainbi4

R Ol Nid
— £21 WOYA
S48 730 bl EICETRLZ: o e
oove ¥l A8 () T amiy L LA T
90vL €91 035072 =0 21901 =]
90vL 29l N340 =T 91907 ALZHG p SUT LIV 90!
8oLz 101 10dS 6IMS-IMmS - 3/8 1x35]
vZ2z2ZeNe T o
135 v1va as AV __
Wee 4 ML g
AG+
90vL
90vL ZIMS|EIMS|PTMSIGIMS| STMS|LIMS[BTMS| 6TMS qs €01
21
£ ¢ 904d
5°N5 ‘ A G ovl;
€01
1y
qum o' ¢
€31 2y
g
4 [1 ¢a €Y
el i ov-6Yy
CIRAN T t]t? vy 138
221
802 ¢y $S3¥AQV
g 3 i LS 191 €
291 9y
9 5 ot ¢
Zo1 v
90
v € 91 8v
zZal £e
BSW ¢ NI [I T I (T |
as g < $ $ 3 o[o] v A : 4
1an 3710°0 1 1_.\.
2G37 AG+ *® L g vhwv xl.\..e \ g 11 -0 0 0 009
P S T LT ! 470t ({83 PAN € NId LOvId,
ACL+ AG+ 52101 20350719
(8 z oA
) B0z o \Jﬂﬁ\m
D S S . S £91
8037 N¥HL 1031 ot nI00W 31t ILIBM,
1N0GY3y Q31 119-8 N340
Acl+ AG+

AS+

PROGRAMMING AN EPROM 175

g
24

+5V

0.01uF
CLEAR £ ? v
[
3 sk RV 16
Fez] 11 4700
— s LD
N.c. 14 8
CLR)
ADDRESS IY;‘K S LED AQ-LED A9 <
PRESET (o) . Ic6 R
o3 MsB 8 74193 TYPICAL
F
c»——-ﬁf: SWI10 al2 0R?0
.C.
77 . LUV L1 Y w A 3 0.01
N.2.= NORMALLY 5 ﬁg_)
CLOSED
+5Y 22
CONTACT 12 ‘ a9
SW8 [
) - of, °oR 16 : 3as
SW7 i
e 2Ye oH LUy
POLLAZ NI | PO cfe 3PP
sws 15 74193) 5
o—cc A 8 A5
Meir A 1 Y
| 5
o 12 $as
up /77 1‘ .
5 —— 112
‘
7
+EY T Al
12 i
CR 5
Swé
o —"21p oL
Sw3 12
—"—5c ics cl
SW2 1 74193
—o— 18 8l2
Swi 3
+5V PRAARIS NS Y NE
1 8
LS8 -D:LR upP ;7
7 Pa 5 sy
COUNT o
s O.1kF Fag |
T
, 10 11
1 5 aCexT R/C ~o
IC5 74121 1ms
Al A2
ADDRESS 3 = 5 35V
47K INCREMENT ﬁL
FROM 1C3
PIN 10

Figure 7.2 A srhématic diagram of a self-incrementing manual 2708 prograrmmer. Light-emitting
diodes (LEDs) are to “e connected to all 10 address-input lines of the 2708. For clarity, only one LED
(connected to address line A9) is shown in the diagram. The other LEDs are to be wired in the same

way.

176 PROGRAMMING AN EPROM

IC1
2708

D0-D7

"WRITE"
SPDT

"READ"

CCNNECTED AS SHOWN
IN FiGURE 7.1

1C1
1C2
1C3
1C4
1C5
1Cé
1c7
ic8

-\

2708
7406
7406 *
7400
74121
74193
74193
74193

.
A

complexity of design can be reduced considerably by taking advantage of decoded, but
to this point unused, I/O strobes provided in the basic ZAP. The circuit shown in
figure 7.3 takes three less chips than the manual programmer in figure 7.2. Its opera-
tions, while similar in operation, are quite different in detail.

Four 1/O strobes (input and output port 1, and input and output port 4) synchronize
the hardware and software. Figure 7.4 shows the logic flow for writing an EPROM.
With the EPROM connected directly to the data bus, only the strobes, rather than full-
latched registers, are necessary for this interface.

To write data, the sequence should be as follows: first, an OUT 04 pulses the address
counter clear lines, setting them to 0. Next, the EPROM is set to the program mode,
and the first byte is written into the EPROM with an OUT 01 instruction.

Figure 7.5 shows how the 2708 program mode is selected. The significance of this cir-
cuit is that its output is wired as a 2-bit digital-to-analog converter to control the chip-
select line of the 2708.

When an OUT 04 is executed, the CS pin will see 0 volts enabling the read mode.
When an OUT 01 is executed, this voltage will be 12 V for program mode. When no
strobe is present, CS will be at +5 V and the 2708 will be three-state.

An OUT 01 fires the 25 V program pulse for 1 ms while the pertinent data is on the
data bus. After that, an INP 01 is executed, which increments the address counter to
the next address position. We are not actually doing any input function, but instead we
are using the decoded strobe of the INP 01 instruction to mean “increment address reg-
ister.”

The hardware automatically keeps track of the address, but the software must imple-
ment its own counters to keep track of the O to 1023 positions as well as the number of
times the complete 1024 byes have been programmed. Remember, the manufacturer
suggests 100 1-ms locps.

Reading the EPROM automatically is also very simple. A flow diagram of the logic is
shown in figure 7.6. The address counter is cleared again by doing an OUT 04. Data is
read by executing an INP 04. This data can be stored and analyzed. Finally, the address
counter is incremented again with an INP 01, and the process is repeated to read the
next byte.

While discussion has centered on the Intel 2708 EPROM as the most cost-effective
choice, there are many other EPROMs on the market. Two devices of particular impor-
tance (should their price and availability improve by the time you read this) are the
Intel 2758 and 2716. These are 1 K and 2 K single supply (+5 V) EPROMIs, respective-
ly. The significance for the experimenter is that these parts can be programmed with a
single, 50 ms, 25 V program pulse to each address rather than successive 1-ms loops.
The three programmer circuits presented are set up for 2708s but can be easily recon-
figured for these other devices. Changing the one-shot timing pulse from 1 ms to 50 ms
and rewiring a few pins will allow complete programming with just a single run
through the addresses (they don't have to be successively programmed, either).

Erasing An EPROM

EPROM:s bought directly from a manufacturer come completely erased. If you plan
on writing an EPROM program once, and you either don't want to modify it or you
don’t make mistakes, forget about erasing. The majority of computerists will want to
reprogram EPROMs. It then becomes necessary to know how to erase them. We all
know that EPROMs are ultraviolet erasable. However, duration, distance from the
light source, and intensity determine the quality of the erasure.

People concerned about maintaining a manufacturer’s specifications during the pro-
gramming sequence should also be advised of the proper erasing methods. Unlike the
test read-after-write-loop method for programming, EPROMs are usually removed
from the circuit during erasing. Therefore, it is advisable to perform the procedure cor-
rectly, or it will have to be repeated.

The typical 2708 EPROM can be erased by exposure to high intensity shortwave
ultraviolet light, with a wave length of 2537 A. The recommended integrated dose (UV
intensity X exposure time) is 12.5 watt-seconds per square centimeter (Ws/cm®). The
time required to produce this exposure is a function of the ultraviolet light intensity.

PROGRAMMING AN EPROM 177

178 PROGRAMMING AN EPROM

Cost and safety, equally emphasized, should be the guiding factors when selecting an
ultraviolet eraser. A commercial unit not only specifies its intensity (that allows com-
putation of exposure time), but also includes important interlocks. It is conceivable
that some homebrew erasers might have improper shielding that could allow the ultra-
violet light to escape or be accidentally turned on while being viewed. Such possibilities
can lead to permanent eye damage.

One of the more cost-effective erasers on the market is the UVS-11E by Ultra-Violet
Products, Inc, San Gabriel CA, 91776. This unit is made especially for the home com-
puter market and includes some important safety features. The lamp will not operate
unless properly seated, and if lifted from its holding tray, it will automatically shut off.
At the standard exposure distance of 1 inch, the UVS-11E produces an intensity of
5,000 uW per square centimeter (WW/cm’). Exposure time for the 2708 is easily calcu-
lated.

Exposure time (Tx)
Te =J+1
Where
J = required erasure density of device
I = incident power density of eraser
For a 2708 which requires 12.5 Ws/cm”

I = 5000 uW/cm?
] = 12.5 Ws/cm?

_ 125 _
Te S300% 10 2500 seconds

or T = 41.6 minutes for complete erasure

+5V

DECODED 10 i
1/0 STROBES €2 <59k 1c2 +5v
FROM COMPUTER 7406 S +5v 7406
11 0.01uf 8 9 3.3K
INP 04 14 16) —04—4
"READ DATA" 7SS 75 CLR }_/717
aiy 227k
() .
1C5 b
8 +12v
74193 et
3.3K
L
el
3 +12V 45V 5 5
e A 0.01pF *12V +5 ->——o<:,2
i
1IC1 2708 o /ﬁ 19 |24 |20 7406
+ —
i . s
4 23 17
1IC4 74193 Yl OR 16 A8 D7} ——> 07)
o o I
1C7 7400 1c4 c 2 a6 DSL——> D5
72193 2 3 1c1 1
B A5 2708 DAF———> D& | 1 comPUTER
e 13 5 53 (DATA BUS
up 577 > o2
5 F=—> 01
3
ic2 5 — 00 J
7406 12
ouT 04 12] 14 CR 15
“CLEAR ADDRESS ”Dcﬁ CLR
COUNTER" DS4 WR 7
aiy D
+5v 1c3 c 6
74193 3
47K el2
INP 01 5 3
“INCREMENT . upP A
ADDRESS COUNTER" 951 RD 8
— 33K
warr 280 ¢
PIN 24 -)
2N2222A
+5Y +
+5V 0.001uF 0.1uF
0.01uF A i—/: 47K ? BF o gak oy
& g
16 14 15 6 7
ouT 91 1 ic 3l 2C RS 12
“WRITE BYTE -
" 1C6A 1ce3
INTO £pROM™ OS] WR 74123 13 s 72123 5]
10uS Q 24 1ms (o

J5

Figure 7.3 A schematic diagram of an automatic 2708 programmer.

PROGRAMMING AN EPROM 179

180 PROGRAMMING AN EPROM

ALL REGISTERS CLEARED
START {ALL INDEX POINTERS SET

QUT 04
CLEAR ADDRESS
COUNTER

OUuT 01
OUTPUT BYTE TO BE
WRITTEN TO PORT 001

INP 01

INCREMENT ADDRESS
COUNTER AND CPU
REGISTER PAIR

1S
REG. PAIR
COUNT EQUAL

NO

INCREMENT
OUTPUT BYTE
TABLE INDEX COUNTER

A

TO 1024
?

INCREMENT CPU REG.
PAIR LOOP COUNTER

1S
LoorP
CCUNTER
Z2JALTO 100
LOgPS

8. 2-' 3 | EPROM CONDITION
0 0 .2V | PROGRAM MODE
| ENABLE
x| 1| cv | READ MODE
ENABLE
1] 0| 5V | ZPROM IN

THREE-STATE MODE
X=DON'T CARE

|

OuUT 04
CLEAR ADDRESS
COUNTER

t

RESET QUTPUT
BYTE TABLE TO
START ADDRESS

O

W pregrammer write cycle.

+12V

1C2C, 2D, AND THE 33K 7406 3.3K

RESISTORS FUNCTION

AS A 2-BIT D/A WRITE: T8 Boicts —

CONVERTER. Ic1 PiNzo ¢ ¢ " Ds1WR
Bg

"READ"
INP 04

"WRITE"
ouT 01
T

(FROM IC7 PIN 3)

Figure 7.5 Programmable control of an EPROM CS line in an automatic EPROM programmer.

(START ’

OUT 04
CLEAR ADDRESS
COUNTER

INP 04
READ EPROM

STORE DATA;
ANALYZE...ETC.

INP O1

INCREMENT ADDRESS
COUNTER AND

CPU REGISTER PAIR

Figure 7.6 A flowchart ¢f an automatic EPROM programmer read cycle.

PROGRAMMING AN EPROM 181

CHAPTER 8
CONNECTING ZAP TO
THE REAL WORLD

It's now obvious that the ZAP computer can be configured in a number of ways.
Depending on your needs, you can go far beyond the basic system I have outlined. If
you want a personal computer that is the equivalent of large commercial microcomput-
er systems, then you must add considerably more memory and peripherals. Accom-
modations must be made for a more powerful operating system and most probably a
high-level language such as BASIC or Pascal. If you intend to use the ZAP computer as
a word processing system, then a video display and printer will be required. This, in
turn, necessitates adding more parallel and serial ports. Whatever the eventual config-
uration, the design considerations that went into constructing the ZAP computer do
not change.

The ZAP computer is intended as a trainer. This book is structured in such a way
that you should be able to lay out a system configuration and build it. I have not
discussed what it takes to design a word processing system, or to add floppy disk stor-
age, because it is bevond the scope of this introductory text. The support material
necessary to adequately cover such an undertaking would be enough for ancther book.
This does not mean, however, that everything is finished once the ZAP computer is
constructed and you learn how to write and execute a short program. Quite the con-
trary; a more significant application of ZAP is to connect it to something considered
part of the “real world” and have it perform some constructive task. ZAP's “power to
weight” ratio makes it a natural for intelligent control applications. The real key to us-
ing ZAP effectively is learning how to connect it to the real world.

Within the framework of the direct examples I have outlined, the ZAP computer
created from this book should be a single-board computer suitable for use in a variety
of applications. Because it includes a serial port, two parallel ports, PROM monitor,
and programmable memory, ZAP is in many respects equivalent to commercial digital
controllers costing hundreds of dollars more.

Small single-board computers are most often used in data acquisition and intelligent
control applications. Their function is usually to digest certain input parameters and
compute a result. For example, in a 100 HP electric motor control, the inputs would be
voltage, current and RPM, and the control output would be a load factor correction
voltage.

In all probability, a few of these “intelligent controllers” were used by the press that
printed this book. A likely place is the electronic control unit that monitors print densi-
ty and automatically adjusts ink flow. The computer “reads” the print and decides
whether to increase or decrease the ink flow to the paper. This decision must take into
account various input parameters such as humidity, temperature, paper velocity, and
specific gravity of the ink. The control algorithm written in machine code and stored in
ROM shifts through all the input data and generates its conclusion in the form of a pro-
portional output to an ink-flow valve.

In most cases, computerized functions do not stop with simple control. In any pro-
cess where repeatability and quality control are important, significant process param-
eters are constantly monitored for deviation from preset limits and an alarm is set if the
limits are exceeded. To aid in long-term analysis, the data acquisition function often in-
cludes recording raw-process data from the input sensors at specific intervals and gen-

CONNECTING ZAP TO THE REAL WORLD 183

erating a permanent log.

THE REAL WORLD

I don't want to confuse you by discussing too many commercial applications of sin-
gle-board controllers. I doubt there are many web presses hidden in closets to which
you want to add computer control. There are, however, many equally challenging and
less esoteric applications for computer controls around the home. For example, a few
that come to mind include energy management, security, and environmental monitor-
ing. I refer to such systems as real world systems, as opposed to the TTL digital world
of computers.

Because real world is anything outside of the computer, it is generally an analog en-
vironment. The metamorphosis of ZAP into an intelligent controller is dependent
primarily upon effective analog interfacing. For this reason, the rest of this chapter is
dedicated to the design and construction of an economical analog /O interface.

But first let's review the basics of D/A (digital-to-analog) conversion and then
discuss a method to use a D/A to perform A/D (analog-to-digital) conversion. In data
acquisition systems, there is often a need to acquire high resolution multiple channels,
and AC as well as DC inputs. This being the case, I will also discuss a circuit which, in
effect, allows ZAP to function as an 8-channel digital voltmeter. Finally, because the
temporal relationship of so many events is significant, ZAP will be configured with a
real-time clock that defines the time at which control operations occur.

DIGITAL-TO-ANALOG CONVERTERS

The D/A (digital-to-analog) converter can be thought of as a digitally controlled
programmable potentiometer that produces an analog output. This output value (Vour)
is the product of a digital signal (D) and an analog reference (Vxz¢) and is expressed by
the following equation:

\’701,'7 = D VREF

To a large extent, no D A or A D converter is very useful without specifying the
type of code used to represent cigital magnitude. Converters work with either unipolar
or bipolar digital codes. Unipolar includes straight binary and binary coded decimal
(BCD). Offset binary, one’s or two's complement and Gray code, is usually reserved
for bipolar operation. However, we will limit our discussion to straight and offset
binary.

It is important to remember that the binary quantity presented by the computer is a
representation of a fractional value to be multiplied by a reference voltage. In binary
fractions, the MSB (most significant bit) has a value of 1/2 or 2! the next MSBis 1/4
or 2%, and LSB (least significant bit) is 1/2" or 2™ (where n is the number of binary
places to the right of the binary point). Adding up all the bits produces a value that ap-
proaches 1. (The more bits, the closer that value is to 1.) The algebraic difference be-
tween the binary value that approaches 1, and 1, is the quantization error of the digital
system (to be discussed later).

Offset binary is similar to straight binary except that the binary number 0 is set to
represent the maximum negative analog quantity; the MSB is a 0 for negative analog
values, and a 1 for positive analog values.

The conversion of digital values to proportional analog values is accomplished by
either of two basic conversion techniques: the weighted-resistor D/A converter and the
R-2R D/A converter. The weighted-resistor D/A converter is by far the simplest and
most straightforward. This parallel decoder requires only one resistor per bit and
works as follows: switches are driven directly from the signals that represent the digital
number D; currents with magnitudes of 1/2, 1/4, 1/8, . .. 1/(2") are generated by
resistors with magnitudes of R, 2R, 4R, ... 2R, that are connected by means of
switches between a reference voltage, — Vzr, and the summing point of an operational
amplifier. The various currents are summed and converted to a voltage by an opera-
tional amplifier (see figure 8.1).

While this may appear to be a simple answer to an otherwise complex problem, this
method has some potentially hazardous ramifications. The accuracy of this converter

184 CONNECTING ZAP TO THE REAL WORLD

is a function of the combined accuracies of the resistors, switches (all switches have
some resistance), and the output amplifier. In conversion systems of greater than
10-bits resolution, the magnitudes of the resistors become exceptionally large and the
resultant current flow is reduced to such a low value as to be lost in circuit thermal
noise.

A reasonable alternative to the weighted-resistor D/A converter is the R-2R con-
verter. This is often referred to as a resistor-ladder D/A converter and is the most wide-
ly used type even though it uses more components. This circuit (see figure 8.2) also
contains a reference voltage, a set of binary switches, and an output amplifier. The
basis of this converter is a ladder network constructed with two resistor values, R and
2R.

One resistor (2R) is in series with the bit switch, while the other (R) is in the summing
line, so that the combination forms a “pi” network. This suggests that the impedances
of the three branches of any node are equal, and that a current I, flowing into a node
through one branch flows out as I/2 through the other two branches. In other words, a
current produced by closing a bit switch is cut by half as it passes through each node on
the way to the end of the ladder. Simply stated, the position of a switch, with respect to
the point where the current is measured, determines the binary significance of the par-
ticular switch closure.

"":SwITCH CLOSED
272 3NITCH OPEN

v ouT

= VREF

-V REF -VREF -V REF -V REF
+ V OUT = -[+ E
R 2R 4R 8R

Jr

Figure 8.1 A 4-bit weighted-resistor digital-to-analog converter. A 4-bit word s .s¢d to control four
single-pole single-throw switches. Each of these switches is in series with a <3 stor. The resistor
values are related as powers of 2, as shown. The other sides of the switches &= 22~ nected together at
the summing point of an operational amplifier. Currents with magnitudes ir.e-s< ; proportional to the

resistors are generated when the switches are closed. They are summed by =< co amp and converted
to a corresponding voltage.

——
) SW3 2R
R
<
LSB]
° swa 2R
/i 2R

Figure 8.2 A 4-bit R-2R resistor-adder digital-to-analog converter. This type of D/A converter makes
use of a resistor-ladder network constructed with resistors of value R and 2R. The topology of this net-
work is such that the current flowing into any branch of a 3-branch node will divide itself equally
through the two remaining branches. Because of this, the current will divide itself in half as it passes
through each node on its way to the end of the ladder. The four switches are again related as powers of
2. The position of each switch with respect to its distance from the end of the ladder determines its

binary significance.

CONNECTING ZAP TO THE REAL WORLD 185

This type of converter is easy to manufacture because only two resistor values are
needed; in fact, one value, R, will suffice if three components are used for each bit.
Keeping matched resistor values with the same temperature coefficients contributes to
a very stable design. Certain trade-offs are required between ladder resistance values
and current flow to balance accuracy and noise.

One form of the R-2R ladder circuit is the multiplying D/A converter and is avail-
able with either a fixed or an externally variable reference. Multiplying D/ A converters
that utilize external variable analog references produces outputs that are directly pro-
portional to the product of the digital input multiplied by this variable reference. These
devices have either current or voltage output. The current output devices are much
faster because they do not have output amplifiers that limit the bandwidth; therefore,
they tend to cost less than voltage types.

An econormical 8-bit multiplying D/A is the Motorola MC1408-8 (see figure 8.3). As
previously mentioned, this monolithic converter contains an R-2R ladder network and
current switching logic. Each binary bit controls a switch that regulates the current
flowing through the ladder. If an 8-bit digital input of 11000000 (192 decimal) is applied
to the control lines of the illustrated converter, the output current would be equal to
(192/256)(2 mA) or 1.50 mA. Note that when binary 11111111 (255 decimal) is ap-
plied, there is always a remainder current that is equal to the LSB. This current is
shunted to ground, and the maximum output current is 255/256 of the reference
amplifier current, or 1.992 mA for a 2.0 mA reference current. The relative accuracy
for the MC1408-8 version is +1/2 the LSB, or 0.19% of full scale (see figure 8.4). This
is more than adequate for most home computer analog control applications.

The final circuit (figure 8.5) is an 8-bit MC1408-8 multiplying D/A converter. As
previously outlined, “multiplying” means that it uses an external variable reference
voltage. In this case, a 6.8 V zener-diode regulated voltage is passed through a resistor
that sets the current flowing into pin 14 to approximately 2 mA.

T +V REF
wig 2 114 Ri4 T
. vy e
(D8 >—3a1 +v REFED o
c
07 [>——{:2 MCl408-8) OUT
- Lour
06 [>—:3 o2 > vour
pisiTaL) DB [>—z¢ N AL
INPUT $].= -8 RIS
pa [>—-:s -V REF
D3 >—1" i RC _._ol
D2 DLAT 2
1 1
\ D1 ['__>——2‘A8 __ ccme 5 TYPICAL VALUES
Ls8 VEE o R14 = R15= 2.0K
3 V REF = 4.0 VOLTS
s ‘ C=33pF
CCMPENSATION ! 114 =2mA NOMINAL
VEE (<0)

! OUT=A[DI/2 + DZ/4+D3/8+D4/16+D5/32+06/64+D7/128+DB/256]

WHERE A 2 V REF/RI14
AND DN =1 FOR H!GH LOGIC LEVEL
DN=0 FOR LOW LOGIC LEVEL

Figure 8.3 A typical 8-bit current-output monolithic multiplying D/A converter. This Motorola in-
tegrated circuit contains an R-2R network like the one in figure 8.2, plus additional current-switching
logic.

186 CONNECTING ZAP TO THE REAL WORLD

DESIRED ANALOG

ANALOG § OUTPUT VALUE
ouTPUT
/ DIGITAL OUTPUT VALUE
le— APPROXIMATING ANALOG
VALUE WITHIN %1/2 LSB
1/2 Ls8{
bz Lse
-— —
DECREASING BINARY INCREASING BINARY VALUE
VALUE

Figure 8.4 Output characiersicscfac

;5 :a-to-analog converter showing least significant quantiza-

tion.
+5 GND +12 -12
1C1 MCl408-8 13 7 3
1C2 LM301A 7 4
1500
Tw
33pF T wA—=] +12V
-lav 1:‘5 A na7368
~ I
3 16 H 6.8V
VEE c
M58 a7cF
a7 >—al 1.8K —%
e vrer |2
Bs [>—a2 . 4 7x
.
Bs [>—a3
8
PARALLEL | B4 [>——a4 150pF
OUTPUT) 4
PORT B3 [_>—]45 1 ouT
B2 D—LG—AG -V REFi—é
Bl [>—1Ha7 333K
2
0 D;ZAB —— > vouT
LsB 1 -5.12 T0 +5.12V
1C1 RC 1c2
MC1408-8 . LM301A

Figure 8.5 A final 8-bit MC1408-8 multiplying digital-to-analog converter with span and offset adjust-

ments.

CONNECTING ZAP TO THE REAL WORLD 187

An additional resistor, R1 (also in this current leg), allows the current to be varied by
a small percentage and provides the ability to adjust the full-scale range of the D/A
converter. The output is a current that is equivalent to the product of this reference cur-
rent and the binary data on the control lines. The current is converted to a voltage
through IC 9 and can be zero offset through the use of the offset adjustment pot, R2.

Using this circuit with the ZAP computer is simply a matter of connecting the input
lines of IC 1 to a convenient parallel output port on ZAP. Any 8-bit value sent to that
port will be converted to a voltage proportioned to that output.

The digital code presented to the D/A converter must be in offset binary. A binary
value of 00 hexadecimal produces an output of —5V while FF hexadecimal is
equivalent to +5 V. In offset binary, if the MSB is a 0, the output is negative, and if the
MSB is a 1, the output is positive. Because the converter has a range of 10 V, and is an
8-bit device, the resolution of the converter is 1/256 of 10 V, or approximately 40 mV.
This means that the smallest output increments will be in 40 mV steps. To change this
to finer increments requires a shorter range, such as +2.56 Vto —2.56 V. By adjusting
the span and zero pots, any reasonable range may be chosen, but the resolution will
always be equal to the LSB or 1/256 of the range, and accuracy is estimated to be
+1/2 the LSB.

Calibration is fairly straightforward. Apply the power, and with a short program
that outputs a value from the accumulator, send a binary 10000000 to the port address
corresponding to the D/A interface board. Using a meter to monitor the output of the
LM301A, adjust the zero pot R2 until the output is 0 V. With the same program, load
in binary 11111111 to the port address and adjust the span pot R1 for a meter reading
of +5.12 V. A binary setting of 00000000 should produce —5.12 V. If you are unsuc-
cessful at this point, turn the power off and remove the MC1408-8 and the LM301A;
then reapply power and verify that the binary output is correct on the parallel output
port. Nine times cut of ten, problems like this can be attributed to choosing an incor-
rect output code.

If the test is successful, you are now ready to generate analog outputs under program
control. A simple test is to designate a section of memory and sequentially output the
values to the D/A. If the table is 256 bytes long with the values ranging from 0 to FF
hexadecimal in 01 increments, the result will be a sawtooth-waveform output. If the
samples are sent to the output rapidly enough, and it is connected to a speaker, the
waveform will be audible. The exact frequency will be a function of the update timing
loop.

The following is a short program that exercises the D/A in such a manner:

START EQU 0400 Memory table start HL address
END EQU 05 Memory table end H address
OPORT EQU 07 D/A output port number
SAMP EQU A0 Sample rate time constant

LD HL, START Load table start address
AGAIN LD A, (HL) Table value to accumulator
OuT OPORT,A Output byte to D/A

CALL DELY Sample time delay

INC HL

LD AH

Cp END Test to see if at end of table
JP NZ, AGAIN If not, output the next sample
HALT

DELY LD B,SAMP Sample rate timing loop
DCR DEC B

JP NZ,DCR

RET

The table can be set to any length. Values in the table can be calculated to produce
any shape waveform.

188 CONNECTING ZAP TO THE REAL WORLD

ANALOG-TO-DIGITAL CONVERTERS

It's always a good idea to discuss D/A converters first. They are rather straightfor-
ward and there are not an overwhelming number of conversion methods. By introduc-
ing them first, you will become aware of the process of binary conversion and ap-
preciate the concepts of resolution and accuracy. Practically speaking, however, if you
were going to set up the ZAP computer to serve in a data acquisition mode—say,
reading and recording temperatures—you would need an A/D (analog-to-digital) con-
verter before a D/A (digital-to-analog).

An A/D does what its name implies. It converts analog voltages into a digital repre-
sentation compatible with the computer input. As in the case of an 8-bit D/A, an A/D
is subject to the same conversion rules. If you are trying toread a 10 V signal with an
8-bit converter, the resolution will be 1/256 of 10 V (or 40 mV) and the accuracy will
be *1/2 the LSB.

For greater resolution more bits are necessary. The number of bits does not set the
range of a converter; it only determines how finely the value is represented. An 8-bit
converter (either A/D or D/A) can be set up just as easily to cover a range of OtolV
or 0 to 1000 V. Often the same circuitry is used, but a final amplification stage or
resistor-divider network is changed. Understand, of course, that with a range of
1000 V and an 8-bit converter, the resolution is 4 V. Such a unit would be useless on 0
to 10 V signals. The problem can be reconciled in a number of ways, but the easiest
solution is to use a converter with more bits. A 16-bit converter that has 65,536 (2'°)
steps instead of 256 (2°) would cover the same 1000 V range in 15 mV increments.

For the ZAP computer, the question becomes more one of reasonable price perfor-
mance than nth degree accuracy.

Analog-to-digital conversion is considerably more expensive than D/A—the price is
directly related to resolution and accuracy. There are many ways that A/D conversion
can be accomplished. The range varies from very slow, inexpensive techniques to ultra-
fast, expensive ones. An A. D converter can cost as little as $5 or as much as $10,000.
An A/D converter that scans thermistor probes and provides data to control the tem-
perature in a large supermarket may cost $4.75, but it cannot encode video information
from an optical scanner.

The objective of this book, of course, is to help you to build your own computer; lit-
tle is served by presenting designs that are beyond a reasonable budget and average
construction abilities. For thcse reasons, I have sifted through a multitude of tech-
niques to select four designs that can easily be built and attached through the ZAP
computer’s parallel interface. One of them should meet your basic data acquisition re-
quirements.

Basic analog to pulse width converter

Low cost and low speed 8-bit binary-ramp counter converter
High speed 8-bit successive approximation converter
Eight-channel 3%2-digit 0—200 V AC/DC interface

Ll e

PULSE WIDTH AND BINARY COUNTER CONVERTERS
Analog to Pulse Width Converter

This converter is one of the most popular open-loop encoders because of its simplici-
ty. A basic block diagram is shown in figure 8.6. This device uses a fixed oscillator in
combination with a circuit that generates a pulse width that is a linear function of the
analog input voltage.

To obtain this variable linear pulse width, designers frequently use a ramp generator
and a Schmitt-trigger circuit. A gating pulse is started at the beginning of the ramp and
a counting circuit starts incrementing at a fixed frequency. When the linear ramp
reaches the same value as the input voltage, the counting is terminated. The value left
in the register at"that point is representative of the analog input.

Figure 8.7 is a schematic of a unipolar analog to pulse width converter that operates
on this principle. IC 1 is configured as a gate controlled linear ramp generator and IC 2
is the input comparator. The process starts when the 7.5 KHz clock signal fires IC 3 (a
74121 one-shot), and starts its 35 ms period, which is the gate time. At the beginning of
this gate period, a pulse that clears the two 7493s and the ramp generator is generated.

CONNECTING ZAP TO THE REAL WORLD 189

ANALOG

v REF [_>—=| RAMP

GENERATOR
3
RESET
START [_>—9
ANALOG VOLTAGE TO
INPUT >——— PULSE WIDTH
VIN CONVERTER AND COUNTER
Figure 8.6 A block diagram of an analog to pulse width encoder.
CLOCK A
GENERATOR —
PARALLEL
DIGITAL
OQUTPUT
\Z
Ys 10K *av 50K 0.1uF
SPAN 11 .
R/C 1C3 C 3
N 7
) neal 2.2k N914 SAMPLE GaTE [L
Q 74221 IZ~s az
r—"V\- ’
! 242222
! —
i 20uF ‘s ,5y
1 16V @__‘ . ?
— e RST = . :
o ! : Fazq
pavp j ER 7408 2?10K Tos
LR | 1108 g S e ¥ o (8L, oS ‘
z N Z a o - £ss - s
40..5T ! Aa -12y 33pF ¢ . M §33>< C
2K ’ . : :"i .
3 P 415 ey 8
-12v -
— 740 H 5 01xF
E’ rece 0.01uF J; “
LM301A A e 5
. : COMPARATCR ‘
! . 77 —
viIN> L.
h Zla A fE——> 0

5 {2
0 ., 9° > 83
8 TO CCVRUTER
ARA__EL
IN2UT
pCRT
2 13
A QA > 84
2 2
15 ¢y 08B {85

a
¢ 7990 gl —{>es
\
o Q0 —{ > 87

o
=3

IC# TYPE +5V GND +lav -12v

1 LM301A 7 4 NOTES: 1.SET RAMP TO GO FROM OV TO FULL SCALE
2 LM3C1A 7 4 DURING SAMPLE GATE TIME.

3 74121 14 7

4 7408 14 7 2. SET FREQ TO PRODUCE WHATEVER COUNT
5 NES55 8 1 IS DESIRED TO REPRESENT INPUT VOLTAGE
6 7486 14 7 i.e. 256 COUNTS DURING SAMPLE PERIOD
7 7400 14 7 FOR 2.56 VOLTS.

8 7493 5 10

9 7493 5 10

10 7495 14 7

11 7495 14 7

Figure 8.7 A schematic diagram of a unipolar analog to pulse width converter.

190 CONNECTING ZAP TO THE REAL WORLD

This, in turn, enables the clock signal to the counter. The slew rate of the ramp genera-
tor is set to be approximately 10 V per 35 ms. IC 2 continuously compares the input
and ramp voltages. When they are equal, the clock signal to the counter is stopped and
the ramp generator is reset. At the conclusion of the 35 ms gate time, whatever value is
in the counter is transferred to an 8-bit storage register. The value stored in this register
is an 8-bit number proportional to the input voltage. The entire process starts again on
the next clock pulse.

By properly selecting the gate times and the clock rate, you can change the span and
resolution of the circuit. With a gate time of 35 ms and a clock rate of approximately
7500 Hz, 256 clock pulses should be counted during the gate time. The ramp timing ad-
justment pot should be set so that the counter reaches maximum count when 2.56 V is
applied to the input of IC 2. A 10:1 divider attached to this input will allow the same
8-bit count to represent 25.6 V.

This circuit is simple, but its accuracy depends on the stability of the individual sec-
tions of the circuit. To use it, connect the register output to a parallel input port. Sim-
ply read the port when you want the latest value. The circuit automatically updates 28
times a second, hence no reading is older than 35 ms.

Binary-Ramp Counter Converter

The above A/D technique is most often used in slow sampling rate, high-accuracy
measurements. Achieving these results, however, hinges on the use of precision com-
ponents and proper construction. The next most productive approach to consider is the
binary-ramp counter method. In my opinion, this is the best type if you plan to con-
struct an A/D for ZAP. It uses fewer components and, in practice, is much faster and
easier to build than linear-ramp circuits.

Figure 8.8 illustrates the basic biock diagram for the binary-ramp counter converter.
The linear-ramp generator of the previous technique has been replaced by a D/A con-
verter. In this case, the D A is used to reconvert the digital output of the binary
counter back to analog for comparison against the analog input. If they are equal, then
whatever code is presently set on the D/A input is also our A/D output.

VIN[>

|

PARALLEL
QUTPUT

>
{>

— N T
-

T M-BIT
AND 8 je———<] RESET

BINARY COUNTER

CLOCK

Figure 8.8 A block diagram of a basic binary-ramp counter A/D converter.

CONNECTING ZAP TO THE REAL WORLD 191

The simplest way to operate the system is to start the counter initially at 0 and to
allow it to count until the D/A equals or exceeds the analog input. The only critical
consideration in designing this circuit is that the clock rate cannot be faster than the
response of the comparator and D/A. If it takes 100 us for these components to do
their job, then the maximum clock rate should be 10 KHz. For an 8-bit converter
(counting from O to 256 each sample period), the maximum sample rate is 10,000/ 256 or
some 39 samples a second. In practice, however, 5 ps is a more reasonable settling time,
resulting in about 750 samples per second. For still higher speeds, we use a different
kind of A/D (more on this later).

Figure 8.9 shows a schematic of a binary-ramp counter converter that uses a
MC1408-8 multiplying D/A converter chip. The counter output is connected to the
MC1408-8 to provide a direct analog feedback comparison of the value set on the
counter. Initially, ICs 4 and 5 are cleared, and the D/A output should equal the
minimum input voltage. Fora 0 to 5.12 V converter, this would be 0 V. Fora —2.56 to
+2.56 V unit, it would be —2.56 V. If the output of IC 1 is less than Vyy, the clock
pulses are allowed to reach the counter. As each pulse increments the counter, the cut-
put of the D/A keeps rising until eventually it equals or just exceeds V;v on the com-
parator. When this happens, additional clock pulses are inhibited. At the end of the
sample period, the count value of ICs 4 and 5 is stored in a separate register. For ZAP
to read this data, it just requires connecting this register to an input port and reading it

directly.

] T8 CLEAR, . "
4 __.___.——1 >3 T i
436 2 {3 2 2
9
8 12 .. Ro1 Ro2 Rol o2
3
y 16 CLOCKDZD.. w.. INA rea 144 s
‘ ER4! g 7493 L3 PN 7493
| fm]'\‘“#‘ i 24 Q8 QC QD QA QB QC QD T3 SIRUTER
‘ 2]9 |8 |t 12 |9 |8 |1l TUlsST
i 1 .)8 PIRT
7z o= - 2 by
3158 . 2l 0n —:c
[;/“_1 -— >lg co csbE—"> 3
s @ . Sle 7495 golt > a2
VN ax - - siac 5 N -
- S S-I . b e O > 33
i1 A sToRE 8 \
LM301A Vs ‘- \ ‘>
¢ 1 - t
‘ 2 PO > 3T
3 2
8 1o I >55!
4l 7495 .| ‘
! c Gop=—_>886
cLOCK +5v | . N
& D e b= 87
LsB MSB
e 12 111 J10 1 g |17 ls s
A8 A7 A6 A5 L& A3 A2 Al 16 +l2v
1c8 4 CoMPI——]
|| nEsss RST 1o €3 MC1a2s-8 33pF %::m
3 150
ouT s os VEE 1w
CLOCK THRIES hal :"‘f‘: - Ff; - Rcl ‘{ %
TRG 1 : : -12v
cTLV I‘*‘F 5000 1K 1.8% 3.3K .
5 1 L—'y&——(
IN47368 1uF
0.01pF
L == o1pF OFFSET | SPAN " 77 6.8V j:
i i) :
Ic# TYPE +5V GND +)2v -12v
1 LM301A 7 4
2 LM301A 7 4
3 MC1408-8 13 7 3
4 7493 5 10
5 7493 5 10
6 7486 1“7
7 7400 147
8 NE555 8 1
9 7495 1“7
10 7495 14 7 . C b
Figure 8.9 A schematic diagram of an 8-bit binary-ramp counter A/D converter.

192 CONNECTING ZAP TO THE REAL WORLD

Using the Computer to Replace the Counter

Figure 8.9 is a stand-alone circuit. It does not require the computer for operation.
The A/D updates itself at a preselected sample rate and loads this value into an 8-bit
latch. As far as the computer is concerned, there is a steady state reading from the con-
verter. Every function required to perform the A/D conversion is constructed from
hardware components.

There are certain advantages to this approach. The A/D can be independently as-
sembled and tested without a computer. For example, a voltage can be applied to the
input and the 8-bit value can be displayed on 8 LEDs. The ability to test each subsystem
independently is the way I've tried to present all the hardware in this book. If, on the
other hand, you feel you've mastered the art of programming and would rather not
build elaborate interfaces, much of the hardware of figure 8.9 can be replaced with
software subroutines.

Consider for a moment the major elements of this design. This 8-bit A/D has four
sections: D/A, analog comparator, 8-bit counter, and timing logic. The resistor ladder
and analog comparator are necessary components, but the last two sections are prime
candidates for synthesis through the computer. The combined function of these devices
is to increment an 8-bit count and check the output of the comparator.

The ZAP computer has parallel input and output ports. By incrementing a central
processor register and outputting the value after each increment, the 8 lines from the
port will have all the appearances of a standard 8-bit counter made with 7493s and so
on. By using one bit of an input port to read the status of the comparator, we can also
replace the rest of the timing logic.

The resulting interface has fewer components and is shown in figure 8.10. The D/A
remains essentially the same except that rather than being driven from two 4-bit
counters, it is connected to an 8-bit paraliel output port. The analog output of theD A
will be whatever value is sent to the output port. Instead of hardwired logic to detect
when the D/A and input voltage are equal, we attach the comparator output to bit 0 of

an available input port.

+12Vv IN823A
v

T 6.
4708)
1uf
) + E
2K s
MSB 4 18K . 7
87 [>——a1 10 R
86 [6lun SCALE CTTsIT
7 ic1 . BIT 0
B5 [>———23 \MC1408-8 ST PARALLEL
P 8 | INPUT
pazs_z B4 Ad 77 PORT
CoTeLT =’D—3A5 15
PRt o7 -V REFI—
52:>—10—A6 %3 3x
. 11 -]
gL >—A7 Pil—e
B:D—%QAS 2 . viN[>—
(s3 0-2.56V
conveEn veE
.8 3
33pF +5 GND +12 ~-12
N b IC1 MC1408-8 13 8 3
1C2 LM301A 7 4
v 13 LM301A 7 4

Figure 8.10 A software-driven 8-bit analog-to-digital converter.

CONNECTING ZAP TO THE REAL WORLD 193

The conversion process is not unlike the hardware version. First, we clear a register
(B, for example) and then output the register value to the port attached to the D/A.
This will set the D/A to its minimum output. Next, we read the input port that has the
comparator attached to it and check bit 0 (a logic 1 indicates that the input and D/A
voltages are equal). If the comparator is low (the voltages are not equal), the register is
then incremented and the process is repeated. Eventually, the register will be in-
cremented to the point where the D/A output and the unknown input voltage are
equal. The comparator will then switch. At this point the program is halted and the
value of the B register is the digital equivalent of the input voltage. The program to ac-
complish this follows:

MVI B Clear B register
ouT o0,B Qutput B register
AGAIN INC B Increment B register
OouT o0,B Output B register
IN 04 Read comparator port
ANA 01 Isolate bit 0
JNZ AGAIN Continue if voltages not equal
HLT A/D value is in B register

The above program should be repeated each time a new reading is needed and the
sample rate can be adjusted within broad limits. Remember, however, that we still
have to wait for the D/A circuitry to settle and it should not be incremented any faster
than 5 us. Using the 2.5 MHz Z80 should not present a problem. Using a 4 MHz
crystal the central processor might necessitate a few NOPs in the loop.

There are manv variations on this circuit. As described, it takes up to 255 iterations
of the program :o find an answer. On a computer with a 2 us average instruction time,
the program cou.d take 3 us to finish, limiting us to about 300 samples a second. Add
the other tasks :ha: the computer must perform and you might be limited to 100
samples a second. Execu:ing counting routines takes time; it will not, however, be a
problem if you are merely menitoring a temperature probe that has a 30-second time
constant.

If you should want to track and record fast changing signals, such as an acoustic
waveform, then a much faster conversion algorithm is required. One method that
speeds up the process is cailed successive approximation (more later).

Thre capabilities of this circuit can be expanded in other ways. An additional CMOS
muitiplexor can be connected to 3 bits of another output port to turn this simple circuit
into an 8-channel A/D. Also, because this circuit includes a D/ 4, its output is avail-
able as well.

Successive Approximation Converters

More than likely one of the three converters presented thus far will suffice for non-
critical data acquisition. Slowly changing signals can be handled accurately and effi-
ciently. However, there are occasions when the signal in question is not slow or it car-
ries a particular transient that must be captured. For example, detecting a 100 us event
requires a converter with a capability of 20,000 samples per second. In such cases we
need a much faster conversion method.

Figure 8.11 is the schematic of a general purpose high-speed, 8-bit converter. It is
capable of sample rates in excess of 200,000 samples per second. To attain these speeds,
a technique called successive approximation is used. Like the binary-ramp counter con-
verter, this A/D also incorporates a D/A in a feedback loop but replaces the counters
with a special SAR (Successive Approximation Register). The circular logic of suc-
cessive approximation is best explained in the block diagram of figure 8.12.

Initially the output of the SAR and mutually connected D/A are at a zero level. After
a start conversion pulse, the SAR enables the bits of the D/A one at a time starting with
the MSB. As each bit is enabled, the comparator gives an output signifying that the in-
put signal is greater or less in amplitude than the output of the D/A. If the D/A output
is greater than the input signal, a “0” is set on that particular bit. If it is less than the in-
put signal, it will set that bit to “1”. The register successively moves to the next least

194 CONNECTING ZAP TO THE REAL WORLD

VI o

390pF

IC# TYPE +5v GhD +i2v -lav. -6V
1 MCl408-8 13 1 3

2 MCl4559 16 8

3 74100 24 7

4 LM301A 7 4
5 LM710 8 4
6 7400 14 7

7 7404 14 7

8 MCl408-8 13 1 3

9 LM301A 7 4

NOTES: 1.ALL RESISTORS ARE 1/4W 5% UNLESS

[

w

OTHERWISE INDICATED.

.ALL CAPACITORS ARE 100V CERAMIC
UNLESS OTHERWISE INDICATED.

WITH COMPONENTS SHOWN, CLOCK FREQUEN-
CY 1S 800 kHz. THIS IS 100,000 CONVERSIONS
PER SECOND IN FREE RUN MODE.

. THE FOLLOWING CIRCUIT CAN BE ADDED TO

EACH OUTPUT PIN OF IC3 IF A VISUAL INDICA-
TOR IS DESIRED.
+5V

470Q

FROM IC3
LED

SWITCH

“REE RUN

+5V ~12v
V REF 13 s s
5K
12K 14 VEE COMPEN 15 3.3K
+V REF -V REF
SPAN ADJ 'W'ﬂ
1c1 rel?
3.3K 4 MC1408-8 R
AV ‘OUT
Al A2 A3 A4 A5 A6 AT AB +5V
s e [7 [8 |9 [10 11 [12 T
Ms8 LSB 24
2 101 1015___.E> 07
}7 02 12| o
1 —
V REF 2] . 131 o5
21lpq €3 10420 04
LM”O)NS‘M(Z) 5.6K . 74100 —{> PARALLEL
y 10K 23 PYSY 201[8—> p3 [OUTPUT
ZERO 10 .
22k | apy 202 202} > o2
18
6V 51203 2Q3}—"> D1
161504 2°4LE> 00 J
E16_ E26
4 {3 2 |1 iz ota 13 D12 +5V 23 12/J:
Q0 Q1 €2 &% <4 L5 Q8 Q7 f o 3
1c7
7404
! 4 [~ ENDOF
s CONVERSION
> ° e sC
2 0 8

TRIGGERED INPUT <
+5V SUPPLY
45 * *
1
0.14F 100uF
-y L. & P rY
\LIOF.F
:ﬁro.lpf-' IZSV -12v SUPPLY
1800
1/2 W o
o 1]
IN5234 0.1uF
-6V SUPPLY
+12V SUPPLY
+12V 2 2

10uF
25V

V REF SUPPLY

7.5V 0.1uF

IN5236 J:-/,sv

Figure 8.11 A schematic diagram of an 8-bit successive approximation A/D converter.

CONNECTING ZAP TO THE REAL WORLD 195

ANALOG D
REFERENCE

DIGITAL-TO-
v ou
our ANALOG
CONVERTER
; §
MSE_ I~
—
COMPARATOR —= | enir
- - > { ParALLEL
ouTPUT
Vv INPUT o—+ >
(I
L Py
MS8
° iiiigi?;ﬁm | [SERIAL
clLeex 1 CK REGISTER ouUTRUT

START D
CONVERSION

Figure 8.12 A bicck diagram of a typical 8-bit successive approximation A/D conversion system.

significant bit (retaining the setting on the previously tested bits) and performs the
same test. After all the bits of the D/A have been tried, the conversion cycle is com-
plete. As opposed o the 256 clock pulses of the binary counter method, the entire con-
version period takes only 8 clock cycles. Another conversion would commence on the
next clock cycle when it's in the free-run mode. To retain the 8-bit value between con-
versions, an 8-bit storage register IC 3 has been added. To use this A/D, simply con-
nect the output of this laich to an 8-bit input port.

The components of the D A circuit are changed slightly from previous implementa-
tions to increase the speed, and a faster comparator is used. With a clock rate of
800,000 Hz, the circuit will do 100.000 corwersions a second. Because they are auto-
matically loaded into the 8-bit-holding register IC 3, the update is transparent to the
computer and can be read at any speed. The sample rate is a function of the clock rate.
If it is unnecessary to have such a high sample rate, it may be reduced by increasing the
value of C1. High speed A/D converters are susceptible to layout and component selec-
tion. While 200,000 samples per second is attainable, 2¢,000 samples per second might
be more practical.

A Unique Application for a Fast A/D

VWhen we first considered adding an A/D to ZAP, our thoughts centered on monitor-
ing some process or turning ZAP into an intelligent controller. In most cases, this re-
quires one of the simpler A/D converters I've outlined. However, with the addition of
a high speed A/D peripheral, a few more experiments come to mind.

Most often when we think of high speed analog, we want to capture video or other
high bandwidth phenomena that have a voltage level within the range of the A/D. Of
course, the audio frequencies, while much lower than video, may also require a high
performance A/D for proper representation.

The bandwidth of the human voice is about 4000 Hz. These analog signals, when
spoken into a microphone and fed to an A/D, can be digitized just like any other wave-
form. And, if our voice samples are taken quickly enough and stored, the accumulated
data can be used to reconstruct the same voice. This reconstructed voice is called
digitized speech.

In essence, digitized speech is simply the result of a standard data acquisition tech-
nique. When speaking into a microphone and amplifier, your voice results in a fluctu-

196 CONNECTING ZAP TO THE REAL WORLD

ating waveform, whose frequency rate varies. If this signal is applied to the input of a
high speed A/D, and the conversions stored in memory, the computer couldn'’t care
whether the source was speech or a nuclear reaction. The analog fluctuations would be
digitized at discrete sampling intervals and stored. If the stored samples are output to a
D/A at the same rate they were taken, speech will be reproduced. The fidelity of this
reconversion is a function of the sampling rate.

Most of the intelligence or information content of human speech occurs in the fre-
quency region below 1500 Hz. Obviously, sampling this waveform at 25 samples per
second would be useless. It must be sampled very rapidly to retain anything of signifi-
cance.

There is a specific law known as the “Nyquist criterion” that is used to determine the
optimal sampling rate. In theory, this law states that at the very minimum, the sample
rate must be twice the frequency of the input waveform. Thus, if the human voice ex-
tends to 4 Hz, then the minimum rate should be 8000 samples per second. This also
presumes an ideal filter on the output, the existence of which is about as ephemeral as
perpetual motion. In actuality, the sampling rate should be 3 or 4 times the highest in-
put frequency. To digitize voice accurately requires a sampling rate of 12 Hz to 16 Hz.
If, on the other hand, we shoot for just the lower frequencies, we can get by with 3 Hz
or 4 Hz.

The possibility of using this speech technique has to be considered in light of the
* availability of large amounts of memory. At a 4 Hz sample rate, one second of speech
takes 4000 bytes of memory. If you have added more than the 2 K of memory in the
original configuration of ZAP, then perhaps you'll want to experiment with digitized
speech. Even with just 2 K yvou should hear something.

A fairly simple program is needed to coordinate the digitization process and store the
data:

START EQU 400 Memory table start HL address
END EQU Coo Memory table end H address
TRIG EQU A8 Input start conversion level
IPORT EQU 04 A/D input port
SAMP EQU 38 Sample-rate time constant
INP IN IPORT Read A/D input value
CP TRIG Compare input to trigger level
P NZ,INP Loop again if below trigger level
LD HL,START Load table start address
AGAIN IN IPORT Take a sample
LD (HL), A Store sample in memory
CALL DELY Delay between samples
INC HL
LD AH
CP END Test to see if at end of table
JP NZ,AGAIN If not, take another sample
HALT
DELY LD B, SAMP Start delay timer
DCR DEC B
P NZ,DCR
RET

When the program is executed, it will scan the A/D input port and compare the read-
ing to A8 hexadecimal (about 65% of full scale). When speech is present, the audio
level will presumably exceed this trigger level. When this happens, the program sets the
address of the storage table and starts dumping data samples into it at a rate of about
4000 per second. The rate is determined by the value of “SAMP.” The higher the num-
ber, the lower the sampling frequency. When the table is filled, the program stops and
the memory will contain a digitized representation of whatever was spoken during the
sample time. For 2 K of memory, only ¥2 second of speech will be captured.

To hear this stored data, use the program outlined in the section on D/A converters.

CONNECTING ZAP TO THE REAL WORLD 197

Set the limits to be the area of the memory table, then choose a time constant that
results in putting out the samples at the same rate that they were taken. (It is also possi-
ble to create a digital reverberation system using this hardware, but for decent fidelity
12- or 14-bit converters are required.)

Because digitized speech is a specialized application, the D/A circuit is modified
slightly to include a low-pass filter. This will improve the sound quality. The modified

circuit is shown in figure 8.13.

10K +5V

ZERQ
ADYJ

3
-6V |
33.9K
47pfF
+5V 39K
————AN——F
13 e
MSB —— 2y LOW BaSs FILTER
|’D7[>——5A1 +V REFE s
|
I ps T>——S1n2 1 outh®
f 7].s
Pos[>——a
8817 s Flag -v ReFp2 10
PARALLEL ¢ s AMPLIFIER
ys o %% ¢ . INPUT
~ i 408- 23
- L Mcl408-8
o S>———i7 RC 1
i =8 2
a
L8 B COMP Veds

Figure 8.13 4n &bit D/A converter wiih a low-pass filter.

Using ZAP for High Resolution Data Acquisition

Up to this point our discussion has concerned experimenting with ZAP. Some
aspects of these designs are useful in noneducational applications, but for the most part
thev are intended more as teaching aids than as replacements for expensive monitoring
ecuipment. However, it is possible to add more specialized interfacing to ZAP which
allows it to be used in such a manner.

The 8-bit A/D converters presented thus far have limited resolution and are single-
channel devices. They are adequate for measuring temperature in a solar heating sys-
tem, but it is doubtful that they have the resolution to monitor the temperature gra-
dient along a length of heating duct. The sensors used to measure such parameters
would need to have a higher resolution than ambient air temperature sensors. For a
range of —20 to 108°C, an 8-bit A/D could provide 0.5° resolution. In a solar heating
application, considering the variations in air movement, cloud cover, and general
weather patterns, this is as much resolution as you would need. Within the system,
however, there are areas that will require closer measurement.

A solar system is a typical example. After installation the next step is usually to in-
vestigate how to increase its efficiency. Nine times out of ten this requires cutting heat
losses in the pipes and ducts. One way to determine such loss is to place temperature
sensors along the heat distribution path and look for cold spots. The measured dif-
ferences between sensors may be very small, a few tenths of a degree or so, but the
overall losses could be significant. Measuring temperatures to tenths or hundredths of a
degree and maintaining the same dynamic range requires more than 8-bit resolution.
Something between 10 and 12 bits is needed.

The situation is further complicated by the large number of points that may need
monitoring within a system. It's rare to find only one temperature indicator in the sys-
tem. At the very least there would be six: inside air, outside air, storage tank top, stor-
age tank bottom, collector, and distribution air temperature.

198 CONNECTING ZAP TO THE REAL WORLD

Very few commercial data acquisition systems use a single channel. Usually they
come with either eight or 16 multiplexed channels. The input of one A/D converter is
switched (usually on a demand basis) between the channels and the results are com-
piled and averaged by the computer. This information can be logged on recording tape,
transmitted serially to another system, or used to run a real-time display. What one
does with the data is a function of the application program.

There are various ways to configure ZAP for high-resolution data acquisition. One
is to simply to replace the 8-bit A/D with a 12-bit binary converter. When the conver-
sion is finished, 12 bits of parallel data are available. Depending upon the converter
chosen, many outboard analog components might still be required, but the process is
straightforward. Unfortunately, these converters are not what you would call inexpen-
sive. Although they are becoming cheaper every day, at this writing they are still con-
siderably more expensive than 8-bit converters of similar speed.

Most 12-bit binary converters are expensive because they are designed to give the ap-
pearance of parallel converters. Toggle the convert enable line and zip, there’s 12 bits
of answer. When the computer wants this data, it scans, manipulates, and stores it in a
table for use by other programs. Making the hardware section of an A/D interface less
expensive involves doing less in parallel. Taking the alternative serial approach gener-
ally requires more time and additional data manipulation. We can opt for the "owest
expense and let our computer do most of the work. We have already demonstrated
how to eliminate counters and timing logic by doing these functions in software.

An 8-Channel 312-Digit AC/DC Interface for ZAP

The solution to the high resclution versus expense question comes in the form of a
3;-digit multiplexed A D converter chip. The MC14433 CMOS integrated circuit is
intended primarily for use in digital voltmeters (DV)Ns) but enjoys a variety of other
applications because of its versatility. It is a single-channel 11-bit converter, but it is
called 3V digits. The output is BCD 'binary~<cded decimal) and it specifically covers a
range of —1999 to +1999 counts. Basic chip specifications are as follows:

NC14433 312-Digit A/D Converter

Accuracy: =0.05% of reading +1 count

Two voltage ranges: 1.999 V and 199.9 mV

25 conversions per second

1000 MQ input impedance

Auto zero

Auto polarity

Over, under, and auto ranging signals available

The MC14433 is a modified dual-ramp integrating A/D converter and is outlined in
figure 8.14. The conversion sequence is divided into two integration periods: unknown
and reference. During the V,y (unknown input) integration sequence, the unknown
voltage is applied to an integrator with a defined integration time constant for a prede-
termined time limit. The voltage output of the integrator then becomes a function of
the unknown input input. The more positive the input, the higher the integrator out-
put.

During the second cycle of the integration sequence, a reference signal of 2.000 V is
connected to V. This causes the integrator to move toward zero while the digital cir-
cuitry of the chip keeps track of the time it takes to reach zero. The time difference be-
tween the two integration sequences is then a function of their voltage difference. If
2.000 V were the applied Vi then t, would equal t,. The unknown voltage is equivalent
to the ratio of the periods times the voltage reference (Vggr). This is also known as a
ratiometric converter. The full scale of the converter is determined by Vggr. Changing
Vieer to 0.200 V will make the 1999 count output represent 199.9 mV instead of
1.999 V full scale.

CONNECTING ZAP TO THE REAL WORLD 199

INTEGRATOR

ouTPUT

VOLTAGE Vg
A

SLOPE = V REF

SLOPE = VIN
T T

VOLTSI
TIME —»
; >
; ‘J
',‘_’H h_, <——le
1,2
153
TEINTEGRATION TiMEI £C4872NT
112 UNKNOWN VOLTAGE INTEGRAT.ON BER 22 (I2NETANT)
1,2 REFERENCE VOLTAGE INTEGRATION PERICD {VAR:ASLE)
_VIN 1, VREF 1,
Vor 7 Ut
THAT IS
Nt
EET N
- CONTROL —<J sTART
{oGIC
]
[
V INPUT | croex
N i
i »’
|
V REF

} ::uleE:(

Figure 8.14 A simplified representz:icn of a dual-ramp A/D converter.

The output of the DVM chip is a combination of serial and parallel data. There are 4
digit-select and 4 BCD data lines:

BCD Qutput Lines
Pin 23 Q3 (MSB)

Pin 22 Q2
Pin 21 Q1
Pin 20 Qo0

Digit-Select Outputs
Pin 19 DS1 (MSD)

Pin 18 DS2
Pin 17 DS1
Pin 16 DSO

200 CONNECTING ZAP TO THE REAL WORLD

With respect to what the computer sees through 74LS04 output buffers, the digit
select output is low when the respective digit is selected. The most significant digit (2
DS1) goes low immediately after an EOC (end-of-conversion) pulse and is followed by
the remaining digits in a sequence from MSD to LSD. The multiplex clock rate is the
system clock divided by 80; two clock periods are inserted between digit outputs.

During DS1, the polarity and certain status bits are available. The polarity is on Q2
and the V2 digit value is at Q3. If Q2 is a “1”, then the input voltage is negative, and if
Q3 is a “0”, then the ¥; digit is a 0.

Figure 8.15 details the schematic of the 8-channel interface board. As shown, it has
the following capabilities:

ZAP 312-Digit DVM Interface

e 8 programmable-input channels

e AC or DC input capability

® Programmable gain of 1, 10, or 100

® Ranges of 0—200 mV, 0—2V, 0—20V, or 0-200 V
@ Input overvoltage protection

IC 1 is the MC14433 DVM chip. It is set for approximately 25 conversions a second
and all outputs are buffered. IC 2 is a precision voltage reference chip that supplies the
Vzer signal. It is nominally 2.5 V and is trimmed to 2.000 V and 0.200 V with two po-
tentiometers. While a zener diode might provide the same voltage, the temperature
drift associated with such components makes them inadvisable in this application.

IC 5 is configured as a set reset flip-flop. VWhen the conversion is finished, an EOC
signal sets IC 5, indicating to the computer that data is available. When the computer
finishes reading the data, it resets this tlip-flop and awaits the next conversion.

ICs 1, 2, 3, and 4 constitute a singlechannel 3::-digit converter. It has a range of
either 0.200 V or 2.000 V determined by Vagr. To achieve multichannel operation and
AC capability, it is necessary to place an input multiplexer and AC to DC converter in
front of IC 1.

+5 VOLTS SUPPLY

+5v [> * I
‘LL 102F 0.1uF
1Y Tloov

e T L
syrEca - 10pF 0.1uF
3300 15v 100V

1w
-12v TO -1I7V> VWY . ® *

=5 VOLTS SUPPLY

1. ALL RESISTCRS AR% 5% 1/4 W UNLESS OTHERWISE NOTED
2.ALL CAPACI!TORS ARE 100 V CERAMIC UNLESS OTHERWISE NOTED

a—
- -1 |
; } | 125 ax INPUT
4
| } CTRL| OUTPUT AX OR AY o1 |
13
c# TYPE +5V -5V GND | 1 o X |) o—:——-OAY INPUT
|

1 Mces33 26 12 13 i | 1 AY craL ol |
2 mMclao3 1 3 | | INPUT
3,4 74L504 14 7 L. 3 | seor |
5 7474 14 7 _
67 CD4O53 16 7 8 5
8 co4051 16 7 B
g 7445 16 8
o tmas ¢ M PIN DIAGRAM OF SIGMA FUNCTIONAL DESCRIPTION OF A SINGLE (1 OF 3)

RELAY TYPE 191TE1A2-55 SWITCHING SECTION OF A CO4053 CMOS SWITCH

14 PIN DIP PACKAGE . AN Ll d
in ~ 1

VAN E-R T

-

Figure 8.15 An 8-channel 32-digit 0—200 V AC/DC DVM interface (continued on next page).

CONNECTING ZAP TO THE REAL WORLD 201

iNdiN0 T 1H0d

panunuod g1'g ainbig

- Y
ASH | 8T 08 18 z8 €8 va
s [>——lo— 0
c1| v1| €1 1] ot
i v 8 o v 8
AG+ [oulun\ HNI
L# _HV||°_\0||. A, 2 S
-1° 100
AR 0 NI
= € NI
o€ SvtL 1S0vG v NI
_ hd e 691 801 ¢ Ny
ey ! o
ok o1 H
I NI 2 NI
[Sl
A WIHLHS WiNL ¥
|
AS+ | sy A¥YSSIIIN ..:l\“\
s [>——olo—9
VOSINI MTITS MITTL S
0IX3 001X
VOGLNIT
_ LRl
AG+ _ Wt
v [>—o p—9
148 ot
RETEX] N1 AV X"
1 1no
P AR
7 €502 €50va2
R | e 191 921
| mmvn LAY
SH# ﬁUVll|IW\PlI|lL- 2z A
1n0 NI XV
[2t
| NI 1no
AG+ | @
O | X € uN914
d HILHIANOD 20 O1 IV

|
R | v

 [——olo—

S1NdNt

ANdNI
10d1IN0 T L¥Od ¥ 140d 1NdN1 T LHOd
" T\ \
sa 98 L] og 18 o098 1@ 28 €4 va <89 989 .9
bLYL
-]
L 9 2 ot 9 2
B
») o ot o o¢ og
o S 1 3 S 1
$0SIbL
Ak v 21 8 v €31
d
v av 13 PE q¢
1y €l [€
8
v0SIve
ol
[
1] st 02| tz| 22| 2| 9t 1] et 61
203 H0 00D (0 @20 €0 +SA €SA 2SQ (s
St
U
4722000 BAQ L1910 2/1 €
_ CEPLION 121 Uow _
AN——- NIA 47ro
%001 € a0l
H 2] 2 43HA WMD) HAD rs
v < 2 ot Tt
oxnve ALz AGOT B9
z«ﬂ»!
v 4710
X3 Ny 110 334 A
SOFTON ©A
291 e
R
L o TH1D D AJ NI <
£50602
901 St
1o K
€Sovad g ni]A00Z0 2 o
921 1 <
RTEN:] 8’
o1 w
AOD0Z &
X8 NI p 14
S31¥3S NI NET ONV NOEb, 2 1
A00S'Z

202 CONNECTING ZAP TO THE REAL WORLD

Figure 8.16 shows the voltage reference and range selection setup of this interface.
The MC14433 can cover either 0—199.9 mV or 0—1.999 V. The ranges depend upon
the level of Vrer. When B5 of port 1 is low, switches 5 and 6 are in the positions shown.
This would apply 2.000 V to Vegr input and set the integration time constant with an
82 kQ resistor. With B5=0, Vxer is 0.200 V, and the integration resistor is 10 k2.

Figure 8.17 illustrates the input subsystem in simplified terms. SW1 and SW2 repre-
sent the gain selection section. As shown, the gain is 1 and no divider network is en-
abled. When an input relay is closed (controlled through IC 9), the input voltage of
that channel is sent directly to the input of IC 1 through a 1 MQ resistor. If the interface
is set for DC and a gain of 1, a 1.400 V input signal at channel 3 would be read directly
as 1.400 V by the DVM chip. If, however, 150 V were suddenly applied, it would be
shunted through Z1 and Z2, which protect IC 1. The data read by the computer will in-
dicate an out of range condition because the input would be shunted to 4 V.

Closing SW1 or SW2 forms a divider network that allows the computer to read these
higher voltages. A 10:1 divider is formed by closing SW1. The result is a divider net-
work consisting of the 1 M@ resistor R1, and a 111 k@ resistor R2 to ground. An 8 V
input signal would be read as 0.800 V at the input of IC 1. The programmer should
keep in mind that a divider was used on that channel and multiply the answer by 10
when recording it.

Closing SW 2 forms a 100:1 divider. The mathematics is the same except that the
resistor (R3) is now 11.11 kQ. An 8 V input would become 0.080 V and a 150 V input
would become 1.500 V. Obviously, proper range selection is necessary to maximize
resolution.

An additional feature of this interface is the ability to accommodate AC inputs. This
is accomplished by simply converting the AC signal to DC after the divider section out-
put. IC 6 and IC 7 function as single-pole, double-throw switches to gate the converter
in or out of the signal path. The actual AC-to-DC converter is shown in figure 8.18.

This device is known as an average RMS (Root Mean Square) converter. If you
apply a 1.0 V peak AC signal to it, it will output 0.707 VDC. This is the technique used
in most digital multimeters. This is also the way we commonly express AC voitages.
For example, household 115 VAC is 115 V average RMS. The peak is about 176 V.
The converter passes both AC and DC because there is no blocking capacitor on the in-
put. If it is inadvertently switched into a DC signal, it will multiply the reading by
1.414.

SW5
AuF
443k | 27K 05"
4 5 }-_L
IR iRCIC .
N Y A MC1403
REFERENCE
DUAL-RAMP INTEGRATION
TIME-CONSTANT NETWORK _—_—4{//’1323214:isx
2
+V REF
SWs
SPOT
(ALL PINS ARE NOT SHOWN) K v
ADJUST
MC14433

Figure 8.16 Voltage reference and integration time-constant modification circuitry for the digital
voltmeter.

CONNECTING ZAP TO THE REAL WORLD 203

ANALOG

0 INPUTS
o—<_] CHANNEL 1
RL2
o—<_] CHANNEL 2
AC-TO-DC
CONVERTER RL3
o-—<_] CHANNEL 3
RL4
TO swa sw3 R1 o—<_] CHANNEL 4
DVM M
INPUT » » I RLS
444] o—<_] CHANNEL 5
R3 R2 Z1
11K 111K
11 IN750A Rl
72 CHANNEL 6
SW1 AND SW2 ARE SPST IN750A —
SW3 AND Swé ARE SFOT swa SW1 aL7
o—<_] CHANNEL 7
RS
o—<_] CHANNEL 8
. J\ J
GAIN INPUT RELAY
SELECTION OVERVOLTAGE INPUT

N PROTECTION MULTIPLEXER

Figure 8.17 D" ~out conditioning sections.

INPUT BUFFER L2=T0-20 20N ERTER RIFRPLE FILTER
r N N\
+5v
10K
OFFSET
ADJUST 20k
A
-5V Y
S 100K 1uF
7% 22K 10K 15v
1o 1%
1K ; — it)
1% M +
*——— AN——
) 1
inela | 156 10k
:355\\\\\ 20K (2) g —a—
14 1%
LT —— .
ac 2zl
NPT = Ao 10
LM324 J
oc
5 ouTPUT

1% FOR MaXiMUM ACCURACY

212K
REISISTORS ARE PREIFERABLY /il%

Figure 8.18 A schematic diagram of an AC-tc-DC converter.

204 CONNECTING ZAP TO THE REAL WORLD

Exercising the Interface with a Software Driver

The interface is attached to ZAP through /0O ports. It takes 10 input bits and 8 out-
put bits for full operation. They are arbitrarily chosen as ports 1 and 4 for this descrip-
tion, The actual choice will depend on what addresses you wire when you are configur-
ing ZAP. These ports are not used for anything in the original description and will re-
quire the proper port hardware to be added. Summarizing the 1/O requirements for the
DVM (digital voltmeter) interface:

Command Output Byte (port 1 output)
B7 EOC enable or disable Disable=1; Enable=0

B6 AC or DC select AC=0; DC=1
BS 2.0Vor0.2 Vrange 20V=0;02V=1
B4 . 0,0=X1
B3 gain code 0.1=X10
1,0=X100
B2
Bl ; channel code channels 0—7 binary
B0

Status Input Byte (port 4 input)

B7

B6

B5 not used

B4

B3

B2

Bl outof range

BO end of conversion

Data Input Byte (port 1 input)

B7 1stdigit
B6 2nd digit
Bs 3rd digit
B4 4th digit
B3

B2 1 BCD value

Bl
BO

when B7=0 then: Bé6
BS not used
B4
B3 1/2 digit value
B2 polarity
B1 not used
BO autoranging status bit

digit enable

This interface uses a software driver to reduce hardware complexity. The program is
not unlike a communications driver. To obtain data from the interface effectively, the
computer must be synchronized with the DVM chip and must perform a specific se-
quence of operations to demultiplex the input data stream.

The actual program that interfaces to and stores the values from the DVM chip is
written as a subroutine. All the information necessary for proper execution of the
driver is provided in the DE register pair at the time of the call. Its contents will tell the
interface which channel to set, whether it should be AC or DC, and which Vggr and
gain to use. One channel is converted every time the driver routine is called.

The information set in the DE register pair at the time of the call is the command out-

CONNECTING ZAP TO THE REAL WORLD 205

put byte (port 1 output), and each bit has the designations previously listed. The only
difference is that bit 7 (the enable/disable bit to the A/D converter) is sent as a logic 0
when doing a call. The driver will set it to an enable condition after it has pulled in the
proper relay and allowed a 1.3 ms bounce delay.

Demultiplexing the output of the DVM chip is fairly straightforward. Following the
call, the outputs to the interface close the proper switches, and the central processor
hangs in a loop waiting for an end-of-conversion signal. When this happens, the pro-
gram knows that the next 4 digits of data are what it wants. The DVM chip sets each of
the digit select lines successively, and the program records the values of the 4 BCD data
lines each time. It strips the status and polarity bits from the MSD %2-digit byte and
reformats and stores the voltage input value in 4 bytes of memory. The 3 whole digits
are stored in BCD notation and occupy 3 of the bytes. The ¥z digit, polarity, and out
of range indication are located in the fourth byte. Polarity is indicated by setting the
MSB. A positive reading is a logic 1 and a negative input is a logic 0. The ¥2-digit value
can only be a 0 or 1 and occupies the LSB of the quantity. Out of range is handled with
a little program manipulation. If the driver detects that the incoming reading is not
within range, it sets the equivalent of +2 in the ¥2-digit byte. Obviously, this is an il-
legal condition for a DVM only capable of counting to 1999. The programmer using
this stored data should check the limits of the data before acting upon it.

When the driver completes its operation, it has acquired a 3':-digit reading and
stored it as 4 bytes in a special table in memory. The 8 channels of data constitute a
32-byte table. The location of a particular channel's data is found by a simple expres-
sion:

The 4-byte data starts at memory location L+4(N—-1)

where L = starting address of memory table
N = channel number (1 to 8)

Figure 8.19 is the assembly listing of the program that exercises this DVM interface.
When assembled, it occupies less than a page of memory.

Note: One caution should be kept in mind when measuring AC signals with this in-
terface. The ground or the DV M interface is the same as the computer’s and a potential
short circuit exists unless either the computer power supply or the measured voltage is

isolated.

0100 X

0110 X%¥X MC14433 3 1/2 LDIGIT A/D CONVERTER DRIVER
0120 X

0129 ¥ REV., 1.9

0130 %

Q014C LIF EQU 1 DaTA INFUT FORT NUMEBER
0130 SIF EQU 4 STATUS INFUT FORT NUMEER
0160 CCF EQU 1 COMMAND OUTFUT FORT NUMEER

0170 EEOC EQU 200 ENAELE EOGC INFUT
0180 LEOC EQU ©Q0 LISAERLE EOC INFUT

0190 x

0200 X

0210 % CONVERTED CHANNEL DATA BUFFERS

0220 X

0230 CHANO IIW 000000

0240 Tild 000000

0250 CHANL1 DW 000000

0260 L 000000

0270 CHANZ DU 000000

Q2380 LW 000000

0290 CHAN3Z I 000000

0300 DW 000000 Figure 8.19 A listing of the assembly-language
0310 CHAN4 DWW 000000 program that exercises the digital voltmeter.
03320 T 000000

0330 CHANS I 000000

0340 W 000000

206 CONNECTING ZAP TO THE REAL WORLD

0350
03450
0370
0380
0390
Q400
0410
0430
0440
0460
0470
0480
0490
Q550
0560
0570
QBEG
0BG
04600
0910
020
0930
0940
0950
0940
0970
0980
0985
0990
1000
1005
1010
1020
1030
1040
1030
1060
1070
1080
1085
109¢
1100
1110
1120
1130
1140
11350
11460
1170
1180
1190
1200
1210
1220
1230
1240
1440
14350
14460
1470
1480
13500
1510
1520
1330

CHANG I Q00000
W 000000
CHAN7 I 000000
Al 000000
X
X INTERMEDIATE DATA RUFFERS
X
CHAN LR 000 CURRENT CHANNEL NUMERER
CCF I 000000 COMMAND CHANNEL FARAMETER
X
X
X¥k START A/ CONVERTER
X
X
START LD Ak
L1 (CCPY ey
ANDI 007
(] (CHAN) vA
L. IXy CHANO
(] Ity O
1.0 E+A
SLA E CALCULATE BUFFER OFFSET
SLA E
ALD IXyDE
X
X SELECT CHANNEL AND START CONVERSION
X
LI B3 SET CYCLE COUNT
sCsC LD Ay (CCP)
ouT COF SELECT CHANNEL
CALL DELAY
OR EEQC ENAEBLE EQC CQUTFUT
ouT COF COMMAND A/D CONVERTER

X
X WAIT FOR EQC
X

WEDC IN SIF READ CONVERTER STATUS
RIT OrsA TEST FOR EOC
JR ZyWEOC JUMP IF NOT READY
DUNZ SCSC
RIT 1sA TEST FOR OVERANGE
JR NZsOVER JUMF IF TRUE
X
X CONVERSION UONE;FROCESS FIRST (MSID DIGIT
X
Moo Lo Es200 SELECT DIGIT 1
CAll. RDIG WALIT AND READ DIGLT 1
ChH-
RRCA RIGHT JUSTIFY DIGIT VALUE
RECA
RRCA
AND 1 ISOLATE
LI) INITIALIZE STATUS RYTE
RIT 2vI TEST FOLARITY
JR NZyMSD3 JUMP IF FOSITIVE
Lo Es200 LOAL POLARITY SIGN
X
% SAVE MSI ANI CURRENT FOLARITY
X
MSD3 OR E ADD FOLARITY SIGN TO MSD
LI (IX+0) ¢ SAVE IN DATA BUFFER
X
X FPROCESS 2NN DIGIT
X
RRC R SELECT DIGIT 2

Figure 8.19 continued

CONNECTING ZAP TO THE REAL WORLD 207

1540 Call. RIIG WAIT AND READ DIGIT

1550 AND 017 ISOLATE

1560 LI (IX+1)eAA STORE SECOND DIGIT
1570 x

1580 X% PROCESS 3RIr DIGIT

1590 X

1600 RRC & SELECT 3RD DIGIT
14610 CALL RIIG WATT AND READ DIGIT
1620 ANV 017 ISOLATE

1630 1.0 (IX+2) s STORE

14640 X
1650 % FROCESS 4TH DIGIT

14660 %

14670 RRC R SELECT 4TH DIGIT
14630 Catl. RIOIG WAaTLT AND READI DIGIT
14590 ANTY QL7 TH0LATE

1700 LI CIX43) v STORE

1710 BarUr P

1720 %

1730 % LOAD 2,000 CVERRANGE VALUE INTO DATA RUFFER
1740 x

1750 OVER LI A2 LOAD MSD UALUE

1760 LI} CIXHG) o4

1770 XO0R A

1780 Lo (IX+1)r»A ILOAD LSD VALUES
1790 LI (IX+2) A

1800 Ln (IX+3)sA

1810 JR RAFUF

1870 X

1880 x

1890 % READ TNISIT ROUTINE

1900 %

1910 RINIG IN InTF REATT DATA BYTE

1920 Ciric CONVERT TO HIGH TRUE LOGIC
1930 LD Lie Ay SaVE CORY

1740 AND H TEST FUR GIVEN DIGIT READY
120 SR ZeRLIG JUMFEOTF NOT

1%5:0 LI fFie i FESTOREZ & REGTSTER
1.0 FIET RETURN TO CALLER
17 DELAY LI Cs277

155> Tl nec C

2000 RET Z

2010 DIELD

Figure 8.19 ->vtinued

Potential Applications

I feel that data acquisition is a natural application for ZAP. The interface outlined
above can be used in a solar heating system to monitor and record pertinent data.
Using the facilities of the ZAP monitor and the DVM interface routine, an 8-channel
data logger is practical. In general, all that would be required is a supervisory program
that calls the DVM 8 times to obtain the 8 sensor inputs. It then sets the limits of the
memory table to a serial output subroutine and stores the readings on a cassette. This
could be done continuously or at regular intervals, The ultimate system would include
a real-time clock so that these readings, as well as the times at which they were taken,
could be recorded.

Real-Time Clock

If ZAP is going to be used for critical data acquisition or control functions, consider-
ation should be given to real-time synchronization with process events. A simple defi-
nition of a real-time system is one that responds to the need for action in a period of

208 CONNECTING ZAP TO THE REAL WORLD

time proportional to the urgency of the need. It boils down to the fact that the comput-
er must be capable of performing a specific action at a specific time. For this to happen,
the computer must be able to “tell time."”

We can accomplish this by using either software or hardware applications. The
simplest technique is to use a clock circuit (figure 8.20) to provide a time tick to the cen-
tral processor’s nonmaskable interrupt line. It can be every 60th, 10th, or 1 second, as
suggested in the schematic. When the computer acknowledges the interrupt, it first
saves all the registers from the program it was executing, and then services the real-time
interrupt. Frequently, the first action is to increment an internal counter that keeps
track of elapsed time. Usually it’s a value equivalent to the total number of clock ticks,
whether in seconds or milliseconds. Once this regular interval has been established, it is
easy for the computer to perform real-time functions.

Clock resolutions down to milliseconds sound great and make interval timing ex-
tremely accurate. However, I doubt most ZAP builders would want to use such an in-
terface in light of the complex software involved. I much prefer an interface that is
easier to implement and more likely to be used.

Essentially, the kind of real-time system most appealing to ZAP owners has a resolu-
tion of perhaps 1 minute rather than 1 ms. Also, it's best if it can be read directly in
hours and minutes rather than as a total clock count. A direct benefit is reduced over-
head. The computer does not have to acknowledge the clock update or scan status flags
as often. At first glance, it may not seem like much of a saving, but some routines can
use up to 10 percent of the processor time handling a millisecond clock interrupt.

- : 1
115VAC E »ize.ac ST I
60 Hz bEEGEER A ~I7 § INB
5
O [o . . Slroty ez
~7 T4z
! /Paom ‘g
2laz << l'_' 3z
1002 <} .
T LEVEL 12
VCe ANt NTERRUPTS QA
T TS CO 1
€1 74ld 1a & G COMPUTER BIN
1c2 7492 5 v
1C3 7490 5 103
7490
+10

Figure 8.20 A simple time-base generator for an interrupt-driven real-time clock.

An OId Clock Chip to the Rescue

The easiest way to provide an hourly and minute-by-minute input is to interface the
computer to an MOS/LSI clock chip similar to that found on most digital clocks or
watches. There are two approaches to the design of a clock interface: one method is to
let the clock circuit operate independently from the computer, attached in such a way
that the computer can monitor the output lines and extract a time value on the fly. The
software necessary for this approach would be very much like the DVM interface
described previously. The other method, which I prefer because it involves less soft-
ware, is to give the computer complete control over the information flow of the clock
in a synchronous manner.

CONNECTING ZAP TO THE REAL WORLD 209

Figure 8.21 shows such a clock interface. This circuit, manually preset to keep it sim-
ple, is computer directed. The basic 4-chip circuit consists of an MM5312 4-digit BCD/
7-segment output digital clock chip, an MM5369 time-base generator, and two MOS-
to-TTL buffers to send data to the processor.

Time is set on the chip by grounding the slow and fast set lines, pins 14 and 15. To
know what is being set you must read the interface at the same time, and display the
time on the 4-digit hexadecimal address display, already part of the expanded ZAP.
Time is read from the interface as 4 binary-coded decimal numbers. The 8 input lines to
the computer are attached to an 8-bit parallel input port, and are divided between 4
digit-enable lines, and 4 BCD digit-value lines. Data appear as a digit enable and an
associated BCD number. The tens of minutes data is read on BO thru B3 when BS is
high (B4, B6, and B7 are low). Similarly, BO thru B3 will hold the tens of hours quantity
when B7 is high. The interface logic will stay on a particular digit until it is instructed to
proceed to the next digit. Sequencing is under program control and uses one output bit

of a convenient parallel port.

CRYSTAL
FREQUENCY * 3.579545 MHz +izv 5 12y
+12v LTeZosAL The g 2
5-360F 8 +izv oo o oo
. Yl 5 ‘ 1
71 X1 Tu ic3
. 20pF 162 S % % (sesey
;OS?I“F 0%'—— S CRYSTAL $22M our| . 80Hz 16lctock oI i 3>: ol
33pF MM5369 INPUT 2 l
3 .] Beoe —+—2>0"
+12v /Jf +izveizy Mssle BCDAL o
gmx %10«(2) BCD8 24 9@010
I Ica
— 1PPS CD4049
27 FAST SET . 21
a) {257 SET M1 P>t
T sotwosET . w2 5»04
’ - ~—{ 3.4 SIT
” izv N 7>Ce
s ..
> o . R 2o ll
1 2N2222 o ..
1c3 £r et
Y c04ges R
¢ 10K ~—
77
U VEVEYRVEVRVEVAY;
\%
?;Ta]coml?aaaun BO B? 85 B5 S84 83 B2 Bl BO
SINGLE BIT STROBE h — d
ORr LiGT
O o1t oF A cfvch;ABLE BCO VALUE
PARALLEL PORT)
TO PARALLEL INPUT PORT
+12 70 15V
IC# TYPE +5V +12V GND b) FRCM CCMPUTER
1 MM5312 13 23
2 MM5369 8 2
-
3 CD4049 1 8 1N4002 |= APPROX. 12mA
™
4 CD4049 1 8 — = ON STANDBY
5 7406 14 7
6 74147 16 8 gl +
7 €D4050 1 8 VOO
FOR 1 o2 L
o] 2 HOUR OPERATION, PIN 11 MM5369 -— 12V BATTERY
IS GROUNDED ON THE MM5312. CLOCK INTERFACE T
GND
/J72
77

Figure 8.21 A schematic diagram of a real-time clock interface.
a) Using a MOS digital clock chip.
b) With battery backup.

210 CONNECTING ZAP TO THE REAL WORLD

Figure 8.22 shows how the multiplexer line is controlled in this application. One bit
of an output port is used to pulse multiplexer input pin 22. (All that is required isa 1 ms
pulse. As an alternative, a one-shot could be triggered from a decoded strobe line of an
unwired port.) At any time, 1 of the 4 digit-enable lines will be low and a digit’s value
will be on the BCD output lines. Just determine which digit it is and store the value.
Next we pulse the multiplexer input to enable the next digit and save it as well. Con-
ceivably, it takes only 4 iterations of this procedure to obtain a complete 4-digit
reading. If you prefer a more orderly approach, you can follow the program flow out-
lined in figure 8.23. The only difference is that it waits until the chip cycies to the begin-

ning before storing the readings.
MULTIPLEX TIMING INPUT I-—l H ﬂ H [—l

MINUTES (UNITS) ““"‘];;/ léj I

Figure 8.22 The multiplex timing sequence MINUTES (TENS)
for the display in the circuit of figure 8.21.

HOURS (UN T8

873 LINES CONTAIN VALID DATA
2 3:T DURING TH!S PERICD

(starT) ’ o -z
cess s aEteoizzaga wATELY 200us SETTLING TIME)

READ M1 BCD

PULSE
OISPLAY MULTIPLEX
INPUT

READ M2 BCD

PULSE
DISPLAY MULTIPLEX
INPUT

I M1 = MINUTES (UNITS)
M2 = MINUTES (TENS)
READ H1 BCD H1 = HOURS (UNITS)
| H2 = HOURS (TENS)
PULSE

DISPLAY MULTIPLEX
INPUT

| READ H2 BCD I

' Figure 8.23 A flowchart of a program for the circuit in figure 8.21.

STORE OR DISPLAY
HOURS AND MINUTES

RETURN OR
REPEAT

CONNECTING ZAP TO THE REAL WORLD 211

CHAPTER 9
BUILD A CRT TERMINAL

LOW COST VERSATILE CRT TERMINAL

This chapter describes the design of a low-cost features-oriented cathode-ray tube
(CRT) terminal. Two MOS/LSI devices from Standard Microsystems Corporation
reduce the number of parts required for a CRT terminal yet enhance its capabilities.

The two devices, the CRT 5027 video timer and controller and the CRT 8002 video
display attributes controller, provide virtually all of the circuitry for the display por-
tion of the CRT terminal. (See Appendices C8 and C9 for specifications.)

The terminal is designed to stand alone and communicate via an RS-232C interface
with any computer system. If, in the expanded ZAP, the é-character hexadecimal dis-
play proves inadequate, then the experimenter has only to construct this unit and at-
tach it to the serial port already assembled.

Device Description

The CRT 3027 contairs the logic reguired to generate all of the timing signals (ver-
tical and horizontal synchronization, page refresh memory address, etc.) required by a
CRT terminal. The entire display format including interlace/non-interlace, characters
per row, rows per frame, scans per row, horizontal synchronization pulse wid:h, and
timing are user programmable for all standard and most nonstandard formats.

Although the CRT 5027 is basically structured for use with its own microprocessor,
this design describes a “dumb terminal” using a low-cost PROM and standard TTL
logic to replace the microprocessor control, While increasing the number of the parts,
this design results in a low-cost, high quality alphanumeric/graphics terminal.

The CRT 8002 provides a 7 X 11 dot matrix, 128 character generator ROM, and a
high-speed video shift register cursor. It includes logic to generate such functions as
underline, blinking, reverse video, blanking, and strike-through. Additional wide and
thin graphics modes allow the creation of line drawings, forms and unique graphic

symbols.

Terminal Description

As with most electronic designs, a CRT terminal involves a large number of perfor-
mance and cost trade-offs. A screen format of 16 rows of 64 characters per row was se-
lected to minimize memory requirements (1 K bytes) and keep the video frequency
within the limits of lower cost video monitors. An 80-character line would have not
only increased the video frequency beyond the bandwidth of many low-cost monitors,
but also would have increased the memory requirements. Similarly, more rows per
page would have increased the memory requirement unless the characters per line were
reduced.

In many microprocessor applications, the page memory is shared with the processor
via a data bus. In this application, the page memory is used strictly by the CRT with
data input synchronously, character-by-character, into the cursor position.

Full graphics or attributes may be selected on a character-by-character basis using

BUILD A CRT TERMINAL 213

214 BUILD A CRT TERMINAL

control words on the input data bus. A block diagram of the terminal is shown in figure
9.1.

DoT
CLOCK
DO - D7
ATTRIBUTE/
PAGE VIDEO
MODE <+ CRT8002 >
MEMORY MEMORY
‘— w
% 3 o 3 b 1 3
[+ 4 2
= 8 3| |al \
o (224 < = Wy w
z 5l oz sl z| ¢l8) DOT
S g = c| o &< COUNTER
< ol 2 o w
';' < S © 5 @ g
z| © a S
”~ g 723 s
L SYNC
3 CRT5027
Lt S
ij
PROMW
CECODER/ CURSOR LOGIC
LATCH
i
-
[::: —— Tewiiit SERIAL
§§§§32R° RS UFFER L » SERIAL 1/0

Figure 9.1 A block diagram ¢f e :..-cost cathode-ray tube terminal.

Character Format

The CRT 8002 requires a minimum 8 X 12 character block to form its basic 7 X 11
character and to provide line and character spacing. However, in order to allow fram-
ing a character fully for a reverse video presentation, the horizontal character block
must be increased to 9 or 10 dots. For the same reason, allocating 13 lines per character
allows top and boitom framing as well.

With the standard TV sweep rates of 60 Hz (vertical) and 15,750 Hz (horizontal),
there are 15,750 + 60 = 262.5 lines per frame. As non-interlaced operation requires
an even number cf lines, a horizontal frequency of 15,720 Hz is used. The 16 rows
X 13 scan lines per row result in 208 lines of displayed data. The remaining 54 lines
will be automatically blanked by the CRT 5027 and will provide upper and lower
margins.

To allow for left and right margins as well as for retrace time, a total 80 character
times are allocated per line. A good rule of thumb is that the total number of character

times is 25% greater than the actual number of displayed characters.

The video clock frequency is calculated as follows: 10 (dots per character) X 89
(character times per line) X 15,720 Hz (horizontal sweep frequency) = 12.576 MHz.
See the worksheet in table 9.1.

1. HCHARACTERMATRIX (N0.0f DOtS):. ...« oo
2. VCHARACTERMATRIX (No. of Horiz. Scan Lines):. i
3. HCHARACTER BLOCK (Step 1+ Desired Horiz. Spacing = No.in Dots): 19
4.V CHARACTER BLOCK (Step 2+ Destred Vertical Spacing = No. in Horiz.

Scanlires):. L . R _L
5. VERTICAL FRAME (REFRESH) RATE (Freq. in Hz): .60
6. DESIRED NO. OF DATA ROWS: _le
7. TOTAL NO. OF ACTIVE “VIDEO DISPLAY" SCAN LINES

(Step4x Step6 = No.inHoriz.Scanlines): 08

8. VERT. SYNC DELAY (No.in Horiz. ScanLines):. __‘L
9. VERT. SYNC (No. in Horiz. Scan Lines; T=_{99-8__us%): 3 _
10. VERT. SCAN DELAY (No. in Horiz. Scan Lines; T==__ .59 ms*): ... _ 25

11. TOTAL VERTICAL FRAME (Add steps 7 thru 10 = No. in Horiz. Scan Lines): _26d _

12. HORIZONTAL SCAN LINE RATE (Step 5x Step 11 = Freq. in KHz): 5740

13. DESIRED NO. OF CHARACTERS PER HORIZ. ROW: €4

14. HORIZ. SYNC DELAY (No. in Character Tire Units: T =% 77 Lev 1 2
587 .. 7

15. HORIZ.SYNC (No inChzrazrer T~ .~ 3. T =

Table 9.1 A CRT 5027 worksheet for a 64 characters per row, 16 row, nc- ~:g-zced screen format.

Programming the VTAC

The CRT 5027 VTAC (Video Timer and Controller) is user programmable for all

timing and format requirements. The programming data is stored in 9 on-chip regis-
ters. Although a microprocessor can easily provide the programming data, a low-cost
PROM is used in this application. The 9 registers are programmed as follows (see table
9.2):
Register 0: This register contains the number of character times for one horizontal pe-
riod, and is normally 1.25 times the number of characters per line, in this case 64 X
1.25 = 80. As the internal counters are initialized at zero, the actual number in the
register is 80 — 1 = 79.

Lolrlojolrf1jriv]

Register 0

Register 1: This has 3 fields:
1) bit 7 — one for interlace, zero for non-interlace. In this example, noninterlaced
operation is selected.
2) bits 3 thru 6 program the number of character times for the width of the horizon-
tal synchronization pulse. This parameter is monitor dependent and is typically

BUILD A CRT TERMINAL 215

216 BUILD A CRT TERMINAL

5 us. Because there are 80 character times for a 63.6 us horizontal scan time
(1 + 15,720), each character time is 0.801 us; 7 character times will be used to
generate a 5.56 us pulse.

3) bits 0 thru 2 set the horizontal “front porch.” This essentially positions the data
horizontally. The monitor's specification will determine initial programming al-
though some experimentation may be required to center the display exactly. Six
character times were selected for the front porch.

Lofolxfa[t]r]1]o]

Table 8.2 A CRT 5027 regis:z--c2z-

Register 1
ADDRESS
REG. # A3 AQ FUNCTION BIT ASSIGNMENT HEX. DEC.
0000 HORIZ. LINE COUNT __80 LoltTofofsn] 1] _4F 9
0001
LoJol [o]e[r]o] _ 36 63
oot SNALTI L) e @
0011 SKEW CHARACTERS __/ L _ ,
DATA ROWS_ﬁ; B EE g= 143
2
0100)S(C=ANS{3FRAME 26 o]0 0j0j0,5,".7] o3 3
0101 VERTICAL DATA START
=3+ VERTICAI_;ZSSCAN DELAY:
gg?g’gfk@(—?—z [ofofol][1]0]0] Ic 28
oo LTI OAAROW el 1] _oF s

N

~ oz wooeshest fora 16 X 64 screen format.

Register 2: This has two fields:

11 bits 3 thru 6 (bit 7 is not used" set the number of scans per character. In this case,
we have defined the character as 10 X 13, so the binary equivalent of 13 — 1 =
12 is used (all CRT 5027 ccounters start at zero, not one, so programming of
counters is always one less than the number).

2) bits O thru 2 contain a 3-bit code for the number of characters per line. From the
data sheet the code for 64 is 011.

lo|1]1 00 of1]1]

Register 2
Register 3: This has two fields:

1) bits 6 and 7 delay the blanking cursor and synchronization timing to allow for
character generator and programmable memory propagation delays. Generally,
one character time will allow for these delays.

2) bits 0 thru 5 define the number of data rows, once again starting with binary zero
for one line. 16 — 1 = 15 will be programmed.

L fofofofs [r]r]r]

Register 3

Register 4: Register 4 sets the number of raster lines per frame. For the noninterlaced
mode this is derived by the formula (N — 256) + 2 = 3.

[oofofofofo]r]1]

Register 4

Register 5: This contains the number of raster lines between the start of the vertical
synchronization pulse and the start of data (vertical synchronization + back
porch). This time must be long enough to allow for the full retrace time of the
monitor and to allow vertical positioning of the display. We will use 28 here. The
front porch will be calculated by the CRT 5027 as 262 — (13 X 16) — 28 = 26.

[ofofolv]1]r]o]e]

Register 5

Register 6: Register 6, the scrolling register, is programmed with the number of the last
data row to be displayed. Since we want to initialize the CRT 5027, this will be
programmed the same as Register 3 (bits 6 and 7 are not used).

Lofofofopn i fr]r]

Register 6

Register 7 and Register 8: These registers contain the cursor character number and row
number respectively. Since the cursor is to be initially positiored at the top left
corner, both registers will be initialized with all zeros. Subsecuent cursor position
changes will be entered as described under “circuit operation.”

Circuit Description

Referring to fizure 2.2 1C 2A. IC 1B, IC 4 provide the video dot clock (12.38 % IHz)
and ‘e character c.ocx DCC, which is the dot clock + 10 (each character is 2.0 dots
wide The videc dot clock determines the actual video data rate. The character clock
determines ‘he speed each character is addressed. IC 6A buffers the dot clocx input of
the CRT 8202. A pull-up resistor is used on the output to guarantee the iogic one re-
quirement of the VDC input.

The LOAD command loads the register information required for programming the
CRT 5027 from the PROM IC 7 to the CRT 5027. The “self-load” capatiiity of the CRT
5027 is used to automatically scan the PROM addresses. LOAD is automatically gener-
ated on power-on by IC 1D.

Because of the bus structure of the CRT 5027, cursor position information is loaded
on the same bus as the register data. Three-state data selectors [C 14 and IC 15 select
cursor X position data from counter IC 8 and IC 7 or cursor Y position data from
IC 1D. IC 12 and IC 13 select the address mode for the CRT 5027. Three modes are
used: “nonprocessor self-load” for register loading, load cursor X position, and load
cursor Y position.

IC 16 thru IC 21 decode attribute mode and cursor controls from the ASCII data
bus. If graphics or special attributes are not desired, 1C 16, 17, and 21 are not required.
Similarly, if cursor controls are directly available, decoding them is not necessary.

IC 19 and IC 20 are 256 X 4 PROMs. Their exact programming can be suited to the
user needs. The programming used in this terminal is shown in table 9.3. When a key
designated as an attribute or mode key is depressed, the appropriate control word is
latched in IC 21; all subsequent data entries will have that word loaded in the upper 4
bits of programmable memory. This allows the attribute or mode to be changed on a
character-by-character basis. IC 18, a2 to 4 decoder, is enabled when a cursor control
backspace, carriage return/line feed, or 1 is decoded and provides the appropriate cur-
sor movement.

TTL or low power TTL can be used throughout. Shottky TTL is recommended for
IC 6 due to the fast rise time requirements of the clock input.

)

BUILD A CRT TERMINAL 217

A

®

| ik |
' al g 1€19 I
o <| 5| B 2| & 76214 18] B
| 1022 12 MSO 8 |13 I
9 3 2
I 0| |u 07 Has e 10101 (c16A |
9 13 106 A7 D3 2020 ‘ 2 1wy |
105 1 1) 6 7 3 o ©
e a6 D2 30 30
3 Y 2 12 1 10]
' —_— 53 3145 01 404Q5 '
1623 ——12 MS1 24 cK 1
l r 102 4.3 5 e 1C168 |
10 11 101 7 3 1c60 X, 5 4 BLINK
| 9 113 & D0 6|*2 6)
Al 1C17A 3
I 3 5 AQ — I
1]2 |ces¥
| 1024 ——12 I 4 ,lcse I
| 10 I s S 10 UL
3 13 ‘6
| > o 1c18
I 3 ' 107 0e 9 ATC A13B3 74155
e I L1t CRLF
| Ice5 ——12 = o3po 2 —-ient =
| B Spy - 0 1cve -
10 11 124 =
| 3 13 r i3 vaft —8
* 102
| 3 |
L] _ _ 101 ! +5 I
126 L2 C _| 100 s |
10 11 100 .
. | |
9 13 4 |
3 | |
‘I 1027 12 ! (I
i 10 11 101
3
02
1 1 192
5 13§
3 N
229 ‘
ot
-4 MS1
N L Y] D2
2 MSO
»—5\—‘3-;13 " . 7 O)
; =2 Do-27
N 4®
#sDHes 13
1 ¢
bR LT
DRI A7
DR2 {2148
OR3 A9
1030 =12 o4
10 it / S
9 134 : . wzca
3 ! -Msz
—— | st
1031 12 ps ! 2
10 1 N y ’i
£l 113 o s
3 Ic 74,524
— ic7 HY7€33 PROM
1032 (——12 06 Ica 24193
10 1 ns A ico 74133
1C10 74193
9 13
—e Ic11 7408
3 ic12 7a_502
1c13 74,574
1638 =iz b7 w icta 7408257
10 1 107 1 3 1c15 7415257
9 13 = ic16 74L502
M a8 1617 740500
7 _— o B Ic18 74155
al 2 119 HM7621A PROM1
ENABLE ic20 HM7621 PROM2
ToeN0 & ‘ icz1 74174
INPUT DATA 1C22-1C33 2102A-4
FROM UART
OR
PAGE MEMORY KEYBOARD

Figure 9.2 A schematic diagram of a low-cost versatile CRT terminal using the CRT 5027 and CRT
8002 chips (continued on next page).

218 BUILD A CRT TERMINAL

i 3 I
I START |
| 5 CURSOR CONTROL |
.
' 11N,_.10 START |
C>—I— Ic6C
8uf 12 lcno“ g [C12A I
| » miD D |
® | ul fiz | |
1 1c128 l
I 1C13A 1c14
l 13 13 7415257 I
CLK |2 ‘ 1cs
| 0 START 74193
- v [|
o 4_|s 5 1 es 115 {1 45 s s
| D Cu)yg STR SEL DN UP I
| Q 18 1A QA A
1 2 6 2837 Hoe e I
Ogn N[5 1028 35 719¢ g
], %7 s w D I
| vee Qp 4B 8 15
| onD €138 EREE 5 _l_*; |
(E/L|) Y by 29 |7]4 13 (12 l
O 10
O Ta133 1 3 e ||
| 9 |13 +5 74193
Ic15 LEL T - l
| 745267 | 6 S |6 1| ON UPlie
s P 3]L CLeARkE]
| —8 oA AR
e 2 Y8 8 |
| T8 3Mg 7Q¢ ¢
| g 4 W D |
> = > > 8 16 \7
—~ N N < /7
l 4719 [12 + I
L +5 i
| I
Nt
Ottt ———— Tt ——— ot ——— 4
MmN~ '
()—_I |lo|x|x —
<IR=1E=1N=] &
() [N o N e oy
M N~ OO
& @ o & &
@ coaaaaa
®_‘ o o
=z =
fo s>
+5 NSV M - O lw n O w &
- o g « O @ T x o o > 0 I o
2 2 ”“*‘"’"“’j’;“’"‘ﬂz:ﬁﬂiﬁf 085 |
5 Des |
I DBz
s Ja i3 [2 1
, : 7
- ! N HM7063 cE 5
~ :
_ 3 N PP PR O R
? ' 10
[=]
o +5
I 6
28 127 126 o5 |2a J23 |22 |21 Joo s J1e |17 [is s g 1c1c
RETBLCV MSOMSI BLI £ g FRv LILSTxU @ GND RO Rl ‘ [=5 | .. _TiA
5 ic2 g & crecces = : ?__\.—_D“_o HSYNC i,
VID S VDC A0 Al A2 A3 A4 A5 5 AT VIC P2 B3| . AL
T B J& Js Js J7 g8 Js il s _} = VSYNG
o — o o <t o o ~ \
O o o a o & o o s _lC1IC
+5 [_SDG——O VIDEQ
470 +5 n
3 S 18
(-4
100pF 12.6 MHz b
> ica ©
I [’ TIMING AND CONTROL
Lo 'Cl"“o,oomr1 1c18 c6a | 5 Tatasle IS'CGB
3] ano 8 A reco_|u
\§E >0 P Qo
cL 15 |
220 220 +5 Qe o +5
T 7 [0]9 4

Figure 9.2 continued

BUILD A CRT TERMINAL 219

220 BUILD A CRT TERMINAL

Operation

After power-on, Control Q should be depressed to latch the system in the “normal”
mode. Depressing the space key and the erase key simultaneously will then blank the
screen. All further character entries will be displayed normally. If other attributes or
graphics are desired, the appropriate control code is entered. This character will not be
displayed or cause cursor movement, but will latch the new command. Modes may be
changed for every character desired. Cursor movement may be decoded from the
ASCII input by the control key as indicated in table 9.3.

PROM Programming
Keyboard Entry Function Address PROM 1 Qutput PROM 2 Output
76543210 D.,D.D;D, D,D,D,D,

Return Carriage Return 00011011 0011 1000
LF Line Feed 00010101 1011 1000
Control H Cursor Left 00010001 0111 1000
RS Cursor Up 00111101 1111 1000
uUsS Cursor Right 00111111 1111 1010
Control Q Normal Attribute 00100011 1111 1011
Control W Blink 00101111 1011 1011
Control E Underline 00001011 0111 1011
Control R Reverse Video 00100101 0011 1011
Control T External Mode 00101001 1101 1011
Control Y Wide Graphics 00110011 1100 1011
Control U Thin Graphics 00101011 1110 1011
Balance of PROM 0011 1110
Table 9.3 PRCA! c-czz~ming for the circuit of figure 9.2.

The Rest of the System
Tizure 9.3 illustrates the balance of the circuitry recuired to implement a full
RS-232C compatible serial I, O terminal. Utilization of MOS. LSI reduces the package
cour: to a bare minimum.
A XR2376 keyboard encoder. IC 1, encedes and de-bounces the keyboard switches
~2 r=nides an ASCII data word o the COM 2017 UART (see Appendices Cé and

.....

C7,. T=e UART, in turn, provides the serial receive transmit interface. The data rateis
aracra~~able by means of the switch con:rolled input code to a COM 8046 data rate
Freg Yy

generator see Appendix C10).

TERMINAL VARIATIONS

The terminal described can easily be modified for a wide variety of other screen for-
mats. The foilowing changes are required for an 80-characters per row, 24-row format:

1. Horizontal sweep rate — to allow for the increased number of displayed lines
(312), the horizontal sweep rate is increased to 20,220 Hz.

2. The video oscillator frequency is calculated as 9 (dots per character) X 100 (char-
acter times per row) X 20,220 = 18.198 MHz. Notice that 9 dots per character
was selected instead of 10, as 10 would have resulted in a clock frequency of
20.2 MHz, which is beyond the CRT 8002A's top frequency. IC 4, therefore,
must be set for divide by 9 rather than 10.

3. An additional 1 K bytes of page memory is required. Figure 9.4 shows the revised
address connections.

4. Register programming for the CRT 5027 follows the worksheet shown in tables
9.4 and 9.5.

TO KEY MATRIX

,XO X1 X2 X3 X4 X5 X6 X7 YO YI Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 YI0S C N

{5 R O S RON M

50pF
9|"£
3 ice
Fec KR2376-ST sel
00K
v Fep
B8 B7 B6 B5 B4 B3 B2 Bl STROBE Pl DSI|
+5 1 18 17 8 0 pofuifizNiauafis Jie ,J: ,J:o
1!—:; +5
?2 1]2 |3
L38es o2
TD7 32
107 &< Sros o6l
106 é——lro7 TO5[2
105 &—ros Toa|>
va &—Hrps Toaf
103 &—roa To2f
10 26
102 it T01 ™
102 &———rp2 TS "
101 (—l—z—Rm TS
iC4A 1€3D
19 111 13
DR &———r0A RS

13 +5
43 33K 4
14
RFEF=D 78 no paRITY
ARoE N e

SWE 3¢
21 A
MR s A2 5ToP BITS
NS8F—

I3 RCP TC2 ——————o
coM2017 17 140 7
] REERER .
—Il— =
+5 16 '
tz To Xi [B
122
5 Civetas .
0 o H & :
12 13 0 B T
p U
7/
Ed

~
™~
o
w
-
[+
(&)
o
-

Figure 9.4 A memory-mapping system

for a 24 X 80 screen format.

FULL DUPLEX

0.001F

HO
H1
H2
H3
H4
H5
H6

OR1
CR2
DR3
OR4

PARITY ERROR

FRAMING ERROR

~
XMIT
out

RCVR
IN J

RS-232
74°)

Figure 9.3 A schematic diagram of a
RS-232C interface for a terminal.

B en e o

Oy

KR2376~5T
<
> > 40
> S a1
> 7 A2
> S a3
N
h —
> > a4
AN N
7 > a5 | <
"
(-3
o
> a6 | ©
> A7
—> A8
> ———>A9
———> Al0
o

> 4
14 16 |11 3 {5 |2

4A 2B 3A 1B 2A 1A

7415257

+
["‘C’Ln
—
o L=

E 4B 3B 4Y 3Y 2Y 1Y

‘I”H

13 |10 {12 |9

7'4

N i

BUILD A CRT TERMINAL 221

1. HCHARACTERMATRIX (No.otDots): o o 7.
2. VCHARACTER MATRIX (No. of Horiz. Scan Lines): USRI ¥ A
3. HCHARACTER BLOCK (Step 1 + Desired Horiz. Spacing = No.in Dots): _‘7____
4.V CHARACTER BLOCK (Step 2+ Desired Vertical Spacmg = No. inHoriz.
Scanlines):.......... ... - 13
5. VERTICAL FRAME (REFRESH) RATE (Freq. in Hz): .. 60
6. DESIRED NO. OF DATA ROWS:. .. , -
7. TOTAL NO. OF ACTIVE "VIDEO DISPLAY" SCAN LINES
(Step 4 x Step6 = No.inHoriz. ScanLines): T 31
8. VERT. SYNC DELAY (No. in Horiz. Scan Lines): P, ___3___
9. VERT. SYNC (No. in Horiz. Scan Lines; T=_{48-3 _us*): 3
10. VERT. SCAN DELAY (No. in Horiz. Scan Lines: T=_8902 ps*): . .. 18
11, TOTAL VERTICAL FRA' Z:Add steps 7thru 10 = No.1n Horiz. Scan Lines): __3_3.9_
12 FCR 0N TALSTAN LY = Freq. inKHz):..... .. io_"zio_
13 DESIRED 2. CE =222 v _8 _
14, HORIZ. SYNC CELAY (i+o.in 158 uste) 3
15. HORIZ. SYNC (No. in Character Time Units; T =_% 9% _us**): 10
16. HORIZ. SCAN DELAY (No. in Character Time Units; T =3 %6&_us*"): 7
17. TOTAL CHARACTER TIME UNITS IN (1) HORIZ. SCAN LINE 100
(ADd Steps13thru16)i .. oo —_—
2024,
: C-ARACTERRATE (Step12x Step 17 = Freg.inMHz): Ul
18198

“w

2.2 < {DOT)RATE (Step 3x Step 18 = Freq.in MHz):

Table 9.4 ACRT 5027 v.c-~ ~ £2 characters per row, 24 row, noninterlaced screen fermat,

m
(h
A1 H

ADDRESS
sz = A3 AD £ It £ 238 3 ELT == DEC
: 0000 RS I _NECIUNT_M00 e -~z €2 99
301
of 7o - s - 83 83
ol NS ZiTiET N M3 "
? ’ gEiﬁ;ACTE:S =282 T Tfoe] = -] 65 10/
oo aicTERs_ &L y
: ‘ DATA ROWS 2= Gl o] a7 st
4 €23 SCANS/FRAME _335 T
240 [ofof1Jol:[o[ofo] a8 _u0
5 G101 VERTICAL DATA START
= 3+ VERTICAL SCAN DELAY:
DATA START —2l lofofolifofalolt] s 2
6 0110 E.L\SJA?_L\SFF;IE)W;D DATA ROW [xlxlo I p I 011]1 I1 l "7 23

Table 9.5 A CRT 5027 register-programming worksheet for a 24 x 80 screen format.

222 BUILD A CRT TERMINAL

Appendix A

Construction Techniques

CONSTRUCTION TIPS

As a result of building a project every month for my “Ciarcia’s Circuit Cellar” col-
umn in BYTE magazine and of constructing every circuit in this book, I feel I can speak
as an authority on the subject of prototype construction. A prototype is a nice term
that describes the one-of-a-kind kluge that you build from a schematic. This is opposed
to the kit or semi-assembled project that includes a printed circuit board which only re-
quires plugging in components.

Prototyping a circuit is not easy. There are many dos and don'ts, but successful pro-
totyping is primarily a function of experience. And experience comes only by building
something.

The text is purposely laid out with this philosophy in mind. I suggest that you start
with the power supply. Not only is the rest of the computer useless without it, but it
has built-in protective circuitry that is very forgiving if you make mistakes. Also, by
constructing the power supply first, there is less likelihood of destroying the rest of the
computer as you are testing the power supply.

In general, the cardinal rule of prototyping is: be neat. The ZAP computer has high
frequencies. Wiring should be the shortest distance between two connections. The
longer the wire, the more of an antenna it becomes. In extreme cases. tne computer can
actually cease to function because of induced electrical noise. With the relatively
slower digital signals carried by the wiring attached to externai input and output ports,
the situation is less critical. Short pulses and high-speed da‘a, such as the signals on the
central processor control and address lines, are more critical. In tnese cases, itis always
a good idea to use additional protective circuitry such as busrers,

To a certain degree, the ZAP computer can be laid out as you see fit. Figure A.1 sug-
gests one approach: it can be wirewrapped or hand solcered. Almost any board large
enough to accommodate all the chips should suffice. A gocd choiceis a standard S-100
prototyping card available at most computer stores. There is no particular bus other
than the standard Z80 signals designated for ZAP because it is primarily intended as a
single-board system. The 100-pin connector provides a convenient I/ O and power con-
nector. Care should be taken if you decide to split the computer schematic and assem-
ble the computer on more than one board. The separation should be between logical
subsystems; for maximum success, all signals should be buffered in and out of the
board, e.g., all the memory could be put on a separate card. As outlined in the text, the
address and data lines necessary to this function are already properly buffered.

The question of wirewrapping versus soldering is the builder’s prerogative. Personal-
ly, I prefer point-to-point hardwiring because it's easier to modify when troubleshoot-
ing. Wirewrapping might be easier where the ZAP circuit has already been tested and
refined.

‘Long power-supply daisy chains should be avoided. Rather than running a single
+5 V and ground wire, it is better to use a double-sided prototyping board so that the
top and bottom sides of the board can be set to ground and +5 V respectively. With
this approach, each chip can be plugged in (using IC sockets) and the power leads
soldered directly to the copper planes. Wirewrapping or not, it is a good idea to solder
the power leads to reduce the potential of intermittent connections. Using the ground

APPENDIX A 225

226 APPENDIX A

RESET
P.B.
1c9
SPARE ~ |
7404/7414 @ 2. OMH:
Ic8 ic1 XTAL
7404 7400
Ic6 1c2
280
g212 Py
Ics ic3
o 8797/ 74367 8T97/74367
g212
1c10 ica
7420 8797/74367
ic11 iz
4
7400 7442 s
/
1 e 27087276
74L5125 7442
ic14 1c20 [c16
7442 74604 2114
222 ic17
7e_s125 SPARE 2114
cza o =z ici8
76_5125 SPARE z 2 2114
Sz
, c @ —
ic25 1 2o ic19
7415125 SPARE © & 2114
ic23
745273 UART
AY-3-1015/COM2017
1.8432MHz
MC14411/COM8O46 XTAL

Figure A.1 A typical layout of the basic ZAP computer.

plane for wiring is one of the best ways to reduce noise in computers. If you don’t have
a ground plane, then solder heavy wire around the perimeter of the circuit board and
run short jumpers to it.

Decoupling capacitors are another must for computer prototyping. Digital-inte-
grated circuits, while being virtually burn-out proof in most applications, are unfor-
tunately susceptible to noise carried along the power lines. Often, it will cause them to

go into oscillation. By placing a 0.01xF to 0.1uF capacitor between +5V and ground
about every third IC, the problem is eliminated. Another good idea is to place an elec-
trolytic capacitor at the entrance of any DC power connection to the board. Generally,
capacitors are tantalum and three pieces would be required for ZAP's three supplies.

Finally, if you like the concept of ZAP but would rather spend more time applying
the finished product than testing your construction techniques, you can look into pur-
chasing various kits and assemblies, including EPROMs programmed for the ZAP
monitor. For the latest price list, write or call: The MicroMint Inc, 917 Midway,

Woodmere NY, 11598. Telephone: (516) 374-6793.

%

APPENDIX A 227

Appendix B
ASCII Codes

Parity Control
Space Keybd.
Dec Octal Hex or Character Equiv.
000 000 00 Even NUL @
001 o 01 Odd SOH A
002 002 02 Odd STX B
003 003 03 Even ETX C
004 004 04 Odd EOT D
005 005 05 Even ENQ E
006 006 06 Even ACK F
007 007 07 Odd BEL G
008 010 08 Odd BS H
009 011 0% Even HT |
010 012 0A Even LF J
011 013 0B Odd VT K
012 014 0C Even FF L
013 015 0D Ocdd CR M
014 016 QE Odd 1) N
015 017 OF Even Sl 0
016 020 10 Odd DLE P
017 021 11 Even DC1 Q
018 022 12 Even DC2 R
019 023 13 Odd DC3 S
020 024 14 Even DC4 T
021 025 15 Odd NAK U
022 026 16 Odd SYN \
023 027 17 Even ETB w
024 030 18 Even CAN X
025 031 19 Odd EM Y
026 032 1A Odd sSuB Z
027 033 1B Even ESC [
028 034 1C Qdd FS \
029 035 1D Even GS]
030 036 1E Even RS A
031 037 1F Odd us -
032 040 20 Odd SP
033 041 21 Even !
034 042 22 Even ”
035 043 23 Odd #
036 044 24 Even $
037 045 25 Odd %
038 046 26 Odd &
039 047 27 Even ’
040 050 28 Even (
041 051 29 Odd)
042 052 2A Odd *
043 053 2B Even +
044 054 2C Odd ,
045 055 2D Even -
046 056 2E Even .
047 057 2F Odd /

Alternate Code Names

NULL, CTRL SHIFT P, TAPE LEADER
START OF HEADER, SOM
START OF TEXT, EQA

END OF TEXT, EOM

END OF TRANSMISSION, END
ENQUIRY. WRU. WHO ARE YOU
ACKNOWLEDGE, RU, ARE YOU
BELL

BACKSPACE, FEO
FCR'ZONTAL TAB, TAB

LINE FEED, NEW LINE, NL
VERTICAL TAB, VTAB

FORM FEED, FORM, PAGE
CARRIAGE RETURN, EOL
SHIFT OUT, RED SHIFT

SHIFT IN, BLACK SHIFT

DATA LINK ESCAPE, DCO
XON, READER ON

TAPE, PUNCH ON

XOFF, READER OFF

TAPE, PUNCH OFF

NEGATIVE ACKNOWLEDGE, ERR
SYNCHRONOUS IDLE, SYNC
END OF TEXT BUFFER, LEM
CANCEL, CANCL

END OF MEDIUM

SUBSTITUTE

ESCAPE, PREFIX

FILE SEPARATOR

GROUP SEPARATOR

RECORD SEPARATOR

UNIT SEPARATOR

SPACE, BLANK

APOSTROPHE

COMMA
MINUS

APPENDIX B 229

Parity Control

Space Keybd.
Dec Octal Hex or Character Equiv. Alternate Code Names
048 060 30 Even 0 NUMBER ZERO
049 061 31 Odd 1 NUMBER ONE
050 062 32 Odd 2
051 063 33 Even 3
052 064 34 Odd 4
053 065 35 Even 5
054 066 36 Even 6
055 067 37 Odd 7
056 070 38 Odd 8
057 071 39 Even 9
058 072 3A Even :
059 073 3B Odd ;
060 074 3C Even < LESS THAN
061 075 3D Odd =
062 076 3E Odd > GREATER THAN
063 077 3F Even ?
0e4 100 40 Odd @ SHIFT P
065 101 41 Even A
066 102 42 Even B
067 103 43 Odd C
068 104 44 Even D
0€9 105 45 Odd E
070 106 46 Odd F
071 107 47 Even G
072 110 48 Even H
073 111 49 Odd | LETTER I
074 12 4A Odd J
075 13 4B Even K
076 114 4C Odd L
077 115 4D Even M
078 116 4E Even N
079 117 LF Odd) LETTER O
080 120 50 Even P
081 121 51 ofe Q
082 122 52 Ocd R
083 123 53 Even S
084 124 54 Ocd T
085 125 55 Even U
036 126 56 Even v
(87 127 57 Odd W
cc8 130 58 Ocd X
0zl 131 59 Even Y
030 132 5A Even z
€51 133 5B 0dd (SHIFT K
€322 134 5C Even \ SHIFT L
€33 135 5D Odd] SHIFT M
094 136 5E Odd A 1, SHIFT N
095 137 5F Even — —,SHIFT O, UNDERSCORE
096 140 60 Even ' ACCENT GRAVE

097 141 61 Odd
098 142 62 Odd
099 143 63 Even
100 144 64 Odd
101 145 65 Even
102 146 66 Even
103 147 67 Odd
104 150 68 Odd
105 151 69 Even
106 152 6A Even
107 153 6B Odd
108 154 6C Even

110 156 6E Odd
111 157 6F Even
112 160 70 Odd
113 161 71 Even

.Q'UO:B_X‘_"_'D'(O"‘(D Qoo

230 APPENDIX B

Parity Control
Space Keybd.
or Character Equiv. Alternate Code Names

Even
Odd
Even
Odd
Odd
Even
Even
Ocd
Odd
Even
Odd
Even
Even
Odd

VERTICAL SLASH
ALTMODE
(ALTMODE)

EL DELETE, RUBOUT

Q|- N<Xg<c™n™

APPENDIX B 231

Appendix C1
intal

2708
8K (1K x 8) UV ERASABLE PROM

Max. Power Max. Access
2708 800mW 450ns
2708L 425mW 450ns
27081 800mwW 350ns
2708-6 800mW 550ns
s Low Power Dissipation — 425 mW a Data Inputs and Outputs TTL
Max. (2708L) Compatible during both Read and
m Fast Access Time — 350 ns Max. Program Modes
(2708-1) s Three-State Outputs — OR-Tie
a Static — No Clocks Required Capability

¢t erasable and electrically reprogrammable EPROM, ideally suited where
: 21 are important requirements. All data inputs and outputs are TTL ccm-
modes. The outputs are three-state, allowing direct interface w:th ccmmon

The Intel® 2708 is an 892
fast turnaround and pater

patible during both the real &

system bus structures.

The 2708L at 425m\Y is ava 2% & ‘cr svste~s requiring lower power dissipation than from the 2708. Accwer ¢ ss'cation
savings of over 50°: w t~c.t 2", saz- f 2¢ - sceed is obtained with the 2708L. The 2708L has high imcut =2 s& ~—unity
a~d is specified at 12°: tiy i3 g7ance. A high-speed 27081 is also available at 350ns ‘or 7:¢7Cr70Cess0rs

reguiring fast access © —es.

The 2708 family is fasricated w.th t~e N<ma= el silicon gate FAMOS technology and is availabie in a 24-c:n cual in-line
package.

PIN CONFIGURATION BLOCK DIAGRAM
gase e TeyT
a1 ~ 28 [vee o<y
as[2 2[7 A “‘;‘Tf?f'
as[a 22[J [
sk 2 Bwe = EgguS:ELECT CUTPUT BUFFERS
a5 20[] csme
a:]s 708 19[Jwo B .
A& 18 [rroGRAM E;E DECODER : Y GATING
wsera e 17|] 07 iMsBY ’
wseroo[]s 18] 0s s p]
o:[Qrw '5:105 325 X . 64 x 128
o [In 14704 :é:: DECODER X ROM ARRAY
ws 12 13{Jo3

PIN CONNECTION DURING READ OR PROGRAM

PIN NAMES PIN NUMBER
Fo-Ay | ADDRESS INPUTS l ADDRESS
0,-05 | DATA OUTPUTS/INPUTS, DATA 110 . INPUTS _
CTEMWE | CHIP SELECTWRITE ENABLE INPUT N, ‘ 18, Vss | PROGRAM | Vop | CS/WE | Vaa | Vec
MODE 1317 | 22,23 12 18 19 20 |21 | 24
READ Cour AN GND GND +12 | vy -5 +5
DESELECT | HIGH IMPEDANCE | DON'T CARE | GND GND +12 | Vin 5 | 5
PROGRAM | Din AN GND | PULSED | #12 | Viuw | -5 | +5
26V

Reprinted by permission of Intel Corporation Copyright © 1980

APPENDIX C 235

236 APPENDIX C

2708 FAMILY

PROGRAMMING

The programming specifications are described in the Data Catalog PROM/ROM Programming Instructions Section.

Absolute Maximum Ratings*

Temperature Under Bias o v vvveen e iinenennnns -25°Cto +85°C *COMMENT

Storage Temperature s e -B65°C to +126°C Stresses above those listed under “Absolute Maximum
Vpp With Respectto VBB « « v v e vne e ve v v v ven L.... +20V1to-0.3y Ratings’ may cause permanent damage to the device.
VCC and VSS With Respect to VBB +15V t0 -0.3V This is a stress rating only and functional operation

All Input or Output Voltages With Respect

toVgg DuringRead . ..o vvei v i +15V to ~0.3V

CS/WE Input With Respect to Vgg

of the device at these-or any other conditions above
those indicated in the operational sections of this
specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may

During Programming . ..o v vt +20V to -0.3V atfect device reliability.
Program Input With Respectto Vgg « -+ v oo v v e e v vt +35V to -0 3V
Power DissiPation . . v v ve e ie it e 1.5W

D.C. AND A,.C.OPERATING CONDITIONS DURING READ

2708 27081 2708-6 2708L
Temperature Range 0°C-70°C | 0°C-70°C | 0°C-70°C | 0°C-70°C
Ve Power Supply 5V =5% 5V 5% 5V=+5% 5V +10%
Vpp Power Supply 12V = 5% 12V 5% 12V 5% 12V +10%
Vgg Power Supply -5V =5 -5V =5% -5V£5% | -5V=10%
READ OPERATION
D.C. AND OPERATING CHARACTERISTICS
2708, 2708-1, 2708-6 Limits 2708L Limits
Symbol Parameter Units Test Conditions
Min. Typl2? Max. | Min. Typl2d Max.
Iy Adcress 272 17 2 3e ect input Sink 1 10 1 10 wA |V =525VorViy=V,
Cure-
Lo 1 10 1 10 WA [Vour =55V, CSIWE =
pgl3l 50 65 21 28 mA |Worst Case Supply Cu-e
lecldl Ve Suppiy Toene 6 10 2 4 mA |All inputs High:
Iggid} Vpg Supply Cure=: 30 45 10 14 mA |[CSWE=5V; Ta=0°C
Vip Input Low Voltage Vag 0.65 Vss 065 v
- input High Vecltage e} Veet? 2.2 Veet!
(e Output Low Voltage 0.45 04 | v [lo=16mA 2708 2708 2786
loL = 2mA (2708L)
e Output High Voltage e 37 vV |lgy= —100uA
toe Quiput High Voltage) 24 vV |lgy=~1mA
=2 Pzwer Dissipation 9 325 | mW Ta=70°C
| 425 | mw [T4=0°C
NCTES *~e ast power supply switched off.

PR

cufrent paths exist between the various ccwe s.C
cply capacity only.
8L is specified in the programmed stale a~<:s

A e

curents lpp, lee, and lgg) Multiplied by their respective vol-
© esa~IVgg. Thelpp, lcgs. 2nd Igg currents should be usec (o Ceter:

M in the unprogrammed state.

2708 FAMILY

2708L
RANGE OF SUPPLY CURRENTS
VS. TEMPERATURE

% L4 50 T T
Yoo "S55V ALL POSSIBLE OPERATING I ' y t
-~ . Yocs 136V CONDITIONS 1 TTL LOAD » 100pF |
T Swe, m: Veg® -5 5V Vee " 528V | ' t
2 A - Vo " 126V %00 ! —+
T
3 z ! : 5
£ i i 1
£ | ;
¢ E 300 + t ¥
£ £ £ ; ; ,
< e 5 8 ;
2 T e = Migh : 3 -~ ! ;
. > 200 4
! T
" T g R
2 \{1ee 2 i i ! ;
e Lom—t \ . :
5 + — 100 -+ + % +
: '
| ! H |
| ! | I
i 1 ¢ b e | | !
I] N | ! I
[20 AQ 80 80 100 -20 [o 40 o0 0
TAlS) Ta'C

2708, 2708-1, AND 2708-6
RANGE OF SUPPLY CURRENTS
VS. TEMPERATURE

ACCESS TIME VS. TEMPERATURE

A.C. CHARACTERISTICS

2708, 2708L Limits 2708-1 Limits 2708-6 Limits
mbol amete .
Symbo Par ' Min. Max. Min. Max. Min. Max. Units
tace Address to Output Delay 450 350 550 ns
tco Chip Select to Output Delay 120 120 160 ns
tor Chip Deselect to Output Float 0 120 0 120 0 160 ns
ton Address to Output Hold 0 0 0 ns
CAPACITANCE 'Y To=25°C, f=1MHz A.C. TEST CONDITIONS:
T Output Load: 1 TTL gate and C_ = 100 pF
Symbol ‘ Parameter Typ. | Max. | Unit. | Conditions Input Rse ard Fall Times: <20 ns
- ‘ Timing “leasurement Reference Levels: 0.8V and
| - 3 s
O Input Capacitance 4 1 8 PR Vi =0V 2.8V for inputs; 0.8V and 2.4V for outputs.
1 CooT QOutput Capacitance | 8 j 2 oF VA -=0V Input Puise Leveis: 0.65V to 3.0V

NOTE: 1. This parameter is periodical'y samc eZ a~c s ~ct 10, tested.

A.C. WAVEFORMS ©

CSiwe : \

! s 7{
3 Y ———
l
. SRS 7/4//404/ 004 R AN\ S
IARRNNARRRRAR R

NOTES

2 ALL T'MES SHOWN IN PARENTHESES ARE MINIMUM AND 425 NSEC
L%_ESS OTHERWISE SPECIFIED.

3 CS WAaY BE DELAYED UP TO tACCtCQ AFTER ADDRESSES 4RE VALID
¥, CLT IMPACT ON ta

4 :é: SVSPECIFIED FROM &5 OR ADDRESS CHANGE, WH(CHEVER OCCURS
T

FIRS'

ERASURE CHARACTERISTICS

The erasure characteristics of the 2708 family are such that
erasure begins to occur when exposed to light with wave-
lengths shorter than approximately 4000 Angstroms (A). 1t
should be noted that sunlight and certain types of fluores-
cent lamps have wavelengths in the 3000—4000A range.
Data show that constant exposure to room level fluores-
cent lighting could erase the typical device in approxi-
mately 3 years, while it would take approximately 1 week
to cause erasure when exposed to direct sunlight. If the
2708 is to be exposed to these types of lighting conditions
for extended periods of time, opaque labels are available
from Intel which should be placed over the 2708 window
to prevent unintentional erasure.

The recommended erasure procedure (see Data Catalog
PROM/ROM Programming Instructions Section) for the
2708 family is exposure to shortwave ultraviolet light
which has a wavelength of 2537 Angstroms {A). The inte-
grated dose (i.e,, UV intensity X exposure time} for erasure
should be a minimum of 15 W-sec/cm2. The erasure time
with this dosage is approximately 15 to 20 minutes using an
ultraviolet lamp with a 12000 uW/em?2 power rating. The
device should be placed within 1 inch of the lamp tubes
during erasure. Some lamps have a filter on their tubes
which should be removed before erasure.

APPENDIX C 237

Appendix C2
Inter 2716

16K (2K x 8) UV ERASABLE PROM

a Fast Access Time = Pin Compatible to Intel® 2732 EPROM
— 350 ns Max. 2716-1
- 323 ns hh:ax. g;:gz s Simple Programming Requirements
- 490 ns Ma"' P — Single Location Programming
— 499 ns Wax. S — Programs with One 50 ms Pulse

— 650 ns Max. 2716-6
= Single +5V Power Supply a Inputs and Outputs TTL Compatible

n Low Power Dissipation during Read and Program

— 525 mW Max. Active Power
— 132 mW Max. Standby Power s Completely Static

The Intel® 2716 is a 16,384-bit ultraviolet erasable ard eleci-'cally prograTmab'e read-only memory (EPROM) T-e 2716
operates from a single 5-volt power supply, has a static standby mode, and features fast single address locatior Zrog-am-
ming. It makes designing with EPROMs faster, easier and more economical,

The 2716, with its single 5-volt supply and with an access time up to 350 ns, is ideal for use with the newer high cerfz-~znce
+5V microprocessors such as Intel’s 8085 and 8086. A selected 2716-5 and 2716-6 is available for slower T Ons.
The 2716 is also the first EPROM with a static standby mode which reduces the power dissipation withou 3 access

time, The maximum active power dissipation is 525 mW while the maximum standby power dissipat.on 527 32 mwW,a
75% savings.

The 2716 has the simplest and fastest method yet devised for programming EPROMs — single ou'se T7 . 2.2 £70gramming.
No need for high voltage pulsing because all programming controls are handied by TTL signels P-c3-z— 3. ccation atany
time—either incividually, sequentially or at random, with the 2716's single address Jocation prog-é—=— ~3 o1l programming
time for it 16,384 o.ts is only 100 seconds.

PIN CONFIGURATION MODE SELECTION
t
2716 2732
ad Ceoom SE Vpe | Vec | OUTPUTS
\ o2 4 111,131
26 O L) 12¢ j tz (24) | 19119397
As (4
A g -
. 5 +5 [
g _ l; ouT
azd - ZiecCare +5 -5 High Z
A Sosez. i w VM 425 +5 [
AQE Vi +25 +5 Dout
s}
o ViK 25 +5 High 2
020
eno BLOCK DIAGRAM
tRefer 10 2732 DATADUTRPUTS
Y om—— Dp Uy
data sheet for A e s e,
specifications Ve o———v I l l l tl I ’
o OUTPUT ENABLE
CEPgMm CHIP ENABLE AND
PIN NAMES PROG LOGIC QUTPUT BUFFERS
= v e
Ag- Arg | ADDRESSES - DECODER M Y GATING
TE/PGM | CHIP ENABLE/PROGRAM o-Ate =
OF OUTPUT ENABLE ADDRESS 'T"
99 OUTPUTS NPUTS | == x . 18384 81T
—=| otcopenr . CELL MATHIX
— .
.

Reprinted by permission of Intel Corporation Copyright © 1980

APPENDIX C 239

"\

240 APPENDIX C

2716

PROGRAMMING

The programming specifications are described in the Data Catalog PROM/ROM Programming Instructions Section.

Absolute Maximum Ratings*

Temperature Under Bias. -10°C to +80°C
Storage Temperature -65°C to +125°C
All Input or Output Voltages with

RespecttoGroundcouuunn .. +6V to -0.3V
Vpp Supply Voltage with Respect

to Ground During Program +26.5V 10 -0.3V

*COMMENT: Stresses above those listed under “Absolute Maxi-
mum Ratings’’ may cause permanent damage to the device. Thisis a
stress rating only and functional cperation of the device at these or
any other conditions above those indicated in the operational sec-
tions of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device
reliability.

DC and AC Operating Conditions During Read

2716 2716-1 2716-2 2716-5 2716-6
Temperature Range 0°c—70°C 0°Cc - 70°C 0°c—70°C 0°c—70°C 0°c—~70°C
Vee Power Supply(1.2] 5V 5% 5V £10% 5V +5% 5V +5% 5V +5%
Ves Power Supply(2} Vee Vee Vee Vee Vg
READ OPERATION
D.C. and Operating Characteristics
Limits . Lo
Symbo! Parameter i Typﬁ3: e, Unit Conditions
Lt Input Loaa C.m2-1 19 KA Vin = 5.25V
) Output Leakaga C.r2-2 10 HA VouT =5.25V
{ 122112 | Vpp Current 5 mA | Vpp =525V
D222 | vge Current (Standby) 10 25 | mA | GE=Vyy, OE=V,
tlz23% | Vec Current (Active) g7 100 mA | OE=TE=v)_
' Vo Input Low Voltage -0.1 0.8 \
PV Input High Voltage 3 ’ Vet \"
l R Output Low Voltage 0.45 \ loL =2.1mA
Voao Catput High Voltage 2.4 v lon = -400 A

NOTES: * v~z —.stce aoplied simultangously or before Vpp and removed simulanzausly or after Vpp.

b w o

Typical Characteristics

« 25 T2y D2 connected directly to Vo except during programming. The supp v current would then be the sum of tcg and Ippy.
Tesca .z .esare for Tp = 25°C and nominal supply voltages.
Tnis pera—eterss only sampled and is not 100% tested.

Icc CURRENT ACCESS TIME ACCESS TIME
vs. vS. VS,
TEMPERATURE CAPACITANCE TEMPERATURE
. T T T 700 70
L — . } 600 600
i\
\ !
50 n i | |
1ccz ACTIVE CURRENT 500 T 500
CEav | | | vee + sV
F + VC‘-‘IW H ! F 400
= :) 1 "1 I
i g !
Ex 4 4 = 300 // ..2300
Tt — =
i [t [
» L 1
ToCT STANDEY CURRENT 20 1 200
CE=v|x '
10 veesv 100 + 100
i
[] L1
['] " i 0]
@ 10 20 30 40 5 6 0 & 0 100 200 300 400 SO0 600 700 B0Q 0 10 20 30 4 5 6 70 B8
TEMPERATURE ¢ C) CL(pF) TEMPERATURE (C)

2716

A.C. Characteristics

Limits (ns}
2716 2716-1 2716-2 2716-5 2716-6 Test
Symbel Parameter Min. Max. | Min. Max. | Min. Max. | Min. Mex. | Min. Max, | Comomons
tace Address to Output Delay 450 350 390 450 450 |CE=OQE=V,_
tce CE to Output Delay 450 350 390 490 650 |GE =V,
108 Qutput Enable 10 Output Delay 120 120 120 160 260 |CE= ViL
toF Output Enabie High to Output Float| O 100 o] 100 0 100 [¢] 100 0 100 |CE=V,_
oM Outout Hoid from Addresses, CE or 0 o] [¢] 0 [¢] CE=OE=V,_
Gz Wnichever Occurred First

Capacitance (4 T5 = 256°C, t = 1 MHz A.C. Test Conditions:
’ Symbol Parameter Typ. | Max. | Unit | Conditions Output Load: 1 TTL gate and C,_ = 100 pF
- Input Rise and Falt Times: <20 ns
C /in =
IN Input Capacitance 4 6 PP Vi =0V Input Pulse Levels: 0.8V to 2.2V
CouT Output Capacitance 8 12 pF | VoyuT=0V Timing iMeasurams~1 Refz-ence Level:
inputs .
[ONE]
A. C. Waveforms [1]
/ [P \
ADDRESSES
ADDRESSES VALID
\ * o @ 7
CE
o e '4
'—— e]
OE
e 9 & € @ & 0 0 0 5 b
I__ (5] — ;
toE
(5}
tacc tor

0 & @ & 6 & & 0 o .ﬁ
HIGH Z /;;;;;; HIGH 2
OUTPUT VALID QUTPUT }—-

NOTE: 1. Ve must be applied simultanecusly or before Vpp and removed simultaneously or after Vpp.

2. Vpp may be connected directly to V¢ except during programming. The supply current would then be the sum of Igc and Ippq.
3. Typical values are for Ta = 25°C and nominal supply voltages.

4. This parameter is only sampled and is not 100% tested.

5. OE may be delayed up to tacc - tOE after the falling edge of CE without impact on TACC-

6. tpF is specified from OE or CE, whichever occurs first,

APPENDIX C 241

242 APPENDIX C

2716

ERASURE CHARACTERISTICS

The erasure characteristics of the 2716 are such that erasure
begins to occur when exposed to light with wavelengths
shorter than approximately 4000 Angstroms {A). It should
be noted that sunlight and certain types of fluorescent
lamps have wavelengths in the 3000—4000A range. Data
show that constant exposure to room level fluorescent
lighting could erase the typical 2716 in approximately 3
years, while it would take approximatley 1 week to cause
erasure when exposed to direct sunlight. If the 2716 is to
be exposed to these types of lighting conditions for ex-
tended periods of *™se, coacue iacss are .z ed'e from
Inte! which shou.d ze ed over tne 2716 w.ndow 0

s

prevent unintentional erasure

The recommended erasure procedure fsee
PROM/ROM Programming Instruction Sec:ori ‘ot "2
2716 is exposure to shortwave ultraviolet I\ght wh cn has
a wavelength of 2537 Angstroms (A). The integrated dose
{i.e., UV intensity X exposure time} for erasure should be
a minimum of 15 W-sec/cm2. The erasure time with this
dosage is approximately 15 to 20 minutes using an ultra-
violet lamp with a 12000 uW/cm? power rating. The 2716
should be placed within 1 inch of the lamp tubes during
erasure. Some z~zs5 have a filter on their tubes which
should be remo.<s c:z°cre erasure.

DEVICE OPERATION

The five modesof coer
1. It should be noted -
TTL ievels. The power s.cc
a Vpp. The Vpp power sucz . —
three programming modes, 233 ~ .3t
two modes.

~ of the 2716 are listed in Table
=z “or thefive modesare at
~zdarea +BV V¢c and
at 25V durng the
&t BV in the other

TABLE). MODE SELETT T

PINS CE/PGM OF iss e
(18t 123 z %
vIZE
EOn viL v B to-
Vi Do- - 2z -z
Pulsed Vi to V)R [B T
Vi ViL
ViL ViH 2 -2
~o control functions, both of =2~ must be

logcz £z in order to obtain data &t T~ cuicuts.
C-»pt&- CZ1 s the power control and s-cu'd te used
for Ge. ce sz 221z Output Enable (OE) is e c.tout
ccntrol and ¢-c.-d oe used to gate data to the o.icut
prs ct device selection. Assuming that
acc- &ccress access time (tage) is ecwal 1o

the 1o o.tout {tep). Data is avaiade at
the o.touts 120_hs {toz1 after the falling edge of OF,
assu™ =g that CE has peen low and addresses have been
stable for at least tace — tosg-

STANDBY MODE

The 2716 has a standby mode which reduces the active
power dissipation by 75%, from 525 mW to 132 mW. The
2716 is placed in the standby mode by applyinga TTL high
signai to the CE input. When in standby mode, the outputs
are in a high impedence state, independent of the OE input.

OUTPUT OR-TIEING

Because 2716's are usually used in larger memory arrays,

Intel has provided a 2 line control function that accomo-

dates this use of multiple memory connections. The two

line contro! function allows for:

a) the lowest possible memory power dissipation, and

b) complete assurance that output bus contention will
not occur.

To most efficiently use these two control lines, it is recom-
mended that CE (pin 18) be decoded and used as the
primary device selecting function, while OE (pin 20) be
ma3e a common connection to all devices in tre array and
conracted to the READ line from the system control bus.
Trus zssares that all deselected memory devices are in their
low power standby mode and that the output 0:ns are only
active when data is desired from a particular memory
device.

PROGRAMMING

Initially, and after each erasure, all bits of the 2716 zr2 in
the “1'" state. Data is introduced by selective'y c-ogram-
ming “‘0’s’’ into the desired bit locations. Aithcuz~ only
“0's" will be programmed, both “1's” and “Q's"”" <&~ be
presented in the data word. The only way to charge a 0"
to a’1" is by ultraviolet light erasure.

The 2716 is in the programming mode when the Vpo Dswer
supply is at 25V and OE is at Vy. The data to oe cro-
grammed is applied 8 bits in parallel to the data c.iout
pins. The levels required for the address and data inputs are
TTL.

VWhen the address and data are stable, a 50 msec, actve
high, TTL program pulse is applied to the CE/PGM inout.
A program pulse must be applied at each address location
to be programmed. You can program any location at any
time — either individually, sequentially, or at rancom.
The program pulse has a maximum width of 55 msec. The
2716 must not be programmed with a DC signal appiied to
the CE/PGM input.

Programming of multiple 2718s in parallel with the same
data can be easily accomplished due 1o the simoicity of
the programming requirements. L.ke inpuss of the paral-
feled 2716s may be connected togetner wnen they are pro-
grammed with the same data. A high level TTL pulse
appiied to the CE/PGM input programs the paralleled
2716s.

PROGRAM INHIBIT

Programming of multiple 2716s in parallel with different
data is aiso easily accomplished. Except for CE/PGM, all
like inputs (inctuding QE) of the parallel 27165 may be
common. A TTL level program pulse applied to a 2716
CE/PGM input with Vpp at 25V will program that 2716.
A low level CE/PGM input inhibits the other 2716 from
being programmed.

PROGRAM VERIFY

A verify should be performed on the programmed bits to
determine that they were correctly programmed. The verify
may be performed wth Vpp at 25V. Except during pro-
gramming and program verify, Vpp must be at 5V.

Appendix C3

intel
2102A, 2102AL/8102A-4*
1K x 1 BIT STATIC RAM

Standby Pwr. | Operating Pwr. | Access
P/N (mW) (mW) (ns)
2102AL-4 35 174 450
2102AL 35 174 350
2102AL-2 42 342 250
2102A-2 —_— 342 250
2102A —_— 289 350
2102A-4 —_— 289 450

s Single +5 Volts Supply Voltage

= Directly TTL Compatible: All
Inputs and Output

= Standby Power Mode (2102AL)

» Three-State Output: OR-Tie
Capability

e Inputs Protected: All Inputs
Have Protection Against Static
Charge

s Low Cost Packaging: 16 Pin
Dual-In-Line Configuration

The Intel® 2102A is a hig~ sze23 1524 word by one bit static random access memory element using N-charnel MOS devices
integrated on a monolitric -z, It uses fully DC stable (static) circuitry and therefore requires no clocxs or refreshing to
operate. The data is read ot rc~cesiructively and has the same polarity as the input data.

The 2102A is designed for memz, acz cations where high performance, low cost, large bitstorage. anc's moieinterfacingare
important design objectives. A !ow s:andby power version (2102AL) is also available. It ras al t~e same operating
characteristics of the 2102A with tre acsed feature of 35mW maximum power dissipation in stancoy and 174mW in operations.

Itis directly TTL compatible in ali respects: inputs, output, and asingle +5 volt supply. A separatech.penable (CE) lead allows
easy selection of an individual package wren outputs are OR-tied.

The Intel® 2102A is fabricated with N-charnel silicon gate technology. This technology a!lcws the design and preduction of
high performance easy to use MOS circuits and provides a higher functional density on a monolithic chip than either
conventional MOS technology or P-channel silicon gate technology.

PIN

CONFIGURATION LOGICSYMBOL BLOCK DIAGRAM

~ dVoh PIN NAMES L@ |
6 A —]a, . v“
a2z 15004, I~ » D, DATA INPUT @ O
rw 3 e[A, 2 TN agA, A " -
Ay —] oAs ADDRESS INPUTS
a, s 3pCE —1 A4 AW READWRITE INPUT .,o@_%: ~om ammav
—_— SELECTOR
A, s 12|10 oaTaoutT 256 3 CHIP ENABLE 3 coLumMNs
a; s MR DOATAIN —JA; Doyrf— | Dy DATAOUTPUT ‘!”‘%
A g7 0P Ve ae Vee POWER (+5V) 1o
A (s 9 [] GNO RMW CE “"—m H
] T o @ oara
Rw ot COLUMN 110 CIRCINTS ot
oria
TRUTH TABLE T
,

T+ 11 T 7 [P 1

MODE | ®
NOT SELECTED ¥ ¥ ¥ #
L WRITE 0"
WRITE "1 Q O © 6 §
O. PIN NUMBERS 4 o % ~~

Doyt READ -

rrrx|Ql
»

H

o

H

i
z|
ol
I:C
NE]
e]
ﬁq

TrFrox

X Ir x
xI

*All 8102A-4 specifications are identical to the 2102A-4 specifications.
Reprinted by permission of Intel Corporation Copyright © 1978

APPENDIX C 243

2102A FAMILY

Absolute Maximum Ratings* *COMMENT:

- . _10° o Stresses above those listed under ““Absolute Maximum Rating”
Ambient Temperature Under Bias -10°C to 80°C may cause permanent damage to the device. This is a stress

Storage Temperature —65°C to +150°C rating only and functional operation of the device at these or
Voltage On Any Pin at any other condition above those indicated in the opera-
. tional sections of this specification is not implied. Exposure to
with R_es.pect. To Ground —0.5V to +7V absolute maximum rating conditions for extended periods may
Power Dissipation 1 Watt affect device reliability.

D. C. and Operating Characteristics

Ta = 0°C to 70°C, Ve = 5V £5% unless otherwise specified.

2102A, 2102A-4
2102AL, 2102AL-4 2102A-2, 2102AL-2
Limits Limits
Symbot Parameter Min. Typ.[1 Max. |Min. Typ.[Yl Max. | Unit | Test Conditions
Iy Input Load Current 1 10 1 10 | puA [Viy=0t05.25V
I LoH Output Leakage Current 1 5 1 5 A | CE=2.0v,
i Vout = Vou
lLoL | Output Leakaze Current -1 -10 -1 210 | wa | CE=20V,
VouT = 0.4v
Ice Power Supply Cur-ent 33 Note 2 45 65 mA | All Inputs = 5.25V,
Data Qut Open,
Ta= 0°C
ViL Input Low Volitaze -0.5 0.8 |-05 0.8 \'
Vi Input High Voitags 2.0 Vee 2.0 Vee \
Vo Output Low Volitzz2 0.4 0.4 V [lgL=21mA
Vo Qutput High Voltage e 24 V | lgy =~100uA

Notes 1. Typicat valuesare for Ta = 237
2 The maximum lcc value is

Standby Characteristics 2102aL, 2102AL-2, and 2102AL-4 (Available only in the Plastic Package)

Ta=0Cz70°C
210241, 2102AL4 2102AL-2
Limits Limits
Symbol Parameter Min. Typ. 1 Max. | Min. Typ.(1} Max. Unit | Test Conditions
Vep Voo SremIny 1.5 : 1.5 \Y
Veps'? TEiaciueon 20 | 20 TV 20v<ven <vaaax.
Vpo ; Vpp Voo 15V Vpp< 2.0V
Ipp Seamzz, Torene 15 23 20 28 mA 1 Alllaputs=Vpgy=1.5V
lpD2 Sta-cz, Currene 20 30 25 38 1 mA | Alilnputs=Vppa=2.0V
tep CrpleseezttzSamazy T me 0 .0 { ns
tg (3] Standsy Reactiery Time " tre 1 tac 1 ns
STANDBY WAVEFORMS
STANDBY MODE ————— NOTES:

1. Typical values are for Tp = 25°C.

2. Consider the test conditions as shown: If the stand-
by voltage (Vpp) is between 5.25V (Vo Max.} and
2.0V, then CE must be heid at 2.0V Min. (V). If
the standby voltage is less than 2.0V but greater than
1.5V {Vpp Min.), then CE and standby voltage
must be at least the same value or, if they are dif-
ferent, CE must be the more positive of the two.

3. tg = trc (READ CYCLE TIME).

244 APPENDIX C

2102A FAMILY

A. C. Characteristics 17, =0°Ct0 70°C, V. =5V +5% unless otherwise specified

READ CYCLE
2102A-2, 2102AL-2| 2102A, 2102AL | 2102A-4,2102AL-4
Limits (ns} Limits (ns) Limits (ns)
Symbol Parameter Min. Max. | Min. Max. | Min. Max.
trC Read Cycle 250 350 450
ta Access Time 250 350 450
tco Chip Enable to Output Time 130 180 230
toH1 | Previous Read Data Valid with | 40 40 40
Respect to Address
toHz | Previous Read Data Valid with 0 0 0
Respect to Chip Enable
WRITE CYCLE
twe | Write Cycle 1250 350 450
taw Address to Write Setup Time 20 20 20
twp Write Pulse Width 180 250 300
tAR Write Recovery Time 0 0 0
tow Data Setup Time ‘30 250 300
tDH Data Hold Time 0 0 0
tew Chip Enable to \Write Setin B 250 300
Time
Capacitance' 1, =25°c, = 1Mz
A.C. CONDITIONS OF TEST SYMBOL TEST LIMITS (pF)
Input Pu se Levels TE.z::220Volt TYP. | MAX.
Input Rise ard Fall Times: 10nsec Cin INPUT CAPACITANCE S 5
Tirmng Veasurement Inputs: 15 Volts (ALL INPUT P53V, =0V
o ‘H’e‘e-ence. Levels Qutput ‘ "-: ::_2.0 Volts COUT OUTPUT CAPACITANCE e 10
utput Load: 1TTL Gatea~z O =100 pF VOUT=OV |
Waveforms
READ CYCLE WRITE CYCLE
L | le twe »l

tac !
ADORESSX @ >< ADDRESS @

o twr
— | 1,
CHIP CHIP ow
ENABLE ENABLE
OHy

[[taw—} we
DA,Y: ><'® READ/ y
ol A WRITE /|
3
-] *,
@ 15voLTS o e } ow >
@ 20voLTS TA CAN
) DATA DATA CAN DATA
3 08VvOLTS IN . CHANGE DATA STABLE CHANGE

NOTES: 1. Typical values are for T = 25°C and nominal supply voltage.
2. This parameter is periodically sampled and is not 100% tested.

APPENDIX C 245

246 APPENDIX C

2102A FAMILY

Typical D. C. and A. C. Characteristics

tec (mA)

Vyy VOLTS}

ty {ns}

POWER SUPPLY CURRENT VS.

AMBIENT TEMPERATURE
i |
40 Ve MAX.
35
30 .
\\,\ TYPICAL
% T
20
15
o 1 20 30 40 50 60 70
T, {°C)
Vin LIMITS VS. TEMPERATURE
1.8
16 v
1.4
—_— Vi iMax
' T
Vg = 5.0V |
.
: 19 20 30 40 50 60 2
Ta °C)
ACCESS TIME VS.
AMBIENT TEMPERATURE
350
| Vee MIN.
| 1 TTL LOAD
| € = 100pF
* |
250
T I
T
150
OUTPUT REFERENCE LEVELS: Vg, = 2.0V
VoL = 0.8V
50

Iec (mA)

ot (mA)

T, (ns}

POWER SUPPLY CURRENT VS.

SUPPLY VOLTAGE
- |
30 T, =25°C /
% /,/
TYPICAL
20 Pd
/
15 [/
10
5
1 2 3 4 5 6
Vee (VOLTS)
OUTPUT SINK CURRENT VS.
OUTPUT VOLTAGE
30/ :
: i
25—
] Py
26 Pl
// TYPICAL
15 e
o1/
/ T, = 25°C
. // Vee MIN.
% 1 2 3
Vo, (VOLTS)
ACCESS TIME VS.
LOAD CAPACITANCE
350 .
T, - 25°C
Vee MIN.
1TTL LOAD
"
250 et
_~"TvrIcAL
/
150
OUTPUT REFERENCE LEVEL = 15V
50

100 200 300 400 500
C_ (pF)

Appendix C4
intel

2114A
1024 X 4 BIT STATIC RAM

2114AL-1 | 2114AL-2 | 2114AL-3 | 2114AL-4 | 2114A-4 | 2114A-5
Max. Access Time (ns) 100 120 150 200 200 250
Max. Current (mA) 40 40 40 40 70 70
& HMOS Technology B Completely Static Memory - No Clock
or Timing Strobe Required
8 Low Power, High Speed
gh>p ®m Directly TTL Compatible: All Inputs
® Identical Cycle and Access Times and Outputs
a Common Data input and Output Usin
B Single +5V Supply +10% Three-State Outpzts P 9
@ High Density 18 Pin Package B 2114 Upgrade

The Intel® 2114A is a 4096-bit stat'c Random Access Memory organized as 1024 words by 4-bits using HMOS, a high per-
formance MOS technology. 1t uses f. 'y DC stazie ‘static) circuitry throughout, in both the array and the decoding. therefore it
requires no clocks or refreshing to operate. Data access is particularly simple since address setup times are not required. The
data is read out nondestructively and nas tne same polarity as the input data. Common input/output pins are provided.

The 2114A is designed for memory apz z2t 2-s where the high performance and high reliability of HMOS. 1ow cost, large bit
storage, and simple interfacing are impc~a~t cesign objectives. The 2114A is placed in an 18-pin pacxage for the highest
possible density.

It is directly TTL compatible in all respects: inputs, outputs, and a single +5V supply. A separate Chip Select (CS) lead allows
easy selection of an individual package wnen outputs are or-tied.

PIN CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM
O ®
AL 18] Vec —a, B 0] Vee
&2 . 1. 2l b3 PO NP
! ' o= A 0 > Z— * | memory armav
— ROW
ML o :: Ag O 3 seuect | ° usé;l?uv:asns
N T A L el .
a5 2114A 14T, _:: A: - ||
A]s] e —Ja 03—] T
A0 12| Jio, —{a, 1o, o ‘ﬁ—_ E COLUMN 1/0 CIRCUITS
s]s 1| Jio, —a, WO, f— 10, i?— INPUT COLUMN SELECT
eno[]e o[Jwe —14 110 ® *’j__ CconTROL HR RR
WE__ €S o
Vo,
?) 1»—?—_ ®A°®A,@2@A’ ﬁ
i
=8
PIN NAMES
Ag—Ay _ ADDRESS INPUTS Vec POWER (+5V) O - piv NUMBERS
WRITE ENABLE GND GROUND
[CHIP SELECT
1/0,~1/0, DATA INPUT/OUTPUT

Reprinted by permission of Intel Corporation Copyright © 1980

APPENDIX C 247

248 APPENDIX C

2114A FAMILY

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Biascoeeien -10°C to 80°C
Storage Temperaturecceeieiiinsees -65°C to 150°C
Voltage on any Pin

With Respect to Groundeeeneienes -3.5V to +7V
Power Dissipationiiiarirareieiiiriiisraiens 1.0W
D.C.OUtput Currentvevvvnvennciainsninsusnnns SmA

D.C. AND OPERATING CHARACTERISTICS
Ta = 0°C to 70°C, Ve = 5V £ 10%, unless otherwise noted.

*COMMENT: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to the dsvice.
This is a stress rating only and functional operation ofthe device
at these or any other conditions above those indicated in the
operational sections of this specification is not implied. Ex-
posure is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.

2114AL-1/L-2/L-3/L-4 2114A-4/-5
SYMBOL PARAMETER Min. Typ.['l Max. Min. Typ.lll Max. |UNIT CONDITIONS
u input Load Current 10 10 uA Vin=0to 5.5V
(Al Input Pins)
ol [/0 Leakage Current 10 10 | pA | CS=Vi
Vjjo = GND to VCC
lee Power Supply Current 25 40 50 70 mA Vee = max, lyg=0mA,
Ta= o°c
ViL Input Low Voltage -3.0 0.8 -3.0 0.8
ViH Input High Vo!:age 2.0 6.0 2.0 6.0 v
1L Output Low Current 2.1 9.0 2.1 9.0 mA | Vo = 0.4V
IoH Output High Current -1.0 -25 -1.0 -25 mA Vou = 2.4V
los!2! Output Short Circuit 40 40 mA
Current
NQTE: 1. Typical valuesare for Tp = 25°Cand Vg = 5.0V,
2. Duration not to exceed 30 seconds.
CAPACITANCE
Ta=25°C, f= 1.0 MHz
SYMBOL % TEST MAX UNIT CONDITIONS
Cio (nput Output Capacitance 5 pF Vijo = 0V
CiN Input Capacitance 5 pF Vin =0V
NOTE: This perameter is periodicsily sampled and not 100% tested.
A.C. CONDITIONS OF TEST
INPUt PUlISE LevelScoouveiviiieiiinieirieianesacasnnacens vesenreen 0.8 Volt to 2.0 Volt
Input Rise and Fall Times ...c.vuirinieieiniereritetitoscssssasnssrensassssannns 10 nsec
Input and Output Timing Levels Ceressetatescetenatrtssanrtrrsnns Ceereaases 1.5 Volts
[TT L I - T 1 TTL Gate and C_ =100 pF

2114A FAMILY

A.C. CHARACTERISTICS T4 =0°Ct070°C, Vce = 5V + 10%, unless otherwise noted.

READ cYCLE [V

2114AL-1 [2114AL-2 2114AL-3 2114A-4/L-412114A-5
SYMBOL PARAMETER Min. Max.} Min. Max.| Min. Max.| Min. Max.| Min. Max. UNIT
tac Read Cycle Time 100 120 150 200 250 ns
ta Access Time 1C0 120 150 200 250 ns
tco Chip Selectionto Output Valid 70 70 70 70 85 ns
tex Chip Selectionto Output Active | 10 10 10 10 10 ns
toto QOutput 3-state from Deselection 30 35 50 60 ns
Qutput Hold from
toma Address Change 15 15 15 15 15 ns
WRITE CYCLE 2]
2114AL-1 2114AL-2 2114AL-3 2114A-4/L-4 (2114A-5
SYMBOL PARAMETER Min. Max.| Min. Max.| Min. Max.| Min. Max.| Min. Max. UNIT
twe Write Cycle Time 100 120 150 200 250 "3
tw 75 75 90 120 135 ns
twa Write Release Time 0 0 0 0 0 ~s
torw Qutput 3-state from Write 30 35 40 50 - ns
tow Data to Write Time Overlap 70 70 90 120 135 ns
ton Data Hold from Write Time 0 0 0 0 ns
NOTES: _ .
1. A Read occurs during the overlap of alow CS and a hig_h_WE. .
2. A Write occurs during the overlap of a low CS and a low WE. 1y is measured from the latter of TS or WE going low to the earlier o* 75 =+ A T going high.
WAVEFORMS
READ CYCLE® WRITE CYCLE
u aooress __ X X
ADDRESS :x X °]
& 777 7z
= AN w
- tco—wr| le—to70— —
o tona—ta—s] W ®X\\\ 7
Dour € \
NOTES: Dour 2 >
3. WE is high for a Read Cycle. lo— tow ton
4. if the CS low transition occurs simultaneously with the WE low
transition, the output buffers remain in a high impedance state. - 0(
5. WE must be high during all address transitions. iFaVaVaVaVavavayal

APPENDIX C 249

Appendix C5

intal

8-BIT INPUT/QUTPUT PORT

u Fully Parallel 8-Bit Data Register and Buffer
m Service Request Flip-Flop for

Interrupt Generation

@ Low Input Load Current — .25mA Max.

m Three State Outputs
® Outputs Sink 15mA

® 3.65V Output High Voltage for

Direct Interface to 8008, 8080A, or

8085A CPU
8 Asynchronous Register Clear

B Replaces Buffers, Latches and
Multiplexers in Microcomputer Systems

B Reduces System Package Count

The 8212 input/output port co~s sts of a= 8-t iaten w tn 3-state cutput buffers along with controf and device selection
logic. Also included is a service request ‘. p-fiop for tne generation and control of interrupts to the microprocessor.

The device is multimode in nature. It can be used to implement latches, gated buffers or multiplexers. Thus, all of the
principal peripheral and input-output functions of a microcomputer system can be implemented with this device.

PIN CONFIGURATION

— A\
os, [24 [Jvee
mo [2 23 []NT
o[O3 22 (]o1,
oo, [e 21 [Joo,
or,[s 26 [Jo1,
po,[| 6 19 [Jpo,
8212
o, 18 Jorg
oo, 8 17 { J oo,
o, [0 @ 16| Joi,
oo, [] 10 15 [Joo,
sty 1 14 7]CR
eno[] 12 13 [Jos,
PIN NAMES

Di. Oy CATAIN

DO: DOs__ CATA OUT

0%, DS, DEVICE SELECT

M0 WOCE

STB | STAOBE T N
iNT T INTERRUPT (ACTIVE LOW) |
CLR j CLEAR (ACTIVE LOW)

DEVICE SELECTION

LOGIC DIAGRAM
SERVICE REQUEST FF

B

CTIvE LOWI

ouTPUT

! i BUFFER

> 6
i3> os2
B> w
i>srs

B>on P

para(arcH :_4‘

!

E>oo i]

Iu \

Coe—g !

Do v ok

Cy |

|

oo % L O

i

>0 8
o
E>oy,
2> o

tACTIVE LOW)

W

f
&0029
{

Moo;@
e

Reprinted by permission of Intel Corporation Copyright © 1980

APPENDIX C 251

252 APPENDIX C

8212

FUNCTIONAL DESCRIPTION

Data Latch

The 8 flip-flops that make up the data latch are of a D"
type design. The output (Q) of the flip-flop will follow the
data input {D} while the clock input (C) is high. Latching
will occur when the clock (C) returns fow.

The latched data is cleared by an asynchronous reset
input (CLR). (Note: Clock (C) Overrides Reset (CLR).)

Output Buffer

The outputs of the data latch (Q) are connected to 3-state,
non-inverting output buffers. These buffers bave a
common control line (EN!; this control line either enables
the buffer to transmit the cata from the outputs of the data
latch (Q) or disables the buffer, forcing the output into a
high impedance state. :3-state)

The high-impedance state allows the designer to connect
the 8212 directly onto the microprocessor bi-cirectional
data bus.

Control Logic

The 8212 has control inputs DS1, DS2, MD and STB.
These inputs are used to control device selection, data
latching, output buffer state and service request flip-flop.

DS1, DS2 (Device Select)

vice se'ecticn

lowand DS2isn g~
the selected state

Service Request Flip-Flop

The (SR flip-flop is used to generate and control
interrupts in microcomputer systems. It is asynchron-
ously set by the CLR input {active low). When the (SR} flip-
flop is set it is in the non-interrupting state.

The output of the (SR} flip-flop (Q} is connected to an
inverting input of a “NOR" gate. The other input to the
“NOR" gate is non-inverting and is connected to the
device selection _logic (DS1 + DS2). The output of the
“NOR" gate (INT} is active low {interrupting state) for
connection to active low input priority generating circuits.

SERVICE REQUEST FF

DEVICE SELECTION

Ly

> 08
= DS?D

3>

I i ALTIVE LOW.
[

> w0 =1
— i) '
> st T e
| e B FEER
L
o e - £ D>
DATA LATCH CHs] Lﬁ
T I
Do A b
]
‘—* — 7
o 1D
- :
St >~— 1

MD (Mode) DR voe [2>
This input is used to cont sl t~e state of the outout o er } |
a~d to determine the source cf the c.ccx input . C o the o, o oM ‘ v, >
caa latch. = T !
e 1 |
vi~2n MD is high (output moze' = [P .
e~z: ed and the source of ciccx C - B A EE 00 I
i+~ :~g device selection logic =37 - —HeH | :
i
V=2~ 4D is low (input mode) the c.iput & _“er state is > &w NSTRT | I
ceiz-~ -ed by the device selection :cg - ©31-082;and Crive Low [S
c.ce of clock (C) to the daa iaich is the STB
Srize rput. 78 WO D5, 05, DATAOUT FGUALS || CLR | iBE; 051 [578 | *SR | INT
[0 0 3STATE ™
1 4] 0 JSTATE ? g 1
¢) [} DATA LATCH T T —_ B
1 1 0 DAYTA LATCH o 0 5 0
[0 1 DATA LATCH 6] B 7
STB (Strobe) o 9) DATAIN i ! RN ‘
1 i 1 DATA IN “INTERNAL SR FLIP FLOP
T~ si~cut s .sezastheclock (C) tothe datalatch for the CUR - RESETS DATA LATCH
inzut mcce M2 = 0 and to synchronously reset the T aN OuTPUT BUFFER}
se~vice reguest ‘ o-f op (SR).
Ncte tnat the SR f:ip-fiop is negative edge triggered.

Applications of the 8212 — For
Microcomputer Systems

| Basic Schematic Symbol
1 Gated Buffer

It Bi-Directional Bus Driver
IV Interrupting Input Port

1. Basic Schematic Symbols

Two examples of ways to draw the 8212 on system
schematics — (1) the top being the detailed view showing
pin numbers, and (2) the bottom being the symbolic view

Vv Interrupt Instruction Port
VI Output Port

Vit 8080A Status Latch

VIil 8085A Address Latch

showing the system input or output as a system bus (bus
containing 8 paraliel lines). The output to the data bus is
symbotic in referencing 8 parallel lines.

BASIC SCHEMATIC SYMBOLS

INPUT DEVICE OUTPUT DEVICE
——i e
3 518 4 3 ST6__] 4
—o bls) o ol oofz
-] | 8 _ . | 8
3] | 10 2] | 10
—1.2- 8212 u%- (DETAILED) .:g_ 8212 %
— — —_— ——
20 _ 19 20 19
22 |ctR INT[20 22 {iNT CLR[21
14 vo -[23 23 MO 12
N P _
S, - DS, 0s, DS,
12 |3 IENERE
ND v,
INPUT N ~""] ~) cc ouTPUT
STROBE] [* FLAG

SYSTEM YMBOLIC) SYSTEM
—ClR INT p— —dINT CLR Jo—
I Lo 4 T
GND DATA BUS DATA BUS Vee
1. Gated Butfer (3-State) GATED BUFFER
The simplest use of the 8212 is t-at of a gated bu‘fer. By Vee)
tying the mode signal low arc tme strobe ~z.th gh the S18
data latch is acting as a stra:g~:t~-2ugh gate Tnec.iput
buffers are then enabled fro™ t~e cevice se eci.Cn logic
DS1 and DS2. INPUT ouTPUT
)) DATA :> 8212 DATA
When the device selectionlogic is ‘a se. tre cutcutsare 3- (250 uA) 1154
state. 1365V WIN|
When the device selection logic s true t~e ~c_tdatafrom t———————CLR
the system is directly transferred to tre c.ic .t Theinput GATING 2
data load is 250 micro amps. Tre cuto.t 232 cansink 15 CONTROL ane
milli amps. The minimum high output :s 3 2% voits. (D5.0s2)
8212
I, Bi-Directional Bus Driver BI-DIRECTIONAL BUS DRIVER
A pair of 8212's wired {back-to-back) can te used as a Vee
symmetrical drive, bi-directional bus driver. Tre cevices *_—
are controlied by the data bus input control wnch is ST8
connected to DS1 on the first 8212 and to DS2 on the
second. One device is active, and acting as a straight
through‘buffevr the otheris in 3-st§!e mode. This is a very DATA DATA
useful circuit in small system design. BUS 8212 BUS
—d CtR
DATA BUS
CONTROL — ¥ 11
(G=L =R GND
{l = R=L} v
sT8
8212 K
o CLR
—
GND

APPENDIX C 253

254 APPENDIX C

IV. Interrupting Input Port INTERRUPTING INPUT PORT

This use of an 8212 is that of a system input port th;t NPUT DBAUTSA
accepts a strobe from the system input source, which in STROBE —~——]

turn clears the service request flip-flop and interrupts the ~a “/T
processor. The processor then goes through a service

routine, identifies the port, and causes the device

selection logic to go true —enabling the systeminput data

onto the data bus. A C> 8212 :>

SYSTEM —
RESET —— CLR INT

PORT NS
SELECTION-[GND TO PRIORITY CKT

(DS1:082) (ACTIVE LOW)
OR
TO CPU
INTERRUPT INPUT

V. Interrupt Instruction Port INTERRUPT INSTRUCTION PORT
The 8212 ca~ ce used to gate the interrupt instruction, Vee CzTa
normally REST2RT instructions, onto the data bus. The 8.8
device 1s e £z ‘rom the interrupt acknowledge signal F/\
from the mic =essor and from a port selection signat. T8 ‘
This signal:s ~z-—2 ytied to ground. (DS1 couid be used ‘
to muttiplex a .2~ ¢%; of interrupt instruction ports onto a RESTART :
common bus INSTRUCTION 8212 N
(RST 0—RST 7) i
CIR
(DST) PORT SELECTION |
GND
INTERRUPT ACKNOWLEDGE ~——s—————
8212
Vi, Output Port (With Hand-Shaking) QUTPUT PORT (WITH HAND-SHAKING)
e .sed totransmitdata fromthe databusto DB“JSA
ic.t Tre output strobe could be a nard- - QUTPUT STROBE
s.c~as reception of data” fromthe device rp [
thatires is c.izotung to. ltinturn, caninterruptthe s18
sysiem s:ignfy ~g tme reception of data. The selection of
the pcrtccmes from tne cevice selection logic. DSt DS2)
A 8212 > SYSTEM QUTPUT
INT CLR Jo——— SYSTEM RESET
— ! L<_7 PORT SELECTION
SYSTEM Vee = (LATCH CONTROLI
INTERRUPT i (DS1.DS2!

Vil. 8080A Status Latch

Here the 8212 is used as the status latch for an 8080A
microcomputer system. The input to the 8212 latch is
directly from the 8080A data bus. Timing shows thatwhen
the SYNC signal is true, which is connected to the DS2
input and the phase 1 signal is true, which is a TTL level

Note: The mode signalis tied high so thatthe outputon the

latch is active and enabled all the time.

It is shown that the two areas of concern are the bi-
directional data bus of the microprocessor and the control

h ; bus.
coming from the clock generator; then, the status data wilt
be latched into the 8212.
10
Oots D,
Db, 3 0,
D, 7 D,
I E % L pata
o, o BUS
8080A o[- o,
Dss Dg
D, D,
snc |2
pBIN L
ol ad STATUS
22 15 LATCH
12v E Do }2— NTA]
-/"_ i 5 6 o T1 T2
v AF/\‘ P 8 stack
C 3 10
|] — HLTA ol
| e %3— OUT 1 asic I —\
H 2 !
! i 75— m, F CONTROL
CLOCK GEN. 2177t | 2 21 memr | B swnel S/ __
& DRIVER } — CCR _
i 14| Ds, Mo BS, - ——_——
. T3 72 T1 DATA —_
1 oBIN _|
STATUS
Vee
8212
Viil. 8085A Low-Order Address Latch
The 8085A microprocessor uses @ . © ¢ £xed address/
data bus that contains the low ¢-C '3 ¢* acdress
information during the first part ¢* a ~2 e The
same bus contains data at a late" t ~e vcle. An 12 D =]
address latch enable (ALE! sigral s by the ADo 3 0
8085A to be used by the 8212to latc~ :~& 222 ess sothatit AD1 b D4
may be available through the whce ~2 c.e. Note: AD> 15 D2
In this configuration, the MODE input st &2~ ¢~ xeeping AD3 g > D3 L. DATA BUS
the 8212's output buffers turned on ata.' t ~2s. ADsf7 Da
8085A AD. Ds
5118
ADs 19 Ds
AD7 D7
ALE 30
Vee
1
2151, STB DO A0 |
5 6 A
b—» A1
7 LAZ
12 1_2-/-\3 LOW ORDER
5] 8212 [0 % | ADDRESSBUS
— A5
20 19 A
— Rg
22 o FIM™
— CLR .
14]DS, MD DS,
T3 [2 §1
Vee =

APPENDIX C 255

8212

ABSOLUTE MAXIMUM RATINGS*

N . ‘COMMENT

Temperature Under Bias Plastic 0°Cto +70°C Stresses abova those listed under “Absolute Ma Rat a
2 ' u ximum ings” maycause
Storage Temperatureovveen -65°C to +160°C permanent damage to the device Thisssastress rating only and functional
All Output or Supply Voltages 0.5 to +7 Volts operation of the device at these or any other conditions above those
R indicated in the operational sections of this specification s not :mphed
gl:;tlgﬁtuévg"eta?ses cecennie.s 1010 5";’0\30“2 Exposure 10 absolute maximum rating conditions for extended pernods

urren m may affect device rehiability

D.C. CHARACTERISTICS Ta=0°Cto+75°C, Vcc = +5V 5%

Limits
Symbol Parameter Unit Test Conditions
Min. Typ. Max.
IF input Load Current, ACK, DSz, CR,
Diy-Dlsg Inputs -.25 mA |[Vg = .45V
IF Input Load Current MD Input -75 mA [VF = .45V
IF Input Load Current DSt Input -1.0 mA {VF = .45V
IR Input Leakage Current, ACK, DS, CR.
D!1-Dls Inputs 10 uA VR <=Vze
IR Input Leakage Current MO Input 30 sA |VR =Vco
IR Input Leakage Current DS+ Input 40 wA v =Vco
Ve Input Forward Voltage Ciamp -1 \ g =-5m
ViL Input “Low"” Voltage .85 \
VIH Input “High" Voltage 20 \'
VoL I Output “Low" Voltage i 45 Vo {loL=15mA
VOH Qutput "High” Voltage . 365 4.0 " loH =-1TmA
Isc Szt Circuit Output Current -15 -75 mA (Vo =0V Vzz =5V
ol C.:out Leakage Current High ‘
—rczzance State 20 uA |Vo= 45V 528V
lcc © FrazrS.opy Current : 90 130 mA
8212
TYPICAL CHARACTERISTICS
INPUT CURRENT VS, INPUT VOLTAGE OUTPUT CURRENT VS. OUTPUT "LOW" VOLTAGE
] 100 T T T
Vee =450V Vee " 5.0V ! :
0 | |
80— - et = e e 4]
| ' I
Z 00 z | i ‘ /
- Ta®0C7] % ~— ‘ /
2 s & |
3 i
: 5
2 = t 3
3 t
| i
25 +
: I
30 L
3 -2 -1 [. .2 -3
INPUT VOLTAGE (V) QUTPUT "LOW" VOLTAGE 1V}
OUTPUT CURRENT VS. DATA TO OQUTPUT DELAY
QUTPUT "HIGH" VOLTAGE VS. LOAD CAPACITANCE
0 50 T T T T T
Veg T 50V Ve = *5.0V i ! ;
-5 / T, BC i ;
a0
- 7 74 |
H Ta:75¢C / b i H
E 15 y 8 i —
H S 5 ' 4
= =25¢C & N ’,/’
Ay e . e
k4) = —
< / < T
S . // 2 //
o " i
// |
35 0 1
] 10 20 30 40 50] 50 100 150 200 250 300
QUTPUT "HIGH” VOLTAGE (V) LOAD CAPACITANCE {pF}

256 APPENDIX C

DATA TO OUTPUT DELAY
VS. TEMPERATURE

22 r
Vee £ +5.0V

20
E A
Z 8
- 7’
- "4
a Pt
5 Pid
g 6 =
: =
=} H
- il
< 14
g
o
[=]

12

10 L

=25 [} 25 50 75

TEMPERATURE (" C)

a0

WRITE ENABLE TO OUTPUT DELAY

VS. TEMPERATURE

Vee * 5.0V
T »
>
<
=
o
o 30 - -
5 *
g A
> ! L~
o 25 : = vl
o ——t ”~
o stg - -
z Ds, - —
< Wh—mm AT T - el
z 88y |t T
w
=4
£ s
|
10
25 [] 25 50 75 100
TEMPERATUREt C)

A.C. CHARACTERISTICS Ta=0°Cto~70°C, Vcc = +5V * 5%

Limits
Symbol Parameter t Unit Test Conditions
I Min. Typ. Max.
trw Pulse Width ‘ 30 ns
tPD Data to Output Delay | 30 ns i Note 1
twe Write Enable to Output De ay | 40 ns | Note 1
tseT Data Set Up Time 15 ns
tH Data Hold Time 20 ns
tR Reset to Qutput Ce'ay 40 ns Note 1
ts Set to Output Ceiay 30 ns Note 1
te Qutput Enable Cisac e 7 ~e 45 ns Note 1
tc Clear to Output Deiay 55 ns Note 1
CAPACITANCE" F=1MHz Vsas =23V Voo =+5V, Ta=25°C
Limits
Symbol Test
Typ. Max
CiN DSy MD Input Capacitance Sc-F t2CF
CIN DS$2, CK, ACK, Dii-Dlg
Input Capacitance SpF QcF
Coutr |DO1-DOsg Output Capacitance ‘ 8pF 1ZcoF
*This parameter is sampled and not 100% tested.
SWITCHING CHARACTERISTICS
Conditions of Test
Input Pulse Amplitude = 2.5V TestLoad
Input Rise and Fall Times 5ns 15mA & 30pF
Between 1V and 2V Measurements made at 1.5V
with 15mA and 30pF Test Load Vee
Note 1:
R
Test [~ Ry R2
tPD. tWE, R, ts, tc 30pF | 3000 | 6000 I;CL T
te, ENABLE! 30pF | 10KQ | KO R
cL* R2
te, ENABLE | 30pF | 3000 | eoon I
te, DISABLE! S5pF 3000 6000 = =
te. DISABLEI S5pF 10K KN
*INCLUDING MG & PROBE CAPACITANCE

*Includes probe and jig capacitance.

APPENDIX C 257

258 APPENDIX C

8212

TIMING DIAGRAM

1
STBor 051+ DS2 1.5V ;K 5& 1.5V
—_—_————— -
ouTPUT 15V
—

sv
Ol "’] {SEE NOTE BELOW) 10— v
fo—— e — e ——————
X —\—*\—_‘._—T
aomelT ,
—_—— e e/ Y A —

gl
o
o
-
]
[
@
<

N

/T T T T T T T T T A
DATA 15V vey
_/] e — —

: |
STBor BS; » S i 15v\\
|
e ———— o — o — .
ouTPUT 15v
Py

Z
i

|
NCTE ALTERNATIVE TESTLOAD ™ R

Vee

10K

Appendix C6

STANDARD MICROSYSTEMS
CORPORATION

35 Marcus Bivd Haup Y 11787
15161273-310G Twx-510-227-8898

We keep ahead of our competition so you can keep ahead of yours.

KR2376-XX

Keyboard Encoder Read Only Memory

FEATURES
(3 Outputs directly compatible with TTL/DTL or
MOS logic arrays.

O External control provided for output polarity
selection.

O External control provided for selection of odd
or even parity.

[0 Two key roli-over operation.

[N-key lockout.

O Programmable coding with a single mask
change.

[0 Self-contained oscillator circuit.

[Externally controlled delay network provided
to eliminate tne effect of contact bounce.

— Oneintegrated circuit required for complete
keyboard assembly.

— S:atccharge protection on all input and
cuiputterminals.

C Entire circuit protected by a layer of glass
passivation.

PIN CONFIGURATION

Ay
vee [1 40 [0 Freguency Control A
Frequency Control B [] 2 38 [x0
Frequency Control C [3 ag {J X1
Shiftinput {] 4 a7 [Jx2 Keynoard
Controtinput [] 6 36 X3 0z
Parity Invert Input [] 6 35 [] X4 Outouts
Parity Output [} 7 34 [1x5
Data Output B8 [} 8 33 [3%5,
Data Qutput B7 B] 32 :] x7.)
Data Output 86 (] 10 31 119
Data Output B5 [] 11 g v
Data Output B4 [] 12 2sJ Y2
Data Output B3 [: 13 22 [JY3
Data Output 82 [] 14 27 [J Y4 |Keyboard
Data Output B! E 15 26 :] Y5 Matrix
Strobe Output [16 2516 | inputs
Grouna (] 17 24 Qv7
vea [18 23[]vs
Strobe Control input [] 19 227 ve
Data & Strobe [} 20 21 ;]Yw
Invert Input

PACKAGE: 40-Pin D.I.P.

GENERAL DESCRIPTION

The SMC KR2376-XX isa 2376-bitRead Or'y Memory
with all the logic necessary to encode singie pole
single throw keyboard closures into a usao'e 3-o1t

any special interface components.
The KR2376-XX is fabricated with low =
P-channel technology and contains 2942

code. Data and strobe outputsare direct y ccmpatible enhancement mode transistorsonasingie — nIC
with TTL/DTL or MOS logic arrays without tne use of chip, available in a 40 pin dual-in-line pacxazs.
TYPICAL CONNECTION OF KR2376-XX
KR2376-XX ‘ :
e T T T - i
Vcc—*\—ﬁ 7 :
Vono ——4 50 KHz —
Veo 1 OSCILLATOR))
| l I FrequUENCY |
J | CONTROL
} |
} CLOCK !
1 CONTROL |
: r 11 STAGE RING COUNTER [0— | IV PSP YP P
)
! IIRNNEENREN I K
' x> 39 X0
SHIFT INPUT —4) X3
5 f ML <2
CONTROL INPUT —4 f— s % 5
sTROBE | 2376 BIT ROM — sTace g
CONTROL WPUT 18Im0 oy (9 BIT x 88 KEYS x 3 MODE) 1 e [Tz T
RULCH N 133 o 6
32 GRS
T 1 L 2L
Ve Voc | l l l] l J' l l l J 88 SPST KEYBOARD SWITCHES
DATA & STROBE 20 | - -1
INVERT INPUT | X6
parITY _6 | COMPATIBLE OUTPUT DRIVERS | { J«-—‘,—- TYPICAL SWITCH
INVERT INPUT 7 V-

PARITY QUTPUT
Fig 1 DATA QUTPUTS

S .y | X7 ~
16 10 |11 [12 [13 {14 |15 i
‘
STROBE OUTPUT EXAMPLE

Ba B7 B6 BS B4 B3 B2 Bt

* R (GBOKn)5 C1 (0014} provide approx 15 ms delay
{see M }
R2 (wom) C2 {50pf) provide 50KHz clock frequency
{see higure 6)

Reprinted by permission of SMC Microsystems Corporation Copyright © 1980

APPENDIX C 259

260 APPENDIX C

MAXIMUM GUARANTEED RATINGS}

Operating Temperature RaNge ... vvvvrnveneneiiiirinennrnoereeens
Storage Temperature Range .. vvvervnvreraenenreviirinnanareeees
GND and Vaa, with respecttoVCC v vvvvvv e v cianriinanianunees
Logic Input Voltages, with respeCttoVCC . v v vievinerei i

+ Stresses above those listed may cause permanentdamagetothe device. Thisisastressratingonly
and functional operation of the device at these or atany other condition above those indicated in

the operational sections of this specification is notimplied.

ELECTRICAL CHARACTERISTICS

(Ta=0°Cto +70°C, Vcc = +5V £0.5V, Vee = —12V £1.0V, unless otherwise noted)

Characteristics Min Typ Max Unit Conditions
CLOCK 20 50 100 KHz seefig.1footnote (**) for typical
R-C values
DATA INPUT
Logic"Q" Leve! -C.8 \
Logic "1" Level Vee-1.5)
Input Capacitance 10 pf

INPUT CURRENT
*Control, Shift & Y0

thru Y10 10 160 140 LA
*Control, Shift & YO

thru Y10 5 30 50 LA
Data Invert, Parity Invert .01 1 b

DATA QUTPUT & X OUTPUT

Logic"0" Level -4 V
Logic 1" Level Vee-1.0 \
FCWER CONSUMPTION 140 Z60) ma

g,. "CH CHARACTERISTICS
' = mum Switch Closure
C--:zct Closure Resistance

en X1 and Y1 300 C=m

Open Resistance

21 X1and Y1

see timing diagram-fig. 2

1x107 Cm

Vin = +5.0V

Vin = Ground
V= —5.0Vto+5.0V

1E~Alseefig.7)

Lo A

.2~ S.co. Voltages

)

¢

wr N
o ..

A

w < OO
MmO

i~z.:z & 1~ internal Resistorto Vaa

DESCRIPTION OF OPERATION

The KR2376-XX contains (see Fig. 1), a 2376-bit address is formed by combining the Shift and
ROM, 8-stage and 11-stage ring counters, an 11-bit Control Inputs with the two ring counters.

comparator, an oscillator circuit, an externally

The external outputs of the 8-stage ring counter

controllable delay network for eliminating the effect and the external inputs to the 11-bitcomparator are
of contact bounce, and TTL/DTL/MOS compatible ~ wired tothe keyboardto forman X-Y matrix withthe

output drivers.

88-keyboard switches as the crosspoints. in the

The ROM portion of the chip is a 264 by 9-bit standby condition, when no key is depressed, the
memory arranged into three 88-word by g-bit two ring counters are clocked and sequentially
groups. The appropriate levels on the Shift and address the ROM:; the absence of a Strobe Output
Control inputs selects one of the three 88-word indicates that the Data Outputs are 'not valid' at

groups; the 88-individual word locations are this time.
addressed by the two ring counters. Thus, the ROM

When a key is depressed, asingle path iscompleted
between one output of the 8-stage ring counter
(X0 thru X7) and one input of the 11-bit comparator
(Y0-Y10). Aftera number of clock cycles,acondition
will occur where a level on the selected path to the
comparator matches a level on the corresponding
comparator input from the 11-stage ring counter.
When this occurs, the comparator generates a
signal to the clock controland to the Strobe Output
(via the delay network). The clock control stops the
clocks to the ring counters and the Data Outputs

(B1-B9) stabilize with the selected 9-bit code,
indicated by a ‘valid' signal on the Strobe Output.
The Data Outputs remain stable until the key is
released.

As an added feature two inputs are provided for
external polarity control of the Data Outputs. Parity
Invert (pin 6) provides polarity control of the Parity
Output (pin 7) while the Data and Strobe Invert
Input (pin 20) provides for polarity control of Data
Outputs B1 thru B8 (pins 8 thru 15) and the Strobe
Output (pin 16).

SPECIAL PATTERNS

S'~ce the selected coding of each key is defined
¢ uring the manufacture of the chip, the coding can
te cnanged to fit any particular application of the
keyboard. Up to 264 codes of up to 8 bits (plusone
parity bit) can be programmed into the KR2376-XX

ROM covering most popular codes suchas ASC11,
EBCD1C, Selectric, etc.,aswellas many specialized
codes. The ASC11 code is available as a standard
pattern. For special patterns, use Fig. 9.

TIMING DI

SWITCH
CLOSURE

L

BOUNCE

AGRAM

SWITCH
RELEASE

L

C.CELRE—~

___,?‘
~— STROBE WIOTH

~ BOUNCE

MINIMUM S Ch
88 CLOCK CYCLES—> =—
SWITCH o s ocse i e SWITCH

STRCEZ TLTPUT i
Vo |
| ——)4 Sus §<—
DATA
VALID
MINIM UM SWITCH CLOSURE = SWITCHBOUNCE + (88 %) « STROBEDELAY + STROBE WIDTH

TRE RS TTRET TS

MAXIMUM DET

ERMINED DETERMINED BY MINIMUM T'ME

EXPECTED BY FREQUENCY EXTERNALRC ~REQUIRET 3v

OF OPERATION EXTERNAL
{EXTERNAL RC) CIRCUITRY
Fig.2
POWER SUPPLY CONNECTIONS FOR QUTPUT DRIVER & "X” OUTPUT STAGE
TTL/DTL OPERATION TO KEYBOARD
-2V +5V Gnd ?V',: Vono

——

Voci Vee L Vonol L—«g

) 18 1 i7 1

LOTZ\LéDg:i INPUTS OUTPUTS) I&/PCTBR J———[_‘ out

svhchTLA%v; ———] KR2376-XX ———>J 338&8‘! IN —p

MOS LOGIC MOS LOGIC Vi i
POWER SUPPLY CONNECTIONS FOR
MOS OPERATION “Y* INPUT STAGE FROM KEYBOARD
-7V Vaa
t‘m__l
Voo | Vec) Vone
FROM HIGH OR B v 70 HIGH KEYé\gARD ?;%ERNAL
Mol'sogavroﬁ%gf NPUTS KR2376-XX M Sg %OW INPUT T GATING
REFERENCED MOLSAGE counTeR
PR%TTAETéQr|8:A§§/ElCE Yee TinpuT
Fig.3 Fig.4

APPENDIX C 261

262 APPENDIX C

TYP. OUTPUT

STROBE OSCILLATOR ON RESISTANCE TYP. POWER
DELAY FREQUENCY VS. GATE CONSUMPTION
VS. C, VS.C, BIAS VOLTAGE VS. TEMPERATURE
0025ut T } T 200 T T T 160 160 T T T T
3 ! 'R 210(3‘(0 | t Nom Supp Voltage
- Rl R A I - S A U sTxfpngo(liage 1 = Fusoboe 4 4 622,52\@
o i [wo ||] ; £ : o
g owl bt Sl bX o=t g e A
S o | 0t - I R == o T ft of oty -
i Nom Supp Voltage | i i | o [
0 ! |) l i 0 : i 120 P i
o T 2 3 [O 20 40 60 80 100 35 a0 25 20 15 10 5 0 10 20 30 40 50 66 70
DELAY - msec FREQUENCY - KHz Vgs - Volts. TEMPERATURE - °C
Fig.5 Fig.6 Fig.7 Fig.8
CODE ASSIGNMENT CHART DATA (B1-B8) INVERT
KR2376-ST TRUTH TABLE
8 Bit ASCII, odd parity DATA & STROSE
INVERT INPUT A
(Pin 20}
1 1
P N
I 0 <
e lax
HeR- R
H = STROBE INVERT
H = TRUTH TABLE
n - -
H = -
1 oo,
A — 0 0 §
e | - 1 Q 1
s 0 1 1
‘et —
= —
e -
= = mm PARITY INVERT
e - u TRUTH TABLE
g " W R PARITY CODE PARITY
= INVERT INPUT ASSIGNMENT OUTPUT
(Pin 6) CHART (Pin7)
ew 1 I [
e 0 1 1
nca 1 0 1
- [} 0 Q

MODE SELECTION

TR

(Code representative of key dez-e:
tocation X0-Y3 and proper moge st

STANDARD MICROSYSTEMS
CORPORATION

N
S
o}

noa

W wn

c
[
c
C =INVALID [SPURIQJS DATA)

Fig.9

N = Normal Mode

S = Shift Mode

C = Control Mode

& = Qutput Logic "1" (see data B1-B8)
=50V

Logic
Logic 0" = Ground

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applica-
tions. consequently comglete infarmation sufficient for construction purposes is not necessarity given. The
information has been carefully checked and s believed to be entirely reliable However, no responsiblility is
assumed for inaccuracies Furthermore. such information does not convey to the purchaser of the semiconductor
oevices described any hcense under the patent nghts ot SMC or others SMC reserves the night to make changes
at any time in order to improve design and supply the best product possible.

-

Appendix C7

STANDARD MICROSYSTEMS

CORPORATION

35 Marcus Blvd., Hauppauge N.Y 11787
{516} 273-3100 TWX-510-227-8898

We keep ahead of our competition S0 You can keep ahead of yours.

UART

FEATURES

3 Direct TTL Compatibility — no interfacing circuits
required

O Full or Half Duplex Operation—can receive and
transmit simultaneously at different baud rates

O Fully Double Buffered —eliminates need for precise
external timing

[J Start Bit Verification — decreases error rate

[J Fully Programmable — data word length, parity mode,
number of stop bits; one, one and one-half, or two

[0 High Speed Operation—4CK baud, 200ns strobes
[0 Master Reset— Resets all status outputs

[J Tri-State Outputs— bus structure oriented

[Low Power— minimum power requirements

O Input Protected —eliminates handling problems

[0 Ceramic or Plastic Dip Package —easy board insertion

GENERAL DESCRIPTION

The Universal Asynchronous Receiver/Transmitter is
an MOS/LSI monolothic circuit that performs all the
receiving and transmitting functions associated with
asynchronous data communications. This circuitis
fabricated using SMC's P-channel low voltage oxide-
nitride technology. The duplex mode, baud rate, data
word length, parity mode, and number of stop bits are
independently programmable through the use of exter-
nal controls. There may be 5, 6,7 or 8 data bits, odd/even
or no parity, and 1, or 2 stop bits or 1.5 stop bits when
utilizing a 5-bit code from the COM 2017 or COM 2017/H.
The UART can operate in either the full or half duplex
mode. These programmable features provide the user
with the ability to interface with all asynchronous
peripherals.

COM2502
COM2017

COM2502/H
COM2017/H

Universal Asynchronous Receiver/Transmitter

Pin Configuration
Nt
vee b Tcp
voo] 2 39 [J POE
Gnd [] 3 38 [] nNDB1
ROE [4 37 [] NDB2
RO8 [5 36 [] NSB
RO7 (0 6 351 NPB
rRD& (7 ulcs
RO5 [8 33{] To8
RDs]9 3200 To7
rD3 (] 10 31[] TO6
rRo2 [11 0 Tos
RO (0 12 291) TD4
RPE [J 13 28] TD3
RFE [] 14 27 T2
ROR [15 26[] TOY
SWE (] 16 250 1s0
RCP E 17 24 a TEOC
ROAR [18 23] 0%
RpA [J19 22 [] TBMT
Rst (20 21[J MR
PACKAGE: 40-Pin D.I.P.

TCPy

cs

NPB
NSB
NDB2
NDB1
POE

RCP{

RSI

Functional Block Diagram
TD1 TD2 TD3 TD4 TCS 726 TD7 TD8

126 127 128 I29 3 31 132 133
x x X
TRANSMITTER B_FSER REGISTER

iy

TRANSMITTER 25
SHIFT

REGISTER

7T

40 TIMING AND CONTROL TRANSMITTER]A

|24 il 16|
By it
35 22
36 STATUS 3
37 CONTROL WORD 4
38 REGISTER BUFFER 5
39 REGISTER 9
ll T T t 18 1
17
TIMING AND CONTROL RECEIVER l
.
Iy 2
RECEIVER
20} SHIFT ‘_L
REGISTER bR
11 *‘3
4 RECEIVER BUFFER REGISTER

bl ol ol

RD8 RD7 RD6 RDS RD4 RD3 RD2 RD1

TSO

TEOC

SWE
TBMT
RFE
ROR
RDA

ROAR

MR

vee
Voo
Gnd

Reprinted by permission of SMC Microsystems Corporation Copyright © 1980

APPENDIX C 263

264 APPENDIX C

DESCRIPTION OF OPERATION — TRANSMITTER

At start-up the power is turned on, a clock whose
frequency is 16 times the desired baud rate is
applied and master reset is pulsed. Under these
conditions TBMT, TEOC, and TSO are all at a high
level (the line is marking).

When TBMT and TEOC are high, the control bits
may be set. After this has been done the data bits
may be set. Normally, the control bits are strobed
into the transmitter prior to the data bits. However,
as long as minimum pulse width specifications
are not violated, TDS and CS may occur simulta-
neously. Once the date strobe (TDS) has been
pulsed the TBMT signal goes iow, indicating that
the data bits buffer registeris full and unavailabie to
receive new data.

If the transmitter shift register is transmitting pre-
viously loaded data the TBMT signal remains low.
If the transmitter shift register isempty, or whenitis
through transmitting the previous character, the
datainthe buffer registerisloadedimmediatelyinto
the transmitter shift register and data transmission

commences. TSO goes low (the start bit), TEOC
goes low, the TBMT goes high indicating that the
data in the data bits buffer register has been loaded
into the transmitter shift register and that the data
bits buffer register is available to be ioaded with
new data.

If new datais loaded into the data bitsbufferregister
atthistime, TBMT goes lowandremainsinthisstate
until the present transmission is completed. One
full character time is available for loading the next
character with nolossin speed oftransmission. This
is an advantage of double buffering.

Data transmission proceeds in an orderly manner:
start bit, data bits, parity bit (if selected), and the
stop bit(s). When the last stop bit has been on the
line for one bit time TEOC goes high. If TBMT is
low, transmission begins immediately. If TBMT is
high the transmitter is completely at rest and, if
desired, new control bits may be loaded priortothe
next data transmission.

ODD/EVEN
PARITY SELECT

CONTROL \ s R TR
STROBE N - - i

TRANSMITTER BLOCK DIAGRAM

C©88 DB7 DB6 DB5 LJ44 DB3 CE2 CB1
P | ;

CATA STROBE

= TRANSMITTER
s FF BUFFER

v

EMPTY

16T ENERATAS
CLOCK_’i TIMING GENERATC

:

=5 P SERIAL
1253 TRANSMITTER SHIFT REGISTER - 2UThuT
OUTPUT
LOGIC

-—ﬁiPARITV BIT GENERATION LOGIC }——O

END OF
¥ CHARACTER

DESCRIPTION OF OPERATION —RECEIVER

At start-up the power is turned on, a clock whose
frequency is 16 imes the desired baudrateisapplied
and masterresetis puised. Thedataavailable (RDA)
signal is now low. Thereis one set of control bits for
both the receiver and transmitter.

Data reception begins when the serial input line
transitions from mark (high) to space (low). lf the
RSiline remains spacing forat/2 bittime,agenuine
start bit is verified. Should the line returntoa mark-
ing condition priortoa 1/2 bittime, the start bit veri-
fication process begins again. A mark to space
transition must occur in order to initiate start bit
verification. Once a start bit has been verified, data
reception proceeds in an orderly manner: start bit
verified and received, data bits received, parity bit
received (if selected) and the stop bit(s) received.
If the transmitted parity bit does not agree with the
received parity bit, the parity error flip-flop of the
status word buffer register is set high, indicating a
parity error. However, if the no parity mode is se-

lected, the parity error flip-flop is unconditionally
held low, inhibiting a parity error indication. If a
stop bitis not received, due to animproperly framed
character, the framing error flip-flop is set high,
indicating a framing error.

Once a full character has been received internal
logic looks at the data available (RDA) signal. If, at
this instant, the RDA signal is high the receiver
assumes that the previously received character has
not been read out and the over-run flip-flop is set
high. The only way the receiver is aware that data
has been read out is by having the data available
reset fow.

At this time the RDA output goes high indicating
that ali outputs are available to be examined. The
receiver shift register is now available to begin re-
ceiving the next character. Due to the double buf-
fered receiver, a full character time is available to
remove the received character.

DATA
ENABLE

RECEIVER BLOCK DIAGRAM

RD8 RD7 RDS RD5 RD4 RD3 RD2 RD1

11

111111

AND GATE

—,lli

I

FRAMING
ERROR

OVER RUN PARITY ERROR
TRANSMITTER

BUFFER EMPTY

DATA
AVAILABLE

STATUS
WORD
ENABLE

AND GATE

[

DATA BITS HOLDING REGISTER
BUFFER

STATUS WORD
HOLDING REGISTER

A RESET DATA
£ AVAILABLE
S

CONTROL T l T
BITS FROM
AEGISTER
Py v]
SERIAL START BIT PARITY BIT RiGHT RECEIVER SHIFT
INPUT _4 VER\F}CATIONH CHECKING LOGIC H JUSTIFY LOGIC [-—_j cp REGISTER
% | |
c:;o?:z TIMING GENERATOR
DESCRIPTION OF PIN FUNCTIONS
PIN NO. SYMBOL NAME FUNCTION
1 Vce Power Suzph ~5voit Supply
2 Voo PowerS.ccly -1z c'tSopoly
3 GND Ground Ground
4 RDE Received Data Alow-level input enables the outputs (RD8-RD1) of the
Enavie receiver buffer register.
5-12 RD8-RD1 Receiver Data These are the 8 tri-state data outputs enabled by RCE
Cutputs Unused data output lines, as selected by NDB* &~z N D282,
have a low-level output, and received characie s a-¢ r ght
justified, i.e. the LSB always appears on the RO° C.ipJt.
13 RPE Receiver Parity This tri-state output (enabled by S\WE
Error the received character parity bit coes =<
selected parity.
14 RFE Receiver Framing This tri-state output (enabled by S\WE1 :s 2t a high-level if
Error the received character has novalig sicp ot
18 ROR Receiver Over This tri-state output (enabled by SVWE} is at a high-level if
Run the previously received character is not read (RDA output
not reset) before the present character is transferred into
the receiver buffer register.
16 SWE Status Word A low-level input enables the outputs (RPE, RFE, ROR,
Enable RDA, and TBMT) of the status word buffer register.
17 RCP Receiver Clock This input is a clock whose frequency is 16 times (16X) the
desired receiver baud rate.
18 RDAR Receiver Data A low-level input resets the RDA outputto a low-level.
Available Reset
19 RDA Receiver Data This tri-state output (enabted by SWE) is at a high-level
Available when an entire character has been received and transferred
into the receiver buffer register.
20 RSI Receiver Serial This input accepts the serial bit input stream. A high-level
input (mark) to low-level (space) transition is required to initiate
data reception.
21 MR Master Reset This input should be pulsed to a high-level after power

turn-on. This sets TSO, TEOC, and TBMT to a high-level
and resets RDA, RPE, RFE and ROR to a low-ievei.

APPENDIX C 265

266 APPENDIX C

22 TBMT Transmitter This tri-state output (enabled by SWE) is at a high-level
Buffer Empty when the transmitter buffer register may be loaded with
new data.

23 TDS Transmitter A low-level input strobe enters the data bits into the

Data Strobe transmitter buffer register.
24 TEOC Transmitter End This outputappears as ahigh-leveleachtimeafullcharacter
of Character is transmitted. It remains at this level until the start of
transmission of the next character or for one-half of a TCP
period in the case of continuous transmission.

25 TSO Transmitter This output serially provides the entire transmitted

Serial Output character. TSO remains at a high-level when no data is
being transmitted.

26-33 TD1-TD8 Transmitter There are 8 data input lines (strobed by TPS) available.

Data Inputs Unused data input lines, as selected by NDB1 and NDB2,
may be in either logic state. The LSB should aiways be
placed on TD1.

34 CSs Control Strobe A high-level input enters the control bits (NDB* NDB2,
NSB, POE and NPB) into the control bits hoic n3 reg ster.
This line may be strobed or hard wired to a hign-igvel.

35 NPB No Parity Bit A high-level input eliminates the parity bit from e g
transmitted; the stop bit(s) immediately follow t~2 zstcata
bit. in addition, the receiver requires thestop £ s 1o follow
immediately after the last data bit. Also, the RPE c.:zutis
forced to a low-level. See pin 39, POE.

36 NSB Number of This input selects the number of stop bits. A low-level input

Stop Bits selects 1 stop bit; a high-level input selects 2 stop bits.
Selection of 2 stop bits when programming a 5 data £it word
generates 1.5 stop bits from the COM 2017 or COM 2017, H.
37-38 NDB2, Number of Data These 2 inputs are internally decoded to select either 5.6.7,
NDB1 Bits/Character or 8 cata bits/character as per the following truth table:
NOB2 NDB1 data bits/character
L L 5
L H 6
H L 7
H H 8
39 POE Odd/Even Parity The logic levet on this input, in conjunction with the NPB
Select input, determines the parity mode for both the receiverand
transmitter, as per the following truth table:
NPB POE MODE
L L odd parity
L H even parity
H X no parity
X =don'tcare
40 TCP Transmitter This input is a clock whose frequency is 16 times (16X) the

Clock

desired transmitter baud rate.

TRANSMITTER TIMING —8 BIT, PARITY,2 STOP BITS

l

T

—>

]

[

TRANSMITTER START-UP

= T— T AER

Upon data transmission initiation, or when nottransmitting at 100% line utilization, the start bitwitl be placed
on the TSQ line at the high to low transition of the TCP clock following the traiting edge of TDS.

RECEIVER TIMING —8 BIT, PARITY,2 STOP BITS

RSt l START:—DATALI ----- IDATA BIPARITV STOP1STOP2|START

Sawpce °" L I N I
RDA® e T —_H' le=—1/16 Bit time

1
RDA"* 1

“The RDA tine was previously not reset (ROR = high-level).
**The RDA line was previously reset (ROR = low-level).

START BIT DETECT/VERIFY

M Begin verly Z Begin verity
RSI s l I

If the RSI line remains spacing for a 1/2 bit time, a genuine start bit is verified. Should the line returnto a
marking condition prior to a 172 bit ime. the start bit verification process begins again

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range ...t ireiiiiiiiiieeeeietiniitnetsiesisnnonensseses 0°Cto+70°C
Storage Temperature Ranget iiit ittt ransterensressnieeneesinenesnens -55°C to +150°C
Lead Temperature (SOIdering, 10 SEC.) . vv vttt iiniii ittt aeraetraerennans +325°C
Positive VORAGe 0N any Piln, VeC o vuruitiiiiiiiiiiietnrssiiiiieeetoiiiniinrseestionvossnnns +0.3V
Negative Voltage On any Pin, VeC .o our ettt it ittt raaenns —25V

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or atany otherconditionabovethoseindicatedinthe operational
sections of this specification is not implied.

ELECTRICAL CHARACTERISTICS (Ta =0°C to 70°C, Vcc = +5V 5%, Voo =—12V £5%, uniess otherwise noted)

Parameter Min. Typ. Max. Unit Conditions

D.C. CHARACTERISTICS
INPUT VOLTAGE LEVELS

Low-level, ViL Voo 0.8 3
High-level, Vin Vee-1.5 Vce v
OUTPUT VOLTAGE LEVELS
Low-level, VoL 0.2 04 V loL=16mA
High-level, Vox 24 4.0 V loH=100uA
INPUT CURRENT
Low-level, liL 1.6 mA seenote4
OUTPUT CURRENT o
Leakage, ILo —1 HA SWE=RDE=VH,0=Vour<=-5V
Short circuit, los*” 10 mA Vout=0QV
INPUT CAPACITANCE
Allinputs, Cin 5 10 pf Vin=Vcec, f=1MHz
OUTPUT CAPACITANCE o
All outputs, Cout 10 20 pf SWE=RDE=ViH, f=1MHz
POWER SUPPLY CURRENT
lcc 28 mA All outputs = Von. All inputs = Vce
lop 28 mA
A.C. CHARACTERISTICS Ta=+25°C
CLOCK FREQUENCY
{COM2502, COM2017) DC 400 KHz RCP TCP
(COM2502H, COM2017H) bC 640 KHz RCP, TCP
PULSE WIDTH
Clock 1 us RCPTCP
Master reset 500 ns MR
Control strobe 200 ns CS
Transmitter data strobe 200 ns T1DS
Receiver data available reset 200 ns RDAR
INPUT SET-UP TIME
Data bits =0 ns TD1-TD8
Control bits =0 ns NPB,NSB, NDB2, NDB1, POE
INPUT HOLD TIME
Data bits =0 ns TD1-TD8
Control bits =0 ns NPB, NSB, NDB2, NDB1, POE
STROBE TO OUTPUT DELAY Load =20pf+1 TTL input
Receive data enable 350 ns RDE: Tro1, Troo
Status word enable 350 ns SWE: Tpo1, Troo
OUTPUT DISABLE DELAY 350 ns RDE,SWE

**Not more than one output should be shorted at a time.

NOTES: 1. If the transmitter isinactive (TEOC and TBMT are at a high-level) the start bit will appear on the TSO line within
one clock period (TCP) after the trailing edge of TDS.
2. The start bit (mark to space transition) will always be detected within one clock period of RCP, guaranteeing
a maximum start bit slippage of 1/16th of a bit time.
3. The tri-state output has 3 states: 1) lowimpedancetoVcc 2)lowimpedanceto GND 3)highimpedance OFF =
10M ohms. The “OFF” state is controlled by the SWE and RDE inputs.
4. Under steady state conditions no current flows for TTL or MOS interfacing. (COM 2502 or COM 2502/H)

APPENDIX C 267

268 APPENDIX C

DATA/CONTROL TIMING DIAGRAM

= ViH
TDS
ViL
[
TseT-uP
DATA INPUTS ://:r
tr=tf=20ns
TseT-up =0
THoLD =0

Tew* d
ﬂ THOLD
'

cs ViH Z—

Tew:
j THOLD

Viu
TseT-up ——
CONTROL INPUTS V™M
ViL
I

X
X

*Input information {(Data/Control) need only be valid during

the iast Tpw, min time of the input strobes (TDS, CS).

OUTPUT TIMING DIAGRAM

QUTPUTS -
(RD1-RD8, RDA,
RPE. ROR, RFE, TBMT)

Qutputs Disabled

NOTE: Waveform drawings not to scale for clarity.

A

RDA 300ns

\— VoL

le—— TPD1, TPDO

TDS

7VL ViH

TMBT
H— 400ns

FLOW CHART—TRANSMITTER FLOW CHART—RECEIVER

TURN POWER ON

PULSE EXTEANAL RESET
SELECT BAUD RATE —16 x CLK
SET CONTROL BITS

1 TURN POWEA ON
2 PULSE EXTERNAL RESET
3 SELECT BAUD RATE — 16 x CLK

i

TBMT =1
EOC =1
S0 = 1isTOP BITY

SET CONTROL BITS ~PULSE CS

Awna

THE LINE
TAANSITIONED
FROM MARKING TO
SFA(;ING

HAS
A START
BIY BEEN VERIFIED
3

LOAD START BIT INTO
RECEIVER SHIFT REGISTER

IS
TRANSMITTER
SHIFY REGISTER

EMPTY ¥
(EOC = 1}

HAS
1BIT TIME
ELACSED "
€151 Cux

1 LOAD TRANSMITTER SHIFT RE
—H 2 SO - C(START BIT,
3 EOC- 0

lVES
SHIFT AND LOAD DATA B ~ .\NTO
AECEIVER SHIFT REGISYER

NO
Of DATA B.75 BE
NARECE vEC

SET SaRITY
ERADR REGISTER
Toh

HAS

THE PROPER

PARITY BiT BEEN
EC@,IVED

ES [SET PARITY
ERRQR REGISTER
00

HAS
1 BIT TIME
ELAl:SED

SET FRAMING
ERRQA REGISTER
TO

l

SET OVER-AUN
REGISTER
™

[

TRANSFER DATA BI
TO DATA BITS HOLD:

QTANDARD MlCROSYSTEMS Circut diagrams utilizing SMC products are inchuded as a means of illustrating typical semiconductor applica-
P-4 ticns. corsecsently complete information sufficient for construction purposes 18 not necessarily given The
In‘ormation ras been carefully checked and is believed 10 be entirely reliable. However, no responsibility (s
S Maus B e assumeg for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor

B e e e devices descrited any license under the patent rights of SMC or others. SMC reserves the right to make changes
We keep ahead Of our COMpetition 50 You Can keep ahead of yours, &t any time in order to improve design and supply the best product possible.

APPENDIX C 269

Appendix C8

ETANDARD MICROSYSTEMS CRT 5027

CRT 5037

We KeeD anead Of LT COMETITON 500U can keep ahead of Yours. CRT 5057
JLPC FAMILY

CRT Video Timer and Controller
VTAC®

FEATURES PIN CONFIGURATION
[Fully Programmable Disptay Format 4
Characters per data row (1-200) A2 1 40 [At
Data rows per frame (1-64) A3l 2 390 A0
Raster scans per data row (1-16) esga % g Hp
R3O 4 37pH
T Programmable Mor:tor Sync Format R2d s 36 b H2
Raster Scans, Frame (256-1023) aNo O 6 35 H3
“Front Porch™ R1 Q7 34 [H4
Sync Width Re 4 8 33 0 H5
“Back Porch” DS Q9 320 HE
Interlace ‘“z~-'~terlace LLI/CSYN T 10 31 [H7/DRS
Vertical B'z-« -3 VSYN O 11 30 B DR4
O LockLline!rz.t CRT5057) cee g 12 29 1 DR3
O Direct Out CRT Monitor Voo g 13 28 pOR2
Horize Vee G 14 27 [1 DR1
HSYN O 15 26 P DR
CRv (J 16 25 11 DBg
BLO 17 24 D DOB1
D87 4 18 23 poB2
Dse g 19 22 hoB3
D8s [j 20 21 1 DB4

PACKAGE: 40-PinD.I.P.

{3 Split-Screen Applications
:zandard CRT Monitor Compatible Horizontal

 Refre 2=z, 50Hz,... Vertical

O Scroil g O Intertace or Non-Interlace ¢cperation
Singe. "¢ O TTL Compatibility
Multi-L ~e O BUS Oriented

O CursorPcs @ om S22 sters [0 High Speed Operation

5 Character ~z T7x8.... [0 COPLAMOS?® N-Channel Silicon

O Programmaz ZataPositioning " GateTechnology

" Balanced Bez 2nt.nterlace (CRT 5037) O Compatible with CRT 8002 VDAC™

[GraphicsComgzaic e [0 Compatible with CRT 7004

GENERAL DESCRIPTION
The CRT Video Timera~c Ccro er Chip (VTAC)® is a user programmable 40-pin COPLAMOS® nchannel MOS/LSI

device containing the log ¢ ‘.~
interlaced and non-intertacec .

ars required to generate all the timing signals for the presentation and formatting of
<ata on astandard or non-standard CRT monitor.

With the exception of the cC ter. which may be clocked at a video frequency above 25 MHz and theretore not
recommended for MOS imp ¢ - on. allframe formatting, such as horizontal, vertical, and composite sync, characters
per data row, datarows per frame. anc raster scans per datarow and per framearetotally user programmable. The datarow
counter has been designed to fac 1ate scroliing.

Programming is effected by :cac ng seven 8 bitcontrolregistersdirectly offan8bitbidirectionaldatabus. Fourregister
address lines and achip selectline 073y Ce compiete microprocessor compatibility for program controlled setup. The cevice
can be “self loaded" viaanexterna' ”°ROMtied onthe databusasdescribed inthe OPERATION section. Formatting canalso
be programmed by a single mask option.

In addition to the seven control registers two additional registers are provided to store the cursor character and data
row addresses for generation of the cursor video signal. The contents of these two registers can also be read out onto the
bus for update by the program.

Three versions of the VTAC® are available. The CRT 5027 provides non-interlaced operation with an even or odd
number of scan lines per data row, or interlaced operation with an even number of scan lines perdatarow. The CRT 5037
may be programmed foran odd or even number of scan lines per data row in both interlaced and non-interlaced modes.
Programming the CRT 5037 for an odd number of scan lines per data row eliminates character distortion caused by the
uneven beam current normally associated with odd field/even field interlacing of alphanumeric displays.

The CRT 5057 provides the ability to lock a CRT's vertical refresh rate, as controlled by the VTAC's® vertical sync
pulse, to the 50 Hz or 60 Hz line frequency thereby eliminating the so called “swim” phenomenon. This is particularly
well suited for European system requirements. The line frequency waveform, processed to conform to the VTAC's®
specified logic levels, is applied to the line lock input. The VTAC® wili inhibit generation of vertical sync until a zero to
one transition on this input is detected. The vertical sync pulse is then initiated within one scan line after this transition
rises above the logic threshoid of the VTAC.®

To provide the pin required for the line lock input, the composite sync output is not provided in the CRT 5057.

*FOR FUTURE RELEASE

Reprinted by permission of SMC Microsystems Corporation Copyright © 1980

APPENDIX C 271

Description of Pin Functions

Input/
PinNo. Symbol Name Output Function
25-18 DB@-7 DataBus /0 Data bus. Input bus for control words from microprocessor of
PROM. Bidirectional bus for cursor address.
3 CS Chip Select] Signals chip that it is being addressed
39,40,1,2 Ag-3 Register 1 Register address bits for selecting one of seven control
. Address registers of either of the cursor address registers
9 0s Data Strobe | Strobes DB@-7 into the appropriate register or outputs the
cursor character address or cursor line address onto the data bus
12 DCC DOT Counter I Carry from off chip dot counter establishing basic character
Carry clock rate. Character clock.
38-32 Hg-6 Character O Character counter outputs.
Counter Outputs
7,.5,4 R13 Scan Counter O Three most significant bits of the Scan Counter; row select
Outputs inputs to character generator.
31 H7/DR5 H7/DRS O Pindefinition is user programmable. Output is MSB of
Character Counter if horizontal line count (REG.@) is =128;
otherwise output is MSB of Data Row Counter.
8 R Scan Counter LSB [e] Least significant bit of the scan counter. In the inter-
laced mode with an even number of scans per data row,
R@ will toggle at the field rate; for an odd number of
scans per data row in the interlaced mode, Rg will toggle
at the data row rate.
26-30 DR@g-4 DataRow O DataRow counter outputs.
Counter Qutputs
17 BL B ank O Defines non active portion of Horizental and vert.cal scans.
15 HSYN Horzontal Syne (0] Initiates horizontal retrace.
11 VSYN Vertca! Sync o] Initiates vertical retrace.
10 CSYN/ Comz2:steSyncOutput/ O/l Composite sync is provided on the CRT 5027 and CRT 5037.
LLi Line Lok Input This output is active in non-in‘eriaced mode only. Provides a true
RS-170 composite sync wave form. For the CRT 5057, this pinis
the Line Lock Input. The tine requency waveform, processed to
conform to the VTAC's® speci‘ed logic levels, is applied to this pin.
16 CRV Cursor Video O Defines cursorlocatonin cata “eid.
14 Vee Power Supply PS +5volt Power Supply
13 Voo Power Supply PS +12voit Power Supply
\ DATABUB OB ST 25-18
= S S
e N] Q] RS RS

ZXHENC
L1 { cmacn
7Y g =
Edmvm‘__“
= 0 . 10,1 commonrre
e D = bl
COUNTER WTEROED)
e
ONTONTAL
sy
1 DR 84
e

J

-M___{ muﬂ':{ usmmm_] Iz\m}_“
T s

DATA SUB 0B 97

e amre
29.40.1,2 f-----:
A% ADORERS | SCROU,
DECOUE | mpmert
oo amac |3 [e
£l .
BN 2EF LN 4 113 L]
+5v +12v oNO

272 APPENDIX C

BLOCK DIAGRAM

Operation

The design philosophy employed was to allow the device to interface effectively with either a microprocessor based or
hardwire logic system. The device is programmed by the user in one of two ways; via the processor data bus as part of the
system initialization routine, or during power up via a PROM tied on the data bus and addressed directly by the Row Select
outputs of the chip. (See figure 4). Seven 8 bit words are required to fully program the chip. Bit assignments for these words
are shown in Table 1. The information contained in these seven words consists of the following:

Horizontal Formatting:
Characters/Data Row A 3 bit code providing 8 mask programmable character lengths from 20 to 132.
The standard device will be masked for the following character lengths: 20, 32,
40, 64,72, 80, 96, and 132.

Horizontal Sync Delay 3 bits assigned providing up to 8 character times for generation of “front porch™.

Horizontal Sync Width 4 bits assigned providing up to 15 character times for generation of horizontal
sync width.

Horizontal Line Count 8 bits assigned providing up to 256 character times for total horizontal formatting.

Skew Bits A 2 bit code providing from a 0to 2 character skew (delay) between the

horizontal address counter and the blank and sync (horizontal .vertical,composite)
signals to altow for retiming of video data prior to generation of composite video
signal. The Cursor Video signal is also skewed as a function of this code.

Vertical Formatting:
interlaced/Non-interlaced This bit provides for data presentation with odd’even fie'd formatting for inter-
laced systems. It modifies the vertical timing counters as cescribed below.
A logic 1 establishes the interiace mode.

Scans/Frame 8 bits assigned, defined according to the following equations: Let X = value of 8
assigned bits.
1) in interlaced mode—scans/frame = 2X + 513. Therefore for 525 scans,
program X = 6 (00000110). Vertical sync will occur precisely every 262.5 scans,
thereby producing two interlaced fields.
Range = 51310 1023 scans/frame, odd counts only.
2) in non-interlaced mode—scansiframe = 2X + 256. Therefore for 262 scans,
pregram X = 3 (00000011).
Rarge = 256 to 766 scans/frame, even counts only.
in either mode, vertical sync width is fixed at three horizontal scans (= 3H}

Ve~ :zz Zziz e 8 oits defining the number of raster scans from the leading ecze <* vertical

sy~c until the start of display data. At this raster scan the datarcs czunteris

se* 10 the data row address at the top of the page.

Data Rows =ra~e € =!s assigned providing up to 64 data rows per frame.

Last Data Row € =s to allow up or down scrolling via a preload defining the ccu=t cf the last
c st ayed data row.

Scans/Data Row 4 ¢ ts assigned providing up to 16 scan lines per data row

Additional Features

Device Initialization:

Under microprocessor control—The device can be reset under system or program control by presenting a1 @1¢ address
on A34. The device will remain reset at the top of the even field page until a start command is executed by presentinga1118
address on A3-@.

Via “Self Loading"—In a non-processor environment, the self loading sequence is effected by presenting and holding the
1111 address on A3-@, and is initiated by the receipt of the strobe pulse (DS). The 1111 address should be maintained long
enough to insure that all seven registers have been loaded (in most applications under one millisecond). The timing
sequence will begin one line scan after the 1111 address is removed. In processor based systems, self loading is initiated by
presenting the @111 address to the device. Self loading is terminated by presenting the start command to the device which
also initiates the timing chain.

Scrolling—In addition to the Register & storage of the last displayed data row a “scrolf” command (address 1¢11)
presented to the device will increment the first displayed data row count to facilitate up scrolling in certain applications.

APPENDIX C 273

Skew Bits

Scans/Frame

Vertical Data Start:

Data Rows/Frame:
Last Data Row:

Mode:
Scans/Data Row:

Horizontal Line Count:
Characters/Data Row:

Horizontal Sync Delay:
Horizontal Sync Width:

Control Registers Programming Chart

Total Characters/Line=N+1,N=0t0 255 (DB0=LSB)
DB2 DBt DBO

0 (] 0 = 20 Active Characters/Data Row
0 0 1 = 32

0 1 0 =40

0o 1 1 = 64

1 0 0 =72

1 0 1 = 80

1 1 0 = 96

1 1 1 = 132

=N, from 1 to 7 charactertimes (DBO=LSB) (N =0 Disallowed)
=N, from 1to 15 character times (DB3=LSB) (N=0 Disallowed)
Sync/Blank Delay Cursor Delay

DB7 DB8 (Character Times)
0 0 0 0
1 0 1 0
0o 1 2 1
1 1 2 2

8 bits assigned, defined according to the following equations:
Let X = value of 8 assigned bits. (DB0=LSB)
1)ininterlaced mode—scans/frame = 2X + 513. Therefore for 525 scans,
program X = 6 (00000110). Vertical sync will occur precisely every 262.5
scans, thereby producing two interlaced fields.
Range = 513to 1023 scans/frame, odd counts only.
2)in non-interlaced mode—scans/frame = 2X + 256. Therefore for 262
scans, program X = 3(00000011).
Range = 256 to 766 scans/frame, even counts only.
in either mode, vertical sync width is fixed at three horizontal scans (=3H).
N = number of raster lines delay after leading edge of vertical sync of
vertical start position. (DBO=LSB)
Number of data rows = N+ 1, N=0to 63 (DBO=LSB)
N = Address of last dsplayed datarow, N = 0to 63, ie; for 24 data rows,
program N=23. (DB0=LSB)
Register, 1, DB7=1 establishes Interlace.

Interlace Mode
CRT 5027: Scans per Data Row = N+ 1 where N = programmed number of
catarcws N = 0to15. Scans per data row must be even counts only.

cconis.
Non-Interlace Mode

CRT 5227 . CRT5037. CRT 5057: Scans per DataRow = N + 1, odd or
evenccunt. N = (1015,

u
> EEEail]
088 g A e cS
- —K
o< M) SMC
<t £ CRTS(%)Z;,TCS%E?OST
r
g O NTACS
<t b
< —b
087 P2 > Ro R: Re Ry
Figure 4.
A SELF LOADING SCHEME
JBxsPROM A FORVTAC® SET-UP
OR EQUIVALENT HA;
STORD s HA
{from system) WA fam 05
ROW SELECTS
TO CHARACTER GENERATOR

274 APPENDIX C

Register Seiects/Command Codes

A3 A2 A1 AQ Select/Command Description
0 0 00 Load Control Register @
0 0 0 1 Load Control Register 1
0 0 1 0 Load Control Register 2
o 0o t 1 Load Control Register 3 See Table 1
0 1 0 O Load Control Register 4
01 0 1 Load Control Register 5
01 1 0 Load Control Register 6
o 1 1 1 Processor Initiated Self Load Command from processor instructing
VTACE to enter Self Load Mode (via ex-
ternal PROM)
1 0 0 O Read Cursor Line Address
1 0 0 1 Read Cursor Character Address
10 t 0 Reset Resets timing chain to top left of page. Reset

is latched on chip by DS and counters are
held until released by start command.

1 0 1 1 Up Scroll Increments address of first displayed data
row on page. ie; prior to receipt of scroll
command—top line = 0, bottom line = 23.
After receipt of Scroll Command—top line =
1, bottomiine = 0.

11 0 0 Load Cursor Character Address*
1 1 0 1 Load Cursor Line Address®
11 1 0 Start Timing Chain Receipt of this command after a Reset or

Processor Self Load command will release
the timing chain approximately one scan line
later. In applications requiring synchronous
operation of more than one CRT 5027 the
dot counter carry should be held tow during
the DS for this command.

t 1 1 1 Non-Processor Self Load Device will begin self load via PROM
when DS goes low. The 1111 ccmmand
should be maintained on A3-3 ong
enough to guarantee self locac. (Scan
ccunter should cycle througn at least
once). Self load is automaticz 'y termi-

nated and timing chaininitietez w*
all “1's"_condition is removec. indepen-
dent of DS. For synchroro.s operation
of more than one VTACE. t~e Dot Counter

Carry should be held low when the com-

mand is removed.

*NOTE: During Self-Lcz2. t~e C.rsor Character Address Register (REG 7) and the Cursor Row AZZress

Register (REG & 272
Therefore, Curscr cz:a .n tne PROM should be stored at these addresses.

e =~ac ed during states @111 and 1000 of the R3-RP Scan Coun:er outputs respectively.

TABLE1

BIT ASSIGNMENT CHART

HORIZONTAL LINE COUNT SKEWBITS DATA ROWS/FRAME LAST DISPLAYED DATA ROW

) aE— . —1 !—I—! I—%_‘ l—'—!_.

rece[7] [[[[[o] reos[7[6]s] [[[[o] mees[] [s] [][[o]

MODE INTERLACED! HSYNGC WIDTH H SYNC DELAY SCAN LINES/FRAME CURSOR CHARACTER ADDRESS

NONINTERLACED gt o — 1 — r) iy

resi[7]6] [[32] @) mees{7[[[[[[Tofmeer[Z] [T[] [0

SCANS/DATA ROW CHARACTERS/DATA ROW VERTICAL DATA START CURSOR ROW ADDRESS
—t— foe L \

reoe[[6] [[a]o] [@]meos[7[[[T [[[o] mece T[] 17T]e]

APPENDIX C 275

276 APPENDIX C

AC TIMING DIAGRAMS

FIGURE 1 VIDEO TIMING l"l ‘__ ——{I v

|
oot COUNTER\ VV \
CARRY _

HE-7

H SYNC.V SYNC. BLANK,
CURSOR VIDEO
COMPOSITE SYNC

FIGURE 2 LOAD/READ TIMING

! Tseroe

e #

rea— ToeL 2

ggw?/////////////f//// A

___/

ot PV BT et leag— ToEC 4

FIGURE 3 SCANANZ 2472 RC 4 COUNTER TIMING

) [
DRg-S e e — — -
———c 3"
*R@-3 and DR@-5 may cha~zez- 2 tot~e‘a ~zedgectHsync
CAT 5057 LINE LOCK
L'NELOCK N
& =2 50 HZ) N N\
70\
C:;!r! OGS
A @ 1/F LINE LOCK

|1IF LINE LOCK :1H—-=
f
VERTICAL SYNC m L
OUT

1 SAMPLES LINE
T—m\!

vone N1 _nn_n-
|
LINE [)
LOCK
N LOGIC
THRESHOLD b
VERTICAL
SYNC

PﬂOGﬁM:SCAWmAMETO&OﬁEATETHAN—-’———
fLee Lock wn X H

MAXIMUM GUARANTEED RATINGS*

Operating Temperature RANGEttt et e e e e 0°Cto + 70°C
Storage Temperature RaNGEot ittt -55°Cto +150°C
Lead Temperature (SOldering, 10 SEC) . ..ot vr et e e e e +325°

Positive Voltage on any Pin, with respectto ground oo +18.0V
Negative Voltage on any Pin, with respectto groundt unin o -0.3V

“Stresses above those listed may cause permanent damage to the device. This is a stress rating only and
functionat operation of the device at these or at any other condition above those indicated in the operational
sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that
the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies
exhibit voitage spikes or “glitches’ on their outputs when the AC power is switched on and off.

In addition, voltage transients on the AC power line may appear on the DC output. For example, the
bench power supply programmed to deliver +12 volts may have large voltage transients when the
AC power is switched on and off. If this possibility exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS (Ta=0°C to 70°C, Vcc= + 5V 5%, Voo= - 12V =5%, unless otherwise noted)

Parameter Min. Typ. Max. Unit Comments
D.C. CHARACTERISTICS
INPUT VOLTAGE LEVELS
Low Level, Vi 0.8 \
High Level, Vin Vee-1.5 Vee v
OUTPUT VOLTAGE LEVELS
Low Level—Vou for RZ-3 0.4 V lot=3.2ma
Low Level—Vod all others 04 V lou=1.6ma
High Level—Vor for R@-3, DB@-7 2.4 low=80una
High Level—Vor all others 2.4 lor=40ua
INPUT CURRENT
Low Level, liL (Address, CS only) 250 wA V=04V
Leakage, i (All Inputs except Address, CS) 10 pA OsViNsVee
INPUT CAPACITANCE
Data Bus, Cin 10 15 pF
DS, Clock, Cin 25 40 pF
Al other, Cin 10 15 pF
DATA BUS LEAKAGE in INPUT MODE
los 10 pA 04V=V, =525V
POWER SUPPLY CURRENT
lec 80 100 mA
loo 40 70 mA
A.C.CHARACTERISTICS Ta= 25C
DOT COUNTER CARRY
frequency 0.2 4.0 MHz
PWH 35 ns
PWL 215 ns
tr. tf 10 50 ns
DATA STROBE
PWos 150ns 10us Figure2
ADDRESS, CHIP SELECT
Set-up time 125 ns Figure 2
Hold time 50 ns Figure 2
DATA BUS—LOADING
Set-up time 125 rs Figure 2
Hold time 75 ns Figure 2
DATA BUS—READING
Toer2 125 ns Figure 2, CL=50pF
ToeL4 5 60 ns Figure 2, CL=50pF
QUTPUTS: Hg-7.HS. VS, BL, CRV,
CS-Toeu 125 ns Figure 1, CL=20pF
. R@-3. DRE-5
OL%I,EPL?TS‘ ¥ * 500 ns Figure 3, CL=20pF

*R@-3 and DRP-5 may change prior to the falling edge of H sync

Restrictions

1. Only one pin is avaflable for strobing data into the device via the data bus. The cursor X and Y coordinates are therefore
loaded into the chip by presenting one set of addresses and outputed by presenting a different set of addresses. Thergfore
the standard WRITE and READ control signals from most microprocessors must be "NORed" externally to present a single

strobe (OS5) signal to the device.

2. Ininterlaced mode the total number of character slots assigned to the horizontal scan must be even toinsure that vertical

sync occurs precisely between horizontal sync pulses.

APPENDIX C 277

278 APPENDIX C

General Timing

HORIZONTAL TIMING
————— _STARTOF LINEN START OF LINE N+ 1

M V7777777 777777777771 T 1 77

. ACTIVE VIDEO=
CHARACTERS PER DATALINE

HORIZONTAL SYNC DELAY
{FRONT PORCH)

HORIZONTAL SYNC WIDTH

| ———— HORIZONTAL LINE COUNT=H ——————————*%]

VERTICAL TIMING
START OF FRAME M OR ODD FIELD START OF FRAME M+1 OR EVENFIELD
-]

'——————SCANLINESPERFRAME -
[V77 777777777774 11 7z
i _—

ACTIVE VIDEO=
DATA ROWS PER FRAME

L
foe
VERTICAL DATA_, VERTICAL SYNC
START =34

Composite Sync Timing

VOM5
COMPOSITE
SYNC
Vou

FRAME M+ 1 coe

0
N fVER"CAL OATA START SCAN = REGS

P R S R N B R A NS N NI U RS S A DN AR

VERTICAL —
SYNC - U

Srawi I ATl In nwac -2 2ter f33 €07 =1 240a13:0ws 105cans/datatow

Start-up, CRT 5027

When employing microprocessar cc=trc ed icac.ng of the CRT 5027's registers, the fo 'owing se-
quence of instructions is necessary:

ADDRESS COMMAND
1 1 1 0 Start Timing Chain
1 0 1 0 Reset
0 0 0 O Load Register 0
o 1 1 0 Load Register 6
1 1 1 0 Start Timing Chain
The secuence of START RESET LOAD START is necessary to insure proper initialization of the

registers.
This sequence is not required if register loading is via either of the Self Load modes. This sequence
is optional with the CRT 5037 or CRT 5057.

STANMRD MI@OSYSTEMS Circuit diagrams utilizing SMC products are included as a means of itlustrating typical semiconductor applica-
tions. consequently complate information sufficient for construction purposes is not necessarily given. The
information has been carefully checked and is believed to be entirely reliable. However, no responsibility is

6 s B0 assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor
B e we devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes

W ney

We leep ahead Of Qur CMPEOITin S0 YOu Can leeep ahead of yours. at any time in order to improve design and supply the best product possible.

Appendix C9

STANDARD MICROSYSTEMS

{5161273-3100 TWX-50-227-8898

We keep ahead of our competition so you can keep ahead of yours.

CRT 8002

M PC FAMILY

CRT Video Display Attributes Controller
Video Generator
VDAC™

FEATURES PIN CONFIGURATION
[0 On chip character generator (mask programmable) viDEO 13 hd 7 28 RETBL
128 Characters (alphanumeric and graphic) LD/SH 2)27 CURSCOR
7x 11 Dot matrix block vDe 3] 26 Msg
0 On chip video shift register AG 4]] 25 MSt
Maximum shift register frequency At s) 24 BLINK
CRT 8002A 20! Hz
CRT8002B 15''Hz A2 8 123 V SYNC
CRT 8002C 10iiHz A3 70 [22 cHABL
Access time 4(lns A4 8 [21 REVID
O Onchip horizontal anc vertical retrace video blanking A5 9] [20 UNDLN
O Nodescender circuitry recuired A6 10 [19 STKRU
O Four modes of operaticn “i~termixzble) A7 110] 18 ATTBE
Internal character gengraior (ROM) Vee 120 17 GO
Wide granhics R2 13 O3 M 16 R
Thin graphics
Externalinputs (fons cdcigrachics) R3 14 15 R1

[0 On chip attribute logic—cnarac:er, field
Reverse video
Character blank
Character blink
Underline
Strike-thru
O Four on chip cursor modes
Underline
Blinking underline
Reverse video
Blinking reverse video
O Programmable character blink rate
[0 Programmable cursor blink rate

[0 Subscriptable

[J Expandable character set
External fonts
Alphanumeric and graphic
RAM, ROM, and PROM

0 On chip address buffer

O On chip attribute buffer

O +5volt operation

O TTL compatible

[MOS N-channel silicon-gate COPLAMOS® process
[0 CLASP® technology—ROM and options

O Compatible with CRT 5027 VTAC®

General Description

The SMC CRT 8002 Video Display AttribLtes Ccntroller
(VDAC) is an N-channel COPLAMOSE MOS LS device
which utilizes CLASP® technology. It co~tains a
7X11X128 character generator ROM. a w-ce g-aphics
mode, a thin graphics mode, an external imput mode,
character address/data latch, field and cr character
attribute logic, attribute latch, four cursor modes. two
programmable blink rates, and a high speed video
shift register. The CRT 8002 VDAC™ is a companion
chip to SMC's CRT 5027 VTAC. Together these two
chips comprise the circuitry required for the display
portion of a CRT video terminal.

The CRT 8002 video output may be connected directly
to a CRT monitor video input. The CRT 5027 blanking
output can be connected directly to the CRT 8002
retrace blank input to provide both horizontal and
vertical retrace blanking of the video output.

Four cursor modes are available on the CRT 8002.
They are: underline, blinking underling, reverse video
block, and blinking reverse video block. Any one of
these can be mask programmed as the cursor func-
tion. There is a separate cursor blink rate which can
be; mask programmed to provide a 15Hz to 1Hz blink
rate.

The CRT 8002 attributes include: reverse video, char-
acter blank, blink, under''ne, and strike-thru. The
character blink rate is masx programmable from 7.5Hz
to 0.5Hz and has a duty cycle of 75/25. The underline
and strike-thru are similar but independently con-
trolled functions and can be mask programmed to any
number of raster lines at any position in the character
block. These attributes are available in all modes.

In the wide graphic mode the CRT 8002 produces a
graphic entity the size of the character block. The
graphic entity contains 8 parts, each of which is asso-
ciated with one bit of a graphic byte. thereby provid-
ing for 256 unique graphic symbols. Thus, the CRT
8002 can produce either an alphanumeric symbol or
a graphic entity depending on the mode selected.
The mode can be changed on a per character basis.

The thin graphic mode enables the user to create sin-
gle line drawings and forms.

The external mode enables the user to extend the on-
chip ROM character set and/or the on-chip graphics
capabilities by inserting external symbols. These ex-
Eaéréa,\lﬂsymbols can come.from either RAM, ROM or

Reprinted by permission of SMC Microsystems Corporation Copyright © 1980

APPENDIX C 279

280 APPENDIX C

MAXIMUM GUARANTEED RATINGS*

Operating Temperature Range
Storage Temperature Range

Lead Temperature (SOIdering, 10 SEC.) ... it r ittt e +325°C

Positive Voltage on any Pin, with respect to ground
Negative Voltage on any Pin, with respect to ground

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and

functional operation of the device at these or at any other condition above those indicated in the operational

sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that
the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies
exhibit voltage spikes or “‘glitches' on their outputs when the AC power is switched on and off.

In addition, voltage transients on the AC power line may appear on the DC output. If this possibility
exists it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS (Ta=0°C 10 70°C

, Vco= + 5V £5%, unless otherwise noted)

+8.0V

Parameter Min. | Typ. | Max. | Unit Comments
D.C. CHARACTER!STICS
INPUT VOLTAGE LEVELS
Low-level, V,_ 0.8 \' excluding VDC
High-level, V.4 20 v excluding VDC
INPUT VOLTAGE LEVELS-CLOCK
Low-level, Vy_ 0.8 '
High-level, Viy 4.3 ' SeeFigure 8
QUTPUT VOLTAGE LEVELS
Low-level, Vg 0.4 V l..=0.4 mA 74LSXX load
High-level, Vou 24 Voo .= -200A
INPUT CURRENT i
Leakage, I, (Except CLCCK) 10 uA 0<VinEVee
Leakage, I, (CLOCK Oniy) 50 MA 0SViNEVee
IN2UT CAPACITANCE
zta 10 pF @ 1MHz
L2 'SH 20 pF @ 1MHz
C_OCK _ P25 pF | @ 1MHz
FC.'ZR SUPPLY CURRENT ? ‘
[100 mA
A.C. CHARACTERISTICS
Sec Figure 6,7
CRT 8002A CRT 8002B CRT 8002C
SYMBOL PARAMETER UNITS
MIN. MAX. MIN. MAX. MIN. MAX.
vDC Video Dot Clock Frequency 1.0 20 1.0 15 1.0 10 MHz
PWy VDC—High Time 15.0 23 40 ns
PW, VDC—Low Time 15.0 23 40 ns
tey LD/SH cycle time 400 533 800 ns
to b Rise, fall time 10 10 10 ns
tser.ue Input set-up time =0 =0 =0 ns
thoto Input hold time 15 15 15 ns
teor, tepo Output propagation delay 15 50 15 65 15 100 ns
t, LD/SH set-up time 10 15 20 ns
t, LD/SH hold time 15 15 15 ns

ROW ADDRESS
RP-R3

STRIKE-THRU
SELECT TINE
DECODER
UNDERLINE GRAPHIC
ADDRESS/DATA o Ag — SELECT LOGIC
INPUTS A7 /| ADDRESS/ |
DATA
CURSOR LATCH
[7x11x128
RETRACE BLANK ————a] Vo DECODER) ROM
ATTRIBUTE ENABLE —1 | l
1 I
MODE SELECT S —e=i LOGIC P
MCDE SELECT 1 —e] o 22
RZVERSE VIDEO -J
CHARACTER BLANK-=]
UNDERLINE ———e ATJ:T‘%‘;;’E [Tosc ATTRIBUTE
LOGIC
BLINK ——————— LOGIC
= P
STRIKE THRU ——={ LOGIC
=T L.
AB A7
o SHIFT
VIDEO DOT CLOCK cp REGISTER Ql—eviDEO
LOAD/SHIFT SRE g8IT SR7

LOGIC

CURSOR RATE

CHARACTER RATE

vDC

Lo/SH

ALL INPUTS

VIDEO
OUTPUT

FIGURE 7
AC TIMING DIAGRAM

>

tser.or

4.3V

0.8v

2.0V

2.0V

o8y

2.0v

0.4V

APPENDIX C 281

282 APPENDIX C

DESCRIPTION OF PIN FUNCTIONS

PIN NO.

SYMBOL

NAME

INPUT/
OUTPUT

FUNCTION

VIDEO

Video Qutput

0

The video output contains the dot stream for the selected row of the alpha-
numeric, wide graphic, thin graphic, or external character after processing by
the attribute logic, and the retrace biank and cursor inputs.

In the alphanumeric mode, the characters are ROM programmed into the
77 dots, (7X11) allocated for each of the 128 characters. See figure 5. The top
row (Rﬁ) and rows R12 to R15 are normally all zeros as is column C7. Thus, the
character is defined in the box bounded by R1 to R11 and C@ to C6. When a row
of the ROM, via the attribute logic, is parailel loaded into the 8-bit shift-register,
the first bit serially shifted out is C7 (A zero; or a one in REVID). it is foilowed
by C8, C5, through Cg.

The timing of the Load/Shift pulse will determine the number of additional
{— —, zero to N) backfill zeros (or ones if in REVID) shitted out. See figure 4.
When the next Load/Shift pulse appears the next character's row of the ROM,
via the attribute logic, is parallel loaded into the shift register and the cycle
repeats.

LD/SH

Load/3hift

The 8 bit shift-register parallel-in load or serial-out shift mcdes are established
by the Load/SHﬁt input, When low, this input enables tne sh‘t register for
serial shifting with each Video Dot Clock pulse. When high, the shift register
paralle! (broadside) data inputs are enabled and synchronous icad:ng occurs
on the next Video Dot Clock pulse. During parallel lcading, ser 2l cata flow
lis inhibited. The Address/Data inputs (A@-A7) are latched on the negative
srans'tion of the Load/Shift input. See timing diagram, figure 7.

vDC

Video Dot Clock

Frecuency at which video is shifted.

PR

Ag-A7

Address/Data

. In t~e Alphanumeric Mode the 7 bits on inputs (Af-AB) are interna’'y decsced
{to edcress one of the 128 available characters (A7=X). In the Exierral Mcce,
;AC-M iused to insert an 8 bit word from a user defined external ROM, PROM
lor RAY :n'o the on-chip Attribute logic. In the wide Graphic Modes AB-A7 is
lused 1o cefine one of 256 graphic entities. In the thin Graphic Mode Ag-A2 is
lusez ¢35 cefine the 3 line segments,

12

Power Supply

! =542 tcowersupply

13,14,15,16

Fow Address

T-esz 2 bnary inputs define the row address in the current character block.

17

Greurnd

18

Ain.oute Enable

= level on this input enables data from the Reverse Video, Character
derline, Strike-Thru, Biink, Mode Select §, and Mode Select 1 inputs
cr2d into the on-chip attribute latch at the negative transition of
5= * pulse. The latch loading is disabled when this input is low,
attributes will remain fixed until this input becomes high again.
attribute latching on a character by character basis, tie ATTBE
~g diagram, figure 7.

j o

19

STKRU

~zutis high and RETBL =0, the parz ‘e inc.'s to the shift register
~igh (SR@-SR7), providing a solid i~e ~ert throughout the
sck. The operation of strike-thru is 2 d oy Reverse Video
=% In addition, an on-chip ROM preograr~ B
:~e line count on which strike-thru is to te ¢
strike-thru to be 1 to N raster lines high. Ac
sk programmable) logic allows the strike-inu ¢
ent of horizontal lines in the character block. Th

©

1

UNDLN

Underiine

2 double line on rows R5 and R6.

r.gh (SRZ-SR7), providing a solid line segment througacut e
‘ock. The operation of underline is medified by Reverse V ced
). In addition, an on-chip ROM programmable decoder is ava z2-'e
e the line count on which underline is to be placed as weil as to
& underline to be 1 to N raster lines high. Actually, the uncer''~e
‘mask programmable) logic allows the underline to be any number
~ent of horizontal lines in the character block. The standard undger-
iceasinglelineon R11.

SNSRI

21

n
m
o

Reverse Video

=5 nputislow and RETBL =0, data into the Attribute Logic is presented
vy 1o the shift register paraliel inputs. When reverse video is high data
~e Att-ibute Logic is inverted and then presented to the shift register
e npu's. This operation reverses the data and field video. See table 1,

RSN

22

ChHABL

Character Blank

g7 tnis input is high, the parallel inputs to the shift register are ali set low,
v 2 ~g a blank character line segment. Character blank will override blink,
cceration of Character Blank is modified by the Reverse Video input.

eelace .

n 4D |0
D T
D ©

23

V SYNC

V SYNC

This input is used as the clock input for the two on-chip mask programmable
blink rate dividers. The cursor blink rate (50/50 duty cycle) will be twice the
character blink rate (75/25 duty cycle). The divisors can be programmed from
=+ 4to =+ 30 for the cursor (= 8to - 60 for the character).

24

BLINK

Biink

When this input is high and RETBL=0 and CHABL =0, the character will blink
at the programmed character blink rate. Blinking is accomplished by blanking
the character block with the internal Character Blink clock. The standard
character blink rate is 1.875Hz.

25
26

MSt
MSg

Mode Select 1
Mode Select @

MS1

MS0 MODE

(=N =

O = O

Alphanumeric
Thin Graphics
External Mode
Wide Graphics

These 2 inputs define the four modes of operation of the CRT 8002 as follows:
Alphanumeric Mode — In this mode addresses A@-AB (A7=X) are_in-
ternally decoded to address 1 of the 128 available ROM characters, The
addressed character along with the decoded row will define a 7 bit output
from the ROM to be loaded into the shift register via the attribute logic.
Thin Graphics Mode — In this mode A@-A2 (A3-A7=X) will be loaded
into the thin graphic logic along with the row addresses. This logic will
define the segments of a graphic entity as defined in figure 2. The top of
the entity will begin on row 0000 and will end on a mask programmable row.

DESCRIPTION OF PIN FUNCTIONS

PIN NO.

SYMBOL

NAME

INPUT/
OUTPUT

FUNCTION

25

(cont.)

External Mode — In this mode the inputs A@-A7 go directly from the
character latch into the shift register via the attribute logic. Thus the user
may define external character fonts or graphic entities in an external
PROM. ROM or RAM. See figure 3.

Wide Graphics Mode —In this mode the inputs AP-A7 will define a graphic
entity as described in figure 1. Each line of the graphic entity is determined
by the wide graphic logic in conjunction with the row inputs R@ to R3. In
this mode each segment of the entity is defined by one of the bits of the
8 bit word. Therefore, the 8 bits can define any 1 of the 256 possible graphic
entities. These entities can butt up against each other to form a contiguous
pattern or can be interspaced with alphanumeric characters. Each of the
entities occupies the space of 1 character block and thus requires 1 byte
of memory.

These 4 modes can be intermixed on a per character basis.

27 CURSOR

Cursor

When this input is enabled 1 of the 4 pre-programmed cursor modes will be
activated. The cursor mode is on-chip mask programmable. The standard cur-
sor will be a blinking (at 3.75Hz) reverse video block. The 4 cursor modes are:
Underline—In this mode an underiine (1 to N raster lines) at the programmed
underline position occurs.
Blinking Underline—In this mode the underline blinks at the cursor rate.
Bgverse Video Block—In this mode the Character Block is set to reverse
video.
Blinking Reverse Video Block—In this mode the Character Block is set to
reverse video at the cursor blink rate. The Character Block will alternate
between normal video and reverse video.
The cursor functions are listed in table 1.

28 RETBL

Retrace Blank

When this input is latched high, the shift register parailel inputs are uncon-
ditionally cleared to all zeros and loaded into the shift register on the next
Load/ShiTt pulse. This blanks the video, independent of ail attributes, during
horizontal and vertical retrace time.

e

TABLE 1
CURSOR RETBL REVID CHABL UNDLN* FUNCTION
X 1 X X X “0" S.R. All
0 0 0 0 0 D (S.R)Al
0 0 0 o] 1 1" (S.R)”
D (8.R.)Allothers
0 0 0 1 X “0" (S.R) Al
0 0 1 0 0 D (S.R)AIl
1] 0 1 0 1 "0 (S.R)"
D (S.R.)A!others
0 0 1 1 X M (SB.RIAL
Underline” 0 0 0 X “1" (S.R”
D (S.R.Aliothers
Underline* 0 0 1 X ‘7 (S.R)”
“g” (S.R.i All others
Underline” 0 1 0 X “0" (S.R)”
D (S.R.jAllothers
Underline* 0 1 1 X “o" (SR
“1” (S.R.) All others
Blinking™™ Underline* 0 0 0 X ‘1" (S.R.)* Blinking
D (S.R.)Allothers
Blinking** Underline* 0 0 1 X “1" (S.R.)" Blinking
“Q" (S.R.)All others
Blinking™* Underline” 0 1 0 X “0" (S.R.)* Blinking
(S.R.) All others
Blinking** Underline” 0 1 1 X “0" (S.R.)" Blinking
‘1" (S.R.) All others
REVID Black 0 0 0 0 D (S.R)Al
REVID Block 0 0 0 1 49" (S.R)”
D (S.R.)Allothers
REVID Block 0 0 1 X ‘1" (S.R.) All
REVID Block 0 0 o] 1 “0” (S.R)"
D (S.R.) Allothers
REVID Block 0 1 0 0 D (S.R)AIl
REVID Block 0 1 0 1 1" (S.R)"
D (S.R.) Allothers
REVID Block 0 1 1 X “0” (S:R.) All
Blink** REVID Block 0 0 o] 0
Blink** REVID Block 0 0 0 1
Blink** REVID Block 0 0 1 X Alternate Normal Video/REVID
Blink** REVID Block 0 1 0 0 At Cursor Blink Rate
Blink** REVID Block 0 1 0 1
Blink** REVID Block 0 1 1 X

*At Selected Row Decode
Note: If Character is Binking at Character Rate, Cursor will change it to Cursor Blink Rate.

**At Cursor Blink Rate

APPENDIX C 283

R

FIGURE 5
ROM CHARACTER BLOCK FORMAT

— B P wanonn [cessooooooo nooaoo. usuo [soogooosoog
(@] o GO0OmasaC00
-4 H HHY
N AD T OUOOOH
~— M o &0UHINAGTENT et el e 1
R0011001100110011 a w & Seooecoencd
X vy 1= aaonaooooog | oscutuoonog
o~ S 8385aeanect | ohmagoonont
Q o [880nmia0cag Boga0s | comcocoannd
= BHimoc
<TO00 - 3 mnonbanoa 230880000
ot W = -~ |= BBa00000
OO0 OO0 ™~ TrTrrr- OO0 OoOo o O daomoueuano 0mON00BHOO3
o T T ~E 5 anovonoanon | 5 woo | aaotooncans
nOz K T e e e
<O 2
O e et
o o (@] &) 3} BOANUOODHOD 5060060Aa00 6000BaNGE0N
r| ©@ © 00 o0 o000 vy v v - T v __A.) GoOuoOnaNo0 coGuoGoANED | BB0R00000DS | coodonoBao
Qo 5} QonBagonaag Ja8A8888000 | Goconoaundn
~N g e0nDDOCHEa0 a o5 | o oag
o> z o eanneos | S8agasaon0a
m - le £0000000000 | 30096030060
0o - S G650e8006a0 0a850856888 | Ausasanaaas | 986a0ea00a0
m il SE = aumonTs NG | GanonhoRa | cononooonan | gooeacoases | soooooonoog
s (75 3 Gauoagoonnn | peoadoceond | 8ccongooogs | GocoGaugEno | 60000GO0COG
nkEo - cs::amc:::: 8acocaboon | eG3oboobEaG | nogeooceong
Z== 2 . gonsana Bo0sOR0ANAG
Z22Z2N = | @ | 385IRARGHCE e [
w L = © | sesconnnnon HOORUBNORNN R3URSN00 | 00000000GAN
= = - N TRGL P aauaninaa ‘ago9ga830an | Bangnoono0g
o B - M 0N © M~ 0 O —~ = T T T T OS> o |© gensRtantng
<t 2 10
CCaomErI E@eIo@o o T mI@EXdIoD:oIor _::N & |
o = L D asaoaaas | Boasannaaca
o 5000600 | Gabowanoo0n | AlaconeAnto | BeaoNanNoNG | G0000C0A006 88863335600 | doaecoucean
a Gonnomesen | sucuoooaang 000QoD000G ggagogacona | gonoooogooo
8 SongonAc0as 80033008500

$00000uEIaD
ROOON0R00O0

BBoDGa0oesa

1001

WDUOOOCNesT
0ODOCOONN0G BODOODOORAG 50009030000
ALONUGANON0 GHGEDEAGRAG 58558000008 | Aoosseacoes

JouEUCVOagg

opopooooona | 0ogogoonoan
seaa | DO0RO00000

GOURCGODOGG

Jatser Titstanyretered

Jatste? [tstentorete)

ga0083aN00G | SO0CRDOSI00
#a00 | co0s000080S

g
{ 3
4

20DDUOBNN0G
AADHCGBOA06

aonucsooang goEE000000g

Q -
| | (@] -
L 8805820
_ _ — . $0920a8a808
0_0 OO0 o0ooooooo 0_0 oo ol|gp) SEmemianEy | EEoReATED
0_00000000000_0000 S - 85508550650
_ | . e
- gacacEooscn
0_00000000000_0000 m.w S gugmoRgenss
_ _ . -
< 2
OO 0O 0O 0000000 0,00 0 o0 [a)9] s
_ _ & = o 25086000000 | G00oReeRt0G
_ _ EH geoaoessann | poonooooagg
O_OOOOOOOOOOO_OOOOWRT 3
g
| | o PO geooEasat SRt
©j©o oo 0000000000 oco|8§ O o gegsagdooog So008s
LI — | i O g
—= ui ! e
L oo 9o0oo0o0o00e90o0oo0 o NI - ganemsnzens | asabozaness
» -~ - 8
Y — Y =& 8
2350p00pRan
SS 0000000D0Ca

CONSULT FACTORY FOR CUSTOM FONT AND OPTION PROGRAMMING FORMS.

(ALL ZEROS)—e=0

.- 3 o~ :
(e 1 zZ) . s <. e 4 = - -
m E M M 3 o a « o .4 @«

i N 55 /s N . o . o -
—ﬂ 1vM | i} b 8 2 5 > 8 s = =

4 o0 - - . —
= < 00
*

284 APPENDIX C

FIGURE 1

WIDE GRAPHICS MODE

SBITS NBITS MSg=g MS1=g¢
ROW ADDRESS
0000
ILINES* A7 A3 fe
3 LINES A8 A2t
3UNES As At
3 LINES A4 A0

I._
[arJasJasJasaa[me [| ao

*ON CHIP ROM PROGRAMMABLE TO 2, 3, OR 4 LINE MULTIPLES
**CAN BE PROGRAMMED FROM t TO 7 BITS
***LENGTH DETERMINED &Y LD/, VOC TIMING

EXAMPLE: 10012110

2

R1
R2
R3
R4
RS
R6
R7
R8
Rg
R1g
R11
R12
R13
R14
R15

C7 C6 C5 C4 C3 C2 C1 Cﬂ BF BF~~-

LEXNT Y]

v

//
/

Z\S
R \/A//

v //\\

N\

\
\\\\\Y// /\\ v

NOTE: Unselected raster line rows
are always filled with ones.

BF =back fill

FIGURE 2
THIN GRAPHICS MODE
N BiTS MSg=g MS1=1 C7 C6 C5 C4 C3 C2 Ct CF BF BF ...
— ROW 0000 RY
R1
R2 AQ
~ R3 :
R4 / !
R5
e 7 é
R7 /;
s H
Rig %,
—paoeaﬁ,xo»cvmal.e R11 NOTE /‘
we WL T
R13 | H
R14 ; |
R15 . !
{ X] : l X l X] X]Az] n l Ael NOTE: When A® =" the underline
row/rcwsa e:ee ed.
{(-‘?S:IILSIQZESEGMENT IS MASK PROGRAMMABLE Yf\::;,.;: e a;;::rderhne.
TO ACW 0000
* LENGTH DETERMINED BY LD/ER. vDC TIMING BF =back filt
FIGURE 3
EXTERNAL MODE
MSg=1 MS1=p
C7 C6 C5 C4 C3 C2 Ct C8 BF BF
R@ — R15 A7 | A6 | A5B | A4 AT | A2 | AT | AD | AT | A7
BF =back fill

APPENDIX C 285

286 APPENDIX C

FIGURE 4 TYPICAL VIDEO OUTPUT

_— I'—' '_B_D?fl-g.o-o'?: 13037 ERRI
LD/SH) FIELD | FECQ Y | FIELD | FIELOL
VIDEO DATA
8 DOT FIELD
VIDEO DATA [0 C a0 AT S0 3 2 0 70 A 8~ oL~ [C26 [0e 5. 02 A |02 362 2 e L1Ce 0 or L~ 1C3.
9 DOT FIELD A7 4B AS Ad Al A2 Al A A7 A7 AB A5 4 3 At AQ A7 AT
NOTE: C,y Alphanumeric)
x = character number External BF =back fill
y = column number xterna
XTAL
f
: -
bCC HsWC ool o
744 C 74::J Dag-7 v syne [EAT ST ;
v 220007 cupne s :
C.CCK] Ag-3 VTAG COINC e Z
C'® SELECT BLANK %3 <
s CRTS027 ©t g
perssTROBE |
-4R4CTER COLUMN
l HE-7
i C=RACTER AQW
DRE-5
aimia e RE-3 CRYV a
-~ = T.2 T4 5
RASTER 3
MICRO- SCAN g
PROCESSOR COUNTER s
- asen 7 >
== ';"})
CaTA
28 VDAC RETRACE
STEEUTE N CRT 8002 BLAN 5
VICED DOT SER'AL
CLocK OUTFUT
— DOT COUNTER CRT 5027 VTAC
. aauy HAROARCT CRT 8002 VDAC
l_ CHARMCRER uP CONFIGURATION
=2M & ROM
IFOR 4P)
FIGURE 6 Vee = \/DC (to chip)
745XX 5000
CP exrzenat CLK Q——————LD/SH (to chip)
74874

LOAD/SHIFT gxrenac—1D

35 Marcus Bid
15161 273- 3100 TWX-510-227-6698

We keep ahead of Our competition 0 You can keep ahead of Yours.

STANDARD MICROSYSTEMS
CORPORATION

NY U787

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applica-
tions; consequently complete information sufficient for construction purposes is not necessarily given. The
information has been carefully checked and is believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor
devices described any license under the patent rights of SMC or others. SMC reserves the night to make changes
at any time in order fo improve design and supply the best product possible.

Appendix C10

STANDARD MICROSYSTEMS COM 8046
CORPORATION COM 8046T

35 Marcus Blvd . Hauppauge N Y 11787
15160 273-3100 TwWX-5'0-227-8398

We keep anead of our competition 50 you can keep ahead of yours.

Baud Rate Generator

Programmable Divider

FEATURES PIN CONFIGURATION

1 Onchip crystal oscillator or external
frequency input

[Single +5v power supply XTAL/EXT1 107\ P16 fo

[Choice of 32 output frequencies XTAL/EXT2 2 15 A

[J32asynchronous/synchronous baud rates +5v 3 14 B

[Direct UART/USRT/ASTRO/USYNRT x 4 13 ¢
compatibility ’

[Re-programmable ROM via CLASP® GND 5 12 D
technology allows generation of other fo/16 6 11 8T
frequencies

OTTL, MOS compatible FENA 7 10 fx/4

71X Clock viafo/ 16 output E 8 9 NC

[0 Crystal frequency output via {x and fx/4
outputs

[OJ Outputdisable viaFENA

BLOCK DIAGRAM

ST)———l
A >—
B D>— :
C>—{ LATCH o DER
bS
£ ROM

CONTROL

LOGIC

T - fo
XTAL/EXT1 >4 y1ac e ;

0sC
= - DIVIDER
CLOCK

XTAL/EXT2 D=—— BUFFER

FENA >— I
P
>_.

A A

+5v GND

Reprinted by permission of SMC Microsystems Corporation Copyright © 1980
APPENDIX C 287

288 APPENDIX C

General Description

The Standard Microsystems COM 8046 is an en-
hanced version of the COM 5046 Baud Rate
Generator. It is fabricated using SMC's patented
COPLAMOS® and CLASP® technologies and em-
ploys depletion mode loads, allowing operation from
a single +5v supply.

The standard COM 8046 is specifically dedicated to
generating the full spectrum of 16 asynchronous/
synchronous data communication frequencies for 1X,
16X and 32X UART/USRT/ASTRO/USYNRT devices.

The COM 8046 features an internal crystal oscillator
which may be used to provide the master reference
frequency. Alternatively, an external reference may be
supplied by applying complementary TTL level sig-
nals to pins 1 and 2. Parts suitable for use only with an
external TTL reference are marked COM 8046T. TTL
outputs used to drive the COM 8046 or COM 8046T
should not be used to drive other TTL inputs, as noise
immunity may be compromised due to excessive
loading.

The reference frequency (fx) is used to provide two
high frequency outputs: one at fx and the other at
tx/4. The fx/4 output will drive one standard 7400
load, while the fx output will drive two 74LS loads.

The output of the oscillator/buffer is applied to the
divider for ce~eration of the output frequency f,. The
divider is capatie of dividing by any integer from 6

to 2% + 1, inclusive. If the divisor is even, the output
will be square; otherwise the output will be high
fonger than it is low by one fx clock period. The output
of the divider is also divided internally by 16 and made
available at the f,/16 output pin. The {5/ 16 cutput will
drive one and the fo output will drive two standard
7400 TTL loads. Both the f, and fo/ 16 outputs can be
disabled by supplying a low logic level to the FENA
input pin. Note that the FENA input has an internal
pull-up which will cause the pin to rise to approx-
imately Ve if left unconnected.

The divisor ROM contains 32 divisors. each 19 bits
wide, and is fabricated using SMC's unique CLASP®
technology. This process permits reduction of turn-
around-time for ROM patterns.

The five divisor select bits are held in an externally
strobed data latch. The strobe input is fevel seh‘sitive:

through to the ROM. Initiation of a new freguency is
effected within 3.54s of a change in ary ¢* "g f've
divisor select bits; strobe activity is ~ct 72z
This feature may be disabled through a CLAS?
gramming option causing new frequercy i~ 2
be delayed until the end of the currert f- ~z
All five data inputs have pull-ups ice~tcza

of the FENA input, while the strobe irp.t
pull-up.

Description of Pin Functions

Pin No. - Symbol Name Function
1 XTAL/EXTH Crystal or This input is either one pin of the crystal package or one polarity
External Input 1 | of the external input.
2 XTAL/EXT2 Crystal or This input is either the other pin of the crystal package or the other
' External Input 2 | polarity of the external input.
3 Vee ! Power Supply | +5voltsupply
4 fy fx Crystal/clock frequency reference output
5 GND Ground Ground
6 to/16 fo/16 1X clock output
7 FENA Enable A low level at this input causes the f, and f,/16 outputs to be
held high. An open or a high level at the FENA input enables the
foand fo/ 16 outputs.
8 E E Most significant divisor select data bit. An open at this input is
equivalent to a logic high.
9 NC NC No connection
10 /4 /4 Ya crystal/clock frequency reference output.
1 ST Strobe Divisor select data strobe. Data is sampled when this input is high,
preserved when this input is low.
12-15 D,CB.A D,C,B,A Divisor select data bits. A=LSB. An open circuit at these inputs
is equivalent to a logic high.
16 fo fo 16X clock output

ELECTRICAL CHARACTERISTICS COMB8046, COM8046T, COM8116, COM8116T, COM8126,

MAXIMUM GUARANTEED RATINGS*
Operating Temperature Range

Storage Temperature Range

COM8126T, COM8136, COM8136T, COM8146, COM8146T

Lead Temgerature (SOIdering, T0SEC.)o ot it +325°C
Positive Voltage on any Pin, with respecttoground i +8.0V
Negative Voltage on any Pin, withrespecttoground0 ... -0.3V

“Stresses above those listed may cause permanent damage to the device. This is a stress rating onfy and
functional operation of the device at these or at any other condition above those indicated in the operational
sections of this specification is not implied
NOTE: When powering this device from laboratory or system power supplies, it is important that
the Absolute Maximum Ratings not be exceeded or device failure can resuit. Some power supplies
exhibit voltage spikes or “glitches” on their outputs when the AC power is switched on and off.

In addition, voltage transients on the AC power line may appear on the DC output. If this possibility
exists itis suggested thata clamp circuit be used.

ELECTRICAL CHARACTERISTICS (Ta=0°C to 70°C, Vcc= + 5V = 5%, unless otherwise noted)

Parameter -1 Min. Typ. | Max. Unit Comments
D.C. CHARACTERISTICS
INPUT VOLTAGE LEVELS
Low-level, Vu 0.8 \i
High-tevel, Vi 2.0 \ excluding XTAL inputs
QUTPUT VOLTAGE LEVELS
Low-level, Va 0.4 Vv lo.=1.6mA, forf./4,15/16
0.4 v Io.=3.2mA. for fg, fo, f;
0.4 v lo.=0.8mA, for fy
High-level, Vox 3.5 \Y lor=—1004A; for fx, lon=—50+A
INPUT CURRENT
Low-level, | -01 mA | Vw=GND, excluding XTAL inpu's
INPUT CAPACITANCE
Allinputs, C« 5 10 pF | V..=GND, excluding XTAL inpu's
EXT INPUT LOAD 8 10 Series 7400 equivalent loads
POWER SUPPLY CURRENT
lec 50 mA
A.C. CHARACTERISTICS T.= +25°C
CLOCK FREQUENCY, f 0.01 7.0 MHz | XTAL/EXT,50% Duty Cy2’
COM 8046, COM 8126.
0.01 5.1 MHz | XTAL/EXT,30% Duty Cyc e =5%
COM 8116, COM 8136
STROBE PULSE WIDTH, trw 150 DC ns
INPUT SET-UP TIME
tos 200 ns
INPUT HOLD TIME
tou 50 ns
STROBE TO NEW FREQUENCY DELAY 3.5 #s | @fK=50MHz
TIMING DIAGRAM
trw
V\H §
STROBE
VIL

tos

et tot4

DIVISOR Vin r B /

SELECT
Vi “ 7

DATA

APPENDIX C 289

290 APPENDIX C

Crystal Operation

External Input Operation

50688 MHz

crystai

‘_qD

COM 8116 COM 8116/COM 8116T
COM 8136 COM 813E/COM 8136T
] | 5 0688 MH2
) [crystal
-/ Ny
1 18 74XX 1 ~ 18 T4XX 1 8
TTL TTL
74XX—totem pole or open collector output (external
pull-up resistor required)
Crysta! Operation External Input Operation
COM 8126 COM 8126/COM 81267
CCH £146 COM 8146/COM 81467
COM 5046 COM 8046/COM 8046T
N — ~
1 74XX 74XX 1
TTL TTL

I

74XX—totem pole or open collector output {externai
pull-up resistor required)

For ROM re-programming S4'C ~as
need only supply the :\nZ.

=~z, and the desired cutput frequencies
s automatically generated

rer program available whereby the customer

Crystal Specifications

User must spec 'y terrmination (pin. wire. otner)
Prefer: HC-18/U or HC-25/U

Frequency — 50688 MHz. AT cut
Temperature range 0 C1070 C
Serniesresistance 50 {2

Senes Resonant

Qverall tolerance = 01%

or as required

Crystal manufacturers Parra List

Northern Engineering Laboratories
357 Beloit Street

Burlington. Wisconsin 53105

(414) 763-3581

Bulova Frequency Control Products
61-20 Woodside Avenue

Woodside, New York 11377

{212) 335-6000

CTS Knights Inc.

101 East Church Street
Sandwich, lllinois 60548
(815) 786-8411

Crystek Crystals Corporation
1000 Crystal Drive

Fort Myers. Florida 33901

{813) 936-2109

Divisor
Select
EOCBA

00000
0Co01
03C0
00011
00120
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
111

1Mo

L) o

9600.00
19200.00

REFERENCE FREQUENCY =506

Clock
Factor

32X

32X
32X

COM 8046
COM 8046T

Table 2

Desired
Frequency
(KHz)

1.60000
2.40000
3.52000
4.30400
4.80000
6.40000
9.60000
19.20000
38.40000
57.60000
76.80000
115.20000
153.60000
230.40000
307.20000
614.40000
0.800C0
1.20000

28 82000
32.0CC00
38.45000
57.60000
76 80000
11520200
153.60000
307.20000

Divisor

3168
2112
1£49
1177
1028

-4 P U~

N0 H IO

AR T I <
oMM BN Wy

PO
E300NMHz

Actual
Baud
Rate

50.00
7500
11000
134.58
150.00
200.00
37000
65000
1200.00
1800.00
2400.00
3600.00
4800.00
7200.00
9900.00
19800.00
50.00
75.00
110.00
134.52
150.00
300.00
60000
1200.00
180000
2005.06
2400 00
3600.CO
4800 C0
7200 00
9600.00
19800.00

Actual
Frequency
(KHz)

1.600000
2.400000
3.520000
4306542
4.800000
6.400000
9.600000
19.200000
38.400000
57.6000C0
76.8000C0
115200223
15360007

O B RIRY 2 s O G
[
o

28 850000
32081013
38.400000
57 600000
76.800000
115200000
153.600000
316.800000

OOWWOOMIMIMMOOOMOOOO
b}

[
©
S
[
=

2

B K
0.0166%
0.0000%
0.0000%
0.0000%
0.0000%
0.0000%
0.2532%
0.0000°%
0.0000%
0.0000%
0.0000%
0.0000%
3.1250%

APPENDIX C 291

Appendix D

ZAP Operating System

D000
QOO0
GOo0
Q007%
D004

cnog-

DO0R
Qo010
2013
o018
Q01R

0024

Q023
Q02¢
Q02K
0030
Q033
0038
QO03R
0040

C3

C3
C3
€3

En

G4

CR
CE
ni
4

73

a7
00

Q7
07
07
07
07
07

ng

07

Q400
Q410
0420
0430
0440
0450
Q460
Q470
Q480
0490
0500

O5E0

0051

NI 1.0
e
ng

WakM NI
ng

RETIE JP
ns

ROETEE P
ns

RETAE O
s

RETSE JF
s

RET&E J
0na

RET7E P
s

NARMQl LI

THE OF

Efs

THE COmMMaND

aF

STRT
WARMO 1
A

WakM1
3
RGT2V

~

ROTIV

1]

R&ET4V

~d
RETEY
5
RETHY
i
RET7Y
5.;

(SFLEAV) s 8P

B
b

TIMG

B

AIMITALIZE

HRET
KRBT
KRET
KRST
XRET
KRST

KRST

TION M

OR WakM
TRANSFER

TRAMEFER

TRANGFER

THRANE
TRANSFER

TRANSFER

STALK FOINTER

T

STRCK FOINTER

STaRkT

APPENDIX D 295

0044
Q0047
0047
0047
0047
0047
Q047
0047
0047

c3 8% 00

32

13

07

Q552
0560
QE70
0530
0570
0600
0410
04620
04320

X
X
X

KWARM &
KENTERS

JE WaRM2

START SAVES THE
THE COMMARD

SERG REGISTERS

XGO T COMMAND

NITION MO

RECOGHITION

XFS DISFLAYED ON THE DATA aND ALDRESS WEEPLAYS

X
WHRM L

LI (HSAVI s A

HEHVE

FOOFROM STACK
s OFD TN BAVE AREA

0640
04650

FQF L KGET U
LI (FCLSAV) yHL XSAVE U

O04h
004K

A

22 10 07

Q04E
QOAF
0050
0053
Q057
QOSSR
QO05F
0041
Q0464
0048
0049
D060
Q04D
O0&E
QO&F
QG670
0071
Q072
Q073
0074
Q073
0078
DO7HR
Qo076
0O07F
0082
Q083
0084
()Ou w3
0084
0087
0oes
0085
00RY
008?
0087
00R7
QGRC
Q08E
QOFG
o2
D094
007
Q0P
Q0%
Q05N
QG
OO9F
DOA2

Q0Mm3 H

G0n4
DGA7
QONH
O0dA
Q0AA
O00n6n
OO8A
QOGA

296 APPENDIX D

Fe
£l

22 E7

22
JOU
Fli
En
En
";’)
rn

72

73
08
F5
22
El
pede)

21
70
23
71
23
72

23

")’)
et)

73
57
IF
5F

2 ER

E?

EF
EC

F1
FF
05
06
07
03
40

4K

10
89

07
uz
ne
ng
07

07
07

07
o7

07

00

01

ol

03
Q0

07
07
Q7

046460

FUSH AF

0470
0680
G&90
Q700
0710
0720
07320
0740
G750
0740
0770
Q780
0720
0300
0810
Q0820
0830
0840
0850
OB4&0
0870
ORE0
QBP0
Q900
0710
(G920
OP30
0740
OFEQ
0?40
G770
CTnd) X
G790 X

:/ *
O WhRM2

1030
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180 %
1190 MEM
L1200 XK
1210 %

PO
1.1
1.1
1.0
)1
1.
1.0
1.0
1.1
1.1
(M
NG
1.0
INC
.1
ING
.0
=X
FUSH
Lo
'_ L{
FoF
La
LI
1.0
INC
1.1
INCG
1.0
ING
1.0

1) O KCOMMAND RECOGNITION

CALL
LIt
OuT
ouT
ouT
CALL
LI
CF
JF
ING
CE
JF
ING
CF
JF
JE

EQU

1270 KRESTART RESTORES THE
1230 kAND RETURNS CONTROL 1lJ

HL.
(ESAVY v HL

(IXLBAVY » IX XBAVE
(IYLEAVY » Y XBAVE
(SRLSAV) s SF

sl
(I5AV) » A
Al
(RSAaVY oA
MLy BEAY
(HILLY o R
HI.

(ML) »C
HL.
(HILy# 11
HI.
(HILY o E
AF yAF

{" i

HL!HBSQU
(HIL) 7 B
HI.
(HI.y ¢ O
Hl.
CHILY o I
Ml
(HLY s E

CITllc
By s
AL
ANDLS2
nATHLS
KREY TN
ByMEM
B

Z e MEMORY
B

B
ZeREGIET
B

k
ZyGORER
WakM2

LH4T1

XGET USER
¥SavE L

*5AVE
XEAVE

USERS R

XHAVE

AEAVE USERS B

¥SAVE USERS ©

*¥SAVE USERS I

ShUK
x3HY

LS
L.

AT A
T HEL

KO AVE
KSAVE
¥SAVE LT
KEAVE LT B
XSAVE ALT ©
ESAVE ALT I

*SAVE alT k

CRNATE

REGISTERS

FLAGS

KGET

TNFUT

XJUMF TF MEMOR

dJUMF TF REGLS

AMEMORY KEY

AR

THE

TER

CHARAETER

Y REGUEST

REQUEST

0/ 1240 %GPE
Q08N 1230 %k
ﬁOﬁﬂ 1’40 X
; FOORESTRT

CIFIET IN THE PG SAVE LOZATION IN THE
S TER SAVE aRES

e CAREBAV) MRESTORE ALT REGISTERS

Eydy

|17(Hl SEW

l)
v U S

ﬂyﬁ

e (AFEAU D

Ay O EAVD
Lovif
IH

Cs (HLD
ML

f1e {HLD) ¥ERESTORE I
HE.

Ee (ML
L. SR (GF
1.1 HL. ¢ CF
FLESH HL

iy Ml.e (L.SAVD
RET

e 07
Q7

QOED
QQEDR 2
DOFQ
Q0F1
OOF 1
QOF1
00F1
O0F
DOF 1L N .
OF L S U A R

07

EED DISFLAYS
G CLEARS THE

PG CLEARS THE DAaTa AND
§ THE KEYBDARD BUFFER=0
YEOART FL.aGs

I J
[FLAGE) A
|1 (RUATAL) s A
T (RTIATAL) v A
QUT hﬁTUIJ

07
07z
307

FlL.aGs
O BUFFER

N

L0 DIEFLAY
S FIELD LLSFLAY

naTe F
ANDRE

*}OLEAR

D100 D3 04
0Lo2 09]790

0103 1300 x
0103 JJLO X

*KEYIN WATTE FOR OINFUT FROM THE
KUFON DETECTING DATa AT THE T
*VIA THE STROBE RIT (73 REING SET THE DATA

XIS INFUT THE STROEE BIT CLEARED aAND THE INFUT
KCHARACTER I8 RETURNED TO THE USER IN A

0103
Q103
0103
D103
2103
Q103 X

0103 L 830 X

0103 IR QG 1890 KEYIN IN KEYFT KINFUT DATA ey e
QLOE OB 7F 1900 BIT 748 R R _
Q107 Ca 03 01 1210 NI Ly REYIN XLOOF TF NO DATA o e nN
Q10A 32 F4 07 1911 LI (TEMF) A ¥EAVE CHARACTER

KEYROARD
T OFORT (O

APPENDIX D 297

0100
QLOF
0111

0l14 !

O1i7
Q119
QllA
OL1A
OL1A
QllA
QLiA
0llA
QLI
QLLF
Q121
Qlzz2
0123
0123
0123
Q123
0123
0123
Q126
0128
D12
Q1L2A
0Ll2A
0120
O12A
0120
0124
OLzh
O13F
0131

0132-

0133
0133
0133

Ol%ﬁ
R RCIL
Q140
0142
0145
Q147
O14A
(140
D1L4F

QLEn
0150
QLEn
Q15
QLun

298 APPENDIX D

.....

21
CR
CR
El

00
7F
ol
Fa
EF

Fil
)
né

c?--

21
CE
Bl

C?

21

CR
Ce
El
Cy

Fi1
Cé

Fi
03
a7
S0
77
a9l
10

-y p
eyl

610

3
03
&
G1

01
07

07

Q7

07

00

Q1

01

01

01

a7
ol
01
ol

1212
1213
1914
1213
1920
1930
1940
19350
1940
1970
1780
1990
2000
2010
2020
2030
2040
2000
20460
2070
2080
2090
2100
2110
2120
2130
2149

3

,3/)

214
2170
2130
2190
2200

2480
2490

KEYINI

X

X
ARFLGOZ
X

X
KFIL.GOZ

X

X
ANFLGO
X

X
KFIL.GO

R RS R RS

FLLGL

X
*

X

*
KFLGE

*
X
*
FOMETAR

*EROM T
ATHE US

GNECHR

OMECAL

KRFLGL €

N
RIT
JE
LI
RES
RET

REYPT
FEl:
NZ v IKE

YlNl

79A

KJUMP IF STROBE FRESENT

¥CLEAR STROBE

SETS THE NEXT(0) Al NO DATACR) REVEOARD FLAGS

LI

SET
SET
O
RET

.0

SET
O
RET

INPUTS OnE CHARAD
HE KEYROA

HL e KFLAGS
Qs (HLD

2y (HLD

Hi.

THE NEXTO)?

HiL s KFLAGS
O {HLD
HL

HFL 512 SETS THE EXECOD)

HL s KFLLGES
ij\}

HL

5 THE EXEC (12

HL s BFLAGS
1y (HLD
Hi.

EROIN KOATAR

Gkl
Cali.

ouT

Catl

BIT

CLITS

ool

F;UNECAH
1460
(Iﬁﬁrnﬂ)vﬁ

A MEX
MEXT THE

XSET NEXT FLAG
XCLEAR RETURN

KEYROARD FLAG

XGET NEXT FLAG
XCLEAR RETURN

AND NO DATACZ)Y KEYROARD FLAG

RCLEAR RETURN

REYEOART FLAG

*SET EXEDL FLAG
RULEAR RETURN

TROFOLLOWED BY A NEXT QR EXEC

¥ JUmMP IF
¥OHARABCT
HIUMF TF NOT O-F

FDHARACTER
TONEXT CHARACTER

HED O ABATN NOT EXEC OR NEXT

T Of EXED ON AN INITIAL
ROUTINE RETURNS TO CaALLER VIA

ARFLEOSy TF EXEC THE ROUTINE RETURNS TO THFE CALLER
KVTA KFLGL2
h

&
CARCKL LI BeHEXTE XCHECK FOR NEXT
GF |3

JF Lo KFLGO2 FIF NEXT JUMP
my By EXECC HOHECK FOR EXEC
WE B

IF Ly RFLGLA
i

EXEC JUMF
© RETURN

S CHECKS FOR MEXT OR EXEC: SETS THE PROFER
JRRFLGL aND RETURNS TO THE USER
(T OR EXEDR THE ROUTINE RETURNS TO
yTOR OF THE REQUEST

BeMEXTO HKOHECK FOR MNEXT

XIF NEXT JUMP
FOHECK FOR EXEC

7o KFLGL

FROM THE KEYM

i@ CHARACTE
; Coanl RETURMES T

AT Ok

THE

CLAS3yAMD DTEPLAY

OROEXEC

S0 RLLG X
3030 Al AR KA=GLT AN W
3031 OUT DETOIS ADOTSFLAY INFUT
2 I040 1. Tx (HLLY v id XBAVE NEW DATA
D197 O O3 Q0L 0G0 CaLl. KEYIN ¥GET NEXT CHARACTER
Qlea Ch éa 01 040 Call. CARCK2 Y¥OHECR FOR TERMINATION
019D CE 80 01 F070 JE TWACAL *GUMP OTF NO TERMINATION
D1aG J080 %
Q1A0 ANF0 X
01a0 3100 XCLDAT CLEARS THE INFUT RUFFERsFLAGS, AND LIATA DIS
0140 F110 %
3120 X%
3130 CLLAT LD Ay ZIER0D
3149 11k (KFLAGS) v A XCLEAR FLAGS
3150 L. (KDATAHD2Y ¢ A XCLEAR BUFFER
3140 I (KOATAL) v A
E RET
CLain LD Ay ZERQ KCLEAR ADDRESS DISFLAY
OuUT ARDTSL
OUT AlnIs2
RET

<

R FRE S
O
NE NN

f
D1iAg 32 F
Qlak 09
O1a0 2B 00
DLAE 03 03
QLRG DX 04
D1IR2 O
Q183
O1R3
OLE3
O1E3

X

X

KFORCAR INFUTS FOUR CHARACTERS FROM THE KEYERDARD
AFOLLOWED BY & NEXT QR EXEC AND RETURNS THEM

APPENDIX D 299

Q1LEZ F230 KTO THE USER IN RIATAL AND KDATAZ
O1LE3 J240 Xk
01ER3 I2H0 X
OLEZ CI AO 01 3240 FORCAR CALL CLIOAT XCLEAR FLLAGS AND BUFFER
O1LRS CIN 0F 01 I270 CAaLl, KEYIN XGET INFUT CHARACTER
QLR? CU 50 01 3280 call. CARCKRL ¥CHECK FOR NEXT OR EXEC
QLRC s 10 2290 FORCAL SUR 14D XCHARACTER=0~F
OLRE F2 B3 01 3300 P FyFORCAR X¥JUMF LF NOT O-F
O1CL Cs 10 3 ALT 160
01C3 32 F4 07 LD CTEMF)Y v 3 ¥SAVE CHARACTER
QL1046 3A F2 07 LI Ay (KOATAL)Y Xd=MSD
Q1Ce 21 F3 07 1.1 HL s KOATAHR
QLCG EI &7 Febere XALJUST DATA FOR NEW CHARACTER
QLCE 07 RlLLCA
QLCF 07 RLLCA
oLn0 07 3?Qo RLCA
QLny 07 J35D RELCA
oLn2 s FO 3400 AND 240D XMASK OFF QLD T0G6IT
QLng 20 F4 Q7 1.1 My TEMF
QlLu7 8é ALl A (HLY XAOD TN NEW DIGILT
QLI 24 F3 07 L. Hioy (KINATAZ) *SAVK MEW LSDES
QLOR 22 F2 07 (MY U\HHTﬁT)yHI XGAVE NEW MEDS
OJML 32 FZ 07 1.0 3 XSaVE NEW LSDES
1E QuT KOTSGFLAY LIS
1.0
QUT Annrst
sl KEYIN GET MEXT CHARAUTER
Dol Tl = HOHEC FOR NEXT OR EXEC
B FORCAL FJUMP IF MOT NEXT OR EXEC

T
IR
N

*IF
b S]
O REXED
O %
MEMORY 1D
.0
1.1
T A, Al
RN TR
S LI
R BIT
. 5 -...‘ ili'

1
s MEXT y EXED
TOOTHE COMMANI RECOGNITION

KOLEAR MEMORY BEASE ADIRESS

FEET BABE ALDRESS

STOMEM BASE ADURESS
MEMORY A
LY TORY DT h

F MO DATA
ATDRESS
0aTA

OLI DATA

NI
(g ..
L0 fiy CRIATAZ
LI CHL Y ¢
1.0 Ay (KFLAGS)
BIT deiy
I MZ e WHRM2 X UM IF OE
TAED MEMLI2 LD Hi.y (MEASEL)Y XKINC BASE
3850 ING HL.
59u0 LI (MEBASELY yHLL

300 APPENDIX D

o R

D238 70
Q2R I3
Q330 70
Q238 I3
(0240 03
Q243 C&
0245 G2
0248 (3
Q24K
0248
0241
0248
024R
Q241
Q24R
Q241
QZAR
Q24R
D24R
O2AR
J24R
OZ4RB
024 CI

0260 3G
026E 32
0271

0np2 LR

b
05
145
4F

-
d 2

33

30
Fi
57

02

Q0
G2

89 00
F3 0

Fo
s
7

O

4

o8 3

Loz
AE 02

07

-
|

e
L S

F 02

07

07

a7

3901
3902
3703
3204
3910
y.,").)
IRIAO
X240
IPEO
3P40
3270
3280
IR0
4000
4010 X%
4020
AQIG
4040
4050 X
40460 XEXEC
4G70 X

4080 *

4090
4100
4110
41320
4130
4140
4141
4142
4143
4144
4145
4144
4147
4148

MEM2

* K K ¥

REGIO

REGTL

il REGLZ

4400
4410
4411
44132

XIF ONLY

REGT2H

XREGIST INFUTS
XDATA A DEFINED

WILL RETURN

REGIST Call.

L.
RIT
B
1.1
1.0
BIY

INH
JF
T
ING
1.1
1.7

L.
1.1
BIT

sk,
ALDTER
frsH
ALNIS
MEM1

1viy

NZ s WARM2
MEML2

A REGTS

XREGISTER SEQUENCE IS
ALy AH AN AR AT s AT AT s AF
UaTa IS TO RE
FEGCINIT REGYNEXTyNEXT. « +EXEC

CONTROL TOQ THE COMMAND

ONECHR

Ay (KFLAGE)
2
NZsWakM2
Ay (RUATAZ)
(TEMPF2) vA
by
NZyREGISA
4

FeREGLL

A

A

A

REGIZ

1

A
(REGINX) ¢ A
Ay (TEMEF2)
10OH

Ml GI2A
A

Hévf!HT”ﬁ

Cyin
By 110
HL s BT

MBS
L‘H!)

LS
2y
NZyRIZEGT3
Hl. s (MBEA
Ay (RIATAL)
(HL.Y v 4

Ay (KFLLAGS)
1A

SELY v HL

SELD

XJUMP IF EXEC FLAG SET

R OFROM THE KEYBOARD FOLLOWED BY

RY THE SEQUENCE
REG(INIT REGIYNEXTy (UATAYNEXT . (DATAYEXECR
IXsTYsSFeFOyIeRrHrLrsArBeCrlirEsFy

GISFLAYED
RECOGNITION

XGET INITIAL CHARACTER

XJUMF IF NO DATA FLAG SET

XGET EBASE REGISTER

XCHECK FOR SHIFT
HKIUMP IF SHIFT KEY SET

XJUMP IF EIGHT BIT REGISTER

¥I=(E-20%2

XEAVE ITNDEX

XJUMF IF RBIT & SET

XGTEFLAY REGISTER SELECT

= IF 14 RIT REG
XGET BABE AN

*cﬁUF REG SAVE ADD
3 IT8TER DIATA
TaTH

*Ul%F!ﬁY

RGET NEW DATA

XJUME IF NO DATA

XGET NEW DATA

XREFLACE 0LD DATA

APPENDIX D 301

C2R4 02 8
Q2R? 3 Fo

0201 €6 12
Q203 3 4E
O206 21 07
QR0Y 4F
020A 04 00
Q200 09

Q200 22 F6
Q2EQ 7E
O2EL I3 06
Q2E3F 23
O2E4 TE
O2ES L3 QG
Q2E7 3n FE
O2En 30
OZER 32
o7
QIFL 3
Q02F4 CER
Q2F6 C2
D2F9 2A
QZFC 24
QR2FF 77

i
[se]

= G4 G

N
g
T O L7 T R T

[EXRNE S ERRN

0300 38 F2 C

0303 23
QI04 77
0305 3n F1
0308 CR 4AF
030n 2 8%
0300 C3 E7
0310

0310

0310

0310

0310

Q310

D310

0310

0310

0310 Ch At
0313 o0 B3

0316 36 F1
0317 u
G3LR g9

NZLE 3a F3

03 An

03N

D320

D320
0320

302 APPENDIX D

LE 07

00
G7

07

b1 O

<y Oy

a1
01
07
A1¢.
07
07
07

G0

44173 JE MNZy WARM2 ¥ UM TF EXEC FLAG SET
4420 REGIZ LD Ay CTEMP2) HINCREMEMT INDEX
4421 ING A
4422 LI {TEMF2)vA
A433 LI Ao (REGINX) XINCREMENT INDEX
A430 ING A
4440 (W 1AH
4450 JF My REGIZ *IUMP IF INDEX JLT. 1A
4460 REGI4 LD Ay TWO XGET INITIAL INDEX

4470 JP REGIO

4430 REGISA SUR 481

4490 S MeREGIST *JUMF IF IMYALIO REGISTER
43500 AL
4510 JE
4520 XYSP .1
4530 LI Gy
4540 LIt Ry ZERO

580 Al HLyBE ¥HL=REG SAVE ADDRESS

4540 1.0 (MEASELY s HL
43570 LI fy (HLLD XNISFLAY REGISTER DATA
4530 QUT ADNIS2
4570 ING HL
4400 1. Ay CHLD
4510 OUT ADDIST
4520 L1 Ay (REGINXD
4430 ING A
44540 L0 (REGIMX) s A
4450 Call. FORCAR ¥GET NEW DATA
44660 L.n Ay (KFLAGS)
4670 BIT 2sA
4580 JE NZRIEGTS X JUMF TF NO DATA
4710 L0 oy (MEASELY KREPLACE OLD DATA
4720 Lo fe (NTATAD)
4730 Y (i) e
4740 i Ay (RIATAL)D
475 ING HL
4769 1.1 (HILL) » 53
4741 1. Ay (KFL.AGS)
47462 REGIS RIT 1A
47563 B NZeWARMR ¥JUMF IF EXED FLAG SET
4770 JF REGE3
4780 %
ATFH X
X

TS THE USERS RESTART ADDRESS IN THE
ROSAVE AREA aNU EXITS TO THE RESTART

Call. CLanl
CAaLL FORDAR
e Ay (RFLAGS)
BRIT 2vA

JF ME e WAkM2 HIF ONQ DATA EXIT
.1 Py (KDATAZY XBAVE NEW AalIRESS
LI f

FEET RESTORT ADDRESS

A
1.0 Ay (KDATALD

LI (POHSAY) v A
JBRESTRT

4570 K
4980 K
4990 KUATST 16 A UART LOOF CHECK ROUTINE
5000 KIT UTILIZES A LOOP WITH THE OUTFUT
5010 kFORT FATCHED TO THE INFUT FORT
5020 KIF AN ERROR I8 DETECTED THE ERROR
5030 ADISFLYED ON THE ANDRESS

CR——————— S S TS

Q3GF
O35F
0342
03485
0366
Q3468
0360
036N
036F
0372
0374
Q0375
0376
0379
Q371
037k
Q0381
0382
038G
03848
038R
038C
038l
Q38K
03?1
0394
0396
0398
Q398
Q390

039K
03%E

K

06
C3
ce
on

F?
Fo

03
AF
64
R

el
o4

91
Gl

2 FR

FE

Fa
1

66
02
01
pass

0f

03

07
Q7

07
03
07

03

> 03

03

;‘)‘30

J')\\')

HOFQ
H100
110

ATHE CHARACTER I8 Il

KTHE OUT
*OF THE
*

UATST

Y UATSTO

546G
5470
5480
5490
5500
5510

r“r: -\O

5570
HER0
G370
G600
%10
620
S5630
54631
5632
G640
D441
642
5650
54660
G670
54680
5690
5700
5710
G720
G730

G740

LaTET

ST RN

UAERZ

X
X

XTTYINF
KINFUTS TATA

KINFUT
XIS DET
KHAVE K
X

TTYINF

TTYINI

TTYINZ

TTYINZ

TTYERR
LF

X

TFUT

ALNRES

L.
I
BRIT
S
1.1
OuT
DU
IN
BIT
W
Fi e
JE
I
ouT

e
P
ouT
IN
OUT
ML T
X1
ouT
HALLT

”L
HARALTE IS
b D])P!HY

B ZERD
UaRTS”
Quis
ZyUAERL

ZAUATETL
1M

My AR
UaRTIO
LTS

T

*J(pLIAERZ

“n]U]q

Ay OFH
(ANNIS2 A

UT ORIVER

INTO THE S

I8 TE r\MI!\Hul]” NH

ECoED
INFUTED FRUH

EEN

LI
1T
LI
IN
RIT
JE
ARD
JF
IN
LI
CF
i
1.1
1.1
.0
1.0
(]
Cald.
(Y
1.1
e
RET
JF
.1t
LI
LI
JE
RET
IR

Giv THE MNUM

Hi_y (TTYTIERF)
By (TTYILEY
Beid
LUARTST
1vA

2 TTYINL
1CH

NZs TTYERR
UARTIO
(HLY v A

e QLiH

2o TTYINZ
Ay ONE
CTTYORF) s HL
CTTYOC) v A
vk
(TEMP)Y # A
TTYOUT

fye CTEMPF)
By

i

Z

TTYINL
ML s LI

Ay TWO
FeONE
TTYIN3

OniHy OAH

5750 XTTY QUTFUT DRIVER

AYED ON THE DATA DISFLAY
DISFLAYED ON THE MSD

X
XGET 8TATUS

KJUMP TF XMIT BUFFER NOT EMFTY

XGET QUTPUT CHARACTER

¥JUMP OIF NO DATA AVATLAEBLE

MEOLF FARITY ERROR
MGET INFUT CHARAGCTER

KJUMFE TF INPUTWNELOQUTRUT

LNTAFLAY UART 8TATUS
AGET INFUT DATA

SFECTIFIED BUFFER

EN & CARRI RETURN

BER OF SIFIEDR CHARACTERS
THE TRHP&MJTDJVV HEVICE

*OET BUFFER ARDRESC
XGET NYMBER OF CHARACTERS

XGET UART §TATUS
¥JUMFP IF NO UATA

XJUMF IF FARITY ERROR
¥GET INFUT CHARACTER

XSAFE CHARACTER IN USERS BUF

X JUMF IF CARRIAGE RETURN

XSET OQUTFUT CHARACTER COUNT

SET QUTFUT BUFFE ALDRESS

XG0 QUTFUT CHARACTER

KRETURN IF ALL CHARACTERS IN

XGET LINE FEED ANNRESS

XRETURN WITH ERROR CODE IN A

XLINE FEEN/CARRIAGE RETURN

APPENDIX D 303

039E 5760 *TTYUUT DUTFUTS ATA FROM THE SFECTIFIETD
Q3%E G770 RE ROTO THE UART. THE NUMEER QF
039k G780 XUSER qFLElFth CHARACTES ARE OUTFUT
Q39E 5790 KAND CONTROL RETURNED TO THE UBER
Q3%E 5800 X
O39E 2a FR 07 %810 TTYOUT LI HLy CTTYORF)Y XGET BUFFER ADORESS
Q3A1 3A FE 07 5820 1. Ay (TTYOO) XGET NUMEER OF CHARACTERS
Q3ng 47 G830 1.
03A5 0E 00 5840 TTYQUL LI
0347 11 60 OO0 w83 L0 3 &
0Zhn DR 03 5360 TTYOL I Uhhrbr XGET 8TATUS
Q3InC CR 47 u870 BIT OsA
O3AE UA RC 03 5880 JE ZeTTYOUR ¥JUMF TF BUFFER NOT EMPTY
O3Bl 7E 5890 1.0 fry (HLD RGET CHARACTER
QIRZ 13 02 G200 OuT UaARTIO XOUTFUT CHARACTER
O3B4 00 5910 LEC R
O3RG 3E 00 G720 1.5 Ar ZERO
€ HP30 RET Z XRETURN IF RUFFER EMPTY

593 THE HL

B TTYQUL
TTYOUZ ING DE KTRY AGAIN DELAY

.0 fiy

cr ZERQ

JF NZ TTYOUR

LI fiy 1

e ZERD
O3 L0010 JF NEy TTYOUR
NG C
S FLuE
JE WNEe TTYOL FUMEOIF LTS TRYS
1. e ONE FELSE RETURM WITH A=l
RET

303

43

éV/O X
HDRY 8T 704H
HOFG XK
» 4100 XFAGE 2 CONSTAMSy JUMP AREASyAND REGISTER
O/L4 &L10 XSAVE AREAS
Q7C4 H120 %
0704 &130 SRSTRT LR 0 A5THOCK AREA
Q0

; 4140 X
07Ca G150 X USER RESTART AREA
Q705 461460 X
0705 4170 RYT2V 15
Q708 4180 RETIV U5
Q70CR 419D RETAY NG
(70K 4200 RSTSY LS
Q701 : 4210 RSTAY LS
Q7014 &220 RETZV IS
Q707 S23F0 X
Q707 46240 KREGISTER SAVE AREA
Q7n7 LSCNTOI 4
Q707 H260 IXL.SAV IR Q
00
Q718 G270 IXHSAV Dk O
00
Q719 6280 IYLSAV iR 4]
00
Q7T G220 IYHSAV LR QO
00
Q71K &300 SPI.SAV IR O
00
O7nC 46310 SFHSAV IR
00
Q700 &LI20 FLLSAV DR
00
O71E 4330 FCHSAV DR
00
O70F 46340 1ISAV R

AREA FOR RST 2
FoRr RST 3
Al FOR RST 4
R L!ANLH A FOR RST 3
OBRANCH AREA FOR RST &
dRANCH AREA FOR RST 7

*1“

ARE

> I I

O3 O3 G G OF G

oI o B = 2 =

304 APPENDIX D

00

070 6350 RGAV ng 0
00
O7E1 6360 1.8AV 103 0
00
O7E2 4370 HEAV DR 0
00
07E3 6380 ASAV Lg 0
00
O7E4 46370 REAV 103 0
Q0
Q7ES 6400 Csay ng 0
00
OVES 4410 LSAY e Q
g0
O7E7 46420 ESAY og 0
o
Q7E3 4430 FSav IR 9]
Q0
O7E? 6440 ALLSAV DR 0
Q0
GVEN 4450 AHSAY IR Q
2¢
O7ER 4440 AASAY DR 0
Q0
GFER GA70 ARBAV DR Q
00
Q7EDR 4480 ACSAY DR 0
00
O7EE 44590 Aansav ne O
e
O7EF &U00 AESAY IR 0
GO
OO &ULO AFEAY DR 0
Q0
07F1 SU20 X
07F1 6330 XIATA STORAGE AREA
O7F1 6540 X
O7F 1 G990 KFLAGS DR Q XRKEYROARD FILLAGS
00
O07F2 43460 KUIATAL IR 0 AREYROARD INFUT BUFFER
00
07F3 4570 KDATAZ2 DR 0
00
Q7F 4 4380 TEMF LE O
00
O7F5 4581 TEMF2 IR ¢
GO
Q7Fé& GO70 MBASEL DR Q ARASE MIEMIORY ADDRESS
00
O7F7 44600 MBASER LR 0
00
07F8 4410 REGINX DR 0 ¥REGISTER INDEX
0o
Q7F? 6620 TTYIRF DS 2 ¥TTY INFUT BUFFER ADDRESS
O7FR H630 TTYORF S 2 XTTYQUTFUT RUFFER AUDRESS
O7FD 4640 TTYID LR 0 XTTY INFUT CHARACTER COUNT
00
Q7FE 4650 TTYOC DR 0 XTTY QUTFUT CHARACTER COUNT
00
O7FF 640 X
07FF 4670 ENI

FILE 3000 7323
REaDY

APPENDIX D 305

Appendix E - Z80 CPU Technical Specifications

Due to wide availability on the Internet, the Z80 CPU Technical Specifications were not

scanned and included with the rest of this document.

Z80 CPU data sheets, technical documentation, and user manuals can be found on

Gaby Chaudry's Z80 site at http://www.z80.info/ , or via a web search.

GLOSSARY

Accumulator A temporary register where results of calculations may be stored by the
central processor. One or more accumulators may be part of the arithmetic-logical

unit.

Acoustical coupler A device that permits a terminal to be connected to the computer
via a telephone line. It connects to the telephone handset.

Address An identifying number or label for locations in the memory.

Algorithm A step-by-step solution to a problem in a finite number of steps. A specific
procedure for accomplishing a desired result.

ASCIl American Standard Code for Information Interchange. Widely used 7-bit
standard code. Also known as USASCII; IBM uses EBCDIC, which has 8 bits.

Assembler A program that converts symbolic instructions into machine macro-
instructions.

Backplane A board equipped with plugs interconnected by buses into which the
modules that make up a computer may be inserted. Also known as a motherboard.

BASIC Beginner's All-purpose Symbolic Instruction Code. Algebraic language devel-
oped at Dartmouth College. The language is easy to learn and use.

Binary A numbering system based on multiples of two using the digits 0 and 1.

Bit Abbreviation of binary digit. A single element in a binary number—eitheraOora
1. Bits are represented in a microcomputer by the status of electronic switches that can
be either on or off. Four bits equal a nibble; eight bits equal a byte.

Byte A group of adjacent bits, usually eight bits, which is operated upon as a unit by
the central processor.

CMOS Complementary Metal-Oxide Semiconductor. Technology that combines the
component density of p-channel MOS (PMOS) and the speed of n-channel MOS

(NMOS). Power consumption is very low.

Clock A device that generates regular pulses that synchronize events throughout a
microcomputer.

Central processor The central processor controls the operation of a microcomputer.
The central processor can fetch and store data and instructions from memory.

CRT Cathode-Ray Tube. An electronic vacuum tube that can be used for graphic dis-
play. Also refers to a terminal incorporating a CRT.

Compiler A program that translates high-level programming language into machine
language. May produce numerous macro-instructions for each high-level instruction,
unlike an assembler which translates item for item. When using a compiler, one cannot
change a program without recompilation.

Development system A microcomputer system having all the related equipment
necessary for hardware and software development.

Digital Pertaining to discrete integral numbers in a given base which may express all

GLOSSARY 325

326 GLOSSARY

the variables occurring in a problem. Represented electronically by 2 (binary) to 16
(hexadecimal) states at the present time. Contrasts with analog, which refers to a con-
tinuous range of voltage or current quantities.

Double density Method of doubling bit density on magnetic storage mediums.

Dynamic memory Storage of data on dynamic chips in which storage of a small
charge indicates a bit. Because the charge leaks over time, dynamic memory must be
periodically refreshed.

EBCDIC IBM's 8-bit code, similar to ASCII.

Editor A program that rearranges text. Permits the addition or deletion of symbols
and changes of format.

EIA-RS-232C Interface standard for data transmitted sequentially that is not syn-
chronous with the central processor.

EPROM Erasable-Progammable Read-Only Memory. A PROM that can be erased
and reprogrammed. Some EPROMs have a quartz window over the chip; data can be
erased by exposure to intense ultraviolet light; other EPROMSs may be erased electrical-

ly.
File A set of related records treated as a unit.

Flag A bit attached to a word for identification or for the purpose of signaling some
condition. Typical microprocessors include carry, zero, sign, overflow and half-carry
status flags.

Floating-point package A set of software routines that allows some microcomputers
to perform floating-point arithmetic without the addition of extra hardware.

FSK Frequency Shift Keyirg. Technique of transforming bits into two different fre-
quencies representing 0 and 1 for transmission over telephone or radio lines. The inter-
face device is called a modem.

Ground Electrical reference point of a circuit.
Hard-copy Printed output on paper.

Hardware The physical components, peripherals, or other equipment that make up a
computer system. Contrast with software.

Hexadecimal A numbering system based on multiples of 16 using the character 0 thru
9 and A thru F. For example, 0B hexadecimal equals 0000 1011 binary. One byte may
be encoded in exactly 2 hexadecimal symbols.

High-level language A programming language that is relatively independent of as-
sembler or machine language. The grammar often resembles English and requires a
compiler or interpreter to convert to executable code. Examples: BASIC, FORTRAN,

COBOL, ALGOL, PL/M, APL.

Instruction A step in a program that defines an operation together with the
address(es) of any data needed for the operation.

Interface A common boundary between two systems or devices. The hardware or
software necessary to interconnect two parts of a system.

Interrupt A break in the execution of a program usually caused by a signal from an

external device.

Kansas City standard Refers to a standard for cassette tape recordings of
EIA-RS-232C data. Eight cycles of 2400 Hz equals 1, and 4 cycles of 1200 Hz equals .

Least significant bit The binary digit occupying the right-most position in a number
or word, ie: 2° or 1.

LIFO Last-In, First-Out. Method of accessing the most recent entry, then the next
most recent, and so on.

Light pen Photosensitive device that can be used to change the display on a CRT by
generating a pulse at the point of contact.

Machine language Sets of binary integers that may be directly executed as instruc-
tions by the microcomputers without prior interpretation.

Mass storage Floppy disks, cassettes or tapes used to store large amounts of data.
Less accessible, but larger than main storage.

Memory Storage device for binary information.

Microcomputer A small computer system capable of performing a basic repertoire of
instructions. Includes a central processor, often contained on a single chip, memory,
170 devices, and power supply.

Microprocessor A central processor on a chip. A complete processor on a single chip,
manufactured using microminiature manufacturing techniques, known as LSI (large
scale integration).

Modem MOdulator—DEModulator. Device that transforms binary data into fre-
quencies suitable for transmission over telephone lines and back again.

Monitor A program that controls the operation of basic routines to optimize comput-
er time.

Most significant bit The binary digit occupying the left-most position in a number or
word, usually 2 or 128.

Octal A numbering system based on multiples of eight using digits 0 thru 7. Now
largely superseded by the hexadecimal system.

Operating system Software that operates the hardware resources of a microcomput-
er. The operating system may do scheduling, debugging, I/O control, accounting,
compilation, storage assignment, and data management.

Parity An extra bit that indicates whether a computer word has an odd or even num-
ber of 1s. Used to detect errors.

Peripheral Any piece of equipment, usually an I/O device, attached to the central
processor.

Programmable memory Storage in which access to new information is independent
of the address previously examined.

Read-only memory (ROM) Storage that cannot be altered. The information is writ-
ten at the time of manufacture.

Register A memory device directly accessible by the central processor used for the

GLOSSARY 327

328 GLOSSARY

temporary storage of a computer word during arithmetic, logical, or input/output op-
erations.

S-100 A 100-pin bus used in the popular 8080/Z80 system.

Software Programs that translate high-level languages into machine language, such
as compilers, operating systems, assemblers, generators, library routines, and editors.

Stack A technique of presenting programs sequentially. A stack is a LIFO structure
controlled by PUSH and POP instructions.

Tiny BASIC The BASIC programming language reduced to a simple form that per-
mits integer arithmetic and some string operations. Tiny BASIC usually occupies 4 K
or less bytes of memory.

Three-state Capable of existing in three logical states—0 (low), 1 (high), or undefined
(high-impedance), ie: floating.

UART Universal Asynchronous Receiver Transmitter. A transmitter that converts
serial to parallel and vice versa.

Word A set of bits that occupies one storage location and is treated as a unit. May
have any number of bits, but usually 4, 8, or 16.

Word processor A text editor that allows the user to modify text: formats, books, let-
ters, and reports.

INDEX

Accumulators, 27, 33
ADC, 51, 63
ADD, 49, 63
Addressing, 29, 32-33, 98, 105
capability, 32
high-order, 32
low-order, 32
AND, 34, 54
Arithmetic and Logic Unit (ALU), 21-22, 29
ASCII, 129, 131, 134, 138, 220
BASIC, 131, 183
Binary-coded decimal (BCD), 31, 61, 184
BIT, 75
Bits:
flag, 33
least significant (LSB), 184
manipulation, 32, 75
most significant (MSB), 184
start and stop, 139
Branching:
conditional, 80
unconditional, 79
Buffering, 98
address bus, 99
data bus, 100

-
Suzes, 22

&)
[#2)
*
)
(S]]
y 4
¥
(@]

bi-directional, 22, 100, 105
drivers, 93, 99-100
testing, 105
power, 98
structures, 22
voltage, 19
Bytes, 32
CALL, 82, 152
Capacitance, 14
Capacitors, 2, 5-6, 97
bypass, 14
charging time, 5
filter, 2, 4, 14
ripple factor of, 4
input, 14
sizing, 5
time constants of, 6
Carry, 28
flag, 51, 80
Cassettes, 121, 129, 145
interface, 113, 145, 148-149
Kansas City Standard, 146
software, 148
CCF, 60
Central processors (see also Microprocessors), 21-22, 27
architecture, 27
control, 29, 32
registers, 27-29
status, 33
synchronizing, 97
testing, 127
timing, 92

Characters, 213
format, 214
Chip select, 116
Circuits:
complexity, 21, 23
integrated, 10, 22
layouts, 14
protective, 10
reset, 97
Clocks, 91, 209
periods, 91
real-time, 208
single-stepping, 92, 105
testing, 105
COM 8046, 220
COM 2017, 220
Communication, 138
asynchronous, 139, 142
parallel and serial, 138
software, 148
signal levels, 142
standard, 144
Cooling, 17
Control section, 22
Controllers, intelligent, 183
Converters:
analog-to-digital, 184, 189
analog to pulse width, 189
binary-ramp counter, 191
successive approximation, 194
315-digit AC DC, 199
software, 205
digital-to-analog, 184
calibration, 188
multiplying, 186
R-2R, 184
weighted-resistor, 184
Cost, 23
CP, 57
CPD, 48
CPDR, 48
CPl, 47
CPIR, 47
CPL, 60
CRT 8002, 213
CRT 5027, 213
Currents:
continuous, 6
regulator, 5
surge, 6
DAA, 61
Data, 22, 33, 112, 116
acquisition, 198, 208
ASCII, 138
communication, 138
formats, 32
high- and low-order, 33
rates, 142, 148, 220
DEC, 59, 65
Decoding:
hexadecimal, 135
1/0, 91, 105-106, 108
memory, 91, 105-106, 110
testing, 111
Demultiplexers, 108, 206

INDEX 329

DI, 62
Diodes, 3, 5-6, 97
bridges, 5-6, 16
silicon, 3
zener, 8, 10
Direct memory access (DMA), 99, 129
Displays:
cathode-ray tube (CRT), 129, 138, 213
hexadecimal, 134
light-emitting diode (LED), 93, 121, 129, 134, 153
octal, 134
video, 121, 183, 213
visual, 129, 134
DINZ, 82
Drivers:
bus, 93
display, 93
LED, 93
El, 62
8080A, 24, 31, 91
8212, 100
EX, 44
EXX, 44
Fanout, 98
Farads, 5
Flags, 33
carry (Q), 51, 80
condition, 33-34

CPU control, 32, 60
cycle, 91

exchange, 28, 31, 44
execution, 92

fetch cycle, 29, 91-92
formats, 32

input and output, 32, 85, 88, 122

jump, 32, 78
load, 31
8-bit, 34
16-bit, 39
pop, 43
push, 42
restart, 152
rotate and shift, 31, 66
sets, 33
single-stepping, 92
testing, 105
types, 31
Interfaces:
cassette, 145
tuning, 149
clock, 209
RS-232C, 213
serial, 129, 138, 142
3v;-digit AC/DC, 199
testing, 205
Interrupts, 30, 62, 84

status, 33 non-maskable, 30, 84
zero (2. 75, 80 page address, 29
Flip-flops. 92, 132 JP, 78
Frequency shift keying (FSK), 146 IR, 79
Full-wave oridges (see also Rectiriers), 3, 5 Kansas City Standard, 146
Fuses, 17 Keyboards, 113, 121, 129
Grounds, 15 ASCII, 129, 134
buses, 15 bounce, 132

encoders, 131-132, 220
hexadecimal, 133
input software, 163

commen, 14
references, 11
single-point. 15

HALT, 30, ¢2 KIR2376, 220

Heat sinks, 16 LD, 34

HP7340, 135 LDD, 46

M, 62 LDDR, 46

IN, 85, 122 LD, 45

INC, 58, 64 LDIR, 46

IND, 87 Light-emitting diodes (LED), 93, 121
INDR, 87 drivers, 93

Inductance, 14 Loads, 7, 99

INI, 86 TTL, 93

INIR, 86 Logic analyzers, 91, 93, 99

Low-power Schottky TTL (LSTTL), 98
Machine cycles, 29, 91
Memory, 21, 32, 91, 112
addresses, 32, 97, 110
banks, 110, 117
instructions, 32, 85 contents, 34
ports, 98, 105, 108 decoding, 91, 105, 110
read, 106 testing, 111
registers, 91 direct memory access (DMA), 99
request, 30, 106 display and replace, 151, 153
testing, 122, 127 dynamic, 116
write, 106 erasable-programmable read-only (EPROM), 112, 115, 152
Instructions, 21 erasers, 177
arithmetic and logical, 31 programmers, 173

Input, 21, 83, 122
filters, 2-3
Input/output, 121, 129
decoding, 91, 1C5
testing, 111

8-bit, 49 automatic, 174
general purpose, 60 manual, 173
16-bit, 63 locations, 28

bit manipulation, 32, 75 map, 117

block transfer and search, 31, 44
call and return, 32, 82, 152

page, 213
programmable, 27, 110

330 INDEX

random-access (RAM), 116
read, 30, 91, 106
cycles, 117
read-only (ROM), 110, 112, 173
character-generator, 213
diode-matrix, 113
programmable (PROM), 112
read/write (RWM), 112, 116
refresh, 29-30, 116
request, 30, 116
slow, 92
static, 116
storage, 112, 121, 145
testing, 127
write, 30, 91, 106
cycles, 117
Microcomputers, 21
construction, vii, 27, 91
definition of, 21
design of, 21, 27
single-board, 183
system, 22
Microprocessors {see also Central processors), 21
architecture, 21, 27
common, 24
definition of, 22
280, 24, 27
Monitors (see also Software’, 113, 118, 134, 151, 173
cold start, 151
command recognition, 161
execute, 151, 153, 171
keyboard input, 163
memory display and replace, 151, 153, 168
register dispiav anc rep.ace, 151, 154, 169
restart, 1e2
serial input output. 151, 156-157, 159
UART ciagnostic, 156
warm start, 131-152, 160
Multiplexers, 22, 117
NEG, 60
No operation (NOP), 30, 32, 61-62
Nyquist criterion, 197
Operands, 35
Operating systems, 151
Operation code, 29
OR, 34, 55
Oscilloscopes, 91, 93
OTDR, 90
OTIR, 89
OUT, 88, 122
OUTD, 89
OUTI, 88
Output, 22, 88, 122
Overflow, 28
Opvervoltage protectors, 17
Parity, 28
Pascal, 183
Peak inverse voltages (PIV), 4
Peripherals, 121, 129, 151
synchronizing, 130
POP, 43
Ports, 33, 85, 98, 105, 108
hexadecimal output, 136
octal, 136
parallel and serial, 129, 183
Power dissipation, 4, 15
Power supplies, 1, 15
C 1
Printed-circuit boards, 21
Programs:

debugging, 153
development, 153
PUSH, 42
Rectifiers (see also Full-wave bridges), 6, 14
bridge, 2, 5, 16
full-wave, 3, 5
silicon-controlled (SCR), 18-19
Refresh, 29-30, 116
Registers, 27-28
accumulator (A), 27-28, 33
contents, 34
display and replace, 151, 154
8-bit (B, C, D, E, H, L), 27, 112
flag (F), 27-28, 33
general purpose, 28
index (IX, IY), 29
instruction, 29
interrupt page address (I), 29
main and alternate, 28-29
memory refresh (R), 29
pairs, 28, 33, 39
program counter (PC), 28, 32, 78, 82, 152
sets, 27-28
16-bit (BC, DE, HL), 27
special purpose, 28
stack pointers (SP), 28, 42, 152
Regulators, voltage (see Voltages, regulators)
Requests, 106
input/output, 106
memory, 106
read, 106
write, 106
RES, 78
Resets, 62, 97, 152
automatic, 97
manual, 97
testing, 105, 127
Resistance, 4, 6, 15
series, 6, 8
thermal, 16
Resistors, 19, 185
ladder, 185
variable, 8
Resolution, 184, 187, 198
RET, 83
RETI, 84
RETN, 84
Ripple factor, 4
RL, 68
RLA, 66
RLC, 67
RLCA, 66
RLD, 74
RR, 70
RRA, 66
RRC, 69
RRCA, 66
RRD, 75
RS-232C, 144, 213
RST, 84, 152
Sample rates, 194, 197
SBC, 53, 64
SCF, 60
SET, 76
78HO0s, 10, 16
7812, 12
7912, 12
Short-circuits, 18
Sign, 28
Sine waves, 3

INDEX 331

6800, 24 busing and control logic, 91
6502, 24 pinout, 29
SLA, 71 280 Applications Processor (ZAP), vii, 1, 91
Software (see also Monitors), 24 testing, 123, 127
monitor, 151 Zero, 28
single-stepping, 92 flag, 75, 80
SRA, 72
SRL, 73
Stacks, 28, 32, 42, 82, 152
Strobes:

data-ready, 130
duration, 132
key-pressed, 139
SUB, 52
Subroutines, 28, 82, 118
Surge currents, 6
Terminals, 213
Testing:
dynamic, 127
static, 123
Thermal considerations, 15
Timers, 130
Transformers. 1, 6
primary input to, 3
secondary output from, 3-4
Transistor-transistor logic (TTL), 93, 98, 217
levels, 142
loads, 93
low-power Schottky (LSTTL?, ¢8, 217
outputs, 138, 146
Transistors, 8, 17
FAMNOS. 115, 173
series-pass, 10
wide-ranc, 14
2114, 117
2102A, 117
2708, 113, 173
2716, 113, 17
Universal svnchrenous receiver/transmitter (UART), 139, 220
diagnostic, 136
output, 119
pinout, 139
Voltages:
alternating current, 1
compara:ors, 7-8
control element. 7
direct current 2C, 1
drops, 3, 6. 11, 14
input and output, 7, 14
loads, 5
peak, 4, 15
peak inverse PIV), 6
reference, 7, 10
regulators, 1, 3-4, 7, 10, 16
choosing, 10
overloads, 10
series, 8
three-terminal, 9-10
ripple, 4-5, 14
root mean square (RMS), 3, 6
sine waves, 2
transients, 6
translators, 7-8
VAC, 1, 3
waveforms, 3-4
Voltmeters, 93, 184, 199
Waits, 30, 92
XOR, 56
280, 24, 27
bus structure, 25

332 INDEX

15.95

Build Your Own Z80 Computer:
Design Guidelines and Application Notes

““There is a major need for a book such as this. The information is not readily
available elsewhere. Or anywhere. There are dozens (hundreds?) of microprocessor
books, but nearly all deal with software and treat hardware as abstractions or block
diagrams. Ciarcia's book is literally filled with very useful and practical ‘‘hands-on’’
hardware advice, tips and techniques....The book will do for the reader what no
other microprocessor book or manufacturer’s literature | know of does: It will
enable a person to actually buy individual parts and assemble them into a working
microcomputer—with peripherals and options! That's very important. Too bad we
couldn’t have had such a book years ago."

—Forrest Mims, Il
Contributing Editor of POPULAR ELECTRONICS

““To my knowledge the material covered in this book is not available elsewhere.
There is sufficient detail to enable an individual with previous experience to assemble
a working Z80-based microcomputer from the component level. The design trade-
offs, the circuits, the software, and the test circuits and procedures are discussed at
a level sufficient for the book to have educational value even if one did not actually

construct a Z80-based system.”’
—Joseph Nichols
Digital Analysis Corporation

About the Author _
Steve is a computer consultant, electrical engineer, author of BYTE magazine's most ’ﬁvpular column,
“‘Ciarcia's Circuit Cellar,”” and a ‘‘national technological treasure." ;

ISBN 0-07-010962-1

	z80goodcoversmaller
	Note about Z80 book
	BYOZ80-wocover.pdf
	FrontCover
	Intro and TOC
	01 titlepage
	02 copyright page
	03 bigtitlepage
	04 dedication
	05 introduction
	06 introduction page 2
	07 table of contents

	Chapter 1 - Power Supply
	page001
	page002
	page003
	page004
	page005
	page006
	page007
	page008
	page009
	page010
	page011
	page012
	page013
	page014
	page015
	page016
	page017
	page018
	page019

	Chapter 2 - Central Processor Basics
	page021
	page022
	page023
	page024
	page025

	Chapter 3 - The Z80 Microprocessor
	page027
	page028
	page029
	page030
	page031
	page032
	page033
	page034
	page035
	page036
	page037
	page038
	page039
	page040
	page041
	page042
	page043
	page044
	page045
	page046
	page047
	page048
	page049
	page050
	page051
	page052
	page053
	page054
	page055
	page056
	page057
	page058
	page059
	page060
	page061
	page062
	page063
	page064
	page065
	page066
	page067
	page068
	page069
	page070
	page071
	page072
	page073
	page074
	page075
	page076
	page077
	page078
	page079
	page080
	page081
	page082
	page083
	page084
	page085
	page086
	page087
	page088
	page089
	page090

	Chapter 4 - Build Your Own Computer
	page091
	page092
	page093
	page094
	page095
	page096
	page097
	page098
	page099
	page100
	page101
	page102
	page103
	page104
	page105
	page106
	page107
	page108
	page109
	page110
	page111
	page112
	page113
	page114
	page115
	page116
	page117
	page118
	page119
	page120
	page121
	page122
	page123
	page124
	page125
	page126
	page127
	page128

	Chapter 5 - The Basic Peripherals
	page129
	page130
	page131
	page132
	page133
	page134
	page135
	page136
	page137
	page138
	page139
	page140
	page141
	page142
	page143
	page144
	page145
	page146
	page147
	page148
	page149

	Chapter 6 - The ZAP Monitor Software
	page151
	page152
	page153
	page154
	page155
	page156
	page157
	page158
	page159
	page160
	page161
	page162
	page163
	page164
	page165
	page166
	page167
	page168
	page169
	page170
	page171

	Chapter 7 - Programming an EPROM
	page173
	page174
	page175
	page176
	page177
	page178
	page179
	page180
	page181

	Chapter 8 - Connecting ZAP to the Real World
	page183
	page184
	page185
	page186
	page187
	page188
	page189
	page190
	page191
	page192
	page193
	page194
	page195
	page196
	page197
	page198
	page199
	page200
	page201
	page202
	page203
	page204
	page205
	page206
	page207
	page208
	page209
	page210
	page211

	Chapter 9 - Build a CRT Terminal
	page213
	page214
	page215
	page216
	page217
	page218
	page219
	page220
	page221
	page222

	Appendix A - Construction Techniques
	page225
	page226
	page227

	Appendix B - ASCII Codes
	page229
	page230
	page231

	Appendix C1 - Intel 2708 8K EPROM
	page235
	page236
	page237

	Appendix C2 - Intel 2716 16K EPROM
	page239
	page240
	page241
	page242

	Appendix C3 - Intel 2102 1Kx1 Bit SRAM
	page243
	page244
	page245
	page246

	Appendix C4 - Intel 2114A 1024x4 Bit SRAM
	page247
	page248
	page249

	Appendix C5 - Intel 8212 8-Bit IO Port
	page251
	page252
	page253
	page254
	page255
	page256
	page257
	page258

	Appendix C6 - SMC KR2376 Keyboard Encoder ROM
	page259
	page260
	page261
	page262

	Appendix C7 - SMC 2502 2017 UART
	page263
	page264
	page265
	page266
	page267
	page268
	page269

	Appendix C8 - SMC 5027 CRT VTAC
	page271
	page272
	page273
	page274
	page275
	page276
	page277
	page278

	Appendix C9 - SMC 8002 CRT VDAC
	page279
	page280
	page281
	page282
	page283
	page284
	page285
	page286

	Appendix C10 - SMC 8046 Baud Rate Generator
	page287
	page288
	page289
	page290
	page291

	Appendix D - ZAP Operating System
	page295
	page296
	page297
	page298
	page299
	page300
	page301
	page302
	page303
	page304
	page305

	Appendix E - Z80 CPU Technical Specs
	Appendix E - Z80 CPU Tech Specs

	Glossary
	page325
	page326
	page327
	page328

	Index
	page329
	page330
	page331
	page332

	BackCover

