

by Eric Minick, Jeffrey Rezabek,
and Claudia Ring

Application Release
& Deployment

IBM Limited Edition

Application Release & Deployment For Dummies®, IBM Limited Edition
Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used
without written permission. IBM and the IBM logo are registered trademarks of IBM. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETE-
NESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES,
INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE.
NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITU-
ATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PRO-
FESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRIT-
TEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For Dummies
book for your business or organization, please contact our Business Development Department in the
U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/custompub. For
information about licensing the For Dummies brand for products or services, contact
BrandedRights&Licenses@Wiley.com.

ISBN: 978-1-118-84448-9 (pbk); ISBN: 978-1-118-84532-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
www.wiley.com/go/custompub
mailto:info@dummies.biz
http://Dummies.com
mailto:BrandedRights&Licenses@Wiley.com

Table of Contents
Introduction ... 1

About This Book .. 1
Icons Used in This Book .. 2
Beyond the Book .. 2

Chapter 1: What Drives Effective Release and
Deployment? .5

Following the Life Cycle of Software Development 5
Reaping the Benefits of Effective Software Delivery.............. 7

Getting to market faster .. 8
Decreasing expensive failures .. 8
Scaling complex releases and deployments................. 9

Identifying Software Delivery Practices 10
Agile ... 11
Continuous Integration ... 11
Continuous Delivery .. 12
ITIL ... 12

Taking a DevOps Approach to Software Delivery................ 13

Chapter 2: Applying the Gold-Standard Deployment
Process .15

The Three Pillars of Gold-Standard Deployment 15
Use the same process ... 16
Automate .. 17
Perform incremental changes 18

The Positive Effects of Gold-Standard Deployment............. 18
Automating and using the same deployment process...19
Performing incremental releases 19
Managing defects ... 20

Chapter 3: Choosing Solutions for Application
Release and Deployment .21

Preparing for Changes ... 21
Role changes .. 22
Process and solution changes 23

Evaluating Release and Deployment Solutions 23
Evaluating Release Coordination Solutions 25

Application Release & Deployment For Dummies, IBM Limited Editioniv

Chapter 4: Rolling Out the Solution 27
Implementing an Application Deployment Automation

Solution ... 27
Choose the ideal time for deployment 28
Create a production-like environment 29
Practice production-style deployments 30
Design for production first ... 30

Implementing a Release Coordination Solution 31
Identify a realistic release model 32
Choose an implementation path 32

Chapter 5: Ten Myths about Application
Release and Deployment .35

Automating Deployment Means Writing Scripts 35
Development Teams Create the Best Deployment

Processes .. 36
Complex Releases Can Be Easily Managed without

Specialized Solutions ... 36
Continuous Delivery Means Constant Production

Releases ... 37
Automation Reduces Quality and Control 37
A Spreadsheet Is a Good Release-Management Tool 38
One Large Release Is Less Risky Than Several

Small Ones... 38
Automation Is Separate from the Build Process 39
A Backlog of Deployables Doesn’t Indicate a DevOps

Problem ... 40
Release Coordination Solutions Fix All Problems................ 40

iv

Publisher’s Acknowledgments
We’re proud of this book and of the people who worked on it. For details
on how to create a custom For Dummies book for your business or orga-
nization, contact info@dummies.biz or visit www.wiley.com/go/
custompub. For details on licensing the For Dummies brand for products
or services, contact BrandedRights&Licenses@Wiley.com.

Some of the people who helped bring this book to market include the
following:

Acquisitions, Editorial, and Vertical
Websites

Project Editor: Carrie A. Burchfield

Acquisitions Editor: Connie Santisteban

Editorial Manager: Rev Mengle

Business Development Representative:
Sue Blessing

Custom Publishing Project Specialist:
Michael Sullivan

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary C. Corder, Editorial Director

Publishing and Editorial for Consumer Dummies

Kathleen Nebenhaus, Vice President and Executive Publisher

Composition Services

Debbie Stailey, Director of Composition Services

Business Development

Lisa Coleman, Director, New Market and Brand Development

www.wiley.com/go/custompub
www.wiley.com/go/custompub
mailto:info@dummies.biz
http://BrandedRights&Licenses@Wiley.com

Introduction

S
oftware applications are large drivers of business
revenue, and the timely release and deployment of

those applications has become a critical part of the business
life cycle. After all, what good is it to create an innovative
application if you can’t deploy it to test environments
efficiently or deliver it to users on schedule?

Traditionally, deployment is defined as the promotion of com-
ponents from one environment to the next. Release encom-
passes the deployment of a whole application or multiple
integrated applications to production. Release and deploy-
ment differ but have the same objective: to deliver quality
applications.

 Because release and deployment have similar goals, the terms
are often used interchangeably. For purposes of this book, we
refer to application release and deployment as defined in the
preceding paragraph and distinguish them as required.

Throughout the book, we give you insight into the differences
between application release and deployment. We also show
you how to leverage release and deployment solutions to help
your organization speed time to market, drive down cost, and
reduce risk.

About This Book
We wrote this book to serve as a relatively simple introduc-
tion to what can be a very complex topic. Use it as a refer-
ence, not as a manual. If you’re interested in certain topics
but not in others, feel free to read only certain chapters. Also
feel free to skip around. You don’t have to read the chapters in
order.

Application Release & Deployment For Dummies, IBM Limited Edition2

Icons Used in This Book
You’ll find the following icons in the margins of this book:

 The Tip icon points out helpful information.

 Anything that has a Remember icon is something that you’ll
want to keep in mind.

 You don’t have to read Technical Stuff material unless you
want deeper understanding of a topic.

 Be sure to read anything marked with a Warning icon, which
alerts you to risk.

Beyond the Book
Throughout this book, we talk about the benefits of applica-
tion deployment, automation, and release coordination
solutions. We include a few industry success stories as well
as best practices.

You can also find more information on application release and
deployment by visiting the following web pages:

 ✓ IBM DevOps Solutions for Application Release and
Deployment: http://ibm.co/devopsRaD

 ✓ IBM UrbanCode Deploy product page: http://ibm.
co/UCDeploy

 ✓ IBM UrbanCode Release product page: http://ibm.
co/UCRelease

 ✓ 7 Proven Practices to Strengthen Release Management:
http://ibm.co/7ProvenPractices

 ✓ The ABCs of Continuous Release and Deploy in a
DevOps Approach: http://ibm.co/ABCsRaD

http://ibm.co/devopsRaD
http://ibm.co/UCDeploy
http://ibm.co/UCDeploy
http://ibm.co/UCRelease
http://ibm.co/UCRelease
http://ibm.co/7ProvenPractices
http://ibm.co/ABCsRaD

 Introduction 3
Finally, you can read these other IBM Limited Edition For
Dummies books:

 ✓ DevOps For Dummies: ibm.co/devopsfordummies

 ✓ Agile For Dummies: ibm.co/agilefordummies

 ✓ Service Virtualization For Dummies:
ibm.co/servicevirtualization

Application Release & Deployment For Dummies, IBM Limited Edition4

Chapter 1

What Drives Effective
Release and Deployment?

In This Chapter
▶ Tracking the software development life cycle

▶ Understanding the business benefits of effective software delivery

▶ Understanding the technical practices that drive application
development

A
n application takes a tremendous journey before being
introduced to users in production. This journey is

known as the software development life cycle (SDLC). In this
chapter, we walk you through the elements of this cycle. Then
we discuss the business and technical drivers of software
release and deployment.

Following the Life Cycle of
Software Development

The SDLC can incorporate every aspect of an application’s
life, from the initial planning to retirement. In this section, we
discuss an important part of the SDLC that we call the delivery
pipeline, which consists of multiple environments — deploy-
ment targets for a set of items that work together toward
a common goal. Environments build on one another to
increase the quality of an application before it reaches its
intended user. Applications don’t have to go through a set
number of environments, but we’ve noticed four fairly typical
environments:

Application Release & Deployment For Dummies, IBM Limited Edition6
 ✓ Development (DEV): In the Development environment,

developers build and deploy code in a test lab, and the
development team tests the application at the most basic
level. When the application meets certain criteria for
advancement, it moves to the next environment.

 ✓ System Integration Testing (SIT): In the System
Integration Testing environment, the application is tested
to ensure that it works with existing applications and
systems. When the application meets the criteria of this
environment, it’s deployed to the next environment.

 ✓ User Acceptance Testing (UAT): In the User Acceptance
Testing environment, the application is tested to ensure
that it provides the required features for end users. This
environment usually is production-like (see Chapter 3).
When the application passes these requirements, it’s pro-
moted to the final environment.

 ✓ Production (PROD): In the Production environment,
the application is made available to users. Feedback
(see the nearby sidebar) is captured by monitoring the
application’s availability and functionality. Any updates
or patches are introduced in the DEV environment and
follow the same cycle.

Figure 1-1 shows a simple diagram of these four environments.

Development DEV SIT UAT PROD End user

Figure 1-1: The four basic environments of SDLC.

A deployment is defined as the promotion of components
from one environment to the next. Release encompasses the
deployment of a whole application or multiple integrated
applications to production. The image in Figure 1-2 helps
illustrate the difference a little more.

7 Chapter 1: What Drives Effective Release and Deployment?

Development DEV SIT UAT PROD

RELEASE

DEPLOYMENTS

Figure 1-2: A visualization of the difference between a release and a
deployment.

Running a feedback loop
Some software delivery practices
involve monitoring the application in
every environment and then return-
ing feedback to the development
team. Based on the new require-
ments, the development team
deploys the modified application to

the DEV environment, and the cycle
starts again. After promotion to each
succeeding environment, the appli-
cation is monitored, and feedback is
returned to the development team.
This process is known as the feed-
back loop.

Reaping the Benefits of Effective
Software Delivery

The need to provide software that adapts and responds to
business and customer expectations drives the need for
improved application release and deployment practices. The
IBM Institute of Business Value reports that the number of
organizations that value effective software delivery vastly
outweighs the number of organizations that actually provide
effective software delivery. Check out Figure 1-3 for more
information.

In the following sections, we discuss some of the business
benefits of efficient software delivery.

Application Release & Deployment For Dummies, IBM Limited Edition8

Getting to market faster
The amount of time that customers are willing to wait for a
desired new service keeps shrinking. Customers expect and
crave instant gratification. Just think how often your mobile
applications require updates driven by customers. If a service
isn’t available at the exact moment when a customer wants
it, that customer is only a click or tap away from landing on a
competitor’s web page.

 With the right application release and deployment methods,
both upstart and established companies can quickly provide
the services that customers demand. As effective software
delivery is a key to business success, equipping your release
and deployment teams with the right people, process, and tools
can make the difference between long-term success and failure.

Decreasing expensive failures
The cost of a deployment failure depends on the environment
in which the failure occurred. For the most part, failures in
early environments, such as DEV and SIT (refer to Figure 1-1
earlier in this chapter), are far less expensive than failures in
production. Finding an application error in these environments
allows you to make a correction that may prevent a critical
break in production — or worse, a critical breakdown for users.
Forbes.com noted that in the summer of 2013, Amazon expe-
rienced a 30-minute outage that resulted in a projected loss of
$66,240 per minute, or almost $2 million in total lost revenue.

86%

leverage software delivery
effectively today

 of those who
 leverage software
 delivery effectively
 today outperform
their competitors

of companies believe software
delivery is important or critical

69%

25%

86%
But only

25%

Figure 1-3: The value of effective software delivery.

http://Forbes.com

 Chapter 1: What Drives Effective Release and Deployment? 9

The cost of failure certainly drives the need for improved
application release and deployment practices. In later chap-
ters, we look at ways to prevent these failures from occurring.

Scaling complex releases
and deployments
Organizations now tend to have more deployment targets
than ever before on a variety of devices: local, cloud-based,
and physical and virtual machines. Scaling a highly manual
process up to an efficient, enterprise-wide system of interde-
pendent application releases while maintaining security,
traceability, and visibility is a difficult task.

The number of manual steps that may go into a single applica-
tion’s release may make up a laborious process, but the appli-
cation inevitably ends up in production. With larger, more
complex releases, risk grows with the number of interdepen-
dent applications being released. Manual processes combined
with primitive release tracking solutions such as spreadsheets
invite human error and, inevitably, costly release failures.

Estimating the cost of failure
A failure not only can cause a loss of
revenue but also can cost your orga-
nization more money to fix the failure.
You can begin estimating the cost of
failure of an application release by
calculating an hour’s pay for an engi-
neer who is responsible for correct-
ing the problem. A rough calculation
of additional costs is 20 percent to 40
percent of salary. Here’s the formula:

Estimated annual salary / 52 weeks
per year / 40 hours per week * 1.3

If you have an engineer who makes
$80,000, for example, a reasonable
estimate of hourly total cost is

80,000 / 52 / 40 * 1.3 = $50

Now use this formula for every
person on the recovery team, and
multiply the result by the average
number of hours spent taking correc-
tive action. If a six-person cleanup
team spends ten hours fixing a
broken release, for example, the cost
is $3,000 for that single release. That
cost is merely productivity cost, how-
ever; it doesn’t account for opportu-
nity cost: the loss in revenue or the
intangible potential loss of credibility
due to the failure.

Application Release & Deployment For Dummies, IBM Limited Edition10
As applications scale to enterprise complexity, release teams
often scale to dozens or hundreds of people, adding another
layer of complexity. When IT teams scale to manage applica-
tion complexity, job responsibilities and specialties become
more siloed, and communication becomes less frequent as
teams perform their respective processes. Silos occur due to
job specialization as well as differences in time zones, cities,
and countries. Distributed teams using different solutions
and processes often discover that these differences double or
triple their efforts and make them unable to deliver on time.

The coordination of each deployment, each process, and each
associated set of manual steps is nearly impossible to execute
without the use of a specialized tool. Using a specialized tool
can help you coordinate each deployment, each process, and
each set of deployment steps, and make them visible to each
person involved in the release or deployment.

 If you have ten steps to deploy an item to a server, and you go
from one to ten servers, you go from having ten manual steps
to having 100. Then, if you go from having one deployment
item to ten items, you have another factor of ten, producing
1,000 manual steps. Manual processes won’t scale as these
three levels of complexity (number of items deployed, number
of servers, and number of steps per deployment) come
together to push exponential growth.

Organizations that can establish an efficient release and
deployment process can keep up with the pace of develop-
ment and can release smaller batches of applications, or even
single changes or versions, at a time. Efficiency reduces risk
and allows the organization to focus on timely satisfaction of
business needs instead of process.

Identifying Software
Delivery Practices

Several software delivery practices and methodologies enable
organizations to speed time to market, reduce errors, and
scale to enterprise level. Many organizations use a blend of
approaches. Among the most popular practices are Agile,

 Chapter 1: What Drives Effective Release and Deployment? 11
Continuous Integration, Continuous Delivery, and ITIL, all of
which we discuss in the following sections. Agile, Continuous
Integration, and Continuous Delivery build on each other to
help push applications to production.

Agile
As technology has advanced in leaps and bounds, customers
have grown less patient and more demanding. The acceler-
ated pace of change required to remain competitive in the
market triggered the adoption of Agile practices.

Agile emphasizes focus on customer needs, small frequent
releases, embrace of change, and collaboration among mem-
bers of the development team. Unlike the traditional water-
fall method of software development, Agile de-emphasizes
extensive planning so that developers aren’t locked into
unchangeable plans. Agile focuses on smaller deliverables
that allow developers to make changes as the need for
change arises.

 For more information, see Agile For Dummies, IBM Limited
Edition, at ibm.co/agilefordummies.

Continuous Integration
Continuous Integration (CI) spun out from the Agile principle
of regularly integrating code and testing builds to validate
those integrated changes. Using CI, developers regularly
commit to a common code line and integrate their changes
with those of the other team members and with existing code.
By sharing code quickly, they avoid the pain of waterfall’s
late integration phase and find problems faster. Developers
should commit whenever a small block of code is complete —
generally, at least once a day.

 CI is facilitated by the use of a solution that automatically
builds newly integrated changes when they’re checked in.
Often, automatic verification testing accompanies the auto-
matic build so that defects can be found and addressed faster.
This feature is especially powerful when combined with
Continuous Delivery, discussed in the next section.

Application Release & Deployment For Dummies, IBM Limited Edition12
 Combined with Agile development practices, CI is another

step toward high-frequency, high-quality releases. It allows
development teams to produce testable builds at a very high
rate. It also puts more pressure on operations teams to deploy
more frequently to later environments.

Continuous Delivery
Continuous Delivery (CD) is the next enhancement of CI and
automatically deploys successful builds that have been quali-
fied to test environments, triggering automated tests. Teams
implementing CD seek to always have builds tested, enabling
the business to choose to release features at any time with
confidence.

 CD takes its name from the Agile Manifesto and was created
in response to the bottleneck that Agile and CI practices
exposed for operations teams. As development teams began
moving quickly and pushing out a high volume of builds,
operations teams were pressured by a building backlog that
needed to be promoted to production. Differences in lan-
guage, platform, and testing further weighed down operations
teams as they looked for ways to ensure a successful applica-
tion release.

 Just because an IT professional says that he’s doing CD
doesn’t necessarily mean that he’s deploying all the way
to production. He may have implemented CD practices but
could be hitting blockers — physical or technical obstacles
that prevent a task from being completed — elsewhere in the
SDLC. These blockers contribute to an exponential increase in
risk, as more changes are accumulated in increasingly larger
batches that wait to be deployed at once. The ideal form of
CD uses automation to move an application to production, but
you have major hurdles to overcome before you can achieve
the benefits across the enterprise. We touch on these hurdles
in Chapter 2.

ITIL
Information Technology Infrastructure Library (ITIL) is a set of
best practices and processes that aid IT service management.
ITIL consists of five major life cycles that advise practitioners
on best practices to provide specific services for users.

 Chapter 1: What Drives Effective Release and Deployment? 13
The concepts in ITIL provide vendor-neutral, nonprescriptive
practices that can be used in any industry. Most organizations
that practice ITIL do so because they need governance, risk
management, and control of their release and deployments.

 Some ITIL shops are reluctant to automate because they think
that going faster puts them at greater risk of making errors. In
fact, automation can reduce risks and improve control, visibil-
ity, and auditability.

Taking a DevOps Approach
to Software Delivery

DevOps is an enterprise capability for continuous software
delivery that enables clients to seize market opportuni-
ties and reduce time to customer feedback. DevOps applies
Agile and lean principles across the software supply chain
to remove waste and bottlenecks. DevOps is made up of four
major capabilities across the SDLC:

 ✓ Plan and Measure focuses on lines of business and their
planning processes. It means understanding and increas-
ing the effectiveness measures of these processes and
the application portfolio that they cover.

 ✓ Develop and Test focuses on collaborative development,
CI, and continuous testing. It focuses on streamlining
development and testing teams’ capabilities.

 ✓ Release and Deploy enables the creation of the
Deployment Pipeline for Continuous Release and
Deployment.

 ✓ Monitor and Optimize includes the practices of continu-
ous monitoring, customer feedback, and optimization to
monitor how applications are performing post-release,
allowing businesses to adapt their requirements as
needed.

 For more information on DevOps, view DevOps For Dummies
at ibm.co/devopsfordummies.

Implementing release coordination and deployment automa-
tion solutions are keys to solving a DevOps problem in your
organization, as we discuss in Chapters 3 and 4.

Application Release & Deployment For Dummies, IBM Limited Edition14

Chapter 2

Applying the Gold-Standard
Deployment Process

In This Chapter
▶ Recognizing the three pillars of a gold-standard deployment process

▶ Seeing the effects of a gold-standard deployment process

I
n this chapter, we focus on addressing both business and
technology drivers (see Chapter 1) by applying the gold-

standard deployment process. At the end of the chapter, we
show how applying a gold-standard deployment process can
positively affect a release.

The Three Pillars of Gold-
Standard Deployment

To ensure a successful application release, start by imple-
menting the three pillars of the gold-standard deployment
process:

 ✓ Use the same process.

 ✓ Automate.

 ✓ Perform incremental changes.

We discuss these pillars in detail in the following sections.

Application Release & Deployment For Dummies, IBM Limited Edition16

Use the same process
One of the main problems with scaling application deploy-
ments to more complex and higher volumes is that siloed
teams and specialists create custom processes to fit their own
responsibilities.

Deployment needs vary from team to team:

 ✓ Developers want to deploy and test quickly to implement
more application changes. They often create shortcuts in
the deployment process by writing scripts or by skipping
burdensome steps that may be required for application
performance in production.

 ✓ Testing teams strive to mimic the pace of development
teams, but they understand the need to take their time
in testing both the deployment process and the applica-
tions. These teams often create their own deployment
processes to get to testing faster and avoid delays.

 ✓ Operations teams can tolerate a slower pace. Because
they’re responsible for keeping business-critical sys-
tems running, they can’t endure the risks associated
with rapid deployments. Their deployment process is
designed to keep the production environment running
smoothly.

When deployment processes differ between teams and target
environments, the chance of errors increases. Undocumented
steps, environmental differences, and lack of input from all
teams increase the chances of deployment failure.

To reduce the risk that comes from using different deploy-
ment processes, use the same deployment process when
promoting from environment to environment throughout the
software development life cycle (SDLC) and through the
continuous delivery pipeline to production.

 When you use the same deployment process across the
SDLC, you can test both the application and the deployment
process.

 Chapter 2: Applying the Gold-Standard Deployment Process 17
The preferred method of standardizing the deployment pro-
cess is to begin your design in production and work back-
ward. Although this practice requires more thought, time, and
effort up front, if you design the process for the move to pro-
duction first, you can remove the unnecessary steps as you
work your way back to earlier environments. We discuss this
topic in more detail in Chapter 4.

Automate
Manual or half-scripted steps in a deployment process
increase the risk of deployment failure. Even skilled opera-
tors make mistakes, and error is more probable when humans
must run through a long list of manual steps. A deployment
process (automated or manual) should include predefined
gates or approvals that a team must perform or meet for the
deployment to enter the next stage. Automating the deploy-
ment process, however, helps you scale, get to market faster,
and reduce risk.

By automating what you can of the deployment process, you
may add compliance and auditability through visibility into

 ✓ What components are included in the deployment

 ✓ Who deployed what application

 ✓ Where the application was deployed

 ✓ What version of the application was deployed

 ✓ When the application was deployed

Traceability and visibility are two keys to a streamlined
release and deployment process, and you can attain them
with proper automation, as we discuss in Chapter 4.

 There’s a difference between automating and writing a few
scripts that a subject-matter expert still has to kick off. True
automation removes risks of changing parts and allows autho-
rized stakeholders to kick off a deployment at the click of
a button. In addition, true automation provides self-service
deployment capabilities, visibility, and traceability.

Application Release & Deployment For Dummies, IBM Limited Edition18
 Deployment automation is such a major factor in successful

application deployment that when we mention application
deployment in this book, we’re referring to application
deployment through automation.

Perform incremental changes
The final pillar of a gold-standard deployment process is
making incremental application changes. Ideally, your auto-
mation solution deploys only the components that need to
be changed and leaves the remainder intact, as redeploy-
ing unchanged components carries risk. Deploying only
what changed means being able to deploy more often and
on demand. When you understand the application changes,
you can see true versioning of what’s deployed when, where,
and by whom. You can deploy more often and on demand
when highly repetitive tasks are automated, and agreed-upon
approval and quality gates (criteria that an application must
meet before advancing to subsequent environments) are
established. If you’re using the same process for every deploy-
ment, making small application changes is both possible
and desirable. Smaller application changes should be easy
to pass through testing environments and into production
environments.

 When you’re performing incremental changes, you may not be
using the complete deployment process. To make incremental
changes, simply set up the gold-standard deployment process
and use only the part of the process that’s actually required to
deploy incremental changes.

The Positive Effects of Gold-
Standard Deployment

Employing the three pillars of a gold-standard deployment
process (see the preceding section) can help you begin to
align your organization’s business needs with its technical
needs, which can have positive effects on the application
release. This section discusses some of those effects.

 Chapter 2: Applying the Gold-Standard Deployment Process 19

Automating and using the same
deployment process
When you use the same automated deployment process
across multiple application life cycles, you greatly affect the
overall release. The release is less error-prone and takes much
less time to perform.

Performing incremental releases
Performing a large deployment is risky, but deploying a large
release of applications is even more dangerous. Deploying
small batches of change is less risky and easier to manage.

In addition, managing defects in a small release and correcting
them effectively are far easier in smaller batches (see the next
section).

 To release and deploy on demand, you must have a stream-
lined process in place. For this reason, continuously improv-
ing your standard deployment process and automating
error-prone tasks are the keys to successful incremental
deployments and smooth releases.

Avoiding the Monday Morning Effect
The Monday Morning Effect occurs
the Monday following a major
release weekend when the release
team faces numerous problems
after the release, such as a break in
production or defects in the applica-
tion. The release team is required to
take heroic, immediate corrective
action. Restarting the release, cor-
recting the mistake or mistakes, and
ruling out other possibilities with-
out incurring a substantial outage

window are nearly impossible. If the
cleanup doesn’t occur immediately
or the problem isn’t immediately
obvious, the result is the Monday
Morning Effect. To avoid the Monday
Morning Effect, deployments must
be automated, teams must use simi-
lar deployment processes, changes
should be introduced incrementally,
and release activity must be vis-
ible to everyone involved with the
release.

Application Release & Deployment For Dummies, IBM Limited Edition20

Managing defects
 Smaller releases are less risky than large releases because

smaller releases decrease the number of potential defects that
could cause an error or outage. There are three contributors
to defects: code, configuration, and complexity. Complexity
here refers to the number of interdependencies, or relation-
ships, in the release package.

Whereas code and configuration defects increase risks lin-
early as batch sizes increase, complexity defects increase
risks quadratically. As shown in Figure 2-1, if you have three
features being released, you have three relationships to
manage, but if you add just one more feature to the release,
you have six relationships to manage. You can see that the
addition of even one more application doubles the relation-
ships and creates more complexity — and, therefore, risk.

Application

Relationship

Figure 2-1: Understanding relationships and complexity.

For organizations that use manual deployment processes
or slow releases to gain better control of quality, the risk of
failure has grown exponentially. Larger release batches laden
with interdependencies carry the risk of multiple failures.
Using the same deployment process, automating manual
tasks, and performing incremental changes, however, enable
a streamlined release process.

For more information on managing release risks and defects,
visit http://ibm.co/UCVlog4.

http://ibm.co/UCVlog4

Chapter 3

Choosing Solutions for
Application Release and

Deployment
In This Chapter
▶ Preparing your organization for change

▶ Considering release and deployment solutions

▶ Finding a release coordination solution

M
anaging your application through the build and deliv-
ery pipeline with deployment automation while orches-

trating and coordinating the overall release process requires
specialized solutions. Application deployment automation
solutions and release coordination solutions are designed
to get high-quality applications to production as quickly as
possible.

In this chapter, we discuss how to prepare your organization
for the changes that application release and deployment
solutions will introduce. Then we present basic criteria for
evaluating these solutions.

Preparing for Changes
Before you begin to look for a solution, remember the
goals of application deployment automation and release
coordination tools:

Application Release & Deployment For Dummies, IBM Limited Edition22
 ✓ Speeding time to market: Increasing the frequency of

software delivery with increased compliance through
end-to-end transparency, auditability, and reduced time
to feedback

 ✓ Reducing cost: Reducing the amount of manual labor,
resource wait time, and rework by eliminating errors and
providing self-service deployments

 ✓ Reducing risk: Delivering high-quality applications
through automated, repeatable deployment processes
across the development, testing, and production
environments

Achieving most business goals requires acknowledging the
changes required for individual team members, interactions,
processes, and solutions, as we discuss in this section.

 Acclimating your people to the proposed changes may be the
longest and most difficult step in the implementation process,
but it’s required for streamlined, fully automated release and
deployment practices.

Role changes
Some of the most important changes you’re going to be
making involve individual team member’s tasks and the inter-
actions among team members. Taking a note from the Agile
Manifesto, your team members should be ready to adjust
their methods of interaction as well as the frequency of those
interactions. They must also be ready to accept automation
solutions and the new roles that they will play within the
organization.

 Discuss changing team members’ roles with management
so you can assure employees that the automation solutions
will help them perform their day-to-day job responsibilities.
The solution isn’t meant to replace human talent; instead, it’s
used to help facilitate the outcome the organization wants to
achieve by reducing the amount of risky repetitive tasks and
enabling team members to focus on the tasks that require
more creative thinking.

 Try to find an internal champion who sees the benefits asso-
ciated with the change. He or she can provide peer-to-peer
insight and perspective on the long-term effects of the

 Chapter 3: Choosing Solutions for Application Release and Deployment 23
solution. A team-level champion who is on board with the new
solution gives his or her peers a chance to hear the benefits
from someone who faces similar challenges.

You should introduce this cultural shift as early as possible.
Chapter 4 gives you a rough idea of how long various changes
may take.

Process and solution changes
As individuals and interactions change to achieve business
needs or goals, day-to-day business functions also change.
When introducing the solution you want to use, be aware that
you’ll face some resistance. Keep your team motivated, and
prepare for a troubleshooting period. Getting through the first
major project with the solution will force everyone to con-
front the new solution and new process and to discover the
most efficient way to interact.

 If you just bring in the solutions and the process without pre-
paring your team adequately, you’re likely to miss the mark
for successful implementation. It takes changes across pro-
cesses, solutions, individuals, and interactions to achieve a
business goal.

Evaluating Release and
Deployment Solutions

Application deployment automation solutions manage appli-
cation components and their versions and track which ver-
sion is deployed to which environment. These solutions are
essential for application release and deployment practices, as
we explain later in this chapter.

When you’re looking for a deployment automation solution,
depending on your business goals, you should seek a solution
that has the following capabilities:

 ✓ Reuses deployment processes across environments

 ✓ Coordinates application deployments across multiple
tiers

Application Release & Deployment For Dummies, IBM Limited Edition24
 ✓ Integrates with existing technologies

 ✓ Provides role-based security

 ✓ Maintains logs of all commands executed in deployments

 ✓ Tracks who deployed which version of a certain deploy-
able artifact to which target

Prioritize the features that your organization needs most to
achieve the desired business goal. Your organization may
want to ensure auditability and governance, for example, or
to minimize the effort required to pass audits. In such a case,
the solution’s capability to provide role-based security and
maintain deployment logs is more important than its other
capabilities.

Successful deployment with IBM
UrbanCode Deploy

A financial organization was devel-
oping a new trading platform to
serve as the lifeblood of the organi-
zation. The development team used
Agile development practices to pro-
duce results faster, but the process
of deploying applications across
hundreds of servers consisted of a
mostly manual operation with cus-
tomization required for each applica-
tion. Introducing Agile development
practices actually caused changes
to build up for the operations
team, whose deployment process
wasn’t equipped to handle frequent
changes. This problem eventually
brought development to a halt.

The financial institution still wanted
to achieve the benefits of Agile

development methodologies. After
carefully evaluating numerous solu-
tions, the organization replaced its
manual deployment practices with
IBM UrbanCode Deploy, which pro-
vided several benefits:

 ✓ Deployment times went from
three days to two hours.

 ✓ The organization saved more
than $2 million in the first year
alone by eliminating the cost of
manual deployments.

 ✓ The organization achieved com-
pliance and gave teams a self-
service option for deploying
applications.

 Chapter 3: Choosing Solutions for Application Release and Deployment 25

Evaluating Release Coordination
Solutions

Planning, managing, and executing a major application release
is typically done with the help of spreadsheets or release doc-
uments that dictate the tasks, their owners, and the sequence
required for a successful release. The problem with execut-
ing a release in this manner is that there’s no way of tracking
who did what, what code was deployed where, and when the
release happened.

Release coordination solutions are designed to help in the
planning and execution of a release by providing collaborative
release planning that encompasses application and infrastruc-
ture changes. Ideally, a solution provides full visibility into the
release process as well as end-to-end planning and execution
capabilities.

When evaluating a release coordination solution, you should
search for a solution that can do the following:

 ✓ Streamline the release of multiple applications in a
release

 ✓ Update the release plan on the fly

 ✓ Display the progress of the release in real time

 ✓ Track changes in applications and infrastructure

 ✓ Notify stakeholders of release escalation

 ✓ Sequence and coordinate automated activities and
manual activities in the release workflow, all relation-
ships among activities, and all related communications to
people and automated systems

 ✓ Automatically promote applications that meet the
entrance criteria of lower environments

Application Release & Deployment For Dummies, IBM Limited Edition26

 Although doing so isn’t necessary, it’s advisable to use a
deployment automation solution with your release coordina-
tion solution. Just as application release and deployment
solutions often work together toward the same goal, release
coordination and deployment automation solutions often
work together to help build an automated delivery pipeline.
Release coordination solutions integrate with deployment
automation solutions to kick off automated deployments of
multiple applications during release time.

Successful release with IBM
UrbanCode Release

A not-for-profit organization was
spending far too much time plan-
ning and coordinating releases.
Team members were using spread-
sheets to track release activi-
ties and meeting multiple times to
review the plans and changes in
plans. The organization wanted to
achieve better visibility into release
efforts and to cut down on meeting
time during the release process. It
eventually selected IBM UrbanCode
Release, the first solution designed
specifically for complex application

releases. IBM UrbanCode Release
enabled the organization to reduce
release meetings by 50 percent,
reduce the length of each meeting
by 50 percent, and add visibility to
the entire release. By the end of their
second release with the solution,
team members had a good release
template in place. By the end of the
third run, the team leader who imple-
mented the solution felt so comfort-
able with the solution that he went
on vacation during the release.

Chapter 4

Rolling Out the Solution
In This Chapter
▶ Putting an application deployment automation solution to work

▶ Introducing a release coordination solution

A
fter your organization selects the best application
release and deployment solutions for its needs (see

Chapter 3), you face the task of implementing those solutions.
This chapter gives you some pointers.

Implementing an Application
Deployment Automation Solution

As we mention in Chapter 2, the goals of automation include
traceability and visibility via a solution that tracks a build
through the stages of the software development life cycle
(SDLC). The main components of a sturdy build process in
this context are a versioned artifact repository for completed
builds and dependency management for dependent projects.

One way to maintain those two components is to have a
Continuous Integration (CI) server; the other way is to inte-
grate and track builds manually. With a manual integration
method, you must version and contain working builds in
a functional artifact repository. With a CI server, you must
also ensure that those two steps are part of your solution or
process. When you have visibility into what each build con-
tains, and when each artifact is set to redeploy if something
goes wrong in a higher environment, you’ve established the
minimum requirements for implementing your application
deployment automation solution.

Application Release & Deployment For Dummies, IBM Limited Edition28
 To implement a deployment automation solution successfully,

you must have a consistent, reliable build process in place.
If your builds are inconsistent or unreliable, deployment
automation may find the flaws of that process sooner, but the
intrinsic quality issue remains.

Choose the ideal time for
deployment
When you’re moving forward with the implementation, your
two major challenges are overcoming resistance from your
team and finding the project or application that has the
qualities you need for automation. These two challenges are
intertwined. Choosing the wrong application for automation
creates resistance, and automation that’s poorly planned or
poorly documented is likely to fail.

The best practice, therefore, is to choose the right time to
deploy the application or project in question.

 One ideal time is during a greenfield project, when a new
application has a deployment plan that requires automation.
Another potential ideal time is during a brownfield project,
which is already under way but is also ready for automation.
Choosing the right greenfield or brownfield project requires
careful consideration.

You have to take a deep look to tell whether your project or
application is ready for automation. Applications that call for
automation have a well-documented deployment process and
(ideally) have a series of repetitive tasks. If you’re looking at
a greenfield project, it may use an application that’s similar to
a previously released application, or its existing deployment
plan can simply be moved to the automation solution. The
same rules apply to a brownfield project. If you have a manual
deployment process in place and are feeling pressure to deliver
faster, you can move the process to an automation solution.

To choose the proper greenfield or brownfield project, you
need to know how your teams typically work and where to
step in. If you usually do development-driven deployments,
for example, you should move the deployment power and
design to the operations team. If this process usually ends

 Chapter 4: Rolling Out the Solution 29
up creating a wall between development and operations, the
team deploying to production should be in charge of that pro-
cess and the automation. Knowing where the process usually
breaks down can be an asset in solution implementation, and
timing must come together with the right people, processes,
and solutions (see Chapter 3).

Figure 4-1 shows the tasks that you should be thinking about
to get an idea of how to plan and roll out your solutions.

Establish Business Goals
Individuals and Interaction Changes

Process and Tools

Create a Production
- like Environment

Practice Production
style Deployments

Minimum State

Choose the Ideal Time

Evaluate Deploy and/or
Release Solutions

Figure 4-1: An example of an implementation and rollout timeline.

Create a production-like
environment
As soon as you have your project in mind, you should design
a production-like environment as a starting point for develop-
ment. This environment will likely be smaller but should use
the same operating systems, middleware, and configurations
as the production environment. As we discussed in Chapter 1,
UAT is one of the four typical environments of the SDLC and
provides an opportunity to test in a production-like environ-
ment. Production resources that are unavailable to test envi-
ronments should be simulated through service virtualization,
if possible.

 For more information on service virtualization, see Service
Virtualization For Dummies, IBM Limited Edition, at ibm.co/
servicevirtualization.

A production-like environment improves the accuracy of your
testing for both the application and deployment processes. You
can simplify your environments as you work your way back to
earlier environments and remove unnecessary components.

Application Release & Deployment For Dummies, IBM Limited Edition30
 Involve your operations teams as early as possible instead

of saving the critical final deployment to production for last
and hoping for the best. Allowing these teams to step in at
the beginning of the SDLC allows the development teams to
develop and test their builds and leaves the operations teams
free to test and deploy the applications. It also ensures a
self-designed environment to keep a working application in
working order. Shifting some of the business responsibilities
to development improves coordination between development
and operations and creates a beneficial process for all teams.

 This shift in thought and process is the essential goal of
DevOps. It forces development to take Operations concerns
into consideration throughout the SDLC instead of just at
deployment time. In turn, Development has access to produc-
tion-like environments that enable them to develop and test
against a more realistic system, like the one that users will
use. Operations teams also benefit by getting a preview of
how their environment will react to the application and where
support enhancements can be made.

Practice production-style
deployments
If the ideal state that you want to achieve is a streamlined
release consisting of automated deployments, you need a con-
sistent, repeatable process. To achieve this process, start by
practicing production-style deployments that can be simplified
for earlier environments. The environments themselves should
also be as similar to production as possible. In a new implemen-
tation, finding a project that can adapt to this criterion is key.

Design for production first
Because production is the most complex environment,
deployments to earlier environments should be designed
as simpler versions of production deployments. Building up
in deployment complexity from development to production
won’t work, just as increasing the size of a square won’t create
a cube. The dimensions and complexity in production don’t
have an adequate framework in development, so if you build
a deployment process based on development, you end up
having to rework it greatly in production.

 Chapter 4: Rolling Out the Solution 31
 Designing the process for production first provides several

benefits:

 ✓ It allows teams to practice before the critical final deploy-
ment (see the preceding section) and provides the tem-
plate for remaining processes toward the beginning of
the SDLC.

 ✓ It allows teams to refine and further streamline the pro-
cess. Automation furthers this goal by stabilizing previ-
ously manual steps in a complex process and reduces
unnecessary effort in future deployments.

 ✓ It eliminates the disconnect in deployment process
complexity between earlier and later environments.
Starting the design process in development actually pre-
vents alignment with the goals of the operations teams,
because a self-designed, self-tested process can’t reach
the level of complexity that operations teams require.

Developers focus on testing their individual contributions
and the representative piece of the entire application that
applies to their function in the project. For this reason,
developers often don’t take into consideration or don’t know
what’s needed to keep production environments stable and
functional. Due to the magnitude and scale of what needs to
be tested and functional in production, the deployment pro-
cess shouldn’t be designed by teams that aren’t familiar with
the production environment. This is inevitably why allowing
developers to design a Continuous Delivery process as an
extension of Continuous Integration stops before Production
and hits the wall of Operations.

To fully align your teams and facilitate collaboration from
the start of a project, you must recognize the importance of
starting with the most complicated processes and removing
steps to simplify them. It’s easier to remove steps than to add
during a crisis or when a deployment has failed in production.

Implementing a Release
Coordination Solution

Release coordination is ideal for organizations that deploy
multiple applications at the same time or that desire more

Application Release & Deployment For Dummies, IBM Limited Edition32
visibility into a complex release process. As we mention in
Chapter 3, you can use a release coordination solution with or
without deployment automation solutions.

 If your release process is a long list of manual tasks contained
in a spreadsheet, you should evaluate solutions that aid in
that process. If you want to implement release coordination
with deployment automation, however, additional best prac-
tices for deployment automation should be in place.

Identify a realistic release model
To achieve success with a release coordination solution,
you need to be familiar with your current process, the appli-
cations being released, and the complexity of those applica-
tions. You should start with a small release and work your
way up to the release of multiple applications. Even in a small
or sample release, you should still know the application(s)
and feature(s) being released and who is involved in the
typical process.

The key to this concept is scale. You want to begin with the
smallest logical model of a typical release process. You should
use a release that, though small, will be useful in scaling up to
future releases by representing your ideal process from the
beginning, which means including the people who will be part
of the most complex releases.

 Don’t bog yourself down with “what-if” scenarios, because
you won’t be able to predict everything until you actually
begin using the solution and discover areas for improvement.
You and/or your team should find the way to implement the
release coordination solution that provides the greatest value.

Choose an implementation path
After you choose a release to serve as a baseline for future
releases, you should identify a logical path toward implemen-
tation. Three main paths provide a smooth transition to the
use of a release coordination solution:

 ✓ Use the new solution in parallel with the existing pro-
cess. The first path is to use the solution in parallel with
an existing release process. This path enables the release

 Chapter 4: Rolling Out the Solution 33
team to map an existing process to the process in the
release solution while they’re both running. In practice,
this means conducting a release in the legacy fashion
while running the release in the new solution to see how
tasks differ using the tool. This practice not only helps
the team acclimate to the idea of the new process, but
also provides a no-risk dry run for first-time use, thereby
reducing anxiety about the next release, demonstrating
the parallel tasks in each method of release, and provid-
ing a before-and-after picture of the process.

 ✓ Conduct a post-release run. The second path is to con-
duct a post-release run by using the solution to model a
recently completed release — that is, releasing an appli-
cation by using the current-standard process and then
using the same process to release an application with
a release coordination solution. Much like running the
solution parallel to a release in progress, this practice
gives the team a before-and-after picture of the process
and a safe way to use the solution for the first time.

 The first two paths are exercises that provide realistic
use cases for the solution and give team members a
chance to realign their expectations and interactions.

 ✓ Dive into the deep end. The third path, which is less
conservative than the first two paths, is to dive into
the deep end and simply use the new solution for a live
release. You should set up your teams for success by
choosing a small release that you know they can execute
with the solution. Take the selected release down to its
minimum representative state of complexity and give it
to your team as a low-risk live first use of the solution.

Application Release & Deployment For Dummies, IBM Limited Edition34

Chapter 5

Ten Myths about
Application Release and

Deployment
In This Chapter
▶ Seeing why automation can help, not hinder

▶ Understanding what a specific solution can and can’t do

S
ometimes, the best way to understand what’s true about a
concept is to understand what’s false about it. In that spirit,

here are ten myths about application release and development.

Automating Deployment Means
Writing Scripts

Although kicking off individual deployment scripts may
work for small deployments to a few servers, that technique
won’t hold up under the scale and complexity of deploying
interdependent enterprise applications.

Relying on a subject-matter expert (SME) to kick off deploy-
ment scripts puts a strain on the whole deployment team and
especially on the person who has that responsibility. If the
SME is unavailable to kick off the script (or is no longer with
the organization when a change is ready to advance), you can
miss deadlines or miss the step entirely. In addition, if the
SME is responsible for running the scripts for multiple deploy-
ments, the chance of errors increases as the likelihood of

Application Release & Deployment For Dummies, IBM Limited Edition36
bugs increases with batch size (see Chapter 2). Also, human
constraints such as fatigue, anxiety, and nerves affect perfor-
mance when a person is performing a long series of repetitive
and high-pressure tasks.

The best solution is to let an application deployment auto-
mation solution execute deployments, ideally using integra-
tions. If your chosen solution can effectively integrate with
your existing tools, you should be able to create a deploy-
ment process using a simple process designer that does not
rely on scripting. Effective integrations and a drag-and-drop
process designer can remove most or all scripting from your
deployment process.

Development Teams Create the
Best Deployment Processes

Developers know how an application should work but may not
know how the application topology in a production environ-
ment works, because they don’t need to. Assigning the devel-
opment team the job of designing a release process is likely
to result in a plan that neglects key operational concerns or
production-specific configurations such as clustering, load
balancers, and integrations with outside systems.

As we mention in Chapter 4, starting to plan the deployment
process in production allows the development team to test
the application against a production-like environment. It also
allows the development and operations teams to test the
deployment process early and often. The best deployment
processes are the result of collaboration among development,
operations, and release engineering.

Complex Releases Can Be
Easily Managed without
Specialized Solutions

Sure, you can manage simple application releases with various
methods, such as e-mails, run-book documents, spreadsheets,

 Chapter 5: Ten Myths about Application Release and Deployment 37
and deployment automation solutions. The first three meth-
ods, however, don’t provide traceability or collaborative
release planning, and none of these methods can be scaled to
accommodate the complexity of an interdependent enterprise
release.

Although it’s possible to use a deployment automation solu-
tion to manage a release, it’s better to use a release coordina-
tion solution. Release coordination solutions are designed to
assist in planning and executing a release by providing col-
laborative release planning that encompasses application and
infrastructure changes.

Continuous Delivery Means
Constant Production Releases

Continuous Delivery (CD) isn’t continuous release. Instead, it
focuses on speeding a new version through the delivery pipe-
line as fast as possible and then waiting for the business to
decide when to release. The same technology is used for the
production deployments, but the decision is a human one.

For most organizations, their automated tests are insufficient
for validating that a new version is ready for production. For
them, Continuous Delivery minimizes the friction caused by
moving versions through environments and maximizes the
productivity of testing teams.

Automation Reduces
Quality and Control

Automation boosts quality because it leverages computers’
capabilities to run repetitive tasks that can be botched when
performed manually.

Controls are also improved. The deployment button is behind
role-based security, and approval and quality-gate rules can
be enforced automatically. When you have a full audit trail
showing who configured a process and who ran it, you know
exactly what happened at all times.

Application Release & Deployment For Dummies, IBM Limited Edition38

A Spreadsheet Is a Good
Release-Management Tool

Many release teams manage to function by using spread-
sheets, but this method of coordination almost always results
in human error. Spreadsheets do enable management of the
release process at the highest level, but they require highly
repetitive tasks to be performed manually, which increases the
chance of error, and they also require constant maintenance
to ensure that all members of the release team are on track.
Finally, as team locations vary, teams grow, and applications
become more complex and interreliant, spreadsheets become
more error-prone and less useful because they don’t scale with
release complexity.

Unlike spreadsheets, release coordination solutions capture
interdependencies and determine the most effective deploy-
ment strategy. They also alert members of the release time
when certain milestones in the process have been met or
when certain team members’ skills are required.

 Release coordination solutions are highly advised for orga-
nizations that have a complex release process or distributed
teams, or that have tried and failed to manage their release
process with spreadsheets.

 Release coordination solutions can be used without deploy-
ment automation solutions, but it’s advisable to use both to
reduce the risks associated with repetitive manual tasks and
to speed time to market.

One Large Release Is Less Risky
Than Several Small Ones

In fact, large releases carry increasingly higher risk with the
number of interdependencies included than small, frequent
releases do. If you streamline the release and deployment
process by using automation solutions, you free your people
to troubleshoot the process itself instead of requiring them to
perform highly repetitive manual tasks.

 Chapter 5: Ten Myths about Application Release and Deployment 39
Smaller releases have fewer pieces and fewer independencies.
Errors caused by misunderstanding or poorly accounting
for interdependency are dramatically reduced in a smaller
release.

 Incremental changes through true CD are the ultimate goals
of any organization that wants to deliver value by delivering
new features at a faster rate than its competitors do. Small,
frequent changes delivered through automation solutions are
the first step in reducing the cost and risk associated with tra-
ditional releases.

Automation Is Separate from
the Build Process

Unfortunately, until you reach the minimum requirements of
a working artifact repository, dependency management, and
high-quality output from your build process, you’re not ready
to look into deployment automation. Deployment items must
be versioned or ready to be versioned to allow for tracking
of what’s being deployed and where the deployment item is
deployed. To complete successful releases that provide vis-
ibility across the entire SDLC, you need to make sure that
dependencies are manageable, visible, and evident as part
of your build process.

You usually can achieve the required minimum state with the
help of a Continuous Integration (CI) server that also provides
versioning and self-service capabilities for deploying to test-
ing environments. Manual forms of CI can give you a leg up
on deployment automation but lack the full visibility that we
recommend achieving before you move to deployment auto-
mation solutions. The primary goal of a streamlined build pro-
cess is to create working builds that are versioned and ready
to be deployed through testing and to production at a high
level of quality.

 Some application deployment automation solutions provide a
versioning capability with a proprietary artifact repository. This
capability allows you to skip versioning your own builds and
use the application deployment automation solution to incorpo-
rate that step. One such solution is IBM UrbanCode Deploy.

Application Release & Deployment For Dummies, IBM Limited Edition40

A Backlog of Deployables Doesn’t
Indicate a DevOps Problem

If you claim to be practicing CD, but your operations team is
facing a huge backlog from development, you have a DevOps
problem, and you aren’t really practicing CD. DevOps prac-
tices and solutions help you seize market opportunities and
reduce time to customer feedback by enabling true CD. When
you decide to implement release and deployment solutions,
you should prepare to work in a DevOps culture, which
involves changes for individuals, interactions, processes, and
solutions (see Chapter 1 for more on DevOps).

When you’ve minimized differences between development
and operations environments, standardized your release
and deployment process, and automated most or all of your
manual tasks, you have a DevOps solution in place. This
DevOps solution accelerates software delivery; reduces time
to customer feedback; improves governance across the SDLC;
and balances quality, cost, and speed.

Release Coordination Solutions
Fix All Problems

The move from a completely or mostly manual release and
deployment process to an automated one is difficult, and it
requires several considerations. One of the most important long-
term changes is in the culture of your organization. Your people
and interactions must be aligned with the new method of work
and potentially shifting responsibilities. You should prepare
your teams for the shift, expect resistance, and remain aware of
what works and what doesn’t work for your organization.

When you’ve selected the right project to implement appli-
cation deployment automation and release coordination
solutions, your teams will have no choice but to collaborate.
Preparing them as much as possible for the change, however,
will make the transition easier and will help you reach your
business goals. Just as addressing build and CI issues reduce
bottlenecks in deployment and CD, you may begin to see
other opportunities for improvement in your SDLC after you
introduce deployment and release solutions.

Notes

Notes

	Table of Contents
	Introduction
	About This Book
	Icons Used in This Book
	Beyond the Book

	Chapter 1: What Drives Effective Release and Deployment?
	Following the Life Cycle of Software Development
	Reaping the Benefits of Effective Software Delivery
	Identifying Software Delivery Practices
	Taking a DevOps Approach to Software Delivery

	Chapter 2: Applying the Gold-Standard Deployment Process
	The Three Pillars of Gold-Standard Deployment
	The Positive Effects of Gold-Standard Deployment

	Chapter 3: Choosing Solutions for Application Release and Deployment
	Preparing for Changes
	Evaluating Release and Deployment Solutions
	Evaluating Release Coordination Solutions

	Chapter 4: Rolling Out the Solution
	Implementing an Application Deployment Automation Solution
	Implementing a Release Coordination Solution

	Chapter 5: Ten Myths about Application Release and Deployment
	Automating Deployment Means Writing Scripts
	Development Teams Create the Best Deployment Processes
	Complex Releases Can Be Easily Managed without Specialized Solutions
	Continuous Delivery Means Constant Production Releases
	Automation Reduces Quality and Control
	A Spreadsheet Is a Good Release-Management Tool
	One Large Release Is Less Risky Than Several Small Ones
	Automation Is Separate from the Build Process
	A Backlog of Deployables Doesn’t Indicate a DevOps Problem
	Release Coordination Solutions Fix All Problems

