

http://ibm.co/servicevirtualization

Service
Virtualization

IBM LIMITED EDITION

by Marcia Kaufman and
Judith Hurwitz

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies®, IBM Limited Edition
Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest
of Us!, The Dummies Way, Dummies.com, Making Everything Easier, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. IBM and the IBM logo
are registered trademarks of IBM. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR
THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For Dummies
book for your business or organization, please contact our Business Development Department in the
U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/custompub. For
information about licensing the For Dummies brand for products or services, contact
BrandedRights&Licenses@Wiley.com.

ISBN 978-1-118-50127-6 (pbk); ISBN 978-1-118-50129-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/custompub

Table of Contents
Introduction .1

About This Book .. 1
Icons Used in This Book .. 2

Chapter 1: What is Service Virtualization? 3
Defining Service Virtualization ... 4
Service Virtualization in Action ... 5

The Whiz Bang International example 5
A large financial services organization 7

Seeing How Service Virtualization Differs from
Other Types of Virtualization ... 8

Exploring Where Service Virtualization Can Add Value 9
Testing... 10
Development .. 11
Non-production usage ... 11

Benefits of Service Virtualization ... 12
Reducing costs ... 12
Improving productivity ... 13
Reducing risk .. 13
Increasing quality .. 14

Chapter 2: The Driving Forces of Change 15
Meeting the Rising Expectations of Enterprise

Applications .. 16
Embracing Service Oriented Architectures 17
The Rise of Mobile Applications .. 18
Agile Transformation Continues .. 19

Chapter 3: Escaping the Past .21
Improving Quality in the Application Life Cycle 21
Rethinking Test Automation ... 23
Facing the Challenges of Complex Test Environments 25
Service Virtualization and Complex Test Environments 26

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition iv
Chapter 4: Finding Your Way to

Service Virtualization .27
Identifying Services to Virtualize ... 27

The cost benefit analysis .. 29
Service volatility .. 30
Impact of unavailability 30
Cost to deploy or use .. 30
Complexity of the technology 31

Doing the math ... 31
Looking into Test Automation Strategies 33
Implementing Service Virtualization for All Testing

Purposes and Phases ... 34
Testing phases ... 34
Performance testing .. 36
Negative testing ... 38

Chapter 5: Putting Service Virtualization to Work 39
Understanding Your Architecture ... 39

Communicating between components 41
Transporting messages ... 42
Messaging standards ... 43
Finding the endpoints ... 43

Defining Virtual Components ... 44
Synchronizing with external sources 44

Bootstrapping virtual component behavior 45
Understanding the mechanics of recording 46

Behavior of virtual components 46
Provisioning Virtual Services ... 49

Chapter 6: Measuring ROI .51
Building Your Business Case .. 51

Why service virtualization? .. 52
Estimating the costs of implementing service

 virtualization .. 53
Estimating the benefits of implementing service

 virtualization .. 53
Quantifying the Benefits .. 53

Eliminating or lowering costs associated with
traditional test environments 54

Time spent provisioning
test environments .. 55

Finding and resolving defects early in
the development process ... 55

Faster time to market .. 56
Process improvements 57

Selecting a Solution.. 57
These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Table of Contents v
Chapter 7: Ten Key Points for Success with Service

Virtualization .59
Rethink Your Approach to Testing .. 59
Plan for Flexibility .. 60
Practice Controlled Integration.. 60
Test Continuously from Development to Production 61
Externalize Your Test Data ... 61
Explore Advanced Test Scenarios ... 62
Avoid Reinventing the Wheel ... 62
Service Virtualization

Isn’t Just for Testers .. 62
Share Virtual Components

across the Enterprise .. 63
Enhancing Team Productivity by Building Skills 63

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Publisher’s Acknowledgments
We’re proud of this book and of the people who worked on it. For details on how to
create a custom For Dummies book for your business or organization, contact info@
dummies.biz or visit www.wiley.com/go/custompub. For details on licensing the
For Dummies brand for products or services, contact BrandedRights&Licenses@
Wiley.com.
Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Vertical Websites
Project Editor: Carrie A. Burchfield
Editorial Manager: Rev Mengle
Business Development Representative:

Sue Blessing
Custom Publishing Project Specialist:

Michael Sullivan

Composition Services
Sr. Project Coordinator: Kristie Rees
Layout and Graphics: Carrie A. Cesavice
Proofreaders: Melissa Cossell,

Lauren Mandelbaum

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Director, Acquisitions
Mary C. Corder, Editorial Director

Publishing and Editorial for Consumer Dummies
Kathleen Nebenhaus, Vice President and Executive Publisher

Composition Services
Debbie Stailey, Director of Composition Services

Business Development
Lisa Coleman, Director, New Market and Brand Development

Author’s Acknowledgments
Thank you to the following friends at IBM: Cheri Bergeron, Carole Gibbins, Peter Klenk,
and Al Wagner, who provided vision, content, review, and assistance to help make this
book possible.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

http://www.wiley.com/go/custompub

Introduction

W
elcome to Service Virtualization For Dummies,
IBM Limited Edition. Service virtualization helps

companies create more efficient testing environments by
eliminating many of the roadblocks that testing teams typi-
cally encounter. While testing teams want to test early in
the application development process, it’s hard to make this
plan a reality based on the increasing complexity of software
environments. In order to reduce project risk and guarantee
higher quality outcomes, your company needs a new proac-
tive approach to testing. You need an approach that improves
the overall level of testing and increases the efficiency of
removing defects.

Your company can benefit from service virtualization if your
teams develop and deliver complex applications with multiple
dependent components that must be tested. Instead of wait-
ing for dependent services to become available for testing,
your teams can use service virtualization to emulate these
missing elements. With service virtualization your test envi-
ronments can use virtual services in lieu of the production
services, increasing the frequency of integration testing. As a
result, deploying service virtualization can help you decrease
testing costs, improve team productivity, and ultimately
improve software quality.

About This Book
This book gives you insight into what it means to leverage ser-
vice virtualization in your testing environments. By simulating
service components, you can quickly validate the behavior
and performance of an application’s components and deter-
mine how they interact. In this book, you discover the key
challenges that companies face when developing complex
applications with multiple dependencies and how you can
increase test team efficiency with service virtualization to
enable more sophisticated and accurate testing earlier in the
life cycle.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 2

Icons Used in This Book
The following icons are used to point out important informa-
tion throughout the book:

Tips help identify information that needs special attention.

Pay attention to these common pitfalls of managing your
 foundational cloud.

This icon highlights important information that you should
remember.

This icon contains tidbits for the more technically inclined.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

What is Service
Virtualization?

In This Chapter
▶ Introducing service virtualization
▶ Seeing service virtualization in action
▶ Discovering how service virtualization differs from other types of

 virtualization
▶ Understanding where service virtualization adds value
▶ Realizing the benefits of service virtualization

I
magine a world where software development teams consis-
tently deliver new applications on time, under budget, and

with exceptional quality and performance. For many develop-
ment and operations teams, the demands of testing today’s
complex applications in their test environments prevents this
goal from being an achievable reality.

In this chapter, we introduce a new technology to the devel-
opment and testing communities called service virtualization
and talk about how companies are using it as a key part of
their testing strategy to reduce risk, decrease testing costs,
and deliver higher-quality software. Service virtualization
helps organizations overcome many of the challenges asso-
ciated with testing today’s complex and interdependent
systems. Because the term virtualization is quite popular in
different circles, we describe how service virtualization is dif-
ferent from other kinds of virtualization. You take a look at
situations where service virtualization can add the most value
and dive into the various uses of service virtualization and its
key benefits.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 4

Defining Service Virtualization
Service virtualization simulates the behavior of select com-
ponents within an application to enable end-to-end testing of
the application as a whole. Test environments can use virtual
services in lieu of the production services to conduct integra-
tion testing earlier in the development process. Service virtu-
alization can be useful for anyone involved in developing and
delivering software applications. Integration testing of these
applications is often delayed because some of the components
the application depends on aren’t available. Service virtualiza-
tion enables earlier and more frequent integration testing by
emulating the unavailable component dependencies.

Service virtualization solutions have the following
 characteristics:

 ✓ Application emulation: Virtual components can simu-
late the behavior of an entire application or a specific
component.

 ✓ Multiple test environments: Developers and quality pro-
fessionals may create test environments by using virtual
components configured for their needs.

 ✓ Same testing tools: Developers and quality professionals
can use the same testing tools that they have used in the
past — the tools can’t tell the difference between a real
system and a virtual service.

These virtual components are created to simulate a real envi-
ronment through two basic entry points:

 ✓ Observing the system in action: Construct a virtual com-
ponent by listening to the network traffic of the service
that you want to emulate.

 ✓ Reading the descriptions of the system: Construct a
virtual component by utilizing other sources of infor-
mation such as service specifications. An example is a
Web Services Description Language (WSDL) file, which
describes the operations offered by a service along with
the parameters it expects and the data it returns.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: What is Service Virtualization? 5

Service Virtualization in Action
One of the best ways to understand the benefits of service vir-
tualization is to look at examples. In this section, we give you
a make-believe example and a real customer scenario.

The Whiz Bang International
example
The URGoodForIt Credit Check service (a make-believe ser-
vice; good name, huh?), provided by a third-party vendor,
must be deployed to test the new application. However, it
isn’t readily available in the test environment. The team can’t
begin testing without this dependent component. As a result
the team is forced to choose between de-scoping tests or slip-
ping the delivery schedule.

Figure 1-1 depicts a sample online ordering application that
implements the URGoodForIt Credit Check service. Whiz Bang
International has embraced Service Oriented Architecture
(SOA), and the implementation of this application takes
advantage of a variety of services such as an ordering hand-
ing service, a third-party credit checking service, a third-party
payment service, a custom service to provision a new device,
and a database. This complete picture of the system reflects
the production environment without service virtualization.

Figure 1-1: A commercial application in production without service
 virtualization.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 6
The URGoodForIt service is a good candidate for service virtu-
alization because

 ✓ Test environment availability is delayed and the team
has to wait for the service to be available before testing
can begin.

 ✓ The URGoodForIt service costs money each time it’s
executed.

 The team needs to test at user levels of 100,000 for per-
formance purposes. Because URGoodForIt is provided
by a third party, the business needs to pay a fee per use
each time the service is called in a test. The fees for per-
formance testing with 100,000 users add up very quickly.

The fact that this dependent service is unavailable for testing
creates a testing bottleneck for the whole team, and to test (func-
tion or performance) end to end, you can’t begin testing until
you have all the required pieces. Virtualizing the unavailable
service unblocks the team. Illustrated in Figure 1-2, a production
component from Figure 1-1 is replaced with a virtual component.

Figure 1-2: Service virtualization makes the unavailable available.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: What is Service Virtualization? 7

A good service virtualization solution makes it easy to create
a virtual component that

 ✓ Mimics the behavior of the real component providing the
service

 ✓ Responds with realistic data

 ✓ Processes requests within configurable throughput ranges

 ✓ Can be turned on or off, as the real service becomes
available, without having to reconfigure the deployed
application

Of course, at some point in time you’re going to need to test
your system against a real production application. Service
virtualization isn’t a substitute for testing the actual source
code deployed as the composite application. Meaning, you’re
not going to bring your software to market without real end-
to-end testing. The idea behind service virtualization is to
catch the majority of defects much earlier in the process
when they’re easier and cheaper to fix. You may still discover
errors during your end-to-end testing, but they’re likely to be
fewer in number, and these bugs can probably only be discov-
ered when the complete application is tested by using the real
components.

A large financial services
 organization
In this section, you take a look at a real-world example. (We
removed the company name for privacy reasons. We hope
you understand!) A large financial services organization set
out to test its new billing application, including all its integra-
tions with internal legacy applications and external third-party
dependencies. The integrations between the different applica-
tion components needed to be tested continuously throughout
the development process.

For example, the interfaces between the billing application and
the ordering application needed to be independently tested.
Each time a required test environment was configured, long
delays occurred because at least one of the required applica-
tion components wasn’t available. As a result, the team faced an
end-of-cycle test crunch. IT requested additional resources to
execute the tests, and because some of the test suites contained

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 8
thousands of individual tests, testing delays put the entire proj-
ect at risk for missing important completion deadlines.

The team decided to adopt service virtualization, and it was
able to create a major turnaround in the testing economics for
the new billing application. The quality professionals created
virtual components emulating aspects of the real-world envi-
ronment by recording messages and responses in that envi-
ronment. This virtualized environment had the behavior of
the live application, but the effort to create the test environ-
ments was significantly reduced, so developers and quality
professionals didn’t have to use the actual dependent applica-
tions when testing their changes. Instead, they used virtual
components to perform integration and performance testing
of the components that didn’t change in combination with the
components, which they modified or developed new.

The result? The company reduced the time — from a few
weeks to just minutes — to stand up its test environments.
The time savings resulted in sharp reductions in testing costs
and allowed the professionals to do a more thorough job of
testing and validating software quality.

Seeing How Service
Virtualization Differs from Other
Types of Virtualization

When people hear the term virtualization, they often auto-
matically think of “virtual machines” or “hardware virtualiza-
tion.” In fact, the term virtualization can be applied to many
aspects of computing, such as servers, applications, network,
or storage. In general, virtualization means using computer
resources to imitate other computer resources.

In hardware virtualization, for example, one physical server
is partitioned into multiple virtual servers. The virtualization
software enables each virtual machine to present the appear-
ance of dedicated hardware. This can help reduce hardware
costs, but there are other costs associated with deploying
hardware virtualization and creating virtual machine images.

Utilizing virtual machines as staging environments for testing
has gotten a lot of press recently because they can provide

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: What is Service Virtualization? 9
a good representation of what’s going into production with a
lower infrastructure footprint than full physical pre-production
environments. The IT or testing organization can create vir-
tual images of the production environment to run on virtual
machines without some of the manual effort or cost required
to provision and build a physical pre-production server. This
can give the testing group confidence because theoretically
the virtual image is very close to the real thing. The downside
is that the creation and ongoing management of those images
(for example, tracking license usage, installing the OS, and
keeping it up to date) can still add significant cost to a project.
And you still have to wait for and deploy every component
needed by your application.

In service virtualization, however, software components are
virtualized by emulating their service interface and mimick-
ing the component’s behaviors. Service virtualization focuses
on emulating only what’s needed by your test environment
and, compared with hardware virtualization, eliminates the
additional effort to license, configure, and run all the other
bits required on a virtual machine (for example, the operating
system). There is, of course, some investment to create virtual
components for your services, but the virtual components are
available throughout the application life cycle and have a very
small footprint (much, much smaller than a virtual machine).
They also are easier to share and faster to deploy because
they’re hosted on a server optimized for this purpose.

Exploring Where Service
Virtualization Can Add Value

Service virtualization can dramatically change the econom-
ics and flow of the entire application development process.
Application quality is everyone’s responsibility — from devel-
opment to testing to deployment — so service virtualization
can be used by the entire team throughout the application life
cycle.

A key benefit of service virtualization is that you can do test-
ing much earlier in the application development process by
reducing test bottlenecks. However, you may miss out on
many additional benefits of service virtualization if you only
use this technology in your formal testing process.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 10

Testing
One of the most important principles adhered to by success-
ful testing teams is “Test early and often in the development
process.” Why? Because the earlier you find and isolate
defects, the better your ability to fix them. Now we realize
testing early and often is simple to say, but it’s not so easy
to execute. The longer it takes to begin testing or “stand up”
your test environments, the less likely you are to test at the
right time to achieve high-quality outcomes. Service virtual-
ization can help reduce testing costs and speed up testing
start and execution times.

Service virtualization delivers benefits for all types of testing
including functional (manual and automated), integration,
and performance testing. Take performance testing as one
example. The performance of today’s composite applications
is really the sum of the individual application component’s
ability to respond in a timely manner. Degradation in the
response time of any application components can slow per-
formance of the application, negatively impacting user expe-
rience. However, if you defer performance testing until the
entire application is deployed (the traditional approach), it
becomes much harder to identify the root cause of slow per-
formance and poor user experience.

Performance testing using a virtual component (or a set of
virtual components) enables you to fix the most obvious
problems earlier. Testing in the traditional way, where every-
one builds a piece and you test when everything is ready, you
may never meet your performance goal. You won’t know until
the end of the development and testing cycle that there’s one
component, for example, that’s taking too long to respond,
adversely impacting the user experience. We give you a more
detailed view of this process in Chapter 4.

Make sure you understand customer or end-user expectations
right from the beginning of the development process, includ-
ing the functionality, usability, reliability, supportability, and
performance, and the business logic involved. You need to do
the math and determine the individual performance specifica-
tions that each component must have. With that understanding,

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: What is Service Virtualization? 11
you can simulate the exact conditions for the development team
from day one in your virtual test environment.

Development
Why does a developer need service virtualization? In addition
to the formal testing process managed by the testing team,
developers should be testing their own code all the time.
Service virtualization can be used to simulate any environ-
ment required by developers for testing, going beyond compi-
lation and unit testing, while they’re writing code.

Service virtualization eliminates the need for developers to
manually write their own simulation stubs or mocks (for exam-
ple, fake objects that try to mimic real objects in testing). These
stubs may require future maintenance, which will take time
away from developers writing new functionality for the busi-
ness. Removing the need to manually write stubs can be espe-
cially helpful in agile development or iterative development
environments where teams wish to conduct continuous testing
of new functionality throughout the development process.

Non-production usage
Service virtualization can also be used to create a realistic
environment for training without the need to connect with
your live production environment resources. To understand
how service virtualization can help create more effective
training programs, check out this scenario.

Don’t grade your own work!
Having developers write their own
testing simulations or stubs to vali-
date their own code changes or new
code is a bad idea! It’s like having a
student mark his own homework or
exam. Testers, who know how the

functionality should be tested and
the data required to properly test
the various scenarios, can easily
create virtual components and tests,
making them available to the devel-
opment team.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 12
A company wants to train its newly hired customer service
agents on how to use its Customer Relationship Management
(CRM) system. These agents are given access to a live version
of the CRM system to help simulate real situations encountered
on the job. However, the CRM system is connected to various
back-end systems. To answer a series of exam questions, the
agents need to create queries about product and pricing infor-
mation managed by several back-end systems. With service
virtualization, you can emulate the back-end systems so CRUD
(create, read, update, and delete) transactions can occur with-
out interfering with the live production systems.

Beyond isolating the production from the trainees, service
virtualization makes it easy to reset the training environment
to a known state with known data. Achieving this with service
virtualization can be significantly less expensive than deploy-
ing the complete system to an isolated training environment.

Benefits of Service Virtualization
Service virtualization enables earlier and more parallel, con-
tinuous testing of complex applications across the develop-
ment life cycle. It can be especially useful in applications
consisting of interconnected services in a SOA environment,
where testing is often delayed waiting for all the services to be
ready and deployed. As a result, service virtualization is likely
to deliver benefits explained in this section.

Reducing costs
Test lab infrastructure costs can be pricey. Instead of pro-
visioning large servers or mainframes, a virtual test envi-
ronment can run on low-cost commodity hardware. The
environment can easily be reconfigured for different testing
needs or projects.

Costly crunch time end-to-end testing can also be reduced
with service virtualization because functional, integration,
and business process level tests have been executed many
times before and the majority of the defects should’ve been
found. The fact that you’ve done these tests throughout the
development life cycle can help drive down the time required

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: What is Service Virtualization? 13
to perform the full end-to-end test and eliminate the need to
bring on additional testing staff.

Many of today’s composite applications utilize services pro-
vided by a third party. These third-party vendors may assess
a charge each time that service is executed. Virtualizing those
services for the purposes of testing can decrease the third-
party access fees from the testing budget without limiting
testing activities. It also solves another common problem with
third-party services: The provider may not make the services
available for testing when you need them. Service virtualiza-
tion makes them available whenever you need them.

Improving productivity
Constraints on developers and quality engineers can limit
productivity. In a physical test environment, you have
constraints:

 ✓ Time to provision environments

 ✓ Time when environments are unavailable to developers
and testers

 ✓ Limitations on the amount of test cases that can be put
through a system

With service virtualization you don’t have restraints in the
way you do testing or development. Virtual components are
available 24/7. This means that productivity can be greatly
increased, and resources can be freed up for other value add
activities or additional testing process improvements like the
inclusion of exploratory testing.

Reducing risk
Service virtualization can also help reduce risk. You can test
software earlier in the process, which means defects can be
addressed earlier, producing fewer surprises toward the end
of the schedule. The final product may be put into production
earlier and with fewer errors. Additionally, large teams can
effectively work in parallel, collaborating on different parts
of an application by virtualizing components of the complete

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 14
system, and put a plan in place to ensure that the system is
tested properly and the piece parts work together.

Increasing quality
Service virtualization can improve the overall quality of the
application because it increases the efficiency of any testing
being performed. As a result, teams are able to do a more
thorough job of testing their applications and get higher qual-
ity software to market faster.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

The Driving Forces
of Change

In This Chapter
▶ Encountering the expectations of enterprise applications
▶ Wrapping your head around service oriented architectures
▶ Taking advantage of mobile capabilities
▶ Responding to changing customer expectations

I
nformation Technology (IT) departments have always
had to choose between how much time and resources to

devote to quality management practices (often dominated by
testing) versus the risk of delivering poor quality applications.
In the past, the IT department has often managed decisions
about the quality process with limited involvement from the
business stakeholders. However, as software has become
an integral part of a company’s strategy and persona in the
marketplace, testing can no longer be treated as a standalone
activity. In many situations, the quality of the software is an
important way that customers, partners, and suppliers mea-
sure a company and define its success in the marketplace. It’s
no wonder that software quality management has emerged as
a foundational element of the enterprise application life cycle.

In this chapter, you look at how the relationship between IT
and the business has changed, where IT no longer merely sup-
ports the business but takes a leading role in creating value.
You also see the enterprise architectures that have emerged
to address these business pressures and dynamic landscape,
the opportunities and challenges presented by the emergence
of new application delivery channels, and how the IT organiza-
tion itself — from development processes to operations — has

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 16
evolved. The need to improve software quality is a constant
undercurrent that requires organizations to rethink their tra-
ditional approaches to testing in order to be successful in this
environment of rapid business and technical change.

Meeting the Rising Expectations
of Enterprise Applications

As a business leader you need to keep focused on your busi-
ness strategy — whether your objective is outsmarting your
competition, growing your business, or keeping your costs
under control for maximum profitability. Meeting these objec-
tives in today’s dynamic consumer-focused environment
requires a high level of collaboration between business and IT.
In the past, IT focused primarily on developing applications
designed to meet the needs of internal departments. However,
IT has seen two changes in recent years:

 ✓ The expectations of users have increased based on their
experience with consumer technology.

 ✓ The role of IT has grown to include developing and
deploying new, innovative externally facing applications.

Today these applications are required to develop new part-
nership channels or to enhance the way customers interact
with the business. In other words, IT has moved from support-
ing the business strategy to becoming a critical part of the
business strategy. Business leaders expect the IT organization
to meet changing requirements and deliver on the business
objectives — quickly. They are no longer willing to accept
that technology will be an impediment to change.

Because of this deep relationship between business strat-
egy and IT innovation, we need to understand some of the
key business pressures companies are facing. Applications
designed to support new business models need to process
large and diverse volumes of data, and they need to integrate
with a broad range of new and legacy systems. Companies
also need to streamline and automate manual processes so
they can rapidly develop and deploy high-quality applications.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: The Driving Forces of Change 17
To support this new collaborative environment between busi-
ness and IT, many companies are incorporating new technolo-
gies to improve responsiveness and user value, including:

 ✓ Modernization of traditional back-end systems to deliver
new functionality to the marketplace

 ✓ Broader use of modular, shared services for the rapid
assembly of new composite applications

 ✓ Increased support for new application delivery channels,
particularly mobile devices

 ✓ Cloud computing for increased business flexibility and
scalability

Embracing Service Oriented
Architectures

Enterprise architectures have evolved to keep up with the
fast pace of business innovation and growth. Many companies
find that by implementing a service oriented approach they’re
better positioned to support the business requirements for
flexibility and scalability.

A service oriented approach delivers other benefits, as well,
including the following:

 ✓ Increased ability to create more sophisticated applica-
tions by combining reusable modular business services

 ✓ Improvements in IT responsiveness and performance

 ✓ Ability to exchange data with outside organizations, for
example suppliers and partners

 ✓ Flexibility to consume services from third-party suppliers

 ✓ Support for a variety of deployment topologies including
using a public or private cloud

 ✓ Increased standardization in the IT environment

Service orientation is an architectural approach based on
implementing business processes as software services.
These business services consist of a set of loosely coupled

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 18
components — designed to manage dependencies and foster
reuse — assembled to implement a well-defined business task.
Designing systems with modular business services results in
more efficient and flexible IT systems. Service orientation is
also a business approach and methodology that helps busi-
nesses scale and adapt to changing market forces.

The key characteristics of service orientation are modularity,
reusability, and flexibility:

 ✓ Modularity: Moving from large monolithic, complex, and
unmanageable applications to componentized reusable
business services

 ✓ Reusability: The rules and logic of application compo-
nents that are common to key business processes and
encapsulated to create a reusable business service

 Using a tested and proven component speeds devel-
opment, enables a higher level of security and trust,
reduces risk, and saves money.

 ✓ Flexibility: A function of the modularity and reuse of
business services

Service oriented architectures have led to an entire industry
that provides businesses with well-designed business services
that handle everything from payment services to credit check
and inventory availability. This creates new alternatives to
developing and deploying the underlying software in house.
However, it creates new challenges managing releases and
ensuring quality.

The Rise of Mobile Applications
The entire life cycle of application development and deploy-
ment is changing because of changes in consumer expecta-
tions and platform requirements. This major shift in IT and
business happens due to the following factors:

 ✓ The demand for mobile applications

 ✓ The need to integrate those new “systems of engage-
ment” with existing back-end “systems of record”

 ✓ The opportunity to innovate by taking advantage of
unique mobile capabilities (such as location awareness)

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: The Driving Forces of Change 19
Today, customers expect to be able to interact with a com-
pany and its services in a variety of ways, including the ability
to access information from a laptop, tablet, or smartphone.
Each of these devices is powered using one of a variety
of operating systems and comes in several form factors.
Increasingly, the end-user is in control of what platform they
select to interact with your organization. Development and
testing require new approaches to support the wide range of
customer devices.

These emerging applications don’t execute in isolation; they
must connect with existing back-end systems. Customer-
facing applications have to be implemented with the right
performance level and the right quality level based on the
right business process. This may place new demands on the
supporting systems, which must be verified.

Mobile devices offer new unique capabilities but also have
some constraints. Features such as location awareness, voice-
based interfaces, and near field communication open new
avenues of innovation. However, compared to modern PCs,
small screens, limited bandwidth, and high network latency
are back. Not to mention significant variability based on
device, carrier, and location. Given the pace of innovation in
this area, businesses can’t anticipate how their customers’
requirements may change in the future. Businesses have to
make sure that their approaches to development, testing, and
deployment can keep pace as preferred models for interaction
continue to evolve.

Agile Transformation Continues
Many software development teams are relying on agile devel-
opment approaches to speed up the development process.
Accordingly, the testing process needs to speed up as well
if the new applications are to be introduced to the market
quickly with increasing quality. Agile development processes
focus on short development iterations that include continu-
ous planning, testing, and integration. The goal is to keep the
project moving forward at a fast pace by leveraging a highly
collaborative environment.

This approach becomes impractical if testing lags behind
development. Unfortunately, this lag in testing is a common

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 20
occurrence. For example, the testing team may need to spend
many hours each night manually resetting the test environ-
ment. Additionally, application testing may be delayed while
the testing team waits for dependent software to become
available. Other delays in testing occur when the duration
of a manual test execution cycle exceeds the length of a
development sprint. If the testing team is not able to adapt to
the rhythm of an agile development approach, IT is likely to
encounter numerous delays and miss its application delivery
deadlines.

Just a few years ago, the typical application was changed only
a few times a year. Today, software development, deploy-
ment, and operations environments face constant change. It
is quite common for a single application to be changed on a
weekly or sometimes daily basis. It is no longer possible for
software development and operations (production) to act as
independent organizations each with their individual tasks,
deployment procedures, and schedules.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

Escaping the Past
In This Chapter
▶ Increasing quality in the application life cycle
▶ Taking another look at test automation
▶ Looking at the challenges of complex test environments
▶ Understanding how service virtualization can help

A
s the complexity of applications increases, with more
interfaces and delivery options, continually improv-

ing software quality management practices becomes more
important than ever before. However, while companies are
attempting to become more nimble and responsive to market
demands, testing often struggles to keep pace, creating a
bottleneck in the overall software delivery process.

In this chapter, we introduce approaches for companies to
improve their quality management processes. We introduce
you to some best practices that companies can put in place to
become more quality focused and sophisticated in their test-
ing practices. Because application and testing environments
are getting more complex, service virtualization addresses
key challenges of these complex testing environments and
increases test team efficiency by enabling more sophisticated
and accurate testing earlier in the life cycle.

Improving Quality in the
Application Life Cycle

Software quality is a costly problem in virtually all industries.
Fixing software issues costs billions of dollars each year. The
problem seems to be that many organizations don’t realize

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 22
that the activity of testing is only one part of delivering high-
quality software. In order to deliver reliable, usable, available,
maintainable, and scalable software that addresses business
objectives, there needs to be improved planning, collabora-
tion, traceability, and information accuracy throughout the
application life cycle — from requirements to deployment.

Too often, organizations are reactive in their approaches to
improving quality instead of implementing a proactive and
optimized quality process based on understanding changing
requirements and business risks. Collaboration and trace-
ability allow teams to be proactive by having insight into
what components of the application have changed during the
development effort. This allows teams to focus testing on the
specific areas of the application that have changed and mini-
mize risk to the business.

Even with the best quality management practices, software
(and hardware) can still be released into the marketplace
with some defects — many of which may go undetected prior
to release. In today’s world of accelerated software delivery,
you can’t test every code path and condition that a piece of
software may encounter, and let’s face it, today’s users have
changed — they’re tolerant (to a point) of some initial defects,
but they expect these defects to be resolved quickly through
frequent releases.

To meet the demands of today’s end-user, the secret is to
have the necessary processes in place that allow for earlier
detection, isolation, and remediation of defects. And for
those issues that do escape into production, a strategy that
addresses defects quickly and gets those fixes to market
faster is a must.

Service virtualization can help you improve your quality man-
agement processes because it

 ✓ Allows for earlier integration testing: Virtual compo-
nents can simulate service interfaces that the system
under test (SUT) needs to call on. You don’t wait until
late in the development life cycle to test the interfaces;
you use a virtual component(s) to test sooner. In fact,
service virtualization makes real continuous testing part
of the regular build process.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Escaping the Past 23
 ✓ Accelerates test environment availability while lower-

ing costs: You can have a ready-made test environment
in relatively short order. Using virtual components to
emulate dependent environments allows testing to begin
without further delay. The cost of test environments —
hardware, software, and labor — is reduced.

 ✓ Enables development to test earlier in the process:
Developers as well as Quality Assurance (QA) profes-
sionals can make use of a shared set of virtual compo-
nents to test integrations earlier in the process, perform
parallel development, and deliver higher overall product
quality.

Rethinking Test Automation
Test automation has been done the same way for many years,
typically involving a user interface (UI) based approach:

 1. Wait for the UI to be stabilized.

 2. Build up the test environment by deploying all the
components of the application once they’re ready.

 3. Record user interaction via the UI.

 4. Tweak the recordings, if needed, to improve test
scenarios.

 5. Execute tests.

 6. Reset the environment and rerun, hoping you don’t
need to do a lot of tweaking or rerecord.

 7. Maintain a library of test scripts as the application
changes with each iteration, often by rerecording
whole scenarios.

UI test automation is faster to run than manual testing, so it
can be done more frequently. However, UI testing tends be
fragile — changes to the code often break tests, even when
those changes aren’t visible. This problem can be worse for
scripts created by recording user interactions. The trade-off
made to mitigate the cost of ongoing test maintenance is to
wait until changes to the UI are complete. Of course this intro-
duces the risk that problems aren’t found early enough in the

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 24
development life cycle to be fixed within the project’s original
schedule.

The UI is also like the tip of an iceberg — the majority of code
and complexity hides below the application’s interface. The
most direct way to identify the root cause of a defect is to find
it close to where it was introduced, without other layers of
the application potentially masking what really went wrong
(for example, by not showing exceptions thrown by code to
the user). This requires taking a broader approach to auto-
mating test cases. Consider, for example, testing each layer of
the architecture independently.

Testing at the service or Application Programming Interface
(API) layer, the layer where components and applications
“talk” to each other, can improve testing efficiency and reduce
business risk because:

 ✓ This is where applications often break — at the inter-
connection points between subsystems.

 ✓ These boundaries often correspond with organizational
and schedule boundaries, so fixing problems here may
be difficult or expensive, especially if found late.

 ✓ Service interfaces are, by nature, more stable than user
interfaces because many applications depend on the
same service specifications. Changes are typically well
managed between all stakeholders to avoid breakage
in production. As a result, automated tests at this layer
require less maintenance.

A natural synergy exists between service virtualization and
automating tests of service interfaces. The tests drive a par-
ticular service interface by generating requests and validat-
ing responses. Virtual components receive these requests,
emulate the real-world service’s behavior, and provide the
appropriate responses on any number of supported protocols
and in a variety of message formats. Tools take advantage
of this synergy by sharing protocol definitions and data sets
between virtual services and automated service tests. In fact,
one best practice is to create a test suite against your service
interfaces that can be used to validate both the production
component and the virtual component.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Escaping the Past 25

Facing the Challenges of
Complex Test Environments

Creating test environments that host today’s complex appli-
cations can be difficult, especially in the case where the test
application interfaces with other internal and possibly exter-
nal systems. Other challenges include:

 ✓ It can be expensive and time consuming to replicate an
entire production environment for the purpose of test-
ing. For example, a typical production server running
Windows Server 2012 can cost tens of thousands of dol-
lars or more depending on configuration. Capital costs
can add up quickly if many servers are needed.

 ✓ It requires a lot of knowledge and technical skills to create
these environments. Configuring a test environment can
require application-specific, as well as system adminis-
trative, expertise. Consider, for example, an application
that interfaces to an ERP system (SAP, Oracle, Siebel, or
the like). The application test team may not know how to
deploy an instance of the ERP system for testing.

 ✓ It can often be costly and difficult to schedule time to test
in cases where third-party services are involved.

Some advanced developers may have tried to address the lack
of a complete test environment by creating their own ad-hoc
“stubs” or “mocks.” This approach may aid the developer
with unit testing, but rarely does it scale to support the entire
team for a few reasons:

 ✓ Developing a realistic simulation to support all test
cases and test purposes is complicated and can
quickly become a major development and maintenance
effort, diverting development time away from the
application.

 ✓ Developers often need to change the underlying applica-
tion to use the mocks in place of the real components,
diverging the application under test from the one being
readied for production.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 26
 ✓ No infrastructure exists to support sharing these stubs

across the team.

 ✓ Problems can easily be missed when testing relies on the
same developer mindset that created the code.

Service Virtualization and
Complex Test Environments

Service virtualization is a technology that can help your orga-
nization become more efficient and quality focused in the face
of ever increasing complexity. With service virtualization,
developers and testers create virtual components that can
be shared, enabling parallel development across the team.
And because virtual components emulate real-world services,
applications, or entire systems, they can help to remove
delays in the testing process. These components also run on
commodity hardware and decrease the cost of supporting
multiple test environments, which can decrease the concerns
of operations related to capacity, scalability, and security.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

Finding Your Way to
Service Virtualization

In This Chapter
▶ Identifying services to virtualize
▶ Automating your tests
▶ Virtualization for all testing purposes and phases

I
f you’ve been reading up to this point, you may now under-
stand the benefits of service virtualization and how it fits

into the big picture of software quality. You may also be won-
dering where you should get started. On the surface, it may
seem overwhelming. You may be tempted to randomly select
one element to virtualize just to see how service virtualization
works. However, you can definitely expect a better return on
your investment if you take a measured approach to evaluat-
ing your testing challenges and let that guide you to make pri-
oritized decisions on what should be virtualized first.

In this chapter, we provide you with a way to analyze the
services you should virtualize. We give you more information
about how service virtualization and test automation are com-
plementary, and we describe how service virtualization helps
throughout all the phases of testing, from the unit test to the
user acceptance test and even the performance test.

Identifying Services to Virtualize
To maximize success with service virtualization, you need to
identify the right services to virtualize. How do you do this?
To begin, bring together the key development stakeholders

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 28
involved in the application life cycle and start thinking about
where your organization experiences the most testing pain(s).
Then, ask yourself the following questions:

 ✓ Do you have all the environments you need for integra-
tion testing?

 ✓ Are these test environments available to teams through-
out the development cycle?

 ✓ Do you experience downtime due to unavailable test
environments?

 ✓ How often does downtime occur? How long do your
teams usually have to wait?

 ✓ What’s the impact on time and cost due to testing
 downtime?

 ✓ Does your application interface with third-party services?

 ✓ Do you need to pay for and schedule access to these
third-party interfaces prior to scheduling your tests?
How much does this cost?

 ✓ Who controls the information needed for creating test
environments?

 ✓ Do individuals or teams conflict with each other when
scheduling the sharing of test environments (or parts of
a test environment)?

Your responses to these questions help you prioritize a spe-
cific area or areas where service virtualization could help. In
fact, we recommend several areas to start:

 ✓ Start with the “low hanging fruit” where you get the
most benefit with the least amount of work: For exam-
ple, a web service defined in a web service description
language (WSDL) that returns data but doesn’t allow side
effects is an easy service to virtualize. There are no com-
plex state changes to model — just map the input argu-
ments to the data returned in the response. While this
service is simple and straightforward to create, it may
actually remove a test environment scheduling issue that
could result in project delays.

 ✓ Focus on the conditions that are contributing to the
overall cost of testing: Middleware services are often

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Finding Your Way to Service Virtualization 29
good candidates for virtualization. If the endpoint is an
ERP system, for example, you’ll need substantial hard-
ware and labor not to mention a reasonable data set to
deploy a copy of the system under test in the test envi-
ronment. Alternatively, you can simulate that endpoint.

 ✓ Address dependencies on third-party services: Are
you subject to per-use charges when you access certain
third-party services? The same principle applies. It might
be costly to emulate because it’s complex, but it may
be critical to do so. This is where doing your homework
with a cost benefit analysis pays off.

The cost benefit analysis

The decision about what to virtualize often boils down to per-
forming a cost benefit analysis. The things that contribute to
cost are

 ✓ Impact of unavailability: Lost team productivity and
project delays because dependent services/software
weren’t available for testing

 ✓ Cost of the skilled resources: Acquiring and maintaining
staff with the necessary expertise required to set up and
maintain test environments

 ✓ Underutilized test environments: Inefficient use of
expensive physical hardware, causing unnecessarily high
infrastructure costs

 ✓ Cost of licenses: Software (operating systems, database
management systems, and so on) deployed in the physi-
cal test lab environment or on a virtual machine

 ✓ Cost of third-party service access fees: Charges applied
when an externally provided service is executed

Adopting service virtualization mitigates these costs and
delivers benefits, including infrastructure savings, increased
productivity, and faster time to market — each of which
contributes to the overall ROI. You also want to consider
more advanced system dynamics when trying to identify what
to virtualize.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 30
Service volatility
Service volatility is about how often either the interface or
behavior of an application, system, or component changes.
Upstream components, the test environment, and tests all
need to react to these changes. You need to ensure that the
change is handled in a way that doesn’t disrupt quality or
time to delivery. Consider the following questions:

 ✓ Is the dependent service still being developed and sub-
ject to on-going specification changes? You may choose
to create a virtual component that offers less effort to
modify when change is required but still allows integra-
tion testing to proceed.

 ✓ Is the dependency on a legacy application that seldom
changes? If so, you may create a virtual component to
simulate the entire application/system at the service
boundary.

 ✓ Do your teams require slightly different implementations
of the same service? Virtual components allow you to
model and simulate specific behaviors to meet the needs
of multiple teams and assist with testing during parallel
development.

Impact of unavailability
What is the overall impact on the testing effort if a system,
application, or component isn’t available in the test environ-
ment? Some missing components may only impact a few use
cases, but others could bring the whole application down and
block all testing.

You have several things to consider when evaluating the
impact of an unavailable component:

 ✓ How many testers will be idle, and for how long?

 ✓ What test cases must be de-scoped (or delayed) if all the
components aren’t available?

All these factors have an associated cost. Virtualize those
things that unblock critical testing to reduce these costs.

Cost to deploy or use
Make sure to calculate the cost of having to deploy the system,
application, or component. Determine how much it costs to

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Finding Your Way to Service Virtualization 31
physically create a test environment. Some technologies are
certainly more expensive to deploy than others — even in test
environments. Or, perhaps you pay each time a third-party ser-
vice is exercised. Putting a dollar value on the effort to create
test environments or execute pay-per-use services could make
your decision on what to virtualize very easy.

Complexity of the technology
While there’s support for virtualizing a large number of tech-
nologies, some technologies may be easier to virtualize than
others. In other cases, the technology itself may be easy to
virtualize, but the effort to emulate the business behavior
of the service may be more complicated. Rate the various
technologies in the environment by using scaling factor. The
rating process will help you compare the relative complexity
and effort required to simulate each dependency.

Doing the math
Planning is the name of the game for service virtualization,
and you want to map out your analysis. You may want to
capture your details in a table. Table 4-1 contains the set of
components for the sample application developed by Whiz
Bang International (introduced in Chapter 1). The technol-
ogy used for each component is listed under the Technology
Used column. For instance, the PurchaseStuff component
uses SOAP over HTTPS. The impact column describes the
impact that an availability constraint or another cost like
paying a third-party vendor has on testing the component.
For example, it would cost $100,000 to physically stand up
an environment in order to test the TurnMeOn Provisioning
component. Or perhaps the environment already exists but is
unavailable due to scheduling conflicts. The cost of delays in
not being able to test is $100,000. The last column is the com-
plexity score for service virtualization. Here’s where you rate
the complexity of virtualizing a service. You can use a scale of
1–10 or high, medium, and low; whatever you’re comfortable
with is fine. In this case we’re using a scale of 1–10 where 1 is
low complexity and 10 is very high complexity.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 32

Table 4-1 Components of Sample Whiz Bang
 International Application
Technology
Used

Component/
Functionality

Impact of
Unavailability
 +
Cost to
Deploy or Use

Complexity
Score for
Service
Virtualization
(1–10)

SOAP over
HTTPS

URGoodForIt Credit
Check Service

$300,000 1

SOAP over
HTTPS

PurchaseStuff
International
Shopping Cart Service

$300,000 4

COBOL
Copybook
over MQ,
4 different
Copybooks

SendMeStuff Order
Handling Service

$500,000 3

Custom pro-
tocol based
on TCP/IP

TurnMeOn
Provisioning

$100,000 7

In this case it looks like the URGoodForIt service would be a
good candidate to virtualize. Why this one as opposed to the
PurchaseStuff component? Both use the same technology:
SOAP over HTTPS. Both have an unavailability impact cost
of $300,000. However, the PurchaseStuff service is four times
more complicated and will take longer to create. If you virtu-
alize the URGoodForIt service, you get the same amount of
value ($300,000) with a fraction of the effort. Of course, your
numbers and implementations may differ from Table 4-1, but
in considering this approach and sample data, we think you’ll
get the idea of how to go through the decision-making process
in terms of what to virtualize.

In general, the more standard a technology or communication
protocol is, the more likely the virtualization tools are to sup-
port it out of the box. Technologies such as SOAP and XML
are almost universal (although there will still be nuances),
but sector specific standards such as SWIFT and FIX are less
common. The key point here is that the ROI for each tool will
be different depending on whether the protocol is supported

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Finding Your Way to Service Virtualization 33
out of the box, requires some configuration, or requires an
extension to be written to the tool using an API. Some com-
panies, such as IBM, are investing extensively in technology
to allow any protocol to be modeled without the need for
custom coding.

Looking into Test Automation
Strategies

Many test automation projects focus on automating the user
interface (UI). However, this can be problematic as discussed
in Chapter 3.

To remove testing delays associated with recording and exer-
cising fragile user interfaces, consider automating tests at
the service or application programming interface (API) layer
instead of relying solely on testing at the UI layer. It isn’t a
coincidence that this is the same layer discussed in the con-
text of virtualization. While service virtualization supports
any kind of testing — manual or automated, UI or API, func-
tional or performance — it’s also important to recognize the
synergies with service testing and the unique advantages of
that approach:

 ✓ Critical integration points are tested early, even before
the UI is available.

 ✓ Tests that are less brittle as service interfaces are more
stable than user interfaces, especially after they’ve been
deployed into production.

 ✓ Tests can act as part of the service contract, increasing
clarity across team or organization boundaries.

 ✓ The same tests can verify the correctness of virtual com-
ponents as well as the real implementation.

 ✓ Tests generating requests and validating responses are
using the same protocols as the virtual components.
Therefore, some of the work performed to create virtual
components and service tests is the same, and good
tools allow you to reuse that work.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 34
 ✓ It’s easier to isolate the cause of issues found at the ser-

vice layer because defects are discovered closer to the
source of the issue.

Implementing Service
Virtualization for All Testing
Purposes and Phases

There’s no way around it: You’re going to find defects when
you test. However, when you test later in the application life
cycle, odds are these defects may be more expensive to fix.
Service virtualization can help you to find errors and issues in
all testing phases.

Testing phases
There are various kinds of tests that are part of the applica-
tion development life cycle. The testing process generally
looks something like Figure 4-1.

Figure 4-1: Progression of testing phases during a project.

Traditionally, testing is done sequentially. Various kinds of
tests are deployed in succession, including the following:

 ✓ Unit tests: Performed by developers to test small pieces
of code

 ✓ Integration tests: Modules of code tested together

 ✓ System tests: Testing the whole software per system
requirements

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Finding Your Way to Service Virtualization 35
 ✓ System integration tests: Testing interactions between

systems

 ✓ User acceptance tests: Testing the system by clients
against requirements

 ✓ Operability testing: Testing the availability of the com-
ponents that allow the application to run

Quality professionals often wait until System Integration
Testing (SIT) or User Acceptance Testing (UAT) to test the
whole system. And the reality is that defects will be discov-
ered late in the development process where they’re expensive
to remediate. Costs associated with finding defects in later
test phases can rise by orders of magnitude between each
phase. Figure 4-2 illustrates this concept.

Figure 4-2: The high costs of fixing defects during production.

Service virtualization unblocks end-to-end testing by remov-
ing dependencies and enables finding defects earlier through
the following ways:

 ✓ Developers can begin validating integrations much ear-
lier in the application life cycle, expanding beyond unit
testing and increasing the level of testing performed in
the development process.

 ✓ Testers can begin integration testing earlier and isolate
defects to specific areas of the application, decreasing
the remediation effort and avoiding the “big bang” inte-
gration issues projects are often challenged with.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 36
 ✓ The entire development team can benefit by including

service virtualization and integration testing as part of
the continuous delivery process and getting immediate
feedback on the quality of automated builds.

If a blocking defect is discovered but can’t be fixed immedi-
ately, consider using service virtualization to simulate the cor-
rect functionality, allowing your team to proceed with testing.
When the defect is resolved, easily switch back to new source
code and continue testing with the actual implementation.

In testing today’s composite applications, you’re typically
validating a larger process made up of many pieces of func-
tionality, which is possible through an increasing level of
application interconnectivity and interdependence. As a
result, not all of the components are ready when needed, and
they’re typically brought together for system integration test-
ing or user acceptance testing — near the end of the develop-
ment effort — where end-to-end testing can really begin.

Performance testing
Performance testing is a key part of a comprehensive testing
process. The reality is that teams typically defer performance
testing until later testing phases or ignore it all together — a
practice that can result in problems in production and damage
to a company’s reputation. Many performance issues can be
associated with flaws in the architecture or application design.
Service virtualization can help you discover architectural or
design flaws earlier in the process when it’s less costly than
if you’d discovered them during UAT. Why? Because you can
performance test much earlier and simulate conditions that
are very difficult to create in normal deployments.

For example, when developing and deploying applications
in the cloud, you have little control over network latency.
Imagine the insight that could be gained by having the abil-
ity to test for conditions requiring a delayed or immediate
response. Service virtualization gives you this ability.

We introduced an example application in Chapter 1. The com-
pany was Whiz Bang International. If you read that chapter,
Whiz Bang International was testing a new application, and
the requirement was that 95 percent of all responses needed
to be completed in four seconds or less. An illustration of this
concept is found in Figure 4-3.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Finding Your Way to Service Virtualization 37

Figure 4-3: Measuring the cumulative response time simulating a third-
party service.

The team already decided to virtualize the URGoodForIt Credit
Check service while this service was still under development.
The response time of that virtual component was set at one
second to reflect the service level agreement (SLA) with the
provider. Service virtualization allows performance testing to
proceed earlier because the other two components are ready
for testing, and the third can be simulated. During this testing,
the team discovered that another service (PurchaseMyStuff)
had an issue. The team responsible for PurchaseMyStuff had
time to improve performance, even before the URGoodForIt
team had delivered its implementation.

Many interesting ways exist to leverage service virtualization
in performance testing. These include

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 38
 ✓ Model the worst case scenario. Here you may want

to virtualize some back-end services and limit their
throughput to see how the overall user experience of
your application is impacted under load.

 ✓ Find the next bottleneck. In this scenario, you may vir-
tualize some services with near unlimited throughput to
see which components become the next constraints on
overall system performance. This can help evaluate the
impact of improving the implementation of a particular
service before investing in development.

To ensure that actual systems operate as expected, the real
components should be validated. You may turn off all the
virtual components in late stage SIT or UAT, but after all the
earlier integration testing enabled by service virtualization,
there should be few surprises.

Negative testing
Negative testing focuses on how an application or component
handles unexpected and error conditions. Examples include
supplying invalid inputs (for example, what happens when
you try to deposit a negative sum into a bank account) or
a service unexpectedly fails (a server goes down). In all
cases, the application should handle the error gracefully.
However, it can be very difficult to create some of these
conditions when testing complex applications. Sometimes
it takes a complicated sequence of events and set of test
data to produce a particular error. In other cases, you may
not be able to put the system into a particular state — such
as shutting down a key service — because it would disrupt
others who are sharing the same test environment. In
addition, you may not know how to reproduce an error — it’s
an intermittent defect in a particular component — but you
want to test that your application can work around it.

Service virtualization makes it easier to support negative
testing because you can change the behavior of a virtual
component to produce the error condition you want. Different
testers or even different test cases can see different behaviors
without impacting others by reconfiguring their test
environment with different mixes of virtual components.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

Putting Service
Virtualization to Work

In This Chapter
▶ Getting a grip on your current architecture
▶ Understanding the different services to virtualize
▶ Provisioning virtual components

S
ervice virtualization can enhance and support your
company’s quality management strategy with all types

of testing. While your testing processes are likely to evolve
over time, you may begin using service virtualization on an
incremental basis so you can realize immediate benefits from
this approach. In this chapter, we describe the steps involved
in creating your first virtual components. Second, because the
services you’re emulating (and the tests you run) vary in com-
plexity, we provide a range of behavioral models for virtual
components. We also share some requirements that a service
virtualization solution should meet. Finally, we discuss how
you go about deploying and provisioning virtual components
and the best practices for running tests. By the end of the
chapter, if you read the entire thing, you should have a pretty
good idea of what’s involved in creating and executing virtual
components.

Understanding Your Architecture
Traditionally, when quality professionals test today’s complex
applications, they treat everything behind the user interface
(UI) as a black box. This approach allows the tester to focus
on the end-user experience, which is certainly an important

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 40
element of your company’s quality management strategy.
However, certain limitations exist with traditional UI testing
given the increasing complexity of application environments.
In order to provide a more complete understanding of any
problems that could impact the user experience, the quality
professional needs to follow a white box approach — looking
inside the box. Knowledge of the underlying architecture is
required if you want to virtualize services or automate inte-
gration tests.

The different boxes include the following:

 ✓ Black box: What’s a black box? The application code is
considered a black box to UI testers because they only
need to know the inputs (to the application) and the out-
puts (from the application). The data transformations or
analytic computations that generate the outputs that the
users see aren’t relevant.

 ✓ White box: What’s a white box? Testers follow a white
box approach when they examine and test the internal
structure or workings of an application.

To test at the service layer, you need to follow a white box
approach. Getting your application working correctly requires
that you ensure the interconnected and interdependent ele-
ments all work together. In other words, you need to under-
stand the components of your system and the connections
between components. It’s going to be important to under-
stand aspects of the architecture of the system that work
below the user interface level, either to virtualize services or
automate integration tests. To do this, you need to answer the
following kinds of questions:

 ✓ What are the components?

 ✓ How do the components talk to each other?

 ✓ What’s the technology for getting messages from one
point to another?

 ✓ What are the protocols (for example, the details of these
messages)?

 ✓ Where are the endpoints?

For example, we gave you an ecommerce example in Chapter 1.
Feel free to flip back there now and take a look at Figure 1-1.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Putting Service Virtualization to Work 41
This example contains a business logic layer, a presentation
tier (mobile devices, laptops), and the back-end services (order
handling, credit check, and so on). Some of the back-end ser-
vices are developed internally and others are provided by third
parties. The middle layer uses JMS to publish messages. Those
messages are formatted as XML and described by a schema
(expressed in .xsd files).

The components we describe in this section are a few exam-
ples of what you may find in your own system. Hundreds of
different types of transports and protocols exist, but virtualiz-
ing these components will be easier if the software you select
for service virtualization includes support for your specific
technologies right out of the box.

Communicating between
 components
In order to virtualize a component, you need to understand
how that component communicates with other components
in the overall application. These include web services, middle-
ware, and databases. Details of the communication will go
into a model of your application environment. Messages —
units of information — are sent from or received by compo-
nents according to various communication patterns:

 ✓ Request/Response: This type of communication is
defined by a behavior pattern where one request gener-
ates one response. Request/Response is the foundation
of data communication for the Internet. Web services
and Hypertext Transfer Protocol (HTTP) use this type of
communication. For example, when you type a Uniform
Resource Locator (URL) into a web browser, the browser
makes an HTTP GET request to a web server based on
the URL. The server responds to that request with the
contents of the page (often HyperText Markup Language
or HTML), which the browser renders. Each request gen-
erates one synchronous response.

 ✓ Publish/Subscribe: This pattern is a little bit different.
A component publishes a request for processing to a
message queue. Another component subscribes to the
message queue, watches for incoming messages, and pro-
cesses requests from the queue. If a response to the orig-
inal requestor is required, the same technique is used on

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 42
a different message queue. In this situation, the process-
ing component publishes a response message to a queue
subscribed to by the originating component. Requests
and responses are asynchronous. IBM WebSphere MQ is
an example of a message-oriented middleware that uses
this type of communication.

 For example, consider the business process for approv-
ing an insurance claim. The approval process may
require the gathering of additional data to support the
claim. This may take more time than the requesting ser-
vice can reasonably wait; so the request is published and
the requestor can go on to do other things. When the
approval processing is complete, the verdict is published
for the requestor to see.

 ✓ Query/Result: This communication pattern is character-
ized by a behavior pattern where one query request gen-
erates one synchronous response in the form of a result
set. Programming models for relational databases, such
as JDBC, use this pattern to execute queries. It’s worth
distinguishing from Request/Response because, unlike
HTTP, it abstracts away any network communication,
which may or may not be required.

Transporting messages
Communication protocols use various types of transports for
sending messages and receiving responses. These transports —
methods of communication between components — describe
how the messages get from one component to another. Several
examples include

 ✓ Hypertext Transfer Protocol (HTTP/https): This proto-
col is foundational for data communication for the web.
It is Request/Response protocol based on Transmission
Control Protocol/Internet Protocol (TCP/IP).

 ✓ Simple Object Access Protocol (SOAP): SOAP is a simple
Extensible Markup Language (XML)–based protocol to let
applications exchange information over HTTP.

 ✓ Enterprise Service Bus (ESB): The ESB is an architectural
component designed to monitor and control the com-
munication between business services. IBM’s WebSphere
MQ, Software AG’s WebMethods Integration Server, and

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Putting Service Virtualization to Work 43
the open source Mule are examples of ESBs. A standard
Application Programming Interface (API) such as the
Java Message Service (JMS) API is often used to access
these systems.

 ✓ Java Database Connectivity (JDBC): JDBC is an API that
uses Structured Query Language (SQL) to connect rela-
tional databases and other data sources.

Messaging standards
Many industries have created standards for the details of the
messages used in their industry. These standards include
specifications for the message schema, which are rules regard-
ing the format of the message (such as structure of fields,
types, and values). Standards help to ensure that messages
pass accurately and quickly between components. These mes-
saging standards are a good fit for service virtualization. Some
examples include

 ✓ A web service defined with a Web Services Description
Language (WSDL): Web services are defined with WSDL.
Regardless of the messaging schema deployed, the WSDL
can be used to describe endpoints and their messages.

 ✓ Society for the Worldwide Interbank Financial
Telecommunication (SWIFT) and Financial Information
eXchange (FIX): SWIFT and FIX protocols are specific to
the financial services industry. They provide a standard-
ized and secure way to transfer and communicate finan-
cial information.

 ✓ Health Level 7 (HL 7): HL 7 is a standard used for mes-
saging in healthcare environments.

Finding the endpoints
Applications need to know how to reach the services they
depend on (the endpoints). Examples of endpoints include a
web service URL, a Java Messaging Service (JMS) endpoint,
and a JDBC Connection String. Some service virtualization
technology has the ability to observe and manage communi-
cation between components without requiring your team to
make any changes to the endpoints in the application. This
really simplifies the process of configuring a test environment
to take advantage of virtual components.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 44

Defining Virtual Components
The first step in defining virtual components is to model the
architecture with enough detail to expose the boundaries
where virtual components can be introduced. It’s great if you
have a tool that can display the services and components in
the system under test and the dependencies between them
visually. It’s even better if the tool separates the logical view
(components, services, and protocols) from the physical view
(specific endpoint URLs, hostnames, IP addresses, and so
on). This enables the tool to support multiple environments
running the same components. They share a logical view, but
each environment has different physical characteristics. For
example, the IP addresses of servers in production are differ-
ent from each test/pre-production environment.

Synchronizing with
external sources
Much of the information needed to paint this picture may be
available in the environment and development assets you
already have. You may be able to synchronize with those
external sources to populate the architectural views. Some
examples include WSDL files and middleware environments.

Recording existing services
You need to define the behavior of your virtual component.
Recording an existing service is a great way to capture a lot
of the information — including behavior and data — that
you need to create test cases and virtual components very
quickly. It can also help you decide what needs to be
simulated.

For example, some protocols are big, with dozens of messages
in the protocol. In practice, your application may not use
them all. You can learn what really happens under the covers
by recording a session in a production or pre-production envi-
ronment. Then use this new information to scope your service
virtualization effort. The same goes for data.

Here’s the value of recording:

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Putting Service Virtualization to Work 45
 ✓ You can discover what messages are actually being

shared and the format of those messages (for example,
the credit check service may offer a method to request
an appeal, but your application may never do this, and
therefore, your virtual component doesn’t need to model
its behavior).

 ✓ You can discover the range of data actually used (for
example, the credit check service may return a credit
score, and your virtual service needs to know a reason-
able range of responses for that value).

 ✓ You can understand message exchange patterns. These
are sequences of messages. Often you make a request,
get a response, and something in that response becomes
input to the next request (for example, you use a web
service to place an item in a shopping cart and get back
the ID of the shopping cart; you then need to use that ID
to make another request to view the contents of the cart).

So, what are the important considerations to think about as
you’re driving the system during recording? We give them to
you in this section.

What if you can’t record? You don’t need to record in order
to get started with service virtualization. Virtual components
can also be created from the design specifications before the
service has been fully developed.

Bootstrapping virtual component behavior
Service virtualization tools look at the inputs to a component
and the outputs from a component. Here is an example to
illustrate how you can bootstrap a virtual component.

Consider a web service for looking up the zip code for loca-
tions in the United States. The request has two parameters:
city and state. The response is a string containing five digits. A
recording of the traffic to this service may look like Figure 5-1.

Figure 5-1: A sample recording of the traffic for a zip code service.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 46
A recording of the inputs (city and state) and the outputs (zip
code) provides adequate information to bootstrap or quickly
capture virtual component behavior.

Understanding the mechanics of recording
Make sure that the recording technology doesn’t interfere
with your application’s deployment. In addition, virtual com-
ponents should be easy to introduce into your environment.
For example, your testing process may be slowed down if you
need to make manual adjustments to allow for communication
between the virtual component and the rest of the system.
You don’t want to take the time to manually reconfigure your
application’s deployment prior to using virtual component.
Also, if you need to change the application’s code in order to
pick up an accurate recording, it may interfere with your pro-
ductivity and success with service virtualization.

Behavior of virtual components
Virtual components exhibit a range of behaviors including the
following:

 ✓ Simple: A simple behavior is deterministic — the virtual
component emulates a web service by returning the
same response for a certain input every time. For exam-
ple, assume you have an enterprise travel app called
Hotel Finder that communicates with multiple services to
determine hotel availability. It performs a request to find
a hotel. To test this app, each time you request a hotel,
you receive the same response — ABC Hotel. That’s
enough for some test cases.

 ✓ Non-deterministic: Here there’s a little bit more vari-
ability. The service may get the stock quote for Big
Company, for example. You want the virtual component
to generate a different number each time you request the
service. For the purposes of testing, you don’t care what
the number is as long as it’s within a reasonable range.
In this case, there’s no business logic, but the variation
enables more realistic testing.

 ✓ Data driven: This behavior expands the richness of data
available from the virtual component. Input and output
data are specified in an external data source such as a

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Putting Service Virtualization to Work 47
spreadsheet or database. The service inputs are used to
look up the corresponding outputs. An example of this
type of behavior may be a hotel finder service where you
need to include 12 cities and three to four hotels in each
city. It will take approximately 42 (12 x 31⁄2) rows of data
to build a table of responses, but this variety could be
necessary to make sure the service communicates with
other services in the right way.

 ✓ Model driven/stateful: In a stateful service, one request
may change state on the server that must be maintained
and factored into responses to subsequent requests.
These changes can be modeled with a state transition
diagram. For example, say you have an ecommerce appli-
cation and you want to add an item to a cart. You make
a request against a service to add the particular item
to the shopping cart. The virtual component needs to
remember the contents of the cart to correctly respond
to requests that examine the cart, checkout, and so on.
You want to have a tool that makes it easy to specify this
behavior in the tool.

 ✓ Behavioral: This category applies to components that
don’t follow the other more typical behavior patterns.
You want an easy way to add an arbitrary behavior to
your virtual components through scripting or coding.

 Coding adds complexity. Sometimes you can avoid
simulating complex behaviors by creating separate vir-
tual components, with different behaviors, for different
test goals. Service virtualization makes it easy to switch
between components as testing needs change, and you
can avoid coding a lot of conditional behavior.

For managing virtual component test data, here is a checklist
of important capabilities:

 ✓ Data extracted from production environments must be
presented in an easy-to-use way.

 ✓ Data must be captured during recording in a way that
allows for easy creation of a virtualized service.

 ✓ Data should be able to be privatized or masked when
needed (for example, you virtualize a service that
retrieves medical records — you need realistic data for

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 48
your test, but you need to privatize/redact it for security
and compliance purposes).

 ✓ Multiple types of boundary conditions should be tested
(for instance, will an empty shopping cart be sufficient
for your test environment, or do you need to include
items in the shopping cart?).

 ✓ Externalize data from virtual components to allow for easy
updating. It will be easy for the author of a new test sce-
nario to add relevant data to a spreadsheet.

Determining the right tool for the job
When selecting a service virtualiza-
tion solution, recognize the needs of
different roles within your organiza-
tion. Not everyone needs to define
virtual components, but many testers
need to access virtual components
in their test environments. To ensure
that you can easily and success-
fully deploy service virtualization,
your virtualization solution needs to
provide functionality or support for
several key elements:

 ✓ A method for observing
and recording messaging
 conversations

 ✓ A tool for creating and maintain-
ing virtual components

 ✓ A hosting environment for virtual
 components

 ✓ An easy way for testers to con-
figure their environment with
virtual components

You want a virtual service solution
that’s flexible enough to allow you to
switch back and forth between the
real component and virtual compo-
nents when testing. For example, 90

percent of your testing is supported
by a virtual component (say the
Hotel Finder example from this sec-
tion). If that testing passes, the last
10 percent requires the real service
(say Expedia). You want both sets to
use the same build to avoid risk that
something changed between builds.
In other solutions, such as ad hoc
developer-written mocks, the appli-
cation must be changed, rebuilt, and
redeployed. With tools such as IBM
Rational Test Workbench and IBM
Rational Test Virtualization Server,
you don’t need to change your appli-
cation code to toggle service invo-
cations between the real component
and a virtual component; simply
go to the control panel and click a
button. You can even define rules in
your virtual component to selectively
respond to some incoming requests
while letting others pass through to
a real system. This is particularly
useful when you’re trying to limit
access to the real system for cost or
performance reasons, but there are
a few behaviors that are difficult to
simulate.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Putting Service Virtualization to Work 49

Provisioning Virtual Services
In order to provision virtual services, you need two key
 capabilities:

 ✓ A way to develop virtual services in a personal environ-
ment on your desktop

 ✓ A shared environment for service virtualization to use
across your development team

Your developers and testers need a shared infrastructure for
hosting virtual components. In addition, you need to maintain
multiple environments in parallel with different mixes of real
and virtual components. An environment binds a set of vari-
ables from the logical view of your system to specific virtual
and physical resources (identified by URLs, host addresses,
ports, or other connection settings). By creating multiple
environments (for example, developer private, SIT, and UAT),
you can run tests against different configurations during each
phase of the product life cycle. Figure 5-2 shows how the ser-
vices in the Whiz Bang example from Chapter 1 are bound in
three different environments.

Figure 5-2: Provisioning services (virtual and real) across test environments.

At this point you need to be able to control which traffic is
routed to a real service and which is routed to virtual services
across your environments. After you have your environment
established, you should be able to run all your tests without
knowing the difference between real and virtual services. Your
service virtualization tool should allow this change in routing
without requiring any modification of the application code or
configuration. You can adjust virtual components throughout.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 50

Running tests and evaluating results
You can easily run tests by taking
advantage of service virtualization.
With service virtualization, all your
tests — such as manual, automated,
user interface, and integration —
can be run in the same manner as in
a non-virtualized test environment.
Ideally the tool used to create your
virtual service also includes a capa-
bility for running tests and reporting

on the test execution results. Or
better yet: integrated with a qual-
ity management solution to manage
and report on execution results in a
single centralized repository acces-
sible by all. The same quality man-
agement best practices that apply
in non-virtualized test environments
are also important in virtualized test
environments.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

Measuring ROI
In This Chapter
▶ Developing a business case
▶ Realizing the financial benefits of service virtualization
▶ Being successful with your service virtualization solution

T
he first part of this book provides insight into how service
virtualization can help you reduce cost, increase quality,

and reduce the risk of delivering high-quality, complex appli-
cations. Now that you’re ready to move forward, you find out
about building your business case for service virtualization.

In this chapter, we review some of the key benefits of service
virtualization and their potential contribution to your return
on investment (ROI). In addition, we provide a checklist to
help you choose your tools carefully and invest wisely.

Building Your Business Case
The purpose of a business case is to help management under-
stand the costs and benefits of a new initiative prior to making
an investment. You can develop a business case to determine
if implementing service virtualization is economically viable
for your organization and to assess how it compares to other
investment alternatives. You need to measure how service
virtualization enhances your testing process and also, more
broadly, look at how service virtualization improves your
application life cycle management processes. Because the
results are measureable, quick, and real, your business case
should help convince management to make service virtualiza-
tion a priority investment for your organization.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 52
Your business case should include three main components:

 ✓ The rationale supporting your decision to implement
 service virtualization

 ✓ The estimated costs for the implementation

 ✓ The estimated benefits of the implementation

Make sure to develop your own list of projected benefits to
help you measure your ROI. While many companies have a
very long list of benefits, to get you started, here are a few
important ones:

 ✓ Increased team velocity

 ✓ Decreased cost of quality

 ✓ Reduced project risk

 ✓ Improved level of testing

 ✓ Defect removal efficiency

Why service virtualization?
How much testing downtime occurs due to your team’s
inability to access systems? How much money is wasted as
development teams wait to begin testing? Service virtualiza-
tion is important because it helps with the areas in your test
process that cause the greatest pain. You need to understand
the costs that you can attribute to delays in testing. Refer
to your internal company analysis on this topic to provide a
business and technical rationale for service virtualization in
your organization.

In addition, get an idea of how often you need to access third-
party interfaces prior to scheduling your tests. Understand
how much you’re currently paying third-party service provid-
ers to access their test environments. In essence, this compo-
nent of your business case is the place to begin justifying the
recommendation to implement service virtualization. Identify
what your testing environment is like now and the biggest
problems that you want to fix. Make a convincing case regard-
ing the importance of streamlining the software development
process and how it can be accomplished.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 6: Measuring ROI 53
Also consider referencing Chapter 4 to help with the first com-
ponent of your business case. In Chapter 4, you find a number
of questions to assess the need for service virtualization.

Estimating the costs of
 implementing service
 virtualization
The costs of implementing service virtualization are relatively
easy to identify. They include the cost of buying licenses for
the software, the hardware cost to host the solution (if hard-
ware isn’t already available), and any associated implementa-
tion costs. There will also be some time spent training the
development team on the new tools. Your estimate for these
expenses will vary depending on the software solution you
decide to purchase and its ease of use.

Estimating the benefits
of implementing service
 virtualization
You want to use this component of your business case to
articulate the costs you can avoid by implementing service
virtualization. In addition, you want to provide insight into
how you expect to gain efficiency and productivity. The next
section, “Quantifying the Benefits” presents some real world
examples of the benefits potential.

Quantifying the Benefits
Testing makes up a significant portion of the cost to develop
your application, and if you can eliminate some of these costs,
by adopting service virtualization, you stand to realize a large
financial benefit. There will also be benefits based on the
reduced testing time and improved quality of your applica-
tions. These benefits can be significant, but some aren’t easily
quantified in an ROI calculation. For example, how do you
measure the benefit of getting to market with an innovative
product before your competition? What’s the monetary value
of decreasing the duration of a testing cycle?

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 54
Regardless of how you test or the complexity of your applica-
tions, many testing costs can quickly be eliminated with a
mature service virtualization solution implementation. If you
are one of the many organizations currently struggling with
testing complex applications or you have dependencies on
third-party services, you can expect a significant ROI indeed!

Some of the most important benefits you’ll want to measure
to estimate your ROI include the factors in this section.

Eliminating or lowering costs
associated with traditional
test environments
The complexity of today’s composite applications requires
modern test environments to enable multiple servers hosting
a variety of application software, including http servers, appli-
cation servers, middleware, databases, and more, installed on
a variety of operating systems. The costs for setting up and
maintaining such an environment include everything from the
initial hardware and software costs to ongoing costs of server
administration and maintenance.

For the purposes of this discussion, assume a test environ-
ment requires five servers: http server, application server,
middleware server, database server, and ERP system. Four
of the servers have a cost of $5,000 per month, and the ERP
system costs $20,000 per month. The team is considering the
use of service virtualization to emulate the database and ERP
system during early test phases. For every month that testing
can proceed without these physical implementations, the sav-
ings would be $25,000.

Alternatively, you may decide to avoid some of the high costs
of purchasing and maintaining a mainframe environment by
leveraging a hosted environment. In this scenario, you pay
monthly access fees that may vary depending on the million
instructions per second (MIPS) used. Regardless of how you
pay for the mainframe, you probably depend on software
hosted in such an environment, and there’s a cost associated
with testing.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 6: Measuring ROI 55
What if you could decrease your monthly mainframe test-
ing costs by 50 percent or more? Assume a typical monthly
cost of using a mainframe environment for testing is $15,000.
Decreasing the cost of testing on the mainframe by half could
deliver $90,000 in annual savings.

Now consider the access fees you may be paying to third-
party vendors. These could be charges to access their service
in a dedicated testing environment on a cost per transaction.
You can decrease these access fees significantly with service
virtualization. For example, the access fee for third-party
hosted services is $30,000 per month. By virtualizing the ser-
vices and testing with virtual components, you can decrease
this amount by 80 percent. This results in a savings of $24,000
per month and potentially $300,000 per year.

Time spent provisioning
test environments
Using expensive resources to set up, tear down, and reset
test environments greatly increases your cost of testing. With
average full time equivalent (FTE) rates of $104,000 for testers
and $135,000 for developers, reducing the effort for manag-
ing test environments by 80 percent could result in savings of
$80,000 to $110,000 per resource per year. As a result, testers
and developers can refocus their efforts from managing test
environments to improving the level of testing.

This new efficiency in standing up the testing environment
frees up your highly-skilled teams to spend more time on rev-
enue generating activities. By adopting service virtualization,
you can become more efficient and get higher quality software
to market faster.

Finding and resolving defects
early in the development process
One of the most important metrics to include when measur-
ing your ROI is the reduction in software defects. Defects are
expensive to fix and can have an obvious negative impact
on customer satisfaction. With regards to software defects,
remember these facts:

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 56
 ✓ Software defects are the biggest man-made problem

plaguing software development organizations.

 ✓ If you catch defects early in the software development
process, it’s easier and less costly to resolve them.

 ✓ The key to finding defects earlier is to begin testing
 earlier — moving testing to the left.

For the purposes of an ROI calculation, assume 100 defects
are discovered during user acceptance testing (UAT) of a
single release for a combined remediation cost of $200,000
or $2,000 per defect. And in production, the cost per defect
increases by a factor of 10 or $20,000 per defect. Fifteen
defects are discovered in production for a cost to fix of
$300,000, bringing the total cost for repairing defects to
$500,000. If the number of defects found in UAT and produc-
tion was reduced by 70 percent, the savings potential in this
scenario is at least $350,000.

This figure doesn’t account for the potentially significant
financial impact of customer dissatisfaction or lost revenue.
The benefit of improved customer satisfaction could make the
savings even more substantial. A service virtualization solu-
tion puts control in the hands of the tester to begin testing
earlier and isolate defects for faster remediation at a much
lower cost.

When you tally the dollar amounts from the three very quan-
tifiable measures, the savings are significant and continue to
increase with each software release where service virtualiza-
tion is used. Two additional factors to consider as you build
the business case aren’t as easy to quantify, but can have a
big impact. These factors are faster time to market and pro-
cess improvements.

Faster time to market
If you begin your testing earlier and you test more efficiently,
you can innovate faster and get your products to market
before your competitors. Consider your revenue potential if
you’re first to market with an innovative solution.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 6: Measuring ROI 57
Process improvements
Inefficiencies in your testing process are very costly. Consider
how much you spend on labor and associated costs while
your testers wait for dependent software to be deployed or
for a shared test environment to become available. Every
minute of tester downtime that you can avoid adds to your
ROI for service virtualization.

Some companies find that tester downtime is so high that it
sharply reduces productivity for the software development
and deployment teams. In some situations, this wait time can
represent as much as 30 percent of a tester’s work hours —
or $30,000 spent on unproductive time for a tester with an
annual salary of $100,000. Employing service virtualization
allows organizations to get their testers testing instead of
waiting.

Selecting a Solution
Prior to selecting your service virtualization software, make
sure you understand what it takes to be successful with the
solution and how it meets your company’s specific require-
ments. Think of the additional costs you may incur if the
capabilities you need aren’t supported by the software. If the
solution you select falls short on the capabilities you need,
you won’t realize the ROI you expect.

To help you compare solutions, ask yourself the following
questions:

 ✓ Is the solution easy to use?

 ✓ How much and what level of training is required?

 ✓ Can you create virtual components from recordings or
design specifications?

 ✓ Does the solution support manual, automated (integra-
tion and functional), and performance test types?

 ✓ Can you create virtual components that allow you to
test different scenarios including happy path, alternative
flow, and negative testing?

 ✓ Can you create virtual components that enable you to
test what-if conditions?

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 58
 ✓ Does the solution offer the ability to quickly deploy and

manage virtualized services through an administrative
console?

 ✓ Can you toggle between live systems and virtual ser-
vices without having to reconfigure your application
 deployment?

 ✓ Can the solution manage the complexity of your appli-
cation environment (ranging from data-driven and cor-
related response sequences to full stateful database
emulation)?

 ✓ Can you automatically schedule and execute tests sup-
ported by virtual components upon the availability of a
new application build?

 ✓ Can you create, modify, and deploy virtual components
without requiring your teams to learn new programming
skills?

 ✓ How easy will it be to share and reuse virtual compo-
nents across teams?

 ✓ Can your teams develop in parallel environments?

 ✓ Will your solution scale to accommodate very large
teams as you grow?

 ✓ Does the solution require a long term professional ser-
vices engagement to help you get started and continue to
move forward?

Technology is constantly changing, so make sure that the soft-
ware vendor you select is committed to delivering new func-
tionality regularly to ensure the solution remains current. To
help speed your adoption process and keep your productivity
levels up, make sure your vendor provides excellent support
with access to trained technicians.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 7

Ten Key Points for Success
with Service Virtualization

In This Chapter
▶ Start off on the right foot
▶ Put control in the hands of the tester
▶ Increase productivity by building skills

S
ervice virtualization has the ability to dramatically increase
efficiency in the way you test software. Service virtualiza-

tion enables you to rethink your approach to testing and adopt
processes that are optimized, setting you free of testing bottle-
necks and allowing you to focus on creativity and innovation.
You recover time that was typically spent standing up complex
test environments and continuously testing through the devel-
opment life cycle. You explore advanced testing scenarios
sooner without having to reinvent the wheel. The return on
your service virtualization investment is quick, and the benefits
to your development teams and your business are real.

Rethink Your Approach
to Testing

Service virtualization supports any type of testing methodol-
ogy, and your goal should be to accelerate test execution —
manual or automated — in a way that’s repeatable and offers

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 60
improved efficiency. The most appropriate place to start is
by understanding your testing methodology and determining
where service virtualization can increase team velocity while
empowering your team to deliver higher-quality software.
After that, you may want to look at testing the exchange
of messages and behavior between the integrated compo-
nents of your composite applications. Why take a black box
approach to testing and execute tests from the user interface
when you have the opportunity to validate at the integration
layer? Service virtualization allows you to emulate dependent,
yet unavailable, software and test integrations earlier and iso-
late defects for faster resolution.

Plan for Flexibility
Begin by identifying your biggest pain points — what chal-
lenges are keeping you from performing your tests at the right
time and with the right level of detail? Teams can reduce test-
ing bottlenecks by starting with virtualizing the components
that are the most stable and the most expensive to stand up in
test environments. If some components will be delivered late,
use service virtualization to help simulate that missing func-
tionality. However, as priorities shift over time, teams also need
to be flexible. You may not be able to set all your service virtu-
alization requirements upfront as priorities may shift over time.

Start simple and take on more complex service virtualization
as your team becomes more comfortable with the improved
process. Continuously review your needs and make adjust-
ments to improve efficiency.

Practice Controlled Integration
Too often development teams delay integration testing until the
end of development and bring all components together hoping
for the best. Unfortunately, things don’t always go as planned.
New defects, design flaws, architectural issues, or massive
failures discovered during late development stages will put a
project at risk. A virtual component, simulating the real soft-
ware’s required behavior, offers a new level of control to the
test team. Systems can be isolated and subsystems simulated

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 7: Ten Key Points for Success with Service Virtualization 61
using virtual components to make the unavailable available.
Performance tests can be run earlier to validate design and
architectural decisions. And when the new or modified soft-
ware is finally available to test, development teams can intro-
duce the new source code in a controlled fashion by turning off
the virtual component and testing the real implementation.

Test Continuously from
Development to Production

You need a straightforward way to continuously test your code
so you can avoid introducing errors that become more difficult
to find and fix later on. The challenge with this is that testers
often lack access to critical elements at the right time to make
continuous integration testing a reality. Service virtualization
makes this possible. Creating virtual components that operate
the same as the real implementation makes it easier for your
testers to test in sync with development. Instead of encounter-
ing roadblocks to continuous integration testing, your teams
will be able to test at a more continuous level in many more
environments than were previously possible.

Externalize Your Test Data

Valid test data is an integral part of testing and service virtual-
ization. However, making sure that your testing process incor-
porates data that’s accurate as well as manageable in both size
and complexity isn’t a simple task. Your data may come from
multiple systems and multiple sources. Therefore, you should
externalize the data, decoupling it from the virtual component
itself. This makes it easier for resources unfamiliar with the virtu-
alization solution implemented to enhance the data. As a result,
you can create a data set that’s accurate and consistent with
the real application without requiring technical knowledge of
the service virtualization solution itself. If you extract data from
a production environment, you need to make sure you use this
data in a responsible way that protects personal information.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 62

Explore Advanced Test Scenarios
Service virtualization provides a way for you to do impor-
tant system level testing that you always wanted to do but
couldn’t because it was too costly or time consuming. Or
maybe you didn’t have access to all the components you
needed. Today’s complex software applications need more
complete and advanced testing across the life cycle.

With the increasing focus on quality, you need to be able to
start testing — even negative and performance testing —
much sooner. Service virtualization enables you to simulate
what-if situations and stress your system to test for errors
outside of the production deployment. In addition, you can
quickly implement alternative paths in a virtual component,
allowing you to create situations that regularly occur in the
“real” world but are challenging to reproduce.

Avoid Reinventing the Wheel
Too many times, developers and testers will start from scratch
in an attempt to increase testing efficiency, improve defect
identification, or fix issues faster. For example, you may start
out on a path to solve testing bottleneck issues by manually
authoring simulation stubs. With service virtualization, it’s
much more productive and cost effective to implement a com-
merical solution that’s built on proven best practices to create
virtual components. Leveraging technology built on a highly
abstracted model is more effective than coding stubs manually.
Organizations should look for a supported solution that offers
out-of-the-box support for their middleware, protocols, and for-
mats. This allows developers and testers to do what they were
hired to do, which is focus on improving the business value of
the resulting product and delivering higher quality software.

Service Virtualization
Isn’t Just for Testers

Application quality doesn’t just fall on the tester or a group
of testers within an organization. Everyone should contrib-
ute to improving the quality of the software delivered. In

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 7: Ten Key Points for Success with Service Virtualization 63
today’s world, programmers execute tests as part of their
development responsibilities, and they’re subject to the
same constraints as testers. These programmers may test
the code they wrote without validating integrations. Because
much of the dependent software isn’t available for testing,
the programmers will leave the integration testing for the test
team. However, integration testing is too important to leave
for later in the development cycle.

Service virtualization is the enabler allowing development
shops to move integration testing farther to the left, simulate
the missing dependencies, and get insight into the quality
of the deliverable by incorporating automated testing as
part of the build cycle.

Share Virtual Components
across the Enterprise

Your service virtualization solution should include an easy
way to share virtual components across development, opera-
tions, and test teams in your organization. Because testing
needs to be a continuous process, it’s important that all
members of your software development and operations teams
work in unison with each other. Service virtualization sup-
ports cross-disciplinary teams in ways that can change the
dynamics of testing in your organization and assist you in
being compliant with industry standards. Everyone needs to
work together, including analysts and developers and pro-
grammers and testers, for maximum efficiency while sharing
knowledge and expertise across your entire organization.

Enhancing Team Productivity
by Building Skills

Adopting new technology is only valuable when team mem-
bers are well trained in its use. Too often a busy application
development team doesn’t take the time it needs for training,
which can lead to a drop in productivity. Putting in the effort
to help team members build the right mix of skills should
result in a big payoff. Your developers and testers need to

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Service Virtualization For Dummies, IBM Limited Edition 64
have a good understanding of the technologies used in your
application’s implementation and how service virtualization
will be included. When all team members work together to
solve the problems of testing complex composite applica-
tions, you’re in a better position to gain value from service
virtualization.

Adopting service virtualization is more than just installing a
tool. If your teams stay current on the topic of service virtu-
alization and build expert level skills, you’ll see a reduction
in testing bottlenecks and improvements in productivity and
software quality.

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are the copyright of John Wiley & Sons, Inc. and any
dissemination, distribution, or unauthorized use is strictly prohibited.

	Service Virtualization For Dummies®, IBM Limited Edition
	Table of Contents
	Introduction
	About This Book
	Icons Used in This Book

	Chapter 1: What is Service Virtualization?
	Defining Service Virtualization
	Service Virtualization in Action
	Seeing How Service Virtualization Differs from Other Types of Virtualization
	Exploring Where Service Virtualization Can Add Value
	Benefits of Service Virtualization

	Chapter 2: The Driving Forces of Change
	Meeting the Rising Expectations of Enterprise Applications
	Embracing Service Oriented Architectures
	The Rise of Mobile Applications
	Agile Transformation Continues

	Chapter 3: Escaping the Past
	Improving Quality in the Application Life Cycle
	Rethinking Test Automation
	Facing the Challenges of Complex Test Environments
	Service Virtualization and Complex Test Environments

	Chapter 4: Finding Your Way to Service Virtualization
	Identifying Services to Virtualize
	Looking into Test Automation Strategies
	Implementing Service Virtualization for All Testing Purposes and Phases

	Chapter 5: Putting Service Virtualization to Work
	Understanding Your Architecture
	Defining Virtual Components
	Provisioning Virtual Services

	Chapter 6: Measuring ROI
	Building Your Business Case
	Quantifying the Benefits
	Selecting a Solution

	Chapter 7: Ten Key Points for Success with Service Virtualization
	Rethink Your Approach to Testing
	Plan for Flexibility
	Practice Controlled Integration
	Test Continuously from Development to Production
	Externalize Your Test Data
	Explore Advanced Test Scenarios
	Avoid Reinventing the Wheel
	Service Virtualization Isn’t Just for Testers
	Share Virtual Components across the Enterprise
	Enhancing Team Productivity by Building Skills

