USB is a system for conneding a wide range of peripherals to a ammputer, including pointing devices, displays,
and data storage aad communications products. Although rnot a relatively new development in personal
computing, it has only recently gained popularity due to increasing software support. This document discusses
what the USB system does and how it is done. The technicd detail covers the system's logicd structure, rather
than the electrical or software characteristics.

About this document

- This document is found on-line &
- | can be contacted l®ynail at
- Where new technical terms are introduced and defined in the text, they are ptotedtadics

Document Contents

Background : Why Replace Existing Technologies Wi#B?
. How theUSB system is arranged

. How Data Gets to the Right Places

. Types of Data Transfers

. Low Speed Devices

. How Data is Sent across tH&B

. Examples of Data Transactions

. The Role of the Hub

. The Role of Devices

10. In Conclusion

Appendices

A. Types of Packets
B. Cyclic Redundancy Checks
C. References list

ELEC101Assignnent : The Universal Serial Bus Pagel By Geoff Knagge, 22/10/98

Traditionaly, computer hardware such as printers and mice were plugged into sockets on the badk panel of a
PC, with ead connedor being fairly spedalised in its applicaions. For example, mice use one that is dedicaed
to transmitting serial data, while printers usually use aparalel data cdle, and monitors have their own spedal
plug. This system was quite suitable when it was implemented and has been used for many years.

However, recant technologicd developments have aeded problems for many users of PCs with this g/stem.
Today there is a huge range of periphera equipment including scanners, digital cameras, speaalised pointing
devices, high speed modems, all of which nead their own connedion to the PC. While the @&ove mentioned
parallel and serial sockets can indeed be used by many different devices, they cannot be shared by more than one
device at once, and so we can quickly run out of space to attach this new equipment.

Then why not just add more places to plug things into? This is quite possble, and has previoudy been the
solution in many cases by installing more sockets, and even conneding devices internally to bypassthe need for
these plugs altogether. However, there is a pradicd limit to how much this can be done. To examine why, we
need to investigate the structure of the PC.

Ead of those bad panel sockets is attached to a drcuit board (a cad) which, like the interna devices, in turn
plugs into a dot on the main circuit board. The cmputer neals to be ale to distinguish which of these cads
information is coming from, and similarly eat card needs to know when out going data is direded to it. Thisis
done by using speaal numbers cdled IRQs ("Interrupt Request”), used for when the cad wants to get something
done, and 1/0 ("Input/Output”) addresses, used for transferring data between the computer and cards. When the
cad has mething for the software to do, it generates a signa on the IRQ line, and communicaes with the
software viathe 1/0O addresses. The IRQs and I/O addresses are set in hardware on the cad but, while these ae
usualy adjustable, people have often found that when adding new hardware these numbers can clash with
existing cards. The result is that neither card functions correctly.

Many people find these potential problems rather daunting and this reduces the dtradiveness of PCs to the
market. An innovation known as "Plug and Play" aims to sort out the problem of clashing numbers, but there ae
gtill only afinite anount of these numbers avail able, with some being reserved for certain purposes. Aswell asall
of the technicd problems, where ae other nuisances such as excessve caling, the fad that you cannot
disconred devices while the computer is on without risking damaging something, and the different types of
plugs required for different types of computers such as the Apple Maantosh. Even in the gsence of problems,
that back of a computer can be a daunting place for some, who often fear damaging something.

Thisis where USB aims to simplify things by extending the trend of "user friendliness' to the hardware level. To
the average computer user, it is a system where you can smply plug a deviceinto any available socket and that
device will i nstantly be available for use by the computer. Up to 127 devices can be mnneded, and sinceit isa
high speed system supporting upto 12 Megabits per seand, it can acoommodate the needs of a wide variety of
peripherals. Other advantages include the aility to safely disconned and reconned items without switching off
the computer, and the ability to us&/8B device on any computer supporting theB system.

ELEC101Assignnent : The Universal Serial Bus Page? By Geoff Knagge, 22/10/98

1TE UNIVETrSd oSefldl BUS 15 a TEWWOTK O allaUdiiTierits Correded to e nost COmputer. 1rnese diadirtierits CoIrie
in two types known as Functions and Hubs. Functions are the peripherals sich as mice printers, etc. Hubs
basicdly ad like adouble aapter does on a power-point, converting one socket, cdled a port, into multiple
ports. Hubs and functions are collectively catled ces.

As far as the functions are concerned, hubs are furthermore like
double adapters because dthough the eitire system is physicdly in Modem | CHub D CHub D—fpriner]
the star topology seen in Figure 1(a), logicaly the system ads like a | [<evboard] o] Soerer |
bus topology. This means that signals appea to travel along asingle Figure 1(a) : The physic-al USB amangement
set of wiring, cdled the bus, to the host and is accessble by all Functions are joing to hubs in a star arrangement

functions, as illustrated in Figure 1(b). However, the host does keep | | | [sp | L&q

track of the physicd arrangements © that if a hub becmes | Sindle connecting tus
disconreded, it is aware that all hubs and functions attached to it will -
Consequently be disconnected too. Figure 1(b) : How the USB system appears to functions

The host has a hub embedded in it cdled the root hub, and in pradicd implementations hubs are usually
combined with one or more functions, such as keyboards or monitors. These ae cdled compound devices and
ad like a hub with the functions permanently conneded, along with any additional ports. Hubs may be
connected to other hubs in a tiered arrangement, but the bus topology still applies.

3. How Does Data Get to the Right Places?

Even with this type of arrangement, we still have the same problem as with the traditiona PC layout. Each
function has to know when a pieceof data is meant for it, and the host needs to know where signals are cmming
from, so numbers are assgned to ead component on the USB. However, rather than ead using afixed IRQ and
I/O address, thelSB system takes a different approach.

When a device is attadhed to the USB system, it gets assgned a number cdled its address. The aldressis
uniquely used by that device while it is conneded and, unlike the traditional system, this number is likely to be
different to the aldressgiven to that device the last time it was used. Eadh device dso contains a number of
endpoints, which are a collection of sources and destinations for communications between the host and th
device.

Endpoints operate in smplex mode, meaning that they are ather an input or output, but not both. For example, a
smplistic model of a keyboard (figure 2) could have akeypad as output endpoint number 1, and the LED key
lock display as receaving endpoint 1. All USB devices have one of ead of their 16 posshle input and output
endpoints reserved as "zero endpoints’. These ae used for the aito-detedion and configuration of the device
when it is conneded, and are the only accessble endpoints until this occurs. In addition eat endpoint sets, upon
connection, its own set of characteristic requirements concerning its requirements when accessing the bu

The @mbination of the aldress endpoint

number and dredion are what is used by the : To Keypad

host and software to determine dong which | Default Control Pipe software trom BIOS

pipe data is travelling. A pipe is sSmply a data 17 !

path between an endpoint and the as®ciated T

portion of the oontrolling software, such as rginputana— |] (e ®e®)
between the Keyboard LEDs and the BIOS I
routine which determines what LEDs should be B

lit. A spedal pipe is defined to conred to the E

zao endpoints, and is cdled the Default

Control Pipe. Figure 2 : Simple keyboard model illustrating endpoints and pipes

ELEC101Assignnent : The Universal Serial Bus Page3 By Geoff Knagge, 22/10/98

4. | YYEO Ul Udila Ll AdllolCl o

Before we can understand any further detail about the communications process WgBmeatwork, we need
to be aware of the types of data that it must cope with. To accommodate the different types of data that r
travel across thedSB, each pipe can be configured as one of four transfer types.

- Control Transfers : These differ from the other types in that they are intended for use in configuring,
controlling, and cheding the status of a USB device A request is ent to the device from the host, and
appropriate data transfers follow in the gpropriate pipes. At some later stage, a status indicator is returned to
the host. The pipe used for this type of data may be bidiredional, but uses the same numbered endpoint for eat
diredion. In addition, a device only handles one cntrol request a atime, with the host withholding outstanding
requests until a status is returned on the one in progress For example, the Default Control Pipe uses Control
Transfers and accomplishes sich tasks as initialising the device, and telling the host of the requirements of eat
of its endpoints. This type of pipe might also be used to control the operation of other pipes.

- Isochronous Transfers : These involve data whose acarracy is not criticd and which is st at a rate
corresponding to some timing medhanism. For example, 44100KHz audio fits into this caegory since it doesnt
have to be perfedly acarate and every 44100samples indicaes one seand of audio. USB provides a speaa
type of transfer for this data, giving it preference to guarantee a constant transmission rate with the requit
bandwidth. To ensure that the USB has enough time to handle the maximum data flow (1023 bytes) in eah
frame, a ded is made during the initial configuration and the pipes will only be cnfigured if this ched is
succesdul. This transfer method uses unidiredional pipes with no error handling procedures. Even though an
error may be indicaed in the status reply to a request, the pipe will not be halted and it is up to the software to
decide what to do.

- Interrupt Transfers: These ae used for small, infrequent transfers which require priority over other requests.
As with Isochronous transfers, pipe @nfiguration is granted on whether or not the system can handle the
maximum padket size within the required time, with a further restriction that stops Interrupt and Isochronous
Transfers from using more than 90% of any frame (discussed later) and stopping other transfers from occurring.
The endpoint tells the host during configuration how often it should be polled for interrupt requests, and upon
ead polling returns aNAK signal if there is nothing to send. The use of this type of pipe isin some ways smilar
in purpose to th&RQ lines of the traditional peripheral system used in computers.

- Bulk Transfers : As the name suggests, the intended pupose is for transmitting large anounts of data. This
type of transfer gets the lowest priority, so pipes using this method are only alowed to transmit when there is
available bandwidth. This means that a heavily loaded USB may have relatively ow bulk transfers compared to
one with is srvicing few devices. This transfer type would be useful for sending data from devices like digital
scanners.

5. Low Speed Devices

The description of USB devices © far has describe full speed USB peripherals, however there eists a spedal
classof device known as low speal devices. These ae smpler devices guch as joysticks, and are the same as the
full speed versions, except for the following restrictions:

* The maximum packet size for data transfers is 8 bytes
* They cannot usksochronoushor Bulk Transfer pipes
* May only have 2 endpoints other than the zero endpoints

This simplification makes such devices easier, and thus cheaper, to design and implement.

ELEC101Assignnent : The Universal Serial Bus Paged By Geoff Knagge, 22/10/98

O. MUV IoUdla Sl it aLl Uoo LNICT U OD 7

When the software requires data transfer to occur between itself and the USB, it sends a block of data cdled an
/O Request Packet (IRP) to the gpropriate pipe, and the software is later notified when this request is
completed successully or terminated by error. Other than the presence of an IRP request, the pipe has no
interadion with the USB. In the event of an error after threeretry attempts, the IRP is cancdled and all further
and outstanding IRPs to that pipe aeignored until the software responds to the eror signal that is generated by
sending an appropriate cd to the USB. How exadly this is handled depends upon the type of device and the
software.

As suggested by the name Universal Seria Bus, data transmisson in the bus occurs in a serial form. Bytes of
data ae broken up and sent along the bus one bit a a time, with the least significant bit first as ill ustrated by
figure 3.

Serial Bus LSB

MSB
00> ©—>0 5 0 — 0 —)

Figure 3 : Serial transmission of the binary number 11010010

The adua data is nt aaoss the bus in padkets. Each packet is a bundle of data dong with information
concerning the source destination and length of the data, and also error detedion information. Since eab
endpoint sets, during configuration, a limit to the size of the padet it can handle, an IRP may require severa
padkets to be sent. Each of these padkets $ould be the maximum possble size except for the fina padket. The
USB host has a built in mechanism so that the software can tell it when to expect full sized packets.

Inthe event that a lessthan maximum size padet is recaved ealier than expeded, an error is assumed and the
pipe is stalled with al IRPs being cancdled wuntil the problem is dedt with by the controlling software. If an
endpoint is busy, but no error has occurred, it responds with a spedal signal labelled NAK (Negative
AcKnlowedge), which tells the other end of the pipe to wait a while. How these @nditions are handled depends
on the type of device and the software.

Each packet is made up of a set of components dadled including the following, summarised in figure 4 :

* Aneight bit "SYNC" synchronisation field used by inputs to corred their timing for accepting data. Part of
this field is a special symbol used to mark the start of a packet.

* The 8 bit Padket Identifier (PI1D) which uses 4 bits to determine the type, and hence format, of the padet
data. The remaining 4 hits are al's complement of this, ading as ched bits. Part of this field determines
which of the four groups (token, data, handshake, and speaal) that the padket belongs to, and also spedfies
an input, output or setup instruction.

* An addressfield which gives the address of the function on the end of the pipe to be used

* The 4 bitendpoint field, giving the appropriate endpoint which sends or receives the packet.

*A datafield
consisting

of 0-1023 Sync (8) | PID (8) | Address |Endpoint (4) | Data (0-1023 bytes)
bytes

Figure 4 : A typical data packet. Numbers represent size of field in
bits, unless otherwise indicated.

ELEC101Assignnent : The Universal Serial Bus Pageb By Geoff Knagge, 22/10/98

icaltigyiul Luliinidinevalvll AU Uoo Ll I UJL. LITUIod © UTLECUTU Uy UoC Ul AdvyullL TATUU UA VY WHITUN Vi) Ul

al fields except the PID, which hes its own cheding medianism. CRC is considered aimost 100% acairate in
error detection, and its process is described further in appendix A.

ELEC101Assignnent : The Universal Serial Bus Pageb By Geoff Knagge, 22/10/98

. CAATIPICSO Ul Udla L dlloaLlivlils

A datatransadion is sSmply a movement of data between the host and a wnneded device The different types of
possible transactions depend upon what transfer type the corresponding pipe is configured for.

When the host wants to initiate abulk transfer from a device, it sends a Token Padket speafying whether input
or output is desired. If the host wants input, the function in turn sends either a padket of data or a non-ACK
handshake. If the host is snding a request to transmit, it will immediately send the data padket and wait for an
appropriate handshake to be returned by the recipient.

Figure 5 : Communcation sequence for input and output bulk transactions

USB Device

USB Device

Input Token - Output Token
Host &) USB Device Host P)
Data or handshake : Data
Host (4 USB Device Host)
handshake
Host 4

USB Device

This is initiated by the host via a appropriately coded token padket with information regarding the control
command being issued. The redpient either replies with an ACK handshake, or ignores the token totaly. This
type of transfer also contains an optional unidiredional data transfer between the host and the device Lastly, a
status is returned to whatever end of the pipe was last to transmit.

Host

Control Token)

Host

\

USB Device

Host

Control Token)

ACK handshake

USB Device

(a) Successful Control Command

(b) Unsuccessful Control Command

USB Device

Figure 6 : Communcation sequence for Control transactions

The function is queried by the host via atoken padket, and returns data if it has any interrupt related information
to transmit, or &NAK handshake if it doesn't.

Host

Interrupt Token)

USB Device

Host

Interrupt Token)

Host

interrupt data

\

USB Device

Host

(a) Interrupt Pending

USB Device

NAK handshake

USB Device

(b) No interrupt data waiting

Figure 7 : Communcation sequence for Interrupt transactions

These ae dso begun with an
appropriate token padket being
sent to the function, and then
data is transmitted as required.
However, due to the asaumed

error-tolerance of

isochronous

data, no handshake padets are

used.

Token

Host

4 USB Device

Host

Figure 8 : Communcation sequence for Isochronous transactions

isochronous data>|

USB Device

ELEC101Assignnent : The Universal Serial Bus

Page7

By Geoff Knagge, 22/10/98

10 e WIsdimet, a nub Jimply expands orie Uob POrt IO IMuitipie ports.
However, to manage this the hub must by able to be ale to manage
communicaions between itself and other devices, ensuring that only one
transmisson occurs on the bus at one time. Communicaions flows
through the hub can be either from the host to a device, or vice versi [runction] [Funcrion]

Figure 9 : Data flows from host to function
(red lines represent flow of data)

A hub goes into an idle state whenever there ae no communicaions
requests coming into it. When it deteds data coming to it from wherever it
conneds to the USB, it immediately establishes a cmmunicaions
conredion between itself and al devices conneded to its ports, relaying
that data & in figure 9. If a cnneded device has data to send to the host,
the hub temporarily switches off al communicaions with other devices
and relays the data to the point where it conneds to the USB. This is then ‘FUNC;;C:&LF:[;ZZ tonFuncrion]

repeaed by al further hubs (figure 10) until the data finaly reades the (red lines represent flow of data)
host.

The hub is also responsible for monitoring what devices are cnneded to its ports. When a @nredion or
disconnedion occurs, the host is notified by use of the status reply to a token padket. The host then sends
another padket to the hub to inquire exadly what changes occurred. If it was a mnnedion, areset signal is sent
to the gpropriate port, an addressis assgned to the device by the host, and a @nfiguration sequence occurs via
the default control pipe of that device If a deviceis detadhed, the host updates its information to remove dl
devices on the disconnected chain from its records.

9. The Role of Functions

The whole point of the USB system is to define a communicaions protocol so that peripherals may
communicae with their host computer. This is done via the various transadion types previously described, but
the important concept in the USB system is that no functions may transmit as on as they are ready to do so.
They must wait to be queried, and then send the appropriate request via a reply or interrupt transfer.

As previously described, functions view the etire USB as a bus network of peripherals, oblivious to the role of

hosts. They ad no differently if they are conneded 3 hubs down a dain than if they were diredly conneded to
the root hub.

10. In Conclusion

The Universal Serial Bus offers aredistic dternative to the existing problem of configuring new peripherals for
use with personal computers. The main advantage is the eae of use for the consumer, who smply has to plug
the device into any available port for the device to immediately become available to appropriate software. In
addition, USB devices are equally suited to any computer platform supporting the protocol, unlike airrent
differences between some devices for the PC and Apple Madntosh. The option for devices to use alow spedl
mode dlows chegier peripherals such as joysticks to be designed for the system without the alditional
complexity. The only mgjor disadvantage for the consumer is likely to be the st of upgrading their computer in
order to use the systetdSB capable computers still support the traditional system too, so there is no
problem with the compatibility of older hardware with such a computer.

The barriers which have dowed USB's growth in popularity have been mainly due to the unavailability of
supporting software and hardware. The software problem is currently being overcome with USB support being
included in the latest version of both Apple's and Microsoft's operating systems. Thus, there is now incentive for
people to consider buyindSB hardware, and hence for manufacturers to build it.

ELEC101Assignnent : The Universal Serial Bus Pages By Geoff Knagge, 22/10/98

APPCIIUIA A. UYUITU RCUUTNIUAlILY UIHICURA S

The Cyclic Redundancy Chedk, ablreviated CRC, is an error detedion mecdhanism which is considered
extremely acaurate. Unlike simpler methods like parity chedks and chedksums, it is unlikely that errors within a
transmission will cancel out and fool the checking circuitry.

In effed, CRC treds a stream of data hits as a large binary number, divides it by a prime, and transmits the
remainder. However, thisis hard to implement smply in circuitry, so the following method is used to dbtain an

equivalent result :

The area of memory used for this calculation is filled with binary ones

Each time a data bit is received, iX®Redwith the high order bit

The memory contents are shifted left one bit (multiply by 2), and the low order bit set to 0

If the XOR produced a 1, then the registeKi®Redwith a special polynomial known to both the receiver
and transmitter

After the last bit is sent, the CRC is inverted and sent for checking. If both transmitter and receiver do
get the same result, an error has occurred during transmission

Appendix B. Types of Packets

To cope with the various communications that must occur to establish a data flow, there needs to be a ve
types of packets, and these are as follows:

Token Packets : These are used to query the device and are issued by the host. They cdifisadiiress
and endpoint fields, along with a 5 bit CRC check.

Start-of-Frame Packets : TheUSB host controls the processing of datdmsunits called frames. During
each frame, it examines what requests are outstanding and allocates each pipe bandwidth depending
requirements and type of transfer that it uses. Each frame is marked by a Start (S©@&)packet,
consisting of an approprial®D, an 11-bit counter and a 5 bit CRC. The counter is incremented once pe
frame, allowing devices to determine whether they missed a frame due to an error and adjust their timi
appropriately.

Data Packets: Consists of all of the above field types, and is protected by a 16 bit CRC

Handshake Packets : These are used for returning the status of data transfers and consist dplip of a
These come in three types and are naA@d (ACKnowledgemenof receipt with no errorsNAK (the
function is not ready to communicate data) and STALL (function is busy or some other error occurred

Appendix C. References

My main source of information was the officldbB 1.1 Specification, available at

Some of the background information was from previous knowledge gained from various articles in the
Electronics Australia and Australian Personal Computer magazines. However, no individual articles ar
notable for use as a reference

ELEC101Assignnent : The Universal Serial Bus Paged By Geoff Knagge, 22/10/98

