UMTS Long Term Evolution (LTE)

Reiner Stuhlfauth Reiner.Stuhlfauth@rohde-schwarz.com

Training Centre Rohde & Schwarz, Germany

Overview 3GPP UMTS Evolution Driven by Data Rate and Latency Requirements					
WCDMA HSDPA/HSUPA HSPA+ LTE					
128 kbps uplink 5.7 Mbps peak uplink 11 Mbps peak uplink 50 Mbps peak uplink					
RoundTripTime~150ms RoundTripTime<100ms RoundTripTime <50 ms RoundTripTime~10 ms					
3GPP Release 99/4 3GPP Release 5/6 3GPP Release 7 3GPP Release 8					
2003/4 2005/6 (HSDPA) 2008/9 2009/10 2007/8 (HSUPA)					
Approx. year of network roll-out					
ROHDE&SCHWARZ July 09 LTE introduction R.Stuhlfauth, 1MAT 2					

What LTE could mean also ...

I Live Telecommunication Ecosystem I Long Term Employment I LTE Telephones Everywhere I Love The Enemy I Life Time Eternal I Let's Take it Easy I Live communication To Everyone I Loads of Traffic for Everyone I Little Televisions Everywhere I Look, Talk, and Enjoy I Late Troublesome Expensive I Laugh Track Escapade I Luscious Telephony Experience I Linking The Earth I Let's Transmit Everything Ι...

Years of Driving

Innovation

Why LTE? Ensuring Long Term Competitiveness of UMTS

- I LTE is the next UMTS evolution step after HSPA and HSPA+.
- I LTE is also referred to as EUTRA(N) = Evolved UMTS Terrestrial Radio Access (Network).
- I Main targets of LTE:
 - I Peak data rates of 100 Mbps (downlink) and 50 Mbps (uplink)
 - Scaleable bandwidths up to 20 MHz
 - I Reduced latency
 - I Cost efficiency
 - I Operation in paired (FDD) and unpaired (TDD) spectrum

Years of Driving

Major technical challenges in LTE

New radio transmission schemes (OFDMA / SC-FDMA)

MIMO multiple antenna schemes

FDD and TDD mode

Throughput / data rate requirements

Timing requirements (1 ms transm.time interval) Multi-RAT requirements (GSM/EDGE, UMTS, CDMA)

Scheduling (shared channels, HARQ, adaptive modulation)

System Architecture Evolution (SAE)

> Years of Driving Innovation

Introduction to UMTS LTE: Key parameters

Frequency Range	UMTS FDD bands and UMTS TDD bands					
Channel	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
bandwidth, 1 Resource Block=180 kHz	6 Resource Blocks	15 Resource Blocks	25 Resource Blocks	50 Resource Blocks	75 Resource Blocks	100 Resource Blocks
Modulation Schemes	Downlink: QPSK, 16QAM, 64QAM Uplink: QPSK, 16QAM, 64QAM (optional for handset)					
Multiple Access	Downlink: OFDMA (Orthogonal Frequency Division Multiple Access) Uplink: SC-FDMA (Single Carrier Frequency Division Multiple Access)					
MIMO technology	Downlink: Wide choice of MIMO configuration options for transmit diversity, spatial multiplexing, and cyclic delay diversity (max. 4 antennas at base station and handset) Uplink: Multi user collaborative MIMO					
Peak Data Rate	Ak Data Rate Downlink: 150 Mbps (UE category 4, 2x2 MIMO, 20 MHz) 300 Mbps (UE category 5, 4x4 MIMO, 20 MHz) Uplink: 75 Mbps (20 MHz)					
ROHDE&SCHWARZ July 09 LTE introduction R.Stuhlfauth, 1MAT 8						

LTE/LTE-A Frequency Bands (FDD)

E-UTRA Operating	Uplink (UL) operating band BS reœive UE transmit F _{UL_low} – F _{UL_high}		Downlink (DL) operating band BS transmit UE reœive F _{DL_low} – F _{DL_high}			Duplex Mode	
Band							
1	1920 MHz	-	1980 MHz	2110 MHz	-	2170 MHz	FDD
2	1850 MHz	_	1910 MHz	1930 MHz	-	1990 MHz	FDD
3	1710 MHz	-	1785 MHz	1805 MHz	-	1880 MHz	FDD
4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	FDD
5	824 MHz	-	849 MHz	869 MHz	-	894MHz	FDD
6	830 MHz	-	840 MHz	875 MHz	-	885 MHz	FDD
7	2500 MHz	_	2570 MHz	2620 MHz	-	2690 MHz	FDD
8	880 MHz	-	915 MHz	925 MHz	-	960 MHz	FDD
9	1749.9 MHz	-	1784.9 MHz	1844.9 MHz	-	1879.9 MHz	FDD
10	1710 MHz	_	1770 MHz	2110 MHz	_	2170 MHz	FDD
11	1427.9 MHz	-	1452.9 MHz	1475.9 MHz	_	1500.9 MHz	FDD
12	698 MHz	-	716 MHz	728 MHz	-	746 MHz	FDD
13	777 MHz	-	787 MHz	746 MHz	-	756 MHz	FDD
14	788 MHz	-	798 MHz	758 MHz	_	768 MHz	FDD
17	704 MHz	-	716 MHz	734 MHz	_	746 MHz	FDD
18	815 MHz	-	830 MHz	860 MHz	-	875 MHz	FDD
19	830 MHz	-	845 MHz	875 MHz	-	890 MHz	FDD
20	832 MHz	-	862 MHz	791 MHz	-	821 MHz	FDD
21	1447.9 MHz	-	1462.9 MHz	1495.9 MHz	-	1510.9 MHz	FDD
22	3410 MHz	-	3500 MHz	3510 MHz	-	3600 MHz	FDD
ROHDE&S	SCHWARZ July	/09	LTE introduction R	Stuhlfauth, 1MAT 9		Driving	

LTE/LTE-A Frequency Bands (TDD)

E-UTRA Operating	Uplink (UL) operating band BS reœive UE transmit	Downlink (DL) operating band BS transmit UE reœive	Duplex Mode
Band	F _{UL_low} – F _{UL_high}	F _{DL_low} – F _{DL_high}	
33	1900 MHz – 1920 MHz	1900 MHz – 1920 MHz	TDD
34	2010 MHz – 2025 MHz	2010 MHz – 2025 MHz	TDD
35	1850 MHz – 1910 MHz	1850 MHz – 1910 MHz	TDD
36	1930 MHz – 1990 MHz	1930 MHz – 1990 MHz	TDD
37	1910 MHz – 1930 MHz	1910 MHz – 1930 MHz	TDD
38	2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD
39	1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD
40	2300 MHz – 2400 MHz	2300 MHz – 2400 MHz	TDD
41	3400 MHz – 3600MHz	3400 MHz – 3600MHz	TDD

MIMO =

Multiple Input Multiple Output Antennas

MIMO is defined by the number of Rx / Tx Antennas and not by the Mode which is supported Mode				
	SISO Single Input Single Output	Typical todays wireless Communication System		
	MISO Multiple Input Single Output	 Transmit Diversity Maximum Ratio Combining (MRC) Matrix A also known as STC Space Time / Frequency Coding (STC / SFC) 		
	SIMO Single Input Multiple Output	Receive Diversity I Maximum Ratio Combining (MRC) Receive / Transmit Diversity Spatial Multiplexing (SM) also known as:		
	MIMO Multiple Input Multiple Output	 Space Division Multiplex (SDM) True MIMO Single User MIMO (SU-MIMO) Matrix B Space Division Multiple Access (SDMA) also known as: Multi User MIMO (MU MIMO) Virtual MIMO Collaborative MIMO 		
ROHDE&SCHW	Definition is seen from Channel Multiple In = Multiple Transmit Antennas ARZ July 09 LTE introduction R.Stuhlfauth,	Beamforming 1MAT 12		

Different Beamforming Implementations

I Switched Beamforming

- electrical calculation of DoA
- switch one beam on

I Adaptive Beamforming

- electrical calculation of DoA
- steer a user specific beam

Years of

Innovation

Driving

Beamforming increases S/N Ratio

I Adaptive Beamforming

- Follows the User / User Group dynamically
- Increases S/N Ratio
- The Focus of the Beam is stronger with increasing number of antennas

But, beamforming in OFDM systems, has to be done on each subcarrier separately!

Maximum Ratio Combining depends on different fading of the two received signals. In other words decorrelated fading channels

> Years of Driving Innovation

MIMO Spatial Multiplexing

ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 19

The MIMO promise

I Channel capacity grows linearly with antennas ③

```
Max Capacity ~ min(N_{TX}, N_{RX})
```

I Assumptions ⊗

- I Perfect channel knowledge
- I Spatially uncorrelated fading

I Reality 😄

- I Imperfect channel knowledge
- **I** Correlation \neq 0 and rather unknown

MIMO: channel interference + precoding

MIMO channel models: different ways to combat against channel impact:

- I.: Receiver cancels impact of channel
- II.: Precoding by using codebook. Transmitter assists receiver in cancellation of channel impact

Years of Driving

III.: Precoding at transmitter side to cancel channel impact

MIMO: Principle of linear equalizing

Ø

Transmitter will send reference signals or pilot sequence to enable receiver to estimate H.

The receiver multiplies the signal r with the Hermetian conjugate complex of the transmitting function to eliminate the channel influence.

> Years of Driving

transmission – reception model

MIMO precoding introduction

Precoding = Transmitter changes the way how to transmit the signal to assist the receiver! Current situation does not permit the proper receiption of both antennas!

Can be estimated due to reference signals

Years of Driving Innovation

MIMO Precoding in LTE (DL) Spatial multiplexing – Code book for precoding

Code book for 2 Tx:

Codebook	Number of layers v			
IIIUEA	1	2		
0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		
1	$\begin{bmatrix} 0\\1\end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$		
2	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix}$		
3	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -1 \end{bmatrix}$	-		
4	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ j \end{bmatrix}$	-		
5	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -j \end{bmatrix}$	-		

Additional multiplication of the layer symbols with codebook entry

Years of Driving Innovation

LTE precoding for 1 layer precoding Ant1 Ant2 precoding $\frac{\lambda}{2}$ λ $\overline{2}$ precoding precoding precoding precoding $\overline{2}$ precoding precoding Ì Years of Driving Innovation ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 31

MIMO Precoding in LTE (DL) Spatial multiplexing – Code book for precoding

2 examples for 2 layers and 2 Tx antennas

MIMO – codebook based precoding

MAS: "Dirty Paper" Coding

Multiple Antenna Signal Processing: "Known Interference" L

I Is like NO interference

Ø

Analogy to writing on "dirty paper" by changing ink color accordingly

Cyclic Delay Diversity, CDD

"Open loop" und "closed loop" MIMO

Open loop (No channel knowledge at transmitter)

$$r = Hs + n$$

Closed loop (With channel knowledge at transmitter

$$r = HWs + n$$

Adaptive Precoding matrix ("Pre-equalisation") Feedback from receiver needed (closed loop)

'ears of

OHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 38

Beamforming

Adaptive Beamforming

•Classic way

•Antenna weights to adjust beam

•Directional characteristics

•Specific antenna array geometrie

Dedicated pilots required

Closed loop precoded beamforming

•Kind of MISO with channel knowledge at transmitter

Precoding based on feedback

•No specific antenna array geometrie

Common pilots are sufficient

Вонр

HDE&SCHWARZ July 09 | LTE introduction| R.Stuhlfauth, 1MAT 47

Adaptive beamforming: transmission mode 7

 UE specific reference

 Frequency

 Image: Colspan="2">Image: Colspan="2">Time

Years of Driving

Data and reference symbols use the same precoding

Adaptive beamforming. Transmission mode 7 eNode B sends common **UE** specific reference symbols for reference symbols, Channel status information But only in allocated bandwidth PDSCH PBCH, PDCCH PHICH, PCFICH, etc Antenna port 5 = from UE perspective, the eNode B looks like as only 1 antenna Here: isotropic transmission UE would not see difference Transmits 🙂 between this and adaptive beamforming

ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 53

Years of Driving Innovation

Closed loop precoded beamforming

•UE has to send channel status information as feedback. •Based on CSI, node B selects appropriate precoding matrix

Closed loop precoded beamforming

Possible precoding values for 1-2 antennas

Years of Driving Innovation

Closed loop precoded beamforming

Codebook	<i>u</i> _n	Number of layers v				
index		1	2	3	4	
0	$u_0 = \begin{bmatrix} 1 & -1 & -1 & -1 \end{bmatrix}^T$	$W_0^{\{1\}}$	$W_0^{\{14\}}/\sqrt{2}$	$W_0^{\{124\}}/\sqrt{3}$	$W_0^{\{1234\}}/2$	
1	$u_1 = \begin{bmatrix} 1 & -j & 1 & j \end{bmatrix}^T$	$W_1^{\{1\}}$	$W_1^{\{12\}}/\sqrt{2}$	$W_1^{\{123\}}/\sqrt{3}$	$W_1^{\{1234\}}/2$	
2	$u_2 = \begin{bmatrix} 1 & 1 & -1 & 1 \end{bmatrix}^T$	$W_2^{\{1\}}$	$W_2^{\{12\}}/\sqrt{2}$	$W_2^{\{123\}}/\sqrt{3}$	$W_2^{\{3214\}}/2$	
3	$u_3 = \begin{bmatrix} 1 & j & 1 & -j \end{bmatrix}^T$	$W_3^{\{1\}}$	$W_3^{\{12\}}/\sqrt{2}$	$W_3^{\{123\}}/\sqrt{3}$	$W_3^{\{3214\}}/2$	
4	$u_4 = \begin{bmatrix} (-1-j)/\sqrt{2} & -j & (1-j)/\sqrt{2} \end{bmatrix}^T$	$W_4^{\{1\}}$	$W_4^{\{14\}}/\sqrt{2}$	$W_4^{\{124\}}/\sqrt{3}$	$W_4^{\{1234\}}/2$	
5	$u_5 = \begin{bmatrix} 1 & (1-j)/\sqrt{2} & j & (-1-j)/\sqrt{2} \end{bmatrix}^T$	$W_5^{\{1\}}$	$W_5^{\{14\}}/\sqrt{2}$	$W_5^{\{124\}}/\sqrt{3}$	$W_5^{\{1234\}}/2$	
6	$u_6 = \begin{bmatrix} (1+j)/\sqrt{2} & -j & (-1+j)/\sqrt{2} \end{bmatrix}^T$	$W_6^{\{1\}}$	$W_6^{\{13\}}/\sqrt{2}$	$W_6^{\{134\}}/\sqrt{3}$	$W_6^{\{1324\}}/2$	
7	$u_7 = \begin{bmatrix} 1 & (-1+j)/\sqrt{2} & j & (1+j)/\sqrt{2} \end{bmatrix}^T$	$W_7^{\{1\}}$	$W_{7}^{\{13\}}/\sqrt{2}$	$W_7^{\{134\}}/\sqrt{3}$	$W_7^{\{1324\}}/2$	
8	$u_8 = \begin{bmatrix} 1 & -1 & 1 & 1 \end{bmatrix}^T$	$W_8^{\{1\}}$	$W_8^{\{12\}}/\sqrt{2}$	$W_8^{\{124\}}/\sqrt{3}$	$W_8^{\{1234\}}/2$	
9	$u_9 = \begin{bmatrix} 1 & -j & -1 & -j \end{bmatrix}^T$	$W_9^{\{1\}}$	$W_9^{\{14\}}/\sqrt{2}$	$W_9^{\{134\}}/\sqrt{3}$	$W_9^{\{1234\}}/2$	
10	$u_{10} = \begin{bmatrix} 1 & 1 & 1 & -1 \end{bmatrix}^T$	$W_{10}^{\{1\}}$	$W_{10}^{\{13\}}/\sqrt{2}$	$W_{10}^{\{123\}}/\sqrt{3}$	$W_{10}^{\{1324\}}/2$	
11	$u_{11} = \begin{bmatrix} 1 & j & -1 & j \end{bmatrix}^T$	$W_{11}^{\{1\}}$	$W_{11}^{\{13\}}/\sqrt{2}$	$W_{\rm N}^{\{134\}}/\sqrt{3}$	$W_{11}^{\{1324\}}/2$	
12	$u_{12} = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}^T$	$W_{12}^{\{1\}}$	$W_{12}^{\{12\}}/\sqrt{2}$	$W_{12}^{\{123\}}/\sqrt{3}$	$W_{12}^{\{1234\}}/2$	
13	$u_{13} = \begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}^T$	$W_{13}^{\{1\}}$	$W_{13}^{\{13\}}/\sqrt{2}$	$W_{13}^{\{123\}}/\sqrt{3}$	$W_{13}^{\{1324\}}/2$	
14	$u_{14} = \begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix}^T$	$W_{14}^{\{1\}}$	$W_{14}^{\{13\}}/\sqrt{2}$	$W_{14}^{\{123\}}/\sqrt{3}$	$W_{14}^{\{3214\}}/2$	
15	$u_{15} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$	$W_{15}^{\{1\}}$	$W_{15}^{\{12\}}/\sqrt{2}$	$W_{15}^{\{123\}}/\sqrt{3}$	$W_{15}^{\{1234\}}/2$	
ossible precoding values for 4 antennas $W_n = I - 2u_n u_n^H / u_n^H u_n$						
ROHDE&SCHWARZ July 09 LTE introduction R.Stuhlfauth, 1MAT 56						

Some technical details of LTE / EUTRA

LTE Physical Layer

LTE Downlink: OFDMA Time/Frequency Representation

Resource block

- Sub-carrier spacing in LTE = 15 kHz (7.5 kHz for MBMS scenarios)
- · Data is allocated in multiples of resource blocks
- 1 resource block spans 12 sub-carriers in the frequency domain and 1 slot in the time domain
- Resource block size is identical for all bandwidths

Normal scenario: carrier spacing of 15 kHz Big cell scenario: 7,5 kHz + extended guard time OFDM symbols (time domain)

(3 symbols for 7.5 kHz spacing / MBMS scenarios)

Years of Driving

OHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 68

LTE Downlink: Downlink slot and (sub)frame structure

Symbol time, or number of symbols per time slot is not fixed

LTE Downlink: baseband signal generation

LTE Physical Layer: SC-FDMA in uplink

LTE Uplink: How to generate an SC-FDMA signal in theory?

- LTE provides QPSK,16QAM, and 64QAM as uplink modulation schemes
- DFT is first applied to block of N_{TX} modulated data symbols to transform them into frequency domain

Years of Driving

Innovation

- Sub-carrier mapping allows flexible allocation of signal to available sub-carriers
- IFFT and cyclic prefix (CP) insertion as in OFDM
- Each subcarrier carries a portion of superposed DFT spread data symbols
- Can also be seen as "pre-coded OFDM" or "DFT-spread OFDM"

LTE Uplink: How does the SC-FDMA signal look like?

✤ In principle similar to OFDMA, BUT:

- ✤ In OFDMA, each sub-carrier only carries information related to one specific symbol
- ✤ In SC-FDMA, each sub-carrier contains information of ALL transmitted symbols

Years of Driving Innovation

SC-FDMA Peak to average

Years of Driving Innovation

LTE Physical Layer:

Reference signals – general aspects

Reference signals in Downlink

Reference signals in Uplink

CHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 87

Ô

CAZAC sequence characteristics – constellation diagram

Constant

Years of Driving

Innovation

 \otimes ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 89

Characteristics of Zadoff-Chu sequences

Constant **Cross-correlation**

<u>A</u>

 $n \frac{n+1}{l} + l \cdot n$ $a_q(n) = e^{-j2\pi q}$ N_{ZC}

If N_{7C} is selected to be a prime number, you get optimum cross correlation between any pair of ZC

Cross correlation between any 2 Zadoff-Chu sequences is constant and equal to: 1

sequences

&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 92

Downlink Reference Signals

- 3 downlink reference signals defined:
 - Cell-specific reference signals, associated with non-MBSFN transmission
 - Transmitted on one or several of antenna ports 0 to 3
 - Pseudo-random sequence defined by a length-31 Gold sequence
 - Mapped to physical resources with cell-specific frequency shift
 - Same resource element cannot be used by more than one antenna port

✤ MBSFN reference signals, associated with MBSFN transmission

- MBSFN reference signals are transmitted on antenna port 4
- Defined for extended cyclic prefix only
- ☆ Can be used with ∆f=15kHz subcarrier spacing as well as in MBSFNdedicated cells with ∆f=7.5kHz (FFT_{SIZE}=4096)
- Pseudo-random sequence defined by a length-31 Gold sequence

UE-specific reference signals

- Supported for single-antenna-port transmission of PDSCH only
- Phase reference for PDSCH demodulation
- Pseudo-random sequence defined by a length-31 Gold sequence
- UE-specific reference signals are transmitted only on the resource blocks upon which the corresponding PDSCH is mapped

Years of Driving

Innovation

Downlink Reference Signals Cell-specific reference signal R_0 R_0 One antenna port R_0 R_0 frequency R_0 R_0 R_0 R_0 l = 0 $l = 6 \ l = 0$ l=6time Cell specific reference signals Pseudo random bit sequence, based on physical cell ID Staggered in frequency + time Distributed over channel bandwidth, always sent Years of Driving Innovation Ô

HDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 94

MIMO in LTE (DL) Reference Symbols / Pilots

e.g.:

MIMO in LTE (DL) Reference Symbols / Pilots

Antenna 0

Years of Driving Innovation Antenna 3

Different Tx antennas Can be recognized separately

Ø

ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 96

LTE Uplink: Reference Signals

2 different purposes:

- Uplink channel estimation for uplink coherent demodulation/detection (reference symbol on 4th SC-FDMA symbol)
- Channel sounding: uplink channel-quality estimation for better scheduling decisions (position tbd)

Years of Driving

LTE Physical Layer Procedures

General aspect of PHY: interference avoidance

LTE measurements

RSRP = Reference Signal Received Power

Definition	Reference signal received power, the mean measured power of the reference symbols during the measurement period.
Applicable for	TBD

E-UTRA Carrier RSSI

Definition	E-UTRA Carrier Received Signal Strength Indicator, comprises the total received wideband power observed by the UE from all sources, including co- channel serving and non-serving cells, adjacent channel interference, thermal noise etc.
Applicable for	TBD

Years of Driving Innovation

Synchronisation Aspects in LTE

LTE Initial Access

LTE cell acquisition process

- I 1. carrier frequency detection
- **I 2.** primary synchronisation signal > 5msec timing and $N_{\rm ID}^{(2)}$
- I 3. secondary synchronisation signal -> 10msec timing and $N_{
 m ID}^{(1)}$
- I 4. Derive physical layer cell identity out of PSS and SSS
- I 5. Blind detect cyclic prefix duration (extended or normal) and slot boarder
- I 6. Using cell identity and channel bandwidth for reference symbol detection

Years of

- I 7. PBCH detection, reading Master information block
- I 8. MIB -> channel bandwidth and system frame number
- I 9. PCFICH detection -> PDCCH -> SI-RNTI
- I 10. PDCCH -> PDSCH -> SIB1
- I 11. SIB1 scheduling information to acquire all other SIBs
- I 12. Reading necessary SIB information

LTE cell search – carrier frequency

UE scans all frequency bands according to its capabilities to find carrier frequency of the cell. No priorisation between bands, optionally USIM information will give priority

	E-UTRA Band	Uplink (UL) BS receive UE transmit			Down BStr UEr	Duplex Mode		
/	$\langle $	Fullow	— F	UL_high	F _{DL_low}	— F	DL_high	
	1	1920 MHz	-	1980 MHz	2110 MHz	-	2170 MHz	FDD
/	2	1850 MHz	-	1910 MHz	1930 MHz	-	1990 MHz	FDD
/	3	1710 MHz	-	1785 MHz	1805 MHz	-	1880 MHz	FDD
	4	1710 MHz	-	1755 MHz	2110 MHz	-	2155 MHz	FDD
	5	824 MHz	-	849 MHz	869 MHz	-	894MHz	FDD
	6	830 MHz	-	840 MHz	875 MHz	-	885 MHz	FDD
	7	2500 MHz	-	2570 MHz	2620 MHz	-	2690 MHz	FDD
	8	880 MHz	Ι	915 MHz	925 MHz	Ι	960 MHz	FDD
	9	1749.9 MHz	-	1784.9 MHz	1844.9 MHz	-	1879.9 MHz	FDD
	10	1710 MHz	-	1770 MHz	2110 MHz	-	2170 MHz	FDD
	11	1427.9 MHz	-	1452.9 MHz	1475.9 MHz	-	1500.9 MHz	FDD
	12	698 MHz	-	716 MHz	728 MHz	-	746 MHz	FDD
	13	777 MHz	-	787 MHz	746 MHz	-	756 MHz	FDD
	14	788 MHz	-	798 MHz	758 MHz	-	768 MHz	FDD
	17	704 MHz	-	716 MHz	734 MHz	-	746 MHz	FDD
	33	1900 MHz	-	1920 MHz	1900 MHz	-	1920 MHz	TDD
	34	2010 MHz	-	2025 MHz	2010 MHz	-	2025 MHz	TDD
	35	1850 MHz	-	1910 MHz	1850 MHz	-	1910 MHz	TDD
	36	1930 MHz	-	1990 MHz	1930 MHz	-	1990 MHz	TDD
	37	1910 MHz	-	1930 MHz	1910 MHz	-	1930 MHz	TDD
	38	2570 MHz	-	2620 MHz	2570 MHz	-	2620 MHz	TDD
	39	1880 MHz	-	1920 MHz	1880 MHz	-	1920 MHz	TDD
	40	2300 MHz	-	2400 MHz	2300 MHz	-	2400 MHz	TDD

LTE Downlink Cell search procedure - hierarchy

 Primary synchronization signal: 3 possible sequences to identify the cell's physical layer identity (0, 1, 2) Transmitted every 5 ms to identify 5 ms timing

 Secondary synchronization signal: 168 different sequences to identify physical layer cell identity group Transmitted every 5 ms to identify radio frame timing

3. <u>Physical broadcast channel (PBCH):</u> Carrying broadcast channel with predefined information: system bandwidth, number of transmit antennas, reference signal transmit power, system frame number,...

Primary Synchronisation Signal PSS

- I Primary synchronisation signal is a CAZAC sequence, constant amplitude, zero autocorrelation
- I Shows good autocorrelation(the 3 selected root indices show best correlation results)
- I Has good peak to average power ratio, PAPR
- based on Zadoff-Zhu sequence, sequence d_{..}(n) given as

$$d_u(n) = \begin{cases} e^{-j\frac{\pi u n(n+1)}{63}} & n = 0, 1, \dots, 30\\ e^{-j\frac{\pi u (n+1)(n+2)}{63}} & n = 31, 32, \dots, 61 \end{cases}$$

<u>A</u>

$N_{\mathrm{ID}}^{(2)}$	Root index U
0	25
1	29
2	34

I Mapping onto physical ressources: 62 subcarriers around DC subcarrier $a_{k,l} = d(n), \qquad n = 0,...,61$ Alleviates search. UE can use $k = n - 31 + \frac{N_{\rm RB}^{\rm DL} N_{\rm sc}^{\rm RB}}{2}$ **FFT** window

SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 118

Years of Driving

Primary Synchronisation Signal PSS

 $N_{\rm ID}^{(2)} = 0$

ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 119

Ŷ

Secondary Synchronisation Signal

- I Interleaved concatenation of 2 length-31 binary sequences
- I BPSK modulated
- I Scrambled based on physical layer identity, derived from primary synchronisation signal PSS
- I Identifies the physical layer cell identity group
- I Transmitted on 62 subcarriers around the DC subcarrier

Secondary Synchronisation Signal Even resource element $\begin{cases} s_0^{(m_0)}(n)c_0(n) & \text{in subframe 0} \\ s_1^{(m_1)}(n)c_0(n) & \text{in subframe 5} \end{cases}$ Indices m0 and m1 defines the physical layer cell identity group $d(2n+1) = \begin{cases} s_1^{(m_1)}(n)c_1(n)z_1^{(m_0)}(n) & \text{in subframe 0} \\ s_0^{(m_0)}(n)c_1(n)z_1^{(m_1)}(n) & \text{in subframe 5} \end{cases}$ $N_{\rm m}^{(1)}$ Odd resource element identify physical layer cell identity group Sequence s() is a pseudo random sequence, given as: $N_{\rm ID}^{(1)}$ $s_0^{(m_0)}(n) = \widetilde{s}((n+m_0) \mod 31)$ $x(\bar{i}+5) = (x(\bar{i}+2) + x(\bar{i})) \mod 2,$ $0 \leq \overline{i} \leq 25$ $\widetilde{s}(i) = 1 - 2x(i)$ $s_1^{(m_1)}(n) = \widetilde{s}((n+m_1) \mod 31)$ x(0) = 0, x(1) = 0, x(2) = 0, x(3) = 0, x(4) = 1Sequence c() is a pseudo random sequence used as scrambling sequence identify cell, within eNodeB $c_0(n) = \tilde{c}((n + N_{\rm ID}^{(2)}) \mod 31)$ $x(\bar{i}+5) = (x(\bar{i}+3) + x(\bar{i})) \mod 2,$ $0 \le \overline{i} \le 25$ $\widetilde{c}(i) = 1 - 2x(i)$ $c_1(n) = \tilde{c}((n + N_{\text{ID}}^{(2)} + 3) \mod 31)$ Sequence z() is a pseudo random sequence used as scrambling sequence identify cell at cell edge $z_1^{(m_0)}(n) = \widetilde{z}((n + (m_0 \mod 8)) \mod 31)$ $\widetilde{z}(i) = 1 - 2x(i)$ $x(\bar{i}+5) = (x(\bar{i}+4) + x(\bar{i}+2) + x(\bar{i}+1) + x(\bar{i})) \mod 2$ $0 \leq \overline{i} \leq 25$ $z_1^{(m_1)}(n) = \widetilde{z}((n + (m_1 \mod 8)) \mod 31)$ B Years of Driving CHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 122 Innovation

Secondary Synchronisation Signal

Indices m0 and m1 defines the physical layer cell identity group $N_{
m D}^{(1)}$

	$N_{\mathrm{ID}}^{(1)}$	m_0	m_1	$N_{\mathrm{ID}}^{(1)}$	m_0	m_1	$N_{\mathrm{ID}}^{(1)}$	m_0	m_1	$N_{\rm ID}^{(1)}$	m_0	m_1	$N_{\rm ID}^{(1)}$	m_0	m_1
	0	0	1	34	4	6	68	9	12	102	15	19	136	22	27
	1	1	2	35	5	7	69	10	13	103	16	20	137	23	28
	2	2	3	36	6	8	70	11	14	104	17	21	138	24	29
	3	3	4	37	7	9	71	12	15	105	18	22	139	25	30
	4	4	5	38	8	10	72	13	16	106	19	23	140	0	6
	5	5	6	39	9	11	73	14	17	107	20	24	141	1	7
2	6	6	7	40	10	12	74	15	18	108	21	25	142	2	8
	7	7	8	41	11	13	75	16	19	109	22	26	143	3	9
/	8	8	9	42	12	14	76	17	20	110	23	27	144	4	10
	9	9	10	43	13	15	77	18	21	111	24	28	145	5	11
	10	10	11	44	14	16	78	19	22	112	25	29	146	6	12
_	11	11	12	45	15	17	79	20	23	113	26	30	147	7	13
	12	12	13	46	16	18	80	21	24	114	0	5	148	8	14
	13	13	14	47	17	19	81	22	25	115	1	6	149	9	15
-	14	14	15	48	18	20	82	23	26	116	2	7	150	10	16
	15	15	16	49	19	21	83	24	27	117	3	8	151	11	17
	16	16	17	50	20	22	84	25	28	118	4	9	152	12	18
	17	17	18	51	21	23	85	26	29	119	5	10	153	13	19
-	18	18	19	52	22	24	86	27	30	120	6	11	154	14	20
-	19	19	20	53	23	25	87	0	4	121	7	12	155	15	21
-	20	20	21	54	24	26	88	1	5	122	8	13	156	16	22
	21	21	22	55	25	27	89	2	6	123	9	14	157	17	23
	22	22	23	56	26	28	90	3	7	124	10	15	158	18	24
-	23	23	24	57	27	29	91	4	8	125	11	16	159	19	25
-	24	24	25	58	28	30	92	5	9	126	12	17	160	20	26
	25	25	26	59	0	3	93	6	10	127	13	18	161	21	27
	26	26	27	60	1	4	94	7	11	128	14	19	162	22	28
	27	27	28	61	2	5	95	8	12	129	15	20	163	23	29
	28	28	29	62	3	6	96	9	13	130	16	21	164	24	30
	29	29	30	63	4	7	97	10	14	131	17	22	165	0	7
	30	0	2	64	5	8	98	11	15	132	18	23	166	1	8
	31	1	3	65	6	9	99	12	16	133	19	24	167	2	9
	32	2	4	66	7	10	100	13	17	134	20	25	-	-	-
	33	3	5	67	8	11	101	14	18	135	21	26	-	-	-

Years of Driving Innovation

Cell specific reference signal

I Reference signal sequence given as:

$$r_{l,n_{\rm s}}(m) = \frac{1}{\sqrt{2}} \left(1 - 2 \cdot c(2m) \right) + j \frac{1}{\sqrt{2}} \left(1 - 2 \cdot c(2m+1) \right), \quad m = 0, 1, \dots, 2N_{\rm RB}^{\rm max, DL} - 1$$

I Based on length-31 Gold pseudo random sequence:

$$c_{\text{init}} = 2^{10} \cdot \left(7 \cdot \left(n_{\text{s}} + 1\right) + l + 1\right) \cdot \left(2 \cdot N_{ID}^{cell} + 1\right) + 2 \cdot N_{ID}^{cell} + N_{CP}$$
Slot number
within
subframe
Physical
layer cell
identity
Cyclic prefix
lenght
$$N_{CP} = \begin{cases} 1 & \text{for normal CP} \\ 0 & \text{for extended CP} \end{cases}$$

lears of

I Mapped on frequency subcarriers as shown in graph. Frequency offset variable, depending on cell identity

Cell specific reference signals

Cell specific reference symbols are frequency staggered with frequency shift depending on cell identity to ease detection. Example here 3 neighbour cells with different identities

Ô

LTE Downlink Configuration of physical broadcast channel

10 ms radio frame

PCFICH mapping on physical resource

Resource block

MIB and sync channels -> UE reads PCFICH to know where PDCCH is

Years of Driving Innovation

System Information Scheduling

System information

MIB: Physical layer info	SIB Type 1: Access restrictions, SIB scheduling info	SIB Type 2: Common and shared channel info						
SIB Type 3: Cell reselection info	SIB Type 4: Cell reselection info, intra-fr. neighbour info	SIB Type 5: Cell reselection info, inter-fr. neighbour info						
SIB Type 6: Cell reselection info for UTRA	SIB Type 7: Cell reselection info for GERAN	SIB Type 8: Cell reselection info for CDMA2000						
SIB Type 9: Home eNB identifier (HNBID)	UE shall have a valid information							
I ETWS = Earthquake and Tsunami	on those SIBs, depending on the supported RAT							
ROHDE&SCHWARZ July 09 LTE introduction R.Stuhlfauth, 1MAT 136								

Random Access Procedure in LTE

Innovation

LTE Uplink Random access preamble

Sequenc

T T	PRACH configuration	System frame number	Subframe number
¹ _{CP} ¹ _{SEQ}	0	Even	1
	1	Even	4
	2	Even	7
	3	Any	1
	4	Any	4
	5	Any	7
4 different preamble formats for FDD mode	6	Any	1, 6
Preamble transmission restricted to certain	7	Any	2 ,7
time / frequency resources	8	Any	3, 8
Preamble occupies 6 resource blocks in	9	Any	1, 4, 7
frequency domain configured by higher	10	Any	2, 5, 8
lavers	11	Any	3, 6, 9
layoro	12	Any	0, 2, 4, 6, 8
	13	Any	1, 3, 5, 7, 9
	14	Any	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
	15	Even	9

Years of Driving Innovation

Random Access Preamble

- Consumes 6 Resource Blocks in frequency domain (1.08 MHz)
- No frequency hopping (RAN1#53b pre-preference: fixed position next to the bottom of maximum PUCCH bandwidth)
- FDD: Maximum of one PRACH resource per subframe
 TDD: Resources per subframe vary between 0.5 and 6
- Subcarrier spacing is 1250 Hz only (7500 Hz for preamble format 4)

	C:	C: Sequence			
	$T_{\rm CP}$	T _{SEQ}	>		
Preamble format	T _{CP}	T _{SEQ}	Applicable		
0	3168·T _s	24576·T _s	FDD/TDD		
1	21024·T _s	24576·T _s	FDD/TDD		
2	6240·T _s	2·24576·T _s	FDD/TDD		
3	21024·T _s	2·24576·T _s	FDD/TDD		
4	448·T _s	4096·T _s	TDD		
OHDE&SCHWARZ Ju	ly09 LTE introduction R.Stur	Ifauth, 1MAT 146			

PRACH Formats

PRACH Signal

- CAZAC property requires prime-length sequences
- Subcarrier spacing of preamble differs by factor 12 enabling reuse of existing FFT-modules
- Each cell has an own set of 64 different preambles created by cyclic shifts of one or more assigned Zadoff-Chu root sequences
- Up to a maximum of 64 UEs in a cell can perform a simultaneous random access without collision
- Match detector in the eNodeB detects the cyclic shift of the preamble and the transmission delay
- For placement of PRACH in TDD UpPTS: 139 carriers, 7.5 kHz subcarrier spacing, 2 carriers frequency shift

CHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 148

RACH Preamble (RAP)

I RA Preamble = not standard modulated data but CAZAC (Zadoff / Chu Sequence) in TDD/FDD

Zadoff / Chu Sequence = Root seq. + Time Shift / Phaserotation

- I In TDD: Preamble = 1 long (not F4) OFDM Symbol of Zadoff / Chu Sequence → Orthogonality
 - + CP \rightarrow Easy processing in frequency domain
 - + $GT \rightarrow$ Avoids Subf.-Interference by no UL-Synchronization
- Different formats for different cell sizes: 0-3 (FDD: 1,2,3 Subframes), 4 (TDD: 1 Symbol)

3. Scheduled transmission (C) (Msg.3)

ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 154

Power Control Aspects

Characteristic of radio channel with multipath propagation (path loss, shadowing, fast fading) as well as the interference "provided" through other users – both within the same cell and from neighboring cells – needs to be considered to find the balance,

Years of Driving

Innovation

Description based on 3GPP baseline June '09! Calculation of P_{CMAX} changes with September '09 version!

Years of Driving

Innovation

- I $\mathsf{P}_{\mathsf{UMAX}}$ is the maximum UE power, defined as +23 dBm \pm 2dB corresponding to power class 3bis in WCDMA,
 - Based on higher order modulation schemes and used transmission bandwidth a Maximum Power Reduction (MPR) is applied and the UE maximum transmission power is further reduced (see TS 36.101, table 6.2.3-1),
 - Network signaling (NS_0x) might be used in a cell to further reduce maximum UE transmission power (= Additional MPR (A-MPR); see TS 36.101, Table 6.2.4-1)

ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 166

Maximum UE power - analogies

Maximum speed = 280 km/h

=Penerclassiii

UE Maximum Power Reduction

UE transmits at maximum power, maximum allowed TX power reduction is given as

	Modulation	Channel bandwidth / Transmission bandwidth configuration [RB]							
		1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz)	
	QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1	
	16 OAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1	
9	16 QAM Full	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2	

Higher order modulation schemes require more dynamic -> UE will slightly repeal its confinement for maximum power

Years of Driving

ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 171

PUSCH power control Transmit output power (\rightarrow P_{UMAX}), cont'd.

3GPP Band 13

707

									787		63	775		787			805
A	в	с	D	E	A	В	с	c		~	Public S	afety B	c	A	Ľ		Safety I
СН. 52	СН. 53	CH. 54	CH. 55	CH. 56	CH. 57	CH. 58	CH. 59	CH. 60	CH. 61	CH. 62	CH. 63	CH. 64	CH. 65	CH. 66	CH. 67	CH. 68	CH. 69

	Network Signalling Value	Requiremen ts (sub-clause)	E-UTRA Band	Char bandv	nnel vidth (MHz)	Resources Blocks	A-MPR (dB)			
	NS_07	6.6.2.2.3 6.6.3.3.2	13	10		Table 10 6.2.4 -2				
	··· Indic	cates the lowes dex of transmit resource block	ted s		R	egion A	Reç	Region B		
			RB _s	Start		0 – 12	13 – 18	19 – 42	43 – 49	
	Defines t contiguou	the length of a is RB allocatio		RBs]	6 – 8	1 – 5 to 9 – 5	0 ≥8	≥18	≤2	
	In case c		Ra A-MPF	R [dB]	8	12	12	6	3	
 In case of EOTRA Band to depending on RD anocation as wen as number of contiguously allocated RB different A-MPR needs to be considered. Considered. CONDE&SCHWARZ July 09 LTE introduction R.Stuhlfauth, 1MAT 172 										

$\begin{array}{l} \textbf{PUSCH power control}: P_{O_PUSCH} \\ P_{0_PUSCH}(j) & P_{PUSCH}(i) = \min\{P_{CMAX}, 10 \log_{10}(M_{PUSCH}(i)) + P_{C_PUSCH}(j)\} + \alpha(j) \cdot PL + \Delta_{TF}(i) + f(i)\} \end{array}$
I P _{0_PUSCH} (j) is a combination of cell- and UE-specific components, configured by higher layers ¹ : Full path loss compensation is consideredno path loss compensation is usedno path loss compensation is usedno path loss compensation is used
 I j = 0 ⇒ for semi-persistent scheduling (SPS), j = 1 ⇒ for dynamic scheduling, I j = 2 ⇒ for transmissions corresponding to the retransmission of the random access response,
 For j = 2: P_{0_UE_PUSCH}(2) = 0 and P_{0_NOMINAL_PUSCH}(2) = P_{0_PRE} + ∆_{PREA MBLE_Msg3}, where P_{0_PRE} and ∆_{PREA MBLE_Msg3} are provided by higher layers, P_{0_PRE} is understood as <i>Preamble Initial Received Target Power</i> provided by higher layers and is in the range of -12090 dBm,
 - \(\Delta_{\text{PREAMBLE_Msg3}}\) is in the range of -16, where the signaled integer value is multiplied by 2 and is than the actual power value in dB, ¹⁾ see next slide(s) respectively TS 36.331 V8.6.0 Radio Resource Control specification
ROHDE&SCHWARZ July 09 LTE introduction R.Stuhlfauth, 1MAT 174

$\begin{array}{l} \textbf{PUSCH power control: P}_{O_PUSCH}(j) \\ P_{PUSCH}(i) = \min\{P_{CMAX}, 10 \log_{10}(M_{PUSCH}(i)) + P_{O_PUSCH}(j) + \alpha(j) \cdot PL + \Delta_{TF}(i) + f(i)\} \end{array}$

- I UplinkPowerControl IE contains the required information about $P_{0_Nominal_PUSCH}$, $\Delta_{PREAMBLE_Msg3}$ are part of RadioResourceConfigCommon,
- I Via RadioResourceConfigCommon the terminal gets also access to RACH-ConfigCommon to extract from there information like Preamble Initial Received Target Power (P_{0_PRE}),
- I RadioResourceConfigCommon IE is part of System Information Block Type 2 (SIB Type 2)

PUSCH power control

 $\alpha(i)$ and PL

 $P_{\text{PUSCH}}\left(i\right) = \min\{P_{\text{CMAX}}, 10\log_{10}\left(M_{\text{PUSCH}}\left(i\right)\right) + P_{\text{O}_\text{PUSCH}}\left(j\right) + \alpha(j) \cdot PL + \Delta_{\text{TF}}\left(i\right) + f(i)\}$

Years of Driving

Innovation

I Path loss (PL) is estimated by measuring the power level (Reference Signal Receive Power, RSRP) of the cell-specific downlink reference signals (DLRS) and subtracting the measured value from the transmit power level of the DLRS provided by higher layers,

– SIB Type 2 ⇒ RadioResourceConfigCommon ⇒ PDSCH-ConfigCommon,

- α(j) is used as path-loss compensation factor as a trade-off between total uplink capacity and cell-edge data rate,
 - Full path-loss compensation maximizes fairness for cell-edge UE's,
 - Partial path-loss compensation may increase total system capacity, as less resources are spent ensuring the success of transmissions from cell-edge UEs and less inter-cell interference is caused to neighboring cells,
 - For α (j=0, 1) can be 0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0, where 0.7 or 0.8 give a close-to-maximum system capacity by providing an acceptable cell-edge performance,
 - $-For \alpha(j=2) = 1.0,$

PUSCH power control

 $\Delta_{\text{TE}}(i)$

Ô

 $P_{\text{PUSCH}}(i) = \min\{P_{\text{CMAX}}, 10\log_{10}(M_{\text{PUSCH}}(i)) + P_{\text{OPUSCH}}(j) + \alpha(j) \cdot PL + \Delta_{\text{PUSCH}}(i)\}$ + f(i)

- I $\Delta_{TF}(i)$ can be first seen as MCSdependent component in the power control as it depends in the end on number of code blocks respectively bits per code blocks, which translates to a specific MCS,
- I MCS the UE uses is under control of the eNB
 - Signaled by DCI format 0 on PDCCH, parameter can be understood as another way to control the power: when the MCS is changed, the power will increase or decrease,
- For the case that control information are send instead of user data (= "Aperiodic CQI reporting"), which is signaled by a specific bit in the UL scheduling grant, power offset are set by higher layers (see next slide),

PUSCH power control

 $\mathbf{f}(\mathbf{i}) \qquad P_{\text{PUSCH}}(i) = \min\{P_{\text{CMAX}}, 10\log_{10}(M_{\text{PUSCH}}(i)) + P_{\text{O}_{\text{PUSCH}}}(j) + \alpha(j) \cdot PL + \Delta_{\text{TF}}(i) + \mathbf{I}(i)\}$

I f(i) is the other component of the dynamic offset, UE-specific *Transmit Power Control* (TPC) commands, signaled with the uplink scheduling grant (PDCCH DCI format 0); two modes are defined: accumulative and absolute,

I <u>Accumulative</u> TPC commands (for PUSCH, PUCCH, SRS).

- Power step relative to previous step, comparable with close-loop power control in WCDMA, difference available step sizes, which are δ_{PUSCH} ={±1 dB or -1, 0, +1, +3 dB} for LTE, larger power steps can be achieved by combining TPCand MCS-dependent power control, Activated at all by <u>dedicated RRC</u> <u>signaling</u>, disabled when minimum (-40 dBm) or maximum power (+23 dBm) is reached,
- $-f(i) = f(i-1) + \delta_{PUSCH}(i-K_{PUSCH})$, where $K_{PUSCH} = 4$ for FDD and depends on the UL-DL configuration for TD-LTE (see TS 36.213, table 5.1.1.1-1),

I <u>Absolute</u> TPC commands (for PUSCH only).

- Power step of {-4, -1, +1, +4 dB} relative to the basic operating point (\Rightarrow set by $P_{O_{PUSCH}(j)} + \alpha(j) \cdot PL$; see previous slides),
- $-f(i) = \delta_{PUSCH}(i K_{PUSCH})$, where K_{PUSCH}=4 for FDD and depends on the UL-DL configuration for TD-LTE (see TS 36.213, table 5.1.1.1-1),

Years of Driving

OHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 181

Ô

LTE resource allocation principles

LTE resource allocation Scheduling of downlink and uplink data

Resource allocation – timing aspects

Resource allocation types in LTE

Allocation type	DCI Format	Scheduling Type	Antenna configuration			
Туре 0 / 1	DCI 1	PDSCH, one codeword	SISO, TxDiversity			
	DCI 2A	PDSCH, <mark>two</mark> codewords	MIMO, open loop			
	DCI 2	PDSCH, <mark>two</mark> codewords	MIMO, closed loop			
Туре 2	DCI 0	PUSCH	SISO			
	DCI 1A	PDSCH, one codeword	SISO, TxDiversity			
	DCI 1C	PDSCH, very compact codeword	SISO			

Type 0 (for distributed frequency allocation of Downlink resource, SISO and MIMO possible)

Bitmap to indicate which resource block groups, RBG are allocated

One RBG consists of 1-4 resource blocks:

	N di la li la	
	≤10	1
	11-26	2
	27-63	3
RBG	64-110	4

Channel

handwidth

RBG size P

I Number of resource block groups N_{RBG} is given as:

$$N_{RBG} = \left| N_{RB}^{DL} / P \right|$$

I Allocation bitmap has same length than N_{RBG}

ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 191

Resource allocation type 0 example

Calculation example for type 0:

- Channel bandwidth = 10MHz
- -> 50 resource blocks
- -> Resource block group RBG size = 3
- I -> bitmap size = 17

if $N_{\rm RB}^{\rm DL} \mod P > 0$ then one of the RBGs is of size $N_{\rm RB}^{\rm DL} - P \cdot \lfloor N_{\rm RB}^{\rm DL} / P \rfloor$

i.e. here 50 mod 3 = 16, so the last resource block group has the size 2.

-> some allocations are not possible, e.g. here you can allocate 48 or 50 resource blocks, but not 49!

$$N_{RBG} = \left[N_{RB}^{DL} / P \right] = \text{round up, i.e.} \left[3.5 \right] = 4 \qquad \text{reminder}$$
$$\left[N_{RB}^{DL} / P \right] = \text{round down, i.e.} \left[3.49 \right] = 3$$

Years of

OHDE&SCHWARZ July 09 | LTE introduction| R.Stuhlfauth, 1MAT 192

Channel bandwidth = 10MHz -> 50 RBs -> RBG size = 3 -> number of RBGs = 17

Type 1 (for distributed frequency allocation of Downlink resource, SISO and MIMO possible)

I RBs are divided into $\lceil \log_2(P) \rceil$ RBG subsets

Channel bandwidth	RBG size P
≤10	1
11-26	2
27-63	3
64-110	4

Bitmap indicates RBs inside a RBG subset allocated to the UE

I Resource block assignment consists of 3 fields:

- I Field to indicate the selected RBG
- I Field to indicate a shift of the resource allocation
- I Field to indicate the specific RB within a RBG subset

ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 194

Channel bandwidth = 10MHz -> 50 RBs -> RBG size = 3 -> number of RBGs = 17

Resource allocation type 1 Channel bandwidth = 10MHz -> 50 RBs -> RBG size = 3 -> number of RBGs = 17 $RBG#N_{RBG}-1$ RBG#0|RBG#1 21 22 N_{RR}^{DL} -20 23 2 16 17 18 19 3 ()RBG#5 RBG#8 RBG#11 RBG#14 RBG#2 RBG#3 RBG#6 RBG#12 RBG#15 RBG#0 RBG#9

Channel bandwidth = 10MHz -> 50 RBs -> RBG size = 3 -> number of RBGs = 17

The meaning of the shift offset bit:

Number of resource blocks in one RBG subset is bigger than the allocation bitmap -> you can not allocate all the available resource blocks -> offset shift to indicate which RBs are assigned

Channel bandwidth = 10MHz -> 50 RBs -> RBG size = 3 -> number of RBGs = 17

The meaning of the shift offset bit:

Number of resource blocks in one RBG subset is bigger than the allocation bitmap -> you can not allocate all the available resource blocks -> offset shift to indicate which RBs are assigned

Type 2 (for contiguously allocated localized or distributed virtual frequency allocation of Uplink and Downlink resource, SISO only)

I Virtual Resource blocks are mapped onto Physical resource blocks

I 2 possible modes:

Localized mode

Distributed mode

Resource indication value, RIV on PDCCH indicates the number of allocated RBs

Distributed allocation depending on assigned RNTI

HDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 200

Benefit of localized or distributed mode

Resource allocation Uplink

Scheduled number of ressource blocks in UL must fullfill formula $above(\alpha_x \text{ are integer})$. Possible values are:

1	2	3	4	5	6	8	9	10	12
15	16	18	20	24	25	27	30	32	36
40	45	48	50	54	60	64	72	75	80
81	90	96	100						

LTE TDD and FDD mode of operation

General comments

What is called "Advantages of TDD vs. FDD mode"

I Data traffic,

Asymmetric setting between downlink and uplink possible, depending on the situation,

See interference aspects: UL – DL and inter-cell

I Channel estimation,

I Channel characteristic for downlink and uplink same,

In principle yes: •But hardware influence! •And: Timing delay UL and DL

I Design,

Ô

I No duplexer required, simplifies RF design and reduce costs.

But most UEs will be dualmode: FDD and TDD!

> Years of Driving

OHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 207

Beamforming in LTE TDD

I Adaptive Beamforming

- Beamforming in TDD mode is used via Specific antenna port 5
- Channel estimation performed at eNodeB based on uplink timeslots

Frequency band

I For TDD mode, uplink and downlink is on the same frequency band

I Bandwidth

Ô

Channel bandwidt h [MHz]	1.4	3	5	10	15	20
FDD mode	6	15	25	50	75	100
TDD mode	6	15	25	50	75	100

E-UTRA BAND	Uplink (UL) eNode b receive UE transmit	Downlink (DL) eNode b transmit UE receive
	$F_{UL_{low}} - F_{UL_{high}}$	$F_{DL_{low}} - F_{DL_{high}}$
33	1900 MHz–1920 MHz	1900 MHz–1920 MHz
34	2010 MHz–2025 MHz	2010 MHz–2025 MHz
35	1850 MHz – 1910 MHz	1850 MHz – 1910 MHz
36	1930 MHz – 1990 MHz	1930 MHz – 1990 MHz
37	1910 MHz – 1930 MHz	1910 MHz – 1930 MHz
38	2570 MHz – 2620 MHz	2570 MHz – 2620 MHz
39	1880 MHz - 1920 MHz	1880 MHz - 1920 MHz
40	2300 MHz - 2400 MHz	2300 MHz - 2400 MHz

number of resource blocks

ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 209

LTE TDD mode – frequency bands

TD-LTE frequency bands and their regions

E-UTRA Operating Band	Operating Frequency	Main region(s)
33	1900 MHz - 1920 MHz	Europe, Asia (not Japan)
34	2010 MHz - 2025 MHz	Europe, Asia
35	1850 MHz - 1910 MHz	-
36	1930 MHz - 1990 MHz	-
37	1910 MHZ - 1930 MHz	-
38	2570 MHz - 2620 MHz	Europe
39	1880 MHz - 1920 MHz	China
40	2300 MHz - 2400 MHz	Europe, Asia

LTE TDD mode - overview

7 different UL/DL configurations are defined

Characteristics + differences of UL/DL configurations:

- -Number of subframes dedicated to $\mathsf{T}x$ and $\mathsf{R}x$
- •Number of Hybrid Automatic Repeat Request, HARQ processes
- •HARQ process timing: time between first transmission and retransmission
- •Scheduling timing: What is the time between PDCCH and PUSCH?

9 different configurations for the "special subframe" are defined

Definition of how long are the DL and UL pilot signals and how much control information can be sent on it. -> also has an impact on cell size

Differences between Uplink and Downlink in TD-LTE

Characteristic of HARQ: Synchronuous or asynchronuous
Number of Hybrid Automatic Repeat Request, HARQ processes
HARQ process timing: time between first transmission and retransmission

Years of Driving Innovation

ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 211

TD-LTE uplink-downlink configurations

111

First requirements, that need to be supported...

UL-DL	DL-to-UL switch	DL:UL	Peak d	Peak data rate Subframe number										
configuration	point periodicity	Ratio	DL	UL	0	1	2	3	4	5	6	7	8	9
0 **	5 ms	1:3	51.5	29.4	D	S	U	U	U	D	S	U	U	U
1 ,	- 5 ms	2:2	81.4	19.6	D	S	U	U	D	D	S	U	U	D
2 🖌	5 ms	3:1	111.6	9.8	D	S	U	D	D	D	S	U	D	D
3	10 ms	6:3	101.0	14.7	D	S	U	U	U	D	D	D	D	D
4	10 ms	7:2	116.1	9.8	D	S	U	U	D	D	D	D	D	D
5	10ms	8:1	131.6	4.9	D	S	U	D	D	D	D	D	D	D
6	5 ms	3:5	66.3	24.5	D	S	U	U	U	D	S	U	U	D

Years of Driving Innovation

Ô

- = the subframe is reserved for <u>downlink</u> transmissions
- = the subframe is reserved for <u>uplink</u> transmissions
- **S** = a special subframe containing DwPTS, GP and UpPTS

HDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 215

DwPTS, GP, UpPTS

Transmitted content

I DwPTS – Downlink Pilot Time Slot,

- I PDCCH
- I Primary synchronization signal \rightarrow 3. OFDM symbol in DwPTS,
- I Reference signal
- **I** User data,

 \rightarrow 1, 2 OFDM symbols beginning of subframe,

Years of Driving

- \rightarrow 1. OFDM symbol in DwPTS,

I GP – Guard Period,

- Length: $L_{GP} = T_{DU} + T_{UD} + Propagation Delay$
- I $T_{DU/UD}$: The guard period at DL to UL switch, respectively UL to DL switch,

I UpPTS – Uplink Pilot Time Slot,

- PRACH Format 4,
- I Sounding Reference Signal.

LTE TDD: special subframe configurations											
Special subframe configuration = maximum cell size											
	Subframe #0	DwPTS	GP UpPT S	Subframe #2	•••••						
Example for timingTiming given by:Number basis = 2192*T _s											
	Special subframe	Normal Cyclic pref	ix in DL and UL		Max Cell size						
		DwPTS	Guard Period	UpPTS							
	0	3	10	1	100 km						
	1	9	4	1	40 km						
	2	10	6	1	60 km						
	3	11	2	1	20 km						
	4	12	1	1	10 km						
: firet	5	3	9	2	90 km						
requirements	6	9	3	2	30 km						
	7*	10	2	2	20 km						
	8	11	1	2	10 km						
ROHDE&S	SCHWARZ July 09	LTE introduction R.Stu	uhlfauth, 1MAT 220	Years of Driving Innovation							

ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 226

Driving Innovation

Signalization of UL-DL configuration and special subframe configuration

-- ASN1START I Special subframe configuration SystemInformationBlockType1 ::= SEQUENCE { cellAccessRelatedInfo SEQUENCE { plmn-IdentityList PLMN-IdentityList, as well as UL-DL configuration trackingAreaCode TrackingAreaCode, cellIdentity CellIdentity, cellBarred ENUMERATED {barred, notBarred}, is signaled to the UE via intraFreqReselection ENUMERATED {allowed, notAllowed}, csg-Indication BOOLEAN. csg-Identity BIT STRING (SIZE (27)) OPTIONAL -- Need OR system information,), cellSelectionInfo SEQUENCE { q-RxLevMin Q-RxLevMin, - SIB Type $1 \rightarrow$ TDD-Config q-RxLevMinOffset INTEGER (1..8) OPTIONAL -- Need OP), p-Max P-Max OPTIONAL, -- Need OP information element. fregBandIndicator INTEGER (1..64), schedulingInfoList SchedulingInfoList, tdd-Config TDD-Config OPTIONAL, -- Cond TDD ENUMERATED { si-WindowLength ms1, ms2, ms5, ms10, ms15, ms20, ms40), systemInfoValueTag INTEGER (0..31), SEQUENCE {} nonCriticalExtension OPTIONAL. -- Need OP PLMN-IdentityList ::= SEQUENCE (SIZE (1..6)) OF PLMN-IdentityInfo TDD-Config information element -- ASN1STAB TDD-Config ::= SEQUENCE { subframeAssignment ENUMERATED { sa0, sa1, sa2, sa3, sa4, sa5, sa6}, specialSubframePatterns ENUMERATED { ssp0, ssp1, ssp2, ssp3, ssp4,ssp5, ssp6, ssp7, ssp8} UL-DL configuration, special -- ASN1STOP subframe configuration can not be changed dynamically!

ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 228

Innovation

TDD PRACH Configurations

Configuratio DSUUDDSUUL												
Sibfram	993 579	s Jubir	am 9	lbfram	Sıbfram	Subfram	- 31 6	s Subf	ram	Subfram	Subfram	
	•										•	
PRACH conf. Index	Preamble Format	Density Per 10 ms (D _{RA})	Version (r_{RA})	PRACH conf. Index	Preamb Forma	$\begin{array}{ccc} \mathbf{Ie} & \mathbf{Density} \\ \mathbf{t} & \mathbf{Per 10 ms} \\ & \left(D_{RA} \right) \end{array}$	Version (r_{RA})					
0	0	0.5	0	32	2	0.5	2					
1	0	0.5 0.5	1	33 34	2	1	0 1			Gaurat:	n indiaiaa	
3	0	1	0	35	2	2	0	PRACI		iguratio	n indicies	
4	0	1	1	36	2	3	0	for pr	reamb	le forma	ats 0 to 4	
5 6	0	1	0	37	2	4	0					
7	0	2	1	39 40	2	PRACH	Prea	amble	De	nsity	Version	
9	0	3	0	40	3	Indox	Eo	rmat	nor	10 ms		
10	0	3	1	42	3	muex	FU	mai	hei	10 1115		
11 12	0	3 4	2	43	3	0		0	6) 5	0	
13	0	4	1	45	3	0		0		J. 5	U	
14	0	4	2	46	3			•				
15	0	5	1	47 48	3	1		U	L C	J.5	1	
17	0 0	5	2	49	4	•		•			•	
18	0	6	0	50	4	2		0		J.5	2	
20	1	0.5	0	51	4	•		•			•	
21	1	0.5	1	53	4	3		0		1	0	
22	1	0.5	2	54 55	4	_		•		-	_	
23 24	1	1	1	56	4	4		0		1	1	
25	1	2	0	57	4					_		
26 27	1	3	0									
28	1	+ 5	0			•		-		•	-	
29	1	6	0							•		
30 31	2	0.5 0.5	0 1			57		4		6	U	
ROHI	31 2 0.5 1 Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction C											

TDD PRACH Mapping Configurations

PRACH		UL	/DL config	uration (Se	e Table 4.3	2-2)			_						
c on f. In d ex	0	1	2	3	4	5	6	22/32	(0,1,1,1)	(0,1,1,0)	N / A	N / A	N / A	N / A	(0,1,1,0)
(See Table 5.7.1-3)	$(0 \ 1 \ 0 \ 2)$	$(0 \ 1 \ 0 \ 1)$	$(0 \ 1 \ 0 \ 0)$	$(0 \ 1 \ 0 \ 2)$	$(0 \ 1 \ 0 \ 1)$	(0, 1, 0, 0)	(0 1 0 2)	23/33	(0, 0, 0, 1)	(0, 0, 0, 0)	N/A	(0,0,0,1)	(0,0,0,0)	N/A	(0, 0, 0, 1)
1	(0,2,0,2)	(0,2,0,1)	(0,2,0,0)	(0,2,0,2)	(0,2,0,1)	(0,2,0,0)	(0,2,0,2)	25/35	(0,0,1,1) (0,0,0,1)	(0,0,1,0) (0,0,0,0)	N/A N/A	(0.0.0.1)	(0.0.0.0)	N/A N/A	(0,0,1,0) (0,0,0,1)
2	(0,1,1,2)	(0,1,1,1)	(0,1,1,0)	(0,1,0,1)	(0,1,0,0)	N /A	(0,1,1,1)		(0,0,1,1)	(0,0,1,0)		(1,0,0,1)	(1,0,0,0)		(0,0,1,0)
4	(0,0,0,2) (0,0,1,2)	(0,0,0,1)	(0,0,0,0)	(0,0,0,2)	(0,0,0,1) (0,0,0,0)	(0,0,0,0) N/A	(0,0,0,2) (0,0,1,1)	26/36	(0,0,0,1) (0,0,1,1)	(0,0,0,0)	N / A	(0,0,0,1) (1,0,0,1)	(0,0,0,0)	N / A	(0,0,0,1) (0,0,1,0)
5	(0,0,0,1)	(0,0,0,0)	N/A	(0,0,0,0)	N/A	N/A	(0,0,0,1)		(1,0,0,1)	(1,0,0,0)	1177	(2,0,0,1)	(2,0,0,0)		(1,0,0,1)
6	(0,0,0,2)	(0,0,0,1)	(0,0,0,0)	(0, 0, 0, 2)	(0, 0, 0, 1)	(0,0,0,0)	(0,0,0,2)	27/37	(0, 0, 0, 1)	(0, 0, 0, 0)	NI / A	(0,0			
7	(0,0,1,2) (0,0,0,1)	(0,0,0,0)	N /A	(0,0,0,0)	(0,0,0,0) N/A	N /A	(0,0,1,1)		(0,0,1,1) (1,0,0,1)	(0,0,1,0) (1,0,0,0)	N/A	(2.0			
0	(0,0,1,1)	(0,0,1,0)	NI / A	(0,0,0,2)	NI / A	NL / A	(0,0,1,0)		(1,0,1,1)	(1,0,1,0)		(3,0	-		
o	(0,0,0,0) (0,0,1,0)	N/A	N/A	(0,0,0,1) (0,0,0,0)	N/A	N/A	(0,0,0,0) (0,0,1,1)	28/38	(0,0,0,1) (0,0,1,1)	(0,0,0,0) (0,0,1,0)		(0,0			
9	(0,0,0,2)	(0,0,0,1)	(0,0,0,0)	(0, 0, 0, 2)	(0,0,0,1)	(0,0,0,0)	(0,0,0,2)		(1,0,0,1)	(1,0,0,0)	N/A	(2,0			
	(0,0,1,2) (0,0,0,1)	(0,0,1,1) (0,0,0,0)	(0,0,1,0) (1,0,0,0)	(0, 0, 0, 1) (0, 0, 0, 0)	(0,0,0,0) (1,0,0,1)	(1,0,0,0) (2,0,0,0)	(0,0,1,1) (0,0,0,1)		(1,0,1,1)	(1,0,1,0)		(3,0			
10	(0,0,1,1)	(0,0,1,0)	(0,0,1,0)	N/A	(0,0,0,0)	N/A	(0,0,1,0)	29/39	(2,0,0,1) (0,0,0,1)	(2,0,0,0)		(0,0			-
	(0,0,0,0) (0,0,1,0)	(0,0,0,1) (0.0.1.1)	(0,0,0,0) (1.0,1.0)		(0,0,0,1) (1,0,0,0)		(0,0,0,0) (0,0,0,2)		(0,0,1,1)	(0,0,1,0)	N I (A	(1,0			
11	N/A	(0,0,0,0)	N/A	N/A	N/A	N /A	(0,0,1,1)		(1,0,0,1) (1,0,1,1)	(1,0,0,0) (1,0,1,0)	N/A	(2,0		P	
									(, , , , , , , , , , , ,	(1,0,1,0)		(0,0		han	
1 2	(0,0,0,2)	(0,0											1	7	
	(0,0,1,2)	(0,0)													-
	(0,0,1,1)	(0,0	2(ר כו	nnl	ical		conf		ratio	nc		(. J.	Har	_
1 3	(0,0,0,0)	N /	J	јг а	μμι	ILai		COIII	iyui	auo	113		y c	1-1	-
	(0,0,0,2)								•				4		
1.4	(0,0,1,2)	N												IN	7
14	(0,0,0,1,1)		-			-	•					<i></i>			
	(0,0,0,0)			(0,0,0,1)			(0,0,0,2)		(1,0,0,0)			(2,0	-	100	
1 5	(0,0,1,0) (0,0,0,2)	(0,0,0,1)	(0,0,0,0)	(1,0,0,0) (0,0,0,2)	(0,0,0,1)	(0,0,0,0)	(0,0,1,1) (0,0,0,2)	4 /	(0,0,0,0) (0,0,1,0)	N / A	N/A			1 V	
	(0,0,1,2)	(0,0,1,1)	(0,0,1,0)	(0,0,0,1)	(0,0,0,0)	(1,0,0,0)	(0,0,1,1)		(1,0,0,0)		1177	(2,0	$\sqrt{\sim}$		at=
	(0,0,0,1) (0,0,1,1)	(0,0,0,0)	(1,0,0,0)	(0,0,0,0) (1,0,0,2)	(1,0,0,1) (1,0,0,0)	(2,0,0,0) (3,0,0,0)	(0,0,0,1) (0,0,1,0)	4.0	(1,0,1,0)	(0 1 0 *)	(0 1 0 *)	(3,0,)		(0,1,0,*)	
	(0,0,0,0)	(1,0,0,1)	(2,0,0,0)	(1,0,0,1)	(2,0,0,1)	(4,0,0,0)	(0,0,0,0)	4 9	(0,2,0,*)	(0,1,0,)	(0,1,0,)	(0,1,0,) (0,2,0,*)	(0, 1, 0,) (0, 2, 0, *)	(0,1,0,)	(0,1,0,) (0,2,0,*)
16	(0,0,1,0) (0,0,0,2)	(0,0,1,1) (0,0,0,0)	(0,0,1,0) (0,0,0,0)	(0, 0, 0, 0) (0, 0, 0, 2)	(0, 0, 0, 0) (0, 0, 0, 1)	N /A	N /A	50	(0,1,1,*)	(0,1,1,*)	(0,1,1,*)	N/A	N/A	N/A	(0,1,1,*)
	(0,0,1,2)	(0,0,1,0)	(1,0,1,0	(0,0,0,1)	(1,0,0,0)			51	(0,0,0,*) (0,0,1,*)	(0, 0, 0, *) (0, 0, 1, *)	(0, 0, 0, *) (0, 0, 1, *)	(0,0,0,*) N/A	(0,0,0,*) N/A	(0,0,0,*) N/A	(0, 0, 0, *) (0, 0, 1, *)
	(0,0,0,1) (0,0,1,1)	(0,0,0,1) (1,0,1,1)	(1,0,0,0) (2,0,1,0)	(1,0,0,0) (1,0,0,2)	(1,0,0,1) (2,0,0,0)			53	(0,0,1,) (0,0,0,*)	(0,0,1,*)	(0,0,1,)	(0,0,0,*)	(0,0,0,*)	(0,0,0,*)	(0,0,1,) (0,0,0,*)
1 7	(0,0,0,0)	(0,0,0,0)	N/A	(0,0,0,1)	N/A	N /A	N /A	E 4	(0,0,1,*)	(0,0,1,*)	(0,0,1,*)	(1,0,0,*)	(1,0,0,*)	(1,0,0,*)	(0,0,1,*)
	(0,0,1,0)	(0,0,1,0)		(0, 0, 0, 0) (0, 0, 0, 2)				54	(0,0,0,)	(0,0,0,)	(0,0,0,)	(0,0,0,) (1.0.0.*)	(0, 0, 0, 0,) (1, 0, 0, *)	(0,0,0,)	(0,0,0,)
	(0,0,1,2)	(0,0,1,1)		(1,0,0,1)					(1,0,0,*)	(1,0,0,*)	(1,0,0,*)	(2,0,0,*)	(2,0,0,*)	(2,0,0,*)	(1,0,0,*)
1.8	(0,0,0,1)	(1,0,0,0)	(0 0 0 0)	(1,0,0,0)	$(0 \ 0 \ 0 \ 1)$	(0 0 0 0)	(0 0 0 2)	5 5	(0,0,0,*) (0.0.1.*)	(0,0,0,*) (0,0,1,*)	(0,0,0,*) (0.0.1.*)	(0,0,0,*) (1.0.0.*)	(0,0,0,*) (1,0,0,*)	(0,0,0,*) (1.0.0.*)	(0,0,0,*) (0.0.1.*)
10	(0,0,1,2)	(0,0,1,1)	(0,0,1,0)	(0,0,0,1)	(0,0,0,1) (0,0,0,0)	(1,0,0,0)	(0,0,0,2) (0,0,1,1)		(1,0,0,*)	(1,0,0,*)	(1,0,0,*)	(2,0,0,*)	(2,0,0,*)	(2,0,0,*)	(1,0,0,*)
	(0,0,0,1)	(0,0,0,0)	(1,0,0,0)	(0, 0, 0, 0)	(1,0,0,1)	(2,0,0,0)	(0,0,0,1)	E G	(1,0,1,*)	(1,0,1,*)	(1,0,1,*)	(3,0,0,*)	(3,0,0,*)	(3,0,0,*)	(1,0,1,*)
	(0,0,1,1) (0,0,0,0)	(0,0,1,0) (1,0,0,1)	(2,0,0,0)	(1,0,0,1)	(1,0,0,0) (2,0,0,1)	(4,0,0,0)	(0,0,1,0) (0,0,0,0)	20	(0,0,0,*) (0,0,1,*)	(0,0,0,*) (0,0,1,*)	(0,0,0,*) (0,0,1,*)	(0,0,0,*) (1,0,0,*)	(0, 0, 0, *) (1, 0, 0, *)	(0,0,0,*) (1,0,0,*)	(0,0,0,*) (0,0,1,*)
1.0	(0,0,1,0)	(1,0,1,1)	(2,0,1,0)	(1,0,0,0)	(2,0,0,0)	(5,0,0,0)	(1,0,0,2)		(1,0,0,*)	(1,0,0,*)	(1,0,0,*)	(2,0,0,*)	(2,0,0,*)	(2,0,0,*)	(1,0,0,*)
1.5	N/A	(0,0,0,0)	N/A	N/A	N/A	N/A	(0,0,1,1) (0,0,0,1)		(1,0,1,*)	(1,0,1,*) (2,0,0,*)	(1,0,1,*)	(3,0,0,*) (4,0,0,*)	(3, 0, 0, *) (4, 0, 0, *)	(3,0,0,*)	(1,0,1,*) (2,0,0,*)
		(0,0,0,1)					(0,0,1,0)	5 7	(0,0,0,*)	(0,0,0,*)	(0,0,0,*)	(0,0,0,*)	(0,0,0,*)	(0,0,0,*)	(0,0,0,*)
		(0,0,1,1) (1,0,0,0)					(0,0,0,0) (0,0,0,2)		(0,0,1,*)	(0,0,1,*)	(0,0,1,*) (1,0,0,*)	(1,0,0,*)	(1,0,0,*)	(1,0,0,*) (2,0,0,*)	(0,0,1,*)
20 / 20	(0 1 0 1)	(1,0,1,0)	NL / A	(0 1 0 4)	(0, 1, 0, 0)	NL / A	(1,0,1,1)		(1,0,1,*)	(1,0,1,*)	(1,0,1,*)	(3,0,0,*)	(3,0,0,*)	(3,0,0,*)	(1,0,1,*)
20/30	(0,1,0,1) (0,2,0,1)	(0,1,0,0) (0,2,0,0)	N/A N/A	(0,1,0,1) (0,2,0,1)	(0, 1, 0, 0) (0, 2, 0, 0)	N /A	(0,1,0,1) (0,2,0,1)		(2,0,0,*)	(2,0,0,*)	(2,0,0,*)	(4,0,0,*)	(4, 0, 0, *)	(4,0,0,*)	(2,0,0,*)
	(3,2,0,1)	. (, , , , , , , , , , , , , , , , , ,		(3,2,3,1)	(3,2,3,0)	• •••••	. (0,2,0,.)		(2,0,1,")	(2,0,1,")	(∠,∪,⊺,")	(5,0,0,")	(5,0,0,")	(ວຸບຸບຸ")	(2,0,1,*)
BO											Years of				

ROHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 230

LTE TDD timing aspects: what to consider?

I Aspects of timing in LTE TDD mode:

2

3

4

5

6

- I PDCCH -> PDSCH, when receive PDSCH?
- I PDSCH -> PUSCH/PUCCH, when transmit feedback?
- I PDCCH -> PUSCH, when transmit PUSCH?
- I PUSCH -> PHICH, when receive feedback?
- I PHICH with NACK, when retransmit?
- I PUSCH/PUCCH with NACK, when expect retransmission?

ears of

LTE TDD - timing aspects

PUSCH and PDCCH Timing Relation

PUSCH and PDCCH Timing Relation

LTE HARQ protocol

I Downlink:

- I Asynchronous adaptive protocol
- I Retransmission of data blocks can occur at any time after the initial transmission
- I To identify, the eNode B assigns a HARQ process identifier

I Uplink:

- I Synchronous non-adaptive protocol
- I Retransmission occurs at a predefined time after the initial transmission

Years of Driving

I HARQ process number is not assigned. Process can be derived from timing

LTE TDD: HARQ processes in UL and DL

UL/DL configuration defines the number of HARQ processes, in configuration 2,3,4 and 5 are more than FDD

	TDD UL/DL configuration	Maximum number of HARQ processes in Downlink	Maximum number of HARQ processes in Uplink				
	0	4	7				
	1	7	4				
	2	10	2				
	3	9	3				
	4	12	2				
	5	15	1				
, od-e	6	6	6				

Years of Driving

Innovation

OHDE&SCHWARZ July 09 | LTE introduction | R.Stuhlfauth, 1MAT 240

LTE TDD HARQ operation

Acknowledgement of downlink data received in subframe n is done in Uplink subframe n+k, where k is given by:

UL/DL configur ation		Subframe n													
	0	1	2	3	4	5	6	7	8	9					
0	4	6	-	-	-	4	6	-	-						
1	7	6	-	-	4	7	6	-	-	4					
2	7	6	-	4	8	7	6	-	4	8					
3	4	11	-	-	-	7	6	6	5	5					
4	12	11	-	-	8	7	7	6	5	4					
5	12	11	-	9	8	7	6	5	4	13					
6	7	7	-	-	-	7	7	-	-	5					

Years of Driving

nnovation

LTE TDD HARQ processes

Downlink LTE TDD mode HARQ processes are non-synchronuous and therefore they are signaled to the UE

PDSCH-ACK/NACK Timing

ACK/NAK timing for detected PDSCH transmissions for which an ACK/NAK shall be provided:

 $\underline{\textbf{FDD:}}$ For PDSCH in subframe n-4 the ACK/NACK response is in subframe n

TDD: For PDSCHs in subframe(s) n-k the single or bundled ACK/NACK response is transmitted in subframe n

UL-DL				Sets o	fvalue	s k				
Configuration	0	1	2	3	4	5	6	7	8 - 4 - - - 7	9
0	-	-	6	-	4	-	-	6	-	4
1	-	-	7, 6	4	-	-	-	7,6	4	-
2	-	-	8, 7, 6, 4	-	-	-	-	8, 7, 6, 4	-	-
3	-	-	11, 7, 6	6, 5	5, 4	-	-	-	-	-
4	-	-	12, 11, 8, 7	7, 6, 5, 4	-	-	-	-	-	-
5	-	-	13, 12, 9, 8, 7, 5, 4, 11, 6	-	-	-	-	-	-	-
6	-	-	7	7	5	-	-	7	7	-
ROHDE&SCHW	ARZ	July 09	LTE introduction R.	Stuhlfauth, 1MAT 2	47	Dr	ars of iving novation			

LTE TDD: PDSCH-ACK/NACK feedback

UE receiving data in subframe n-k sends ACK/NACK in subframe n

Value of k given as (TS36.213)

HARQ Round Trip Time aspects, RTT timer

PUSCH-ACK/NACK Timing

For scheduled PUSCH transmissions in subframe n, a UE shall determine the corresponding PHICH resource in subframe n+k, where k is always 4 for FDD and is given in the table below for TDD

TDD UL/DL	UL subframe index n										
Configuration	0	1	2	3	4	5	6	7	8	9	
0			4	7	6			4	7	6	
1			4	6				4	6		
2			6					6			
3			6	6	6						
4			6	6							
5			6								
6			4	6	6			4	7		

LTE TDD: PUSCH-ACK/NACK feedback

4

UE transmitting data in subframe n listens to PHICH ACK/NACK in subframe n-k

Value of k given as (TS36.213)

PUSCH-ACK/NACK Timing

There will be enough topics for future trainings

Thank you for your attention!

Comments and questions welcome!

