rfc1771

Press here to go to the top of the rfc 'tree'.

Network Working Group Y. Rekhter

Request for Comments: 1771 T.J. Watson Research Center, IBM Corp.

Obsoletes: 1654 T. Li

Category: Standards Track cisco Systems

 Editors

 March 1995

 A Border Gateway Protocol 4 (BGP-4)

Status of this Memo

 This document specifies an Internet standards track protocol for the

 Internet community, and requests discussion and suggestions for

 improvements. Please refer to the current edition of the "Internet

 Official Protocol Standards" (STD 1) for the standardization state

 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 This document, together with its companion document, "Application of

 the Border Gateway Protocol in the Internet", define an inter-

 autonomous system routing protocol for the Internet.

1. Acknowledgements

 This document was originally published as RFC 1267 in October 1991,

 jointly authored by Kirk Lougheed (cisco Systems) and Yakov Rekhter

 (IBM).

 We would like to express our thanks to Guy Almes (ANS), Len Bosack

 (cisco Systems), and Jeffrey C. Honig (Cornell University) for their

 contributions to the earlier version of this document.

 We like to explicitly thank Bob Braden (ISI) for the review of the

 earlier version of this document as well as his constructive and

 valuable comments.

 We would also like to thank Bob Hinden, Director for Routing of the

 Internet Engineering Steering Group, and the team of reviewers he

 assembled to review the previous version (BGP-2) of this document.

 This team, consisting of Deborah Estrin, Milo Medin, John Moy, Radia

 Perlman, Martha Steenstrup, Mike St. Johns, and Paul Tsuchiya, acted

 with a strong combination of toughness, professionalism, and

 courtesy.

 This updated version of the document is the product of the IETF IDR

 Working Group with Yakov Rekhter and Tony Li as editors. Certain

 sections of the document borrowed heavily from IDRP [7], which is the

 OSI counterpart of BGP. For this credit should be given to the ANSI

 X3S3.3 group chaired by Lyman Chapin (BBN) and to Charles Kunzinger

 (IBM Corp.) who was the IDRP editor within that group. We would also

 like to thank Mike Craren (Proteon, Inc.), Dimitry Haskin (Bay

 Networks, Inc.), John Krawczyk (Bay Networks, Inc.), and Paul Traina

 (cisco Systems) for their insightful comments.

 We would like to specially acknowledge numerous contributions by

 Dennis Ferguson (MCI).

 The work of Yakov Rekhter was supported in part by the National

 Science Foundation under Grant Number NCR-9219216.

2. Introduction

 The Border Gateway Protocol (BGP) is an inter-Autonomous System

 routing protocol. It is built on experience gained with EGP as

 defined in RFC 904 [1] and EGP usage in the NSFNET Backbone as

 described in RFC 1092 [2] and RFC 1093 [3].

 The primary function of a BGP speaking system is to exchange network

 reachability information with other BGP systems. This network

 reachability information includes information on the list of

 Autonomous Systems (ASs) that reachability information traverses.

 This information is sufficient to construct a graph of AS

 connectivity from which routing loops may be pruned and some policy

 decisions at the AS level may be enforced.

 BGP-4 provides a new set of mechanisms for supporting classless

 interdomain routing. These mechanisms include support for

 advertising an IP prefix and eliminates the concept of network

 "class" within BGP. BGP-4 also introduces mechanisms which allow

 aggregation of routes, including aggregation of AS paths. These

 changes provide support for the proposed supernetting scheme [8, 9].

 To characterize the set of policy decisions that can be enforced

 using BGP, one must focus on the rule that a BGP speaker advertise to

 its peers (other BGP speakers which it communicates with) in

 neighboring ASs only those routes that it itself uses. This rule

 reflects the "hop-by-hop" routing paradigm generally used throughout

 the current Internet. Note that some policies cannot be supported by

 the "hop-by-hop" routing paradigm and thus require techniques such as

 source routing to enforce. For example, BGP does not enable one AS

 to send traffic to a neighboring AS intending that the traffic take a

 different route from that taken by traffic originating in the

neighboring AS. On the other hand, BGP can support any policy

 conforming to the "hop-by-hop" routing paradigm. Since the current

 Internet uses only the "hop-by-hop" routing paradigm and since BGP

 can support any policy that conforms to that paradigm, BGP is highly

 applicable as an inter-AS routing protocol for the current Internet.

 A more complete discussion of what policies can and cannot be

 enforced with BGP is outside the scope of this document (but refer to

 the companion document discussing BGP usage [5]).

 BGP runs over a reliable transport protocol. This eliminates the

 need to implement explicit update fragmentation, retransmission,

 acknowledgement, and sequencing. Any authentication scheme used by

 the transport protocol may be used in addition to BGP's own

 authentication mechanisms. The error notification mechanism used in

 BGP assumes that the transport protocol supports a "graceful" close,

 i.e., that all outstanding data will be delivered before the

 connection is closed.

 BGP uses TCP [4] as its transport protocol. TCP meets BGP's

 transport requirements and is present in virtually all commercial

 routers and hosts. In the following descriptions the phrase

 "transport protocol connection" can be understood to refer to a TCP

 connection. BGP uses TCP port 179 for establishing its connections.

 This document uses the term `Autonomous System' (AS) throughout. The

 classic definition of an Autonomous System is a set of routers under

 a single technical administration, using an interior gateway protocol

 and common metrics to route packets within the AS, and using an

 exterior gateway protocol to route packets to other ASs. Since this

 classic definition was developed, it has become common for a single

 AS to use several interior gateway protocols and sometimes several

 sets of metrics within an AS. The use of the term Autonomous System

 here stresses the fact that, even when multiple IGPs and metrics are

 used, the administration of an AS appears to other ASs to have a

 single coherent interior routing plan and presents a consistent

 picture of what destinations are reachable through it.

 The planned use of BGP in the Internet environment, including such

 issues as topology, the interaction between BGP and IGPs, and the

 enforcement of routing policy rules is presented in a companion

 document [5]. This document is the first of a series of documents

 planned to explore various aspects of BGP application. Please send

 comments to the BGP mailing list (bgp@ans.net).

3. Summary of Operation

 Two systems form a transport protocol connection between one another.

 They exchange messages to open and confirm the connection parameters.

 The initial data flow is the entire BGP routing table. Incremental

 updates are sent as the routing tables change. BGP does not require

 periodic refresh of the entire BGP routing table. Therefore, a BGP

 speaker must retain the current version of the entire BGP routing

 tables of all of its peers for the duration of the connection.

 KeepAlive messages are sent periodically to ensure the liveness of

 the connection. Notification messages are sent in response to errors

 or special conditions. If a connection encounters an error

 condition, a notification message is sent and the connection is

 closed.

 The hosts executing the Border Gateway Protocol need not be routers.

 A non-routing host could exchange routing information with routers

 via EGP or even an interior routing protocol. That non-routing host

 could then use BGP to exchange routing information with a border

 router in another Autonomous System. The implications and

 applications of this architecture are for further study.

 If a particular AS has multiple BGP speakers and is providing transit

 service for other ASs, then care must be taken to ensure a consistent

 view of routing within the AS. A consistent view of the interior

 routes of the AS is provided by the interior routing protocol. A

 consistent view of the routes exterior to the AS can be provided by

 having all BGP speakers within the AS maintain direct BGP connections

 with each other. Using a common set of policies, the BGP speakers

 arrive at an agreement as to which border routers will serve as

 exit/entry points for particular destinations outside the AS. This

 information is communicated to the AS's internal routers, possibly

 via the interior routing protocol. Care must be taken to ensure that

 the interior routers have all been updated with transit information

 before the BGP speakers announce to other ASs that transit service is

 being provided.

 Connections between BGP speakers of different ASs are referred to as

 "external" links. BGP connections between BGP speakers within the

 same AS are referred to as "internal" links. Similarly, a peer in a

 different AS is referred to as an external peer, while a peer in the

 same AS may be described as an internal peer.

3.1 Routes: Advertisement and Storage

 For purposes of this protocol a route is defined as a unit of

 information that pairs a destination with the attributes of a path to

 that destination:

 - Routes are advertised between a pair of BGP speakers in UPDATE

 messages: the destination is the systems whose IP addresses are

 reported in the Network Layer Reachability Information (NLRI)

 field, and the the path is the information reported in the path

 attributes fields of the same UPDATE message.

 - Routes are stored in the Routing Information Bases (RIBs):

 namely, the Adj-RIBs-In, the Loc-RIB, and the Adj-RIBs-Out. Routes

 that will be advertised to other BGP speakers must be present in

 the Adj-RIB-Out; routes that will be used by the local BGP speaker

 must be present in the Loc-RIB, and the next hop for each of these

 routes must be present in the local BGP speaker's forwarding

 information base; and routes that are received from other BGP

 speakers are present in the Adj-RIBs-In.

 If a BGP speaker chooses to advertise the route, it may add to or

 modify the path attributes of the route before advertising it to a

 peer.

 BGP provides mechanisms by which a BGP speaker can inform its peer

 that a previously advertised route is no longer available for use.

 There are three methods by which a given BGP speaker can indicate

 that a route has been withdrawn from service:

 a) the IP prefix that expresses destinations for a previously

 advertised route can be advertised in the WITHDRAWN ROUTES field

 in the UPDATE message, thus marking the associated route as being

 no longer available for use

 b) a replacement route with the same Network Layer Reachability

 Information can be advertised, or

 c) the BGP speaker - BGP speaker connection can be closed, which

 implicitly removes from service all routes which the pair of

 speakers had advertised to each other.

3.2 Routing Information Bases

 The Routing Information Base (RIB) within a BGP speaker consists of

 three distinct parts:

 a) Adj-RIBs-In: The Adj-RIBs-In store routing information that has

 been learned from inbound UPDATE messages. Their contents

 represent routes that are available as an input to the Decision

 Process.

 b) Loc-RIB: The Loc-RIB contains the local routing information

 that the BGP speaker has selected by applying its local policies

 to the routing information contained in its Adj-RIBs-In.

 c) Adj-RIBs-Out: The Adj-RIBs-Out store the information that the

 local BGP speaker has selected for advertisement to its peers. The

 routing information stored in the Adj-RIBs-Out will be carried in

 the local BGP speaker's UPDATE messages and advertised to its

 peers.

 In summary, the Adj-RIBs-In contain unprocessed routing information

 that has been advertised to the local BGP speaker by its peers; the

 Loc-RIB contains the routes that have been selected by the local BGP

 speaker's Decision Process; and the Adj-RIBs-Out organize the routes

 for advertisement to specific peers by means of the local speaker's

 UPDATE messages.

 Although the conceptual model distinguishes between Adj-RIBs-In,

 Loc-RIB, and Adj-RIBs-Out, this neither implies nor requires that an

 implementation must maintain three separate copies of the routing

 information. The choice of implementation (for example, 3 copies of

 the information vs 1 copy with pointers) is not constrained by the

 protocol.

4. Message Formats

 This section describes message formats used by BGP.

 Messages are sent over a reliable transport protocol connection. A

 message is processed only after it is entirely received. The maximum

 message size is 4096 octets. All implementations are required to

 support this maximum message size. The smallest message that may be

 sent consists of a BGP header without a data portion, or 19 octets.

4.1 Message Header Format

 Each message has a fixed-size header. There may or may not be a data

 portion following the header, depending on the message type. The

 layout of these fields is shown below:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | |

 + +

 | |

 + +

 | Marker |

 + +

 | |

 +-+

 | Length | Type |

 +-+

 Marker:

 This 16-octet field contains a value that the receiver of the

 message can predict. If the Type of the message is OPEN, or if

 the OPEN message carries no Authentication Information (as an

 Optional Parameter), then the Marker must be all ones.

 Otherwise, the value of the marker can be predicted by some a

 computation specified as part of the authentication mechanism

 (which is specified as part of the Authentication Information)

 used. The Marker can be used to detect loss of synchronization

 between a pair of BGP peers, and to authenticate incoming BGP

 messages.

 Length:

 This 2-octet unsigned integer indicates the total length of the

 message, including the header, in octets. Thus, e.g., it

 allows one to locate in the transport-level stream the (Marker

 field of the) next message. The value of the Length field must

 always be at least 19 and no greater than 4096, and may be

 further constrained, depending on the message type. No

 "padding" of extra data after the message is allowed, so the

 Length field must have the smallest value required given the

 rest of the message.

Type:

 This 1-octet unsigned integer indicates the type code of the

 message. The following type codes are defined:

 1 - OPEN

 2 - UPDATE

 3 - NOTIFICATION

 4 - KEEPALIVE

4.2 OPEN Message Format

 After a transport protocol connection is established, the first

 message sent by each side is an OPEN message. If the OPEN message is

 acceptable, a KEEPALIVE message confirming the OPEN is sent back.

 Once the OPEN is confirmed, UPDATE, KEEPALIVE, and NOTIFICATION

 messages may be exchanged.

 In addition to the fixed-size BGP header, the OPEN message contains

 the following fields:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+

 | Version |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | My Autonomous System |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Hold Time |

 +-+

 | BGP Identifier |

 +-+

 | Opt Parm Len |

 +-+

 | |

 | Optional Parameters |

 | |

 +-+

 Version:

 This 1-octet unsigned integer indicates the protocol version

 number of the message. The current BGP version number is 4.

 My Autonomous System:

 This 2-octet unsigned integer indicates the Autonomous System

 number of the sender.

Hold Time:

 This 2-octet unsigned integer indicates the number of seconds

 that the sender proposes for the value of the Hold Timer. Upon

 receipt of an OPEN message, a BGP speaker MUST calculate the

 value of the Hold Timer by using the smaller of its configured

 Hold Time and the Hold Time received in the OPEN message. The

 Hold Time MUST be either zero or at least three seconds. An

 implementation may reject connections on the basis of the Hold

 Time. The calculated value indicates the maximum number of

 seconds that may elapse between the receipt of successive

 KEEPALIVE, and/or UPDATE messages by the sender.

 BGP Identifier:

 This 4-octet unsigned integer indicates the BGP Identifier of

 the sender. A given BGP speaker sets the value of its BGP

 Identifier to an IP address assigned to that BGP speaker. The

 value of the BGP Identifier is determined on startup and is the

 same for every local interface and every BGP peer.

 Optional Parameters Length:

 This 1-octet unsigned integer indicates the total length of the

 Optional Parameters field in octets. If the value of this field

 is zero, no Optional Parameters are present.

 Optional Parameters:

 This field may contain a list of optional parameters, where

 each parameter is encoded as a <Parameter Type, Parameter

 Length, Parameter Value> triplet.

 0 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 +-...

 | Parm. Type | Parm. Length | Parameter Value (variable)

 +-...

 Parameter Type is a one octet field that unambiguously

 identifies individual parameters. Parameter Length is a one

 octet field that contains the length of the Parameter Value

 field in octets. Parameter Value is a variable length field

 that is interpreted according to the value of the Parameter

 Type field.

 This document defines the following Optional Parameters:

 a) Authentication Information (Parameter Type 1):

 This optional parameter may be used to authenticate a BGP

 peer. The Parameter Value field contains a 1-octet

 Authentication Code followed by a variable length

 Authentication Data.

 0 1 2 3 4 5 6 7 8

 +-+-+-+-+-+-+-+-+

 | Auth. Code |

 +-+

 | |

 | Authentication Data |

 | |

 +-+

 Authentication Code:

 This 1-octet unsigned integer indicates the

 authentication mechanism being used. Whenever an

 authentication mechanism is specified for use within

 BGP, three things must be included in the

 specification:

 - the value of the Authentication Code which indicates

 use of the mechanism,

 - the form and meaning of the Authentication Data, and

 - the algorithm for computing values of Marker fields.

 Note that a separate authentication mechanism may be

 used in establishing the transport level connection.

 Authentication Data:

 The form and meaning of this field is a variable-

 length field depend on the Authentication Code.

 The minimum length of the OPEN message is 29 octets (including

 message header).

4.3 UPDATE Message Format

 UPDATE messages are used to transfer routing information between BGP

 peers. The information in the UPDATE packet can be used to construct

 a graph describing the relationships of the various Autonomous

 Systems. By applying rules to be discussed, routing information

 loops and some other anomalies may be detected and removed from

 inter-AS routing.

 An UPDATE message is used to advertise a single feasible route to a

 peer, or to withdraw multiple unfeasible routes from service (see

 3.1). An UPDATE message may simultaneously advertise a feasible route

 and withdraw multiple unfeasible routes from service. The UPDATE

 message always includes the fixed-size BGP header, and can optionally

 include the other fields as shown below:

 +---+

 | Unfeasible Routes Length (2 octets) |

 +---+

 | Withdrawn Routes (variable) |

 +---+

 | Total Path Attribute Length (2 octets) |

 +---+

 | Path Attributes (variable) |

 +---+

 | Network Layer Reachability Information (variable) |

 +---+

 Unfeasible Routes Length:

 This 2-octets unsigned integer indicates the total length of

 the Withdrawn Routes field in octets. Its value must allow the

 length of the Network Layer Reachability Information field to

 be determined as specified below.

 A value of 0 indicates that no routes are being withdrawn from

 service, and that the WITHDRAWN ROUTES field is not present in

 this UPDATE message.

 Withdrawn Routes:

 This is a variable length field that contains a list of IP

 address prefixes for the routes that are being withdrawn from

 service. Each IP address prefix is encoded as a 2-tuple of the

 form <length, prefix>, whose fields are described below:

 +---------------------------+

 | Length (1 octet) |

 +---------------------------+

 | Prefix (variable) |

 +---------------------------+

 The use and the meaning of these fields are as follows:

 a) Length:

 The Length field indicates the length in bits of the IP

 address prefix. A length of zero indicates a prefix that

 matches all IP addresses (with prefix, itself, of zero

 octets).

 b) Prefix:

 The Prefix field contains IP address prefixes followed by

 enough trailing bits to make the end of the field fall on an

 octet boundary. Note that the value of trailing bits is

 irrelevant.

 Total Path Attribute Length:

 This 2-octet unsigned integer indicates the total length of the

 Path Attributes field in octets. Its value must allow the

 length of the Network Layer Reachability field to be determined

 as specified below.

 A value of 0 indicates that no Network Layer Reachability

 Information field is present in this UPDATE message.

 Path Attributes:

 A variable length sequence of path attributes is present in

 every UPDATE. Each path attribute is a triple <attribute type,

 attribute length, attribute value> of variable length.

 Attribute Type is a two-octet field that consists of the

 Attribute Flags octet followed by the Attribute Type Code

 octet.

 0 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Attr. Flags |Attr. Type Code|

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 The high-order bit (bit 0) of the Attribute Flags octet is the

 Optional bit. It defines whether the attribute is optional (if

 set to 1) or well-known (if set to 0).

 The second high-order bit (bit 1) of the Attribute Flags octet

 is the Transitive bit. It defines whether an optional

 attribute is transitive (if set to 1) or non-transitive (if set

 to 0). For well-known attributes, the Transitive bit must be

 set to 1. (See Section 5 for a discussion of transitive

 attributes.)

 The third high-order bit (bit 2) of the Attribute Flags octet

 is the Partial bit. It defines whether the information

 contained in the optional transitive attribute is partial (if

 set to 1) or complete (if set to 0). For well-known attributes

 and for optional non-transitive attributes the Partial bit must

 be set to 0.

 The fourth high-order bit (bit 3) of the Attribute Flags octet

 is the Extended Length bit. It defines whether the Attribute

 Length is one octet (if set to 0) or two octets (if set to 1).

 Extended Length may be used only if the length of the attribute

 value is greater than 255 octets.

 The lower-order four bits of the Attribute Flags octet are .

 unused. They must be zero (and must be ignored when received).

 The Attribute Type Code octet contains the Attribute Type Code.

 Currently defined Attribute Type Codes are discussed in Section

 5.

 If the Extended Length bit of the Attribute Flags octet is set

 to 0, the third octet of the Path Attribute contains the length

 of the attribute data in octets.

 If the Extended Length bit of the Attribute Flags octet is set

 to 1, then the third and the fourth octets of the path

 attribute contain the length of the attribute data in octets.

 The remaining octets of the Path Attribute represent the

 attribute value and are interpreted according to the Attribute

 Flags and the Attribute Type Code. The supported Attribute Type

 Codes, their attribute values and uses are the following:

a) ORIGIN (Type Code 1):

 ORIGIN is a well-known mandatory attribute that defines the

 origin of the path information. The data octet can assume

 the following values:

 Value Meaning

 0 IGP - Network Layer Reachability Information

 is interior to the originating AS

 1 EGP - Network Layer Reachability Information

 learned via EGP

 2 INCOMPLETE - Network Layer Reachability

 Information learned by some other means

 Its usage is defined in 5.1.1

 b) AS_PATH (Type Code 2):

 AS_PATH is a well-known mandatory attribute that is composed

 of a sequence of AS path segments. Each AS path segment is

 represented by a triple <path segment type, path segment

 length, path segment value>.

The path segment type is a 1-octet long field with the

 following values defined:

 Value Segment Type

 1 AS_SET: unordered set of ASs a route in the

 UPDATE message has traversed

 2 AS_SEQUENCE: ordered set of ASs a route in

 the UPDATE message has traversed

 The path segment length is a 1-octet long field containing

 the number of ASs in the path segment value field.

 The path segment value field contains one or more AS

 numbers, each encoded as a 2-octets long field.

 Usage of this attribute is defined in 5.1.2.

 c) NEXT_HOP (Type Code 3):

 This is a well-known mandatory attribute that defines the IP

 address of the border router that should be used as the next

 hop to the destinations listed in the Network Layer

 Reachability field of the UPDATE message.

 Usage of this attribute is defined in 5.1.3.

 d) MULTI_EXIT_DISC (Type Code 4):

 This is an optional non-transitive attribute that is a four

 octet non-negative integer. The value of this attribute may

 be used by a BGP speaker's decision process to discriminate

 among multiple exit points to a neighboring autonomous

 system.

 Its usage is defined in 5.1.4.

 e) LOCAL_PREF (Type Code 5):

 LOCAL_PREF is a well-known discretionary attribute that is a

 four octet non-negative integer. It is used by a BGP speaker

 to inform other BGP speakers in its own autonomous system of

 the originating speaker's degree of preference for an

 advertised route. Usage of this attribute is described in

 5.1.5.

f) ATOMIC_AGGREGATE (Type Code 6)

 ATOMIC_AGGREGATE is a well-known discretionary attribute of

 length 0. It is used by a BGP speaker to inform other BGP

 speakers that the local system selected a less specific

 route without selecting a more specific route which is

 included in it. Usage of this attribute is described in

 5.1.6.

 g) AGGREGATOR (Type Code 7)

 AGGREGATOR is an optional transitive attribute of length 6.

 The attribute contains the last AS number that formed the

 aggregate route (encoded as 2 octets), followed by the IP

 address of the BGP speaker that formed the aggregate route

 (encoded as 4 octets). Usage of this attribute is described

 in 5.1.7

 Network Layer Reachability Information:

 This variable length field contains a list of IP address

 prefixes. The length in octets of the Network Layer

 Reachability Information is not encoded explicitly, but can be

 calculated as:

 UPDATE message Length - 23 - Total Path Attributes Length -

 Unfeasible Routes Length

 where UPDATE message Length is the value encoded in the fixed-

 size BGP header, Total Path Attribute Length and Unfeasible

 Routes Length are the values encoded in the variable part of

 the UPDATE message, and 23 is a combined length of the fixed-

 size BGP header, the Total Path Attribute Length field and the

 Unfeasible Routes Length field.

 Reachability information is encoded as one or more 2-tuples of

 the form <length, prefix>, whose fields are described below:

 +---------------------------+

 | Length (1 octet) |

 +---------------------------+

 | Prefix (variable) |

 +---------------------------+

The use and the meaning of these fields are as follows:

 a) Length:

 The Length field indicates the length in bits of the IP

 address prefix. A length of zero indicates a prefix that

 matches all IP addresses (with prefix, itself, of zero

 octets).

 b) Prefix:

 The Prefix field contains IP address prefixes followed by

 enough trailing bits to make the end of the field fall on an

 octet boundary. Note that the value of the trailing bits is

 irrelevant.

 The minimum length of the UPDATE message is 23 octets -- 19 octets

 for the fixed header + 2 octets for the Unfeasible Routes Length + 2

 octets for the Total Path Attribute Length (the value of Unfeasible

 Routes Length is 0 and the value of Total Path Attribute Length is

 0).

 An UPDATE message can advertise at most one route, which may be

 described by several path attributes. All path attributes contained

 in a given UPDATE messages apply to the destinations carried in the

 Network Layer Reachability Information field of the UPDATE message.

 An UPDATE message can list multiple routes to be withdrawn from

 service. Each such route is identified by its destination (expressed

 as an IP prefix), which unambiguously identifies the route in the

 context of the BGP speaker - BGP speaker connection to which it has

 been previously been advertised.

 An UPDATE message may advertise only routes to be withdrawn from

 service, in which case it will not include path attributes or Network

 Layer Reachability Information. Conversely, it may advertise only a

 feasible route, in which case the WITHDRAWN ROUTES field need not be

 present.

4.4 KEEPALIVE Message Format

 BGP does not use any transport protocol-based keep-alive mechanism to

 determine if peers are reachable. Instead, KEEPALIVE messages are

 exchanged between peers often enough as not to cause the Hold Timer

 to expire. A reasonable maximum time between KEEPALIVE messages

 would be one third of the Hold Time interval. KEEPALIVE messages

 MUST NOT be sent more frequently than one per second. An

 implementation MAY adjust the rate at which it sends KEEPALIVE

 messages as a function of the Hold Time interval.

 If the negotiated Hold Time interval is zero, then periodic KEEPALIVE

 messages MUST NOT be sent.

 KEEPALIVE message consists of only message header and has a length of

 19 octets.

4.5 NOTIFICATION Message Format

 A NOTIFICATION message is sent when an error condition is detected.

 The BGP connection is closed immediately after sending it.

 In addition to the fixed-size BGP header, the NOTIFICATION message

 contains the following fields:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Error code | Error subcode | Data |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

 | |

 +-+

 Error Code:

 This 1-octet unsigned integer indicates the type of

 NOTIFICATION. The following Error Codes have been defined:

 Error Code Symbolic Name Reference

 1 Message Header Error Section 6.1

 2 OPEN Message Error Section 6.2

 3 UPDATE Message Error Section 6.3

 4 Hold Timer Expired Section 6.5

 5 Finite State Machine Error Section 6.6

 6 Cease Section 6.7

 Error subcode:

 This 1-octet unsigned integer provides more specific

 information about the nature of the reported error. Each Error

 Code may have one or more Error Subcodes associated with it.

 If no appropriate Error Subcode is defined, then a zero

 (Unspecific) value is used for the Error Subcode field.

 Message Header Error subcodes:

 1 - Connection Not Synchronized.

 2 - Bad Message Length.

 3 - Bad Message Type.

 OPEN Message Error subcodes:

 1 - Unsupported Version Number.

 2 - Bad Peer AS.

 3 - Bad BGP Identifier. '

 4 - Unsupported Optional Parameter.

 5 - Authentication Failure.

 6 - Unacceptable Hold Time.

 UPDATE Message Error subcodes:

 1 - Malformed Attribute List.

 2 - Unrecognized Well-known Attribute.

 3 - Missing Well-known Attribute.

 4 - Attribute Flags Error.

 5 - Attribute Length Error.

 6 - Invalid ORIGIN Attribute

 7 - AS Routing Loop.

 8 - Invalid NEXT_HOP Attribute.

 9 - Optional Attribute Error.

 10 - Invalid Network Field.

 11 - Malformed AS_PATH.

 Data:

 This variable-length field is used to diagnose the reason for

 the NOTIFICATION. The contents of the Data field depend upon

 the Error Code and Error Subcode. See Section 6 below for more

 details.

 Note that the length of the Data field can be determined from

 the message Length field by the formula:

 Message Length = 21 + Data Length

 The minimum length of the NOTIFICATION message is 21 octets

 (including message header).

5. Path Attributes

 This section discusses the path attributes of the UPDATE message.

 Path attributes fall into four separate categories:

 1. Well-known mandatory.

 2. Well-known discretionary.

 3. Optional transitive.

 4. Optional non-transitive.

 Well-known attributes must be recognized by all BGP implementations.

 Some of these attributes are mandatory and must be included in every

 UPDATE message. Others are discretionary and may or may not be sent

 in a particular UPDATE message.

 All well-known attributes must be passed along (after proper

 updating, if necessary) to other BGP peers.

 In addition to well-known attributes, each path may contain one or

 more optional attributes. It is not required or expected that all

 BGP implementations support all optional attributes. The handling of

 an unrecognized optional attribute is determined by the setting of

 the Transitive bit in the attribute flags octet. Paths with

 unrecognized transitive optional attributes should be accepted. If a

 path with unrecognized transitive optional attribute is accepted and

 passed along to other BGP peers, then the unrecognized transitive

 optional attribute of that path must be passed along with the path to

 other BGP peers with the Partial bit in the Attribute Flags octet set

 to 1. If a path with recognized transitive optional attribute is

 accepted and passed along to other BGP peers and the Partial bit in

 the Attribute Flags octet is set to 1 by some previous AS, it is not

 set back to 0 by the current AS. Unrecognized non-transitive optional

 attributes must be quietly ignored and not passed along to other BGP

 peers.

 New transitive optional attributes may be attached to the path by the

 originator or by any other AS in the path. If they are not attached

 by the originator, the Partial bit in the Attribute Flags octet is

 set to 1. The rules for attaching new non-transitive optional

 attributes will depend on the nature of the specific attribute. The

 documentation of each new non-transitive optional attribute will be

 expected to include such rules. (The description of the

 MULTI_EXIT_DISC attribute gives an example.) All optional attributes

 (both transitive and non-transitive) may be updated (if appropriate)

 by ASs in the path.

 The sender of an UPDATE message should order path attributes within

 the UPDATE message in ascending order of attribute type. The

 receiver of an UPDATE message must be prepared to handle path

 attributes within the UPDATE message that are out of order.

 The same attribute cannot appear more than once within the Path

 Attributes field of a particular UPDATE message.

5.1 Path Attribute Usage

 The usage of each BGP path attributes is described in the following

 clauses.

5.1.1 ORIGIN

 ORIGIN is a well-known mandatory attribute. The ORIGIN attribute

 shall be generated by the autonomous system that originates the

 associated routing information. It shall be included in the UPDATE

 messages of all BGP speakers that choose to propagate this

 information to other BGP speakers.

5.1.2 AS_PATH

 AS_PATH is a well-known mandatory attribute. This attribute

 identifies the autonomous systems through which routing information

 carried in this UPDATE message has passed. The components of this

 list can be AS_SETs or AS_SEQUENCEs.

 When a BGP speaker propagates a route which it has learned from

 another BGP speaker's UPDATE message, it shall modify the route's

 AS_PATH attribute based on the location of the BGP speaker to which

 the route will be sent:

 a) When a given BGP speaker advertises the route to another BGP

 speaker located in its own autonomous system, the advertising

 speaker shall not modify the AS_PATH attribute associated with the

 route.

 b) When a given BGP speaker advertises the route to a BGP speaker

 located in a neighboring autonomous system, then the advertising

 speaker shall update the AS_PATH attribute as follows:

 1) if the first path segment of the AS_PATH is of type

 AS_SEQUENCE, the local system shall prepend its own AS number

 as the last element of the sequence (put it in the leftmost

 position).

2) if the first path segment of the AS_PATH is of type AS_SET,

 the local system shall prepend a new path segment of type

 AS_SEQUENCE to the AS_PATH, including its own AS number in that

 segment.

 When a BGP speaker originates a route then:

 a) the originating speaker shall include its own AS number in

 the AS_PATH attribute of all UPDATE messages sent to BGP

 speakers located in neighboring autonomous systems. (In this

 case, the AS number of the originating speaker's autonomous

 system will be the only entry in the AS_PATH attribute).

 b) the originating speaker shall include an empty AS_PATH

 attribute in all UPDATE messages sent to BGP speakers located

 in its own autonomous system. (An empty AS_PATH attribute is

 one whose length field contains the value zero).

5.1.3 NEXT_HOP

 The NEXT_HOP path attribute defines the IP address of the border

 router that should be used as the next hop to the destinations listed

 in the UPDATE message. If a border router belongs to the same AS as

 its peer, then the peer is an internal border router. Otherwise, it

 is an external border router. A BGP speaker can advertise any

 internal border router as the next hop provided that the interface

 associated with the IP address of this border router (as specified in

 the NEXT_HOP path attribute) shares a common subnet with both the

 local and remote BGP speakers. A BGP speaker can advertise any

 external border router as the next hop, provided that the IP address

 of this border router was learned from one of the BGP speaker's

 peers, and the interface associated with the IP address of this

 border router (as specified in the NEXT_HOP path attribute) shares a

 common subnet with the local and remote BGP speakers. A BGP speaker

 needs to be able to support disabling advertisement of external

 border routers.

 A BGP speaker must never advertise an address of a peer to that peer

 as a NEXT_HOP, for a route that the speaker is originating. A BGP

 speaker must never install a route with itself as the next hop.

 When a BGP speaker advertises the route to a BGP speaker located in

 its own autonomous system, the advertising speaker shall not modify

 the NEXT_HOP attribute associated with the route. When a BGP speaker

 receives the route via an internal link, it may forward packets to

 the NEXT_HOP address if the address contained in the attribute is on

 a common subnet with the local and remote BGP speakers.

5.1.4 MULTI_EXIT_DISC

 The MULTI_EXIT_DISC attribute may be used on external (inter-AS)

 links to discriminate among multiple exit or entry points to the same

 neighboring AS. The value of the MULTI_EXIT_DISC attribute is a four

 octet unsigned number which is called a metric. All other factors

 being equal, the exit or entry point with lower metric should be

 preferred. If received over external links, the MULTI_EXIT_DISC

 attribute may be propagated over internal links to other BGP speakers

 within the same AS. The MULTI_EXIT_DISC attribute is never

 propagated to other BGP speakers in neighboring AS's.

5.1.5 LOCAL_PREF

 LOCAL_PREF is a well-known discretionary attribute that shall be

 included in all UPDATE messages that a given BGP speaker sends to the

 other BGP speakers located in its own autonomous system. A BGP

 speaker shall calculate the degree of preference for each external

 route and include the degree of preference when advertising a route

 to its internal peers. The higher degree of preference should be

 preferred. A BGP speaker shall use the degree of preference learned

 via LOCAL_PREF in its decision process (see section 9.1.1).

 A BGP speaker shall not include this attribute in UPDATE messages

 that it sends to BGP speakers located in a neighboring autonomous

 system. If it is contained in an UPDATE message that is received from

 a BGP speaker which is not located in the same autonomous system as

 the receiving speaker, then this attribute shall be ignored by the

 receiving speaker.

5.1.6 ATOMIC_AGGREGATE

 ATOMIC_AGGREGATE is a well-known discretionary attribute. If a BGP

 speaker, when presented with a set of overlapping routes from one of

 its peers (see 9.1.4), selects the less specific route without

 selecting the more specific one, then the local system shall attach

 the ATOMIC_AGGREGATE attribute to the route when propagating it to

 other BGP speakers (if that attribute is not already present in the

 received less specific route). A BGP speaker that receives a route

 with the ATOMIC_AGGREGATE attribute shall not remove the attribute

 from the route when propagating it to other speakers. A BGP speaker

 that receives a route with the ATOMIC_AGGREGATE attribute shall not

 make any NLRI of that route more specific (as defined in 9.1.4) when

 advertising this route to other BGP speakers. A BGP speaker that

 receives a route with the ATOMIC_AGGREGATE attribute needs to be

 cognizant of the fact that the actual path to destinations, as

 specified in the NLRI of the route, while having the loop-free

 property, may traverse ASs that are not listed in the AS_PATH

attribute.

5.1.7 AGGREGATOR

 AGGREGATOR is an optional transitive attribute which may be included

 in updates which are formed by aggregation (see Section 9.2.4.2). A

 BGP speaker which performs route aggregation may add the AGGREGATOR

 attribute which shall contain its own AS number and IP address.

6. BGP Error Handling.

 This section describes actions to be taken when errors are detected

 while processing BGP messages.

 When any of the conditions described here are detected, a

 NOTIFICATION message with the indicated Error Code, Error Subcode,

 and Data fields is sent, and the BGP connection is closed. If no

 Error Subcode is specified, then a zero must be used.

 The phrase "the BGP connection is closed" means that the transport

 protocol connection has been closed and that all resources for that

 BGP connection have been deallocated. Routing table entries

 associated with the remote peer are marked as invalid. The fact that

 the routes have become invalid is passed to other BGP peers before

 the routes are deleted from the system.

 Unless specified explicitly, the Data field of the NOTIFICATION

 message that is sent to indicate an error is empty.

6.1 Message Header error handling.

 All errors detected while processing the Message Header are indicated

 by sending the NOTIFICATION message with Error Code Message Header

 Error. The Error Subcode elaborates on the specific nature of the

 error.

 The expected value of the Marker field of the message header is all

 ones if the message type is OPEN. The expected value of the Marker

 field for all other types of BGP messages determined based on the

 presence of the Authentication Information Optional Parameter in the

 BGP OPEN message and the actual authentication mechanism (if the

 Authentication Information in the BGP OPEN message is present). If

 the Marker field of the message header is not the expected one, then

 a synchronization error has occurred and the Error Subcode is set to

 Connection Not Synchronized.

 If the Length field of the message header is less than 19 or greater

 than 4096, or if the Length field of an OPEN message is less than

 the minimum length of the OPEN message, or if the Length field of an

 UPDATE message is less than the minimum length of the UPDATE message,

 or if the Length field of a KEEPALIVE message is not equal to 19, or

 if the Length field of a NOTIFICATION message is less than the

 minimum length of the NOTIFICATION message, then the Error Subcode is

 set to Bad Message Length. The Data field contains the erroneous

 Length field.

 If the Type field of the message header is not recognized, then the

 Error Subcode is set to Bad Message Type. The Data field contains

 the erroneous Type field.

6.2 OPEN message error handling.

 All errors detected while processing the OPEN message are indicated

 by sending the NOTIFICATION message with Error Code OPEN Message

 Error. The Error Subcode elaborates on the specific nature of the

 error.

 If the version number contained in the Version field of the received

 OPEN message is not supported, then the Error Subcode is set to

 Unsupported Version Number. The Data field is a 2-octet unsigned

 integer, which indicates the largest locally supported version number

 less than the version the remote BGP peer bid (as indicated in the

 received OPEN message).

 If the Autonomous System field of the OPEN message is unacceptable,

 then the Error Subcode is set to Bad Peer AS. The determination of

 acceptable Autonomous System numbers is outside the scope of this

 protocol.

 If the Hold Time field of the OPEN message is unacceptable, then the

 Error Subcode MUST be set to Unacceptable Hold Time. An

 implementation MUST reject Hold Time values of one or two seconds.

 An implementation MAY reject any proposed Hold Time. An

 implementation which accepts a Hold Time MUST use the negotiated

 value for the Hold Time.

 If the BGP Identifier field of the OPEN message is syntactically

 incorrect, then the Error Subcode is set to Bad BGP Identifier.

 Syntactic correctness means that the BGP Identifier field represents

 a valid IP host address.

 If one of the Optional Parameters in the OPEN message is not

 recognized, then the Error Subcode is set to Unsupported Optional

 Parameters.

If the OPEN message carries Authentication Information (as an

 Optional Parameter), then the corresponding authentication procedure

 is invoked. If the authentication procedure (based on Authentication

 Code and Authentication Data) fails, then the Error Subcode is set to

 Authentication Failure.

6.3 UPDATE message error handling.

 All errors detected while processing the UPDATE message are indicated

 by sending the NOTIFICATION message with Error Code UPDATE Message

 Error. The error subcode elaborates on the specific nature of the

 error.

 Error checking of an UPDATE message begins by examining the path

 attributes. If the Unfeasible Routes Length or Total Attribute

 Length is too large (i.e., if Unfeasible Routes Length + Total

 Attribute Length + 23 exceeds the message Length), then the Error

 Subcode is set to Malformed Attribute List.

 If any recognized attribute has Attribute Flags that conflict with

 the Attribute Type Code, then the Error Subcode is set to Attribute

 Flags Error. The Data field contains the erroneous attribute (type,

 length and value).

 If any recognized attribute has Attribute Length that conflicts with

 the expected length (based on the attribute type code), then the

 Error Subcode is set to Attribute Length Error. The Data field

 contains the erroneous attribute (type, length and value).

 If any of the mandatory well-known attributes are not present, then

 the Error Subcode is set to Missing Well-known Attribute. The Data

 field contains the Attribute Type Code of the missing well-known

 attribute.

 If any of the mandatory well-known attributes are not recognized,

 then the Error Subcode is set to Unrecognized Well-known Attribute.

 The Data field contains the unrecognized attribute (type, length and

 value).

 If the ORIGIN attribute has an undefined value, then the Error

 Subcode is set to Invalid Origin Attribute. The Data field contains

 the unrecognized attribute (type, length and value).

 If the NEXT_HOP attribute field is syntactically incorrect, then the

 Error Subcode is set to Invalid NEXT_HOP Attribute. The Data field

 contains the incorrect attribute (type, length and value). Syntactic

 correctness means that the NEXT_HOP attribute represents a valid IP

 host address. Semantic correctness applies only to the external BGP

links. It means that the interface associated with the IP address, as

 specified in the NEXT_HOP attribute, shares a common subnet with the

 receiving BGP speaker and is not the IP address of the receiving BGP

 speaker. If the NEXT_HOP attribute is semantically incorrect, the

 error should be logged, and the the route should be ignored. In this

 case, no NOTIFICATION message should be sent.

 The AS_PATH attribute is checked for syntactic correctness. If the

 path is syntactically incorrect, then the Error Subcode is set to

 Malformed AS_PATH.

 If an optional attribute is recognized, then the value of this

 attribute is checked. If an error is detected, the attribute is

 discarded, and the Error Subcode is set to Optional Attribute Error.

 The Data field contains the attribute (type, length and value).

 If any attribute appears more than once in the UPDATE message, then

 the Error Subcode is set to Malformed Attribute List.

 The NLRI field in the UPDATE message is checked for syntactic

 validity. If the field is syntactically incorrect, then the Error

 Subcode is set to Invalid Network Field.

6.4 NOTIFICATION message error handling.

 If a peer sends a NOTIFICATION message, and there is an error in that

 message, there is unfortunately no means of reporting this error via

 a subsequent NOTIFICATION message. Any such error, such as an

 unrecognized Error Code or Error Subcode, should be noticed, logged

 locally, and brought to the attention of the administration of the

 peer. The means to do this, however, lies outside the scope of this

 document.

6.5 Hold Timer Expired error handling.

 If a system does not receive successive KEEPALIVE and/or UPDATE

 and/or NOTIFICATION messages within the period specified in the Hold

 Time field of the OPEN message, then the NOTIFICATION message with

 Hold Timer Expired Error Code must be sent and the BGP connection

 closed.

6.6 Finite State Machine error handling.

 Any error detected by the BGP Finite State Machine (e.g., receipt of

 an unexpected event) is indicated by sending the NOTIFICATION message

 with Error Code Finite State Machine Error.

6.7 Cease.

 In absence of any fatal errors (that are indicated in this section),

 a BGP peer may choose at any given time to close its BGP connection

 by sending the NOTIFICATION message with Error Code Cease. However,

 the Cease NOTIFICATION message must not be used when a fatal error

 indicated by this section does exist.

6.8 Connection collision detection.

 If a pair of BGP speakers try simultaneously to establish a TCP

 connection to each other, then two parallel connections between this

 pair of speakers might well be formed. We refer to this situation as

 connection collision. Clearly, one of these connections must be

 closed.

 Based on the value of the BGP Identifier a convention is established

 for detecting which BGP connection is to be preserved when a

 collision does occur. The convention is to compare the BGP

 Identifiers of the peers involved in the collision and to retain only

 the connection initiated by the BGP speaker with the higher-valued

 BGP Identifier.

 Upon receipt of an OPEN message, the local system must examine all of

 its connections that are in the OpenConfirm state. A BGP speaker may

 also examine connections in an OpenSent state if it knows the BGP

 Identifier of the peer by means outside of the protocol. If among

 these connections there is a connection to a remote BGP speaker whose

 BGP Identifier equals the one in the OPEN message, then the local

 system performs the following collision resolution procedure:

 1. The BGP Identifier of the local system is compared to the BGP

 Identifier of the remote system (as specified in the OPEN

 message).

 2. If the value of the local BGP Identifier is less than the

 remote one, the local system closes BGP connection that already

 exists (the one that is already in the OpenConfirm state), and

 accepts BGP connection initiated by the remote system.

 3. Otherwise, the local system closes newly created BGP connection

 (the one associated with the newly received OPEN message), and

 continues to use the existing one (the one that is already in the

 OpenConfirm state).

 Comparing BGP Identifiers is done by treating them as (4-octet

 long) unsigned integers.

 A connection collision with an existing BGP connection that is in

 Established states causes unconditional closing of the newly

 created connection. Note that a connection collision cannot be

 detected with connections that are in Idle, or Connect, or Active

 states.

 Closing the BGP connection (that results from the collision

 resolution procedure) is accomplished by sending the NOTIFICATION

 message with the Error Code Cease.

7. BGP Version Negotiation.

 BGP speakers may negotiate the version of the protocol by making

 multiple attempts to open a BGP connection, starting with the highest

 version number each supports. If an open attempt fails with an Error

 Code OPEN Message Error, and an Error Subcode Unsupported Version

 Number, then the BGP speaker has available the version number it

 tried, the version number its peer tried, the version number passed

 by its peer in the NOTIFICATION message, and the version numbers that

 it supports. If the two peers do support one or more common

 versions, then this will allow them to rapidly determine the highest

 common version. In order to support BGP version negotiation, future

 versions of BGP must retain the format of the OPEN and NOTIFICATION

 messages.

8. BGP Finite State machine.

 This section specifies BGP operation in terms of a Finite State

 Machine (FSM). Following is a brief summary and overview of BGP

 operations by state as determined by this FSM. A condensed version

 of the BGP FSM is found in Appendix 1.

 Initially BGP is in the Idle state.

 Idle state:

 In this state BGP refuses all incoming BGP connections. No

 resources are allocated to the peer. In response to the Start

 event (initiated by either system or operator) the local system

 initializes all BGP resources, starts the ConnectRetry timer,

 initiates a transport connection to other BGP peer, while

 listening for connection that may be initiated by the remote

 BGP peer, and changes its state to Connect. The exact value of

 the ConnectRetry timer is a local matter, but should be

 sufficiently large to allow TCP initialization.

 If a BGP speaker detects an error, it shuts down the connection

 and changes its state to Idle. Getting out of the Idle state

requires generation of the Start event. If such an event is

 generated automatically, then persistent BGP errors may result

 in persistent flapping of the speaker. To avoid such a

 condition it is recommended that Start events should not be

 generated immediately for a peer that was previously

 transitioned to Idle due to an error. For a peer that was

 previously transitioned to Idle due to an error, the time

 between consecutive generation of Start events, if such events

 are generated automatically, shall exponentially increase. The

 value of the initial timer shall be 60 seconds. The time shall

 be doubled for each consecutive retry.

 Any other event received in the Idle state is ignored.

 Connect state:

 In this state BGP is waiting for the transport protocol

 connection to be completed.

 If the transport protocol connection succeeds, the local system

 clears the ConnectRetry timer, completes initialization, sends

 an OPEN message to its peer, and changes its state to OpenSent.

 If the transport protocol connect fails (e.g., retransmission

 timeout), the local system restarts the ConnectRetry timer,

 continues to listen for a connection that may be initiated by

 the remote BGP peer, and changes its state to Active state.

 In response to the ConnectRetry timer expired event, the local

 system restarts the ConnectRetry timer, initiates a transport

 connection to other BGP peer, continues to listen for a

 connection that may be initiated by the remote BGP peer, and

 stays in the Connect state.

 Start event is ignored in the Active state.

 In response to any other event (initiated by either system or

 operator), the local system releases all BGP resources

 associated with this connection and changes its state to Idle.

 Active state:

 In this state BGP is trying to acquire a peer by initiating a

 transport protocol connection.

 If the transport protocol connection succeeds, the local system

 clears the ConnectRetry timer, completes initialization, sends

 an OPEN message to its peer, sets its Hold Timer to a large

 value, and changes its state to OpenSent. A Hold Timer value

 of 4 minutes is suggested.

 In response to the ConnectRetry timer expired event, the local

 system restarts the ConnectRetry timer, initiates a transport

 connection to other BGP peer, continues to listen for a

 connection that may be initiated by the remote BGP peer, and

 changes its state to Connect.

 If the local system detects that a remote peer is trying to

 establish BGP connection to it, and the IP address of the

 remote peer is not an expected one, the local system restarts

 the ConnectRetry timer, rejects the attempted connection,

 continues to listen for a connection that may be initiated by

 the remote BGP peer, and stays in the Active state.

 Start event is ignored in the Active state.

 In response to any other event (initiated by either system or

 operator), the local system releases all BGP resources

 associated with this connection and changes its state to Idle.

 OpenSent state:

 In this state BGP waits for an OPEN message from its peer.

 When an OPEN message is received, all fields are checked for

 correctness. If the BGP message header checking or OPEN

 message checking detects an error (see Section 6.2), or a

 connection collision (see Section 6.8) the local system sends a

 NOTIFICATION message and changes its state to Idle.

 If there are no errors in the OPEN message, BGP sends a

 KEEPALIVE message and sets a KeepAlive timer. The Hold Timer,

 which was originally set to a large value (see above), is

 replaced with the negotiated Hold Time value (see section 4.2).

 If the negotiated Hold Time value is zero, then the Hold Time

 timer and KeepAlive timers are not started. If the value of

 the Autonomous System field is the same as the local Autonomous

 System number, then the connection is an "internal" connection;

 otherwise, it is "external". (This will effect UPDATE

 processing as described below.) Finally, the state is changed

 to OpenConfirm.

 If a disconnect notification is received from the underlying

 transport protocol, the local system closes the BGP connection,

 restarts the ConnectRetry timer, while continue listening for

 connection that may be initiated by the remote BGP peer, and

 goes into the Active state.

If the Hold Timer expires, the local system sends NOTIFICATION

 message with error code Hold Timer Expired and changes its

 state to Idle.

 In response to the Stop event (initiated by either system or

 operator) the local system sends NOTIFICATION message with

 Error Code Cease and changes its state to Idle.

 Start event is ignored in the OpenSent state.

 In response to any other event the local system sends

 NOTIFICATION message with Error Code Finite State Machine Error

 and changes its state to Idle.

 Whenever BGP changes its state from OpenSent to Idle, it closes

 the BGP (and transport-level) connection and releases all

 resources associated with that connection.

 OpenConfirm state:

 In this state BGP waits for a KEEPALIVE or NOTIFICATION

 message.

 If the local system receives a KEEPALIVE message, it changes

 its state to Established.

 If the Hold Timer expires before a KEEPALIVE message is

 received, the local system sends NOTIFICATION message with

 error code Hold Timer Expired and changes its state to Idle.

 If the local system receives a NOTIFICATION message, it changes

 its state to Idle.

 If the KeepAlive timer expires, the local system sends a

 KEEPALIVE message and restarts its KeepAlive timer.

 If a disconnect notification is received from the underlying

 transport protocol, the local system changes its state to Idle.

 In response to the Stop event (initiated by either system or

 operator) the local system sends NOTIFICATION message with

 Error Code Cease and changes its state to Idle.

 Start event is ignored in the OpenConfirm state.

 In response to any other event the local system sends

 NOTIFICATION message with Error Code Finite State Machine Error

 and changes its state to Idle.

 Whenever BGP changes its state from OpenConfirm to Idle, it

 closes the BGP (and transport-level) connection and releases

 all resources associated with that connection.

 Established state:

 In the Established state BGP can exchange UPDATE, NOTIFICATION,

 and KEEPALIVE messages with its peer.

 If the local system receives an UPDATE or KEEPALIVE message, it

 restarts its Hold Timer, if the negotiated Hold Time value is

 non-zero.

 If the local system receives a NOTIFICATION message, it changes

 its state to Idle.

 If the local system receives an UPDATE message and the UPDATE

 message error handling procedure (see Section 6.3) detects an

 error, the local system sends a NOTIFICATION message and

 changes its state to Idle.

 If a disconnect notification is received from the underlying

 transport protocol, the local system changes its state to Idle.

 If the Hold Timer expires, the local system sends a

 NOTIFICATION message with Error Code Hold Timer Expired and

 changes its state to Idle.

 If the KeepAlive timer expires, the local system sends a

 KEEPALIVE message and restarts its KeepAlive timer.

 Each time the local system sends a KEEPALIVE or UPDATE message,

 it restarts its KeepAlive timer, unless the negotiated Hold

 Time value is zero.

 In response to the Stop event (initiated by either system or

 operator), the local system sends a NOTIFICATION message with

 Error Code Cease and changes its state to Idle.

 Start event is ignored in the Established state.

 In response to any other event, the local system sends

 NOTIFICATION message with Error Code Finite State Machine Error

 and changes its state to Idle.

 Whenever BGP changes its state from Established to Idle, it

 closes the BGP (and transport-level) connection, releases all

 resources associated with that connection, and deletes all

 routes derived from that connection.

9. UPDATE Message Handling

 An UPDATE message may be received only in the Established state.

 When an UPDATE message is received, each field is checked for

 validity as specified in Section 6.3.

 If an optional non-transitive attribute is unrecognized, it is

 quietly ignored. If an optional transitive attribute is

 unrecognized, the Partial bit (the third high-order bit) in the

 attribute flags octet is set to 1, and the attribute is retained for

 propagation to other BGP speakers.

 If an optional attribute is recognized, and has a valid value, then,

 depending on the type of the optional attribute, it is processed

 locally, retained, and updated, if necessary, for possible

 propagation to other BGP speakers.

 If the UPDATE message contains a non-empty WITHDRAWN ROUTES field,

 the previously advertised routes whose destinations (expressed as IP

 prefixes) contained in this field shall be removed from the Adj-RIB-

 In. This BGP speaker shall run its Decision Process since the

 previously advertised route is not longer available for use.

 If the UPDATE message contains a feasible route, it shall be placed

 in the appropriate Adj-RIB-In, and the following additional actions

 shall be taken:

 i) If its Network Layer Reachability Information (NLRI) is identical

 to the one of a route currently stored in the Adj-RIB-In, then the

 new route shall replace the older route in the Adj-RIB-In, thus

 implicitly withdrawing the older route from service. The BGP speaker

 shall run its Decision Process since the older route is no longer

 available for use.

 ii) If the new route is an overlapping route that is included (see

 9.1.4) in an earlier route contained in the Adj-RIB-In, the BGP

 speaker shall run its Decision Process since the more specific route

 has implicitly made a portion of the less specific route unavailable

 for use.

 iii) If the new route has identical path attributes to an earlier

 route contained in the Adj-RIB-In, and is more specific (see 9.1.4)

 than the earlier route, no further actions are necessary.

 iv) If the new route has NLRI that is not present in any of the

 routes currently stored in the Adj-RIB-In, then the new route shall

 be placed in the Adj-RIB-In. The BGP speaker shall run its Decision

 Process.

 v) If the new route is an overlapping route that is less specific

 (see 9.1.4) than an earlier route contained in the Adj-RIB-In, the

 BGP speaker shall run its Decision Process on the set of destinations

 described only by the less specific route.

9.1 Decision Process

 The Decision Process selects routes for subsequent advertisement by

 applying the policies in the local Policy Information Base (PIB) to

 the routes stored in its Adj-RIB-In. The output of the Decision

 Process is the set of routes that will be advertised to all peers;

 the selected routes will be stored in the local speaker's Adj-RIB-

 Out.

 The selection process is formalized by defining a function that takes

 the attribute of a given route as an argument and returns a non-

 negative integer denoting the degree of preference for the route.

 The function that calculates the degree of preference for a given

 route shall not use as its inputs any of the following: the

 existence of other routes, the non-existence of other routes, or the

 path attributes of other routes. Route selection then consists of

 individual application of the degree of preference function to each

 feasible route, followed by the choice of the one with the highest

 degree of preference.

 The Decision Process operates on routes contained in each Adj-RIB-In,

 and is responsible for:

 - selection of routes to be advertised to BGP speakers located in

 the local speaker's autonomous system

 - selection of routes to be advertised to BGP speakers located in

 neighboring autonomous systems

 - route aggregation and route information reduction

 The Decision Process takes place in three distinct phases, each

 triggered by a different event:

 a) Phase 1 is responsible for calculating the degree of preference

 for each route received from a BGP speaker located in a

 neighboring autonomous system, and for advertising to the other

 BGP speakers in the local autonomous system the routes that have

 the highest degree of preference for each distinct destination.

 b) Phase 2 is invoked on completion of phase 1. It is responsible

 for choosing the best route out of all those available for each

 distinct destination, and for installing each chosen route into

 the appropriate Loc-RIB.

 c) Phase 3 is invoked after the Loc-RIB has been modified. It is

 responsible for disseminating routes in the Loc-RIB to each peer

 located in a neighboring autonomous system, according to the

 policies contained in the PIB. Route aggregation and information

 reduction can optionally be performed within this phase.

9.1.1 Phase 1: Calculation of Degree of Preference

 The Phase 1 decision function shall be invoked whenever the local BGP

 speaker receives an UPDATE message from a peer located in a

 neighboring autonomous system that advertises a new route, a

 replacement route, or a withdrawn route.

 The Phase 1 decision function is a separate process which completes

 when it has no further work to do.

 The Phase 1 decision function shall lock an Adj-RIB-In prior to

 operating on any route contained within it, and shall unlock it after

 operating on all new or unfeasible routes contained within it.

 For each newly received or replacement feasible route, the local BGP

 speaker shall determine a degree of preference. If the route is

 learned from a BGP speaker in the local autonomous system, either the

 value of the LOCAL_PREF attribute shall be taken as the degree of

 preference, or the local system shall compute the degree of

 preference of the route based on preconfigured policy information. If

 the route is learned from a BGP speaker in a neighboring autonomous

 system, then the degree of preference shall be computed based on

 preconfigured policy information. The exact nature of this policy

 information and the computation involved is a local matter. The

 local speaker shall then run the internal update process of 9.2.1 to

 select and advertise the most preferable route.

9.1.2 Phase 2: Route Selection

 The Phase 2 decision function shall be invoked on completion of Phase

 1. The Phase 2 function is a separate process which completes when

 it has no further work to do. The Phase 2 process shall consider all

 routes that are present in the Adj-RIBs-In, including those received

 from BGP speakers located in its own autonomous system and those

 received from BGP speakers located in neighboring autonomous systems.

The Phase 2 decision function shall be blocked from running while the

 Phase 3 decision function is in process. The Phase 2 function shall

 lock all Adj-RIBs-In prior to commencing its function, and shall

 unlock them on completion.

 If the NEXT_HOP attribute of a BGP route depicts an address to which

 the local BGP speaker doesn't have a route in its Loc-RIB, the BGP

 route SHOULD be excluded from the Phase 2 decision function.

 For each set of destinations for which a feasible route exists in the

 Adj-RIBs-In, the local BGP speaker shall identify the route that has:

 a) the highest degree of preference of any route to the same set

 of destinations, or

 b) is the only route to that destination, or

 c) is selected as a result of the Phase 2 tie breaking rules

 specified in 9.1.2.1.

 The local speaker SHALL then install that route in the Loc-RIB,

 replacing any route to the same destination that is currently being

 held in the Loc-RIB. The local speaker MUST determine the immediate

 next hop to the address depicted by the NEXT_HOP attribute of the

 selected route by performing a lookup in the IGP and selecting one of

 the possible paths in the IGP. This immediate next hop MUST be used

 when installing the selected route in the Loc-RIB. If the route to

 the address depicted by the NEXT_HOP attribute changes such that the

 immediate next hop changes, route selection should be recalculated as

 specified above.

 Unfeasible routes shall be removed from the Loc-RIB, and

 corresponding unfeasible routes shall then be removed from the Adj-

 RIBs-In.

9.1.2.1 Breaking Ties (Phase 2)

 In its Adj-RIBs-In a BGP speaker may have several routes to the same

 destination that have the same degree of preference. The local

 speaker can select only one of these routes for inclusion in the

 associated Loc-RIB. The local speaker considers all equally

 preferable routes, both those received from BGP speakers located in

 neighboring autonomous systems, and those received from other BGP

 speakers located in the local speaker's autonomous system.

 The following tie-breaking procedure assumes that for each candidate

 route all the BGP speakers within an autonomous system can ascertain

 the cost of a path (interior distance) to the address depicted by the

NEXT_HOP attribute of the route. Ties shall be broken according to

 the following algorithm:

 a) If the local system is configured to take into account

 MULTI_EXIT_DISC, and the candidate routes differ in their

 MULTI_EXIT_DISC attribute, select the route that has the lowest

 value of the MULTI_EXIT_DISC attribute.

 b) Otherwise, select the route that has the lowest cost (interior

 distance) to the entity depicted by the NEXT_HOP attribute of the

 route. If there are several routes with the same cost, then the

 tie-breaking shall be broken as follows:

 - if at least one of the candidate routes was advertised by the

 BGP speaker in a neighboring autonomous system, select the

 route that was advertised by the BGP speaker in a neighboring

 autonomous system whose BGP Identifier has the lowest value

 among all other BGP speakers in neighboring autonomous systems;

 - otherwise, select the route that was advertised by the BGP

 speaker whose BGP Identifier has the lowest value.

9.1.3 Phase 3: Route Dissemination

 The Phase 3 decision function shall be invoked on completion of Phase

 2, or when any of the following events occur:

 a) when routes in a Loc-RIB to local destinations have changed

 b) when locally generated routes learned by means outside of BGP

 have changed

 c) when a new BGP speaker - BGP speaker connection has been

 established

 The Phase 3 function is a separate process which completes when it

 has no further work to do. The Phase 3 Routing Decision function

 shall be blocked from running while the Phase 2 decision function is

 in process.

 All routes in the Loc-RIB shall be processed into a corresponding

 entry in the associated Adj-RIBs-Out. Route aggregation and

 information reduction techniques (see 9.2.4.1) may optionally be

 applied.

 For the benefit of future support of inter-AS multicast capabilities,

 a BGP speaker that participates in inter-AS multicast routing shall

 advertise a route it receives from one of its external peers and if

 it installs it in its Loc-RIB, it shall advertise it back to the peer

 from which the route was received. For a BGP speaker that does not

 participate in inter-AS multicast routing such an advertisement is

 optional. When doing such an advertisement, the NEXT_HOP attribute

 should be set to the address of the peer. An implementation may also

 optimize such an advertisement by truncating information in the

 AS_PATH attribute to include only its own AS number and that of the

 peer that advertised the route (such truncation requires the ORIGIN

 attribute to be set to INCOMPLETE). In addition an implementation is

 not required to pass optional or discretionary path attributes with

 such an advertisement.

 When the updating of the Adj-RIBs-Out and the Forwarding Information

 Base (FIB) is complete, the local BGP speaker shall run the external

 update process of 9.2.2.

9.1.4 Overlapping Routes

 A BGP speaker may transmit routes with overlapping Network Layer

 Reachability Information (NLRI) to another BGP speaker. NLRI overlap

 occurs when a set of destinations are identified in non-matching

 multiple routes. Since BGP encodes NLRI using IP prefixes, overlap

 will always exhibit subset relationships. A route describing a

 smaller set of destinations (a longer prefix) is said to be more

 specific than a route describing a larger set of destinations (a

 shorted prefix); similarly, a route describing a larger set of

 destinations (a shorter prefix) is said to be less specific than a

 route describing a smaller set of destinations (a longer prefix).

 The precedence relationship effectively decomposes less specific

 routes into two parts:

 - a set of destinations described only by the less specific

 route, and

 - a set of destinations described by the overlap of the less

 specific and the more specific routes

 When overlapping routes are present in the same Adj-RIB-In, the more

 specific route shall take precedence, in order from more specific to

 least specific.

 The set of destinations described by the overlap represents a portion

 of the less specific route that is feasible, but is not currently in

 use. If a more specific route is later withdrawn, the set of

 destinations described by the overlap will still be reachable using

 the less specific route.

 If a BGP speaker receives overlapping routes, the Decision Process

 shall take into account the semantics of the overlapping routes. In

 particular, if a BGP speaker accepts the less specific route while

 rejecting the more specific route from the same peer, then the

 destinations represented by the overlap may not forward along the ASs

 listed in the AS_PATH attribute of that route. Therefore, a BGP

 speaker has the following choices:

 a) Install both the less and the more specific routes

 b) Install the more specific route only

 c) Install the non-overlapping part of the less specific

 route only (that implies de-aggregation)

 d) Aggregate the two routes and install the aggregated route

 e) Install the less specific route only

 f) Install neither route

 If a BGP speaker chooses e), then it should add ATOMIC_AGGREGATE

 attribute to the route. A route that carries ATOMIC_AGGREGATE

 attribute can not be de-aggregated. That is, the NLRI of this route

 can not be made more specific. Forwarding along such a route does

 not guarantee that IP packets will actually traverse only ASs listed

 in the AS_PATH attribute of the route. If a BGP speaker chooses a),

 it must not advertise the more general route without the more

 specific route.

9.2 Update-Send Process

 The Update-Send process is responsible for advertising UPDATE

 messages to all peers. For example, it distributes the routes chosen

 by the Decision Process to other BGP speakers which may be located in

 either the same autonomous system or a neighboring autonomous system.

 rules for information exchange between BGP speakers located in

 different autonomous systems are given in 9.2.2; rules for

 information exchange between BGP speakers located in the same

 autonomous system are given in 9.2.1.

 Distribution of routing information between a set of BGP speakers,

 all of which are located in the same autonomous system, is referred

 to as internal distribution.

9.2.1 Internal Updates

 The Internal update process is concerned with the distribution of

 routing information to BGP speakers located in the local speaker's

 autonomous system.

 When a BGP speaker receives an UPDATE message from another BGP

 speaker located in its own autonomous system, the receiving BGP

 speaker shall not re-distribute the routing information contained in

 that UPDATE message to other BGP speakers located in its own

 autonomous system.

 When a BGP speaker receives a new route from a BGP speaker in a

 neighboring autonomous system, it shall advertise that route to all

 other BGP speakers in its autonomous system by means of an UPDATE

 message if any of the following conditions occur:

 1) the degree of preference assigned to the newly received route

 by the local BGP speaker is higher than the degree of preference

 that the local speaker has assigned to other routes that have been

 received from BGP speakers in neighboring autonomous systems, or

 2) there are no other routes that have been received from BGP

 speakers in neighboring autonomous systems, or

 3) the newly received route is selected as a result of breaking a

 tie between several routes which have the highest degree of

 preference, and the same destination (the tie-breaking procedure

 is specified in 9.2.1.1).

 When a BGP speaker receives an UPDATE message with a non-empty

 WITHDRAWN ROUTES field, it shall remove from its Adj-RIB-In all

 routes whose destinations was carried in this field (as IP prefixes).

 The speaker shall take the following additional steps:

 1) if the corresponding feasible route had not been previously

 advertised, then no further action is necessary

 2) if the corresponding feasible route had been previously

 advertised, then:

 i) if a new route is selected for advertisement that has the

 same Network Layer Reachability Information as the unfeasible

 routes, then the local BGP speaker shall advertise the

 replacement route

 ii) if a replacement route is not available for advertisement,

 then the BGP speaker shall include the destinations of the

 unfeasible route (in form of IP prefixes) in the WITHDRAWN

 ROUTES field of an UPDATE message, and shall send this message

 to each peer to whom it had previously advertised the

 corresponding feasible route.

 All feasible routes which are advertised shall be placed in the

 appropriate Adj-RIBs-Out, and all unfeasible routes which are

 advertised shall be removed from the Adj-RIBs-Out.

9.2.1.1 Breaking Ties (Internal Updates)

 If a local BGP speaker has connections to several BGP speakers in

 neighboring autonomous systems, there will be multiple Adj-RIBs-In

 associated with these peers. These Adj-RIBs-In might contain several

 equally preferable routes to the same destination, all of which were

 advertised by BGP speakers located in neighboring autonomous systems.

 The local BGP speaker shall select one of these routes according to

 the following rules:

 a) If the candidate route differ only in their NEXT_HOP and

 MULTI_EXIT_DISC attributes, and the local system is configured to

 take into account MULTI_EXIT_DISC attribute, select the routes

 that has the lowest value of the MULTI_EXIT_DISC attribute.

 b) If the local system can ascertain the cost of a path to the

 entity depicted by the NEXT_HOP attribute of the candidate route,

 select the route with the lowest cost.

 c) In all other cases, select the route that was advertised by the

 BGP speaker whose BGP Identifier has the lowest value.

9.2.2 External Updates

 The external update process is concerned with the distribution of

 routing information to BGP speakers located in neighboring autonomous

 systems. As part of Phase 3 route selection process, the BGP speaker

 has updated its Adj-RIBs-Out and its Forwarding Table. All newly

 installed routes and all newly unfeasible routes for which there is

 no replacement route shall be advertised to BGP speakers located in

 neighboring autonomous systems by means of UPDATE message.

 Any routes in the Loc-RIB marked as unfeasible shall be removed.

 Changes to the reachable destinations within its own autonomous

 system shall also be advertised in an UPDATE message.

9.2.3 Controlling Routing Traffic Overhead

 The BGP protocol constrains the amount of routing traffic (that is,

 UPDATE messages) in order to limit both the link bandwidth needed to

 advertise UPDATE messages and the processing power needed by the

 Decision Process to digest the information contained in the UPDATE

 messages.

9.2.3.1 Frequency of Route Advertisement

 The parameter MinRouteAdvertisementInterval determines the minimum

 amount of time that must elapse between advertisement of routes to a

 particular destination from a single BGP speaker. This rate limiting

 procedure applies on a per-destination basis, although the value of

 MinRouteAdvertisementInterval is set on a per BGP peer basis.

 Two UPDATE messages sent from a single BGP speaker that advertise

 feasible routes to some common set of destinations received from BGP

 speakers in neighboring autonomous systems must be separated by at

 least MinRouteAdvertisementInterval. Clearly, this can only be

 achieved precisely by keeping a separate timer for each common set of

 destinations. This would be unwarranted overhead. Any technique which

 ensures that the interval between two UPDATE messages sent from a

 single BGP speaker that advertise feasible routes to some common set

 of destinations received from BGP speakers in neighboring autonomous

 systems will be at least MinRouteAdvertisementInterval, and will also

 ensure a constant upper bound on the interval is acceptable.

 Since fast convergence is needed within an autonomous system, this

 procedure does not apply for routes receives from other BGP speakers

 in the same autonomous system. To avoid long-lived black holes, the

 procedure does not apply to the explicit withdrawal of unfeasible

 routes (that is, routes whose destinations (expressed as IP prefixes)

 are listed in the WITHDRAWN ROUTES field of an UPDATE message).

 This procedure does not limit the rate of route selection, but only

 the rate of route advertisement. If new routes are selected multiple

 times while awaiting the expiration of MinRouteAdvertisementInterval,

 the last route selected shall be advertised at the end of

 MinRouteAdvertisementInterval.

9.2.3.2 Frequency of Route Origination

 The parameter MinASOriginationInterval determines the minimum amount

 of time that must elapse between successive advertisements of UPDATE

 messages that report changes within the advertising BGP speaker's own

 autonomous systems.

9.2.3.3 Jitter

 To minimize the likelihood that the distribution of BGP messages by a

 given BGP speaker will contain peaks, jitter should be applied to the

 timers associated with MinASOriginationInterval, Keepalive, and

 MinRouteAdvertisementInterval. A given BGP speaker shall apply the

 same jitter to each of these quantities regardless of the

 destinations to which the updates are being sent; that is, jitter

 will not be applied on a "per peer" basis.

 The amount of jitter to be introduced shall be determined by

 multiplying the base value of the appropriate timer by a random

 factor which is uniformly distributed in the range from 0.75 to 1.0.

9.2.4 Efficient Organization of Routing Information

 Having selected the routing information which it will advertise, a

 BGP speaker may avail itself of several methods to organize this

 information in an efficient manner.

9.2.4.1 Information Reduction

 Information reduction may imply a reduction in granularity of policy

 control - after information is collapsed, the same policies will

 apply to all destinations and paths in the equivalence class.

 The Decision Process may optionally reduce the amount of information

 that it will place in the Adj-RIBs-Out by any of the following

 methods:

 a) Network Layer Reachability Information (NLRI):

 Destination IP addresses can be represented as IP address

 prefixes. In cases where there is a correspondence between the

 address structure and the systems under control of an autonomous

 system administrator, it will be possible to reduce the size of

 the NLRI carried in the UPDATE messages.

 b) AS_PATHs:

 AS path information can be represented as ordered AS_SEQUENCEs or

 unordered AS_SETs. AS_SETs are used in the route aggregation

 algorithm described in 9.2.4.2. They reduce the size of the

 AS_PATH information by listing each AS number only once,

 regardless of how many times it may have appeared in multiple

 AS_PATHs that were aggregated.

 An AS_SET implies that the destinations listed in the NLRI can be

 reached through paths that traverse at least some of the

 constituent autonomous systems. AS_SETs provide sufficient

 information to avoid routing information looping; however their

 use may prune potentially feasible paths, since such paths are no

 longer listed individually as in the form of AS_SEQUENCEs. In

 practice this is not likely to be a problem, since once an IP

 packet arrives at the edge of a group of autonomous systems, the

 BGP speaker at that point is likely to have more detailed path

 information and can distinguish individual paths to destinations.

9.2.4.2 Aggregating Routing Information

 Aggregation is the process of combining the characteristics of

 several different routes in such a way that a single route can be

 advertised. Aggregation can occur as part of the decision process

 to reduce the amount of routing information that will be placed in

 the Adj-RIBs-Out.

 Aggregation reduces the amount of information that a BGP speaker must

 store and exchange with other BGP speakers. Routes can be aggregated

 by applying the following procedure separately to path attributes of

 like type and to the Network Layer Reachability Information.

 Routes that have the following attributes shall not be aggregated

 unless the corresponding attributes of each route are identical:

 MULTI_EXIT_DISC, NEXT_HOP.

 Path attributes that have different type codes can not be aggregated

 together. Path of the same type code may be aggregated, according to

 the following rules:

 ORIGIN attribute: If at least one route among routes that are

 aggregated has ORIGIN with the value INCOMPLETE, then the

 aggregated route must have the ORIGIN attribute with the value

 INCOMPLETE. Otherwise, if at least one route among routes that are

 aggregated has ORIGIN with the value EGP, then the aggregated

 route must have the origin attribute with the value EGP. In all

 other case the value of the ORIGIN attribute of the aggregated

 route is INTERNAL.

 AS_PATH attribute: If routes to be aggregated have identical

 AS_PATH attributes, then the aggregated route has the same AS_PATH

 attribute as each individual route.

 For the purpose of aggregating AS_PATH attributes we model each AS

 within the AS_PATH attribute as a tuple <type, value>, where

 "type" identifies a type of the path segment the AS belongs to

 (e.g. AS_SEQUENCE, AS_SET), and "value" is the AS number. If the

 routes to be aggregated have different AS_PATH attributes, then

 the aggregated AS_PATH attribute shall satisfy all of the

 following conditions:

 - all tuples of the type AS_SEQUENCE in the aggregated AS_PATH

 shall appear in all of the AS_PATH in the initial set of routes

 to be aggregated.

 - all tuples of the type AS_SET in the aggregated AS_PATH shall

 appear in at least one of the AS_PATH in the initial set (they

 may appear as either AS_SET or AS_SEQUENCE types).

 - for any tuple X of the type AS_SEQUENCE in the aggregated

 AS_PATH which precedes tuple Y in the aggregated AS_PATH, X

 precedes Y in each AS_PATH in the initial set which contains Y,

 regardless of the type of Y.

 - No tuple with the same value shall appear more than once in

 the aggregated AS_PATH, regardless of the tuple's type.

 An implementation may choose any algorithm which conforms to these

 rules. At a minimum a conformant implementation shall be able to

 perform the following algorithm that meets all of the above

 conditions:

 - determine the longest leading sequence of tuples (as defined

 above) common to all the AS_PATH attributes of the routes to be

 aggregated. Make this sequence the leading sequence of the

 aggregated AS_PATH attribute.

 - set the type of the rest of the tuples from the AS_PATH

 attributes of the routes to be aggregated to AS_SET, and append

 them to the aggregated AS_PATH attribute.

 - if the aggregated AS_PATH has more than one tuple with the

 same value (regardless of tuple's type), eliminate all, but one

 such tuple by deleting tuples of the type AS_SET from the

 aggregated AS_PATH attribute.

 Appendix 6, section 6.8 presents another algorithm that satisfies

 the conditions and allows for more complex policy configurations.

 ATOMIC_AGGREGATE: If at least one of the routes to be aggregated

 has ATOMIC_AGGREGATE path attribute, then the aggregated route

 shall have this attribute as well.

 AGGREGATOR: All AGGREGATOR attributes of all routes to be

 aggregated should be ignored.

9.3 Route Selection Criteria

 Generally speaking, additional rules for comparing routes among

 several alternatives are outside the scope of this document. There

 are two exceptions:

 - If the local AS appears in the AS path of the new route being

 considered, then that new route cannot be viewed as better than

 any other route. If such a route were ever used, a routing loop

 would result.

 - In order to achieve successful distributed operation, only

 routes with a likelihood of stability can be chosen. Thus, an AS

 must avoid using unstable routes, and it must not make rapid

 spontaneous changes to its choice of route. Quantifying the terms

 "unstable" and "rapid" in the previous sentence will require

 experience, but the principle is clear.

9.4 Originating BGP routes

 A BGP speaker may originate BGP routes by injecting routing

 information acquired by some other means (e.g. via an IGP) into BGP.

 A BGP speaker that originates BGP routes shall assign the degree of

 preference to these routes by passing them through the Decision

 Process (see Section 9.1). These routes may also be distributed to

 other BGP speakers within the local AS as part of the Internal update

 process (see Section 9.2.1). The decision whether to distribute non-

 BGP acquired routes within an AS via BGP or not depends on the

 environment within the AS (e.g. type of IGP) and should be controlled

 via configuration.

Appendix 1. BGP FSM State Transitions and Actions.

 This Appendix discusses the transitions between states in the BGP FSM

 in response to BGP events. The following is the list of these states

 and events when the negotiated Hold Time value is non-zero.

 BGP States:

 1 - Idle

 2 - Connect

 3 - Active

 4 - OpenSent

 5 - OpenConfirm

 6 - Established

 BGP Events:

 1 - BGP Start

 2 - BGP Stop

 3 - BGP Transport connection open

 4 - BGP Transport connection closed

 5 - BGP Transport connection open failed

 6 - BGP Transport fatal error

 7 - ConnectRetry timer expired

 8 - Hold Timer expired

 9 - KeepAlive timer expired

 10 - Receive OPEN message

 11 - Receive KEEPALIVE message

 12 - Receive UPDATE messages

 13 - Receive NOTIFICATION message

 The following table describes the state transitions of the BGP FSM

 and the actions triggered by these transitions.

 Event Actions Message Sent Next State

 --

 Idle (1)

 1 Initialize resources none 2

 Start ConnectRetry timer

 Initiate a transport connection

 others none none 1

 Connect(2)

 1 none none 2

 3 Complete initialization OPEN 4

 Clear ConnectRetry timer

 5 Restart ConnectRetry timer none 3

 7 Restart ConnectRetry timer none 2

 Initiate a transport connection

 others Release resources none 1

 Active (3)

 1 none none 3

 3 Complete initialization OPEN 4

 Clear ConnectRetry timer

 5 Close connection 3

 Restart ConnectRetry timer

 7 Restart ConnectRetry timer none 2

 Initiate a transport connection

 others Release resources none 1

 OpenSent(4)

 1 none none 4

 4 Close transport connection none 3

 Restart ConnectRetry timer

 6 Release resources none 1

 10 Process OPEN is OK KEEPALIVE 5

 Process OPEN failed NOTIFICATION 1

 others Close transport connection NOTIFICATION 1

 Release resources

OpenConfirm (5)

 1 none none 5

 4 Release resources none 1

 6 Release resources none 1

 9 Restart KeepAlive timer KEEPALIVE 5

 11 Complete initialization none 6

 Restart Hold Timer

 13 Close transport connection 1

 Release resources

 others Close transport connection NOTIFICATION 1

 Release resources

 Established (6)

 1 none none 6

 4 Release resources none 1

 6 Release resources none 1

 9 Restart KeepAlive timer KEEPALIVE 6

 11 Restart Hold Timer KEEPALIVE 6

 12 Process UPDATE is OK UPDATE 6

 Process UPDATE failed NOTIFICATION 1

 13 Close transport connection 1

 Release resources

 others Close transport connection NOTIFICATION 1

 Release resources

 The following is a condensed version of the above state transition

 table.

 Events| Idle | Connect | Active | OpenSent | OpenConfirm | Estab

 | (1) | (2) | (3) | (4) | (5) | (6)

 |--

 1 | 2 | 2 | 3 | 4 | 5 | 6

 | | | | | |

 2 | 1 | 1 | 1 | 1 | 1 | 1

 | | | | | |

 3 | 1 | 4 | 4 | 1 | 1 | 1

 | | | | | |

 4 | 1 | 1 | 1 | 3 | 1 | 1

 | | | | | |

 5 | 1 | 3 | 3 | 1 | 1 | 1

 | | | | | |

 6 | 1 | 1 | 1 | 1 | 1 | 1

 | | | | | |

 7 | 1 | 2 | 2 | 1 | 1 | 1

 | | | | | |

 8 | 1 | 1 | 1 | 1 | 1 | 1

 | | | | | |

 9 | 1 | 1 | 1 | 1 | 5 | 6

 | | | | | |

 10 | 1 | 1 | 1 | 1 or 5 | 1 | 1

 | | | | | |

 11 | 1 | 1 | 1 | 1 | 6 | 6

 | | | | | |

 12 | 1 | 1 | 1 | 1 | 1 | 1 or 6

 | | | | | |

 13 | 1 | 1 | 1 | 1 | 1 | 1

 | | | | | |

Appendix 2. Comparison with RFC1267

 BGP-4 is capable of operating in an environment where a set of

 reachable destinations may be expressed via a single IP prefix. The

 concept of network classes, or subnetting is foreign to BGP-4. To

 accommodate these capabilities BGP-4 changes semantics and encoding

 associated with the AS_PATH attribute. New text has been added to

 define semantics associated with IP prefixes. These abilities allow

 BGP-4 to support the proposed supernetting scheme [9].

 To simplify configuration this version introduces a new attribute,

 LOCAL_PREF, that facilitates route selection procedures.

The INTER_AS_METRIC attribute has been renamed to be MULTI_EXIT_DISC.

 A new attribute, ATOMIC_AGGREGATE, has been introduced to insure that

 certain aggregates are not de-aggregated. Another new attribute,

 AGGREGATOR, can be added to aggregate routes in order to advertise

 which AS and which BGP speaker within that AS caused the aggregation.

 To insure that Hold Timers are symmetric, the Hold Time is now

 negotiated on a per-connection basis. Hold Times of zero are now

 supported.

Appendix 3. Comparison with RFC 1163

 All of the changes listed in Appendix 2, plus the following.

 To detect and recover from BGP connection collision, a new field (BGP

 Identifier) has been added to the OPEN message. New text (Section

 6.8) has been added to specify the procedure for detecting and

 recovering from collision.

 The new document no longer restricts the border router that is passed

 in the NEXT_HOP path attribute to be part of the same Autonomous

 System as the BGP Speaker.

 New document optimizes and simplifies the exchange of the information

 about previously reachable routes.

Appendix 4. Comparison with RFC 1105

 All of the changes listed in Appendices 2 and 3, plus the following.

 Minor changes to the RFC1105 Finite State Machine were necessary to

 accommodate the TCP user interface provided by 4.3 BSD.

 The notion of Up/Down/Horizontal relations present in RFC1105 has

 been removed from the protocol.

 The changes in the message format from RFC1105 are as follows:

 1. The Hold Time field has been removed from the BGP header and

 added to the OPEN message.

 2. The version field has been removed from the BGP header and

 added to the OPEN message.

 3. The Link Type field has been removed from the OPEN message.

 4. The OPEN CONFIRM message has been eliminated and replaced with

 implicit confirmation provided by the KEEPALIVE message.

 5. The format of the UPDATE message has been changed

 significantly. New fields were added to the UPDATE message to

 support multiple path attributes.

 6. The Marker field has been expanded and its role broadened to

 support authentication.

 Note that quite often BGP, as specified in RFC 1105, is referred

 to as BGP-1, BGP, as specified in RFC 1163, is referred to as

 BGP-2, BGP, as specified in RFC1267 is referred to as BGP-3, and

 BGP, as specified in this document is referred to as BGP-4.

Appendix 5. TCP options that may be used with BGP

 If a local system TCP user interface supports TCP PUSH function, then

 each BGP message should be transmitted with PUSH flag set. Setting

 PUSH flag forces BGP messages to be transmitted promptly to the

 receiver.

 If a local system TCP user interface supports setting precedence for

 TCP connection, then the BGP transport connection should be opened

 with precedence set to Internetwork Control (110) value (see also

 [6]).

Appendix 6. Implementation Recommendations

 This section presents some implementation recommendations.

6.1 Multiple Networks Per Message

 The BGP protocol allows for multiple address prefixes with the same

 AS path and next-hop gateway to be specified in one message. Making

 use of this capability is highly recommended. With one address prefix

 per message there is a substantial increase in overhead in the

 receiver. Not only does the system overhead increase due to the

 reception of multiple messages, but the overhead of scanning the

 routing table for updates to BGP peers and other routing protocols

 (and sending the associated messages) is incurred multiple times as

 well. One method of building messages containing many address

 prefixes per AS path and gateway from a routing table that is not

 organized per AS path is to build many messages as the routing table

 is scanned. As each address prefix is processed, a message for the

 associated AS path and gateway is allocated, if it does not exist,

 and the new address prefix is added to it. If such a message exists,

 the new address prefix is just appended to it. If the message lacks

 the space to hold the new address prefix, it is transmitted, a new

 message is allocated, and the new address prefix is inserted into the

 new message. When the entire routing table has been scanned, all

 allocated messages are sent and their resources released. Maximum

 compression is achieved when all the destinations covered by the

 address prefixes share a gateway and common path attributes, making

 it possible to send many address prefixes in one 4096-byte message.

 When peering with a BGP implementation that does not compress

 multiple address prefixes into one message, it may be necessary to

 take steps to reduce the overhead from the flood of data received

 when a peer is acquired or a significant network topology change

 occurs. One method of doing this is to limit the rate of updates.

 This will eliminate the redundant scanning of the routing table to

 provide flash updates for BGP peers and other routing protocols. A

 disadvantage of this approach is that it increases the propagation

 latency of routing information. By choosing a minimum flash update

 interval that is not much greater than the time it takes to process

 the multiple messages this latency should be minimized. A better

 method would be to read all received messages before sending updates.

6.2 Processing Messages on a Stream Protocol

 BGP uses TCP as a transport mechanism. Due to the stream nature of

 TCP, all the data for received messages does not necessarily arrive

 at the same time. This can make it difficult to process the data as

 messages, especially on systems such as BSD Unix where it is not

 possible to determine how much data has been received but not yet

 processed.

 One method that can be used in this situation is to first try to read

 just the message header. For the KEEPALIVE message type, this is a

 complete message; for other message types, the header should first be

 verified, in particular the total length. If all checks are

 successful, the specified length, minus the size of the message

 header is the amount of data left to read. An implementation that

 would "hang" the routing information process while trying to read

 from a peer could set up a message buffer (4096 bytes) per peer and

 fill it with data as available until a complete message has been

 received.

6.3 Reducing route flapping

 To avoid excessive route flapping a BGP speaker which needs to

 withdraw a destination and send an update about a more specific or

 less specific route shall combine them into the same UPDATE message.

6.4 BGP Timers

 BGP employs five timers: ConnectRetry, Hold Time, KeepAlive,

 MinASOriginationInterval, and MinRouteAdvertisementInterval The

 suggested value for the ConnectRetry timer is 120 seconds. The

 suggested value for the Hold Time is 90 seconds. The suggested value

 for the KeepAlive timer is 30 seconds. The suggested value for the

 MinASOriginationInterval is 15 seconds. The suggested value for the

 MinRouteAdvertisementInterval is 30 seconds.

 An implementation of BGP MUST allow these timers to be configurable.

6.5 Path attribute ordering

 Implementations which combine update messages as described above in

 6.1 may prefer to see all path attributes presented in a known order.

 This permits them to quickly identify sets of attributes from

 different update messages which are semantically identical. To

 facilitate this, it is a useful optimization to order the path

 attributes according to type code. This optimization is entirely

 optional.

6.6 AS_SET sorting

 Another useful optimization that can be done to simplify this

 situation is to sort the AS numbers found in an AS_SET. This

 optimization is entirely optional.

6.7 Control over version negotiation

 Since BGP-4 is capable of carrying aggregated routes which cannot be

 properly represented in BGP-3, an implementation which supports BGP-4

 and another BGP version should provide the capability to only speak

 BGP-4 on a per-peer basis.

6.8 Complex AS_PATH aggregation

 An implementation which chooses to provide a path aggregation

 algorithm which retains significant amounts of path information may

 wish to use the following procedure:

 For the purpose of aggregating AS_PATH attributes of two routes,

 we model each AS as a tuple <type, value>, where "type" identifies

 a type of the path segment the AS belongs to (e.g. AS_SEQUENCE,

 AS_SET), and "value" is the AS number. Two ASs are said to be the

 same if their corresponding <type, value> tuples are the same.

 The algorithm to aggregate two AS_PATH attributes works as

 follows:

 a) Identify the same ASs (as defined above) within each AS_PATH

 attribute that are in the same relative order within both

 AS_PATH attributes. Two ASs, X and Y, are said to be in the

 same order if either:

 - X precedes Y in both AS_PATH attributes, or - Y precedes X

 in both AS_PATH attributes.

 b) The aggregated AS_PATH attribute consists of ASs identified

 in (a) in exactly the same order as they appear in the AS_PATH

 attributes to be aggregated. If two consecutive ASs identified

 in (a) do not immediately follow each other in both of the

 AS_PATH attributes to be aggregated, then the intervening ASs

 (ASs that are between the two consecutive ASs that are the

 same) in both attributes are combined into an AS_SET path

 segment that consists of the intervening ASs from both AS_PATH

 attributes; this segment is then placed in between the two

 consecutive ASs identified in (a) of the aggregated attribute.

 If two consecutive ASs identified in (a) immediately follow

 each other in one attribute, but do not follow in another, then

 the intervening ASs of the latter are combined into an AS_SET

 path segment; this segment is then placed in between the two

 consecutive ASs identified in (a) of the aggregated attribute.

 If as a result of the above procedure a given AS number appears

 more than once within the aggregated AS_PATH attribute, all, but

 the last instance (rightmost occurrence) of that AS number should

 be removed from the aggregated AS_PATH attribute.

References

 [1] Mills, D., "Exterior Gateway Protocol Formal Specification", RFC

 904, BBN, April 1984.

 [2] Rekhter, Y., "EGP and Policy Based Routing in the New NSFNET

 Backbone", RFC 1092, T.J. Watson Research Center, February 1989.

 [3] Braun, H-W., "The NSFNET Routing Architecture", RFC 1093,

 MERIT/NSFNET Project, February 1989.

 [4] Postel, J., "Transmission Control Protocol - DARPA Internet

 Program Protocol Specification", STD 7, RFC 793, DARPA, September

 1981.

 [5] Rekhter, Y., and P. Gross, "Application of the Border Gateway

 Protocol in the Internet", RFC 1772, T.J. Watson Research Center,

 IBM Corp., MCI, March 1995.

 [6] Postel, J., "Internet Protocol - DARPA Internet Program Protocol

 Specification", STD 5, RFC 791, DARPA, September 1981.

 [7] "Information Processing Systems - Telecommunications and

 Information Exchange between Systems - Protocol for Exchange of

 Inter-domain Routeing Information among Intermediate Systems to

 Support Forwarding of ISO 8473 PDUs", ISO/IEC IS10747, 1993

 [8] Fuller, V., Li, T., Yu, J., and K. Varadhan, "Classless Inter-

 Domain Routing (CIDR): an Address Assignment and Aggregation

 Strategy", RFC 1519, BARRNet, cisco, MERIT, OARnet, September

 1993

 [9] Rekhter, Y., Li, T., "An Architecture for IP Address Allocation

 with CIDR", RFC 1518, T.J. Watson Research Center, cisco,

 September 1993

Security Considerations

 Security issues are not discussed in this document.

Editors' Addresses

 Yakov Rekhter

 T.J. Watson Research Center IBM Corporation

 P.O. Box 704, Office H3-D40

 Yorktown Heights, NY 10598

 Phone: +1 914 784 7361

 EMail: yakov@watson.ibm.com

 Tony Li

 cisco Systems, Inc.

 170 W. Tasman Dr.

 San Jose, CA 95134

 EMail: tli@cisco.com

