
_ __ _______________________________________

13
_ __ _______________________________________

Templates

Your quote here.
– B. Stroustrup

Templates— a string template— instantiation— template parameters— type checking
— function templates— template argument deduction— specifying template arguments
— function template overloading— policy as template arguments— default template
arguments— specialization— derivation and templates— member templates— con-
versions— source code organization— advice— exercises.

13.1 Introduction [temp.intro]

Independent concepts should be independently represented and should be combined only when
needed. Where this principle is violated, you either bundle unrelated concepts together or create
unnecessary dependencies. Either way, you get a less flexible set of components out of which to
compose systems. Templates provide a simple way to represent a wide range of general concepts
and simple ways to combine them. The resulting classes and functions can match hand-written,
more-specialized code in run-time and space efficiency.

Templates provide direct support for generic programming (§2.7), that is, programming using
types as parameters. The C++ template mechanism allows a type to be a parameter in the definition
of a class or a function. A template depends only on the properties that it actually uses from its
parameter types and does not require different types used as arguments to be explicitly related. In
particular, the argument types used for a template need not be from a single inheritance hierarchy.

Here, templates are introduced with the primary focus on techniques needed for the design,
implementation, and use of the standard library. The standard library requires a greater degree of
generality, flexibility, and efficiency than does most software. Consequently, techniques that can
be used in the design and implementation of the standard library are effective and efficient in the
design of solutions to a wide variety of problems. These techniques enable an implementer to hide

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

328 Templates Chapter 13

sophisticated implementations behind simple interfaces and to expose complexity to the user only
when the user has a specific need for it. For example,s so or rt t(v v) can be the interface to a variety of
sort algorithms for elements of a variety of types held in a variety of containers. The sort function
that is most appropriate for the particularv v will be automatically chosen.

Every major standard library abstraction is represented as a template (for example,s st tr ri in ng g,
o os st tr re ea am m, c co om mp pl le ex x, l li is st t, andm ma ap p) and so are the key operations (for example,s st tr ri in ng g compare, the
output operator<<, c co om mp pl le ex x addition, getting the next element from al li is st t, and s so or rt t()). This
makes the library chapters (Part 3) of this book a rich source of examples of templates and pro-
gramming techniques relying on them. Consequently, this chapter concentrates on smaller exam-
ples illustrating technical aspects of templates and fundamental techniques for using them:

§13.2: The basic mechanisms for defining and using class templates
§13.3: Function templates, function overloading, and type deduction
§13.4: Template parameters used to specify policies for generic algorithms
§13.5: Multiple definitions providing alternative implementations for a template
§13.6: Derivation and templates (run-time and compile-time polymorphism)
§13.7: Source code organization

Templates were introduced in §2.7.1 and §3.8. Detailed rules for template name resolution, tem-
plate syntax, etc., can be found in §C.13.

13.2 A Simple String Template[temp.string]

Consider a string of characters. A string is a class that holds characters and provides operations
such as subscripting, concatenation, and comparison that we usually associate with the notion of a
‘‘string.’’ We would like to provide that behavior for many different kinds of characters. For
example, strings of signed characters, of unsigned characters, of Chinese characters, of Greek char-
acters, etc., are useful in various contexts. Thus, we want to represent the notion of ‘‘string’’ with
minimal dependence on a specific kind of character. The definition of a string relies on the fact that
a character can be copied, and little else. Thus, we can make a more general string type by taking
the string ofc ch ha ar r from §11.12 and making the character type a parameter:

t te em mp pl la at te e<c cl la as ss s C C> c cl la as ss s S St tr ri in ng g {
s st tr ru uc ct t S Sr re ep p;
S Sr re ep p * r re ep p;

p pu ub bl li ic c:
S St tr ri in ng g() ;
S St tr ri in ng g(c co on ns st t C C*) ;
S St tr ri in ng g(c co on ns st t S St tr ri in ng g&) ;

C C r re ea ad d(i in nt t i i) c co on ns st t;
/ / ...

};

The t te em mp pl la at te e <c cl la as ss s C C> prefix specifies that a template is being declared and that a type argument
C C will be used in the declaration. After its introduction,C C is used exactly like other type names.
The scope ofC C extends to the end of the declaration prefixed byt te em mp pl la at te e <c cl la as ss s C C>. Note that
t te em mp pl la at te e<c cl la as ss s C C> says thatC C is atypename; it need not be the name of aclass.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.2 A Simple String Template 329

The name of a class template followed by a type bracketed by< > is the name of a class (as
defined by the template) and can be used exactly like other class names. For example:

S St tr ri in ng g<c ch ha ar r> c cs s;
S St tr ri in ng g<u un ns si ig gn ne ed d c ch ha ar r> u us s;
S St tr ri in ng g<w wc ch ha ar r_ _t t> w ws s;

c cl la as ss s J Jc ch ha ar r {
/ / Japanese character

};

S St tr ri in ng g<J Jc ch ha ar r> j js s;

Except for the special syntax of its name,S St tr ri in ng g<c ch ha ar r> works exactly as if it had been defined
using the definition of classS St tr ri in ng g in §11.12. MakingS St tr ri in ng g a template allows us to provide the
facilities we had forS St tr ri in ng g of c ch ha ar r for S St tr ri in ng gs of any kind of character. For example, if we use the
standard librarym ma ap p and theS St tr ri in ng g template, the word-counting example from §11.8 becomes:

i in nt t m ma ai in n() / / count the occurrences of each word on input
{

S St tr ri in ng g<c ch ha ar r> b bu uf f;
m ma ap p<S St tr ri in ng g<c ch ha ar r>, i in nt t> m m;
w wh hi il le e (c ci in n>>b bu uf f) m m[b bu uf f]++;
/ / write out result

}

The version for our Japanese-character typeJ Jc ch ha ar r would be:

i in nt t m ma ai in n() / / count the occurrences of each word on input
{

S St tr ri in ng g<J Jc ch ha ar r> b bu uf f;
m ma ap p<S St tr ri in ng g<J Jc ch ha ar r>, i in nt t> m m;
w wh hi il le e (c ci in n>>b bu uf f) m m[b bu uf f]++;
/ / write out result

}

The standard library provides the template classb ba as si ic c_ _s st tr ri in ng g that is similar to the templatized
S St tr ri in ng g (§11.12, §20.3). In the standard library,s st tr ri in ng g is defined as a synonym for
b ba as si ic c_ _s st tr ri in ng g<c ch ha ar r>:

t ty yp pe ed de ef f b ba as si ic c_ _s st tr ri in ng g<c ch ha ar r> s st tr ri in ng g;

This allows us to write the word-counting program like this:

i in nt t m ma ai in n() / / count the occurrences of each word on input
{

s st tr ri in ng g b bu uf f;
m ma ap p<s st tr ri in ng g, i in nt t> m m;
w wh hi il le e (c ci in n>>b bu uf f) m m[b bu uf f]++;
/ / write out result

}

In general,t ty yp pe ed de ef fs are useful for shortening the long names of classes generated from templates.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

330 Templates Chapter 13

Also, we often prefer not to know the details of how a type is defined, and at ty yp pe ed de ef f allows us to
hide the fact that a type is generated from a template.

13.2.1 Defining a Template [temp.string.details]

A class generated from a class template is a perfectly ordinary class. Thus, use of a template does
not imply any run-time mechanisms beyond what is used for an equivalent ‘‘hand-written’’ class.
Nor does it necessarily imply any reduction in the amount of code generated.

It is usually a good idea to debug a particular class, such asS St tr ri in ng g, before turning it into a tem-
plate such asS St tr ri in ng g<C C>. By doing so, we handle many design problems and most of the code
errors in the context of a concrete example. This kind of debugging is familiar to all programmers,
and most people cope better with a concrete example than with an abstract concept. Later, we can
deal with any problems that might arise from generalization without being distracted by more con-
ventional errors. Similarly, when trying to understand a template, it is often useful to imagine its
behavior for a particular type argument such asc ch ha ar r before trying to comprehend the template in
its full generality.

Members of a template class are declared and defined exactly as they would have been for a
non-template class. A template member need not be defined within the template class itself. In
that case, its definition must be provided somewhere else, as for non-template class members
(§C.13.7). Members of a template class are themselves templates parameterized by the parameters
of their template class. When such a member is defined outside its class, it must explicitly be
declared a template. For example:

t te em mp pl la at te e<c cl la as ss s C C> s st tr ru uc ct t S St tr ri in ng g<C C>: : S Sr re ep p {
C C* s s; / / pointer to elements
i in nt t s sz z; / / number of elements
i in nt t n n; / / reference count
/ / ...

};

t te em mp pl la at te e<c cl la as ss s C C> C C S St tr ri in ng g<C C>: : r re ea ad d(i in nt t i i) c co on ns st t { r re et tu ur rn n r re ep p-> s s[i i] ; }

t te em mp pl la at te e<c cl la as ss s C C> S St tr ri in ng g<C C>: : S St tr ri in ng g()
{

p p = n ne ew w S Sr re ep p(0 0, C C()) ;
}

Template parameters, such asC C, are parameters rather than names of types defined externally to the
template. However, that doesn’t affect the way we write the template code using them. Within the
scope ofS St tr ri in ng g<C C>, qualification with<C C> is redundant for the name of the template itself, so
S St tr ri in ng g<C C>: : S St tr ri in ng g is the name for the constructor. If you prefer, you can be explicit:

t te em mp pl la at te e<c cl la as ss s C C> S St tr ri in ng g<C C>: : S St tr ri in ng g<C C>()
{

p p = n ne ew w S Sr re ep p(0 0, C C()) ;
}

Just as there can be only one function defining a class member function in a program, there can be
only one function template defining a class template member function in a program. However,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.2.1 Defining a Template 331

overloading is a possibility for functions only (§13.3.2), while specialization (§13.5) enables us to
provide alternative implementations for a template.

It is not possible to overload a class template name, so if a class template is declared in a scope,
no other entity can be declared there with the same name (see also §13.5). For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s S St tr ri in ng g { /* ... */ };

c cl la as ss s S St tr ri in ng g { /* ... */ }; / / error: double definition

A type used as a template argument must provide the interface expected by the template. For
example, a type used as an argument toS St tr ri in ng g must provide the usual copy operations (§10.4.4.1,
§20.2.1). Note that there is no requirement that different arguments for the same template parame-
ter should be related by inheritance.

13.2.2 Template Instantiation [temp.string.inst]

The process of generating a class declaration from a template class and a template argument is often
called template instantiation(§C.13.7). Similarly, a function is generated (‘‘instantiated’’) from a
template function plus a template argument. A version of a template for a particular template argu-
ment is called aspecialization.

In general, it is the implementation’s job– not the programmer’s– to ensure that versions of a
template function are generated for each set of template arguments used (§C.13.7). For example:

S St tr ri in ng g<c ch ha ar r> c cs s;

v vo oi id d f f()
{

S St tr ri in ng g<J Jc ch ha ar r> j js s;

c cs s = " I It t´ s s t th he e i im mp pl le em me en nt ta at ti io on n´ s s j jo ob b t to o f fi ig gu ur re e o ou ut t w wh ha at t c co od de e n ne ee ed ds s t to o b be e g ge en ne er ra at te ed d";
}

For this, the implementation generates declarations forS St tr ri in ng g<c ch ha ar r> andS St tr ri in ng g<J Jc ch ha ar r>, for their
correspondingS Sr re ep p types, for their destructors and default constructors, and for the assignment
S St tr ri in ng g<c ch ha ar r>: : o op pe er ra at to or r=(c ch ha ar r*) . Other member functions are not used and should not be gen-
erated. The generated classes are perfectly ordinary classes that obey all the usual rules for classes.
Similarly, generated functions are ordinary functions that obey all the usual rules for functions.

Obviously, templates provide a powerful way of generating code from relatively short defini-
tions. Consequently, a certain amount of caution is in order to avoid flooding memory with almost
identical function definitions (§13.5).

13.2.3 Template Parameters [temp.param]

A template can take type parameters, parameters of ordinary types such asi in nt ts, and template
parameters (§C.13.3). Naturally, a template can take several parameters. For example:

t te em mp pl la at te e<c cl la as ss s T T, T T d de ef f_ _v va al l> c cl la as ss s C Co on nt t { /* ... */ };

As shown, a template parameter can be used in the definition of subsequent template parameters.
Integer arguments come in handy for supplying sizes and limits. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

332 Templates Chapter 13

t te em mp pl la at te e<c cl la as ss s T T, i in nt t i i> c cl la as ss s B Bu uf ff fe er r {
T T v v[i i] ;
i in nt t s sz z;

p pu ub bl li ic c:
B Bu uf ff fe er r() : s sz z(i i) {}
/ / ...

};

B Bu uf ff fe er r<c ch ha ar r, 1 12 27 7> c cb bu uf f;
B Bu uf ff fe er r<R Re ec co or rd d, 8 8> r rb bu uf f;

Simple and constrained containers such asB Bu uf ff fe er r can be important where run-time efficiency and
compactness are paramount (thus preventing the use of a more generals st tr ri in ng g or v ve ec ct to or r). Passing a
size as a template argument allowsB Bu uf ff fe er r’s implementer to avoid free store use. Another example
is theR Ra an ng ge e type in §25.6.1.

A template argument can be a constant expression (§C.5), the address of an object or function
with external linkage (§9.2), or a non-overloaded pointer to member (§15.5). A pointer used as a
template argument must be of the form&o of f, whereo of f is the name of an object or a function, or of
the formf f, wheref f is the name of a function. A pointer to member must be of the form&X X: : o of f,
whereo of f is the name of an member. In particular, a string literal isnot acceptable as a template
argument.

An integer template argument must be a constant:

v vo oi id d f f(i in nt t i i)
{

B Bu uf ff fe er r<i in nt t, i i> b bx x; / / error: constant expression expected
}

Conversely, a non-type template parameter is a constant within the template so that an attempt to
change the value of a parameter is an error.

13.2.4 Type Equivalence [temp.equiv]

Given a template, we can generate types by supplying template arguments. For example:

S St tr ri in ng g<c ch ha ar r> s s1 1;
S St tr ri in ng g<u un ns si ig gn ne ed d c ch ha ar r> s s2 2;
S St tr ri in ng g<i in nt t> s s3 3;

t ty yp pe ed de ef f u un ns si ig gn ne ed d c ch ha ar r U Uc ch ha ar r;
S St tr ri in ng g<U Uc ch ha ar r> s s4 4;
S St tr ri in ng g<c ch ha ar r> s s5 5;

B Bu uf ff fe er r<S St tr ri in ng g<c ch ha ar r>, 1 10 0> b b1 1;
B Bu uf ff fe er r<c ch ha ar r, 1 10 0> b b2 2;
B Bu uf ff fe er r<c ch ha ar r, 2 20 0- 1 10 0> b b3 3;

When using the same set of template arguments for a template, we always refer to the same gener-
ated type. However, what does ‘‘the same’’ mean in this context? As usual,t ty yp pe ed de ef fs do not intro-
duce new types, soS St tr ri in ng g<U Uc ch ha ar r> is the same type asS St tr ri in ng g<u un ns si ig gn ne ed d c ch ha ar r>. Conversely,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.2.4 Type Equivalence 333

becausec ch ha ar r and u un ns si ig gn ne ed d c ch ha ar r are different types (§4.3),S St tr ri in ng g<c ch ha ar r> and S St tr ri in ng g<u un ns si ig gn ne ed d
c ch ha ar r> are different types.

The compiler can evaluate constant expressions (§C.5), soB Bu uf ff fe er r<c ch ha ar r, 2 20 0- 1 10 0> is recognized
to be the same type asB Bu uf ff fe er r<c ch ha ar r, 1 10 0>.

13.2.5 Type Checking [temp.check]

A template is defined and then later used in combination with a set of template arguments. When
the template is defined, the definition is checked for syntax errors and possibly also for other errors
that can be detected in isolation from a particular set of template arguments. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t {
s st tr ru uc ct t L Li in nk k {

L Li in nk k* p pr re e;
L Li in nk k* s su uc c;
T T v va al l;
L Li in nk k(L Li in nk k* p p, L Li in nk k* s s, c co on ns st t T T& v v) : p pr re e(p p) , s su uc c(s s) , v va al l(v v) { }

} / / syntax error: missing semicolon
L Li in nk k* h he ea ad d;

p pu ub bl li ic c:
L Li is st t() : h he ea ad d(7 7) { } / / error: pointer initialized with int
L Li is st t(c co on ns st t T T& t t) : h he ea ad d(n ne ew w L Li in nk k(0 0, o o, t t)) { } / / error: undefined identifier ‘o’
/ / ...
v vo oi id d p pr ri in nt t_ _a al ll l() { f fo or r (L Li in nk k* p p = h he ea ad d; p p; p p=p p-> s su uc c) c co ou ut t << p p-> v va al l << ´ \ \n n´; }

};

A compiler can catch simple semantic errors at the point of definition or later at the point of use.
Users generally prefer early detection, but not all ‘‘simple’’ errors are easy to detect. Here, I made
three ‘‘mistakes.’’ Independently of what the template parameter is, a pointerT T* cannot be initial-
ized by the integer7 7. Similarly, the identifiero o (a mistyped0 0, of course) cannot be an argument to
L Li is st t<T T>: : L Li in nk k’s constructor because there is no such name in scope.

A name used in a template definition must either be in scope or in some reasonably obvious
way depend on a template parameter (§C.13.8.1). The most common and obvious way of depend-
ing on a template parameterT T is to use a member of aT T or to take an argument of typeT T. In
L Li is st t<T T>: : p pr ri in nt t_ _a al ll l() , c co ou ut t<<p p-> v va al l is a slightly more subtle example.

Errors that relate to the use of template parameters cannot be detected until the template is used.
For example:

c cl la as ss s R Re ec c { /* ... */ };

v vo oi id d f f(L Li is st t<i in nt t>& l li i, L Li is st t<R Re ec c>& l lr r)
{

l li i. p pr ri in nt t_ _a al ll l() ;
l lr r. p pr ri in nt t_ _a al ll l() ;

}

The l li i. p pr ri in nt t_ _a al ll l() checks out fine, butl lr r. p pr ri in nt t_ _a al ll l() gives a type error because there is no<<
output operator defined forR Re ec c. The earliest that errors relating to a template parameter can be
detected is at the first point of use of the template for a particular template argument. That point is

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

334 Templates Chapter 13

usually called thefirst point of instantiation, or simply thepoint of instantiation(see §C.13.7). The
implementation is allowed to postpone this checking until the program is linked. If we had only a
declaration ofp pr ri in nt t_ _a al ll l() available in this translation unit, rather than its definition, the implemen-
tation might have had to delay type checking (see §13.7). Independently of when checking is done,
the same set of rules is checked. Again, users prefer early checking. It is possible to express con-
straints on template arguments in terms of member functions (see §13.9[16]).

13.3 Function Templates[temp.fct]

For most people, the first and most obvious use of templates is to define and use container classes
such asb ba as si ic c_ _s st tr ri in ng g (§20.3),v ve ec ct to or r (§16.3), l li is st t (§17.2.2), andm ma ap p (§17.4.1). Soon after, the
need for template functions arises. Sorting an array is a simple example:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s so or rt t(v ve ec ct to or r<T T>&) ; / / declaration

v vo oi id d f f(v ve ec ct to or r<i in nt t>& v vi i, v ve ec ct to or r<s st tr ri in ng g>& v vs s)
{

s so or rt t(v vi i) ; / / sort(vector<int>&);
s so or rt t(v vs s) ; / / sort(vector<string>&);

}

When a template function is called, the types of the function arguments determine which version of
the template is used; that is, the template arguments are deduced from the function arguments
(§13.3.1).

Naturally, the template function must be defined somewhere (§C.13.7):

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s so or rt t(v ve ec ct to or r<T T>& v v) / / definition
/ / Shell sort (Knuth, Vol. 3, pg. 84).

{
c co on ns st t s si iz ze e_ _t t n n = v v. s si iz ze e() ;

f fo or r (i in nt t g ga ap p=n n/ 2 2; 0 0<g ga ap p; g ga ap p/= 2 2)
f fo or r (i in nt t i i=g ga ap p; i i<n n; i i++)

f fo or r (i in nt t j j=i i- g ga ap p; 0 0<=j j; j j-= g ga ap p)
i if f (v v[j j+g ga ap p]< v v[j j]) { / / swap v[j] and v[j+gap]

T T t te em mp p = v v[j j] ;
v v[j j] = v v[j j+g ga ap p] ;
v v[j j+g ga ap p] = t te em mp p;

}
}

Please compare this definition to thes so or rt t() defined in (§7.7). This templatized version is cleaner
and shorter because it can rely on more information about the type of the elements it sorts. Most
likely, it is also faster because it doesn’t rely on a pointer to function for the comparison. This
implies that no indirect function calls are needed and that inlining of a simple< is easy.

A further simplification is to use the standard library templates sw wa ap p() (§18.6.8) to reduce the
action to its natural form:

i if f (v v[j j+g ga ap p]< v v[j j]) s sw wa ap p(v v[j j] , v v[j j+g ga ap p]) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.3 Function Templates 335

This does not introduce any new overheads.
In this example, operator< is used for comparison. However, not every type has a< operator.

This limits the use of this version ofs so or rt t() , but the limitation is easily avoided (see §13.4).

13.3.1 Function Template Arguments [temp.deduce]

Function templates are essential for writing generic algorithms to be applied to a wide variety of
container types (§2.7.2, §3.8, Chapter 18). The ability to deduce the template arguments for a call
from the function arguments is crucial.

A compiler can deduce type and non-type arguments from a call, provided the function argu-
ment list uniquely identifies the set of template arguments (§C.13.4). For example:

t te em mp pl la at te e<c cl la as ss s T T, i in nt t i i> T T l lo oo ok ku up p(B Bu uf ff fe er r<T T, i i>& b b, c co on ns st t c ch ha ar r* p p) ;

c cl la as ss s R Re ec co or rd d {
c co on ns st t c ch ha ar r[1 12 2] ;
/ / ...

};

R Re ec co or rd d f f(B Bu uf ff fe er r<R Re ec co or rd d, 1 12 28 8>& b bu uf f, c co on ns st t c ch ha ar r* p p)
{

r re et tu ur rn n l lo oo ok ku up p(b bu uf f, p p) ; / / use the lookup() where T is Record and i is 128
}

Here,T T is deduced to beR Re ec co or rd d andi i is deduced to be1 12 28 8.
Note that class template parameters are never deduced. The reason is that the flexibility pro-

vided by several constructors for a class would make such deduction impossible in many cases and
obscure in many more. Specialization provides a mechanism for implicitly choosing between dif-
ferent implementations of a class (§13.5). If we need to create an object of a deduced type, we can
often do that by calling a function to do the creation; seem ma ak ke e_ _p pa ai ir r() in §17.4.1.2.

If a template argument cannot be deduced from the template function arguments (§C.13.4), we
must specify it explicitly. This is done in the same way template arguments are explicitly specified
for a template class. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s v ve ec ct to or r { /* ... */ };
t te em mp pl la at te e<c cl la as ss s T T> T T* c cr re ea at te e() ; / / make a T and return a pointer to it

v vo oi id d f f()
{

v ve ec ct to or r<i in nt t> v v; / / class, template argument ‘int’
i in nt t* p p = c cr re ea at te e<i in nt t>() ; / / function, template argument ‘int’

}

One common use of explicit specification is to provide a return type for a template function:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s U U> T T i im mp pl li ic ci it t_ _c ca as st t(U U u u) { r re et tu ur rn n u u; }

v vo oi id d g g(i in nt t i i)
{

i im mp pl li ic ci it t_ _c ca as st t(i i) ; / / error: can’t deduce T
i im mp pl li ic ci it t_ _c ca as st t<d do ou ub bl le e>(i i) ; / / T is double; U is int

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

336 Templates Chapter 13

i im mp pl li ic ci it t_ _c ca as st t<c ch ha ar r, d do ou ub bl le e>(i i) ; / / T is char; U is double
i im mp pl li ic ci it t_ _c ca as st t<c ch ha ar r*, i in nt t>(i i) ; / / T is char*; U is int; error: cannot convert int to char*

}

As with default function arguments (§7.5), only trailing arguments can be left out of a list of
explicit template arguments.

Explicit specification of template arguments allows the definition of families of conversion
functions and object creation functions (§13.3.2, §C.13.1, §C.13.5). An explicit version of the
implicit conversions (§C.6), such asi im mp pl li ic ci it t_ _c ca as st t() , is frequently useful. The syntax for
d dy yn na am mi ic c_ _c ca as st t, s st ta at ti ic c_ _c ca as st t, etc., (§6.2.7, §15.4.1) matches the explicitly qualified template function
syntax. However, the built-in type conversion operators supply operations that cannot be expressed
by other language features.

13.3.2 Function Template Overloading [temp.over]

One can declare several function templates with the same name and even declare a combination of
function templates and ordinary functions with the same name. When an overloaded function is
called, overload resolution is necessary to find the right function or template function to invoke.
For example:

t te em mp pl la at te e<c cl la as ss s T T> T T s sq qr rt t(T T) ;
t te em mp pl la at te e<c cl la as ss s T T> c co om mp pl le ex x<T T> s sq qr rt t(c co om mp pl le ex x<T T>) ;
d do ou ub bl le e s sq qr rt t(d do ou ub bl le e) ;

v vo oi id d f f(c co om mp pl le ex x<d do ou ub bl le e> z z)
{

s sq qr rt t(2 2) ; / / sqrt<int>(int)
s sq qr rt t(2 2. 0 0) ; / / sqrt(double)
s sq qr rt t(z z) ; / / sqrt<double>(complex<double>)

}

In the same way that a template function is a generalization of the notion of a function, the rules for
resolution in the presence of function templates are generalizations of the function overload resolu-
tion rules. Basically, for each template we find the specialization that is best for the set of function
arguments. Then, we apply the usual function overload resolution rules to these specializations and
all ordinary functions:

[1] Find the set of function template specializations (§13.2.2) that will take part in overload res-
olution. Do this by considering each function template and deciding which template argu-
ments, if any, would be used if no other function templates or functions of the same name
were in scope. For the calls sq qr rt t(z z) , this makess sq qr rt t<d do ou ub bl le e>(c co om mp pl le ex x<d do ou ub bl le e>) and
s sq qr rt t< c co om mp pl le ex x<d do ou ub bl le e> >(c co om mp pl le ex x<d do ou ub bl le e>) candidates.

[2] If two template functions can be called and one is more specialized than the other (§13.5.1),
consider only the most specialized template function in the following steps. For the call
s sq qr rt t(z z) , this means thats sq qr rt t<d do ou ub bl le e>(c co om mp pl le ex x<d do ou ub bl le e>) is preferred overs sq qr rt t<
c co om mp pl le ex x<d do ou ub bl le e> >(c co om mp pl le ex x<d do ou ub bl le e>) : any call that matchess sq qr rt t<T T>(c co om mp pl le ex x<T T>)
also matchess sq qr rt t<T T>(T T) .

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.3.2 Function Template Overloading 337

[3] Do overload resolution for this set of functions, plus any ordinary functions as for ordinary
functions (§7.4). If a template function argument has been determined by template argu-
ment deduction (§13.3.1), that argument cannot also have promotions, standard conversions,
or user-defined conversions applied. Fors sq qr rt t(2 2) , s sq qr rt t<i in nt t>(i in nt t) is an exact match, so it
is preferred overs sq qr rt t(d do ou ub bl le e).

[4] If a function and a specialization are equally good matches, the function is preferred. Con-
sequently,s sq qr rt t(d do ou ub bl le e) is preferred overs sq qr rt t<d do ou ub bl le e>(d do ou ub bl le e) for s sq qr rt t(2 2. 0 0) .

[5] If no match is found, the call is an error. If we end up with two or more equally good
matches, the call is ambiguous and is an error.

For example:

t te em mp pl la at te e<c cl la as ss s T T> T T m ma ax x(T T, T T) ;

c co on ns st t i in nt t s s = 7 7;

v vo oi id d k k()
{

m ma ax x(1 1, 2 2) ; / / max<int>(1,2)
m ma ax x(´ a a´,´ b b´) ; / / max<char>(’a’,’b’)
m ma ax x(2 2. 7 7, 4 4. 9 9) ; / / max<double>(2.7,4.9)
m ma ax x(s s, 7 7) ; / / max<int>(int(s),7) (trivial conversion used)

m ma ax x(´ a a´, 1 1) ; / / error: ambiguous (no standard conversion)
m ma ax x(2 2. 7 7, 4 4) ; / / error: ambiguous (no standard conversion)

}

We could resolve the two ambiguities either by explicit qualification:

v vo oi id d f f()
{

m ma ax x<i in nt t>(´ a a´, 1 1) ; / / max<int>(int(’a’),1)
m ma ax x<d do ou ub bl le e>(2 2. 7 7, 4 4) ; / / max<double>(2.7,double(4))

}

or by adding suitable declarations:

i in nl li in ne e i in nt t m ma ax x(i in nt t i i, i in nt t j j) { r re et tu ur rn n m ma ax x<i in nt t>(i i, j j) ; }
i in nl li in ne e d do ou ub bl le e m ma ax x(i in nt t i i, d do ou ub bl le e d d) { r re et tu ur rn n m ma ax x<d do ou ub bl le e>(i i, d d) ; }
i in nl li in ne e d do ou ub bl le e m ma ax x(d do ou ub bl le e d d, i in nt t i i) { r re et tu ur rn n m ma ax x<d do ou ub bl le e>(d d, i i) ; }
i in nl li in ne e d do ou ub bl le e m ma ax x(d do ou ub bl le e d d1 1, d do ou ub bl le e d d2 2) { r re et tu ur rn n m ma ax x<d do ou ub bl le e>(d d1 1, d d2 2) ; }

v vo oi id d g g()
{

m ma ax x(´ a a´, 1 1) ; / / max(int(’a’),1)
m ma ax x(2 2. 7 7, 4 4) ; / / max(2.7,double(4))

}

For ordinary functions, ordinary overloading rules (§7.4) apply, and the use ofi in nl li in ne e ensures that
no extra overhead is imposed.

The definition ofm ma ax x() is trivial, so we could have written it explicitly. However, using a spe-
cialization of the template is an easy and general way of defining such resolution functions.

The overload resolution rules ensure that template functions interact properly with inheritance:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

338 Templates Chapter 13

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s B B { /* ... */ };
t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s D D : p pu ub bl li ic c B B<T T> { /* ... */ };

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d f f(B B<T T>*) ;

v vo oi id d g g(B B<i in nt t>* p pb b, D D<i in nt t>* p pd d)
{

f f(p pb b) ; / / f<int>(pb)
f f(p pd d) ; / / f<int>(static_cast<B<int>*>(pd)); standard conversion D<int>* to B<int>* used

}

In this example, the template functionf f() accepts aB B<T T>* for any typeT T. We have an argument
of type D D<i in nt t>* , so the compiler easily deduces that by choosingT T to be i in nt t, the call can be
uniquely resolved to a call off f(B B<i in nt t>*) .

A function argument that is not involved in the deduction of a template parameter is treated
exactly as an argument of a non-template function. In particular, the usual conversion rules hold.
Consider:

t te em mp pl la at te e<c cl la as ss s C C> i in nt t g ge et t_ _n nt th h(C C& p p, i in nt t n n) ; / / get n-th element

This function presumably returns the value of the n-th element of a container of typeC C. BecauseC C
has to be deduced from an actual argument ofg ge et t_ _n nt th h() in a call, conversions are not applicable to
the first argument. However, the second argument is perfectly ordinary, so the full range of possi-
ble conversions is considered. For example:

c cl la as ss s I In nd de ex x {
p pu ub bl li ic c:

o op pe er ra at to or r i in nt t() ;
/ / ...

};

v vo oi id d f f(v ve ec ct to or r<i in nt t>& v v, s sh ho or rt t s s, I In nd de ex x i i)
{

i in nt t i i1 1 = g ge et t_ _n nt th h(v v, 2 2) ; / / exact match
i in nt t i i2 2 = g ge et t_ _n nt th h(v v, s s) ; / / standard conversion: short to int
i in nt t i i3 3 = g ge et t_ _n nt th h(v v, i i) ; / / user-defined conversion: Index to int

}

13.4 Using Template Arguments to Specify Policy[temp.policy]

Consider how to sort strings. Three concepts are involved: the string, the element type, and the cri-
teria used by the sort algorithm for comparing string elements.

We can’t hardwire the sorting criteria into the container because the container can’t (in general)
impose its needs on the element types. We can’t hardwire the sorting criteria into the element type
because there are many different ways of sorting elements.

Consequently, the sorting criteria are built neither into the container nor into the element type.
Instead, the criteria must be supplied when a specific operation needs to be performed. For exam-
ple, if I have strings of characters representing names of Swedes, what collating criteria would I

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.4 Using Template Arguments to Specify Policy 339

like to use for a comparison? Two different collating sequences (numerical orderings of the charac-
ters) are commonly used for sorting Swedish names. Naturally, neither a general string type nor a
general sort algorithm should know about the conventions for sorting names in Sweden. Therefore,
any general solution requires that the sorting algorithm be expressed in general terms that can be
defined not just for a specific type but also for a specific use of a specific type. For example, let us
generalize the standard C library functions st tr rc cm mp p() for S St tr ri in ng gs of any typeT T (§13.2):

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s C C>
i in nt t c co om mp pa ar re e(c co on ns st t S St tr ri in ng g<T T>& s st tr r1 1, c co on ns st t S St tr ri in ng g<T T>& s st tr r2 2)
{

f fo or r(i in nt t i i=0 0; i i<s st tr r1 1. l le en ng gt th h() && i i< s st tr r2 2. l le en ng gt th h() ; i i++)
i if f (! C C: : e eq q(s st tr r1 1[i i] , s st tr r2 2[i i])) r re et tu ur rn n C C: : l lt t(s st tr r1 1[i i] , s st tr r2 2[i i]) ? - 1 1 : 1 1;

r re et tu ur rn n s st tr r1 1. l le en ng gt th h()- s st tr r2 2. l le en ng gt th h() ;
}

If someone wantsc co om mp pa ar re e() to ignore case, to reflect locale, etc., that can be done by defining
suitableC C: : e eq q() andC C: : l lt t() . This allows any (comparison, sorting, etc.) algorithm that can be
described in terms of the operations supplied by the ‘‘C C-operations’’ and the container to be
expressed. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s C Cm mp p { / / normal, default compare
p pu ub bl li ic c:

s st ta at ti ic c i in nt t e eq q(T T a a, T T b b) { r re et tu ur rn n a a==b b; }
s st ta at ti ic c i in nt t l lt t(T T a a, T T b b) { r re et tu ur rn n a a<b b; }

};

c cl la as ss s L Li it te er ra at te e { / / compare Swedish names according to literary conventions
p pu ub bl li ic c:

s st ta at ti ic c i in nt t e eq q(c ch ha ar r a a, c ch ha ar r b b) { r re et tu ur rn n a a==b b; }
s st ta at ti ic c i in nt t l lt t(c ch ha ar r, c ch ha ar r) ; / / a table lookup based on character value (§13.9[14])

};

We can now choose the rules for comparison by explicit specification of the template arguments:

v vo oi id d f f(S St tr ri in ng g<c ch ha ar r> s sw we ed de e1 1, S St tr ri in ng g<c ch ha ar r> s sw we ed de e2 2)
{

c co om mp pa ar re e< c ch ha ar r, C Cm mp p<c ch ha ar r> >(s sw we ed de e1 1, s sw we ed de e2 2) ;
c co om mp pa ar re e< c ch ha ar r, L Li it te er ra at te e >(s sw we ed de e1 1, s sw we ed de e2 2) ;

}

Passing the comparison operations as a template parameter has two significant benefits compared to
alternatives such as passing pointers to functions. Several operations can be passed as a single
argument with no run-time cost. In addition, the comparison operatorse eq q() andl lt t() are trivial to
inline, whereas inlining a call through a pointer to function requires exceptional attention from a
compiler.

Naturally, comparison operations can be provided for user-defined types as well as built-in
types. This is essential to allow general algorithms to be applied to types with nontrivial compari-
son criteria (see §18.4).

Each class generated from a class template gets a copy of eachs st ta at ti ic c member of the class tem-
plate (see §C.13.1).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

340 Templates Chapter 13

13.4.1 Default Template Parameters [temp.default]

Explicitly specifying the comparison criteria for each call is tedious. Fortunately, it is easy to pick
a default so that only uncommon comparison criteria have to be explicitly specified. This can be
implemented through overloading:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s C C>
i in nt t c co om mp pa ar re e(c co on ns st t S St tr ri in ng g<T T>& s st tr r1 1, c co on ns st t S St tr ri in ng g<T T>& s st tr r2 2) ; / / compare using C

t te em mp pl la at te e<c cl la as ss s T T>
i in nt t c co om mp pa ar re e(c co on ns st t S St tr ri in ng g<T T>& s st tr r1 1, c co on ns st t S St tr ri in ng g<T T>& s st tr r2 2) ; / / compare using Cmp<T>

Alternatively, we can supply the normal convention as a default template argument:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s C C = C Cm mp p<T T> >
i in nt t c co om mp pa ar re e(c co on ns st t S St tr ri in ng g<T T>& s st tr r1 1, c co on ns st t S St tr ri in ng g<T T>& s st tr r2 2)
{

f fo or r(i in nt t i i=0 0; i i<s st tr r1 1. l le en ng gt th h() && i i< s st tr r2 2. l le en ng gt th h() ; i i++)
i if f (! C C: : e eq q(s st tr r1 1[i i] , s st tr r2 2[i i])) r re et tu ur rn n C C: : l lt t(s st tr r1 1[i i] , s st tr r2 2[i i]) ? - 1 1 : 1 1;

r re et tu ur rn n s st tr r1 1. l le en ng gt th h()- s st tr r2 2. l le en ng gt th h() ;
}

Given that, we can write:

v vo oi id d f f(S St tr ri in ng g<c ch ha ar r> s sw we ed de e1 1, S St tr ri in ng g<c ch ha ar r> s sw we ed de e2 2)
{

c co om mp pa ar re e(s sw we ed de e1 1, s sw we ed de e2 2) ; / / use Cmp<char>
c co om mp pa ar re e<c ch ha ar r, L Li it te er ra at te e>(s sw we ed de e1 1, s sw we ed de e2 2) ; / / use Literate

}

A less esoteric example (for non-Swedes) is comparing with and without taking case into account:

c cl la as ss s N No o_ _c ca as se e { /* ... */ };

v vo oi id d f f(S St tr ri in ng g<c ch ha ar r> s s1 1, S St tr ri in ng g<c ch ha ar r> s s2 2)
{

c co om mp pa ar re e(s s1 1, s s2 2) ; / / case sensitive
c co om mp pa ar re e<c ch ha ar r, N No o_ _c ca as se e>(s s1 1, s s2 2) ; / / not sensitive to case

}

The technique of supplying a policy through a template argument and then defaulting that argument
to supply the most common policy is widely used in the standard library (e.g., §18.4). Curiously
enough, it is not used forb ba as si ic c_ _s st tr ri in ng g (§13.2, Chapter 20) comparisons. Template parameters
used to express policies are often called ‘‘traits.’’ For example, the standard library string relies on
c ch ha ar r_ _t tr ra ai it ts s (§20.2.1), the standard algorithms on iterator traits (§19.2.2), and the standard library
containers ona al ll lo oc ca at to or rs s (§19.4).

The semantic checking of a default argument for a template parameter is done if and (only)
when that default argument is actually used. In particular, as long as we refrain from using the
default template argumentC Cm mp p<T T> we canc co om mp pa ar re e() strings of a typeX X for which C Cm mp p<X X>
wouldn’t compile (say, because< wasn’t defined for anX X). This point is crucial in the design of
the standard containers, which rely on a template argument to specify default values (§16.3.4).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.5 Specialization 341

13.5 Specialization[temp.special]

By default, a template gives a single definition to be used for every template argument (or combina-
tion of template arguments) that a user can think of. This doesn’t always make sense for someone
writing a template. I might want to say, ‘‘if the template argument is a pointer, use this implemen-
tation; if it is not, use that implementation’’ or ‘‘give an error unless the template argument is a
pointer derived from classM My y_ _b ba as se e.’’ Many such design concerns can be addressed by providing
alternative definitions of the template and having the compiler choose between them based on the
template arguments provided where they are used. Such alternative definitions of a template are
calleduser-defined specializations, or simply,user specializations.

Consider likely uses of aV Ve ec ct to or r template:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r { / / general vector type
T T* v v;
i in nt t s sz z;

p pu ub bl li ic c:
V Ve ec ct to or r() ;
V Ve ec ct to or r(i in nt t) ;

T T& e el le em m(i in nt t i i) { r re et tu ur rn n v v[i i] ; }
T T& o op pe er ra at to or r[](i in nt t i i) ;

v vo oi id d s sw wa ap p(V Ve ec ct to or r&) ;
/ / ...

};

V Ve ec ct to or r<i in nt t> v vi i;
V Ve ec ct to or r<S Sh ha ap pe e*> v vp ps s;
V Ve ec ct to or r<s st tr ri in ng g> v vs s;
V Ve ec ct to or r<c ch ha ar r*> v vp pc c;
V Ve ec ct to or r<N No od de e*> v vp pn n;

Most V Ve ec ct to or rs will beV Ve ec ct to or rs of some pointer type. There are several reasons for this, but the pri-
mary reason is that to preserve run-time polymorphic behavior, we must use pointers (§2.5.4,
§12.2.6). That is, anyone who practices object-oriented programming and also uses type-safe con-
tainers (such as the standard library containers) will end up with a lot of containers of pointers.

The default behavior of most C++ implementations is to replicate the code for template func-
tions. This is good for run-time performance, but unless care is taken it leads to code bloat in criti-
cal cases such as theV Ve ec ct to or r example.

Fortunately, there is an obvious solution. Containers of pointers can share a single implementa-
tion. This can be expressed through specialization. First, we define a version (a specialization) of
V Ve ec ct to or r for pointers tov vo oi id d:

t te em mp pl la at te e<> c cl la as ss s V Ve ec ct to or r<v vo oi id d*> {
v vo oi id d** p p;
/ / ...
v vo oi id d*& o op pe er ra at to or r[](i in nt t i i) ;

};

This specialization can then be used as the common implementation for allV Ve ec ct to or rs of pointers.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

342 Templates Chapter 13

The t te em mp pl la at te e<> prefix says that this is a specialization that can be specified without a template
parameter. The template arguments for which the specialization is to be used are specified in<>
brackets after the name. That is, the<v vo oi id d*> says that this definition is to be used as the imple-
mentation of everyV Ve ec ct to or r for whichT T is void* .

The V Ve ec ct to or r<v vo oi id d*> is a complete specialization. That is, there is no template parameter to
specify or deduce when we use the specialization;V Ve ec ct to or r<v vo oi id d*> is used forV Ve ec ct to or rs declared like
this:

V Ve ec ct to or r<v vo oi id d*> v vp pv v;

To define a specialization that is used for everyV Ve ec ct to or r of pointers and only forV Ve ec ct to or rs of pointers,
we need apartial specialization:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r<T T*> : p pr ri iv va at te e V Ve ec ct to or r<v vo oi id d*> {
p pu ub bl li ic c:

t ty yp pe ed de ef f V Ve ec ct to or r<v vo oi id d*> B Ba as se e;

V Ve ec ct to or r() : B Ba as se e() {}
e ex xp pl li ic ci it t V Ve ec ct to or r(i in nt t i i) : B Ba as se e(i i) {}

T T*& e el le em m(i in nt t i i) { r re et tu ur rn n s st ta at ti ic c_ _c ca as st t<T T*&>(B Ba as se e: : e el le em m(i i)) ; }
T T*& o op pe er ra at to or r[](i in nt t i i) { r re et tu ur rn n s st ta at ti ic c_ _c ca as st t<T T*&>(B Ba as se e: : o op pe er ra at to or r[](i i)) ; }

/ / ...
};

The specialization pattern<T T*> after the name says that this specialization is to be used for every
pointer type; that is, this definition is to be used for everyV Ve ec ct to or r with a template argument that can
be expressed asT T* . For example:

V Ve ec ct to or r<S Sh ha ap pe e*> v vp ps s; / / <T*> is <Shape*> so T is Shape
V Ve ec ct to or r<i in nt t**> v vp pp pi i; / / <T*> is <int** > so T is int*

Note that when a partial specialization is used, a template parameter is deduced from the specializa-
tion pattern; the template parameter is not simply the actual template argument. In particular, for
V Ve ec ct to or r<S Sh ha ap pe e*> , T T is S Sh ha ap pe eand notS Sh ha ap pe e* .

Given this partial specialization ofV Ve ec ct to or r, we have a shared implementation for allV Ve ec ct to or rs of
pointers. TheV Ve ec ct to or r<T T*> class is simply an interface tov vo oi id d* implemented exclusively through
derivation and inline expansion.

It is important that this refinement of the implementation ofV Ve ec ct to or r is achieved without affect-
ing the interface presented to users. Specialization is a way of specifying alternative implementa-
tions for different uses of a common interface. Naturally, we could have given the generalV Ve ec ct to or r
and theV Ve ec ct to or r of pointers different names. However, when I tried that, many people who should
have known better forgot to use the pointer classes and found their code much larger than expected.
In this case, it is much better to hide the crucial implementation details behind a common interface.

This technique proved successful in curbing code bloat in real use. People who do not use a
technique like this (in C++ or in other languages with similar facilities for type parameterization)
have found that replicated code can cost megabytes of code space even in moderately-sized pro-
grams. By eliminating the time needed to compile those additional versions of the vector opera-
tions, this technique can also cut compile and link times dramatically. Using a single specialization

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.5 Specialization 343

to implement all lists of pointers is an example of the general technique of minimizing code bloat
by maximizing the amount of shared code.

The general template must be declared before any specialization. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t<T T*> { /* ... */ };

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t { /* ... */ }; / / error: general template after specialization

The critical information supplied by the general template is the set of template parameters that the
user must supply to use it or any of its specializations. Consequently, a declaration of the general
case is sufficient to allow the declaration or definition of a specialization:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t;

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t<T T*> { /* ... */ };

If used, the general template needs to be defined somewhere (§13.7).
If a user specializes a template somewhere, that specialization must be in scope for every use of

the template with the type for which it was specialized. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t { /* ... */ };

L Li is st t<i in nt t*> l li i;

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t<T T*> { /* ... */ }; / / error

Here,L Li is st t was specialized fori in nt t* afterL Li is st t<i in nt t*> had been used.
All specializations of a template must be declared in the same namespace as the template itself.

If used, a specialization that is explicitly declared (as opposed to generated from a more general
template) must also be explicitly defined somewhere (§13.7). In other words, explicitly specializ-
ing a template implies that no definition is generated for that specialization.

13.5.1 Order of Specializations [temp.special.order]

One specialization ismore specializedthan another if every argument list that matches its special-
ization pattern also matches the other, but not vice versa. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r; / / general
t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r<T T*>; / / specialized for any pointer
t te em mp pl la at te e<> c cl la as ss s V Ve ec ct to or r<v vo oi id d*>; / / specialized for void*

Every type can be used as a template argument for the most generalV Ve ec ct to or r, but only pointers can
be used forV Ve ec ct to or r<T T*> and onlyv vo oi id d* s can be used forV Ve ec ct to or r<v vo oi id d*> .

The most specialized version will be preferred over the others in declarations of objects, point-
ers, etc., (§13.5) and in overload resolution (§13.3.2).

A specialization pattern can be specified in terms of types composed using the constructs
allowed for template parameter deduction (§13.3.1).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

344 Templates Chapter 13

13.5.2 Template Function Specialization [temp.special.fct]

Naturally, specialization is also useful for template functions. Consider the Shell sort from §7.7
and §13.3. It compares elements using< and swaps elements using detailed code. A better defini-
tion would be:

t te em mp pl la at te e<c cl la as ss s T T> b bo oo ol l l le es ss s(T T a a, T T b b) { r re et tu ur rn n a a<b b; }

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s so or rt t(V Ve ec ct to or r<T T>& v v)
{

c co on ns st t s si iz ze e_ _t t n n = v v. s si iz ze e() ;

f fo or r (i in nt t g ga ap p=n n/ 2 2; 0 0<g ga ap p; g ga ap p/= 2 2)
f fo or r (i in nt t i i=g ga ap p; i i<n n; i i++)

f fo or r (i in nt t j j=i i- g ga ap p; 0 0<=j j; j j-= g ga ap p)
i if f (l le es ss s(v v[j j+g ga ap p] , v v[j j])) s sw wa ap p(v v[j j] , v v[j j+g ga ap p]) ;

}

This does not improve the algorithm itself, but it allows improvements to its implementation. As
written, s so or rt t() will not sort aV Ve ec ct to or r<c ch ha ar r*> correctly because< will compare the twoc ch ha ar r* s.
That is, it will compare the addresses of the firstc ch ha ar r in each string. Instead, we would like it to
compare the characters pointed to. A simple specialization ofl le es ss s() for c co on ns st t c ch ha ar r* will take care
of that:

t te em mp pl la at te e<> b bo oo ol l l le es ss s<c co on ns st t c ch ha ar r*>(c co on ns st t c ch ha ar r* a a, c co on ns st t c ch ha ar r* b b)
{

r re et tu ur rn n s st tr rc cm mp p(a a, b b)< 0 0;
}

As for classes (§13.5), thet te em mp pl la at te e<> prefix says that this is a specialization that can be specified
without a template parameter. The<c co on ns st t c ch ha ar r*> after the template function name means that this
specialization is to be used in cases where the template argument isc co on ns st t c ch ha ar r* . Because the tem-
plate argument can be deduced from the function argument list, we need not specify it explicitly.
So, we could simplify the definition of the specialization:

t te em mp pl la at te e<> b bo oo ol l l le es ss s<>(c co on ns st t c ch ha ar r* a a, c co on ns st t c ch ha ar r* b b)
{

r re et tu ur rn n s st tr rc cm mp p(a a, b b)< 0 0;
}

Given thet te em mp pl la at te e<> prefix, the second empty<> is redundant, so we would typically simply
write:

t te em mp pl la at te e<> b bo oo ol l l le es ss s(c co on ns st t c ch ha ar r* a a, c co on ns st t c ch ha ar r* b b)
{

r re et tu ur rn n s st tr rc cm mp p(a a, b b)< 0 0;
}

I prefer this shorter form of declaration.
Consider the obvious definition ofs sw wa ap p() :

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.5.2 Template Function Specialization 345

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s sw wa ap p(T T& x x, T T& y y)
{

T T t t = x x; / / copy x to temporary
x x = y y; / / copy y to x
y y = t t; / / copy temporary to y

}

This is rather inefficient when invoked forV Ve ec ct to or rs ofV Ve ec ct to or rs; it swapsV Ve ec ct to or rs by copying all ele-
ments. This problem can also be solved by appropriate specialization. AV Ve ec ct to or r object will itself
hold only sufficient data to give indirect access to the elements (likes st tr ri in ng g; §11.12, §13.2). Thus,
a swap can be done by swapping those representations. To be able to manipulate that representa-
tion, I providedV Ve ec ct to or r with a member functions sw wa ap p() (§13.5):

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d V Ve ec ct to or r<T T>: : s sw wa ap p(V Ve ec ct to or r & a a) / / swap representations
{

s sw wa ap p(v v, a a. v v) ;
s sw wa ap p(s sz z, a a. s sz z) ;

}

This members sw wa ap p() can now be used to define a specialization of the generals sw wa ap p() :

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s sw wa ap p(V Ve ec ct to or r<T T>& a a, V Ve ec ct to or r<T T>& b b)
{

a a. s sw wa ap p(b b) ;
}

These specializations ofl le es ss s() ands sw wa ap p() are used in the standard library (§16.3.9, §20.3.16).
In addition, they are examples of widely applicable techniques. Specialization is useful when there
is a more efficient alternative to a general algorithm for a set of template arguments (here,
s sw wa ap p()). In addition, specialization comes in handy when an irregularity of an argument type
causes the general algorithm to give an undesired result (here,l le es ss s()). These ‘‘irregular types’’
are often the built-in pointer and array types.

13.6 Derivation and Templates[temp.derive]

Templates and derivation are mechanisms for building new types out of existing ones, and gener-
ally for writing useful code that exploits various forms of commonality. As shown in §3.7.1,
§3.8.5, and §13.5, combinations of the two mechanisms are the basis for many useful techniques.

Deriving a template class from a non-template class is a way of providing a common implemen-
tation for a set of templates. The list from §13.5 is a good example of this:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s l li is st t<T T*> : p pr ri iv va at te e l li is st t<v vo oi id d*> { /* ... */ };

Another way of looking at such examples is that a template is used to provide an elegant and type-
safe interface to an otherwise unsafe and inconvenient-to-use facility.

Naturally, it is often useful to derive one template class from another. One use of a base class is
as a building block in the implementation of further classes. If the data or operations in such a base

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

346 Templates Chapter 13

class depend on a template parameter of a derived class, the base itself must be parameterized;V Ve ec c
from §3.7.1 is an example of this:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s v ve ec ct to or r { /* ... */ };
t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec c : p pu ub bl li ic c v ve ec ct to or r<T T> { /* ... */ };

The overload resolution rules for template functions ensure that functions work ‘‘correctly’’ for
such derived types (§13.3.2).

Having the same template parameter for the base and derived class is the most common case,
but it is not a requirement. Interesting, although less frequently used, techniques rely on passing
the derived type itself to the base class. For example:

t te em mp pl la at te e <c cl la as ss s C C> c cl la as ss s B Ba as si ic c_ _o op ps s { / / basic operators on containers
b bo oo ol l o op pe er ra at to or r==(c co on ns st t C C&) c co on ns st t; / / compare all elements
b bo oo ol l o op pe er ra at to or r!=(c co on ns st t C C&) c co on ns st t;
/ / ...

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s M Ma at th h_ _c co on nt ta ai in ne er r : p pu ub bl li ic c B Ba as si ic c_ _o op ps s< M Ma at th h_ _c co on nt ta ai in ne er r<T T> > {
p pu ub bl li ic c:

s si iz ze e_ _t t s si iz ze e() c co on ns st t;
T T& o op pe er ra at to or r[](s si iz ze e_ _t t) ;
/ / ...

};

This allows the definition of the basic operations on containers to be separate from the definition of
the containers themselves and defined once only. However, the definition of operations such as==
and!= must be expressed in terms of both the container and its elements, so the base class needs to
be passed to the container template.

Assuming that aM Ma at th h_ _c co on nt ta ai in ne er r is similar to a traditional vector, the definitions of a
B Ba as si ic c_ _o op ps s member would look something like this:

t te em mp pl la at te e <c cl la as ss s C C> b bo oo ol l B Ba as si ic c_ _o op ps s<C C>: : o op pe er ra at to or r==(c co on ns st t C C& a a) c co on ns st t
{

i if f (s si iz ze e() != a a. s si iz ze e()) r re et tu ur rn n f fa al ls se e;
f fo or r (i in nt t i i = 0 0; i i<s si iz ze e() ; ++i i)

i if f ((* t th hi is s)[i i] != a a[i i]) r re et tu ur rn n f fa al ls se e;
r re et tu ur rn n t tr ru ue e;

}

An alternative technique for keeping the containers and operations separate would be to combine
them from template arguments rather than use derivation:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s C C> c cl la as ss s M Mc co on nt ta ai in ne er r {
C C e el le em me en nt ts s;

p pu ub bl li ic c:
/ / ...
T T& o op pe er ra at to or r[](s si iz ze e_ _t t i i) { r re et tu ur rn n e el le em me en nt ts s[i i] ; }

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.6 Derivation and Templates 347

f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r==(c co on ns st t M Mc co on nt ta ai in ne er r&, c co on ns st t M Mc co on nt ta ai in ne er r&) ; / / compare elements
f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r!=(c co on ns st t M Mc co on nt ta ai in ne er r&, c co on ns st t M Mc co on nt ta ai in ne er r&) ;
/ / ...

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s M My y_ _a ar rr ra ay y { /* ... */ };

M Mc co on nt ta ai in ne er r< d do ou ub bl le e, M My y_ _a ar rr ra ay y<d do ou ub bl le e> > m mc c;

A class generated from a class template is a perfectly ordinary class. Consequently, it can have
f fr ri ie en nd d functions (§C.13.2). In this case, I usedf fr ri ie en nd ds to achieve the conventional symmetric argu-
ment style for== and!= (§11.3.2). One might also consider passing a template rather than a con-
tainer as theC C argument in such cases (§13.2.3).

13.6.1 Parameterization and Inheritance [temp.inherit]

A template parameterizes the definition of a type or a function with another type. Code implement-
ing the template is identical for all parameter types, as is most code using the template. An abstract
class defines an interface. Much code for different implementations of the abstract class can be
shared in class hierarchies, and most code using the abstract class doesn’t depend on its implemen-
tation. From a design perspective, the two approaches are so close that they deserve a common
name. Since both allow an algorithm to be expressed once and applied to a variety of types, people
sometimes refer to both asp po ol ly ym mo or rp ph hi ic c. To distinguish them, what virtual functions provide is
called run-time polymorphism, and what templates offer is calledcompile-time polymorphismor
parametric polymorphism.

So when do we choose to use a template and when do we rely on an abstract class? In either
case, we manipulate objects that share a common set of operations. If no hierarchical relationship
is required between these objects, they are best used as template arguments. If the actual types of
these objects cannot be known at compile-time, they are best represented as classes derived from a
common abstract class. If run-time efficiency is at a premium, that is, if inlining of operations is
essential, a template should be used. This issue is discussed in greater detail in §24.4.1.

13.6.2 Member Templates [temp.member]

A class or a class template can have members that are themselves templates. For example:

t te em mp pl la at te e<c cl la as ss s S Sc ca al la ar r> c cl la as ss s c co om mp pl le ex x {
S Sc ca al la ar r r re e, i im m;

p pu ub bl li ic c:
t te em mp pl la at te e<c cl la as ss s T T>

c co om mp pl le ex x(c co on ns st t c co om mp pl le ex x<T T>& c c) : r re e(c c. r re e) , i im m(c c. i im m) { }
/ / ...

};

c co om mp pl le ex x<f fl lo oa at t> c cf f(0 0, 0 0) ;
c co om mp pl le ex x<d do ou ub bl le e> c cd d = c cf f; / / ok: uses float to double conversion

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

348 Templates Chapter 13

c cl la as ss s Q Qu ua ad d {
/ / no conversion to int

};

c co om mp pl le ex x<Q Qu ua ad d> c cq q;
c co om mp pl le ex x<i in nt t> c ci i = c cq q; / / error: no Quad to int conversion

In other words, you can construct ac co om mp pl le ex x<T T1 1> from ac co om mp pl le ex x<T T2 2> if and only if you can ini-
tialize aT T1 1 by aT T2 2. That seems reasonable.

Unfortunately, C++ accepts some unreasonable conversions between built-in types, such as
from d do ou ub bl le e to i in nt t. Truncation problems could be caught at run time using a checked conversion in
the style ofi im mp pl li ic ci it t_ _c ca as st t (§13.3.1) andc ch he ec ck ke ed d (§C.6.2.6):

t te em mp pl la at te e<c cl la as ss s S Sc ca al la ar r> c cl la as ss s c co om mp pl le ex x {
S Sc ca al la ar r r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x() : r re e(0 0) , i im m(0 0) { }
c co om mp pl le ex x(c co on ns st t c co om mp pl le ex x<S Sc ca al la ar r>& c c) : r re e(c c. r re e) , i im m(c c. i im m) { }

t te em mp pl la at te e<c cl la as ss s T T2 2> c co om mp pl le ex x(c co on ns st t c co om mp pl le ex x<T T2 2>& c c)
: r re e(c ch he ec ck ke ed d_ _c ca as st t<S Sc ca al la ar r>(c c. r re ea al l())) , i im m(c ch he ec ck ke ed d_ _c ca as st t<S Sc ca al la ar r>(c c. i im ma ag g())) { }

/ / ...
};

For completeness, I added a default constructor and a copy constructor. Curiously enough, a tem-
plate constructor is never used to generate a copy constructor, so without the explicitly declared
copy constructor, a default copy constructor would have been generated. In that case, that gener-
ated copy constructor would have been identical to the one I explicitly specified.

A member template cannot bev vi ir rt tu ua al l. For example:

c cl la as ss s S Sh ha ap pe e {
/ / ...
t te em mp pl la at te e<c cl la as ss s T T> v vi ir rt tu ua al l b bo oo ol l i in nt te er rs se ec ct t(c co on ns st t T T&) c co on ns st t =0 0; / / error: virtual template

};

This must be illegal. If it were allowed, the traditional virtual function table technique for imple-
menting virtual functions (§2.5.5) could not be used. The linker would have to add a new entry to
the virtual table for classS Sh ha ap pe eeach time someone calledi in nt te er rs se ec ct t() with a new argument type.

13.6.3 Inheritance Relationships [temp.rel.inheritance]

A class template is usefully understood as a specification of how particular types are to be created.
In other words, the template implementation is a mechanism that generates types when needed
based on the user’s specification. Consequently, a class template is sometimes called atype
generator.

As far as the C++ language rules are concerned, there is no relationship between two classes
generated from a single class template. For example:

c cl la as ss s S Sh ha ap pe e { /* ... */ };
c cl la as ss s C Ci ir rc cl le e : p pu ub bl li ic c S Sh ha ap pe e { /* ... */ };

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.6.3 Inheritance Relationships 349

Given these declarations, people sometimes try to treat as se et t<C Ci ir rc cl le e*> as as se et t<S Sh ha ap pe e*> . This is
a serious logical error based on a flawed argument: ‘‘AC Ci ir rc cl le e is aS Sh ha ap pe e, so a set ofC Ci ir rc cl le es s is also
a set ofS Sh ha ap pe es s; therefore, I should be able to use a set ofC Ci ir rc cl le es s as a set ofS Sh ha ap pe es s.’’ The ‘‘there-
fore’’ part of this argument doesn’t hold. The reason is that a set ofC Ci ir rc cl le es guarantees that the
member of the set areC Ci ir rc cl le es s; a set ofS Sh ha ap pe es does not provide that guarantee. For example:

c cl la as ss s T Tr ri ia an ng gl le e : p pu ub bl li ic c S Sh ha ap pe e { /* ... */ };

v vo oi id d f f(s se et t<S Sh ha ap pe e*>& s s)
{

/ / ...
s s. i in ns se er rt t(n ne ew w T Tr ri ia an ng gl le e()) ;
/ / ...

}

v vo oi id d g g(s se et t<C Ci ir rc cl le e*>& s s)
{

f f(s s) ; / / error, type mismatch: s is a set<Circle*>, not a set<Shape*>
}

This won’t compile because there is no built-in conversion froms se et t<C Ci ir rc cl le e*>& to s se et t<S Sh ha ap pe e*>& .
Nor should there be. The guarantee that the members of as se et t<C Ci ir rc cl le e*> areC Ci ir rc cl le es allows us to
safely and efficiently applyC Ci ir rc cl le e-specific operations, such as determining the radius, to members
of the set. If we allowed as se et t<C Ci ir rc cl le e*> to be treated as as se et t<S Sh ha ap pe e*> , we could no longer main-
tain that guarantee. For example,f f() inserts aT Tr ri ia an ng gl le e* into its s se et t<S Sh ha ap pe e*> argument. If the
s se et t<S Sh ha ap pe e*> could have been as se et t<C Ci ir rc cl le e*> , the fundamental guarantee that as se et t<C Ci ir rc cl le e*>
containsC Ci ir rc cl le e* s only would have been violated.

13.6.3.1 Template Conversions [temp.mem.temp]

The example in the previous section demonstrates that there cannot be anydefault relationship
between classes generated from the same templates. However, for some templates we would like to
express such a relationship. For example, when we define a pointer template, we would like to
reflect inheritance relationships among the objects pointed to. Member templates (§13.6.2) allow
us to specify many such relationships where desired. Consider:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s P Pt tr r { / / pointer to T
T T* p p;

p pu ub bl li ic c:
P Pt tr r(T T*) ;
t te em mp pl la at te e<c cl la as ss s T T2 2> o op pe er ra at to or r P Pt tr r<T T2 2> () ; / / convert Ptr<T> to Ptr<T2>
/ / ...

};

We would like to define the conversion operators to provide the inheritance relationships we are
accustomed to for built-in pointers for these user-definedP Pt tr rs. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

350 Templates Chapter 13

v vo oi id d f f(P Pt tr r<C Ci ir rc cl le e> p pc c)
{

P Pt tr r<S Sh ha ap pe e> p ps s = p pc c; / / should work
P Pt tr r<C Ci ir rc cl le e> p pc c2 2 = p ps s; / / should give error

}

We want to allow the first initialization if and only ifS Sh ha ap pe e really is a direct or indirect public base
class ofC Ci ir rc cl le e. In general, we need to define the conversion operator so that theP Pt tr r<T T> to
P Pt tr r<T T2 2> conversion is accepted if and only if aT T* can be assigned to aT T2 2* . That can be done
like this:

t te em mp pl la at te e<c cl la as ss s T T>
t te em mp pl la at te e<c cl la as ss s T T2 2>

P Pt tr r<T T>: : o op pe er ra at to or r P Pt tr r<T T2 2> () { r re et tu ur rn n P Pt tr r<T T2 2>(p p) ; }

The return statement will compile if and only ifp p (which is aT T*) can be an argument to the
P Pt tr r<T T2 2>(T T2 2*) constructor. Therefore, ifT T* can be implicitly converted into aT T2 2* , theP Pt tr r<T T>
to P Pt tr r<T T2 2> conversion will work. For example

v vo oi id d f f(P Pt tr r<C Ci ir rc cl le e> p pc c)
{

P Pt tr r<S Sh ha ap pe e> p ps s = p pc c; / / ok: can convert Circle* to Shape*
P Pt tr r<C Ci ir rc cl le e> p pc c2 2 = p ps s; / / error: cannot convert Shape* to Circle*

}

Be careful to define logically meaningful conversions only.
Note that the template parameter lists of a template and its template member cannot be com-

bined. For example:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s T T2 2> / / error
P Pt tr r<T T>: : o op pe er ra at to or r P Pt tr r<T T2 2> () { r re et tu ur rn n P Pt tr r<T T2 2>(p p) ; }

13.7 Source Code Organization[temp.source]

There are two obvious ways of organizing code using templates:
[1] Include template definitions before their use in a translation unit.
[2] Include template declarations (only) before their use in a translation unit, and compile their

definitions separately.
In addition, template functions are sometimes first declared, then used, and finally defined in a sin-
gle translation unit.

To see the differences between the two main approaches, consider a simple template:

#i in nc cl lu ud de e<i io os st tr re ea am m>

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d o ou ut t(c co on ns st t T T& t t) { s st td d: : c ce er rr r << t t; }

We could call thiso ou ut t. c c and#i in nc cl lu ud de e it wherevero ou ut t() was needed. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.7 Source Code Organization 351

/ / user1.c:
#i in nc cl lu ud de e " o ou ut t. c c"
/ / use out()

/ / user2.c:
#i in nc cl lu ud de e " o ou ut t. c c"
/ / use out()

That is, the definition ofo ou ut t() and all declarations it depends on are#i in nc cl lu ud de ed in several different
compilation units. It is up to the compiler to generate code when needed (only) and to optimize the
process of reading redundant definitions. This strategy treats template functions the same way as
inline functions.

One obvious problem with this is that everything on which the definition ofo ou ut t() depends is
added to each file usingo ou ut t() , thus increasing the amount of information that the compiler must
process. Another problem is that users may accidentally come to depend on declarations included
only for the benefit of the definition ofo ou ut t() . This danger can be minimized by using name-
spaces, by avoiding macros, and generally by reducing the amount of information included.

The separate compilation strategy is the logical conclusion of this line of thinking: if the tem-
plate definition isn’t included in the user code, none of its dependencies can affect that code. Thus
we split the originalo ou ut t. c c into two files:

/ / out.h:
t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d o ou ut t(c co on ns st t T T& t t) ;

/ / out.c:
#i in nc cl lu ud de e<i io os st tr re ea am m>
#i in nc cl lu ud de e " o ou ut t. h h"

e ex xp po or rt t t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d o ou ut t(c co on ns st t T T& t t) { s st td d: : c ce er rr r << t t; }

The fileo ou ut t. c c now holds all of the information needed to defineo ou ut t() , ando ou ut t. h h holds only what
is needed to call it. A user#i in nc cl lu ud de es only the declaration (the interface):

/ / user1.c:
#i in nc cl lu ud de e " o ou ut t. h h"
/ / use out()

/ / user2.c:
#i in nc cl lu ud de e " o ou ut t. h h"
/ / use out()

This strategy treats template functions the same way it does non-inline functions. The definition (in
o ou ut t. c c) is compiled separately, and it is up to the implementation to find the definition ofo ou ut t()
when needed. This strategy also puts a burden on the implementation. Instead of having to filter
out redundant copies of a template definition, the implementation must find the unique definition
when needed.

Note that to be accessible from other compilation units, a template definition must be explicitly
declarede ex xp po or rt t (§9.2.3). This can be done by addinge ex xp po or rt t to the definition or to a preceding
declaration. Otherwise, the definition must be in scope wherever the template is used.

Which strategy or combination of strategies is best depends on the compilation and linkage

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

352 Templates Chapter 13

system used, the kind of application you are building, and the external constraints on the way you
build systems. Generally, inline functions and other small functions that primarily call other tem-
plate functions are candidates for inclusion into every compilation unit in which they are used. On
an implementation with average support from the linker for template instantiation, doing this can
speed up compilation and improve error messages.

Including a definition makes it vulnerable to having its meaning affected by macros and decla-
rations in the context into which it is included. Consequently, larger template functions and tem-
plate functions with nontrivial context dependencies are better compiled separately. Also, if the
definition of a template requires a large number of declarations, these declarations can have unde-
sirable side effects if they are included into the context in which the template is used.

I consider the approach of separately compiling template definitions and including declarations
only in user code ideal. However, the application of ideals must be tempered by practical con-
straints, and separate compilation of templates is expensive on some implementations.

Whichever strategy is used, non-i in nl li in ne e s st ta at ti ic c members (§C.13.1) must have a unique definition
in some compilation unit. This implies that such members are best not used for templates that are
otherwise included in many translation units.

One ideal is for code to work the same whether it is compiled as a single unit or separated into
several separately translated units. That ideal should be approached by restricting a template
definition’s dependency on its environment rather than by trying to carry as much as possible of its
definition context with it into the instantiation process.

13.8 Advice[temp.advice]

[1] Use templates to express algorithms that apply to many argument types; §13.3.
[2] Use templates to express containers; §13.2.
[3] Provide specializations for containers of pointers to minimize code size; §13.5.
[4] Always declare the general form of a template before specializations; §13.5.
[5] Declare a specialization before its use; §13.5.
[6] Minimize a template definition’s dependence on its instantiation contexts; §13.2.5, §C.13.8.
[7] Define every specialization you declare; §13.5.
[8] Consider if a template needs specializations for C-style strings and arrays; §13.5.2.
[9] Parameterize with a policy object; §13.4.
[10] Use specialization and overloading to provide a single interface to implementations of the

same concept for different types; §13.5.
[11] Provide a simple interface for simple cases and use overloading and default arguments to

express less common cases; §13.5, §13.4.
[12] Debug concrete examples before generalizing to a template; §13.2.1.
[13] Remember toe ex xp po or rt t template definitions that need to be accessible from other translation

units; §13.7.
[14] Separately compile large templates and templates with nontrivial context dependencies; §13.7.
[15] Use templates to express conversions but define those conversions very carefully; §13.6.3.1.
[16] Where necessary, constrain template arguments using ac co on ns st tr ra ai in nt t() member function;

§13.9[16].

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 13.8 Advice 353

[17] Use explicit instantiation to minimize compile time and link time; §C.13.10.
[18] Prefer a template over derived classes when run-time efficiency is at a premium; §13.6.1.
[19] Prefer derived classes over a template if adding new variants without recompilation is impor-

tant; §13.6.1.
[20] Prefer a template over derived classes when no common base can be defined; §13.6.1.
[21] Prefer a template over derived classes when built-in types and structures with compatibility

constraints are important; §13.6.1.

13.9 Exercises[temp.exercises]

1. (∗2) Fix the errors in the definition ofL Li is st t from §13.2.5 and write out C++ code equivalent to
what the compiler must generate for the definition ofL Li is st t and the functionf f() . Run a small
test case using your hand-generated code and the code generated by the compiler from the tem-
plate version. If possible on your system given your knowledge, compare the generated code.

2. (∗3) Write a singly-linked list class template that accepts elements of any type derived from a
classL Li in nk k that holds the information necessary to link elements. This is called anintrusive list.
Using this list, write a singly-linked list that accepts elements of any type (a non-intrusive list).
Compare the performance of the two list classes and discuss the tradeoffs between them.

3. (∗2.5) Write intrusive and non-intrusive doubly-linked lists. What operations should be pro-
vided in addition to the ones you found necessary to supply for a singly-linked list?

4. (∗2) Complete theS St tr ri in ng g template from §13.2 based on theS St tr ri in ng g class from §11.12.
5. (∗2) Define as so or rt t() that takes its comparison criterion as a template argument. Define a class

R Re ec co or rd d with two data membersc co ou un nt t andp pr ri ic ce e. Sort av ve ec ct to or r<R Re ec co or rd d> on each data member.
6. (∗2) Implement aq qs so or rt t() template.
7. (∗2) Write a program that reads(k ke ey y, v va al lu ue e) pairs and prints out the sum of thev va al lu ue es corre-

sponding to each distinctk ke ey y. Specify what is required for a type to be ak ke ey y and av va al lu ue e.
8. (∗2.5) Implement a simpleM Ma ap p class based on theA As ss so oc c class from §11.8. Make sureM Ma ap p

works correctly using both C-style strings ands st tr ri in ng gs as keys. Make sureM Ma ap p works correctly
for types with and without default constructors. Provide a way of iterating over the elements of
aM Ma ap p.

9. (∗3) Compare the performance of the word count program from §11.8 against a program not
using an associative array. Use the same style of I/O in both cases.

10. (∗3) Re-implementM Ma ap p from §13.9[8] using a more suitable data structure (e.g., a red-black
tree or a Splay tree).

11. (∗2.5) UseM Ma ap p to implement a topological sort function. Topological sort is described in
[Knuth,1968] vol. 1 (second edition), pg 262.

12. (∗1.5) Make the sum program from §13.9[7] work correctly for names containing spaces; for
example, ‘‘thumb tack.’’

13. (∗2) Write r re ea ad dl li in ne e() templates for different kinds of lines. For example (item,count,price).
14. (∗2) Use the technique outlined forL Li it te er ra at te e in §13.4 to sort strings in reverse lexicographical

order. Make sure the technique works both for C++ implementations wherec ch ha ar r is s si ig gn ne ed d and
for C++ implementations where it isu un ns si ig gn ne ed d. Use a variant of that technique to provide a sort
that is not case-sensitive.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

354 Templates Chapter 13

15. (∗1.5) Construct an example that demonstrates at least three differences between a function tem-
plate and a macro (not counting the differences in definition syntax).

16. (∗2) Devise a scheme that ensures that the compiler tests general constraints on the template
arguments for every template for which an object is constructed. It is not sufficient just to test
constraints of the form ‘‘the argumentT T must be a class derived fromM My y_ _b ba as se e.’’

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	13.1 Introduction
	13.2 A Simple String Template
	13.3 Function Templates
	13.4 Using Template Arguments to Specify Policy
	13.5 Specialization
	13.6 Derivation and Templates
	13.7 Source Code Organization
	13.8 Advice
	13.9 Exercises

	buy now:

