
_ __ _______________________________________

16
_ __ _______________________________________

Library Organization and Containers

It was new. It was singular.
It was simple. It must succeed!

– H. Nelson

Design criteria for the standard library— library organization— standard headers—
language support— container design— iterators— based containers— STL containers
— v ve ec ct to or r — iterators— element access— constructors— modifiers— list operations
— size and capacity— v ve ec ct to or r<b bo oo ol l>— advice— exercises.

16.1 Standard Library Design[org.intro]

What ought to be in the standard C++ library? One ideal is for a programmer to be able to find
every interesting, significant, and reasonably general class, function, template, etc., in a library.
However, the question here is not, ‘‘What ought to be insomelibrary?’’ but ‘‘What ought to be in
thestandardlibrary?’’ The answer ‘‘Everything!’’ is a reasonable first approximation to an answer
to the former question but not to the latter. A standard library is something that every implementer
must supply so that every programmer can rely on it.

The C++ standard library:
[1] Provides support for language features, such as memory management (§6.2.6) and run-

time type information (§15.4).
[2] Supplies information about implementation-defined aspects of the language, such as the

largestf fl lo oa at t value (§22.2).
[3] Supplies functions that cannot be implemented optimally in the language itself for every

system, such ass sq qr rt t() (§22.3) andm me em mm mo ov ve e() (§19.4.6).
[4] Supplies nonprimitive facilities that a programmer can rely on for portability, such as lists

(§17.2.2), maps (§17.4.1), sort functions (§18.7.1), and I/O streams (Chapter 21).
[5] Provides a framework for extending the facilities it provides, such as conventions and

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

430 Library Organization and Containers Chapter 16

support facilities that allow a user to provide I/O of a user-defined type in the style of I/O
for built-in types.

[6] Provides the common foundation for other libraries.
In addition, a few facilities– such as random-number generators (§22.7)– are provided by the
standard library simply because it is conventional and useful to do so.

The design of the library is primarily determined by the last three roles. These roles are closely
related. For example, portability is commonly an important design criterion for a specialized
library, and common container types such as lists and maps are essential for convenient communi-
cation between separately developed libraries.

The last role is especially important from a design perspective because it helps limit the scope
of the standard library and places constraints on its facilities. For example, string and list facilities
are provided in the standard library. If they were not, separately developed libraries could commu-
nicate only by using built-in types. However, pattern matching and graphics facilities are not pro-
vided. Such facilities are obviously widely useful, but they are rarely directly involved in commu-
nication between separately developed libraries.

Unless a facility is somehow needed to support these roles, it can be left to some library outside
the standard. For good and bad, leaving something out of the standard library opens the opportu-
nity for different libraries to offer competing realizations of an idea.

16.1.1 Design Constraints [org.constraints]

The roles of a standard library impose several constraints on its design. The facilities offered by
the C++ standard library are designed to be:

[1] Invaluable and affordable to essentially every student and professional programmer,
including the builders of other libraries.

[2] Used directly or indirectly by every programmer for everything within the scope of the
library.

[3] Efficient enough to provide genuine alternatives to hand-coded functions, classes, and tem-
plates in the implementation of further libraries.

[4] Either policy-free or give the user the option to supply policies as arguments.
[5] Primitive in the mathematical sense. That is, a component that serves two weakly related

roles will almost certainly suffer overheads compared to individual components designed
to perform only a single role.

[6] Convenient, efficient, and reasonably safe for common uses.
[7] Complete at what they do. The standard library may leave major functions to other

libraries, but if it takes on a task, it must provide enough functionality so that individual
users or implementers need not replace it to get the basic job done.

[8] Blend well with and augment built-in types and operations.
[9] Type safe by default.
[10] Supportive of commonly accepted programming styles.
[11] Extensible to deal with user-defined types in ways similar to the way built-in types and

standard-library types are handled.
For example, building the comparison criteria into a sort function is unacceptable because the same
data can be sorted according to different criteria. This is why the C standard libraryq qs so or rt t() takes

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.1.1 Design Constraints 431

a comparison function as an argument rather than relying on something fixed, say, the< operator
(§7.7). On the other hand, the overhead imposed by a function call for each comparison compro-
misesq qs so or rt t() as a building block for further library building. For almost every data type, it is
easy to do a comparison without imposing the overhead of a function call.

Is that overhead serious? In most cases, probably not. However, the function call overhead can
dominate the execution time for some algorithms and cause users to seek alternatives. The tech-
nique of supplying comparison criteria through a template argument described in §13.4 solves that
problem. The example illustrates the tension between efficiency and generality. A standard library
is not just required to perform its tasks. It must also perform them efficiently enough not to tempt
users to supply their own mechanisms. Otherwise, implementers of more advanced features are
forced to bypass the standard library in order to remain competitive. This would add a burden to
the library developer and seriously complicate the lives of users wanting to stay platform-
independent or to use several separately developed libraries.

The requirements of ‘‘primitiveness’’ and ‘‘convenience of common uses’’ appear to conflict.
The former requirement precludes exclusively optimizing the standard library for common cases.
However, components serving common, but nonprimitive, needs can be included in the standard
library in addition to the primitive facilities, rather than as replacements. The cult of orthogonality
must not prevent us from making life convenient for the novice and the casual user. Nor should it
cause us to leave the default behavior of a component obscure or dangerous.

16.1.2 Standard Library Organization [org.org]
The facilities of the standard library are defined in thes st td d namespace and presented as a set of
headers. The headers identify the major parts of the library. Thus, listing them gives an overview
of the library and provides a guide to the description of the library in this and subsequent chapters.

The rest of this subsection is a list of headers grouped by function, accompanied by brief expla-
nations and annotated by references to where they are discussed. The grouping is chosen to match
the organization of the standard. A reference to the standard (such as §s.18.1) means that the facil-
ity is not discussed here.

A standard header with a name starting with the letterc c is equivalent to a header in the C stan-
dard library. For every header<c cX X> defining names in thes st td d namespace, there is a header<X X. h h>
defining the same names in the global namespace (see §9.2.2).

_ ___
Containers_ __ ___

< <v ve ec ct to or r> > one-dimensional array of T T §16.3
< <l li is st t> > doubly-linked list of T T §17.2.2
< <d de eq qu ue e> > double-ended queue of T T §17.2.3
< <q qu ue eu ue e> > queue of T T §17.3.2
< <s st ta ac ck k> > stack of T T §17.3.1
< <m ma ap p> > associative array of T T §17.4.1
< <s se et t> > set of T T §17.4.3
< <b bi it ts se et t> > array of booleans §17.5.3_ ___

The associative containersm mu ul lt ti im ma ap p andm mu ul lt ti is se et t can be found in<m ma ap p> and<s se et t>, respectively.
Thep pr ri io or ri it ty y_ _q qu ue eu ue e is declared in<q qu ue eu ue e>.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

432 Library Organization and Containers Chapter 16

_ ___
General Utilities_ __ ___

< <u ut ti il li it ty y> > operators and pairs §17.1.4, §17.4.1.2
< <f fu un nc ct ti io on na al l> > function objects §18.4
< <m me em mo or ry y> > allocators for containers §19.4.4
< <c ct ti im me e> > C-style date and time §s.20.5_ ___

The <m me em mo or ry y> header also contains thea au ut to o_ _p pt tr r template that is primarily used to smooth the
interaction between pointers and exceptions (§14.4.2).

_ ___
Iterators_ __ ___

< <i it te er ra at to or r> > iterators and iterator support Chapter 19_ ___

Iterators provide the mechanism to make standard algorithms generic over the standard containers
and similar types (§2.7.2, §19.2.1).

_ ___
Algorithms_ __ ___

< <a al lg go or ri it th hm m> > general algorithms Chapter 18
< <c cs st td dl li ib b> > b bs se ea ar rc ch h() q qs so or rt t() §18.11_ ___

A typical general algorithm can be applied to any sequence (§3.8, §18.3) of any type of elements.
The C standard library functionsb bs se ea ar rc ch h() andq qs so or rt t() apply to built-in arrays with elements of
types without user-defined copy constructors and destructors only (§7.7).

_ ___
Diagnostics_ __ ___

< <e ex xc ce ep pt ti io on n> > exception class §14.10
< <s st td de ex xc ce ep pt t> > standard exceptions §14.10
< <c ca as ss se er rt t> > assert macro §24.3.7.2
< <c ce er rr rn no o> > C-style error handling §20.4.1_ ___

Assertions relying on exceptions are described in §24.3.7.1.
_ __

Strings_ ___ __
< <s st tr ri in ng g> > string of T T Chapter 20
< <c cc ct ty yp pe e> > character classification §20.4.2
< <c cw wt ty yp pe e> > wide-character classification §20.4.2
< <c cs st tr ri in ng g> > C-style string functions §20.4.1
< <c cw wc ch ha ar r> > C-style wide-character string functions §20.4
< <c cs st td dl li ib b> > C-style string functions §20.4.1_ __

The <c cs st tr ri in ng g> header declares thes st tr rl le en n() , s st tr rc cp py y() , etc., family of functions. The<c cs st td dl li ib b>
declaresa at to of f() anda at to oi i() that convert C-style strings to numeric values.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.1.2 Standard Library Organization 433

_ ___
Input/Output_ __ ___

< <i io os sf fw wd d> > forward declarations of I/O facilities §21.1
< <i io os st tr re ea am m> > standard iostream objects and operations§21.2.1
< <i io os s> > iostream bases §21.2.1
< <s st tr re ea am mb bu uf f> > stream buffers §21.6
< <i is st tr re ea am m> > input stream template §21.3.1
< <o os st tr re ea am m> > output stream template §21.2.1
< <i io om ma an ni ip p> > manipulators §21.4.6.2
< <s ss st tr re ea am m> > streams to/from strings §21.5.3
< <c cs st td dl li ib b> > character classification functions §20.4.2
< <f fs st tr re ea am m> > streams to/from files §21.5.1
< <c cs st td di io o> > p pr ri in nt tf f() family of I/O §21.8
< <c cw wc ch ha ar r> > p pr ri in nt tf f() -style I/O of wide characters §21.8_ ___

Manipulators are objects used to manipulate the state of a stream (e.g., changing the format of
floating-point output) by applying them to the stream (§21.4.6).

_ __
Localization_ ___ __

< <l lo oc ca al le e> > represent cultural differences §21.7
< <c cl lo oc ca al le e> > represent cultural differences C-style§21.7_ __

A l lo oc ca al le e localizes differences such as the output format for dates, the symbol used to represent cur-
rency, and string collation criteria that vary among different natural languages and cultures.

_ ___
Language Support_ __ ___

< <l li im mi it ts s> > numeric limits §22.2
< <c cl li im mi it ts s> > C-style numeric scalar-limit macros §22.2.1
< <c cf fl lo oa at t> > C-style numeric floating-point limit macros §22.2.1
< <n ne ew w> > dynamic memory management §16.1.3
< <t ty yp pe ei in nf fo o> > run-time type identification support §15.4.1
< <e ex xc ce ep pt ti io on n> > exception-handling support §14.10
< <c cs st td dd de ef f> > C library language support §6.2.1
< <c cs st td da ar rg g> > variable-length function argument lists §7.6
< <c cs se et tj jm mp p> > C-style stack unwinding §s.18.7
< <c cs st td dl li ib b> > program termination §9.4.1.1
< <c ct ti im me e> > system clock §s.18.7
< <c cs si ig gn na al l> > C-style signal handling §s.18.7_ ___

The<c cs st td dd de ef f> header defines the type of values returned bys si iz ze eo of f() , s si iz ze e_ _t t, the type of the result
of pointer subtraction,p pt tr rd di if ff f_ _t t (§6.2.1), and the infamousN NU UL LL L macro (§5.1.1).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

434 Library Organization and Containers Chapter 16

_ __
Numerics_ ___ __

< <c co om mp pl le ex x> > complex numbers and operations§22.5
< <v va al la ar rr ra ay y> > numeric vectors and operations §22.4
< <n nu um me er ri ic c> > generalized numeric operations §22.6
< <c cm ma at th h> > standard mathematical functions §22.3
< <c cs st td dl li ib b> > C-style random numbers §22.7_ __

For historical reasons,a ab bs s() , f fa ab bs s() , andd di iv v() are found in<c cs st td dl li ib b> rather than in<c cm ma at th h>
with the rest of the mathematical functions (§22.3).

A user or a library implementer is not allowed to add or subtract declarations from the standard
headers. Nor is it acceptable to try to change the contents of headers by defining macros before
they are included or to try to change the meaning of the declarations in the headers by declarations
in their context (§9.2.3). Any program or implementation that plays such games does not conform
to the standard, and programs that rely on such tricks are not portable. Even if they work today, the
next release of any part of an implementation may break them. Avoid such trickery.

For a standard library facility to be used its header must be included. Writing out the relevant
declarations yourself isnot a standards-conforming alternative. The reason is that some implemen-
tations optimize compilation based on standard header inclusion and others provide optimized
implementations of standard library facilities triggered by the headers. In general, implementers
use standard headers in ways programmers cannot predict and shouldn’t have to know about.

A programmer can, however, specialize utility templates, such ass sw wa ap p() (§16.3.9), for
nonstandard-library, user-defined types.

16.1.3 Language Support [org.lang]

A small part of the standard library is language support; that is, facilities that must be present for a
program to run because language features depend on them.

The library functions supporting operatorsn ne ew w and d de el le et te e are discussed in §6.2.6, §10.4.11,
§14.4.4, and §15.6; they are presented in<n ne ew w>.

Run-time type identification relies on classt ty yp pe e_ _i in nf fo o, which is described in §15.4.4 and pre-
sented in<t ty yp pe ei in nf fo o>.

The standard exception classes are discussed in §14.10 and presented in<n ne ew w>, <t ty yp pe ei in nf fo o>,
<i io os s>, <e ex xc ce ep pt ti io on n>, and<s st td de ex xc ce ep pt t>.

Program start and termination are discussed in §3.2, §9.4, and §10.4.9.

16.2 Container Design[org.cont]

A container is an object that holds other objects. Examples are lists, vectors, and associative arrays.
In general, you can add objects to a container and remove objects from it.

Naturally, this idea can be presented to users in many different ways. The C++ standard library
containers were designed to meet two criteria: to provide the maximum freedom in the design of an
individual container, while at the same time allowing containers to present a common interface to
users. This allows optimal efficiency in the implementation of containers and enables users to
write code that is independent of the particular container used.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.2 Container Design 435

Container designs typically meet just one or the other of these two design criteria. The con-
tainer and algorithms part of the standard library (often called the STL) can be seen as a solution to
the problem of simultaneously providing generality and efficiency. The following sections present
the strengths and weaknesses of two traditional styles of containers as a way of approaching the
design of the standard containers.

16.2.1 Specialized Containers and Iterators [org.specialized]

The obvious approach to providing a vector and a list is to define each in the way that makes the
most sense for its intended use:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r { / / optimal
p pu ub bl li ic c:

e ex xp pl li ic ci it t V Ve ec ct to or r(s si iz ze e_ _t t n n) ; / / initialize to hold n objects with value T()

T T& o op pe er ra at to or r[](s si iz ze e_ _t t) ; / / subscripting
/ / ...

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t { / / optimal
p pu ub bl li ic c:

c cl la as ss s L Li in nk k { /* ... */ };

L Li is st t() ; / / initially empty
v vo oi id d p pu ut t(T T*) ; / / put before current element
T T* g ge et t() ; / / get current element

/ / ...
};

Each class provides operations that are close to ideal for their use, and for each class we can choose
a suitable representation without worrying about other kinds of containers. This allows the imple-
mentations of operations to be close to optimal. In particular, the most common operations such as
p pu ut t() for aL Li is st t ando op pe er ra at to or r[]() for aV Ve ec ct to or r are small and easily inlined.

A common use of most kinds of containers is to iterate through the container looking at the ele-
ments one after the other. This is typically done by defining an iterator class appropriate to the
kind of container (see §11.5 and §11.14[7]).

However, a user iterating over a container often doesn’t care whether data is stored in aL Li is st t or a
V Ve ec ct to or r. In that case, the code iterating should not depend on whether aL Li is st t or aV Ve ec ct to or r was used.
Ideally, the same piece of code should work in both cases.

A solution is to define an iterator class that provides a get-next-element operation that can be
implemented for any container. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s I It to or r { / / common interface (abstract class §2.5.4, §12.3)
p pu ub bl li ic c:

/ / return 0 to indicate no-more-elements

v vi ir rt tu ua al l T T* f fi ir rs st t() = 0 0; / / pointer to first element
v vi ir rt tu ua al l T T* n ne ex xt t() = 0 0; / / pointer to next element

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

436 Library Organization and Containers Chapter 16

We can now provide implementations forV Ve ec ct to or rs andL Li is st ts:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec ct to or r_ _i it to or r : p pu ub bl li ic c I It to or r<T T> { / / Vector implementation
V Ve ec ct to or r<T T>& v v;
s si iz ze e_ _t t i in nd de ex x; / / index of current element

p pu ub bl li ic c:
V Ve ec ct to or r_ _i it to or r(V Ve ec ct to or r<T T>& v vv v) : v v(v vv v) , i in nd de ex x(0 0) { }
T T* f fi ir rs st t() { r re et tu ur rn n (v v. s si iz ze e()) ? &v v[i in nd de ex x=0 0] : 0 0; }
T T* n ne ex xt t() { r re et tu ur rn n (++ i in nd de ex x<v v. s si iz ze e()) ? &v v[i in nd de ex x] : 0 0; }

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s L Li is st t_ _i it to or r : p pu ub bl li ic c I It to or r<T T> { / / List implementation
L Li is st t<T T>& l ls st t;
L Li is st t<T T>: : L Li in nk k p p; / / points to current element

p pu ub bl li ic c:
L Li is st t_ _i it to or r(L Li is st t<T T>&) ;
T T* f fi ir rs st t() ;
T T* n ne ex xt t() ;

};

Or graphically, using dashed lines to represent ‘‘implemented using:’’

V Ve ec ct to or r L Li is st t

I It to or r

V Ve ec ct to or r_ _i it to or r L Li is st t_ _i it to or r
.
.

The internal structure of the two iterators is quite different, but that doesn’t matter to users. We can
now write code that iterates over anything for which we can implement anI It to or r. For example:

i in nt t c co ou un nt t(I It to or r<c ch ha ar r>& i ii i, c ch ha ar r t te er rm m)
{

i in nt t c c = 0 0;
f fo or r (c ch ha ar r* p p = i ii i. f fi ir rs st t() ; p p; p p=i ii i. n ne ex xt t()) i if f (* p p==t te er rm m) c c++;
r re et tu ur rn n c c;

}

There is a snag, however. The operations on anI It to or r iterator are simple, yet they incur the overhead
of a (virtual) function call. In many situations, this overhead is minor compared to what else is
being done. However, iterating through a simple container is the critical operation in many high-
performance systems and a function call is many times more expensive than the integer addition or
pointer dereferencing that implementsn ne ex xt t() for a v ve ec ct to or r and al li is st t. Consequently, this model is
unsuitable, or at least not ideal, for a standard library.

However, this container-and-iterator model has been successfully used in many systems. For
years, it was my favorite for most applications. Its strengths and weaknesses can be summarized
like this:

+ Individual containers are simple and efficient.
+ Little commonality is required of containers. Iterators and wrapper classes (§25.7.1) can be

used to fit independently developed containers into a common framework.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.2.1 Specialized Containers and Iterators 437

+ Commonality of use is provided through iterators (rather than through a general container
type; §16.2.2).

+ Different iterators can be defined to serve different needs for the same container.
+ Containers are by default type safe and homogeneous (that is, all elements in a container are

of the same type). A heterogeneous container can be provided as a homogeneous container
of pointers to a common base.

+ The containers are non-intrusive (that is, an object need not have a special base class or link
field to be a member of a container). Non-intrusive containers work well with built-in types
and withs st tr ru uc ct ts with externally-imposed layouts.

– Each iterator access incurs the overhead of a virtual function call. The time overhead can be
serious compared to simple inlined access functions.

– A hierarchy of iterator classes tends to get complicated.
– There is nothing in common for every container and nothing in common for every object in

every container. This complicates the provision of universal services such as persistence
and object I/O.

A + indicates an advantage and a- indicates a disadvantage.
I consider the flexibility provided by iterators especially important. A common interface, such

as I It to or r, can be provided long after the design and implementation of containers (here,V Ve ec ct to or r and
L Li is st t). When we design, we typically first invent something fairly concrete. For example, we
design an array and invent a list. Only later do we discover an abstraction that covers both arrays
and lists in a given context.

As a matter of fact, we can do this ‘‘late abstraction’’ several times. Suppose we want to repre-
sent a set. A set is a very different abstraction fromI It to or r, yet we can provide aS Se et t interface to
V Ve ec ct to or r andL Li is st t in much the same way that I providedI It to or r as an interface toV Ve ec ct to or r andL Li is st t:

V Ve ec ct to or r L Li is st t

S Se et t I It to or r

V Ve ec ct to or r_ _s se et t L Li is st t_ _s se et t V Ve ec ct to or r_ _i it to or r L Li is st t_ _i it to or r
.
.

Thus, late abstraction using abstract classes allows us to provide different implementations of a
concept even when there is no significant similarity between the implementations. For example,
lists and vectors have some obvious commonality, but we could easily implement anI It to or r for an
i is st tr re ea am m.

Logically, the last two points on the list are the main weaknesses of the approach. That is, even
if the function call overhead for iterators and similar interfaces to containers were eliminated (as is
possible in some contexts), this approach would not be ideal for a standard library.

Non-intrusive containers incur a small overhead in time and space for some containers com-
pared with intrusive containers. I have not found this a problem. Should it become a problem, an
iterator such asI It to or r can be provided for an intrusive container (§16.5[11]).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

438 Library Organization and Containers Chapter 16

16.2.2 Based Containers [org.based]

One can define an intrusive container without relying on templates or any other way of parameter-
izing a type declaration. For example:

s st tr ru uc ct t L Li in nk k {
L Li in nk k* p pr re e;
L Li in nk k* s su uc c;
/ / ...

};

c cl la as ss s L Li is st t {
L Li in nk k* h he ea ad d;
L Li in nk k* c cu ur rr r; / / current element

p pu ub bl li ic c:
L Li in nk k* g ge et t() ; / / remove and return current element
v vo oi id d p pu ut t(L Li in nk k*) ; / / insert before current element
/ / ...

};

A L Li is st t is now a list ofL Li in nk ks, and it can hold objects of any type derived fromL Li in nk k. For example:

c cl la as ss s S Sh hi ip p : p pu ub bl li ic c L Li in nk k { /* ... */ };

v vo oi id d f f(L Li is st t* l ls st t)
{

w wh hi il le e (L Li in nk k* p po o = l ls st t-> g ge et t()) {
i if f (S Sh hi ip p* p ps s = d dy yn na am mi ic c_ _c ca as st t<S Sh hi ip p*>(p po o)) { / / Ship must be polymorphic (§15.4.1)

/ / use ship
}
e el ls se e {

/ / Oops, do something else
}

}
}

Simula defined its standard containers in this style, so this approach can be considered the original
for languages supporting object-oriented programming. These days, a common class for all objects
is usually calledO Ob bj je ec ct t or something similar. AnO Ob bj je ec ct t class typically provides other common
services in addition to serving as a link for containers.

Often, but not necessarily, this approach is extended to provide a common container type:

c cl la as ss s C Co on nt ta ai in ne er r : p pu ub bl li ic c O Ob bj je ec ct t {
p pu ub bl li ic c:

v vi ir rt tu ua al l O Ob bj je ec ct t* g ge et t() ; / / remove and return current element
v vi ir rt tu ua al l v vo oi id d p pu ut t(O Ob bj je ec ct t*) ; / / insert before current element
v vi ir rt tu ua al l O Ob bj je ec ct t*& o op pe er ra at to or r[](s si iz ze e_ _t t) ; / / subscripting
/ / ...

};

Note that the operations provided byC Co on nt ta ai in ne er r are virtual so that individual containers can over-
ride them appropriately:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.2.2 Based Containers 439

c cl la as ss s L Li is st t : p pu ub bl li ic c C Co on nt ta ai in ne er r {
p pu ub bl li ic c:

O Ob bj je ec ct t* g ge et t() ;
v vo oi id d p pu ut t(O Ob bj je ec ct t*) ;
/ / ...

};

c cl la as ss s V Ve ec ct to or r : p pu ub bl li ic c C Co on nt ta ai in ne er r {
p pu ub bl li ic c:

O Ob bj je ec ct t*& o op pe er ra at to or r[](s si iz ze e_ _t t) ;
/ / ...

};

One problem arises immediately. What operations do we wantC Co on nt ta ai in ne er r to provide? We could
provide only the operations that every container can support. However, the intersection of the sets
of operations on all containers is a ridiculously narrow interface. In fact, in many interesting cases
that intersection is empty. So, realistically, we must provide the union of essential operations on
the variety of containers we intend to support. Such a union of interfaces to a set of concepts is
called afat interface(§24.4.3).

We can either provide default implementations of the functions in the fat interface or force
every derived class to implement every function by making them pure virtual functions. In either
case, we end up with a lot of functions that simply report a run-time error. For example:

c cl la as ss s C Co on nt ta ai in ne er r : p pu ub bl li ic c O Ob bj je ec ct t {
p pu ub bl li ic c:

s st tr ru uc ct t B Ba ad d_ _o op p { / / exception class
c co on ns st t c ch ha ar r* p p;
B Ba ad d_ _o op p(c co on ns st t c ch ha ar r* p pp p) : p p(p pp p) { }

};

v vi ir rt tu ua al l v vo oi id d p pu ut t(O Ob bj je ec ct t*) { t th hr ro ow w B Ba ad d_ _o op p(" p pu ut t") ; }
v vi ir rt tu ua al l O Ob bj je ec ct t* g ge et t() { t th hr ro ow w B Ba ad d_ _o op p(" g ge et t") ; }
v vi ir rt tu ua al l O Ob bj je ec ct t*& o op pe er ra at to or r[](i in nt t) { t th hr ro ow w B Ba ad d_ _o op p("[]") ; }
/ / ...

};

If we want to protect against the possibility of a container that does not supportg ge et t() , we must
catchC Co on nt ta ai in ne er r: : B Ba ad d_ _o op p somewhere. We could now write theS Sh hi ip p example like this:

c cl la as ss s S Sh hi ip p : p pu ub bl li ic c O Ob bj je ec ct t { /* ... */ };

v vo oi id d f f1 1(C Co on nt ta ai in ne er r* p pc c)
{

t tr ry y {
w wh hi il le e (O Ob bj je ec ct t* p po o = p pc c-> g ge et t()) {

i if f (S Sh hi ip p* p ps s = d dy yn na am mi ic c_ _c ca as st t<S Sh hi ip p*>(p po o)) {
/ / use ship

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

440 Library Organization and Containers Chapter 16

e el ls se e {
/ / Oops, do something else

}
}

}
c ca at tc ch h (C Co on nt ta ai in ne er r: : B Ba ad d_ _o op p& b ba ad d) {

/ / Oops, do something else
}

}

This is tedious, so the checking forB Ba ad d_ _o op p will typically be elsewhere. By relying on exceptions
caught elsewhere, we can reduce the example to:

v vo oi id d f f2 2(C Co on nt ta ai in ne er r* p pc c)
{

w wh hi il le e (O Ob bj je ec ct t* p po o = p pc c-> g ge et t()) {
S Sh hi ip p& s s = d dy yn na am mi ic c_ _c ca as st t<S Sh hi ip p&>(* p po o) ;
/ / use ship

}
}

However, I find unnecessary reliance on run-time checking distasteful and inefficient. In this kind
of case, I prefer the statically-checked alternative:

v vo oi id d f f3 3(I It to or r<S Sh hi ip p>* i i)
{

w wh hi il le e (S Sh hi ip p* p ps s = i i-> n ne ex xt t()) {
/ / use ship

}
}

The strengths and weakness of the ‘‘based object’’ approach to container design can be summarized
like this (see also §16.5[10]):

– Operations on individual containers incur virtual function overhead.
– All containers must be derived fromC Co on nt ta ai in ne er r. This implies the use of fat interfaces,

requires a large degree of foresight, and relies on run-time type checking. Fitting an inde-
pendently developed container into the common framework is awkward at best (see
§16.5[12]).

+ The common baseC Co on nt ta ai in ne er r makes it easy to use containers that supply similar sets of
operations interchangeably.

– Containers are heterogeneous and not type safe by default (all we can rely on is that ele-
ments are of typeO Ob bj je ec ct t*). When desired, type-safe and homogeneous containers can be
defined using templates.

– The containers are intrusive (that is, every element must be of a type derived fromO Ob bj je ec ct t).
Objects of built-in types and structs with externally imposed layouts cannot be placed
directly in containers.

– An element retrieved from a container must be given a proper type using explicit type con-
version before it can be used.

+ ClassC Co on nt ta ai in ne er r and classO Ob bj je ec ct t are handles for implementing services for every object or

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.2.2 Based Containers 441

every container. This greatly eases the provision of universal services such as persistence
and object I/O.

As before (§16.2.1),+ indicates an advantage and- indicates a disadvantage.
Compared to the approach using unrelated containers and iterators, the based-object approach

unnecessarily pushes complexity onto the user, imposes significant run-time overheads, and
restricts the kinds of objects that can be placed in a container. In addition, for many classes, to
derive fromO Ob bj je ec ct t is to expose an implementation detail. Thus, this approach is far from ideal for
a standard library.

However, the generality and flexibility of this approach should not be underestimated. Like its
alternatives, it has been used successfully in many applications. Its strengths lie in areas in which
efficiency is less important than the simplicity afforded by a singleC Co on nt ta ai in ne er r interface and ser-
vices such as object I/O.

16.2.3 STL Containers [org.stl]

The standard library containers and iterators (often called the STL framework, §3.10) can be under-
stood as an approach to gain the best of the two traditional models described previously. That
wasn’t the way the STL was designed, though. The STL was the result of a single-minded search
for uncompromisingly efficient and generic algorithms.

The aim of efficiency rules out hard-to-inline virtual functions for small, frequently-used access
functions. Therefore, we cannot present a standard interface to containers or a standard iterator
interface as an abstract class. Instead, each kind of container supports a standard set of basic opera-
tions. To avoid the problems of fat interfaces (§16.2.2, §24.4.3), operations that cannot be effi-
ciently implemented for all containers are not included in the set of common operations. For exam-
ple, subscripting is provided forv ve ec ct to or r but not forl li is st t. In addition, each kind of container provides
its own iterators that support a standard set of iterator operations.

The standard containers are not derived from a common base. Instead, every container imple-
ments all of the standard container interface. Similarly, there is no common iterator base class. No
explicit or implicit run-time type checking is involved in using the standard containers and itera-
tors.

The important and difficult issue of providing common services for all containers is handled
through ‘‘allocators’’ passed as template arguments (§19.4.3) rather than through a common base.

Before I go into details and code examples, the strengths and weaknesses of the STL approach
can be summarized:

+ Individual containers are simple and efficient (not quite as simple as truly independent con-
tainers can be, but just as efficient).

+ Each container provides a set of standard operations with standard names and semantics.
Additional operations are provided for a particular container type as needed. Furthermore,
wrapper classes (§25.7.1) can be used to fit independently developed containers into a com-
mon framework (§16.5[14]).

+ Additional commonality of use is provided through standard iterators. Each container pro-
vides iterators that support a set of standard operations with standard names and semantics.
An iterator type is defined for each particular container type so that these iterators are as
simple and efficient as possible.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

442 Library Organization and Containers Chapter 16

+ To serve different needs for containers, different iterators and other generalized interfaces
can be defined in addition to the standard iterators.

+ Containers are by default type-safe and homogeneous (that is, all elements in a container are
of the same type). A heterogeneous container can be provided as a homogeneous container
of pointers to a common base.

+ The containers are non-intrusive (that is, an object need not have a special base class or link
field to be a member of a container). Non-intrusive containers work well with built-in types
and withs st tr ru uc ct ts with externally imposed layouts.

+ Intrusive containers can be fitted into the general framework. Naturally, an intrusive con-
tainer will impose constraints on its element types.

+ Each container takes an argument, called ana al ll lo oc ca at to or r, which can be used as a handle for
implementing services for every container. This greatly eases the provision of universal ser-
vices such as persistence and object I/O (§19.4.3).

– There is no standard run-time representation of containers or iterators that can be passed as a
function argument (although it is easy to define such representations for the standard con-
tainers and iterators where needed for a particular application; §19.3).

As before (§16.2.1),+ indicates an advantage and- indicates a disadvantage.
In other words, containers and iterators do not have fixed standard representations. Instead,

each container provides a standard interface in the form of a set of operations so that containers can
be used interchangeably. Iterators are handled similarly. This implies minimal overheads in time
and space while allowing users to exploit commonality both at the level of containers (as with the
based-object approach) and at the level of iterators (as with the specialized container approach).

The STL approach relies heavily on templates. To avoid excessive code replication, partial spe-
cialization to provide shared implementations for containers of pointers is usually required (§13.5).

16.3 Vector[org.vector]

Here,v ve ec ct to or r is described as an example of a complete standard container. Unless otherwise stated,
what is said aboutv ve ec ct to or r holds for every standard container. Chapter 17 describes features peculiar
to l li is st ts,s se et ts,m ma ap ps, etc. The facilities offered byv ve ec ct to or r – and similar containers– are described in
some detail. The aim is to give an understanding both of the possible uses ofv ve ec ct to or r and of its role
in the overall design of the standard library.

An overview of the standard containers and the facilities they offer can be found in §17.1.
Below, v ve ec ct to or r is introduced in stages: member types, iterators, element access, constructors, stack
operations, list operations, size and capacity, helper functions, andv ve ec ct to or r<b bo oo ol l>.

16.3.1 Types [org.types]

The standardv ve ec ct to or r is a template defined in namespaces st td d and presented in<v ve ec ct to or r>. It first
defines a set of standard names of types:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s s st td d: : v ve ec ct to or r {
p pu ub bl li ic c:

/ / types:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.1 Types 443

t ty yp pe ed de ef f T T v va al lu ue e_ _t ty yp pe e; / / type of element
t ty yp pe ed de ef f A A a al ll lo oc ca at to or r_ _t ty yp pe e; / / type of memory manager
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : s si iz ze e_ _t ty yp pe e s si iz ze e_ _t ty yp pe e;
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : d di if ff fe er re en nc ce e_ _t ty yp pe e d di if ff fe er re en nc ce e_ _t ty yp pe e;

t ty yp pe ed de ef f implementation_dependent1i it te er ra at to or r; / / T*
t ty yp pe ed de ef f implementation_dependent2c co on ns st t_ _i it te er ra at to or r; / / const T*
t ty yp pe ed de ef f s st td d: : r re ev ve er rs se e_ _i it te er ra at to or r<i it te er ra at to or r> r re ev ve er rs se e_ _i it te er ra at to or r;
t ty yp pe ed de ef f s st td d: : r re ev ve er rs se e_ _i it te er ra at to or r<c co on ns st t_ _i it te er ra at to or r> c co on ns st t_ _r re ev ve er rs se e_ _i it te er ra at to or r;

t ty yp pe ed de ef f t ty yp pe en na am me e A A: : p po oi in nt te er r p po oi in nt te er r; / / pointer to element
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : c co on ns st t_ _p po oi in nt te er r c co on ns st t_ _p po oi in nt te er r;
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : r re ef fe er re en nc ce e r re ef fe er re en nc ce e; / / reference to element
t ty yp pe ed de ef f t ty yp pe en na am me e A A: : c co on ns st t_ _r re ef fe er re en nc ce e c co on ns st t_ _r re ef fe er re en nc ce e;

/ / ...
};

Every standard container defines these typenames as members. Each defines them in the way most
appropriate to its implementation.

The type of the container’s elements is passed as the first template argument and is known as its
v va al lu ue e_ _t ty yp pe e. The a al ll lo oc ca at to or r_ _t ty yp pe e, which is optionally supplied as the second template argument,
defines how thev va al lu ue e_ _t ty yp pe e interacts with various memory management mechanisms. In particular,
an allocator supplies the functions that a container uses to allocate and deallocate memory for its
elements. Allocators are discussed in §19.4. In general,s si iz ze e_ _t ty yp pe e specifies the type used for
indexing into the container, andd di if ff fe er re en nc ce e_ _t ty yp pe e is the type of the result of subtracting two iterators
for a container. For most containers, they correspond tos si iz ze e_ _t t andp pt tr rd di if ff f_ _t t (§6.2.1).

Iterators were introduced in §2.7.2 and are described in detail in Chapter 19. They can be
thought of as pointers to elements of the container. Every container provides a type calledi it te er ra at to or r
for pointing to elements. It also provides ac co on ns st t_ _i it te er ra at to or r type for use when elements don’t need
to be modified. As with pointers, we use the saferc co on ns st t version unless there is a reason to do oth-
erwise. The actual types ofv ve ec ct to or r’s iterators are implementation-defined. The obvious definitions
for a conventionally-definedv ve ec ct to or r would beT T* andc co on ns st t T T* , respectively.

The reverse iterator types forv ve ec ct to or r are constructed from the standardr re ev ve er rs se e_ _i it te er ra at to or r tem-
plates (§19.2.5). They present a sequence in the reverse order.

As shown in §3.8.1, these member typenames allow a user to write code using a container with-
out having to know about the actual types involved. In particular, they allow a user to write code
that will work for any standard container. For example:

t te em mp pl la at te e<c cl la as ss s C C> t ty yp pe en na am me e C C: : v va al lu ue e_ _t ty yp pe e s su um m(c co on ns st t C C& c c)
{

t ty yp pe en na am me e C C: : v va al lu ue e_ _t ty yp pe e s s = 0 0;
t ty yp pe en na am me e C C: : c co on ns st t_ _i it te er ra at to or r p p = c c. b be eg gi in n() ; / / start at the beginning
w wh hi il le e (p p!= c c. e en nd d()) { / / continue until the end

s s += * p p; / / get value of element
++p p; / / make p point to next element

}
r re et tu ur rn n s s;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

444 Library Organization and Containers Chapter 16

Having to addt ty yp pe en na am me e before the names of member types of a template parameter is a nuisance.
However, the compiler isn’t psychic. There is no general way for it to know whether a member of
a template argument type is a typename (§C.13.5).

As for pointers, prefix* means dereference the iterator (§2.7.2, §19.2.1) and++ means incre-
ment the iterator.

16.3.2 Iterators [org.begin]

As shown in the previous subsection, iterators can be used to navigate containers without the pro-
grammers having to know the actual type used to identify elements. A few key member functions
allow the programmer to get hold of the ends of the sequence of elements:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

/ / ...
/ / iterators:

i it te er ra at to or r b be eg gi in n() ; / / points to first element
c co on ns st t_ _i it te er ra at to or r b be eg gi in n() c co on ns st t;
i it te er ra at to or r e en nd d() ; / / points to one-past-last element
c co on ns st t_ _i it te er ra at to or r e en nd d() c co on ns st t;

r re ev ve er rs se e_ _i it te er ra at to or r r rb be eg gi in n() ; / / points to first element of reverse sequence
c co on ns st t_ _r re ev ve er rs se e_ _i it te er ra at to or r r rb be eg gi in n() c co on ns st t;
r re ev ve er rs se e_ _i it te er ra at to or r r re en nd d() ; / / points to one-past-last element of reverse sequence
c co on ns st t_ _r re ev ve er rs se e_ _i it te er ra at to or r r re en nd d() c co on ns st t;

/ / ...
};

Theb be eg gi in n()/ e en nd d() pair gives the elements of the container in the ordinary element order. That
is, element0 0 is followed by element1 1, element2 2, etc. Ther rb be eg gi in n()/ r re en nd d() pair gives the ele-
ments in the reverse order. That is, elementn n- 1 1 is followed by elementn n- 2 2, elementn n- 3 3, etc.
For example, a sequence seen like this using ani it te er ra at to or r:

b be eg gi in n() e en nd d()

A B C
.

..

.

can be viewed like this using ar re ev ve er rs se e_ _i it te er ra at to or r (§19.2.5):

r rb be eg gi in n() r re en nd d()

C B A
.

..

.

This allows us to use algorithms in a way that views a sequence in the reverse order. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.2 Iterators 445

t te em mp pl la at te e<c cl la as ss s C C>
t ty yp pe en na am me e C C: : i it te er ra at to or r f fi in nd d_ _l la as st t(c co on ns st t C C& c c, t ty yp pe en na am me e C C: : v va al lu ue e_ _t ty yp pe e v v)
{

r re et tu ur rn n f fi in nd d_ _f fi ir rs st t(c c. r rb be eg gi in n() , c c. r re en nd d() , v v). b ba as se e() ;
}

Theb ba as se e() function returns ani it te er ra at to or r corresponding to ther re ev ve er rs se e_ _i it te er ra at to or r (§19.2.5). Without
reverse iterators, we could have had to write something like:

t te em mp pl la at te e<c cl la as ss s C C>
t ty yp pe en na am me e C C: : i it te er ra at to or r f fi in nd d_ _l la as st t(c co on ns st t C C& c c, t ty yp pe en na am me e C C: : v va al lu ue e_ _t ty yp pe e v v)
{

t ty yp pe en na am me e C C: : i it te er ra at to or r p p = c c. e en nd d() ; / / search backwards from end
w wh hi il le e (p p!= c c. b be eg gi in n()) {

-- p p;
i if f (* p p==v v) r re et tu ur rn n p p;

}
r re et tu ur rn n p p;

}

A reverse iterator is a perfectly ordinary iterator, so we could have written:

t te em mp pl la at te e<c cl la as ss s C C>
t ty yp pe en na am me e C C: : r re ev ve er rs se e_ _i it te er ra at to or r f fi in nd d_ _l la as st t(c co on ns st t C C& c c, t ty yp pe en na am me e C C: : v va al lu ue e_ _t ty yp pe e v v)
{

t ty yp pe en na am me e C C: : r re ev ve er rs se e_ _i it te er ra at to or r p p = c c. r rb be eg gi in n() ; / / view sequence in reverse order
w wh hi il le e (p p!= c c. r re en nd d()) {

i if f (* p p==v v) r re et tu ur rn n p p;
++p p; / / note: not decrement (--)

}
r re et tu ur rn n p p;

}

16.3.3 Element Access [org.element]

One important aspect of av ve ec ct to or r compared with other containers is that one can easily and effi-
ciently access individual elements in any order:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

/ / ...
/ / element access:

r re ef fe er re en nc ce e o op pe er ra at to or r[](s si iz ze e_ _t ty yp pe e n n) ; / / unchecked access
c co on ns st t_ _r re ef fe er re en nc ce e o op pe er ra at to or r[](s si iz ze e_ _t ty yp pe e n n) c co on ns st t;

r re ef fe er re en nc ce e a at t(s si iz ze e_ _t ty yp pe e n n) ; / / checked access
c co on ns st t_ _r re ef fe er re en nc ce e a at t(s si iz ze e_ _t ty yp pe e n n) c co on ns st t;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

446 Library Organization and Containers Chapter 16

r re ef fe er re en nc ce e f fr ro on nt t() ; / / first element
c co on ns st t_ _r re ef fe er re en nc ce e f fr ro on nt t() c co on ns st t;
r re ef fe er re en nc ce e b ba ac ck k() ; / / last element
c co on ns st t_ _r re ef fe er re en nc ce e b ba ac ck k() c co on ns st t;

/ / ...
};

Indexing is done byo op pe er ra at to or r[]() anda at t() ; o op pe er ra at to or r[]() provides unchecked access, whereas
a at t() does a range check and throwso ou ut t_ _o of f_ _r ra an ng ge e if an index is out of range. For example:

v vo oi id d f f(v ve ec ct to or r<i in nt t>& v v, i in nt t i i1 1, i in nt t i i2 2)
t tr ry y {

f fo or r(i in nt t i i = 0 0; i i < v v. s si iz ze e() ; i i++) {
/ / range already checked: use unchecked v[i] here

}

v v. a at t(i i1 1) = v v. a at t(i i2 2) ; / / check range on access

/ / ...
}
c ca at tc ch h(o ou ut t_ _o of f_ _r ra an ng ge e) {

/ / oops: out-of-range error
}

This illustrates one idea for use. That is, if the range has already been checked, the unchecked sub-
scripting operator can be used safely; otherwise, it is wise to use the range-checkeda at t() function.
This distinction is important when efficiency is at a premium. When that is not the case or when it
is not perfectly obvious whether a range has been correctly checked, it is safer to use a vector with a
checked[] operator (such asV Ve ec c from §3.7.1) or a checked iterator (§19.3).

The default access is unchecked to match arrays. Also, you can build a safe (checked) facility
on top of a fast one but not a faster facility on top of a slower one.

The access operations return values of typer re ef fe er re en nc ce e or c co on ns st t_ _r re ef fe er re en nc ce e depending on
whether or not they are applied to ac co on ns st t object. A reference is some suitable type for accessing
elements. For the simple and obvious implementation ofv ve ec ct to or r<X X>, r re ef fe er re en nc ce e is simplyX X& and
c co on ns st t_ _r re ef fe er re en nc ce e is simply c co on ns st t X X&. The effect of trying to create an out-of-range reference is
undefined. For example:

v vo oi id d f f(v ve ec ct to or r<d do ou ub bl le e>& v v)
{

d do ou ub bl le e d d = v v[v v. s si iz ze e()] ; / / undefined: bad index

l li is st t<c ch ha ar r> l ls st t;
c ch ha ar r c c = l ls st t. f fr ro on nt t() ; / / undefined: list is empty

}

Of the standard sequences, onlyv ve ec ct to or r andd de eq qu ue e (§17.2.3) support subscripting. The reason is the
desire not to confuse users by providing fundamentally inefficient operations. For example, sub-
scripting could have been provided forl li is st t (§17.2.2), but doing that would have been dangerously
inefficient (that is,O O(n n)).

The membersf fr ro on nt t() andb ba ac ck k() return references to the first and last element, respectively.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.3 Element Access 447

They are most useful where these elements are known to exist and in code where these elements are
of particular interest. Av ve ec ct to or r used as as st ta ac ck k (§16.3.5) is an obvious example. Note thatf fr ro on nt t()
returns a reference to the element to whichb be eg gi in n() returns an iterator. I often think off fr ro on nt t() as
the first element andb be eg gi in n() as a pointer to the first element. The correspondence between
b ba ac ck k() ande en nd d() is less simple:b ba ac ck k() is the last element ande en nd d() points to the last-plus-one
element position.

16.3.4 Constructors [org.ctor]

Naturally,v ve ec ct to or r provides a complete set (§11.7) of constructors, destructor, and copy operations:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

/ / ...
/ / constructors, etc.:

e ex xp pl li ic ci it t v ve ec ct to or r(c co on ns st t A A& = A A()) ;
e ex xp pl li ic ci it t v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l = T T() , c co on ns st t A A& = A A()) ; / / n copies of val
t te em mp pl la at te e <c cl la as ss s I In n> / / In must be an input iterator (§19.2.1)

v ve ec ct to or r(I In n f fi ir rs st t, I In n l la as st t, c co on ns st t A A& = A A()) ; / / copy from [first:last[
v ve ec ct to or r(c co on ns st t v ve ec ct to or r& x x) ;

~v ve ec ct to or r() ;

v ve ec ct to or r& o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& x x) ;

t te em mp pl la at te e <c cl la as ss s I In n> / / In must be an input iterator (§19.2.1)
v vo oi id d a as ss si ig gn n(I In n f fi ir rs st t, I In n l la as st t) ; / / copy from [first:last[

v vo oi id d a as ss si ig gn n(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l) ; / / n copies of val

/ / ...
};

A v ve ec ct to or r provides fast access to arbitrary elements, but changing its size is relatively expensive.
Consequently, we typically give an initial size when we create av ve ec ct to or r. For example:

v ve ec ct to or r<R Re ec co or rd d> v vr r(1 10 00 00 00 0) ;

v vo oi id d f f(i in nt t s s1 1, i in nt t s s2 2)
{

v ve ec ct to or r<i in nt t> v vi i(s s1 1) ;

v ve ec ct to or r<d do ou ub bl le e>* p p = n ne ew w v ve ec ct to or r<d do ou ub bl le e>(s s2 2) ;
}

Elements of a vector allocated this way are initialized by the default constructor for the element
type. That is, each ofv vr r’s 1 10 00 00 00 0 elements is initialized byR Re ec co or rd d() and each ofv vi i’s s s1 1 elements
is initialized byi in nt t() . Note that the default constructor for a built-in type performs initialization to
0 0 of the appropriate type (§4.9.5, §10.4.2).

If a type does not have a default constructor, it is not possible to create a vector with elements
of that type without explicitly providing the value of each element. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

448 Library Organization and Containers Chapter 16

c cl la as ss s N Nu um m { / / infinite precision
p pu ub bl li ic c:

N Nu um m(l lo on ng g) ;
/ / no default constructor
/ / ...

};

v ve ec ct to or r<N Nu um m> v v1 1(1 10 00 00 0) ; / / error: no default Num
v ve ec ct to or r<N Nu um m> v v2 2(1 10 00 00 0, N Nu um m(0 0)) ; / / ok

Since av ve ec ct to or r cannot have a negative number of elements, its size must be non-negative. This is
reflected in the requirement thatv ve ec ct to or r’s s si iz ze e_ _t ty yp pe e must be anu un ns si ig gn ne ed d type. This allows a
greater range of vector sizes on some architectures. However, it can also lead to surprises:

v vo oi id d f f(i in nt t i i)
{

v ve ec ct to or r<c ch ha ar r> v vc c0 0(- 1 1) ; / / fairly easy for compiler to warn against
v ve ec ct to or r<c ch ha ar r> v vc c1 1(i i) ;

}

v vo oi id d g g()
{

f f(- 1 1) ; / / trick f() into accepting a large positive number!
}

In the callf f(- 1 1) , - 1 1 is converted into a (rather large) positive integer (§C.6.3). If we are lucky,
the compiler will find a way of complaining.

The size of av ve ec ct to or r can also be provided implicitly by giving the initial set of elements. This is
done by supplying the constructor with a sequence of values from which to construct thev ve ec ct to or r.
For example:

v vo oi id d f f(c co on ns st t l li is st t<X X>& l ls st t)
{

v ve ec ct to or r<X X> v v1 1(l ls st t. b be eg gi in n() , l ls st t. e en nd d()) ; / / copy elements from list

c ch ha ar r p p[] = " d de es sp pa ai ir r";
v ve ec ct to or r<c ch ha ar r> v v2 2(p p,& p p[s si iz ze eo of f(p p)- 1 1]) ; / / copy characters from C-style string

}

In each case, thev ve ec ct to or r constructor adjusts the size of thev ve ec ct to or r as it copies elements from its
input sequence.

Thev ve ec ct to or r constructors that can be invoked with a single argument are declarede ex xp pl li ic ci it t to pre-
vent accidental conversions (§11.7.1). For example:

v ve ec ct to or r<i in nt t> v v1 1(1 10 0) ; / / ok: vector of 10 ints
v ve ec ct to or r<i in nt t> v v2 2 = v ve ec ct to or r<i in nt t>(1 10 0) ; / / ok: vector of 10 ints
v ve ec ct to or r<i in nt t> v v3 3 = v v2 2; / / ok: v3 is a copy of v2
v ve ec ct to or r<i in nt t> v v4 4 = 1 10 0; / / error: attempted implicit conversion of 10 to vector<int>

The copy constructor and the copy-assignment operators copy the elements of av ve ec ct to or r. For a
v ve ec ct to or r with many elements, that can be an expensive operation, sov ve ec ct to or rs are typically passed by
reference. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.4 Constructors 449

v vo oi id d f f1 1(v ve ec ct to or r<i in nt t>&) ; / / common style
v vo oi id d f f2 2(c co on ns st t v ve ec ct to or r<i in nt t>&) ; / / common style
v vo oi id d f f3 3(v ve ec ct to or r<i in nt t>) ; / / rare style

v vo oi id d h h()
{

v ve ec ct to or r<i in nt t> v v(1 10 00 00 00 0) ;

/ / ...

f f1 1(v v) ; / / pass a reference
f f2 2(v v) ; / / pass a reference
f f3 3(v v) ; / / copy the 10000 elements into a new vector for f3() to use

}

The a as ss si ig gn n functions exist to provide counterparts to the multi-argument constructors. They are
needed because= takes a single right-hand operand, soa as ss si ig gn n() is used where a default argument
value or a range of values is needed. For example:

c cl la as ss s B Bo oo ok k {
/ / ...

};

v vo oi id d f f(v ve ec ct to or r<N Nu um m>& v vn n, v ve ec ct to or r<c ch ha ar r>& v vc c, v ve ec ct to or r<B Bo oo ok k>& v vb b, l li is st t<B Bo oo ok k>& l lb b)
{

v vn n. a as ss si ig gn n(1 10 0, N Nu um m(0 0)) ; / / assign vector of 10 copies of Num(0) to vn

c ch ha ar r s s[] = " l li it te er ra al l";
v vc c. a as ss si ig gn n(s s,& s s[s si iz ze eo of f(s s)- 1 1]) ; / / assign "literal" to vc

v vb b. a as ss si ig gn n(l lb b. b be eg gi in n() , l lb b. e en nd d()) ; / / assign list elements

/ / ...
}

Thus, we can initialize av ve ec ct to or r with any sequence of its element type and similarly assign any such
sequence. Importantly, this is done without explicitly introducing a multitude of constructors and
conversion functions. Note that assignment completely changes the elements of a vector. Concep-
tually, all old elements are erased and the new ones are inserted. After assignment, the size of a
v ve ec ct to or r is the number of elements assigned. For example:

v vo oi id d f f()
{

v ve ec ct to or r<c ch ha ar r> v v(1 10 0,´ x x´) ; / / v.size()==10, each element has the value ’x’
v v. a as ss si ig gn n(5 5,´ a a´) ; / / v.size()==5, each element has the value ’a’
/ / ...

}

Naturally, whata as ss si ig gn n() does could be done indirectly by first creating a suitablev ve ec ct to or r and then
assigning that. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

450 Library Organization and Containers Chapter 16

v vo oi id d f f2 2(v ve ec ct to or r<B Bo oo ok k>& v vh h, l li is st t<B Bo oo ok k>& l lb b)
{

v ve ec ct to or r<B Bo oo ok k> v vt t(l lb b. b be eg gi in n() , l lb b. e en nd d()) ;
v vh h = v vt t;
/ / ...

}

However, this can be both ugly and inefficient.
Constructing av ve ec ct to or r with two arguments of the same type can lead to an apparent ambiguity:

v ve ec ct to or r<i in nt t> v v(1 10 0, 5 50 0) ; / / vector(size,value) or vector(iterator1,iterator2)? vector(size,value)!

However, ani in nt t isn’t an iterator and the implementation must ensure that this actually invokes

v ve ec ct to or r(v ve ec ct to or r<i in nt t>: : s si iz ze e_ _t ty yp pe e, c co on ns st t i in nt t&, c co on ns st t v ve ec ct to or r<i in nt t>: : a al ll lo oc ca at to or r_ _t ty yp pe e&) ;

rather than

v ve ec ct to or r(v ve ec ct to or r<i in nt t>: : i it te er ra at to or r, v ve ec ct to or r<i in nt t>: : i it te er ra at to or r, c co on ns st t v ve ec ct to or r<i in nt t>: : a al ll lo oc ca at to or r_ _t ty yp pe e&) ;

The library achieves this by suitable overloading of the constructors and handles the equivalent
ambiguities fora as ss si ig gn n() andi in ns se er rt t() (§16.3.6) similarly.

16.3.5 Stack Operations [org.stack]

Most often, we think of av ve ec ct to or r as a compact data structure that we can index to access elements.
However, we can ignore this concrete notion and viewv ve ec ct to or r as an example of the more abstract
notion of a sequence. Looking at av ve ec ct to or r this way, and observing common uses of arrays and
v ve ec ct to or rs, it becomes obvious that stack operations make sense for av ve ec ct to or r:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

/ / ...
/ / stack operations:

v vo oi id d p pu us sh h_ _b ba ac ck k(c co on ns st t T T& x x) ; / / add to end
v vo oi id d p po op p_ _b ba ac ck k() ; / / remove last element
/ / ...

};

These functions treat av ve ec ct to or r as a stack by manipulating its end. For example:

v vo oi id d f f(v ve ec ct to or r<c ch ha ar r>& s s)
{

s s. p pu us sh h_ _b ba ac ck k(´ a a´) ;
s s. p pu us sh h_ _b ba ac ck k(´ b b´) ;
s s. p pu us sh h_ _b ba ac ck k(´ c c´) ;
s s. p po op p_ _b ba ac ck k() ;
i if f (s s[s s. s si iz ze e()- 1 1] != ´ b b´) e er rr ro or r(" i im mp po os ss si ib bl le e!") ;
s s. p po op p_ _b ba ac ck k() ;
i if f (s s. b ba ac ck k() != ´ a a´) e er rr ro or r(" s sh ho ou ul ld d n ne ev ve er r h ha ap pp pe en n!") ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.5 Stack Operations 451

Each timep pu us sh h_ _b ba ac ck k() is called, thev ve ec ct to or r s s grows by one element and that element is added at
the end. Sos s[s s. s si iz ze e()- 1 1] , also known ass s. b ba ac ck k() (§16.3.3), is the element most recently
pushed onto thev ve ec ct to or r.

Except for the wordv ve ec ct to or r instead ofs st ta ac ck k, there is nothing unusual in this. The suffix_ _b ba ac ck k
is used to emphasize that elements are added to the end of thev ve ec ct to or r rather than to the beginning.
Adding an element to the end of av ve ec ct to or r could be an expensive operation because extra memory
needs to be allocated to hold it. However, an implementation must ensure that repeated stack oper-
ations incur growth-related overhead only infrequently.

Note thatp po op p_ _b ba ac ck k() does not return a value. It just pops, and if we want to know what was
on the top of the stack before the pop, we must look. This happens not to be my favorite style of
stack (§2.5.3, §2.5.4), but it’s arguably more efficient and it’s the standard.

Why would one do stack-like operations on av ve ec ct to or r? An obvious reason is to implement a
s st ta ac ck k (§17.3.1), but a more common reason is to construct av ve ec ct to or r incrementally. For example,
we might want to read av ve ec ct to or r of points from input. However, we don’t know how many points
will be read, so we can’t allocate a vector of the right size and then read into it. Instead, we might
write:

v ve ec ct to or r<P Po oi in nt t> c ci it ti ie es s;

v vo oi id d a ad dd d_ _p po oi in nt ts s(P Po oi in nt t s se en nt ti in ne el l)
{

P Po oi in nt t b bu uf f;

w wh hi il le e (c ci in n >> b bu uf f) {
i if f (b bu uf f == s se en nt ti in ne el l) r re et tu ur rn n;
/ / check new point
c ci it ti ie es s. p pu us sh h_ _b ba ac ck k(b bu uf f) ;

}
}

This ensures that thev ve ec ct to or r expands as needed. If all we needed to do with a new point were to put
it into the v ve ec ct to or r, we might have initializedc ci it ti ie es s directly from input in a constructor (§16.3.4).
However, it is common to do a bit of processing on input and expand a data structure gradually as a
program progresses;p pu us sh h_ _b ba ac ck k() supports that.

In C programs, this is one of the most common uses of the C standard library functionr re ea al l- -
l lo oc c() . Thus,v ve ec ct to or r – and, in general, any standard container– provides a more general, more
elegant, and no less efficient alternative tor re ea al ll lo oc c() .

Thes si iz ze e() of a v ve ec ct to or r is implicitly increased byp pu us sh h_ _b ba ac ck k() so thev ve ec ct to or r cannot overflow
(as long as there is memory available to acquire; see §19.4.1). However, av ve ec ct to or r can underflow:

v vo oi id d f f()
{

v ve ec ct to or r<i in nt t> v v;
v v. p po op p_ _b ba ac ck k() ; / / undefined effect: the state of v becomes undefined
v v. p pu us sh h_ _b ba ac ck k(7 7) ; / / undefined effect (the state of v is undefined), probably bad

}

The effect of underflow is undefined, but the obvious implementation ofp po op p_ _b ba ac ck k() causes mem-
ory not owned by thev ve ec ct to or r to be overwritten. Like overflow, underflow must be avoided.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

452 Library Organization and Containers Chapter 16

16.3.6 List Operations [org.list]

Thep pu us sh h_ _b ba ac ck k() , p po op p_ _b ba ac ck k() , andb ba ac ck k() operations (§16.3.5) allow av ve ec ct to or r to be used effec-
tively as a stack. However, it is sometimes also useful to add elements in the middle of av ve ec ct to or r
and to remove elements from av ve ec ct to or r:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

/ / ...
/ / list operations:

i it te er ra at to or r i in ns se er rt t(i it te er ra at to or r p po os s, c co on ns st t T T& x x) ; / / add x before ’pos’
v vo oi id d i in ns se er rt t(i it te er ra at to or r p po os s, s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& x x) ;
t te em mp pl la at te e <c cl la as ss s I In n> / / In must be an input iterator (§19.2.1)

v vo oi id d i in ns se er rt t(i it te er ra at to or r p po os s, I In n f fi ir rs st t, I In n l la as st t) ; / / insert elements from sequence

i it te er ra at to or r e er ra as se e(i it te er ra at to or r p po os s) ; / / remove element at pos
i it te er ra at to or r e er ra as se e(i it te er ra at to or r f fi ir rs st t, i it te er ra at to or r l la as st t) ; / / erase sequence
v vo oi id d c cl le ea ar r() ; / / erase all elements

/ / ...
};

To see how these operations work, let’s do some (nonsensical) manipulation of av ve ec ct to or r of names
of fruit. First, we define thev ve ec ct to or r and populate it with some names:

v ve ec ct to or r<s st tr ri in ng g> f fr ru ui it t;

f fr ru ui it t. p pu us sh h_ _b ba ac ck k(" p pe ea ac ch h") ;
f fr ru ui it t. p pu us sh h_ _b ba ac ck k(" a ap pp pl le e") ;
f fr ru ui it t. p pu us sh h_ _b ba ac ck k(" k ki iw wi if fr ru ui it t") ;
f fr ru ui it t. p pu us sh h_ _b ba ac ck k(" p pe ea ar r") ;
f fr ru ui it t. p pu us sh h_ _b ba ac ck k(" s st ta ar rf fr ru ui it t") ;
f fr ru ui it t. p pu us sh h_ _b ba ac ck k(" g gr ra ap pe e") ;

If I take a dislike to fruits whose names start with the letterp p, I can remove those names like this:

s so or rt t(f fr ru ui it t. b be eg gi in n() , f fr ru ui it t. e en nd d()) ;
v ve ec ct to or r<s st tr ri in ng g>: : i it te er ra at to or r p p1 1 = f fi in nd d_ _i if f(f fr ru ui it t. b be eg gi in n() , f fr ru ui it t. e en nd d() , i in ni it ti ia al l(´ p p´)) ;
v ve ec ct to or r<s st tr ri in ng g>: : i it te er ra at to or r p p2 2 = f fi in nd d_ _i if f(p p1 1, f fr ru ui it t. e en nd d() , i in ni it ti ia al l_ _n no ot t(´ p p´)) ;
f fr ru ui it t. e er ra as se e(p p1 1, p p2 2) ;

In other words, sort thev ve ec ct to or r, find the first and the last fruit with a name that starts with the letter
p p, and erase those elements fromf fr ru ui it t. How to write predicate functions such asi in ni it ti ia al l(x x) (is the
initial letterx x?) andi in ni it ti ia al l_ _n no ot t() (is the initial letter different fromp p?) is explained in §18.4.2.

The e er ra as se e(p p1 1, p p2 2) operation removes elements starting fromp p1 1 up to and not includingp p2 2.
This can be illustrated graphically:

f fr ru ui it t[]:
p p1 1 p p2 2
| |
v v v v

a ap pp pl le e g gr ra ap pe e k ki iw wi if fr ru ui it t p pe ea ac ch h p pe ea ar r s st ta ar rf fr ru ui it t

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.6 List Operations 453

Thee er ra as se e(p p1 1, p p2 2) removesp pe ea ac ch h andp pe ea ar r, yielding:

f fr ru ui it t[]:

a ap pp pl le e g gr ra ap pe e k ki iw wi if fr ru ui it t s st ta ar rf fr ru ui it t

As usual, the sequence specified by the user is from the beginning to one-past-the-end of the
sequence affected by the operation.

It would be tempting to write:

v ve ec ct to or r<s st tr ri in ng g>: : i it te er ra at to or r p p1 1 = f fi in nd d_ _i if f(f fr ru ui it t. b be eg gi in n() , f fr ru ui it t. e en nd d() , i in ni it ti ia al l(´ p p´)) ;
v ve ec ct to or r<s st tr ri in ng g>: : r re ev ve er rs se e_ _i it te er ra at to or r p p2 2 = f fi in nd d_ _i if f(f fr ru ui it t. r rb be eg gi in n() , f fr ru ui it t. r re en nd d() , i in ni it ti ia al l(´ p p´)) ;
f fr ru ui it t. e er ra as se e(p p1 1, p p2 2+1 1) ; / / oops!: type error

However, v ve ec ct to or r<f fr ru ui it t>: : i it te er ra at to or r and v ve ec ct to or r<f fr ru ui it t>: : r re ev ve er rs se e_ _i it te er ra at to or r need not be the same
type, so we couldn’t rely on the call ofe er ra as se e() to compile. To be used with ani it te er ra at to or r, a
r re ev ve er rs se e_ _i it te er ra at to or r must be explicitly converted:

f fr ru ui it t. e er ra as se e(p p1 1, p p2 2. b ba as se e()) ; / / extract iterator from reverse_iterator (§19.2.5)

Erasing an element from av ve ec ct to or r changes the size of thev ve ec ct to or r, and the elements after the erased
elements are copied into the freed positions. In this example,f fr ru ui it t. s si iz ze e() becomes4 4 and thes st ta ar r- -
f fr ru ui it t that used to bef fr ru ui it t[5 5] is nowf fr ru ui it t[3 3] .

Naturally, it is also possible toe er ra as se e() a single element. In that case, only an iterator for that
element is needed (rather than a pair of iterators). For example,

f fr ru ui it t. e er ra as se e(f fi in nd d(f fr ru ui it t. b be eg gi in n() , f fr ru ui it t. e en nd d() ," s st ta ar rf fr ru ui it t")) ;
f fr ru ui it t. e er ra as se e(f fr ru ui it t. b be eg gi in n()+ 1 1) ;

gets rid of thes st ta ar rf fr ru ui it t and theg gr ra ap pe e, thus leavingf fr ru ui it t with two elements:

f fr ru ui it t[]:

a ap pp pl le e k ki iw wi if fr ru ui it t

It is also possible to insert elements into a vector. For example:

f fr ru ui it t. i in ns se er rt t(f fr ru ui it t. b be eg gi in n()+ 1 1," c ch he er rr ry y") ;
f fr ru ui it t. i in ns se er rt t(f fr ru ui it t. e en nd d() ," c cr ra an nb be er rr ry y") ;

The new element is inserted before the position mentioned, and the elements from there to the end
are moved to make space. We get:

f fr ru ui it t[]:

a ap pp pl le e c ch he er rr ry y k ki iw wi if fr ru ui it t c cr ra an nb be er rr ry y

Note thatf f. i in ns se er rt t(f f. e en nd d() , x x) is equivalent tof f. p pu us sh h_ _b ba ac ck k(x x) .
We can also insert whole sequences:

f fr ru ui it t. i in ns se er rt t(f fr ru ui it t. b be eg gi in n()+ 2 2, c ci it tr ru us s. b be eg gi in n() , c ci it tr ru us s. e en nd d()) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

454 Library Organization and Containers Chapter 16

If c ci it tr ru us s is a container

c ci it tr ru us s[]:

l le em mo on n g gr ra ap pe ef fr ru ui it t o or ra an ng ge e l li im me e

we get:

f fr ru ui it t[]:

a ap pp pl le e c ch he er rr ry y l le em mo on n g gr ra ap pe ef fr ru ui it t o or ra an ng ge e l li im me e k ki iw wi if fr ru ui it t c cr ra an nb be er rr ry y

The elements ofc ci it tr ru us s are copied intof fr ru ui it t by i in ns se er rt t() . The value ofc ci it tr ru us s is unchanged.
Clearly, i in ns se er rt t() ande er ra as se e() are more general than are operations that affect only the tail end

of av ve ec ct to or r (§16.3.5). They can also be more expensive. For example, to make room for a new ele-
ment, i in ns se er rt t() may have to reallocate every element to a new part of memory. If insertions into
and deletions from a container are common, maybe that container should be al li is st t rather than a
v ve ec ct to or r. A l li is st t is optimized fori in ns se er rt t() ande er ra as se e() rather than for subscripting (§16.3.3).

Insertion into and erasure from av ve ec ct to or r (but not al li is st t or an associative container such asm ma ap p)
potentially move elements around. Consequently, an iterator pointing to an element of av ve ec ct to or r
may after ani in ns se er rt t() or e er ra as se e() point to another element or to no element at all. Never access an
element through an invalid iterator; the effect is undefined and quite likely disastrous. In particular,
beware of using the iterator that was used to indicate where an insertion took place;i in ns se er rt t()
makes its first argument invalid. For example:

v vo oi id d d du up pl li ic ca at te e_ _e el le em me en nt ts s(v ve ec ct to or r<s st tr ri in ng g>& f f)
{

f fo or r(v ve ec ct to or r<s st tr ri in ng g>: : i it te er ra at to or r p p = f f. b be eg gi in n() ; p p!= f f. e en nd d() ; ++p p) f f. i in ns se er rt t(p p,* p p) ;/ / No!
}

Just think of it (§16.5[15]). Av ve ec ct to or r implementation would move all elements– or at least all ele-
ments afterp p – to make room for the new element.

The operationc cl le ea ar r() erases all elements of a container. Thus,c c. c cl le ea ar r() is a shorthand for
c c. e er ra as se e(c c. b be eg gi in n() , c c. e en nd d()) . After c c. c cl le ea ar r() , c c. s si iz ze e() is 0 0.

16.3.7 Addressing Elements [org.addressing]

Most often, the target of ane er ra as se e() or i in ns se er rt t() is a well-known place (such asb be eg gi in n() or
e en nd d()), the result of a search operation (such asf fi in nd d()), or a location found during an iteration.
In such cases, we have an iterator pointing to the relevant element. However, we often refer to ele-
ments of av ve ec ct to or r by subscripting. How do we get an iterator suitable as an argument fore er ra as se e()
or i in ns se er rt t() for the element with index7 7 of a containerc c? Since that element is the 7th element
after the beginning,c c. b be eg gi in n()+ 7 7 is a good answer. Other alternatives that may seem plausible by
analogy to arrays should be avoided. Consider:

t te em mp pl la at te e<c cl la as ss s C C> v vo oi id d f f(C C& c c)
{

c c. e er ra as se e(c c. b be eg gi in n()+ 7 7) ; / / ok
c c. e er ra as se e(& c c[7 7]) ; / / not general

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.7 Addressing Elements 455

c c. e er ra as se e(c c+7 7) ; / / error: adding 7 to a container makes no sense
c c. e er ra as se e(c c. b ba ac ck k()) ; / / error: c.back() is a reference, not an iterator
c c. e er ra as se e(c c. e en nd d()- 2 2) ; / / ok (second to last element)
c c. e er ra as se e(c c. r rb be eg gi in n()+ 2 2) ; / / error: vector::reverse_iterator and vector::iterator

/ / are different types
c c. e er ra as se e((c c. r rb be eg gi in n()+ 2 2). b ba as se e()) ; / / obscure, but ok (see §19.2.5)

}

The most tempting alternative,&c c[7 7] , actually happens to work with the obvious implementation
of v ve ec ct to or r, wherec c[7 7] refers directly to the element and its address is a valid iterator. However,
this is not true for other containers. For example, al li is st t or m ma ap p iterator is almost certainly not a
simple pointer to an element. Consequently, their iterators do not support[] . Therefore,&c c[7 7]
would be an error that the compiler catches.

The alternativesc c+7 7 andc c. b ba ac ck k() are simple type errors. A container is not a numeric vari-
able to which we can add7 7, andc c. b ba ac ck k() is an element with a value like" p pe ea ar r" that does not
identify the pear’s location in the containerc c.

16.3.8 Size and Capacity [org.size]

So far,v ve ec ct to or r has been described with minimal reference to memory management. Av ve ec ct to or r grows
as needed. Usually, that is all that matters. However, it is possible to ask directly about the way a
v ve ec ct to or r uses memory, and occasionally it is worthwhile to affect it directly. The operations are:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

/ / ...
/ / capacity:

s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t; / / number of elements
b bo oo ol l e em mp pt ty y() c co on ns st t { r re et tu ur rn n s si iz ze e()== 0 0; }
s si iz ze e_ _t ty yp pe e m ma ax x_ _s si iz ze e() c co on ns st t; / / size of the largest possible vector
v vo oi id d r re es si iz ze e(s si iz ze e_ _t ty yp pe e s sz z, T T v va al l = T T()) ; / / added elements initialized by val

s si iz ze e_ _t ty yp pe e c ca ap pa ac ci it ty y() c co on ns st t; / / size of the memory (in number of elements) allocated
v vo oi id d r re es se er rv ve e(s si iz ze e_ _t ty yp pe e n n) ; / / make room for a total of n elements; don’t initialize

/ / throw a length_error if n>max_size()
/ / ...

};

At any given time, av ve ec ct to or r holds a number of elements. This number can be obtained by calling
s si iz ze e() and can be changed usingr re es si iz ze e() . Thus, a user can determine the size of a vector and
change it if it seems insufficient or excessive. For example:

c cl la as ss s H Hi is st to og gr ra am m {
v ve ec ct to or r<i in nt t> c co ou un nt t;

p pu ub bl li ic c:
H Hi is st to og gr ra am m(i in nt t h h) : c co ou un nt t(m ma ax x(h h, 8 8)) {}
v vo oi id d r re ec co or rd d(i in nt t i i) ;
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

456 Library Organization and Containers Chapter 16

v vo oi id d H Hi is st to og gr ra am m: : r re ec co or rd d(i in nt t i i)
{

i if f (i i<0 0) i i = 0 0;
i if f (c co ou un nt t. s si iz ze e()<= i i) c co ou un nt t. r re es si iz ze e(i i+i i) ; / / make lots of room
c co ou un nt t[i i]++;

}

Using r re es si iz ze e() on av ve ec ct to or r is very similar to using the C standard library functionr re ea al ll lo oc c() on a
C array allocated on the free store.

When av ve ec ct to or r is resized to accommodate more (or fewer) elements, all of its elements may be
moved to new locations. Consequently, it is a bad idea to keep pointers to elements in av ve ec ct to or r that
might be resized; afterr re es si iz ze e() , such pointers could point to deallocated memory. Instead, we can
keep indices. Note thatp pu us sh h_ _b ba ac ck k() , i in ns se er rt t() , ande er ra as se e() implicitly resize av ve ec ct to or r.

In addition to the elements held, an application may keep some space for potential expansion.
A programmer who knows that expansion is likely can tell thev ve ec ct to or r implementation tor re es se er rv ve e()
space for future expansion. For example:

s st tr ru uc ct t L Li in nk k {
L Li in nk k* n ne ex xt t;
L Li in nk k(L Li in nk k* n n =0 0) : n ne ex xt t(n n) {}
/ / ...

};

v ve ec ct to or r<L Li in nk k> v v;

v vo oi id d c ch ha ai in n(s si iz ze e_ _t t n n) / / fill v with n Links so that each Link points to its predecessor
{

v v. r re es se er rv ve e(n n) ;
v v. p pu us sh h_ _b ba ac ck k(L Li in nk k(0 0)) ;
f fo or r (i in nt t i i = 1 1; i i<n n; i i++) v v. p pu us sh h_ _b ba ac ck k(L Li in nk k(& v v[i i- 1 1])) ;
/ / ...

}

A call v v. r re es se er rv ve e(n n) ensures that no allocation will be needed when the size ofv v is increased until
v v. s si iz ze e() exceedsn n.

Reserving space in advance has two advantages. First, even a simple-minded implementation
can then allocate sufficient space in one operation rather than slowly acquiring enough memory
along the way. However, in many cases there is a logical advantage that outweighs the potential
efficiency gain. The elements of a container are potentially relocated when av ve ec ct to or r grows. Thus,
the links built between the elements ofv v in the previous example are guaranteed only because the
call of r re es se er rv ve e() ensures that there are no allocations while the vector is being built. That is, in
some casesr re es se er rv ve e() provides a guarantee of correctness in addition to whatever efficiency
advantages it gives.

That same guarantee can be used to ensure that potential memory exhaustion and potentially
expensive reallocation of elements take place at predictable times. For programs with stringent
real-time constraints, this can be of great importance.

Note thatr re es se er rv ve e() doesn’t change the size of av ve ec ct to or r. Thus, it does not have to initialize any
new elements. In both respects, it differs fromr re es si iz ze e() .

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.3.8 Size and Capacity 457

In the same way ass si iz ze e() gives the current number of elements,c ca ap pa ac ci it ty y() gives the current
number of reserved memory slots;c c. c ca ap pa ac ci it ty y()- c c. s si iz ze e() is the number of elements that can be
inserted without causing reallocation.

Decreasing the size of av ve ec ct to or r doesn’t decrease its capacity. It simply leaves room for the
v ve ec ct to or r to grow into later. If you want to give memory back to the system, assign a new value to the
v ve ec ct to or r. For example:

v v = v ve ec ct to or r<i in nt t>(4 4, 9 99 9) ;

A v ve ec ct to or r gets the memory it needs for its elements by calling member functions of its allocator
(supplied as a template parameter). The default allocator, calleda al ll lo oc ca at to or r (§19.4.1), usesn ne ew w to
obtain storage so that it will throwb ba ad d_ _a al ll lo oc c if no more storage is obtainable. Other allocators can
use different strategies (see §19.4.2).

The r re es se er rv ve e() andc ca ap pa ac ci it ty y() functions are unique tov ve ec ct to or r and similar compact containers.
Containers such asl li is st t do not provide equivalents.

16.3.9 Other Member Functions [org.etc]

Many algorithms– including important sort algorithms– involve swapping elements. The obvious
way of swapping (§13.5.2) simply copies elements. However, av ve ec ct to or r is typically implemented
with a structure that acts as a handle (§13.5, §17.1.3) to the elements. Thus, twov ve ec ct to or rs can be
swapped much more efficiently by interchanging the handles;v ve ec ct to or r: : s sw wa ap p() does that. The
time difference between this and the defaults sw wa ap p() is orders of magnitude in important cases:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

/ / ...

v vo oi id d s sw wa ap p(v ve ec ct to or r&) ;

a al ll lo oc ca at to or r_ _t ty yp pe e g ge et t_ _a al ll lo oc ca at to or r() c co on ns st t;
};

The g ge et t_ _a al ll lo oc ca at to or r() function gives the programmer a chance to get hold of av ve ec ct to or r’s allocator
(§16.3.1, §16.3.4). Typically, the reason for this is to ensure that data from an application that is
related to av ve ec ct to or r is allocated similarly to thev ve ec ct to or r itself (§19.4.1).

16.3.10 Helper Functions [org.algo]

Two v ve ec ct to or rs can be compared using== and<:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A>
b bo oo ol l s st td d: : o op pe er ra at to or r==(c co on ns st t v ve ec ct to or r<T T, A A>& x x, c co on ns st t v ve ec ct to or r<T T, A A>& y y) ;

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A>
b bo oo ol l s st td d: : o op pe er ra at to or r<(c co on ns st t v ve ec ct to or r<T T, A A>& x x, c co on ns st t v ve ec ct to or r<T T, A A>& y y) ;

Two v ve ec ct to or rs v v1 1 andv v2 2 compare equal ifv v1 1. s si iz ze e()== v v2 2. s si iz ze e() andv v1 1[n n]== v v2 2[n n] for every
valid indexn n. Similarly, < is a lexicographical ordering. In other words,< for v ve ec ct to or rs could be
defined like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

458 Library Organization and Containers Chapter 16

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A>
i in nl li in ne e b bo oo ol l s st td d: : o op pe er ra at to or r<(c co on ns st t v ve ec ct to or r<T T, A A>& x x, c co on ns st t v ve ec ct to or r<T T, A A>& y y)
{

r re et tu ur rn n l le ex xi ic co og gr ra ap ph hi ic ca al l_ _c co om mp pa ar re e(x x. b be eg gi in n() , x x. e en nd d() , y y. b be eg gi in n() , y y. e en nd d()) ;/ / see §18.9
}

This means thatx x is less thany y if the first elementx x[i i] that is not equal to the corresponding ele-
menty y[i i] is less thany y[i i] , or x x. s si iz ze e()< y y. s si iz ze e() with everyx x[i i] equal to its corresponding
y y[i i] .

The standard library also provides!= , <=, >, and>=, with definitions that correspond to those
of == and<.

Becauses sw wa ap p() is a member, it is called using thev v1 1. s sw wa ap p(v v2 2) syntax. However, not every
type has as sw wa ap p() member, so generic algorithms use the conventionals sw wa ap p(a a, b b) syntax. To
make that work forv ve ec ct to or rs also, the standard library provides the specialization:

t te em mp pl la at te e <c cl la as ss s T T, c cl la as ss s A A> v vo oi id d s st td d: : s sw wa ap p(v ve ec ct to or r<T T, A A>& x x, v ve ec ct to or r<T T, A A>& y y)
{

x x. s sw wa ap p(y y) ;
}

16.3.11 Vector<bool> [org.vector.bool]

The specialization (§13.5)v ve ec ct to or r<b bo oo ol l> is provided as a compactv ve ec ct to or r of b bo oo ol l. A b bo oo ol l variable
is addressable, so it takes up at least one byte. However, it is easy to implementv ve ec ct to or r<b bo oo ol l> so
that each element takes up only a bit.

The usualv ve ec ct to or r operations work forv ve ec ct to or r<b bo oo ol l> and retain their usual meanings. In particu-
lar, subscripting and iteration work as expected. For example:

v vo oi id d f f(v ve ec ct to or r<b bo oo ol l>& v v)
{

f fo or r (i in nt t i i = 0 0; i i<v v. s si iz ze e() ; ++i i) c ci in n >> v v[i i] ; / / iterate using subscripting

t ty yp pe ed de ef f v ve ec ct to or r<b bo oo ol l>: : c co on ns st t_ _i it te er ra at to or r V VI I;
f fo or r (V VI I p p = v v. b be eg gi in n() ; p p!= v v. e en nd d() ; ++p p) c co ou ut t<<* p p; / / iterate using iterators

}

To achieve this, an implementation must simulate addressing of a single bit. Since a pointer cannot
address a unit of memory smaller than a byte,v ve ec ct to or r<b bo oo ol l>: : i it te er ra at to or r cannot be a pointer. In par-
ticular, one cannot rely onb bo oo ol l* as an iterator for av ve ec ct to or r<b bo oo ol l>:

v vo oi id d f f(v ve ec ct to or r<b bo oo ol l>& v v)
{

b bo oo ol l* p p = v v. b be eg gi in n() ; / / error: type mismatch
/ / ...

}

A technique for addressing a single bit is outlined in §17.5.3.
The library also providesb bi it ts se et t as a set of Boolean values with Boolean set operations

(§17.5.3).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 16.4 Advice 459

16.4 Advice[org.advice]

[1] Use standard library facilities to maintain portability; §16.1.
[2] Don’t try to redefine standard library facilities; §16.1.2.
[3] Don’t believe that the standard library is best for everything.
[4] When building a new facility, consider whether it can be presented within the framework

offered by the standard library; §16.3.
[5] Remember that standard library facilities are defined in namespaces st td d; §16.1.2.
[6] Declare standard library facilities by including its header, not by explicit declaration; §16.1.2.
[7] Take advantage of late abstraction; §16.2.1.
[8] Avoid fat interfaces; §16.2.2.
[9] Prefer algorithms with reverse iterators over explicit loops dealing with reverse order; §16.3.2.
[10] Useb ba as se e() to extract ani it te er ra at to or r from ar re ev ve er rs se e_ _i it te er ra at to or r; §16.3.2.
[11] Pass containers by reference; §16.3.4.
[12] Use iterator types, such asl li is st t<c ch ha ar r>: : i it te er ra at to or r, rather than pointers to refer to elements of a

container; §16.3.1.
[13] Usec co on ns st t iterators where you don’t need to modify the elements of a container; §16.3.1.
[14] Usea at t() , directly or indirectly, if you want range checking; §16.3.3.
[15] Usep pu us sh h_ _b ba ac ck k() or r re es si iz ze e() on a container rather thanr re ea al ll lo oc c() on an array; §16.3.5.
[16] Don’t use iterators into a resizedv ve ec ct to or r; §16.3.8.
[17] User re es se er rv ve e() to avoid invalidating iterators; §16.3.8.
[18] When necessary, user re es se er rv ve e() to make performance predictable; §16.3.8.

16.5 Exercises[org.exercises]

The solutions to several exercises for this chapter can be found by looking at the source text of an
implementation of the standard library. Do yourself a favor: try to find your own solutions before
looking to see how your library implementer approached the problems.
1. (∗1.5) Create av ve ec ct to or r<c ch ha ar r> containing the letters of the alphabet in order. Print the elements

of that vector in order and in reverse order.
2. (∗1.5) Create av ve ec ct to or r<s st tr ri in ng g> and read a list of names of fruits fromc ci in n into it. Sort the list

and print it.
3. (∗1.5) Using thev ve ec ct to or r from §16.5[2], write a loop to print the names of all fruits with the ini-

tial lettera a.
4. (∗1) Using thev ve ec ct to or r from §16.5[2], write a loop to delete all fruits with the initial lettera a.
5. (∗1) Using thev ve ec ct to or r from §16.5[2], write a loop to delete all citrus fruits.
6. (∗1.5) Using thev ve ec ct to or r from §16.5[2], write a loop to delete all fruits that you don’t like.
7. (∗2) Complete theV Ve ec ct to or r, L Li is st t, andI It to or r classes from §16.2.1.
8. (∗2.5) Given anI It to or r class, consider how to provide iterators for forwards iteration, backwards

iteration, iteration over a container that might change during an iteration, and iteration over an
immutable container. Organize this set of containers so that a user can interchangeably use iter-
ators that provide sufficient functionality for an algorithm. Minimize replication of effort in the
implementation of the containers. What other kinds of iterators might a user need? List the
strengths and weaknesses of your approach.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

460 Library Organization and Containers Chapter 16

9. (∗2) Complete theC Co on nt ta ai in ne er r, V Ve ec ct to or r, andL Li is st t classes from §16.2.2.
10. (∗2.5) Generate 10,000 uniformly distributed random numbers in the range 0 to 1,023 and store

them in (a) an standard libraryv ve ec ct to or r, (b) a V Ve ec ct to or r from §16.5[7], and (3) aV Ve ec ct to or r from
§16.5[9]. In each case, calculate the arithmetic mean of the elements of the vector (as if you
didn’t know it already). Time the resulting loops. Estimate, measure, and compare the memory
consumption for the three styles of vectors.

11. (∗1.5) Write an iterator to allowV Ve ec ct to or r from §16.2.2 to be used as a container in the style of
§16.2.1.

12. (∗1.5) Write a class derived fromC Co on nt ta ai in ne er r to allow V Ve ec ct to or r from §16.2.1 to be used as a con-
tainer in the style of §16.2.2.

13. (∗2) Write classes to allowV Ve ec ct to or r from §16.2.1 andV Ve ec ct to or r from §16.2.2 to be used as standard
containers.

14. (∗2) Write a template that implements a container with the same member functions and member
types as the standardv ve ec ct to or r for an existing (nonstandard, non-student-exercise) container type.
Do not modify the (pre)existing container type. How would you deal with functionality offered
by the nonstandardv ve ec ct to or r but not by the standardv ve ec ct to or r?

15. (∗1.5) Outline the possible behavior ofd du up pl li ic ca at te e_ _e el le em me en nt ts s() from §16.3.6 for a
v ve ec ct to or r<s st tr ri in ng g> with the three elementsd do on n´ t t d do o t th hi is s.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	16.1 Standard Library Design
	16.2 Container Design
	16.3 Vector
	16.4 Advice
	16.5 Exercises

	buy now:

