
_ __ _______________________________________

24
_ __ _______________________________________

Design and Programming

Keep it simple:
as simple as possible,

but no simpler.
– A. Einstein

Design and programming language— classes— inheritance— type checking— pro-
gramming— what do classes represent?— class hierarchies— dependencies— con-
tainment— containment and inheritance— design tradeoffs— use relationships—
programmed-in relationships— invariants— assertions— encapsulation— compo-
nents— templates— interfaces and implementations— advice.

24.1 Overview[lang.overview]

This chapter considers the ways programming languages in general and C++ in particular can sup-
port design:

§24.2 The fundamental role of classes, class hierarchies, type checking, and programming itself
§24.3 Uses of classes and class hierarchies, focussing on dependencies between different parts

of a program
§24.4 The notion of acomponent, which is the basic unit of design, and some practical observa-

tions about how to express interfaces
More general design issues are found in Chapter 23, and the various uses of classes are discussed in
more detail in Chapter 25.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

724 Design and Programming Chapter 24

24.2 Design and Programming Language[lang.intro]

If I were to build a bridge, I would seriously consider what material to build it out of. Also, the
design of the bridge would be heavily influenced by the choice of material and vice versa. Reason-
able designs for stone bridges differ from reasonable designs for steel bridges, from reasonable
designs for wooden bridges, etc. I would not expect to be able to select the proper material for a
bridge without knowing a bit about the various materials and their uses. Naturally, you don’t have
to be an expert carpenter to design a wooden bridge, but you do have to know the fundamentals of
wooden constructions to choose between wood and iron as the material for a bridge. Furthermore,
even though you don’t personally have to be an expert carpenter to design a wooden bridge, you do
need quite a detailed knowledge of the properties of wood and the mores of carpenters.

The analogy is that to choose a language for some software, you need knowledge of several lan-
guages, and to design a piece of software successfully, you need a fairly detailed knowledge of the
chosen implementation language– even if you never personally write a single line of that software.
The good bridge designer respects the properties of materials and uses them to enhance the design.
Similarly, the good software designer builds on the strengths of the implementation language and–
as far as possible– avoids using it in ways that cause problems for implementers.

One might think that this sensitivity to language issues comes naturally when only a single
designer/programmer is involved. However, even in such cases the programmer can be seduced
into misusing the language due to inadequate experience or undue respect for styles of program-
ming established for radically different languages. When the designer is different from the pro-
grammer– and especially if they do not share a common culture– the likelihood of introducing
error, inelegance, and inefficiencies into the resulting system approaches certainty.

So what can a programming language do for a designer? It can provide features that allow the
fundamental notions of the design to be represented directly in the programming language. This
eases the implementation, makes it easier to maintain the correspondence between the design and
the implementation, enables better communication between designers and implementers, and
allows better tools to be built to support both designers and implementers.

For example, most design methods are concerned about dependencies between different parts of
a program (usually to minimize them and to ensure that they are well defined and understood). A
language that supports explicit interfaces between parts of a program can support such design
notions. It can guarantee that only the expected dependencies actually exist. Because many depen-
dencies are explicit in code written in such a language, tools that read a program to produce charts
of dependencies can be provided. This eases the job of designers and others that need to under-
stand the structure of a program. A programming language such as C++ can be used to decrease the
gap between design and program and consequently reduce the scope for confusion and misunder-
standings.

The key notion of C++ is that of a class. A C++ class is a type. Together with namespaces,
classes are also a primary mechanism for information hiding. Programs can be specified in terms
of user-defined types and hierarchies of such user-defined types. Both built-in and user-defined
types obey statically checked type rules. Virtual functions provide a mechanism for run-time bind-
ing without breaking the static type rules. Templates support the design of parameterized types.
Exceptions provide a way of making error handling more regular. These C++ features can be used
without incurring overhead compared to C programs. These are the first-order properties of C++

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.2 Design and Programming Language 725

that must be understood and considered by a designer. In addition, generally available major
libraries– such as matrix libraries, database interfaces, graphical user interface libraries, and con-
currency support libraries– can strongly affect design choices.

Fear of novelty sometimes leads to sub-optimal use of C++. So does misapplication of lessons
from other languages, systems, and application areas. Poor design tools can also warp designs.
Five ways designers fail to take advantage of language features and fail to respect limitations are
worth mentioning:

[1] Ignore classes and express the design in a way that constrains implementers to use the C
subset only.

[2] Ignore derived classes and virtual functions and use only the data abstraction subset.
[3] Ignore the static type checking and express the design in such a way that implementers are

constrained to simulate dynamic type checking.
[4] Ignore programming and express systems in a way that aims to eliminate programmers.
[5] Ignore everything except class hierarchies.

These variants are typical for designers with
[1] a C, traditional CASE, or structured design background,
[2] an Ada83, Visual Basic, or data abstraction background,
[3] a Smalltalk or Lisp background,
[4] a nontechnical or very specialized background,
[5] a background with heavy emphasis on ‘‘pure’’ object-oriented programming,

respectively. In each case, one must wonder if the implementation language was well chosen, if the
design method was well chosen, or if the designer had failed to adapt to the tool in hand.

There is nothing unusual or shameful in such a mismatch. It is simply a mismatch that delivers
sub-optimal designs and imposes unnecessary burdens on programmers. It does the same to
designers when the conceptual framework of the design method is noticeably poorer than C++’s
conceptual framework. Therefore, we avoid such mismatches wherever possible.

The following discussion is phrased as answers to objections because that is the way it often
occurs in real life.

24.2.1 Ignoring Classes [lang.ignore.class]

Consider design that ignores classes. The resulting C++ program will be roughly equivalent to the
C program that would have resulted from the same design process– and this program would again
be roughly equivalent to the COBOL program that would have resulted from the same design pro-
cess. In essence, the design has been made ‘‘programming language independent’’ at the cost of
forcing the programmer to code in the common subset of C and COBOL. This approach does have
advantages. For example, the strict separation of data and code that results makes it easy to use tra-
ditional databases that are designed for such programs. Because a minimal programming language
is used, it would appear that less skill– or at least different skills– would be required from pro-
grammers. For many applications– say, a traditional sequential database update program– this
way of thinking is quite reasonable, and the traditional techniques developed over decades are ade-
quate for the job.

However, suppose the application differs sufficiently from traditional sequential processing of
records (or characters) or the complexity involved is higher– say, in an interactive CASE system.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

726 Design and Programming Chapter 24

The lack of language support for data abstraction implied by the decision to ignore classes will
hurt. The inherent complexity will show up in the application somewhere, and if the system is
implemented in an impoverished language, the code will not reflect the design directly. The pro-
gram will have too many lines of source code, lack type checking, and will in general not be amen-
able to tools. This is the prescription for a maintenance nightmare.

A common band-aid for this problem is to build specific tools to support the notions of the
design method. These tools then provide higher-level constructs and checking to compensate for
deficiencies of the (deliberately impoverished) implementation language. Thus, the design method
becomes a special-purpose and typically corporate-owned programming language. Such program-
ming languages are in most contexts poor substitutes for a widely available, general-purpose pro-
gramming language supported by suitable design tools.

The most common reason for ignoring classes in design is simple inertia. Traditional program-
ming languages don’t support the notion of a class, and traditional design techniques reflect this
deficiency. The most common focus of design has been the decomposition of the problems into a
set of procedures performing required actions. This notion, called procedural programming in
Chapter 2, is in the context of design often calledfunctional decomposition. A common question
is, ‘‘Can we use C++ together with a design method based on functional decomposition?’’ You
can, but you will most likely end up using C++ as simply a better C and will suffer the problems
mentioned previously. This may be acceptable in a transition period, for already completed
designs, and for subsystems in which classes do not appear to offer significant benefits (given the
experience of the individuals involved at this time). For the longer term and in general, however,
the policy against large-scale use of classes implied by functional decomposition is not compatible
with effective use of C++ or any other language that has support for abstraction.

The procedure-oriented and object-oriented views of programming are fundamentally different
and typically lead to radically different solutions to the same problem. This observation is as true
for the design phase as it is for the implementation phase: you can focus the design on the actions
taken or on the entities represented, but not simultaneously on both.

So why prefer ‘‘object-oriented design’’ over the traditional design methods based on func-
tional decomposition? A first-order answer is that functional decomposition leads to insufficient
data abstraction. From this, it follows that the resulting design is

– less resilient to change,
– less amenable to tools,
– less suited for parallel development, and
– less suited for concurrent execution.

The problem is that functional decomposition causes interesting data to become global because
when a system is structured as a tree of functions, any data accessed by two functions must be glo-
bal to both. This ensures that ‘‘interesting’’ data bubbles up toward the root of the tree as more and
more functions require access to it (as ever in computing, trees grow from the root down). Exactly
the same process can be seen in single-rooted class hierarchies, in which ‘‘interesting’’ data and
functions tend to bubble up toward a root class (§24.4). Focussing on the specification of classes
and the encapsulation of data addresses this problem by making the dependencies between different
parts of a program explicit and tractable. More important, though, it reduces the number of depen-
dencies in a system by improving locality of reference to data.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.2.1 Ignoring Classes 727

However, some problems are best solved by writing a set of procedures. The point of an
‘‘object-oriented’’ approach to design is not that there should never be any nonmember functions in
a program or that no part of a system may be procedure-oriented. Rather, the key point is to decou-
ple different parts of a program to better reflect the concepts of the application. Typically, that is
best done when classes, not functions, are the primary focus on the design effort. The use of a pro-
cedural style should be a conscious decision and not simply a default. Both classes and procedures
should be used appropriately relative to the application and not just as artifacts of an inflexible
design method.

24.2.2 Avoiding Inheritance [lang.avoid.hier]

Consider design that avoids inheritance. The resulting programs simply fail to take advantage of a
key C++ feature, while still reaping many benefits of C++ compared to C, Pascal, Fortran, COBOL,
etc. Common reasons for doing this– apart from inertia– are claims that ‘‘inheritance is an imple-
mentation detail,’’ ‘‘inheritance violates information hiding,’’ and ‘‘inheritance makes cooperation
with other software harder.’’

Considering inheritance merely an implementation detail ignores the way that class hierarchies
can directly model key relationships between concepts in the application domain. Such relation-
ships should be explicit in the design to allow designers to reason about them.

A strong case can be made for excluding inheritance from the parts of a C++ program that must
interface directly with code written in other languages. This is, however,not a sufficient reason for
avoiding the use of inheritance throughout a system; it is simply a reason for carefully specifying
and encapsulating a program’s interface to ‘‘the outer world.’’ Similarly, worries about compro-
mising information hiding through the use of inheritance (§24.3.2.1) are a reason to be careful with
the use of virtual functions and protected members (§15.3). They are not a reason for general
avoidance.

In many cases, there is no real advantage to be gained from inheritance. However, in a large
project a policy of ‘‘no inheritance’’ will result in a less comprehensible and less flexible system in
which inheritance is ‘‘faked’’ using more traditional language and design constructs. Further, I
suspect that despite such a policy, inheritance will eventually be used anyway because C++ pro-
grammers will find convincing arguments for inheritance-based designs in various parts of the sys-
tem. Therefore, a ‘‘no inheritance’’ policy will ensure only that a coherent overall architecture will
be missing and will restrict the use of class hierarchies to specific subsystems.

In other words, keep an open mind. Class hierarchies are not an essential part of every good
program, but in many cases they can help in both the understanding of the application and the
expression of a solution. The fact that inheritance can be misused and overused is a reason for cau-
tion; it is a not reason for prohibition.

24.2.3 Ignoring Static Type Checking [lang.type]

Consider design that ignores static type checking. Commonly stated reasons to ignore static type
checking in the design phase are that ‘‘types are an artifact of the programming language,’’ that ‘‘it
is more natural to think about objects without bothering about types,’’ and that ‘‘static type check-
ing forces us to think about implementation issues too early.’’ This attitude is fine as far as it goes
and harmless up to a point. It is reasonable to ignore details of type checking in the design stage,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

728 Design and Programming Chapter 24

and it is often safe to ignore type issues almost completely in the analysis stage and early design
stages. However, classes and class hierarchies are very useful in the design. In particular, they
allow us to be specific about concepts, allow us to be precise about their relationships, and help us
reason about the concepts. As the design progresses, this precision takes the form of increasingly
precise statements about classes and their interfaces.

It is important to realize that precisely-specified and strongly-typed interfaces are a fundamental
design tool. C++ was designed with this in mind. A strongly-typed interface ensures (up to a
point) that only compatible pieces of software can be compiled and linked together and thus allows
these pieces of software to make relatively strong assumptions about each other. These assump-
tions are guaranteed by the type system. The effect of this is to minimize the use of run-time tests,
thus promoting efficiency and causing significant reductions in the integration phase of multiperson
projects. In fact, strong positive experience with integrating systems that provide strongly-typed
interfaces is the reason integration isn’t a major topic of this chapter.

Consider an analogy. In the physical world, we plug gadgets together all the time, and a seem-
ingly infinite number of standards for plugs exists. The most obvious thing about these plugs is
that they are specifically designed to make it impossible to plug two gadgets together unless the
gadgets were designed to be plugged together, and then they can be connected only in the right
way. You cannot plug an electric shaver into a high-power socket. Had you been able to, you
would have ended up with a fried shaver or a fried shavee. Much ingenuity is expended on ensur-
ing that incompatible pieces of hardware cannot be plugged together. The alternative to using
many incompatible plugs is gadgets that protect themselves against undesirable behavior from gad-
gets plugged into their sockets. A surge protector is a good example of this. Because perfect com-
patibility cannot be guaranteed at the ‘‘plug compatibility level,’’ we occasionally need the more
expensive protection of circuitry that dynamically adapts to and/or protects from a range of inputs.

The analogy is almost exact. Static type checking is equivalent to plug compatibility, and
dynamic checking corresponds to protection/adaptation circuitry. If both checks fail– in either the
physical world or the software world– serious damage can result. In large systems, both forms of
checking are used. In the early stages of a design, it may be reasonable simply to say, ‘‘These two
gadgets should be plugged together.’’ However, it soon becomes relevant exactly how they should
be plugged together. What guarantees does the plug provide about behavior? What error condi-
tions are possible? What are the first-order cost estimates?

The use of ‘‘static typing’’ is not limited to the physical world. The use of units (for example,
meters, kilograms, and seconds) to prevent the mixing of incompatible entities is pervasive in phy-
sics and engineering.

In the description of the design steps in §23.4.3, type information enters the picture in Step 2
(presumably after being superficially considered in Step 1) and becomes a major issue in Step 4.

Statically-checked interfaces are the prime vehicle for ensuring cooperation between C++ soft-
ware developed by different groups. The documentation of these interfaces (including the exact
types involved) is the primary means of communication between separate groups of programmers.
These interfaces are one of the most important outputs of the design process and a focus of commu-
nication between designers and programmers.

Ignoring type issues when considering interfaces leads to designs that obscure the structure of
the program and postpone error detection until run time. For example, an interface can be specified
in terms of self-identifying objects:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.2.3 Ignoring Static Type Checking 729

/ / Example assuming dynamic type checking instead of static checking:

S St ta ac ck k s s; / / Stack can hold pointers to objects of any type

v vo oi id d f f()
{

s s. p pu us sh h(n ne ew w S Sa aa ab b9 90 00 0) ;
s s. p pu us sh h(n ne ew w S Sa aa ab b3 37 7B B) ;

s s. p po op p()-> t ta ak ke eo of ff f() ; / / fine: a Saab 37B is a plane
s s. p po op p()-> t ta ak ke eo of ff f() ; / / run-time error: car cannot take off

}

This is a severe underspecification of the interface (ofS St ta ac ck k: : p pu us sh h()) that forces dynamic check-
ing rather than static checking. The stacks s is meant to holdP Pl la an ne es, but that was left implicit in the
code, so it becomes the user’s obligation to make sure the requirement is upheld.

A more precise specification– a template plus virtual functions rather than unconstrained
dynamic type checking– moves error detection from run time to compile time:

S St ta ac ck k<P Pl la an ne e*> s s; / / Stack can hold pointers to Planes

v vo oi id d f f()
{

s s. p pu us sh h(n ne ew w S Sa aa ab b9 90 00 0) ; / / error: a Saab900 is not a Plane
s s. p pu us sh h(n ne ew w S Sa aa ab b3 37 7B B) ;

s s. p po op p()-> t ta ak ke eo of ff f() ; / / fine: a Saab 37B is a plane
s s. p po op p()-> t ta ak ke eo of ff f() ;

}

A similar point is made in §16.2.2. The difference in run time between dynamic checking and
static checking can be significant. The overhead of dynamic checking is usually a factor in the
range of 3 to 10.

One should not go to the other extreme, though. It is not possible to catch all errors by static
checking. For example, even the most thoroughly statically checked program is vulnerable to hard-
ware failures. See also §25.4.1 for an example where complete static checking would be infeasible.
However, the ideal is to have the vast majority of interfaces be statically typed with application-
level types; see §24.4.2.

Another problem is that a design can be perfectly reasonable in the abstract but can cause seri-
ous trouble because it fails to take into account limitations of a basic tool, in this case C++. For
example, a functionf f() that needs to perform an operationt tu ur rn n_ _r ri ig gh ht t() on an argument can do so
only provided all of its arguments are of a common type:

c cl la as ss s P Pl la an ne e {
/ / ...
v vo oi id d t tu ur rn n_ _r ri ig gh ht t() ;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

730 Design and Programming Chapter 24

c cl la as ss s C Ca ar r {
/ / ...
v vo oi id d t tu ur rn n_ _r ri ig gh ht t() ;

};

v vo oi id d f f(X X* p p) / / what type should X be?
{

p p-> t tu ur rn n_ _r ri ig gh ht t() ;
/ / ...

}

Some languages (such as Smalltalk and CLOS) allow two types to be used interchangeably if they
have the same operations by relating every type through a common base and postponing name reso-
lution until run time. However, C++ (intentionally) supports this notion through templates and
compile-time resolution only. A non-template function can accept arguments of two types only if
the two types can be implicitly converted to a common type. Thus, in the previous exampleX X must
be a common base ofP Pl la an ne eandC Ca ar r (e.g., aV Ve eh hi ic cl le eclass).

Typically, examples inspired by notions alien to C++ canbe mapped into C++ by expressing the
assumptions explicitly. For example, givenP Pl la an ne e andC Ca ar r (without a common base), we can still
create a class hierarchy that allows us to pass an object containing aC Ca ar r or a P Pl la an ne e to f f(X X*)
(§25.4.1). However, doing this often requires an undesirable amount of mechanism and cleverness.
Templates are often a useful tool for such concept mappings. A mismatch between design notions
and C++ typically leads to ‘‘unnatural-looking’’ and inefficient code. Maintenance programmers
tend to dislike the non-idiomatic code that arises from such mismatches.

A mismatch between the design technique and the implementation language can be compared to
word-for-word translation between natural languages. For example, English with German grammar
is as awkward as German with English grammar, and both can be close to incomprehensible to
someone fluent in only one of those languages.

Classes in a program are the concrete representation of the concepts of the design. Conse-
quently, obscuring the relationships between the classes obscures the fundamental concepts of the
design.

24.2.4 Avoiding Programming [lang.prog]

Programming is costly and unpredictable compared to many other activities, and the resulting code
is often less than 100% reliable. Programming is labor-intensive and– for a variety of reasons–
most serious project delays manifest themselves by code not being ready to ship. So, why not elim-
inate programming as an activity altogether?

To many managers, getting rid of the arrogant, undisciplined, over-paid, technology-obsessed,
improperly-dressed, etc. programmers† would appear to be a significant added benefit. To a pro-
grammer, this suggestion may sound absurd. However, important problem areas with realistic
alternatives to traditional programming do exist. For specific areas, it is possible to generate code
directly from a high-level specification. In other areas, code can be generated by manipulating
shapes on a screen. For example, useful user interfaces can be constructed by direct manipulation

† Yes, I’m a programmer.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.2.4 Avoiding Programming 731

in a tiny fraction of the time it would take to construct the same interface by writing traditional
code. Similarly, database layouts and the code for accessing data according to such layouts can be
generated from specifications that are far simpler than the code needed to express those operations
directly in C++ or in any other general-purpose programming language. State machines that are
smaller, faster, and more correct than most programmers could produce can be generated from
specifications or by a direct manipulation interface.

These techniques work well in specific areas where there is either a sound theoretical founda-
tion (e.g., math, state machines, and relational databases) or where a general framework exists into
which small application fragments can be embedded (e.g., graphical user interfaces, network simu-
lations, and database schema). The obvious usefulness of these techniques in limited– and typi-
cally crucial– areas can tempt people to think that the elimination of traditional programming by
these techniques is ‘‘just around the corner.’’ It is not. The reason is that expanding specification
techniques outside areas with sound theoretical frameworks implies that the complexity of a
general-purpose programming language would be needed in the specification language. This
defeats the purpose of a clean and well-founded specification language.

It is sometimes forgotten that the framework that allows elimination of traditional programming
in an area is a system or library that has been designed, programmed, and tested in the traditional
way. In fact, one popular use of C++ and the techniques described in this book is to design and
build such systems.

A compromise that provides a small fraction of the expressiveness of a general-purpose lan-
guage is the worst of both worlds when applied outside a restricted application domain. Designers
who stick to a high-level modeling point of view are annoyed by the added complexity and produce
specifications from which horrendous code is produced. Programmers who apply ordinary pro-
gramming techniques are frustrated by the lack of language support and generate better code only
by excessive effort and by abandoning high-level models.

I see no signs that programming as an activity can be successfully eliminated outside areas that
either have well-founded theoretical bases or in which the basic programming is provided by a
framework. In either case, there is a dramatic drop in the effectiveness of the techniques as one
leaves the original framework and attempts more general-purpose work. Pretending otherwise is
tempting and dangerous. Conversely, ignoring the high-level specification techniques and the
direct-manipulation techniques in domains in which they are well-founded and reasonably mature
would be a folly.

Designing tools, libraries, and frameworks is one of the highest forms of design and program-
ming. Constructing a useful mathematically-based model of an application area is one of the high-
est forms of analysis. Thus, providing a tool, language, framework, etc., that makes the result of
such work available to thousands is a way for programmers and designers to escape the trap of
becoming craftsmen of one-of-a-kind artifacts.

It is most important that a specification system or a foundation library be able to interface effec-
tively with a general-purpose programming language. Otherwise, the framework provided is inher-
ently limiting. This implies that specification systems and direct-manipulation systems that gener-
ate code at a suitable high level into an accepted general-purpose programming language have a
great advantage. A proprietary language is a long-term advantage to its provider only. If the code
generated is so low-level that general code added must be written without the benefits of abstrac-
tion, then reliability, maintainability, and economy are lost. In essence, a generation system should

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

732 Design and Programming Chapter 24

be designed to combine the strengths of higher-level specifications and higher-level programming
languages. To exclude one or the other is to sacrifice the interests of system builders to the inter-
ests of tool providers. Successful large systems are multilevel and modular and evolve over time.
Consequently, successful efforts to produce such systems involve a variety of languages, libraries,
tools, and techniques.

24.2.5 Using Class Hierarchies Exclusively [lang.pure]

When we find that something new actually works, we often go a bit overboard and apply it indis-
criminately. In other words, a great solution to some problems often appears to bethe solution to
almost all problems. Class hierarchies and operations that are polymorphic on their (one) object
provide a great solution to many problems. However, not every concept is best represented as a
part of a hierarchy and not every software component is best represented as a class hierarchy.

Why not? A class hierarchy expresses relationships between its classes and a class represents a
concept. Now what is the common relationship between a smile, the driver for my CD-ROM
reader, a recording of Richard Strauss’ Don Juan, a line of text, a satellite, my medical records, and
a real-time clock? Placing them all in a single hierarchy when their only shared property is that
they are programming artifacts (they are all ‘‘objects’’) is of little fundamental value and can cause
confusion (§15.4.5). Forcing everything into a single hierarchy can introduce artificial similarities
and obscure real ones. A hierarchy should be used only if analysis reveals conceptual commonality
or if design and programming discover useful commonality in the structures used to implement the
concepts. In the latter case, we have to be very careful to distinguish genuine commonality (to be
reflected as subtyping by public inheritance) and useful implementation simplifications (to be
reflected as private inheritance; §24.3.2.1).

This line of thinking leads to a program that has several unrelated or weakly-related class hier-
archies, each representing a set of closely related concepts. It also leads to the notion of a concrete
class (§25.2) that is not part of a hierarchy because placing such a class in a hierarchy would com-
promise its performance and its independence of the rest of the system.

To be effective, most critical operations on a class that is part of a class hierarchy must be vir-
tual functions. Furthermore, much of that class’ data must be protected rather than private. This
makes it vulnerable to modification from further derived classes and can seriously complicate test-
ing. Where stricter encapsulation makes sense from a design point of view, non-virtual functions
and private data should be used (§24.3.2.1).

Having one argument of an operation (the one designating ‘‘the object’’) special can lead to
contorted designs. When several arguments are best treated equally, an operation is best repre-
sented as a nonmember function. This does not imply that such functions should be global. In fact,
almost all such free-standing functions should be members of a namespace (§24.4).

24.3 Classes[lang.class]

The most fundamental notion of object-oriented design and programming is that the program is a
model of some aspects of reality. The classes in the program represent the fundamental concepts of
the application and, in particular, the fundamental concepts of the ‘‘reality’’ being modeled. Real-
world objects and artifacts of the implementation are represented by objects of these classes.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3 Classes 733

The analysis of relationships between classes and within parts of a class is central to the design
of a system:

§24.3.2 Inheritance relationships
§24.3.3 Containment relationships
§24.3.5 Use relationships
§24.2.4 Programmed-in relationships
§24.3.7 Relationships within a class

Because a C++ class is a type, classes and the relationships between classes receive significant sup-
port from compilers and are generally amenable to static analysis.

To be relevant in a design, a class doesn’t just have to represent a useful concept; it must also
provide a suitable interface. Basically, the ideal class has a minimal and well-defined dependence
on the rest of the world and presents an interface that exposes the minimal amount of information
necessary to the rest of the world (§24.4.2).

24.3.1 What Do Classes Represent? [lang.what]

There are essentially two kinds of classes in a system:
[1] Classes that directly reflect the concepts in the application domain; that is, concepts that are

used by end-users to describe their problems and solutions
[2] Classes that are artifacts of the implementation; that is, concepts that are used by the design-

ers and programmers to describe their implementation techniques.
Some of the classes that are artifacts of the implementation may also represent real-world entities.
For example, the hardware and software resources of a system provide good candidates for classes
in an application. This reflects the fact that a system can be viewed from several viewpoints. This
implies that one person’s implementation detail is another person’s application. A well-designed
system will contain classes supporting logically separate views of the system. For example:

[1] Classes representing user-level concepts (e.g., cars and trucks)
[2] Classes representing generalizations of the user-level concepts (e.g. vehicles)
[3] Classes representing hardware resources (e.g., a memory management class)
[4] Classes representing system resources (e.g., output streams)
[5] Classes used to implement other classes (e.g., lists, queues, locks)
[6] Built-in data types and control structures.

In larger systems, keeping logically separate types of classes separate and maintaining separation
between several levels of abstraction becomes a challenge. A simple example can be considered to
have three levels of abstraction:

[1+2] Provide an application level view of the system
[3+4] Represent the machine on which the model runs
[5+6] Represent a low-level (programming language) view of the implementation.

The larger the system, the more levels of abstraction are typically needed for the description of the
system and the more difficult it becomes to define and maintain the levels. Note that such levels of
abstraction have direct counterparts in nature and in other types of human constructions. For exam-
ple, a house can be considered as consisting of

[1] atoms;
[2] molecules;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

734 Design and Programming Chapter 24

[3] lumber and bricks;
[4] floors, walls, and ceilings; and
[5] rooms.

As long as these levels of abstraction are kept separate, you can maintain a coherent view of the
house. However, if you mix them, absurdities arise. For example, the statement, ‘‘My house con-
sists of several thousand pounds of carbon, some complex polymers, about 5,000 bricks, two bath-
rooms, and 13 ceilings,’’ is silly. Given the abstract nature of software, the equivalent statement
about a complex system is not always recognized for what it is.

The translation of a concept in the application area into a class in a design is not a simple
mechanical operation. It often requires significant insights. Note that the concepts in an applica-
tion area are themselves abstractions. For example, ‘‘taxpayers,’’ ‘‘monks,’’ and ‘‘employees’’
don’t really exist in nature; such concepts are themselves labels put on individuals to classify them
relative to some system. The real or even the imagined world (literature, especially science fiction)
is sometimes simply a source of ideas for concepts that mutate radically in the transition into
classes. For example, the screen of my PC doesn’t really resemble my desktop despite its being
designed to support the desktop metaphor†, and the windows on my screen bear only the slightest
relation to the contraptions that let drafts into my office. The point about modeling reality is not to
slavishly follow what we see but rather to use it as a starting point for design, a source of inspira-
tion, and an anchor to hold on to when the intangible nature of software threatens to overcome our
ability to understand our programs.

A word of caution: beginners often find it hard to ‘‘find the classes,’’ but that problem is usu-
ally soon overcome without long-term ill effects. Next, however, often follows a phase in which
classes– and their inheritance relationships– seem to multiply uncontrollably. This can cause
long-term problems with the complexity, comprehensibility, and efficiency of the resulting pro-
gram. Not every minute detail needs to be represented by a distinct class, and not every relation-
ship between classes needs to be represented as an inheritance relationship. Try to remember that
the aim of a design is to model a system at anappropriatelevel of detail and atappropriatelevels
of abstraction. Finding a balance between simplicity and generality is not easy.

24.3.2 Class Hierarchies [lang.hier]

Consider simulating the traffic flow of a city to determine the likely times needed for emergency
vehicles to reach their destinations. Clearly, we need to represent cars, trucks, ambulances, fire
engines of various sorts, police cars, busses, etc. Inheritance comes into play because a real-world
concept does not exist in isolation; it exists with numerous relationships to other concepts. Without
understanding these relationships, we cannot understand the concepts. Consequently, a model that
does not represent such relationships does not adequately represent our concepts. That is, in our
programs we need classes to represent concepts, but that is not enough. We also need ways of rep-
resenting relationships between classes. Inheritance is one powerful way of representing hierarchi-
cal relationships directly. In our example, we would probably consider emergency vehicles special
and want also to distinguish between car-like and truck-like vehicles. This would yield a class hier-
archy along these lines:

† I wouldn’t be able to tolerate such a mess on my screen, anyway.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.2 Class Hierarchies 735

V Ve eh hi ic cl le e

C Ca ar r E Em me er rg ge en nc cy y T Tr ru uc ck k

P Po ol li ic ce e_ _c ca ar r A Am mb bu ul la an nc ce e F Fi ir re e_ _e en ng gi in ne e

H Ho oo ok k_ _a an nd d_ _l la ad dd de er r

..

Here,E Em me er rg ge en nc cy y represents the aspects of an emergency vehicle that are relevant to the simulation:
it can violate some traffic rules, has priority in intersections when on an emergency call, it is under
control of a dispatcher, etc.

Here is the C++ version:

c cl la as ss s V Ve eh hi ic cl le e { /* ... */ };
c cl la as ss s E Em me er rg ge en nc cy y { /* ... */ };
c cl la as ss s C Ca ar r : p pu ub bl li ic c V Ve eh hi ic cl le e { /* ... */ };
c cl la as ss s T Tr ru uc ck k : p pu ub bl li ic c V Ve eh hi ic cl le e { /* ... */ };
c cl la as ss s P Po ol li ic ce e_ _c ca ar r : p pu ub bl li ic c C Ca ar r , p pr ro ot te ec ct te ed d E Em me er rg ge en nc cy y { /* ... */ };
c cl la as ss s A Am mb bu ul la an nc ce e : p pu ub bl li ic c C Ca ar r , p pr ro ot te ec ct te ed d E Em me er rg ge en nc cy y { /* ... */ };
c cl la as ss s F Fi ir re e_ _e en ng gi in ne e : p pu ub bl li ic c T Tr ru uc ck k , p pr ro ot te ec ct te ed d E Em me er rg ge en nc cy y { /* ... */ };
c cl la as ss s H Ho oo ok k_ _a an nd d_ _l la ad dd de er r : p pu ub bl li ic c F Fi ir re e_ _e en ng gi in ne e { /* ... */ };

Inheritance is the highest level relationship that can be represented directly in C++ and the one that
figures largest in the early stages of a design. Often there is a choice between using inheritance to
represent a relationship and using membership. Consider an alternative notion of what it means to
be an emergency vehicle: a vehicle is an emergency vehicle if it displays a flashing light. This
would allow a simplification of the class hierarchy by replacing theE Em me er rg ge en nc cy y class by a member
in classV Ve eh hi ic cl le e:

V Ve eh hi ic cl le e { e ep pt tr r }

C Ca ar r T Tr ru uc ck k

P Po ol li ic ce e_ _c ca ar r A Am mb bu ul la an nc ce e F Fi ir re e_ _e en ng gi in ne e

H Ho oo ok k_ _a an nd d_ _l la ad dd de er r

..

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

736 Design and Programming Chapter 24

ClassE Em me er rg ge en nc cy y is now simply used as a member in classes that might need to act as emergency
vehicles:

c cl la as ss s E Em me er rg ge en nc cy y { /* ... */ };
c cl la as ss s V Ve eh hi ic cl le e { p pr ro ot te ec ct te ed d: E Em me er rg ge en nc cy y* e ep pt tr r; /* ... */ }; / / better: provide proper interface to eptr
c cl la as ss s C Ca ar r : p pu ub bl li ic c V Ve eh hi ic cl le e { /* ... */ };
c cl la as ss s T Tr ru uc ck k : p pu ub bl li ic c V Ve eh hi ic cl le e { /* ... */ };
c cl la as ss s P Po ol li ic ce e_ _c ca ar r : p pu ub bl li ic c C Ca ar r { /* ... */ };
c cl la as ss s A Am mb bu ul la an nc ce e : p pu ub bl li ic c C Ca ar r { /* ... */ };
c cl la as ss s F Fi ir re e_ _e en ng gi in ne e : p pu ub bl li ic c T Tr ru uc ck k { /* ... */ };
c cl la as ss s H Ho oo ok k_ _a an nd d_ _l la ad dd de er r : p pu ub bl li ic c F Fi ir re e_ _e en ng gi in ne e { /* ... */ };

Here, a vehicle is an emergency vehicle ifV Ve eh hi ic cl le e: : e ep pt tr r is nonzero. The ‘‘plain’’ cars and trucks
are initialized withV Ve eh hi ic cl le e: : e ep pt tr r zero; the others are initialized withV Ve eh hi ic cl le e: : e ep pt tr r nonzero. For
example:

C Ca ar r: : C Ca ar r() / / Car constructor
{

e ep pt tr r = 0 0;
}

P Po ol li ic ce e_ _c ca ar r: : P Po ol li ic ce e_ _c ca ar r() / / Police_car constructor
{

e ep pt tr r = n ne ew w E Em me er rg ge en nc cy y;
}

Defining things this way enables a simple conversion of an emergency vehicle to an ordinary vehi-
cle and vice versa:

v vo oi id d f f(V Ve eh hi ic cl le e* p p)
{

d de el le et te e p p-> e ep pt tr r;
p p-> e ep pt tr r = 0 0; / / no longer an emergency vehicle

/ / ...

p p-> e ep pt tr r = n ne ew w E Em me er rg ge en nc cy y; / / an emergency vehicle again
}

So, which variant of the class hierarchy is best? The general answer is, ‘‘The program that most
directly models the aspects of the real world that we are interested in is the best.’’ That is, in
choosing between models we should aim for greater realism under the inevitable constraints of effi-
ciency and simplicity. In this case, the easy conversion between ordinary vehicles and emergency
vehicles seems unrealistic to me. Fire engines and ambulances are purpose-built vehicles manned
by trained personnel and operated using dispatch procedures requiring specialized communication
equipment. This view indicates that being an emergency vehicle should be a fundamental concept
and represented directly in the program to improve type checking and other uses of tools. Had we
been modeling a place where the roles of vehicles were less firmly defined– say, an area where
private vehicles were routinely used to carry emergency personnel to accident sites and where com-
munication was primarily based on portable radios– the other way of modeling the system might
have been more appropriate.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.2 Class Hierarchies 737

For people who consider traffic simulations esoteric, it might be worth pointing out that such
tradeoffs between inheritance and membership almost invariably occur in a design. The scrollbar
example in §24.3.3 is an equivalent example.

24.3.2.1 Dependencies within a Class Hierarchy [lang.internal]

Naturally, a derived class depends on its base classes. It is less often appreciated that the opposite
can also be true†. If a class has a virtual function, the class depends on derived classes to imple-
ment part of its functionality whenever a derived class overrides that function. If a member of a
base class itself calls one of the class’ virtual functions, then the base class depends on its derived
classes for its own implementation. Similarly, if a class uses a protected member, then it is again
dependent on its derived classes for its own implementation. Consider:

c cl la as ss s B B {
/ / ...

p pr ro ot te ec ct te ed d:
i in nt t a a;

p pu ub bl li ic c:
v vi ir rt tu ua al l i in nt t f f() ;
i in nt t g g() { i in nt t x x = f f() ; r re et tu ur rn n x x- a a; }

};

What doesg g() do? The answer critically depends on the definition off f() in some derived class.
Here is a version that will ensure thatg g() returns1 1:

c cl la as ss s D D1 1 : p pu ub bl li ic c B B {
i in nt t f f() { r re et tu ur rn n a a+1 1; }

};

and a version that makesg g() write ‘‘H He el ll lo o, w wo or rl ld d! ’’ and return0 0:

c cl la as ss s D D2 2 : p pu ub bl li ic c B B {
i in nt t f f() { c co ou ut t<<" H He el ll lo o, w wo or rl ld d! \ \n n"; r re et tu ur rn n a a; }

};

This example illustrates one of the most important points about virtual functions. Why is it silly?
Why wouldn’t a programmer ever write something like that? The answer is that a virtual function
is part of an interface to a base class, and that class can supposedly be used without knowledge of
the classes derived from it. Consequently, it must be possible to describe the expected behavior of
an object of the base class in such a way that programs can be written without knowledge of the
derived classes. Every class that overrides the virtual function must implement a variant of that
behavior. For example, the virtual functionr ro ot ta at te e() of a S Sh ha ap pe e class rotates a shape. The
r ro ot ta at te e() functions for derived classes such asC Ci ir rc cl le e and T Tr ri ia an ng gl le e must rotate objects of their
respective type; otherwise, a fundamental assumption about classS Sh ha ap pe e is violated. No such
assumption about behavior is made for classB B or its derived classesD D1 1 andD D2 2; thus, the example
is nonsensical. Even the namesB B, D D1 1, D D2 2, f f, andg g were chosen to obscure any possible meanings.

† This observation has been summarized as: ‘‘Insanity is hereditary. You get it from your children.’’

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

738 Design and Programming Chapter 24

The specification of the expected behavior of virtual functions is amajor focus of class design.
Choosing good names for classes and functions is important– and not always easy.

Is a dependency on unknown (possibly yet unwritten) derived classes good or bad? Naturally,
that depends on the intent of the programmer. If the intent is to isolate a class from all external
influences so that it can be proven to behave in a specific way, then protected members and virtual
functions are best avoided. If, however, the intent is to provide a framework into which a later pro-
grammer (such as the same programmer a few weeks later) can add code, then virtual functions are
often an elegant mechanism for achieving this; and protected member functions have proven conve-
nient for supporting such use. This technique is used in the stream I/O library (§21.6) and was
illustrated by the final version of theI Iv va al l_ _b bo ox x hierarchy (§12.4.2).

If a v vi ir rt tu ua al l function is meant to be used only indirectly by a derived class, it can be leftp pr ri iv va at te e.
For example, consider a simple buffer template:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s B Bu uf ff fe er r {
p pu ub bl li ic c:

v vo oi id d p pu ut t(T T) ; / / call overflow(T) if buffer is full
T T g ge et t() ; / / call underflow() if buffer is empty
/ / ...

p pr ri iv va at te e:
v vi ir rt tu ua al l i in nt t o ov ve er rf fl lo ow w(T T) ;
v vi ir rt tu ua al l i in nt t u un nd de er rf fl lo ow w() ;
/ / ...

};

Thep pu ut t() andg ge et t() functions callv vi ir rt tu ua al l functionso ov ve er rf fl lo ow w() andu un nd de er rf fl lo ow w() , respectively.
A user can now implement a variety of buffer types to suit a variety of needs by overridingo ov ve er r- -
f fl lo ow w() andu un nd de er rf fl lo ow w() :

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s C Ci ir rc cu ul la ar r_ _b bu uf ff fe er r : p pu ub bl li ic c B Bu uf ff fe er r<T T> {
i in nt t o ov ve er rf fl lo ow w(T T) ; / / wrap around if full
i in nt t u un nd de er rf fl lo ow w() ;
/ / ...

};

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s E Ex xp pa an nd di in ng g_ _b bu uf ff fe er r : p pu ub bl li ic c B Bu uf ff fe er r<T T> {
i in nt t o ov ve er rf fl lo ow w(T T) ; / / increase buffer size if full
i in nt t u un nd de er rf fl lo ow w() ;
/ / ...

};

Only if a derived class needed to callo ov ve er rf fl lo ow w() andu un nd de er rf fl lo ow w() directly would these functions
need to bep pr ro ot te ec ct te ed d rather thanp pr ri iv va at te e.

24.3.3 Containment Relationships [lang.contain]

Where containment is used, there are two major alternatives for representing an object of a classX X:
[1] Declare a member of typeX X.
[2] Declare a member of typeX X* or typeX X&.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.3 Containment Relationships 739

If the value of the pointer is never changed, these alternatives are equivalent, except for efficiency
issues and the way you write constructors and destructors:

c cl la as ss s X X {
p pu ub bl li ic c:

X X(i in nt t) ;
/ / ...

};

c cl la as ss s C C {
X X a a;
X X* p p;
X X& r r;

p pu ub bl li ic c:
C C(i in nt t i i, i in nt t j j, i in nt t k k) : a a(i i) , p p(n ne ew w X X(j j)) , r r(* n ne ew w X X(k k)) { }
~C C() { d de el le et te e p p; d de el le et te e &r r; }

};

In such cases, membership of the object itself, as in the case ofC C: : a a, is usually preferable because
it is the most efficient in time, space, and keystrokes. It is also less error-prone because the connec-
tion between the contained object and the containing object is covered by the rules of construction
and destruction (§10.4.1, §12.2.2, §14.4.1). However, see also §24.4.2 and §25.7.

The pointer solution should be used when there is a need to change the pointer to the ‘‘con-
tained’’ object during the life of the ‘‘containing’’ object. For example:

c cl la as ss s C C2 2 {
X X* p p;

p pu ub bl li ic c:
C C2 2(i in nt t i i) : p p(n ne ew w X X(i i)) { }
~C C2 2() { d de el le et te e p p; }

X X* c ch ha an ng ge e(X X* q q)
{

X X* t t = p p;
p p = q q;
r re et tu ur rn n t t;

}
};

Another reason for using a pointer member is to allow the ‘‘contained’’ member to be supplied as
an argument:

c cl la as ss s C C3 3 {
X X* p p;

p pu ub bl li ic c:
C C3 3(X X* q q) : p p(q q) { }
/ / ...

};

By having objects contain pointers to other objects, we create what are often calledobject
hierarchies. This is an alternative and complementary technique to using class hierarchies. As
shown in the emergency vehicle example in §24.3.2, it is often a tricky design issue to choose

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

740 Design and Programming Chapter 24

between representing a property of a class as a base class or representing it as a member. A need to
override is an indication that the former is the better choice. Conversely, a need to be able to allow
the property to be represented by a variety of types is an indication that the latter is the better
choice. For example:

c cl la as ss s X XX X : p pu ub bl li ic c X X { /* ... */ };

c cl la as ss s X XX XX X : p pu ub bl li ic c X X { /* ... */ };

v vo oi id d f f()
{

C C3 3* p p1 1 = n ne ew w C C3 3(n ne ew w X X) ; / / C3 ‘‘contains’’ an X
C C3 3* p p2 2 = n ne ew w C C3 3(n ne ew w X XX X) ; / / C3 ‘‘contains’’ an XX
C C3 3* p p3 3 = n ne ew w C C3 3(n ne ew w X XX XX X) ; / / C3 ‘‘contains’’ an XXX
/ / ...

}

This could not be modeled by a derivation ofC C3 3 from X X or by C C3 3 having a member of typeX X,
because the exact type of a member needs to be used. This is important for classes with virtual
functions, such as a shape class (§2.6.2) or an abstract set class (§25.3).

References can be used to simplify classes based on pointer membership when only one object
is referred to during the life of the containing object. For example:

c cl la as ss s C C4 4 {
X X& r r;

p pu ub bl li ic c:
C C4 4(X X& q q) : r r(q q) { }
/ / ...

};

Pointer and reference members are also needed when an object needs to be shared:

X X* p p = n ne ew w X XX X;
C C4 4 o ob bj j1 1(* p p) ;
C C4 4 o ob bj j2 2(* p p) ; / / obj1 and obj2 now share the new XX

Naturally, management of shared objects requires extra care– especially in concurrent systems.

24.3.4 Containment and Inheritance [lang.cont.hier]

Given the importance of inheritance relationships, it is not surprising that they are frequently
overused and misunderstood. When a classD D is publicly derived from another classB B, it is often
said that aD D is aB B:

c cl la as ss s B B { /* ... */ };
c cl la as ss s D D : p pu ub bl li ic c B B { /* ... */ }; / / D is a kind of B

Alternatively, this is expressed by saying that inheritance is anis-a relationship or– somewhat
more precisely– that aD D is a kind of B B. In contrast, a classD D that has a member of another classB B
is often said tohaveaB B or containaB B. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.4 Containment and Inheritance 741

c cl la as ss s D D { / / a D contains a B
p pu ub bl li ic c:

B B b b;
/ / ...

};

Alternatively, this is expressed by saying that membership is ahas-arelationship.
For given classesB B andD D, how do we choose between inheritance and membership? Consider

an A Ai ir rp pl la an ne e and anE En ng gi in ne e. Novices often wonder if it might be a good idea to derive classA Ai ir r- -
p pl la an ne e from E En ng gi in ne e. This is a bad idea, though, because anA Ai ir rp pl la an ne e is not anE En ng gi in ne e; it hasan
E En ng gi in ne e. One way of seeing this is to consider if anA Ai ir rp pl la an ne e might have two or more engines.
Because that seems feasible (even if we are considering a program in which all of ourA Ai ir rp pl la an ne es
will be single-engine ones), we should use membership rather than inheritance. The question ‘‘can
it have two?’’ is useful in many cases when there is doubt. As usual, it is the intangible nature of
software that makes this discussion relevant. Had all classes been as easy to visualize asA Ai ir rp pl la an ne e
andE En ng gi in ne e, trivial mistakes like deriving anA Ai ir rp pl la an ne e from anE En ng gi in ne e would be easily avoided.
Such mistakes are, however, quite frequent– particularly among people who consider derivation as
simply another mechanism for combining programming-language-level constructs. Despite the
conveniences and shorthand notation that derivation provides, it should be used almost exclusively
to express relationships that are well defined in a design. Consider:

c cl la as ss s B B {
p pu ub bl li ic c:

v vi ir rt tu ua al l v vo oi id d f f() ;
v vo oi id d g g() ;

};

c cl la as ss s D D1 1 { / / a D1 contains a B
p pu ub bl li ic c:

B B b b;
v vo oi id d f f() ; / / does not override b.f()

};

v vo oi id d h h1 1(D D1 1* p pd d)
{

B B* p pb b = p pd d; / / error: no D1* to B* conversion
p pb b = &p pd d-> b b;
p pb b-> g g() ; / / calls B::g()
p pd d-> g g() ; / / error: D1 doesn’t have a member g()
p pd d-> b b. g g() ;
p pb b-> f f() ; / / calls B::f (not overridden by D1::f())
p pd d-> f f() ; / / calls D1::f()

}

Note that there is no implicit conversion from a class to one of its members and that a class contain-
ing a member of another class does not override the virtual functions of that member. This con-
trasts with the public derivation case:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

742 Design and Programming Chapter 24

c cl la as ss s D D2 2 : p pu ub bl li ic c B B { / / a D2 is a B
p pu ub bl li ic c:

v vo oi id d f f() ; / / overrides B::f()
};

v vo oi id d h h2 2(D D2 2* p pd d)
{

B B* p pb b = p pd d; / / ok: implicit D2* to B* conversion
p pb b-> g g() ; / / calls B::g()
p pd d-> g g() ; / / calls B::g()
p pb b-> f f() ; / / virtual call: invokes D2::f()
p pd d-> f f() ; / / invokes D2::f()

}

The notational convenience provided by theD D2 2 example compared to theD D1 1 example is a factor
that can lead to overuse. It should be remembered, though, that there is a cost of increased depen-
dency betweenB B andD D2 2 to be paid for that notational convenience (see §24.3.2.1). In particular, it
is easy to forget the implicit conversion fromD D2 2 to B B. Unless such conversions are an acceptable
part of the semantics of your classes,public derivation is to be avoided. When a class is used to
represent a concept and derivation is used to represent anis-a relationship, such conversions are
most often exactly what is desired.

There are cases in which you would like inheritance but cannot afford to have the conversion
happen. Consider writing a classC Cf fi ie el ld d (controlled field) that– in addition to whatever else it does
– provides run-time access control for another classF Fi ie el ld d. At first glance, definingC Cf fi ie el ld d by
deriving it fromF Fi ie el ld d seems just right:

c cl la as ss s C Cf fi ie el ld d : p pu ub bl li ic c F Fi ie el ld d { /* ... */ };

This expresses the notion that aC Cf fi ie el ld d really is a kind ofF Fi ie el ld d, allows notational convenience
when writing aC Cf fi ie el ld d function that uses a member of theF Fi ie el ld d part of theC Cf fi ie el ld d, and– most
importantly– allows aC Cf fi ie el ld d to overrideF Fi ie el ld d virtual functions. The snag is that theC Cf fi ie el ld d* to
F Fi ie el ld d* conversion implied in the declaration ofC Cf fi ie el ld d defeats all attempts to control access to the
F Fi ie el ld d:

v vo oi id d g g(C Cf fi ie el ld d* p p)
{

* p p = " a as sd df f"; / / access to Field controlled by Cfield’s assignment operator:
/ / p– >Cfield::operator=("asdf")

F Fi ie el ld d* q q = p p; / / implicit Cfield* to Field* conversion
* q q = " a as sd df f"; / / OOPS! no control

}

A solution would be to defineC Cf fi ie el ld d to have aF Fi ie el ld d as a member, but doing that precludesC Cf fi ie el ld d
from overridingF Fi ie el ld d virtual functions. A better solution would be to useprivatederivation:

c cl la as ss s C Cf fi ie el ld d : p pr ri iv va at te e F Fi ie el ld d { /* ... */ };

From a design perspective, private derivation is equivalent to containment, except for the (occa-
sionally essential) issue of overriding. An important use of this is the technique of deriving a class

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.4 Containment and Inheritance 743

publicly from an abstract base class that defines an interface and using private or protected deriva-
tion from a concrete class to provide an implementation (§2.5.4, §12.3, §25.3). Because the inheri-
tance implied inprivateandprotectedderivation is an implementation detail that is not reflected in
the type of the derived class, it is sometimes calledimplementation inheritanceand contrasted to
public derivation, whereby the interface of the base class is inherited and the implicit conversion to
the base type is allowed. The latter is sometimes referred to assubtyping, or interface inheritance.

Another way of stating this is to point out that an object of a derived class should be usable
wherever an object of its public base class is. This is sometimes called ‘‘the Liskov Substitution
Principle’’ (§23.6[Liskov,1987]). The public/protected/private distinction supports this directly for
polymorphic types manipulated through pointers and references.

24.3.4.1 Member/Hierarchy Tradeoffs [lang.mem]

To further examine the design choices involving containment and inheritance, consider how to rep-
resent a scrollbar in an interactive graphics system and how to attach a scrollbar to a window. We
need two kinds of scrollbars: horizontal and vertical. We can represent this either by two types–
H Ho or ri iz zo on nt ta al l_ _s sc cr ro ol ll lb ba ar r andV Ve er rt ti ic ca al l_ _s sc cr ro ol ll lb ba ar r – or by a singleS Sc cr ro ol ll lb ba ar r type that takes an argu-
ment that says whether its layout is horizontal or vertical. The former choice implies the need for a
third type, the plainS Sc cr ro ol ll lb ba ar r, as the base class of the two specific scollbar types. The latter choice
implies the need for an extra argument to the scrollbar type and the need to choose values to repre-
sent the two kinds of scrollbars. For example:

e en nu um m O Or ri ie en nt ta at ti io on n { h ho or ri iz zo on nt ta al l, v ve er rt ti ic ca al l };

Once a choice is made, it determines the kind of change needed to extend the system. In the scroll-
bar example, we might want to introduce a third type of scrollbar. We may originally have thought
that there could be only two kinds of scrollbars (‘‘after all, a window has only two dimensions’’).
However, in this case– as in most– there are possible extensions that surface as redesign issues.
For example, one might like to use a ‘‘navigation button’’ instead of two scrollbars. Such a button
would cause scrolling in different directions depending on where a user pressed it. Pressing the
middle of the top would cause ‘‘scrolling up,’’ pressing the middle left would cause ‘‘scrolling
left,’’ while pressing the top-left corner would cause ‘‘scrolling up and left.’’ Such buttons are not
uncommon. They can be seen as a refinement of the notion of a scrollbar that is particularly suited
to applications in which the information scrolled over isn’t plain text but rather more general sorts
of pictures.

Adding a navigation button to a program with a three-scrollbar class hierarchy involves adding
a new class, but it requires no changes to the old scrollbar code:

S Sc cr ro ol ll lb ba ar r

H Ho or ri iz zo on nt ta al l_ _s sc cr ro ol ll lb ba ar r V Ve er rt ti ic ca al l_ _s sc cr ro ol ll lb ba ar r N Na av vi ig ga at ti io on n_ _b bu ut tt to on n

..

This is the nice aspect of the ‘‘hierarchical’’ solution.
Passing the orientation of the scrollbar as an argument implies the presence of type fields in the

scrollbar objects and the use of switch statements in the code of the scrollbar member functions.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

744 Design and Programming Chapter 24

That is, we are facing a tradeoff between expressing this aspect of the structure of the system in
terms of declarations or in terms of code. The former increases the degree of static checking and
the amount of information on which tools have to work. The latter postpones decisions to run time
and allows changes to be made by modifying individual functions without affecting the overall
structure of the system as seen by the type checker and other tools. In most situations, I recom-
mend using a class hierarchy to directly model hierarchical relationships of the concepts.

The single scrollbar type solution makes it easy to store and pass information specifying a kind
of scrollbar:

v vo oi id d h he el lp pe er r(O Or ri ie en nt ta at ti io on n o oo o)
{

/ / ...
p p = n ne ew w S Sc cr ro ol ll lb ba ar r(o oo o) ;
/ / ...

}

v vo oi id d m me e()
{

h he el lp pe er r(h ho or ri iz zo on nt ta al l) ;
/ / ...

}

This representation would also make it easy to re-orient a scrollbar at run time. This is unlikely to
be of major importance in the case of scrollbars, but it can be important for equivalent examples.
The point here is that there are always tradeoffs, and the tradeoffs are often nontrivial.

24.3.4.2 Containment/Hierarchy Tradeoffs [lang.tradeoff]

Now consider how to attach a scrollbar to a window. If we consider aW Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r as
something that is both aW Wi in nd do ow w and aS Sc cr ro ol ll lb ba ar r, we get something like:

c cl la as ss s W Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r : p pu ub bl li ic c W Wi in nd do ow w, p pu ub bl li ic c S Sc cr ro ol ll lb ba ar r {
/ / ...

};

This allows anyW Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r to act like aS Sc cr ro ol ll lb ba ar r and like aW Wi in nd do ow w, but it con-
strains us to using the single scrollbar-type solution.

On the other hand, if we consider aW Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r as aW Wi in nd do ow w that has aS Sc cr ro ol ll lb ba ar r,
we get something like:

c cl la as ss s W Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r : p pu ub bl li ic c W Wi in nd do ow w {
/ / ...
S Sc cr ro ol ll lb ba ar r* s sb b;

p pu ub bl li ic c:
W Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r(S Sc cr ro ol ll lb ba ar r* p p, /* ... */) : W Wi in nd do ow w(/* ...*/) , s sb b(p p) { /* ... */ }
/ / ...

};

This allows us to use the scrollbar-hierarchy solution. Passing the scrollbar as an argument allows
the window to be oblivious to the exact type of its scrollbar. We could even pass aS Sc cr ro ol ll lb ba ar r

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.4.2 Containment/Hierarchy Tradeoffs 745

around the way we passed anO Or ri ie en nt ta at ti io on n (§24.3.4.1). If we need to haveW Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r
act as a scrollbar, we can add a conversion operator:

W Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r: : o op pe er ra at to or r S Sc cr ro ol ll lb ba ar r&()
{

r re et tu ur rn n * s sb b;
}

My preference is to have a window contain a scrollbar. I find it easier to think of a windowhaving
a scrollbar than of a windowbeinga scrollbar in addition to being a window. In fact, my favorite
design strategy involves a scrollbar being a special kind of window, which is then contained in a
window that needs scrollbar services. This strategy forces the decision in favor of the containment
solution. An alternative argument for the containment solution comes from the ‘‘can it have two?’’
rule of thumb (§24.3.4). Because there is no logical reason why a window shouldn’t have two
scrollbars (in fact, many windows do have both a horizontal and a vertical scrollbar),
W Wi in nd do ow w_ _w wi it th h_ _s sc cr ro ol ll lb ba ar r ought not be derived fromS Sc cr ro ol ll lb ba ar r.

Note that it is not possible to derive from an unknown class. The exact type of a base class
must be known at compile time (§12.2). On the other hand, if an attribute of a class is passed as an
argument to its constructor, then somewhere in the class there must be a member that represents it.
However, if that member is a pointer or a reference we can pass an object of a class derived from
the class specified for the member. For example, TheS Sc cr ro ol ll lb ba ar r* members sb b in the previous exam-
ple can point to aS Sc cr ro ol ll lb ba ar r of a type, such asN Na av vi ig ga at ti io on n_ _b bu ut tt to on n, that is unknown to users of the
S Sc cr ro ol ll lb ba ar r* .

24.3.5 Use Relationships [lang.use]

Knowledge of what other classes are used by a class and in which ways is often critical in order to
express and understand a design. Such dependencies are supported only implicitly by C++. A class
can use only names that have been declared (somewhere), but a list of names used is not provided
in the C++ source. Tools (or in the absence of suitable tools, careful reading) are necessary for
extracting such information. The ways a classX X can use another classY Y can be classified in several
ways. Here is one way:

– X X uses the nameY Y.
– X X usesY Y.

– X X calls aY Y member function.
– X X reads a member ofY Y.
– X X writes a member ofY Y.

– X X creates aY Y.
– X X allocates ana au ut to o or s st ta at ti ic c variable ofY Y.
– X X creates aY Y usingn ne ew w.

– X X takes the size of aY Y.
Taking the size of an object is classified separately because doing so requires knowledge of the
class declaration, but doesn’t depend on the constructors. NamingY Y is also classified as a separate
dependency because just doing that– for example, in declaring aY Y* or mentioningY Y in the decla-
ration of an external function– doesn’t require access to the declaration ofY Y at all (§5.7):

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

746 Design and Programming Chapter 24

c cl la as ss s Y Y; / / Y is the name of a class
Y Y* p p;
e ex xt te er rn n Y Y f f(c co on ns st t Y Y&) ;

It is often important to distinguish between the dependencies of a class’ interface (the class declara-
tion) and the dependencies of the class implementation (the class member definitions). In a well-
designed system, the latter typically have many more dependencies, and those are far less interest-
ing to a user than are the dependencies of the class declaration (§24.4.2). Typically, a design aims
at minimizing the dependencies of an interface because they become dependencies of the class’
users (§8.2.4.1, §9.3.2, §12.4.1.1, §24.4) .

C++ doesn’t require the implementer of a class to specify in detail what other classes are used
and how. One reason for this is that most significant classes depend on so many other classes, that
an abbreviation of the list of those classes, such as an#i in nc cl lu ud de e directive, would be necessary for
readability. Another is that the classification and granularity of such dependencies doesn’t appear
to be a programming language issue. Rather, exactly howusesdependencies are viewed depends
on the purpose of the designer, programmer, or tool. Finally, which dependencies are interesting
may also depend on details of the language implementation.

24.3.6 Programmed-In Relationships [lang.prog]

A programming language cannot– and should not– directly support every concept from every
design method. Similarly, a design language should not support every feature of every program-
ming language. A design language should be richer and less concerned with details than a language
suitable for systems programming must be. Conversely, a programming language must be able to
support a variety of design philosophies, or it will fail for lack of adaptability.

When a programming language does not provide facilities for representing a concept from the
design directly, a conventional mapping between the design construct and the programming lan-
guage constructs should be used. For example, a design method may have a notion of delegation.
That is, the design can specify that every operation not defined for a classA A should be serviced by
an object of a classB B pointed to by a pointerp p. C++ cannot express this directly. However, the
expression of that idea in C++ is so stylized that one could easily imagine a program generating the
code. Consider:

c cl la as ss s B B {
/ / ...
v vo oi id d f f() ;
v vo oi id d g g() ;
v vo oi id d h h() ;

};

c cl la as ss s A A {
B B* p p;
/ / ...
v vo oi id d f f() ;
v vo oi id d f ff f() ;

};

A specification thatA A delegated toB B throughA A: : p p would result in code like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.6 Programmed-In Relationships 747

c cl la as ss s A A {
B B* p p; / / delegation through p
/ / ...
v vo oi id d f f() ;
v vo oi id d f ff f() ;
v vo oi id d g g() { p p-> g g() ; } / / delegate g()
v vo oi id d h h() { p p-> h h() ; } / / delegate h()

};

It is fairly obvious to a programmer what is going on here, but simulating a design concept in code
is clearly inferior to a one-to-one correspondence. Such ‘‘programmed-in’’ relationships are not as
well ‘‘understood’’ by the programming language and are therefore less amenable to manipulation
by tools. For example, standard tools would not recognize the ‘‘delegation’’ fromA A to B B through
A A: : p p as different from any other use of aB B* .

A one-to-one mapping between the design concepts and the programming language concepts
should be used wherever possible. A one-to-one mapping ensures simplicity and guarantees that
the design really is reflected in the program so that programmers and tools can take advantage of it.

Conversion operators provide a language mechanism for expressing a class of programmed-in
relationships. That is, a conversion operatorX X: : o op pe er ra at to or r Y Y() specifies that wherever aY Y is
acceptable, anX X can be used (§11.4.1). A constructorY Y: : Y Y(X X) expresses the same relationship.
Note that a conversion operator (and a constructor) produces a new object rather than changing the
type of an existing object. Declaring a conversion function toY Y is simply a way of requesting
implicit application of a function that returns aY Y. Because the implicit application of conversions
defined by constructors and conversion operators can be treacherous, it is sometimes useful to ana-
lyze them separately in a design.

It is important to ensure that the conversion graphs for a program do not contain cycles. If they
do, the resulting ambiguity errors will render the types involved in the cycles unusable in combina-
tion. For example:

c cl la as ss s R Ra at ti io on na al l;

c cl la as ss s B Bi ig g_ _i in nt t {
p pu ub bl li ic c:

f fr ri ie en nd d B Bi ig g_ _i in nt t o op pe er ra at to or r+(B Bi ig g_ _i in nt t, B Bi ig g_ _i in nt t) ;
o op pe er ra at to or r R Ra at ti io on na al l() ;
/ / ...

};

c cl la as ss s R Ra at ti io on na al l {
p pu ub bl li ic c:

f fr ri ie en nd d R Ra at ti io on na al l o op pe er ra at to or r+(R Ra at ti io on na al l, R Ra at ti io on na al l) ;
o op pe er ra at to or r B Bi ig g_ _i in nt t() ;
/ / ...

};

TheR Ra at ti io on na al l andB Bi ig g_ _i in nt t types will not interact as smoothly as one might have hoped:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

748 Design and Programming Chapter 24

v vo oi id d f f(R Ra at ti io on na al l r r, B Bi ig g_ _i in nt t i i)
{

g g(r r+i i) ; / / error, ambiguous: operator+(r,Rational(i)) or operator+(Big_int(r),i) ?
g g(r r+R Ra at ti io on na al l(i i)) ; / / one explicit resolution
g g(B Bi ig g_ _i in nt t(r r)+ i i) ; / / another explicit resolution

}

One can avoid such ‘‘mutual’’ conversions by making at least some of them explicit. For example,
the B Bi ig g_ _i in nt t to R Ra at ti io on na al l conversion might have been defined asm ma ak ke e_ _R Ra at ti io on na al l() instead of as a
conversion operator, and the addition would have been resolved tog g(B Bi ig g_ _i in nt t(r r) , i i) . Where
‘‘mutual’’ conversion operators cannot be avoided, one must resolve the resulting clashes either by
explicit conversions as shown or by defining many separate versions of binary operators, such as+.

24.3.7 Relationships within a Class [lang.within]

A class can conceal just about any implementation detail and just about any amount of dirt– and
sometimes it has to. However, the objects of most classes do themselves have a regular structure
and are manipulated in ways that are fairly easy to describe. An object of a class is a collection of
other sub-objects (often called members), and many of these are pointers and references to other
objects. Thus, an object can be seen as the root of a tree of objects and the objects involved can be
seen as constituting an ‘‘object hierarchy’’ that is complementary to the class hierarchy, as
described in §24.3.2.1. For example, consider a very simpleS St tr ri in ng g:

c cl la as ss s S St tr ri in ng g {
i in nt t s sz z;
c ch ha ar r* p p;

p pu ub bl li ic c:
S St tr ri in ng g(c co on ns st t c ch ha ar r* q q) ;
~S St tr ri in ng g() ;
/ / ...

};

A S St tr ri in ng g object can be represented graphically like this:

i in nt t s sz z;
c ch ha ar r* p p;

... elements ...\0
. .

24.3.7.1 Invariants [lang.invariant]

The values of the members and the objects referred to by members are collectively called thestate
of the object (or simply, itsvalue). A major concern of a class design is to get an object into a
well-defined state (initialization/construction), to maintain a well-defined state as operations are
performed, and finally to destroy the object gracefully. The property that makes the state of an
object well-defined is called itsinvariant.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.7.1 Invariants 749

Thus, the purpose of initialization is to put an object into a state for which the invariant holds.
Typically, this is done by a constructor. Each operation on a class can assume it will find the
invariant true on entry and must leave the invariant true on exit. The destructor finally invalidates
the invariant by destroying the object. For example, the constructorS St tr ri in ng g: : S St tr ri in ng g(c co on ns st t c ch ha ar r*)
ensures thatp p points to an array of at leasts sz z+1 1 elements, wheres sz z has a reasonable value and
p p[s sz z]== 0 0. Every string operation must leave that assertion true.

Much of the skill in class design involves making a class simple enough to make it possible to
implement it so that it has a useful invariant that can be expressed simply. It is easy enough to state
that every class needs an invariant. The hard part is to come up with a useful invariant that is easy
to comprehend and that doesn’t impose unacceptable constraints on the implementer or on the effi-
ciency of the operations. Note that ‘‘invariant’’ here is used to denote a piece of code that can
potentially be run to check the state of an object. A stricter and more mathematical notion is clearly
possible and, in some contexts, more appropriate. An invariant, as discussed here, is a practical–
and therefore typically economical and logically incomplete– check on an object’s state.

The notion of invariants has its origins in the work of Floyd, Naur, and Hoare on preconditions
and postconditions and is present in essentially all work on abstract data types and program verifi-
cation done over the last 30 years or so. It is also a staple of C debugging.

Typically, the invariant is not maintained during the execution of a member function. Functions
that may be called while the invariant is invalid should not be part of the public interface. Private
and protected functions can serve that purpose.

How can we express the notion of an invariant in a C++ program? A simple way is to define an
invariant-checking function and insert calls to it in the public operations. For example:

c cl la as ss s S St tr ri in ng g {
i in nt t s sz z;
c ch ha ar r* p p;

p pu ub bl li ic c:
c cl la as ss s R Ra an ng ge e {}; / / exception classes
c cl la as ss s I In nv va ar ri ia an nt t {};

e en nu um m { T TO OO O_ _L LA AR RG GE E = 1 16 60 00 00 0 }; / / length limit

v vo oi id d c ch he ec ck k() ; / / invariant check

S St tr ri in ng g(c co on ns st t c ch ha ar r* q q) ;
S St tr ri in ng g(c co on ns st t S St tr ri in ng g&) ;
~S St tr ri in ng g() ;

c ch ha ar r& o op pe er ra at to or r[](i in nt t i i) ;
i in nt t s si iz ze e() { r re et tu ur rn n s sz z; }

/ / ...
};

v vo oi id d S St tr ri in ng g: : c ch he ec ck k()
{

i if f (p p==0 0 || s sz z<0 0 || T TO OO O_ _L LA AR RG GE E<=s sz z || p p[s sz z- 1 1]) t th hr ro ow w I In nv va ar ri ia an nt t() ;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

750 Design and Programming Chapter 24

c ch ha ar r& S St tr ri in ng g: : o op pe er ra at to or r[](i in nt t i i)
{

c ch he ec ck k() ; / / check on entry
i if f (i i<0 0 || s sz z<=i i) t th hr ro ow w R Ra an ng ge e() ; / / do work
c ch he ec ck k() ; / / check on exit
r re et tu ur rn n p p[i i] ;

}

This will work nicely and is hardly any work for the programmer. However, for a simple class like
S St tr ri in ng g the invariant checking will dominate the run time and maybe even the code size. Therefore,
programmers often execute the invariant checks only during debugging:

i in nl li in ne e v vo oi id d S St tr ri in ng g: : c ch he ec ck k()
{
#i if fn nd de ef f N ND DE EB BU UG G

i if f (p p==0 0 || s sz z<0 0 || T TO OO O_ _L LA AR RG GE E<=s sz z || p p[s sz z]) t th hr ro ow w I In nv va ar ri ia an nt t() ;
#e en nd di if f
}

Here, theN ND DE EB BU UG G macro is used in a way similar to the way it is used in the standard Ca as ss se er rt t()
macro. N ND DE EB BU UG G is conventionally set to indicate that debugging isnot being done.

The simple act of defining invariants and using them during debugging is an invaluable help in
getting the code right and– more importantly– in getting the concepts represented by the classes
well defined and regular. The point is that when you are designing invariants, a class will be con-
sidered from an alternative viewpoint and the code will contain redundancy. Both increase the like-
lihood of spotting mistakes, inconsistencies, and oversights.

24.3.7.2 Assertions [lang.assert]

An invariant is a special form of an assertion. An assertion is simply a statement that a given logi-
cal criterion must hold. The question is what to do when it doesn’t.

The C standard library– and by implication the C++ standard library– provides thea as ss se er rt t()
macro in<c ca as ss se er rt t> or <a as ss se er rt t. h h>. An a as ss se er rt t() evaluates its argument and callsa ab bo or rt t() if the
result is nonzero. For example:

v vo oi id d f f(i in nt t* p p)
{

a as ss se er rt t(p p!= 0 0) ; / / assert that p!=0; abort() if p is zero
/ / ...

}

Before aborting,a as ss se er rt t() outputs the name of its source file and the number of the line on which it
appears. This makesa as ss se er rt t() a useful debugging aid.N ND DE EB BU UG G is usually set by compiler
options on a per-compilation-unit basis. This implies thata as ss se er rt t() shouldn’t be used in inline
functions and template functions that are included in several translation units unless great care is
taken thatN ND DE EB BU UG G is set consistently (§9.2.3). Like all macro magic, this use ofN ND DE EB BU UG G is too
low-level, messy, and error-prone. Also, it is typically a good idea to leave at least some checks
active in even the best-checked program, andN ND DE EB BU UG G isn’t well suited for that. Furthermore,
callinga ab bo or rt t() is rarely acceptable in production code.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.7.2 Assertions 751

The alternative is to use anA As ss se er rt t() template that throws an exception rather than aborting so
that assertions can be left in production code when that is desirable. Unfortunately, the standard
library doesn’t provide anA As ss se er rt t() . However, it is trivially defined:

t te em mp pl la at te e<c cl la as ss s X X, c cl la as ss s A A> i in nl li in ne e v vo oi id d A As ss se er rt t(A A a as ss se er rt ti io on n)
{

i if f (! a as ss se er rt ti io on n) t th hr ro ow w X X() ;
}

A As ss se er rt t() throws the exceptionX X() if the a as ss se er rt ti io on n is false. For example:

c cl la as ss s B Ba ad d_ _a ar rg g { };

v vo oi id d f f(i in nt t* p p)
{

A As ss se er rt t<B Ba ad d_ _a ar rg g>(p p!= 0 0) ; / / assert p!=0; throw Bad_arg unless p!=0
/ / ...

}

This style of assertion has the condition explicit, so if we want to check only while debugging we
must say so. For example:

v vo oi id d f f2 2(i in nt t* p p)
{

A As ss se er rt t<B Ba ad d_ _a ar rg g>(N ND DE EB BU UG G || p p!= 0 0) ; / / either I’m not debugging or p!=0
/ / ...

}

The use of|| rather than&& in the assertion may appear surprising. However,A As ss se er rt t<E E>(a a|| b b)
tests!(a a|| b b) which is! a a&&! b b.

UsingN ND DE EB BU UG G in this way requires that we defineN ND DE EB BU UG G with a suitable value whether or
not we are debugging. A C++ implementation does not do this for us by default, so it is better to
use a value. For example:

#i if fd de ef f N ND DE EB BU UG G
c co on ns st t b bo oo ol l A AR RG G_ _C CH HE EC CK K = f fa al ls se e; / / we are not debugging: disable checks
#e el ls se e
c co on ns st t b bo oo ol l A AR RG G_ _C CH HE EC CK K = t tr ru ue e; / / we are debugging
#e en nd di if f

v vo oi id d f f3 3(i in nt t* p p)
{

A As ss se er rt t<B Ba ad d_ _a ar rg g>(! A AR RG G_ _C CH HE EC CK K || p p!= 0 0) ; / / either I’m not debugging or p!=0
/ / ...

}

If the exception associated with an assertion is not caught, a failedA As ss se er rt t() t te er rm mi in na at te e() s the pro-
gram much like an equivalenta as ss se er rt t() would a ab bo or rt t() . However, an exception handler may be
able to take some less drastic action.

In any realistically-sized program, I find myself turning assertions on and off in groups to suit
the need for testing. UsingN ND DE EB BU UG G is simply the crudest form of that technique. Early on in
development, most assertions are enabled, whereas only key sanity checks are left enabled in

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

752 Design and Programming Chapter 24

shipped code. This style of usage is most easily managed if the actual assertion is in two parts,
with the first being an enabling condition (such asA AR RG G_ _C CH HE EC CK K) and the second being the asser-
tion proper.

If the enabling condition is a constant expression, the whole assertion will be compiled away
when not enabled. However, the enabling condition can also be a variable so that it can be turned
on and off at run time as debugging needs dictate. For example:

b bo oo ol l s st tr ri in ng g_ _c ch he ec ck k = t tr ru ue e;

i in nl li in ne e v vo oi id d S St tr ri in ng g: : c ch he ec ck k()
{

A As ss se er rt t<I In nv va ar ri ia an nt t>(! s st tr ri in ng g_ _c ch he ec ck k || (p p && 0 0<=s sz z && s sz z<T TO OO O_ _L LA AR RG GE E && p p[s sz z]== 0 0)) ;
}

v vo oi id d f f()
{

S St tr ri in ng g s s = " w wo on nd de er r";
/ / strings are checked here
s st tr ri in ng g_ _c ch he ec ck k = f fa al ls se e;
/ / no checking of strings here

}

Naturally, code will be generated in such cases, so we must keep an eye out for code bloat if we use
such assertions extensively.

Saying

A As ss se er rt t<E E>(a a) ;

is simply another way of saying

i if f (! a a) t th hr ro ow w E E() ;

Then why bother withA As ss se er rt t() , rather than writing out the statement directly? UsingA As ss se er rt t()
makes the designer’s intent explicit. It says that this is an assertion of something that is supposed
to be always true. It is not an ordinary part of the program logic. This is valuable information to a
reader of the program. A more practical advantage is that it is easy to search fora as ss se er rt t() or
A As ss se er rt t() whereas searching for conditional statements that throw exceptions is nontrival.

A As ss se er rt t() can be generalized to throw exceptions taking arguments and variable exceptions:

t te em mp pl la at te e<c cl la as ss s A A, c cl la as ss s E E> i in nl li in ne e v vo oi id d A As ss se er rt t(A A a as ss se er rt ti io on n, E E e ex xc ce ep pt t)
{

i if f (! a as ss se er rt ti io on n) t th hr ro ow w e ex xc ce ep pt t;
}

s st tr ru uc ct t B Ba ad d_ _g g_ _a ar rg g {
i in nt t* p p;
B Ba ad d_ _g g_ _a ar rg g(i in nt t* p pp p) : p p(p pp p) { }

};

b bo oo ol l g g_ _c ch he ec ck k = t tr ru ue e;
i in nt t g g_ _m ma ax x = 1 10 00 0;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.3.7.2 Assertions 753

v vo oi id d g g(i in nt t* p p, e ex xc ce ep pt ti io on n e e)
{

A As ss se er rt t(! g g_ _c ch he ec ck k || p p!= 0 0, e e) ; / / pointer is valid
A As ss se er rt t(! g g_ _c ch he ec ck k || (0 0<* p p&&*p p<=g g_ _m ma ax x) , B Ba ad d_ _g g_ _a ar rg g(p p)) ; / / value is plausible
/ / ...

}

In many programs, it is crucial that no code is generated for anA As ss se er rt t() where the assertion can be
evaluated at compile time. Unfortunately, some compilers are unable to achieve this for the gener-
alizedA As ss se er rt t() . Consequently, the two-argumentA As ss se er rt t() should be used only when the excep-
tion is not of the formE E() and it is also acceptable for some code to be generated independently of
the value of the assertion.

In §23.4.3.5, it was mentioned that the two most common forms of class hierarchy reorganiza-
tions were to split a class into two and to factor out the common part of two classes into a base
class. In both cases, well-designed invariants can give a clue to the potential for reorganization.
Comparing the invariant with the code of operations will show most of the invariant checking to be
redundant in a class that is ripe for splitting. In such cases, subsets of the operations will access
only subsets of the object state. Conversely, classes that are ripe for merging will have similar
invariants even if their detailed implementations differ.

24.3.7.3 Preconditions and Postconditions [lang.pre]

One popular use of assertions is to express preconditions and postconditions of a function. That is,
checking that basic assumptions about input hold and verifying that the function leaves the world in
the expected state upon exit. Unfortunately, the assertions we would like to make are often at a
higher level than the programming language allows us to express conveniently and efficiently. For
example:

t te em mp pl la at te e<c cl la as ss s R Ra an n> v vo oi id d s so or rt t(R Ra an n f fi ir rs st t, R Ra an n l la as st t)
{

A As ss se er rt t<B Ba ad d_ _s se eq qu ue en nc ce e>("[f fi ir rs st t, l la as st t) i is s a a v va al li id d s se eq qu ue en nc ce e") ; / / pseudo code

/ / ... sorting algorithm ...

A As ss se er rt t<F Fa ai il le ed d_ _s so or rt t>("[f fi ir rs st t, l la as st t) i is s i in n i in nc cr re ea as si in ng g o or rd de er r") ; / / pseudo code
}

This problem is fundamental. What we want to sayabout a program is best expressed in a
mathematically-based higher language, rather than in the algorithmic programming languagein
whichwe write the program.

As for invariants, a certain amount of cleverness is needed to translate the ideal of what we
would like to assert into something that is algorithmically feasible to check. For example:

t te em mp pl la at te e<c cl la as ss s R Ra an n> v vo oi id d s so or rt t(R Ra an n f fi ir rs st t, R Ra an n l la as st t)
{

/ / [first,last) is a valid sequence: check plausibility:
A As ss se er rt t<B Ba ad d_ _s se eq qu ue en nc ce e>(N ND DE EB BU UG G || f fi ir rs st t<=l la as st t) ;

/ / ... sorting algorithm ...

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

754 Design and Programming Chapter 24

/ / [first,last) is in increasing order: check a sample:
A As ss se er rt t<F Fa ai il le ed d_ _s so or rt t>(N ND DE EB BU UG G ||

(l la as st t- f fi ir rs st t<2 2 || (* f fi ir rs st t<=l la as st t[- 1 1]
&& * f fi ir rs st t<=f fi ir rs st t[(l la as st t- f fi ir rs st t)/ 2 2] && f fi ir rs st t[(l la as st t- f fi ir rs st t)/ 2 2]<= l la as st t[- 1 1]))) ;

}

I often find writing ordinary code-checking arguments and results simpler than composing asser-
tions. However, it is important to try to express the real (ideal) preconditions and postconditions–
and at least document them as comments– before reducing them to something less abstract that
can be effectively expressed in a programming language.

Precondition checking can easily degenerate into simple checking of argument values. As an
argument is often passed through several functions, this checking can be repetitive and expensive.
However, simply asserting that every pointer argument is nonzero in every function is not particu-
larly helpful and can give a false sense of security– especially if the tests are done during debug-
ging only to prevent overhead. This is a major reason why I recommend a focus on invariants.

24.3.7.4 Encapsulation [lang.encapsulate]

Note that in C++, the class– not the individual object– is the unit of encapsulation. For example:

c cl la as ss s L Li is st t {
L Li is st t* n ne ex xt t;

p pu ub bl li ic c:
b bo oo ol l o on n(L Li is st t*) ;
/ / ...

};

b bo oo ol l L Li is st t: : o on n(L Li is st t* p p)
{

i if f (p p == 0 0) r re et tu ur rn n f fa al ls se e;
f fo or r(L Li is st t* q q = t th hi is s; q q; q q=q q-> n ne ex xt t) i if f (p p == q q) r re et tu ur rn n t tr ru ue e;
r re et tu ur rn n f fa al ls se e;

}

The chasing of the privateL Li is st t: : n ne ex xt t pointer is accepted becauseL Li is st t: : o on n() has access to every
object of classL Li is st t it can somehow reference. Where that is inconvenient, matters can be simpli-
fied by not taking advantage of the ability to access the representation of other objects from a mem-
ber function. For example:

b bo oo ol l L Li is st t: : o on n(L Li is st t* p p)
{

i if f (p p == 0 0) r re et tu ur rn n f fa al ls se e;
i if f (p p == t th hi is s) r re et tu ur rn n t tr ru ue e;
i if f (n ne ex xt t==0 0) r re et tu ur rn n f fa al ls se e;
r re et tu ur rn n n ne ex xt t-> o on n(p p) ;

}

However, this turns iteration into recursion, and doing that can cause a major performance hit when
a compiler isn’t able to optimize the recursion back into an iteration.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.4 Components 755

24.4 Components[lang.component]

The unit of design is a collection of classes, functions, etc., rather than an individual class. Such a
collection, often called alibrary or a framework(§25.8), is also the unit of reuse (§23.5.1), mainte-
nance, etc. C++ provides three mechanisms for expressing the notion of a set of facilities united by
a logical criteria:

[1] A class– containing a collection of data, function, template, and type members
[2] A class hierarchy– containing a collection of classes
[3] A namespace– containing a collection of data, function, template, and type members

A class provides many facilities to make it convenient to create objects of the type it defines. How-
ever, many significant components are not best described by a mechanism for creating objects of a
single type. A class hierarchy expresses the notion of a set of related types. However, the individ-
ual members of a component are not always best expressed as classes and not all classes possess the
basic similarity required to fit into a meaningful class hierarchy (§24.2.5). Therefore, a namespace
is the most direct and the most general embodiment of the notion of a component in C++. A com-
ponent is sometimes referred to as a ‘‘class category.’’ However, not every element of a compo-
nent is or should be a class.

Ideally, a component is described by the set of interfaces it uses for its implementation plus the
set of interfaces it provides for its users. Everything else is ‘‘implementation detail’’ and hidden
from the rest of the system. This may indeed be the designer’s description of a component. To
make it real, the programmer needs to map it into declarations. Classes and class hierarchies pro-
vide the interfaces, and namespaces allow the programmer to group the interfaces and to separate
interfaces used from interfaces provided. Consider:

Used by X interface Used by X implementation

X interface

X implementation

Using the techniques described in §8.2.4.1, this becomes:

n na am me es sp pa ac ce e A A { / / some facilities used by X’s interface
/ / ...

}

n na am me es sp pa ac ce e X X { / / interface of component X

u us si in ng g n na am me es sp pa ac ce e A A; / / dependent on declarations from A
/ / ...
v vo oi id d f f() ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

756 Design and Programming Chapter 24

n na am me es sp pa ac ce e X X_ _i im mp pl l { / / facilities needed by X’s implementation
u us si in ng g n na am me es sp pa ac ce e X X;
/ / ...

}

v vo oi id d X X: : f f()
{

u us si in ng g n na am me es sp pa ac ce e X X_ _i im mp pl l; / / dependent on declarations from X_impl
/ / ...

}

The general interfaceX X should not depend on the implementation interfaceX X_ _i im mp pl l.
A component can have many classes that are not intended for general use. Such classes should

be ‘‘hidden’’ within implementation classes or namespaces:

n na am me es sp pa ac ce e X X_ _i im mp pl l { / / component X implementation details

c cl la as ss s W Wi id dg ge et t {
/ / ...

};

/ / ...
}

This ensures thatW Wi id dg ge et t isn’t used from other parts of the program. However, classes that repre-
sent coherent concepts are often candidates for reuse and should therefore be considered for inclu-
sion into the interface of the component. Consider:

c cl la as ss s C Ca ar r {
c cl la as ss s W Wh he ee el l {

/ / ...
};

W Wh he ee el l f fl lw w, f fr rw w, r rl lw w, r rr rw w;
/ / ...

p pu ub bl li ic c:
/ / ...

};

In most contexts, we need to have the actual wheels hidden to maintain the abstraction of a car
(when you use a car you cannot operate the wheels independently). However, theW Wh he ee el l class itself
seems a good candidate for wider use, so moving it outside classC Ca ar r might be better:

c cl la as ss s W Wh he ee el l {
/ / ...

};

c cl la as ss s C Ca ar r {
W Wh he ee el l f fl lw w, f fr rw w, r rl lw w, r rr rw w;
/ / ...

p pu ub bl li ic c:
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.4 Components 757

The decision to nest or not depends on the aims of the design and the generality of the concepts
involved. Both nesting and ‘‘non-nesting’’ are widely applicable techniques for expressing a
design. The default should be to make a class as local as possible until a need to make it more gen-
erally available is demonstrated.

There is a nasty tendency for ‘‘interesting’’ functions and data to ‘‘bubble up’’ to the global
namespace, to widely-used namespaces, or to ultimate base classes in a hierarchy. This can easily
lead to unintentional exposure of implementation details and to the problems associated with global
data and global functions. This is most likely to happen in a single-rooted hierarchy, and in a pro-
gram where only very few namespaces are used. Virtual base classes (§15.2.4) can be used to com-
bat this phenomenon in the context of class hierarchies. Small ‘‘implementation’’ namespaces are
the main tool for avoiding the problem in the context of namespaces.

Note that header files provide a powerful mechanism for supplying different views of a compo-
nent to different users and for excluding classes that are considered part of the implementation from
the user’s view (§9.3.2).

24.4.1 Templates [lang.temp]

From a design perspective, templates serve two, weakly-related needs:
– Generic programming
– Policy parameterization

Early in a design effort, operations are just operations. Later, when it is time to specify the type of
operands templates become essential when using a statically-typed programming language, such as
C++. Without templates, function definitions would have to be replicated or checking would have
to be unnecessarily postponed to run time (§24.2.3). An operation that implements an algorithm for
a variety of operand types is a candidate to be implemented as a template. If all operands fit into a
single class hierarchy, and especially if there is a need to add new operand types at run time, the
operand type is best represented as a class– often as an abstract class. If the operand types do not
fit into a single hierarchy and especially if run-time performance is critical, the operation is best
implemented as a template. The standard containers and their supporting algorithms are an exam-
ple of when the need to take operands of a variety of unrelated types combined with a need for
run-time performance lead to the use of templates (§16.2).

To make the template/hierarchy tradeoff more concrete, consider how to generalize a simple
iteration:

v vo oi id d p pr ri in nt t_ _a al ll l(I It te er r_ _f fo or r_ _T T x x)
{

f fo or r (T T* p p = x x. f fi ir rs st t() ; p p; p p = x x. n ne ex xt t()) c co ou ut t << * p p;
}

Here, the assumption is thatI It te er r_ _f fo or r_ _T T provides operations that yieldT T* s.
We can make the iteratorI It te er r_ _f fo or r_ _T T a template parameter:

t te em mp pl la at te e<c cl la as ss s I It te er r_ _f fo or r_ _T T> p pr ri in nt t_ _a al ll l(I It te er r_ _f fo or r_ _T T x x)
{

f fo or r (T T* p p = x x. f fi ir rs st t() ; p p; p p = x x. n ne ex xt t()) c co ou ut t << * p p;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

758 Design and Programming Chapter 24

This allows us to use a variety of unrelated iterators as long as they all providef fi ir rs st t() andn ne ex xt t()
with the right meanings and as long as we know the type of iterator for each call ofp pr ri in nt t_ _a al ll l() at
compile time. The standard library containers and algorithms are based on this idea.

Alternatively, we can use the observation thatf fi ir rs st t() andn ne ex xt t() constitute an interface to iter-
ators. We can then define a class to represent that interface:

c cl la as ss s I It te er r {
p pu ub bl li ic c:

v vi ir rt tu ua al l T T* f fi ir rs st t() c co on ns st t = 0 0;
v vi ir rt tu ua al l T T* n ne ex xt t() = 0 0;

};

v vo oi id d p pr ri in nt t_ _a al ll l2 2(I It te er r& x x)
{

f fo or r (T T* p p = x x. f fi ir rs st t() ; p p; p p = x x. n ne ex xt t()) c co ou ut t << * p p;
}

We can now use every iterator derived fromI It te er r. The actual code doesn’t differ depending on
whether we use templates or a class hierarchy to represent the parameterization– only the run-time,
recompilation, etc., tradeoffs differ. In particular, classI It te er r is a candidate for use as an argument
for the template:

v vo oi id d f f(I It te er r& i i)
{

p pr ri in nt t_ _a al ll l(i i) ; / / use the template
p pr ri in nt t_ _a al ll l2 2(i i) ;

}

Consequently, the two approaches can be seen as complementary.
Often, a template needs to use functions and classes as part of its implementation. Many of

those must themselves be templates so as to maintain generality and efficiency. In that way, algo-
rithms become generic over a range of types. This style of template use is calledgeneric
programming(§2.7). When we calls st td d: : s so or rt t() on av ve ec ct to or r, the elements of the vector are the
operands of thes so or rt t() ; thus,s so or rt t() is generic for the element types. In addition, the standard sort
is generic for the container types because it is invoked on iterators for arbitrary, standard-
conforming containers (§16.3.1).

The s so or rt t() algorithm is also parameterized on the comparison criteria (§18.7.1). From a
design perspective, this is different from taking an operation and making it generic on its operand
type. Deciding to parameterize an algorithm on an object (or operation) in a way that controls the
way the algorithm operates is a much higher-level design decision. It is a decision to give the
designer/programmer control over some part of the policy governing the operation of the algorithm.
From a programming language point of view, however, there is no difference.

24.4.2 Interfaces and Implementations [lang.interface]

The ideal interface
– presents a complete and coherent set of concepts to a user,
– is consistent over all parts of a component,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.4.2 Interfaces and Implementations 759

– does not reveal implementation details to a user,
– can be implemented in several ways,
– is statically typed,
– is expressed using application-level types, and
– depends in limited and well-defined ways on other interfaces.

Having noted the need for consistency across the classes that present the component’s interface to
the rest of the world (§24.4), we can simplify the discussion by looking at only a single class. Con-
sider:

c cl la as ss s Y Y { /* ... */ }; / / needed by X

c cl la as ss s Z Z { /* ... */ }; / / needed by X

c cl la as ss s X X { / / example of poor interface style
Y Y a a;
Z Z b b;

p pu ub bl li ic c:
v vo oi id d f f(c co on ns st t c ch ha ar r * ...) ;
v vo oi id d g g(i in nt t[] , i in nt t) ;
v vo oi id d s se et t_ _a a(Y Y&) ;
Y Y& g ge et t_ _a a() ;

};

This interface has several potential problems:
– The interface uses the typesY Y andZ Z in a way that requires the declarations ofY Y andZ Z to be

known to compile it.
– The functionX X: : f f() takes an arbitrary number of arguments of unknown types (probably

somehow controlled by a ‘‘format string’’ supplied as the first argument; §21.8).
– The functionX X: : g g() takes ani in nt t[] argument. This may be acceptable, but typically it is a

sign that the level of abstraction is too low. An array of integers is not self-describing, so it
is not obvious how many elements it is supposed to have.

– The s se et t_ _a a() and g ge et t_ _a a() functions most likely expose the representation of objects of
classX X by allowing direct access toX X: : a a.

These member functions provide an interface at a very low level of abstraction. Basically, classes
with interfaces at this level belong among the implementation details of a larger component– if
they belong anywhere at all. Ideally, an argument of an interface function carries enough informa-
tion to make it self-describing. A rule of thumb is that it should be possible to transmit the request
for service over a thin wire for service at a remote server.

C++ allows the programmer to expose the representation of a class as part of the interface. This
representation may be hidden (usingp pr ri iv va at te e or p pr ro ot te ec ct te ed d), but it is available to the compiler to
allow allocation of automatic variables, to allow inline substitution of functions, etc. The negative
effect of this is that use of class types in the representation of a class may introduce undesirable
dependencies. Whether the use of members of typesY Y andZ Z is a problem depends on what kind of
typesY Y andZ Z actually are. If they are simple types, such asl li is st t, c co om mp pl le ex x, ands st tr ri in ng g, their use is
most often quite appropriate. Such types can be considered stable, and the need to include their
class declarations is an acceptable burden on the compiler. However, ifY Y andZ Z themselves had
been interface classes of significant components, such as a graphics system or a bank account

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

760 Design and Programming Chapter 24

management system, it might be wise not to depend too directly on them. In such cases, using a
pointer or a reference member is often a better choice:

c cl la as ss s Y Y;
c cl la as ss s Z Z;

c cl la as ss s X X { / / X accesses Y and Z through pointers and references only
Y Y* a a;
Z Z& b b;
/ / ...

};

This decouples the definition ofX X from the definitions ofY Y and Z Z; that is, the definition ofX X
depends on the namesY Y andZ Z only. The implementation ofX X will, of course, still depend on the
definitions ofY Y andZ Z, but this will not adversely affect the users ofX X.

This illustrates an important point: an interface that hides significant amounts of information–
as a useful interface ought to– will have far fewer dependencies than the implementation it hides.
For example, the definition of classX X can be compiled without access to the definitions ofY Y andZ Z.
However, the definitions ofX X’s member functions that manipulate theY Y andZ Z objects will need
access to the definitions ofY Y and Z Z. When dependencies are analyzed, the dependencies of the
interface and the implementation must be considered separately. In both cases, the ideal is for the
dependency graphs of a system to be directed acyclic graphs to ease understanding and testing of
the system. However, this ideal is far more critical and far more often achievable for interfaces
than for implementations.

Note that a class can define three interfaces:

c cl la as ss s X X {
p pr ri iv va at te e:

/ / accessible to members and friends only
p pr ro ot te ec ct te ed d:

/ / accessible to members and friends and
/ / to members and friends of derived classes only

p pu ub bl li ic c:
/ / accessible to the general public

};

In addition, af fr ri ie en nd d is part of the public interface (§11.5).
A member should be part of the most restrictive interface possible. That is, a member should be

p pr ri iv va at te e unless there is a reason for it to be more accessible. If it needs to be more accessible, it
should bep pr ro ot te ec ct te ed d unless there is a reason for it to bep pu ub bl li ic c. It is almost always a bad idea to
make a data memberp pu ub bl li ic c or p pr ro ot te ec ct te ed d. The functions and classes that constitute the public inter-
face should present a view of the class that fits with its role as representing a concept.

Note that abstract classes can be used to provide a further level of representation hiding (§2.5.4,
§12.3, §25.3).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.4.3 Fat Interfaces 761

24.4.3 Fat Interfaces [lang.fat]

Ideally, an interface should offer only operations that make sense and that can be implemented well
by every derived class implementing that interface. However, this is not always easy. Consider
lists, arrays, associative arrays, trees, etc. As shown in §16.2.2, it is tempting and sometimes useful
to provide a generalization of all of these types– usually called acontainer– that can be used as
the interface to every one of these. This (apparently) relieves the user of having to deal with the
details of all of these containers. However, defining the interface of a general container class is
nontrivial. Assume that we want to defineC Co on nt ta ai in ne er r as an abstract type. What operations do we
wantC Co on nt ta ai in ne er r to provide? We could provide only the operations that every container can support
– the intersection of the sets of operations– but that is a ridiculously narrow interface. In fact, in
many interesting cases that intersection is empty. Alternatively, we could provide the union of all
the sets of operations and give a run-time error if a ‘‘non-existent’’ operation is applied to an object
through this interface. An interface that is such a union of interfaces to a set of concepts is called a
fat interface. Consider a ‘‘general container’’ of objects of typeT T:

c cl la as ss s C Co on nt ta ai in ne er r {
p pu ub bl li ic c:

s st tr ru uc ct t B Ba ad d_ _o op pe er r { / / exception class
c co on ns st t c ch ha ar r* p p;
B Ba ad d_ _o op pe er r(c co on ns st t c ch ha ar r* p pp p) : p p(p pp p) { }

};

v vi ir rt tu ua al l v vo oi id d p pu ut t(c co on ns st t T T*) { t th hr ro ow w B Ba ad d_ _o op pe er r(" C Co on nt ta ai in ne er r: : p pu ut t") ; }
v vi ir rt tu ua al l T T* g ge et t() { t th hr ro ow w B Ba ad d_ _o op pe er r(" C Co on nt ta ai in ne er r: : g ge et t") ; }

v vi ir rt tu ua al l T T*& o op pe er ra at to or r[](i in nt t) { t th hr ro ow w B Ba ad d_ _o op pe er r(" C Co on nt ta ai in ne er r: :[](i in nt t)") ; }
v vi ir rt tu ua al l T T*& o op pe er ra at to or r[](c co on ns st t c ch ha ar r*) { t th hr ro ow w B Ba ad d_ _o op pe er r(" C Co on nt ta ai in ne er r: :[](c ch ha ar r*)") ; }
/ / ...

};

C Co on nt ta ai in ne er rs could then be declared like this:

c cl la as ss s L Li is st t_ _c co on nt ta ai in ne er r : p pu ub bl li ic c C Co on nt ta ai in ne er r, p pr ri iv va at te e l li is st t {
p pu ub bl li ic c:

v vo oi id d p pu ut t(c co on ns st t T T*) ;
T T* g ge et t() ;
/ / ... no operator[] ...

};

c cl la as ss s V Ve ec ct to or r_ _c co on nt ta ai in ne er r : p pu ub bl li ic c C Co on nt ta ai in ne er r, p pr ri iv va at te e v ve ec ct to or r {
p pu ub bl li ic c:

T T*& o op pe er ra at to or r[](i in nt t) ;
T T*& o op pe er ra at to or r[](c co on ns st t c ch ha ar r*) ;
/ / ... no put() or get() ...

};

As long as one is careful, all is well:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

762 Design and Programming Chapter 24

v vo oi id d f f()
{

L Li is st t_ _c co on nt ta ai in ne er r s sc c;
V Ve ec ct to or r_ _c co on nt ta ai in ne er r v vc c;
/ / ...
u us se er r(s sc c, v vc c) ;

}

v vo oi id d u us se er r(C Co on nt ta ai in ne er r& c c1 1, C Co on nt ta ai in ne er r& c c2 2)
{

T T* p p1 1 = c c1 1. g ge et t() ;
T T* p p2 2 = c c2 2[3 3] ;
/ / don’t use c2.get() or c1[3]
/ / ...

}

However, few data structures support both the subscripting and the list-style operations well. Con-
sequently, it is probably not a good idea to specify an interface that requires both. Doing so leads
to the use of run-time type-inquiry (§15.4) or exception handling (Chapter 14) to avoid run-time
errors. For example:

v vo oi id d u us se er r2 2(C Co on nt ta ai in ne er r& c c1 1, C Co on nt ta ai in ne er r& c c2 2) / / detection is easy, but recovery can be hard
{

t tr ry y {
T T* p p1 1 = c c1 1. g ge et t() ;
T T* p p2 2 = c c2 2[3 3] ;
/ / ...

}
c ca at tc ch h(C Co on nt ta ai in ne er r: : B Ba ad d_ _o op pe er r& b ba ad d) {

/ / Oops!
/ / Now what?

}
}

or

v vo oi id d u us se er r3 3(C Co on nt ta ai in ne er r& c c1 1, C Co on nt ta ai in ne er r& c c2 2) / / early detection is tedious; recovery can still be hard
{

i if f (d dy yn na am mi ic c_ _c ca as st t<L Li is st t_ _c co on nt ta ai in ne er r*>(& c c1 1) && d dy yn na am mi ic c_ _c ca as st t<V Ve ec ct to or r_ _c co on nt ta ai in ne er r*>(& c c2 2)) {
T T* p p1 1 = c c1 1. g ge et t() ;
T T* p p2 2 = c c2 2[3 3] ;
/ / ...

}
e el ls se e {

/ / Oops!
/ / Now what?

}
}

In both cases, run-time performance can suffer and the generated code can be surprisingly large.
As a result, people are tempted to ignore the potential errors and hope that they don’t actually occur

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 24.4.3 Fat Interfaces 763

when the program is in the hands of users. The problem with this approach is that exhaustive test-
ing is also hard and expensive.

Consequently, fat interfaces are best avoided where run-time performance is at a premium,
where strong guarantees about the correctness of code are required, and in general wherever there is
a good alternative. The use of fat interfaces weakens the correspondence between concepts and
classes and thus opens the floodgates for the use of derivation as a mere implementation conve-
nience.

24.5 Advice[lang.advice]

[1] Evolve use towards data abstraction and object-oriented programming; §24.2.
[2] Use C++ features and techniques as needed (only); §24.2.
[3] Match design and programming styles; §24.2.1.
[4] Use classes/concepts as a primary focus for design rather than functions/processing; §24.2.1.
[5] Use classes to represent concepts; §24.2.1, §24.3.
[6] Use inheritance to represent hierarchical relationships between concepts (only); §24.2.2,

§24.2.5, §24.3.2.
[7] Express strong guarantees about interfaces in terms of application-level static types; §24.2.3.
[8] Use program generators and direct-manipulation tools to ease well-defined tasks; §24.2.4.
[9] Avoid program generators and direct-manipulation tools that do not interface cleanly with a

general-purpose programming language; §24.2.4.
[10] Keep distinct levels of abstraction distinct; §24.3.1.
[11] Focus on component design; §24.4.
[12] Make sure that a virtual function has a well-defined meaning and that every overriding func-

tion implements a version of that desired behavior; §24.3.4, §24.3.2.1.
[13] Use public inheritance to representis-a relationships; §24.3.4.
[14] Use membership to representhas-arelationships; §24.3.4.
[15] Prefer direct membership over a pointer to a separately-allocated object for expressing simple

containment; §24.3.3, §24.3.4.
[16] Make sure that theusesdependencies are understood, non-cyclic wherever possible, and mini-

mal; §24.3.5.
[17] Define invariants for all classes; §24.3.7.1.
[18] Explicitly express preconditions, postconditions, and other assertions as assertions (possibly

usingA As ss se er rt t()); §24.3.7.2.
[19] Define interfaces to reveal the minimal amount of information needed; §24.4.
[20] Minimize an interface’s dependencies on other interfaces; §24.4.2.
[21] Keep interfaces strongly typed; §24.4.2.
[22] Express interfaces in terms of application-level types; §24.4.2.
[23] Express an interface so that a request could be transmitted to a remote server; §24.4.2.
[24] Avoid fat interfaces; §24.4.3.
[25] Usep pr ri iv va at te edata and member functions wherever possible; §24.4.2.
[26] Use thep pu ub bl li ic c/ p pr ro ot te ec ct te ed d distinction to distinguish between the needs of designers of derived

classes and general users; §24.4.2.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

764 Design and Programming Chapter 24

[27] Use templates for generic programming; §24.4.1.
[28] Use templates to parameterize an algorithm by a policy; §24.4.1.
[29] Use templates where compile-time type resolution is needed; §24.4.1.
[30] Use class hierarchies where run-time type resolution is needed; §24.4.1.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	24.1 Overview
	24.2 Design and Programming Language
	24.3 Classes
	24.4 Components
	24.5 Advice

	buy now:

