
_ ________________________________________________________________________________________________________________________________________________________________ _______________________________________

3
_ ________________________________________________________________________________________________________________________________________________________________ _______________________________________

A Tour of the Standard Library

Why waste time learning
when ignorance is instantaneous?

– Hobbes

Standard libraries— output— strings— input — vectors— range checking— lists —
maps— container overview— algorithms— iterators— I/O iterators— traversals and
predicates— algorithms using member functions— algorithm overview— complex
numbers— vector arithmetic— standard library overview— advice.

3.1 Introduction [tour2.lib]

No significant program is written in just a bare programming language. First, a set of supporting
libraries are developed. These then form the basis for further work.

Continuing Chapter 2, this chapter gives a quick tour of key library facilities to give you an idea
what can be done using C++ and its standard library. Useful library types, such ass st tr ri in ng g, v ve ec ct to or r,
l li is st t, andm ma ap p, are presented as well as the most common ways of using them. Doing this allows me
to give better examples and to set better exercises in the following chapters. As in Chapter 2, you
are strongly encouraged not to be distracted or discouraged by an incomplete understanding of
details. The purpose of this chapter is to give you a taste of what is to come and to convey an
understanding of the simplest uses of the most useful library facilities. A more detailed introduc-
tion to the standard library is given in §16.1.2.

The standard library facilities described in this book are part of every complete C++ implemen-
tation. In addition to the standard C++ library, most implementations offer ‘‘graphical user inter-
face’’ systems, often referred to as GUIs or window systems, for interaction between a user and a
program. Similarly, most application development environments provide ‘‘foundation libraries’’
that support corporate or industrial ‘‘standard’’ development and/or execution environments. I do
not describe such systems and libraries. The intent is to provide a self-contained description of C++

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4


46 A Tour of the Standard Library Chapter 3

as defined by the standard and to keep the examples portable, except where specifically noted. Nat-
urally, a programmer is encouraged to explore the more extensive facilities available on most sys-
tems, but that is left to exercises.

3.2 Hello, world! [tour2.hello]

The minimal C++ program is

i in nt t m ma ai in n() { }

It defines a function calledm ma ai in n, which takes no arguments and does nothing.
Every C++ program must have a function namedm ma ai in n() . The program starts by executing that

function. Thei in nt t value returned bym ma ai in n() , if any, is the program’s return value to ‘‘the system.’’
If no value is returned, the system will receive a value indicating successful completion. A nonzero
value fromm ma ai in n() indicates failure.

Typically, a program produces some output. Here is a program that writes outH He el ll lo o, w wo or rl ld d! :

#i in nc cl lu ud de e <i io os st tr re ea am m>

i in nt t m ma ai in n()
{

s st td d: : c co ou ut t << " H He el ll lo o, w wo or rl ld d! \ \n n";
}

The line#i in nc cl lu ud de e <i io os st tr re ea am m> instructs the compiler toincludethe declarations of the standard
stream I/O facilities as found ini io os st tr re ea am m. Without these declarations, the expression

s st td d: : c co ou ut t << " H He el ll lo o, w wo or rl ld d! \ \n n"

would make no sense. The operator<< (‘‘put to’’) writes its second argument onto its first. In this
case, the string literal" H He el ll lo o, w wo or rl ld d! \ \n n" is written onto the standard output streams st td d: : c co ou ut t. A
string literal is a sequence of characters surrounded by double quotes. In a string literal, the back-
slash character\ \ followed by another character denotes a single special character. In this case,\ \n n is
the newline character, so that the characters written areH He el ll lo o, w wo or rl ld d! followed by a newline.

3.3 The Standard Library Namespace[tour2.name]

The standard library is defined in a namespace (§2.4, §8.2) calleds st td d. That is why I wrote
s st td d: : c co ou ut t rather than plainc co ou ut t. I was being explicit about using thes st ta an nd da ar rd d c co ou ut t, rather than
some otherc co ou ut t.

Every standard library facility is provided through some standard header similar to<i io os st tr re ea am m>.
For example:

#i in nc cl lu ud de e<s st tr ri in ng g>
#i in nc cl lu ud de e<l li is st t>

This makes the standards st tr ri in ng g andl li is st t available. To use them, thes st td d: : prefix can be used:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 3.3 The Standard Library Namespace 47

s st td d: : s st tr ri in ng g s s = " F Fo ou ur r l le eg gs s G Go oo od d; t tw wo o l le eg gs s B Ba aa aa ad d!";
s st td d: : l li is st t<s st td d: : s st tr ri in ng g> s sl lo og ga an ns s;

For simplicity, I will rarely use thes st td d: : prefix explicitly in examples. Neither will I always
#i in nc cl lu ud de e the necessary headers explicitly. To compile and run the program fragments here, you
must #i in nc cl lu ud de e the appropriate headers (as listed in §3.7.5, §3.8.6, and Chapter 16). In addition,
you must either use thes st td d: : prefix or make every name froms st td d global (§8.2.3). For example:

#i in nc cl lu ud de e<s st tr ri in ng g> / / make the standard string facilities accessible
u us si in ng g n na am me es sp pa ac ce e s st td d; / / make std names available without std:: prefix

s st tr ri in ng g s s = " I Ig gn no or ra an nc ce e i is s b bl li is ss s!"; / / ok: string is std::string

It is generally in poor taste to dump every name from a namespace into the global namespace.
However, to keep short the program fragments used to illustrate language and library features, I
omit repetitive#i in nc cl lu ud de es ands st td d: : qualifications. In this book, I use the standard library almost
exclusively, so if a name from the standard library is used, it either is a use of what the standard
offers or part of an explanation of how the standard facility might be defined.

3.4 Output [tour2.ostream]

The iostream library defines output for every built-in type. Further, it is easy to define output of a
user-defined type. By default, values output toc co ou ut t are converted to a sequence of characters. For
example,

v vo oi id d f f()
{

c co ou ut t << 1 10 0;
}

will place the character1 1 followed by the character0 0 on the standard output stream. So will

v vo oi id d g g()
{

i in nt t i i = 1 10 0;
c co ou ut t << i i;

}

Output of different types can be combined in the obvious way:

v vo oi id d h h( i in nt t i i)
{

c co ou ut t << " t th he e v va al lu ue e o of f i i i is s ";
c co ou ut t << i i;
c co ou ut t << ´ \ \n n´;

}

If i i has the value1 10 0, the output will be

t th he e v va al lu ue e o of f i i i is s 1 10 0

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



48 A Tour of the Standard Library Chapter 3

A character constant is a character enclosed in single quotes. Note that a character constant is out-
put as a character rather than as a numerical value. For example,

v vo oi id d k k()
{

c co ou ut t << ´ a a´;
c co ou ut t << ´ b b´;
c co ou ut t << ´ c c´;

}

will output a ab bc c.
People soon tire of repeating the name of the output stream when outputting several related

items. Fortunately, the result of an output expression can itself be used for further output. For
example:

v vo oi id d h h2 2( i in nt t i i)
{

c co ou ut t << " t th he e v va al lu ue e o of f i i i is s " << i i << ´ \ \n n´;
}

This is equivalent toh h() . Streams are explained in more detail in Chapter 21.

3.5 Strings[tour2.string]

The standard library provides as st tr ri in ng g type to complement the string literals used earlier. The
s st tr ri in ng g type provides a variety of useful string operations, such as concatenation. For example:

s st tr ri in ng g s s1 1 = " H He el ll lo o";
s st tr ri in ng g s s2 2 = " w wo or rl ld d";

v vo oi id d m m1 1()
{

s st tr ri in ng g s s3 3 = s s1 1 + ", " + s s2 2 + "! \ \n n";

c co ou ut t << s s3 3;
}

Here,s s3 3 is initialized to the character sequence

H He el ll lo o, w wo or rl ld d!

followed by a newline. Addition of strings means concatenation. You can add strings, string liter-
als, and characters to a string.

In many applications, the most common form of concatenation is adding something to the end
of a string. This is directly supported by the+= operation. For example:

v vo oi id d m m2 2( s st tr ri in ng g& s s1 1, s st tr ri in ng g& s s2 2)
{

s s1 1 = s s1 1 + ´ \ \n n´; / / append newline
s s2 2 += ´ \ \n n´; / / append newline

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 3.5 Strings 49

The two ways of adding to the end of a string are semantically equivalent, but I prefer the latter
because it is more concise and likely to be more efficiently implemented.

Naturally,s st tr ri in ng gs can be compared against each other and against string literals. For example:

s st tr ri in ng g i in nc ca an nt ta at ti io on n;

v vo oi id d r re es sp po on nd d( c co on ns st t s st tr ri in ng g& a an ns sw we er r)
{

i if f ( a an ns sw we er r == i in nc ca an nt ta at ti io on n) {
/ / perform magic

}
e el ls se e i if f ( a an ns sw we er r == " y ye es s") {

/ / ...
}
/ / ...

}

The standard library string class is described in Chapter 20. Among other useful features, it pro-
vides the ability to manipulate substrings. For example:

s st tr ri in ng g n na am me e = " N Ni ie el ls s S St tr ro ou us st tr ru up p";

v vo oi id d m m3 3()
{

s st tr ri in ng g s s = n na am me e. s su ub bs st tr r( 6 6, 1 10 0) ; / / s = "Stroustrup"
n na am me e. r re ep pl la ac ce e( 0 0, 5 5," N Ni ic ch ho ol la as s") ; / / name becomes "Nicholas Stroustrup"

}

Thes su ub bs st tr r() operation returns a string that is a copy of the substring indicated by its arguments.
The first argument is an index into the string (a position), and the second argument is the length of
the desired substring. Since indexing starts from0 0, s s gets the valueS St tr ro ou us st tr ru up p.

Ther re ep pl la ac ce e() operation replaces a substring with a value. In this case, the substring starting at
0 0 with length5 5 is N Ni ie el ls s; it is replaced byN Ni ic ch ho ol la as s. Thus, the final value ofn na am me e is N Ni ic ch ho ol la as s
S St tr ro ou us st tr ru up p. Note that the replacement string need not be the same size as the substring that it is
replacing.

3.5.1 C-Style Strings [tour2.cstring]

A C-style string is a zero-terminated array of characters (§5.2.2). As shown, we can easily enter a
C-style string into as st tr ri in ng g. To call functions that take C-style strings, we need to be able to extract
the value of as st tr ri in ng g in the form of a C-style string. Thec c_ _s st tr r() function does that (§20.4.1). For
example, we can print then na am me eusing the C output functionp pr ri in nt tf f() (§21.8) like this:

v vo oi id d f f()
{

p pr ri in nt tf f(" n na am me e: %s s\ \n n", n na am me e. c c_ _s st tr r()) ;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



50 A Tour of the Standard Library Chapter 3

3.6 Input [tour2.istream]

The standard library offersi is st tr re ea am ms for input. Likeo os st tr re ea am ms, i is st tr re ea am ms deal with character string
representations of built-in types and can easily be extended to cope with user-defined types.

The operator>> (‘‘get from’’) is used as an input operator;c ci in n is the standard input stream.
The type of the right-hand operand of>> determines what input is accepted and what is the target
of the input operation. For example,

v vo oi id d f f()
{

i in nt t i i;
c ci in n >> i i; / / read an integer into i

d do ou ub bl le e d d;
c ci in n >> d d; / / read a double-precision, floating-point number into d

}

reads a number, such as1 12 23 34 4, from the standard input into the integer variablei i and a floating-
point number, such as1 12 2. 3 34 4e e5 5, into the double-precision, floating-point variabled d.

Here is an example that performs inch-to-centimeter and centimeter-to-inch conversions. You
input a number followed by a character indicating the unit: centimeters or inches. The program
then outputs the corresponding value in the other unit:

i in nt t m ma ai in n()
{

c co on ns st t f fl lo oa at t f fa ac ct to or r = 2 2. 5 54 4; / / 1 inch equals 2.54 cm
f fl lo oa at t x x, i in n, c cm m;
c ch ha ar r c ch h = 0 0;

c co ou ut t << " e en nt te er r l le en ng gt th h: ";

c ci in n >> x x; / / read a floating-point number
c ci in n >> c ch h; / / read a suffix

s sw wi it tc ch h ( c ch h) {
c ca as se e ´ i i´: / / inch

i in n = x x;
c cm m = x x* f fa ac ct to or r;
b br re ea ak k;

c ca as se e ´ c c´: / / cm
i in n = x x/ f fa ac ct to or r;
c cm m = x x;
b br re ea ak k;

d de ef fa au ul lt t:
i in n = c cm m = 0 0;
b br re ea ak k;

}

c co ou ut t << i in n << " i in n = " << c cm m << " c cm m\ \n n";
}

Theswitch-statementtests a value against a set of constants. Thebreak-statements are used to exit

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 3.6 Input 51

theswitch-statement. The case constants must be distinct. If the value tested does not match any of
them, thed de ef fa au ul lt t is chosen. The programmer need not provide ad de ef fa au ul lt t.

Often, we want to read a sequence of characters. A convenient way of doing that is to read into
as st tr ri in ng g. For example:

i in nt t m ma ai in n()
{

s st tr ri in ng g s st tr r;

c co ou ut t << " P Pl le ea as se e e en nt te er r y yo ou ur r n na am me e\ \n n";
c ci in n >> s st tr r;
c co ou ut t << " H He el ll lo o, " << s st tr r << "! \ \n n";

}

If you type in

E Er ri ic c

the response is

H He el ll lo o, E Er ri ic c!

By default, a whitespace character (§5.2.2) such as a space terminates the read, so if you enter

E Er ri ic c B Bl lo oo od da ax xe e

pretending to be the ill-fated king of York, the response is still

H He el ll lo o, E Er ri ic c!

You can read a whole line using theg ge et tl li in ne e() function. For example:

i in nt t m ma ai in n()
{

s st tr ri in ng g s st tr r;

c co ou ut t << " P Pl le ea as se e e en nt te er r y yo ou ur r n na am me e\ \n n";
g ge et tl li in ne e( c ci in n, s st tr r) ;
c co ou ut t << " H He el ll lo o, " << s st tr r << "! \ \n n";

}

With this program, the input

E Er ri ic c B Bl lo oo od da ax xe e

yields the desired output:

H He el ll lo o, E Er ri ic c B Bl lo oo od da ax xe e!

The standard strings have the nice property of expanding to hold what you put in them, so if you
enter a couple of megabytes of semicolons, the program will echo pages of semicolons back at you
– unless your machine or operating system runs out of some critical resource first.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



52 A Tour of the Standard Library Chapter 3

3.7 Containers[tour2.stl]

Much computing involves creating collections of various forms of objects and then manipulating
such collections. Reading characters into a string and printing out the string is a simple example.
A class with the main purpose of holding objects is commonly called acontainer. Providing suit-
able containers for a given task and supporting them with useful fundamental operations are impor-
tant steps in the construction of any program.

To illustrate the standard library’s most useful containers, consider a simple program for keep-
ing names and telephone numbers. This is the kind of program for which different approaches
appear ‘‘simple and obvious’’ to people of different backgrounds.

3.7.1 Vector [tour2.vector]

For many C programmers, a built-in array of (name,number) pairs would seem to be a suitable
starting point:

s st tr ru uc ct t E En nt tr ry y {
s st tr ri in ng g n na am me e;
i in nt t n nu um mb be er r;

};

E En nt tr ry y p ph ho on ne e_ _b bo oo ok k[ 1 10 00 00 0] ;

v vo oi id d p pr ri in nt t_ _e en nt tr ry y( i in nt t i i) / / simple use
{

c co ou ut t << p ph ho on ne e_ _b bo oo ok k[ i i]. n na am me e << ´ ´ << p ph ho on ne e_ _b bo oo ok k[ i i]. n nu um mb be er r << ´ \ \n n´;
}

However, a built-in array has a fixed size. If we choose a large size, we waste space; if we choose a
smaller size, the array will overflow. In either case, we will have to write low-level memory-
management code. The standard library provides av ve ec ct to or r (§16.3) that takes care of that:

v ve ec ct to or r<E En nt tr ry y> p ph ho on ne e_ _b bo oo ok k( 1 10 00 00 0) ;

v vo oi id d p pr ri in nt t_ _e en nt tr ry y( i in nt t i i) / / simple use, exactly as for array
{

c co ou ut t << p ph ho on ne e_ _b bo oo ok k[ i i]. n na am me e << ´ ´ << p ph ho on ne e_ _b bo oo ok k[ i i]. n nu um mb be er r << ´ \ \n n´;
}

v vo oi id d a ad dd d_ _e en nt tr ri ie es s( i in nt t n n) / / increase size by n
{

p ph ho on ne e_ _b bo oo ok k. r re es si iz ze e( p ph ho on ne e_ _b bo oo ok k. s si iz ze e()+ n n) ;
}

Thev ve ec ct to or r member functions si iz ze e() gives the number of elements.
Note the use of parentheses in the definition ofp ph ho on ne e_ _b bo oo ok k. We made a single object of type

v ve ec ct to or r<E En nt tr ry y> and supplied its initial size as an initializer. This is very different from declaring a
built-in array:

v ve ec ct to or r<E En nt tr ry y> b bo oo ok k( 1 10 00 00 0) ; / / vector of 1000 elements
v ve ec ct to or r<E En nt tr ry y> b bo oo ok ks s[ 1 10 00 00 0] ; / / 1000 empty vectors

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 3.7.1 Vector 53

Should you make the mistake of using[] where you meant() when declaring av ve ec ct to or r, your com-
piler will almost certainly catch the mistake and issue an error message when you try to use the
v ve ec ct to or r.

A v ve ec ct to or r is a single object that can be assigned. For example:

v vo oi id d f f( v ve ec ct to or r<E En nt tr ry y>& v v)
{

v ve ec ct to or r<E En nt tr ry y> v v2 2 = p ph ho on ne e_ _b bo oo ok k;
v v = v v2 2;
/ / ...

}

Assigning av ve ec ct to or r involves copying its elements. Thus, after the initialization and assignment in
f f() , v v andv v2 2 each holds a separate copy of everyE En nt tr ry y in the phone book. When av ve ec ct to or r holds
many elements, such innocent-looking assignments and initializations can be prohibitively expen-
sive. Where copying is undesirable, references or pointers should be used.

3.7.2 Range Checking [tour2.range]

The standard libraryv ve ec ct to or r does not provide range checking by default (§16.3.3). For example:

v vo oi id d f f()
{

i in nt t i i = p ph ho on ne e_ _b bo oo ok k[ 1 10 00 01 1]. n nu um mb be er r; / / 1001 is out of range
/ / ...

}

The initialization is likely to place some random value ini i rather than giving an error. This is
undesirable, so I will use a simple range-checking adaptation ofv ve ec ct to or r, calledV Ve ec c, in the following
chapters. AV Ve ec c is like av ve ec ct to or r, except that it throws an exception of typeo ou ut t_ _o of f_ _r ra an ng ge e if a sub-
script is out of range.

Techniques for implementing types such asV Ve ec c and for using exceptions effectively are dis-
cussed in §11.12, §8.3, and Chapter 14. However, the definition here is sufficient for the examples
in this book:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V Ve ec c : p pu ub bl li ic c v ve ec ct to or r<T T> {
p pu ub bl li ic c:

V Ve ec c() : v ve ec ct to or r<T T>() { }
V Ve ec c( i in nt t s s) : v ve ec ct to or r<T T>( s s) { }

T T& o op pe er ra at to or r[]( i in nt t i i) { r re et tu ur rn n a at t( i i) ; } / / range-checked
c co on ns st t T T& o op pe er ra at to or r[]( i in nt t i i) c co on ns st t { r re et tu ur rn n a at t( i i) ; } / / range-checked

};

Thea at t() operation is av ve ec ct to or r subscript operation that throws an exception of typeo ou ut t_ _o of f_ _r ra an ng ge e
if its argument is out of thev ve ec ct to or r’s range (§16.3.3).

Returning to the problem of keeping names and telephone numbers, we can now use aV Ve ec c to
ensure that out-of-range accesses are caught. For example:

V Ve ec c<E En nt tr ry y> p ph ho on ne e_ _b bo oo ok k( 1 10 00 00 0) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



54 A Tour of the Standard Library Chapter 3

v vo oi id d p pr ri in nt t_ _e en nt tr ry y( i in nt t i i) / / simple use, exactly as for vector
{

c co ou ut t << p ph ho on ne e_ _b bo oo ok k[ i i]. n na am me e << ´ ´ << p ph ho on ne e_ _b bo oo ok k[ i i]. n nu um mb be er r << ´ \ \n n´;
}

An out-of-range access will throw an exception that the user can catch. For example:

v vo oi id d f f()
{

t tr ry y {
f fo or r ( i in nt t i i = 0 0; i i<1 10 00 00 00 0; i i++) p pr ri in nt t_ _e en nt tr ry y( i i) ;

}
c ca at tc ch h ( o ou ut t_ _o of f_ _r ra an ng ge e) {

c co ou ut t << " r ra an ng ge e e er rr ro or r\ \n n";
}

}

The exception will be thrown, and then caught, whenp ph ho on ne e_ _b bo oo ok k[ i i] is tried withi i==1 10 00 00 0.
If the user doesn’t catch this kind of exception, the program will terminate in a well-defined manner
rather than proceeding or failing in an undefined manner. One way to minimize surprises from
exceptions is to use am ma ai in n() with a try-blockas its body:

i in nt t m ma ai in n()
t tr ry y {

/ / your code
}
c ca at tc ch h ( o ou ut t_ _o of f_ _r ra an ng ge e) {

c ce er rr r << " r ra an ng ge e e er rr ro or r\ \n n";
}
c ca at tc ch h (...) {

c ce er rr r << " u un nk kn no ow wn n e ex xc ce ep pt ti io on n t th hr ro ow wn n\ \n n";
}

This provides default exception handlers so that if we fail to catch some exception, an error mes-
sage is printed on the standard error-diagnostic output streamc ce er rr r (§21.2.1).

3.7.3 List [tour2.list]

Insertion and deletion of phone book entries could be common. Therefore, a list could be more
appropriate than a vector for representing a simple phone book. For example:

l li is st t<E En nt tr ry y> p ph ho on ne e_ _b bo oo ok k;

When we use a list, we tend not to access elements using subscripting the way we commonly do for
vectors. Instead, we might search the list looking for an element with a given value. To do this, we
take advantage of the fact that al li is st t is a sequence as described in §3.8:

v vo oi id d p pr ri in nt t_ _e en nt tr ry y( c co on ns st t s st tr ri in ng g& s s)
{

t ty yp pe ed de ef f l li is st t<E En nt tr ry y>: : c co on ns st t_ _i it te er ra at to or r L LI I;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 3.7.3 List 55

f fo or r ( L LI I i i = p ph ho on ne e_ _b bo oo ok k. b be eg gi in n() ; i i != p ph ho on ne e_ _b bo oo ok k. e en nd d() ; ++i i) {
E En nt tr ry y& e e = * i i; / / reference used as shorthand
i if f ( s s == e e. n na am me e) c co ou ut t << e e. n na am me e << ´ ´ << e e. n nu um mb be er r << ´ \ \n n´;

}
}

The search fors s starts at the beginning of the list and proceeds until eithers s is found or the end is
reached. Every standard library container provides the functionsb be eg gi in n() ande en nd d() , which return
an iterator to the first and to one-past-the-last element, respectively (§16.3.2). Given an iteratori i,
the next element is++i i. Given an iteratori i, the element it refers to is* i i.

A user need not know the exact type of the iterator for a standard container. That iterator type is
part of the definition of the container and can be referred to by name. When we don’t need to mod-
ify an element of the container,c co on ns st t_ _i it te er ra at to or r is the type we want. Otherwise, we use the plain
i it te er ra at to or r type (§16.3.1).

Adding elements to al li is st t is easy:

v vo oi id d a ad dd d_ _e en nt tr ry y( E En nt tr ry y& e e, l li is st t<E En nt tr ry y>: : i it te er ra at to or r i i)
{

p ph ho on ne e_ _b bo oo ok k. p pu us sh h_ _f fr ro on nt t( e e) ; / / add at beginning
p ph ho on ne e_ _b bo oo ok k. p pu us sh h_ _b ba ac ck k( e e) ; / / add at end
p ph ho on ne e_ _b bo oo ok k. i in ns se er rt t( i i, e e) ; / / add before the element ‘i’ refers to

}

3.7.4 Map [tour2.map]

Writing code to look up a name in a list of (name,number) pairs is really quite tedious. In addition,
a linear search is quite inefficient for all but the shortest lists. Other data structures directly support
insertion, deletion, and searching based on values. In particular, the standard library provides the
m ma ap p type (§17.4.1). Am ma ap p is a container of pairs of values. For example:

m ma ap p<s st tr ri in ng g, i in nt t> p ph ho on ne e_ _b bo oo ok k;

In other contexts, am ma ap p is known as an associative array or a dictionary.
When indexed by a value of its first type (called thekey) am ma ap p returns the corresponding value

of the second type (called thevalueor themapped type). For example:

v vo oi id d p pr ri in nt t_ _e en nt tr ry y( c co on ns st t s st tr ri in ng g& s s)
{

i if f ( i in nt t i i = p ph ho on ne e_ _b bo oo ok k[ s s]) c co ou ut t << s s << ´ ´ << i i << ´ \ \n n´;
}

If no match was found for the keys s, a default value is returned from thep ph ho on ne e_ _b bo oo ok k. The default
value for an integer type in am ma ap p is 0 0. Here, I assume that0 0 isn’t a valid telephone number.

3.7.5 Standard Containers [tour2.stdcontainer]

A m ma ap p, a l li is st t, and av ve ec ct to or r can each be used to represent a phone book. However, each has
strengths and weaknesses. For example, subscripting av ve ec ct to or r is cheap and easy. On the other
hand, inserting an element between two elements tends to be expensive. Al li is st t has exactly the

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



56 A Tour of the Standard Library Chapter 3

opposite properties. Am ma ap p resembles al li is st t of (key,value) pairs except that it is optimized for find-
ing values based on keys.

The standard library provides some of the most general and useful container types to allow the
programmer to select a container that best serves the needs of an application:

_ ________________________________________________________________
Standard Container Summary_ _________________________________________________________________ ________________________________________________________________

v ve ec ct to or r< <T T> > A variable-sized vector (§16.3)
l li is st t< <T T> > A doubly-linked list (§17.2.2)
q qu ue eu ue e< <T T> > A queue (§17.3.2)
s st ta ac ck k< <T T> > A stack (§17.3.1)
d de eq qu ue e< <T T> > A double-ended queue (§17.2.3)
p pr ri io or ri it ty y_ _q qu ue eu ue e< <T T> > A queue sorted by value (§17.3.3)
s se et t< <T T> > A set (§17.4.3)
m mu ul lt ti is se et t< <T T> > A set in which a value can occur many times (§17.4.4)
m ma ap p< <k ke ey y, ,v va al l> > An associative array (§17.4.1)
m mu ul lt ti im ma ap p< <k ke ey y, ,v va al l> > A map in which a key can occur many times (§17.4.2)_ ________________________________________________________________ 




























The standard containers are presented in §16.2, §16.3, and Chapter 17. The containers are defined
in namespaces st td d and presented in headers<v ve ec ct to or r>, <l li is st t>, <m ma ap p>, etc. (§16.2).

The standard containers and their basic operations are designed to be similar from a notational
point of view. Furthermore, the meanings of the operations are equivalent for the various contain-
ers. In general, basic operations apply to every kind of container. For example,p pu us sh h_ _b ba ac ck k() can
be used (reasonably efficiently) to add elements to the end of av ve ec ct to or r as well as for al li is st t, and
every container has as si iz ze e() member function that returns its number of elements.

This notational and semantic uniformity enables programmers to provide new container types
that can be used in a very similar manner to the standard ones. The range-checked vector,V Ve ec c
(§3.7.2), is an example of that. Chapter 17 demonstrates how ah ha as sh h_ _m ma ap p can be added to the
framework. The uniformity of container interfaces also allows us to specify algorithms indepen-
dently of individual container types.

3.8 Algorithms [tour2.algorithms]

A data structure, such as a list or a vector, is not very useful on its own. To use one, we need oper-
ations for basic access such as adding and removing elements. Furthermore, we rarely just store
objects in a container. We sort them, print them, extract subsets, remove elements, search for
objects, etc. Consequently, the standard library provides the most common algorithms for contain-
ers in addition to providing the most common container types. For example, the following sorts a
v ve ec ct to or r and places a copy of each uniquev ve ec ct to or r element on al li is st t:

v vo oi id d f f( v ve ec ct to or r<E En nt tr ry y>& v ve e, l li is st t<E En nt tr ry y>& l le e)
{

s so or rt t( v ve e. b be eg gi in n() , v ve e. e en nd d()) ;
u un ni iq qu ue e_ _c co op py y( v ve e. b be eg gi in n() , v ve e. e en nd d() , l le e. b be eg gi in n()) ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 3.8 Algorithms 57

The standard algorithms are described in Chapter 18. They are expressed in terms of sequences of
elements (§2.7.2). A sequence is represented by a pair of iterators specifying the first element and
the one-beyond-the-last element. In the example,s so or rt t() sorts the sequence fromv ve e. b be eg gi in n() to
v ve e. e en nd d() – which just happens to be all the elements of av ve ec ct to or r. For writing, you need only to
specify the first element to be written. If more than one element is written, the elements following
that initial element will be overwritten.

If we wanted to add the new elements to the end of a container, we could have written:

v vo oi id d f f( v ve ec ct to or r<E En nt tr ry y>& v ve e, l li is st t<E En nt tr ry y>& l le e)
{

s so or rt t( v ve e. b be eg gi in n() , v ve e. e en nd d()) ;
u un ni iq qu ue e_ _c co op py y( v ve e. b be eg gi in n() , v ve e. e en nd d() , b ba ac ck k_ _i in ns se er rt te er r( l le e)) ; / / append to le

}

A b ba ac ck k_ _i in ns se er rt te er r() adds elements at the end of a container, extending the container to make room
for them (§19.2.4). C programmers will appreciate that the standard containers plus
b ba ac ck k_ _i in ns se er rt te er r() s eliminate the need to use error-prone, explicit C-style memory management
using r re ea al ll lo oc c() (§16.3.5). Forgetting to use ab ba ac ck k_ _i in ns se er rt te er r() when appending can lead to
errors. For example:

v vo oi id d f f( l li is st t<E En nt tr ry y>& v ve e, v ve ec ct to or r<E En nt tr ry y>& l le e)
{

c co op py y( v ve e. b be eg gi in n() , v ve e. e en nd d() , l le e) ; / / error: le not an iterator
c co op py y( v ve e. b be eg gi in n() , v ve e. e en nd d() , l le e. e en nd d()) ; / / bad: writes beyond the end
c co op py y( v ve e. b be eg gi in n() , v ve e. e en nd d() , l le e. b be eg gi in n()) ; / / overwrite elements

}

3.8.1 Use of Iterators [tour2.iteruse]

When you first encounter a container, a few iterators referring to useful elements can be obtained;
b be eg gi in n() ande en nd d() are the best examples of this. In addition, many algorithms return iterators.
For example, the standard algorithmf fi in nd d looks for a value in a sequence and returns an iterator to
the element found. Usingf fi in nd d, we can write a function that counts the number of occurrences of a
character in as st tr ri in ng g:

i in nt t c co ou un nt t( c co on ns st t s st tr ri in ng g& s s, c ch ha ar r c c)
{

s st tr ri in ng g: : c co on ns st t_ _i it te er ra at to or r i i = f fi in nd d( s s. b be eg gi in n() , s s. e en nd d() , c c) ;
i in nt t n n = 0 0;
w wh hi il le e ( i i != s s. e en nd d()) {

++n n;
i i = f fi in nd d( i i+1 1, s s. e en nd d() , c c) ;

}
r re et tu ur rn n n n;

}

The f fi in nd d algorithm returns an iterator to the first occurrence of a value in a sequence or the one-
past-the-end iterator. Consider what happens for a simple call ofc co ou un nt t:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



58 A Tour of the Standard Library Chapter 3

v vo oi id d f f()
{

s st tr ri in ng g m m = " M Ma ar ry y h ha ad d a a l li it tt tl le e l la am mb b";
i in nt t a a_ _c co ou un nt t = c co ou un nt t( m m,´ a a´) ;

}

The first call tof fi in nd d() finds the´ a a´ in M Ma ar ry y. Thus, the iterator points to that character and not to
s s. e en nd d() , so we enter the loop. In the loop, we start the search ati i+1 1; that is, we start one past
where we found théa a´ . We then loop finding the other three´ a a´ s. That done,f fi in nd d() reaches
the end and returnss s. e en nd d() so that the conditioni i!= s s. e en nd d() fails and we exit the loop.

That call ofc co ou un nt t() could be graphically represented like this:

M a r y h a d a l i t t l e l a m b
. . . . . ..

..

. . . . . . .....

The arrows indicate the initial, intermediate, and final values of the iteratori i.
Naturally, the f fi in nd d algorithm will work equivalently on every standard container. Conse-

quently, we could generalize thec co ou un nt t() function in the same way:

t te em mp pl la at te e<c cl la as ss s C C, c cl la as ss s T T> i in nt t c co ou un nt t( c co on ns st t C C& v v, T T v va al l)
{

t ty yp pe en na am me e C C: : c co on ns st t_ _i it te er ra at to or r i i = f fi in nd d( v v. b be eg gi in n() , v v. e en nd d() , v va al l) ; / / "typename;" see §C.13.5
i in nt t n n = 0 0;
w wh hi il le e ( i i != v v. e en nd d()) {

++n n;
++i i; / / skip past the element we just found
i i = f fi in nd d( i i, v v. e en nd d() , v va al l) ;

}
r re et tu ur rn n n n;

}

This works, so we can say:

v vo oi id d f f( l li is st t<c co om mp pl le ex x>& l lc c, v ve ec ct to or r<s st tr ri in ng g>& v vc c, s st tr ri in ng g s s)
{

i in nt t i i1 1 = c co ou un nt t( l lc c, c co om mp pl le ex x( 1 1, 3 3)) ;
i in nt t i i2 2 = c co ou un nt t( v vc c," C Ch hr ry ys si ip pp pu us s") ;
i in nt t i i3 3 = c co ou un nt t( s s,´ x x´) ;

}

However, we don’t have to define ac co ou un nt t template. Counting occurrences of an element is so gen-
erally useful that the standard library provides that algorithm. To be fully general, the standard
library c co ou un nt t takes a sequence as its argument, rather than a container, so we would say:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 3.8.1 Use of Iterators 59

v vo oi id d f f( l li is st t<c co om mp pl le ex x>& l lc c, v ve ec ct to or r<s st tr ri in ng g>& v vs s, s st tr ri in ng g s s)
{

i in nt t i i1 1 = c co ou un nt t( l lc c. b be eg gi in n() , l lc c. e en nd d() , c co om mp pl le ex x( 1 1, 3 3)) ;
i in nt t i i2 2 = c co ou un nt t( v vs s. b be eg gi in n() , v vs s. e en nd d() ," D Di io og ge en ne es s") ;
i in nt t i i3 3 = c co ou un nt t( s s. b be eg gi in n() , s s. e en nd d() ,´ x x´) ;

}

The use of a sequence allows us to usec co ou un nt t for a built-in array and also to count parts of a con-
tainer. For example:

v vo oi id d g g( c ch ha ar r c cs s[] , i in nt t s sz z)
{

i in nt t i i1 1 = c co ou un nt t(& c cs s[ 0 0] ,& c cs s[ s sz z] ,´ z ź ) ; / / ’z’s in array
i in nt t i i2 2 = c co ou un nt t(& c cs s[ 0 0] ,& c cs s[ s sz z/ 2 2] ,´ z ź ) ; / / ’z’s in first half of array

}

3.8.2 Iterator Types [tour2.iter]

What are iterators really? Any particular iterator is an object of some type. There are, however,
many different iterator types because an iterator needs to hold the information necessary for doing
its job for a particular container type. These iterator types can be as different as the containers and
the specialized needs they serve. For example, av ve ec ct to or r’s iterator is most likely an ordinary pointer
because a pointer is quite a reasonable way of referring to an element of av ve ec ct to or r:

P i e t H e i n vector:

p iterator:

Alternatively, av ve ec ct to or r iterator could be implemented as a pointer to thev ve ec ct to or r plus an index:

P i e t H e i n vector:

(start == p, position == 3) iterator:
. . . . . . . . . . . . .

Using such an iterator would allow range checking (§19.3).
A list iterator must be something more complicated than a simple pointer to an element because

an element of a list in general does not know where the next element of that list is. Thus, a list iter-
ator might be a pointer to a link:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



60 A Tour of the Standard Library Chapter 3

link link link link ... list:

p iterator:

P i e t elements:

What is common for all iterators is their semantics and the naming of their operations. For exam-
ple, applying++ to any iterator yields an iterator that refers to the next element. Similarly,* yields
the element to which the iterator refers. In fact, any object that obeys a few simple rules like these
is an iterator (§19.2.1). Furthermore, users rarely need to know the type of a specific iterator; each
container ‘‘knows’’ its iterator types and makes them available under the conventional namesi it te er ra a- -
t to or r and c co on ns st t_ _i it te er ra at to or r. For example,l li is st t<E En nt tr ry y>: : i it te er ra at to or r is the general iterator type for
l li is st t<E En nt tr ry y>. I rarely have to worry about the details of how that type is defined.

3.8.3 Iterators and I/O [tour2.ioiterators]

Iterators are a general and useful concept for dealing with sequences of elements in containers.
However, containers are not the only place where we find sequences of elements. For example, an
input stream produces a sequence of values and we write a sequence of values to an output stream.
Consequently, the notion of iterators can be usefully applied to input and output.

To make ano os st tr re ea am m_ _i it te er ra at to or r, we need to specify which stream will be used and the type of
objects written to it. For example, we can define an iterator that refers to the standard output
stream,c co ou ut t:

o os st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> o oo o( c co ou ut t) ;

The effect of assigning to* o oo o is to write the assigned value toc co ou ut t. For example:

i in nt t m ma ai in n()
{

* o oo o = " H He el ll lo o, "; / / meaning cout<< "Hello, "
++o oo o;
* o oo o = " w wo or rl ld d! \ \n n"; / / meaning cout<< "world!\n"

}

This is yet another way of writing the canonical message to standard output. The++o oo o is done to
mimic writing into an array through a pointer. This way wouldn’t be my first choice for that simple
task, but the utility of treating output as a write-only container will soon be obvious– if it isn’t
already.

Similarly, an i is st tr re ea am m_ _i it te er ra at to or r is something that allows us to treat an input stream as a read-
only container. Again, we must specify the stream to be used and the type of values expected:

i is st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> i ii i( c ci in n) ;

Because input iterators invariably appear in pairs representing a sequence, we must provide an

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 3.8.3 Iterators and I/O 61

i is st tr re ea am m_ _i it te er ra at to or r to indicate the end of input. This is the defaulti is st tr re ea am m_ _i it te er ra at to or r:

i is st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> e eo os s;

We could now readH He el ll lo o, w wo or rl ld d! from input and write it out again like this:

i in nt t m ma ai in n()
{

s st tr ri in ng g s s1 1 = * i ii i;
++i ii i;
s st tr ri in ng g s s2 2 = * i ii i;

c co ou ut t << s s1 1 << ´ ´ << s s2 2 << ´ \ \n n´;
}

Actually, i is st tr re ea am m_ _i it te er ra at to or rs ando os st tr re ea am m_ _i it te er ra at to or rs are not meant to be used directly. Instead, they
are typically provided as arguments to algorithms. For example, we can write a simple program to
read a file, sort the words read, eliminate duplicates, and write the result to another file:

i in nt t m ma ai in n()
{

s st tr ri in ng g f fr ro om m, t to o;
c ci in n >> f fr ro om m >> t to o; / / get source and target file names

i if fs st tr re ea am m i is s( f fr ro om m. c c_ _s st tr r()) ; / / input stream (c_str(); see §3.5)
i is st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> i ii i( i is s) ; / / input iterator for stream
i is st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> e eo os s; / / input sentinel

v ve ec ct to or r<s st tr ri in ng g> b b( i ii i, e eo os s) ; / / b is a vector initialized from input
s so or rt t( b b. b be eg gi in n() , b b. e en nd d()) ; / / sort the buffer

o of fs st tr re ea am m o os s( t to o. c c_ _s st tr r()) ; / / output stream
o os st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> o oo o( o os s," \ \n n") ; / / output iterator for stream

u un ni iq qu ue e_ _c co op py y( b b. b be eg gi in n() , b b. e en nd d() , o oo o) ; / / copy buffer to output,
/ / discard replicated values

r re et tu ur rn n ! i is s. e eo of f() && ! o os s; / / return error state (§3.2, §21.3.3)
}

An i if fs st tr re ea am m is ani is st tr re ea am m that can be attached to a file, and ano of fs st tr re ea am m is ano os st tr re ea am m that can be
attached to a file. Theo os st tr re ea am m_ _i it te er ra at to or r’s second argument is used to delimit output values.

3.8.4 Traversals and Predicates [tour2.traverse]

Iterators allow us to write loops to iterate through a sequence. However, writing loops can be
tedious, so the standard library provides ways for a function to be called for each element of a
sequence.

Consider writing a program that reads words from input and records the frequency of their
occurrence. The obvious representation of the strings and their associated frequencies is am ma ap p:

m ma ap p<s st tr ri in ng g, i in nt t> h hi is st to og gr ra am m;

The obvious action to be taken for each string to record its frequency is:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



62 A Tour of the Standard Library Chapter 3

v vo oi id d r re ec co or rd d( c co on ns st t s st tr ri in ng g& s s)
{

h hi is st to og gr ra am m[ s s]++; / / record frequency of ‘‘s’’
}

Once the input has been read, we would like to output the data we have gathered. Them ma ap p consists
of a sequence of (string,int) pairs. Consequently, we would like to call

v vo oi id d p pr ri in nt t( c co on ns st t p pa ai ir r<c co on ns st t s st tr ri in ng g, i in nt t>& r r)
{

c co ou ut t << r r. f fi ir rs st t << ´ ´ << r r. s se ec co on nd d << ´ \ \n n´;
}

for each element in the map (the first element of ap pa ai ir r is calledf fi ir rs st t, and the second element is
calleds se ec co on nd d). The first element of thep pa ai ir r is ac co on ns st t s st tr ri in ng g rather than a plains st tr ri in ng g because all
m ma ap p keys are constants.

Thus, the main program becomes:

i in nt t m ma ai in n()
{

i is st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> i ii i( c ci in n) ;
i is st tr re ea am m_ _i it te er ra at to or r<s st tr ri in ng g> e eo os s;

f fo or r_ _e ea ac ch h( i ii i, e eo os s, r re ec co or rd d) ;
f fo or r_ _e ea ac ch h( h hi is st to og gr ra am m. b be eg gi in n() , h hi is st to og gr ra am m. e en nd d() , p pr ri in nt t) ;

}

Note that we don’t need to sort them ma ap p to get the output in order. Am ma ap p keeps its elements
ordered so that an iteration traverses them ma ap p in (increasing) order.

Many programming tasks involve looking for something in a container rather than simply doing
something to every element. For example, thef fi in nd d algorithm (§18.5.2) provides a convenient way
of looking for a specific value. A more general variant of this idea looks for an element that fulfills
a specific requirement. For example, we might want to search am ma ap p for the first value larger than
4 42 2. A m ma ap p is a sequence of (key,value) pairs, so we search that list for ap pa ai ir r<c co on ns st t s st tr ri in ng g, i in nt t>
where thei in nt t is greater than4 42 2:

b bo oo ol l g gt t_ _4 42 2( c co on ns st t p pa ai ir r<c co on ns st t s st tr ri in ng g, i in nt t>& r r)
{

r re et tu ur rn n r r. s se ec co on nd d>4 42 2;
}

v vo oi id d f f( m ma ap p<s st tr ri in ng g, i in nt t>& m m)
{

t ty yp pe ed de ef f m ma ap p<s st tr ri in ng g, i in nt t>: : c co on ns st t_ _i it te er ra at to or r M MI I;
M MI I i i = f fi in nd d_ _i if f( m m. b be eg gi in n() , m m. e en nd d() , g gt t_ _4 42 2) ;
/ / ...

}

Alternatively, we could count the number of words with a frequency higher than 42:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 3.8.4 Traversals and Predicates 63

v vo oi id d g g( c co on ns st t m ma ap p<s st tr ri in ng g, i in nt t>& m m)
{

i in nt t c c4 42 2 = c co ou un nt t_ _i if f( m m. b be eg gi in n() , m m. e en nd d() , g gt t_ _4 42 2) ;
/ / ...

}

A function, such asg gt t_ _4 42 2() , that is used to control the algorithm is called apredicate. A predicate
is called for each element and returns a Boolean value, which the algorithm uses to perform its
intended action. For example,f fi in nd d_ _i if f() searches until its predicate returnst tr ru ue e to indicate that an
element of interest has been found. Similarly,c co ou un nt t_ _i if f() counts the number of times its predicate
is t tr ru ue e.

The standard library provides a few useful predicates and some templates that are useful for cre-
ating more (§18.4.2).

3.8.5 Algorithms Using Member Functions [tour2.memp]

Many algorithms apply a function to elements of a sequence. For example, in §3.8.4

f fo or r_ _e ea ac ch h( i ii i, e eo os s, r re ec co or rd d) ;

callsr re ec co or rd d() to read strings from input.
Often, we deal with containers of pointers and we really would like to call a member function of

the object pointed to, rather than a global function on the pointer. For example, we might want to
call the member functionS Sh ha ap pe e: : d dr ra aw w() for each element of al li is st t<S Sh ha ap pe e*> . To handle this
specific example, we simply write a nonmember function that invokes the member function. For
example:

v vo oi id d d dr ra aw w( S Sh ha ap pe e* p p)
{

p p-> d dr ra aw w() ;
}

v vo oi id d f f( l li is st t<S Sh ha ap pe e*>& s sh h)
{

f fo or r_ _e ea ac ch h( s sh h. b be eg gi in n() , s sh h. e en nd d() , d dr ra aw w) ;
}

By generalizing this technique, we can write the example like this:

v vo oi id d g g( l li is st t<S Sh ha ap pe e*>& s sh h)
{

f fo or r_ _e ea ac ch h( s sh h. b be eg gi in n() , s sh h. e en nd d() , m me em m_ _f fu un n(& S Sh ha ap pe e: : d dr ra aw w)) ;
}

The standard librarym me em m_ _f fu un n() template (§18.4.4.2) takes a pointer to a member function (§15.5)
as its argument and produces something that can be called for a pointer to the member’s class. The
result of m me em m_ _f fu un n(& S Sh ha ap pe e: : d dr ra aw w) takes a S Sh ha ap pe e* argument and returns whatever
S Sh ha ap pe e: : d dr ra aw w() returns.

Them me em m_ _f fu un n() mechanism is important because it allows the standard algorithms to be used
for containers of polymorphic objects.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



64 A Tour of the Standard Library Chapter 3

3.8.6 Standard Library Algorithms [tour2.algolist]

What is an algorithm? A general definition of an algorithm is ‘‘a finite set of rules which gives a
sequence of operations for solving a specific set of problems [and] has five important features:
Finiteness ... Definiteness ... Input ... Output ... Effectiveness’’ [Knuth,1968,§1.1]. In the context of
the C++ standard library, an algorithm is a set of templates operating on sequences of elements.

The standard library provides dozens of algorithms. The algorithms are defined in namespace
s st td d and presented in the<a al lg go or ri it th hm m> header. Here are a few I have found particularly useful:

_ _____________________________________________________________________
Selected Standard Algorithms_ ______________________________________________________________________ _____________________________________________________________________

f fo or r_ _e ea ac ch h( () ) Invoke function for each element (§18.5.1)
f fi in nd d( () ) Find first occurrence of arguments (§18.5.2)
f fi in nd d_ _i if f( () ) Find first match of predicate (§18.5.2)
c co ou un nt t( () ) Count occurrences of element (§18.5.3)
c co ou un nt t_ _i if f( () ) Count matches of predicate (§18.5.3)
r re ep pl la ac ce e( () ) Replace element with new value (§18.6.4)
r re ep pl la ac ce e_ _i if f( () ) Replace element that matches predicate with new value (§18.6.4)
c co op py y( () ) Copy elements (§18.6.1)
u un ni iq qu ue e_ _c co op py y( () ) Copy elements that are not duplicates (§18.6.1)
s so or rt t( () ) Sort elements (§18.7.1)
e eq qu ua al l_ _r ra an ng ge e( () ) Find all elements with equivalent values (§18.7.2)
m me er rg ge e( () ) Merge sorted sequences (§18.7.3)_ _____________________________________________________________________ 


































These algorithms, and many more (see Chapter 18), can be applied to elements of containers,
s st tr ri in ng gs, and built-in arrays.

3.9 Math [tour2.math]

Like C, C++ wasn’t designed primarily with numerical computation in mind. However, a lot of
numerical work is done in C++, and the standard library reflects that.

3.9.1 Complex Numbers [tour2.complex]

The standard library supports a family of complex number types along the lines of thec co om mp pl le ex x
class described in §2.5.2. To support complex numbers where the scalars are single-precision,
floating-point numbers (f fl lo oa at ts), double precision numbers (d do ou ub bl le es), etc., the standard libraryc co om m- -
p pl le ex x is a template:

t te em mp pl la at te e<c cl la as ss s s sc ca al la ar r> c cl la as ss s c co om mp pl le ex x {
p pu ub bl li ic c:

c co om mp pl le ex x( s sc ca al la ar r r re e, s sc ca al la ar r i im m) ;
/ / ...

};

The usual arithmetic operations and the most common mathematical functions are supported for
complex numbers. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



Section 3.9.1 Complex Numbers 65

/ / standard exponentiation function from<complex>:
t te em mp pl la at te e<c cl la as ss s C C> c co om mp pl le ex x<C C> p po ow w( c co on ns st t c co om mp pl le ex x<C C>&, i in nt t) ;

v vo oi id d f f( c co om mp pl le ex x<f fl lo oa at t> f fl l, c co om mp pl le ex x<d do ou ub bl le e> d db b)
{

c co om mp pl le ex x<l lo on ng g d do ou ub bl le e> l ld d = f fl l+s sq qr rt t( d db b) ;
d db b += f fl l* 3 3;
f fl l = p po ow w( 1 1/ f fl l, 2 2) ;
/ / ...

}

For more details, see §22.5.

3.9.2 Vector Arithmetic [tour2.valarray]

The v ve ec ct to or r described in §3.7.1 was designed to be a general mechanism for holding values, to be
flexible, and to fit into the architecture of containers, iterators, and algorithms. However, it does
not support mathematical vector operations. Adding such operations tov ve ec ct to or r would be easy, but
its generality and flexibility precludes optimizations that are often considered essential for serious
numerical work. Consequently, the standard library provides a vector, calledv va al la ar rr ra ay y, that is less
general and more amenable to optimization for numerical computation:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s v va al la ar rr ra ay y {
/ / ...
T T& o op pe er ra at to or r[]( s si iz ze e_ _t t) ;
/ / ...

};

The types si iz ze e_ _t t is the unsigned integer type that the implementation uses for array indices.
The usual arithmetic operations and the most common mathematical functions are supported for

v va al la ar rr ra ay ys. For example:

/ / standard absolute value function from<valarray>:
t te em mp pl la at te e<c cl la as ss s T T> v va al la ar rr ra ay y<T T> a ab bs s( c co on ns st t v va al la ar rr ra ay y<T T>&) ;

v vo oi id d f f( v va al la ar rr ra ay y<d do ou ub bl le e>& a a1 1, v va al la ar rr ra ay y<d do ou ub bl le e>& a a2 2)
{

v va al la ar rr ra ay y<d do ou ub bl le e> a a = a a1 1* 3 3. 1 14 4+a a2 2/ a a1 1;
a a2 2 += a a1 1* 3 3. 1 14 4;
a a = a ab bs s( a a) ;
d do ou ub bl le e d d = a a2 2[ 7 7] ;
/ / ...

}

For more details, see §22.4.

3.9.3 Basic Numeric Support [tour2.basicnum]

Naturally, the standard library contains the most common mathematical functions– such asl lo og g() ,
p po ow w() , and c co os s() – for floating-point types; see §22.3. In addition, classes that describe the
properties of built-in types– such as the maximum exponent of af fl lo oa at t – are provided; see §22.2.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.



66 A Tour of the Standard Library Chapter 3

3.10 Standard Library Facilities [tour2.post]

The facilities provided by the standard library can be classified like this:
[1] Basic run-time language support (e.g., for allocation and run-time type information); see

§16.1.3.
[2] The C standard library (with very minor modifications to minimize violations of the type

system); see §16.1.2.
[3] Strings and I/O streams (with support for international character sets and localization); see

Chapter 20 and Chapter 21.
[4] A framework of containers (such asv ve ec ct to or r, l li is st t, andm ma ap p) and algorithms using containers

(such as general traversals, sorts, and merges); see Chapter 16, Chapter 17, Chapter 18, and
Chapter 19.

[5] Support for numerical computation (complex numbers plus vectors with arithmetic opera-
tions, BLAS-like and generalized slices, and semantics designed to ease optimization); see
Chapter 22.

The main criterion for including a class in the library was that it would somehow be used by almost
every C++ programmer (both novices and experts), that it could be provided in a general form that
did not add significant overhead compared to a simpler version of the same facility, and that simple
uses should be easy to learn. Essentially, the C++ standard library provides the most common fun-
damental data structures together with the fundamental algorithms used on them.

Every algorithm works with every container without the use of conversions. This framework,
conventionally called the STL [Stepanov,1994], is extensible in the sense that users can easily pro-
vide containers and algorithms in addition to the ones provided as part of the standard and have
these work directly with the standard containers and algorithms.

3.11 Advice[tour2.advice]

[1] Don’t reinvent the wheel; use libraries.
[2] Don’t believe in magic; understand what your libraries do, how they do it, and at what cost

they do it.
[3] When you have a choice, prefer the standard library to other libraries.
[4] Do not think that the standard library is ideal for everything.
[5] Remember to#i in nc cl lu ud de e the headers for the facilities you use; §3.3.
[6] Remember that standard library facilities are defined in namespaces st td d; §3.3.
[7] Uses st tr ri in ng g rather thanc ch ha ar r* ; §3.5, §3.6.
[8] If in doubt use a range-checked vector (such asV Ve ec c); §3.7.2.
[9] Preferv ve ec ct to or r<T T>, l li is st t<T T>, andm ma ap p<k ke ey y, v va al lu ue e> to T T[] ; §3.7.1, §3.7.3, §3.7.4.
[10] When adding elements to a container, usep pu us sh h_ _b ba ac ck k() or b ba ac ck k_ _i in ns se er rt te er r() ; §3.7.3, §3.8.
[11] Usep pu us sh h_ _b ba ac ck k() on av ve ec ct to or r rather thanr re ea al ll lo oc c() on an array; §3.8.
[12] Catch common exceptions inm ma ai in n() ; §3.7.2.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.


	Return to Contents
	3.1 Introduction
	3.2 Hello, world!
	3.3 The Standard Library Namespace
	3.4 Output
	3.5 Strings
	3.6 Input
	3.7 Containers
	3.8 Algorithms
	3.9 Math
	3.10 Standard Library Facilities
	3.11 Advice

	buy now: 


