
_ __ _______________________________________

6
_ __ _______________________________________

Expressions and Statements

Premature optimization
is the root of all evil.

– D. Knuth

On the other hand,
we cannot ignore efficiency.

– Jon Bentley

Desk calculator example— input — command line arguments— expression summary
— logical and relational operators— increment and decrement— free store— explicit
type conversion— statement summary— declarations— selection statements— decla-
rations in conditions— iteration statements— the infamousg go ot to o — comments and
indentation— advice— exercises.

6.1 A Desk Calculator[expr.calculator]

Statements and expressions are introduced by presenting a desk calculator program that provides
the four standard arithmetic operations as infix operators on floating-point numbers. The user can
also define variables. For example, given the input

r r = 2 2. 5 5
a ar re ea a = p pi i * r r * r r

(pi is predefined) the calculator program will write

2 2. 5 5
1 19 9. 6 63 35 5

where2 2. 5 5 is the result of the first line of input and1 19 9. 6 63 35 5 is the result of the second.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

108 Expressions and Statements Chapter 6

The calculator consists of four main parts: a parser, an input function, a symbol table, and a
driver. Actually, it is a miniature compiler in which the parser does the syntactic analysis, the input
function handles input and lexical analysis, the symbol table holds permanent information, and the
driver handles initialization, output, and errors. We could add many features to this calculator to
make it more useful (§6.6[20]), but the code is long enough as it is, and most features would just
add code without providing additional insight into the use of C++.

6.1.1 The Parser [expr.parser]

Here is a grammar for the language accepted by the calculator:

p pr ro og gr ra am m:
E EN ND D / / END is end-of-input
e ex xp pr r_ _l li is st t E EN ND D

e ex xp pr r_ _l li is st t:
e ex xp pr re es ss si io on n P PR RI IN NT T / / PRINT is semicolon
e ex xp pr re es ss si io on n P PR RI IN NT T e ex xp pr r_ _l li is st t

e ex xp pr re es ss si io on n:
e ex xp pr re es ss si io on n + t te er rm m
e ex xp pr re es ss si io on n - t te er rm m
t te er rm m

t te er rm m:
t te er rm m / p pr ri im ma ar ry y
t te er rm m * p pr ri im ma ar ry y
p pr ri im ma ar ry y

p pr ri im ma ar ry y:
N NU UM MB BE ER R
N NA AM ME E
N NA AM ME E = e ex xp pr re es ss si io on n
- p pr ri im ma ar ry y
(e ex xp pr re es ss si io on n)

In other words, a program is a sequence of expressions separated by semicolons. The basic units of
an expression are numbers, names, and the operators* , / , +, - (both unary and binary), and=.
Names need not be declared before use.

The style of syntax analysis used is usually calledrecursive descent; it is a popular and straight-
forward top-down technique. In a language such as C++, in which function calls are relatively
cheap, it is also efficient. For each production in the grammar, there is a function that calls other
functions. Terminal symbols (for example,E EN ND D, N NU UM MB BE ER R, +, and-) are recognized by the lexi-
cal analyzer,g ge et t_ _t to ok ke en n() ; and nonterminal symbols are recognized by the syntax analyzer func-
tions,e ex xp pr r() , t te er rm m() , andp pr ri im m() . As soon as both operands of a (sub)expression are known, the
expression is evaluated; in a real compiler, code could be generated at this point.

The parser uses a functiong ge et t_ _t to ok ke en n() to get input. The value of the most recent call of
g ge et t_ _t to ok ke en n() can be found in the global variablec cu ur rr r_ _t to ok k. The type ofc cu ur rr r_ _t to ok k is the enumera-
tion T To ok ke en n_ _v va al lu ue e:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.1 The Parser 109

e en nu um m T To ok ke en n_ _v va al lu ue e {
N NA AM ME E, N NU UM MB BE ER R, E EN ND D,
P PL LU US S=´+´, M MI IN NU US S=´-´, M MU UL L=´*´, D DI IV V=´/´,
P PR RI IN NT T=´;´, A AS SS SI IG GN N=´=´, L LP P=´(´, R RP P=´)´

};

T To ok ke en n_ _v va al lu ue e c cu ur rr r_ _t to ok k = P PR RI IN NT T;

Representing each token by the integer value of its character is convenient and efficient and can be
a help to people using debuggers. This works as long as no character used as input has a value used
as an enumerator– and no character set I know of has a printing character with a single-digit inte-
ger value. I choseP PR RI IN NT T as the initial value forc cu ur rr r_ _t to ok k because that is the value it will have
after the calculator has evaluated an expression and displayed its value. Thus, I ‘‘start the system’’
in a normal state to minimize the chance of errors and the need for special startup code.

Each parser function takes ab bo oo ol l (§4.2) argument indicating whether the function needs to call
g ge et t_ _t to ok ke en n() to get the next token. Each parser function evaluates ‘‘its’’ expression and returns the
value. The functione ex xp pr r() handles addition and subtraction. It consists of a single loop that looks
for terms to add or subtract:

d do ou ub bl le e e ex xp pr r(b bo oo ol l g ge et t) / / add and subtract
{

d do ou ub bl le e l le ef ft t = t te er rm m(g ge et t) ;

f fo or r (;;) / / ‘‘forever’’
s sw wi it tc ch h (c cu ur rr r_ _t to ok k) {
c ca as se e P PL LU US S:

l le ef ft t += t te er rm m(t tr ru ue e) ;
b br re ea ak k;

c ca as se e M MI IN NU US S:
l le ef ft t -= t te er rm m(t tr ru ue e) ;
b br re ea ak k;

d de ef fa au ul lt t:
r re et tu ur rn n l le ef ft t;

}
}

This function really does not do much itself. In a manner typical of higher-level functions in a
large program, it calls other functions to do the work.

Theswitch-statementtests the value of its condition, which is supplied in parentheses after the
s sw wi it tc ch h keyword, against a set of constants. Thebreak-statements are used to exit theswitch-
statement. The constants following thec ca as se e labels must be distinct. If the value tested does not
match anyc ca as se e label, thed de ef fa au ul lt t is chosen. The programmer need not provide ad de ef fa au ul lt t.

Note that an expression such as2 2- 3 3+4 4 is evaluated as(2 2- 3 3)+ 4 4, as specified in the grammar.
The curious notationf fo or r(;;) is the standard way to specify an infinite loop; you could pro-

nounce it ‘‘forever.’’ It is a degenerate form of afor-statement(§6.3.3);w wh hi il le e(t tr ru ue e) is an alterna-
tive. Theswitch-statementis executed repeatedly until something different from+ and- is found,
and then thereturn-statementin the default case is executed.

The operators+= and-= are used to handle the addition and subtraction;l le ef ft t=l le ef ft t+t te er rm m() and

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

110 Expressions and Statements Chapter 6

l le ef ft t=l le ef ft t- t te er rm m() could have been used without changing the meaning of the program. However,
l le ef ft t+=t te er rm m() and l le ef ft t-= t te er rm m() not only are shorter but also express the intended operation
directly. Each assignment operator is a separate lexical token, soa a + = 1 1; is a syntax error because
of the space between the+ and the=.

Assignment operators are provided for the binary operators

+ - * / % & | ^ << >>

so that the following assignment operators are possible

= += -= *= /= %= &= |= ^= <<= >>=

The %is the modulo, or remainder, operator;&, | , and^ are the bitwise logical operators AND,
OR, and exclusive OR;<< and>> are the left shift and right shift operators; §6.2 summarizes the
operators and their meanings. For a binary operator@ @ applied to operands of built-in types, an
expressionx x@ @= =y y meansx x= =x x@ @y y, except thatx x is evaluated once only.

Chapter 8 and Chapter 9 discuss how to organize a program as a set of modules. With one
exception, the declarations for this calculator example can be ordered so that everything is declared
exactly once and before it is used. The exception ise ex xp pr r() , which callst te er rm m() , which calls
p pr ri im m() , which in turn callse ex xp pr r() . This loop must be broken somehow. A declaration

d do ou ub bl le e e ex xp pr r(b bo oo ol l) ;

before the definition ofp pr ri im m() will do nicely.
Functiont te er rm m() handles multiplication and division in the same waye ex xp pr r() handles addition

and subtraction:

d do ou ub bl le e t te er rm m(b bo oo ol l g ge et t) / / multiply and divide
{

d do ou ub bl le e l le ef ft t = p pr ri im m(g ge et t) ;

f fo or r (;;)
s sw wi it tc ch h (c cu ur rr r_ _t to ok k) {
c ca as se e M MU UL L:

l le ef ft t *= p pr ri im m(t tr ru ue e) ;
b br re ea ak k;

c ca as se e D DI IV V:
i if f (d do ou ub bl le e d d = p pr ri im m(t tr ru ue e)) {

l le ef ft t /= d d;
b br re ea ak k;

}
r re et tu ur rn n e er rr ro or r(" d di iv vi id de e b by y 0 0") ;

d de ef fa au ul lt t:
r re et tu ur rn n l le ef ft t;

}
}

The result of dividing by zero is undefined and usually disastrous. We therefore test for0 0 before
dividing and calle er rr ro or r() if we detect a zero divisor. The functione er rr ro or r() is described in §6.1.4.

The variabled d is introduced into the program exactly where it is needed and initialized immedi-
ately. The scope of a name introduced in a condition is the statement controlled by that condition,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.1 The Parser 111

and the resulting value is the value of the condition (§6.3.2.1). Consequently, the division and
assignmentl le ef ft t/= d d is done if and only ifd d is nonzero.

The functionp pr ri im m() handling aprimary is much likee ex xp pr r() andt te er rm m() , except that because
we are getting lower in the call hierarchy a bit of real work is being done and no loop is necessary:

d do ou ub bl le e n nu um mb be er r_ _v va al lu ue e;
s st tr ri in ng g s st tr ri in ng g_ _v va al lu ue e;

d do ou ub bl le e p pr ri im m(b bo oo ol l g ge et t) / / handle primaries
{

i if f (g ge et t) g ge et t_ _t to ok ke en n() ;

s sw wi it tc ch h (c cu ur rr r_ _t to ok k) {
c ca as se e N NU UM MB BE ER R: / / floating-point constant
{ d do ou ub bl le e v v = n nu um mb be er r_ _v va al lu ue e;

g ge et t_ _t to ok ke en n() ;
r re et tu ur rn n v v;

}
c ca as se e N NA AM ME E:
{ d do ou ub bl le e& v v = t ta ab bl le e[s st tr ri in ng g_ _v va al lu ue e] ;

i if f (g ge et t_ _t to ok ke en n() == A AS SS SI IG GN N) v v = e ex xp pr r(t tr ru ue e) ;
r re et tu ur rn n v v;

}
c ca as se e M MI IN NU US S: / / unary minus

r re et tu ur rn n - p pr ri im m(t tr ru ue e) ;
c ca as se e L LP P:
{ d do ou ub bl le e e e = e ex xp pr r(t tr ru ue e) ;

i if f (c cu ur rr r_ _t to ok k != R RP P) r re et tu ur rn n e er rr ro or r(") e ex xp pe ec ct te ed d") ;
g ge et t_ _t to ok ke en n() ; / / eat ’)’
r re et tu ur rn n e e;

}
d de ef fa au ul lt t:

r re et tu ur rn n e er rr ro or r(" p pr ri im ma ar ry y e ex xp pe ec ct te ed d") ;
}

}

When aN NU UM MB BE ER R (that is, an integer or floating-point literal) is seen, its value is returned. The
input routineg ge et t_ _t to ok ke en n() places the value in the global variablen nu um mb be er r_ _v va al lu ue e. Use of a global
variable in a program often indicates that the structure is not quite clean– that some sort of opti-
mization has been applied. So it is here. Ideally, a lexical token consists of two parts: a value spec-
ifying the kind of token (aT To ok ke en n_ _v va al lu ue e in this program) and (when needed) the value of the token.
Here, there is only a single, simple variable,c cu ur rr r_ _t to ok k, so the global variablen nu um mb be er r_ _v va al lu ue e is
needed to hold the value of the lastN NU UM MB BE ER R read. Eliminating this spurious global variable is left
as an exercise (§6.6[21]). Saving the value ofn nu um mb be er r_ _v va al lu ue e in the local variablev v before calling
g ge et t_ _t to ok ke en n() is not really necessary. For every legal input, the calculator always uses one number
in the computation before reading another from input. However, saving the value and displaying it
correctly after an error helps the user.

In the same way that the value of the lastN NU UM MB BE ER R is kept inn nu um mb be er r_ _v va al lu ue e, the character
string representation of the lastN NA AM ME E seen is kept ins st tr ri in ng g_ _v va al lu ue e. Before doing anything to a

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

112 Expressions and Statements Chapter 6

name, the calculator must first look ahead to see if it is being assigned to or simply read. In both
cases, the symbol table is consulted. The symbol table is am ma ap p (§3.7.4, §17.4.1):

m ma ap p<s st tr ri in ng g, d do ou ub bl le e> t ta ab bl le e;

That is, whent ta ab bl le e is indexed by as st tr ri in ng g, the resulting value is thed do ou ub bl le e corresponding to the
s st tr ri in ng g. For example, if the user enters

r ra ad di iu us s = 6 63 37 78 8. 3 38 88 8;

the calculator will execute

d do ou ub bl le e& v v = t ta ab bl le e[" r ra ad di iu us s"] ;
/ / ... expr() calculates the value to be assigned ...
v v = 6 63 37 78 8. 3 38 88 8;

The referencev v is used to hold on to thed do ou ub bl le e associated withr ra ad di iu us s while e ex xp pr r() calculates the
value6 63 37 78 8. 3 38 88 8 from the input characters.

6.1.2 The Input Function [expr.input]

Reading input is often the messiest part of a program. This is because a program must communi-
cate with a person, it must cope with that person’s whims, conventions, and seemingly random
errors. Trying to force the person to behave in a manner more suitable for the machine is often
(rightly) considered offensive. The task of a low-level input routine is to read characters and com-
pose higher-level tokens from them. These tokens are then the units of input for higher-level rou-
tines. Here, low-level input is done byg ge et t_ _t to ok ke en n() . Writing a low-level input routine need not be
an everyday task. Many systems provide standard functions for this.

I build g ge et t_ _t to ok ke en n() in two stages. First, I provide a deceptively simple version that imposes a
burden on the user. Next, I modify it into a slightly less elegant, but much easier to use, version.

The idea is to read a character, use that character to decide what kind of token needs to be com-
posed, and then return theT To ok ke en n_ _v va al lu ue e representing the token read.

The initial statements read the first non-whitespace character intoc ch h and check that the read
operation succeeded:

T To ok ke en n_ _v va al lu ue e g ge et t_ _t to ok ke en n()
{

c ch ha ar r c ch h = 0 0;
c ci in n>>c ch h;

s sw wi it tc ch h (c ch h) {
c ca as se e 0 0:

r re et tu ur rn n c cu ur rr r_ _t to ok k=E EN ND D; / / assign and return

By default, operator>> skips whitespace (that is, spaces, tabs, newlines, etc.) and leaves the value
of c ch h unchanged if the input operation failed. Consequently,c ch h==0 0 indicates end of input.

Assignment is an operator, and the result of the assignment is the value of the variable assigned
to. This allows me to assign the valueE EN ND D to c cu ur rr r_ _t to ok k and return it in the same statement. Hav-
ing a single statement rather than two is useful in maintenance. If the assignment and the return
became separated in the code, a programmer might update the one and forget to update to the other.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.2 The Input Function 113

Let us look at some of the cases separately before considering the complete function. The
expression terminator´;´ , the parentheses, and the operators are handled simply by returning their
values:

c ca as se e ´;´:
c ca as se e ´*´:
c ca as se e ´/´:
c ca as se e ´+´:
c ca as se e ´-´:
c ca as se e ´(´:
c ca as se e ´)´:
c ca as se e ´=´:

r re et tu ur rn n c cu ur rr r_ _t to ok k=T To ok ke en n_ _v va al lu ue e(c ch h) ;

Numbers are handled like this:

c ca as se e ´ 0 0´: c ca as se e ´ 1 1´: c ca as se e ´ 2 2´: c ca as se e ´ 3 3´: c ca as se e ´ 4 4´:
c ca as se e ´ 5 5´: c ca as se e ´ 6 6´: c ca as se e ´ 7 7´: c ca as se e ´ 8 8´: c ca as se e ´ 9 9´:
c ca as se e ´.´:

c ci in n. p pu ut tb ba ac ck k(c ch h) ;
c ci in n >> n nu um mb be er r_ _v va al lu ue e;
r re et tu ur rn n c cu ur rr r_ _t to ok k=N NU UM MB BE ER R;

Stackingc ca as se e labels horizontally rather than vertically is generally not a good idea because this
arrangement is harder to read. However, having one line for each digit is tedious. Because opera-
tor >> is already defined for reading floating-point constants into ad do ou ub bl le e, the code is trivial. First
the initial character (a digit or a dot) is put back intoc ci in n. Then the constant can be read into
n nu um mb be er r_ _v va al lu ue e.

A name is handled similarly:

d de ef fa au ul lt t: / / NAME, NAME =, or error
i if f (i is sa al lp ph ha a(c ch h)) {

c ci in n. p pu ut tb ba ac ck k(c ch h) ;
c ci in n>>s st tr ri in ng g_ _v va al lu ue e;
r re et tu ur rn n c cu ur rr r_ _t to ok k=N NA AM ME E;

}
e er rr ro or r(" b ba ad d t to ok ke en n") ;
r re et tu ur rn n c cu ur rr r_ _t to ok k=P PR RI IN NT T;

The standard library functioni is sa al lp ph ha a() (§20.4.2) is used to avoid listing every character as a sepa-
ratec ca as se e label. Operator>> applied to a string (in this case,s st tr ri in ng g_ _v va al lu ue e) reads until it hits white-
space. Consequently, a user must terminate a name by a space before an operator using the name as
an operand. This is less than ideal, so we will return to this problem in §6.1.3.

Here, finally, is the complete input function:

T To ok ke en n_ _v va al lu ue e g ge et t_ _t to ok ke en n()
{

c ch ha ar r c ch h = 0 0;
c ci in n>>c ch h;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

114 Expressions and Statements Chapter 6

s sw wi it tc ch h (c ch h) {
c ca as se e 0 0:

r re et tu ur rn n c cu ur rr r_ _t to ok k=E EN ND D;

c ca as se e ´;´:
c ca as se e ´*´:
c ca as se e ´/´:
c ca as se e ´+´:
c ca as se e ´-´:
c ca as se e ´(´:
c ca as se e ´)´:
c ca as se e ´=´:

r re et tu ur rn n c cu ur rr r_ _t to ok k=T To ok ke en n_ _v va al lu ue e(c ch h) ;

c ca as se e ´ 0 0´: c ca as se e ´ 1 1´: c ca as se e ´ 2 2´: c ca as se e ´ 3 3´: c ca as se e ´ 4 4´:
c ca as se e ´ 5 5´: c ca as se e ´ 6 6´: c ca as se e ´ 7 7´: c ca as se e ´ 8 8´: c ca as se e ´ 9 9´:
c ca as se e ´.´:

c ci in n. p pu ut tb ba ac ck k(c ch h) ;
c ci in n >> n nu um mb be er r_ _v va al lu ue e;
r re et tu ur rn n c cu ur rr r_ _t to ok k=N NU UM MB BE ER R;

d de ef fa au ul lt t: / / NAME, NAME =, or error
i if f (i is sa al lp ph ha a(c ch h)) {

c ci in n. p pu ut tb ba ac ck k(c ch h) ;
c ci in n>>s st tr ri in ng g_ _v va al lu ue e;
r re et tu ur rn n c cu ur rr r_ _t to ok k=N NA AM ME E;

}
e er rr ro or r(" b ba ad d t to ok ke en n") ;
r re et tu ur rn n c cu ur rr r_ _t to ok k=P PR RI IN NT T;

}
}

The conversion of an operator to its token value is trivial because theT To ok ke en n_ _v va al lu ue e of an operator
was defined as the integer value of the operator (§4.8).

6.1.3 Low-level Input [expr.low]

Using the calculator as defined so far reveals a few inconveniences. It is tedious to remember to
add a semicolon after an expression in order to get its value printed, and having a name terminated
by whitespace only is a real nuisance. For example,x x=7 7 is an identifier– rather than the identifier
x x followed by the operator= and the number7 7. Both problems are solved by replacing the type-
oriented default input operations ing ge et t_ _t to ok ke en n() with code that reads individual characters.

First, we’ll make a newline equivalent to the semicolon used to mark the end of expression:

T To ok ke en n_ _v va al lu ue e g ge et t_ _t to ok ke en n()
{

c ch ha ar r c ch h;

d do o { / / skip whitespace except ’\n’
i if f(! c ci in n. g ge et t(c ch h)) r re et tu ur rn n c cu ur rr r_ _t to ok k = E EN ND D;

} w wh hi il le e (c ch h!=´ \ \n n´ && i is ss sp pa ac ce e(c ch h)) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.3 Low-level Input 115

s sw wi it tc ch h (c ch h) {
c ca as se e ´;´:
c ca as se e ´ \ \n n´:

r re et tu ur rn n c cu ur rr r_ _t to ok k=P PR RI IN NT T;

A do-statementis used; it is equivalent to awhile-statementexcept that the controlled statement is
always executed at least once. The callc ci in n. g ge et t(c ch h) reads a single character from the standard
input stream intoc ch h. By default,g ge et t() does not skip whitespace the wayo op pe er ra at to or r >> does. The
test i if f (! c ci in n. g ge et t(c ch h)) fails if no character can be read fromc ci in n; in this case,E EN ND D is returned to
terminate the calculator session. The operator! (NOT) is used becauseg ge et t() returnst tr ru ue e in case
of success.

The standard library functioni is ss sp pa ac ce e() provides the standard test for whitespace (§20.4.2);
i is ss sp pa ac ce e(c c) returns a nonzero value ifc c is a whitespace character and zero otherwise. The test is
implemented as a table lookup, so usingi is ss sp pa ac ce e() is much faster than testing for the individual
whitespace characters. Similar functions test if a character is a digit– i is sd di ig gi it t() – a letter– i is sa al l- -
p ph ha a() – or a digit or letter– i is sa al ln nu um m() .

After whitespace has been skipped, the next character is used to determine what kind of lexical
token is coming.

The problem caused by>> reading into a string until whitespace is encountered is solved by
reading one character at a time until a character that is not a letter or a digit is found:

d de ef fa au ul lt t: / / NAME, NAME=, or error
i if f (i is sa al lp ph ha a(c ch h)) {

s st tr ri in ng g_ _v va al lu ue e = c ch h;
w wh hi il le e (c ci in n. g ge et t(c ch h) && i is sa al ln nu um m(c ch h)) s st tr ri in ng g_ _v va al lu ue e. p pu us sh h_ _b ba ac ck k(c ch h) ;
c ci in n. p pu ut tb ba ac ck k(c ch h) ;
r re et tu ur rn n c cu ur rr r_ _t to ok k=N NA AM ME E;

}
e er rr ro or r(" b ba ad d t to ok ke en n") ;
r re et tu ur rn n c cu ur rr r_ _t to ok k=P PR RI IN NT T;

Fortunately, these two improvements could both be implemented by modifying a single local sec-
tion of code. Constructing programs so that improvements can be implemented through local mod-
ifications only is an important design aim.

6.1.4 Error Handling [expr.error]

Because the program is so simple, error handling is not a major concern. The error function simply
counts the errors, writes out an error message, and returns:

i in nt t n no o_ _o of f_ _e er rr ro or rs s;

d do ou ub bl le e e er rr ro or r(c co on ns st t s st tr ri in ng g& s s)
{

n no o_ _o of f_ _e er rr ro or rs s++;
c ce er rr r << " e er rr ro or r: " << s s << ´ \ \n n´;
r re et tu ur rn n 1 1;

}

The streamc ce er rr r is an unbuffered output stream usually used to report errors (§21.2.1).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

116 Expressions and Statements Chapter 6

The reason for returning a value is that errors typically occur in the middle of the evaluation of
an expression, so we should either abort that evaluation entirely or return a value that is unlikely to
cause subsequent errors. The latter is adequate for this simple calculator. Hadg ge et t_ _t to ok ke en n() kept
track of the line numbers,e er rr ro or r() could have informed the user approximately where the error
occurred. This would be useful when the calculator is used noninteractively (§6.6[19]).

Often, a program must be terminated after an error has occurred because no sensible way of
continuing has been devised. This can be done by callinge ex xi it t() , which first cleans up things like
output streams and then terminates the program with its argument as the return value (§9.4.1.1).

More stylized error-handling mechanisms can be implemented using exceptions (see §8.3,
Chapter 14), but what we have here is quite suitable for a 150-line calculator.

6.1.5 The Driver [expr.driver]

With all the pieces of the program in place, we need only a driver to start things. In this simple
example,m ma ai in n() can do that:

i in nt t m ma ai in n()
{

t ta ab bl le e[" p pi i"] = 3 3. 1 14 41 15 59 92 26 65 53 35 58 89 97 79 93 32 23 38 85 5; / / insert predefined names
t ta ab bl le e[" e e"] = 2 2. 7 71 18 82 28 81 18 82 28 84 45 59 90 04 45 52 23 35 54 4;

w wh hi il le e (c ci in n) {
g ge et t_ _t to ok ke en n() ;
i if f (c cu ur rr r_ _t to ok k == E EN ND D) b br re ea ak k;
i if f (c cu ur rr r_ _t to ok k == P PR RI IN NT T) c co on nt ti in nu ue e;
c co ou ut t << e ex xp pr r(f fa al ls se e) << ´ \ \n n´;

}

r re et tu ur rn n n no o_ _o of f_ _e er rr ro or rs s;
}

Conventionally,m ma ai in n() should return zero if the program terminates normally and nonzero other-
wise (§3.2). Returning the number of errors accomplishes this nicely. As it happens, the only
initialization needed is to insert the predefined names into the symbol table.

The primary task of the main loop is to read expressions and write out the answer. This is
achieved by the line:

c co ou ut t << e ex xp pr r(f fa al ls se e) << ´ \ \n n´;

The argumentf fa al ls se e tells e ex xp pr r() that it does not need to callg ge et t_ _t to ok ke en n() to get a current token on
which to work.

Testingc ci in n each time around the loop ensures that the program terminates if something goes
wrong with the input stream, and testing forE EN ND D ensures that the loop is correctly exited when
g ge et t_ _t to ok ke en n() encounters end-of-file. Abreak-statementexits its nearest enclosingswitch-statement
or loop (that is, afor-statement, while-statement, or do-statement). Testing forP PR RI IN NT T (that is, for
´ \ \n n´ and´;´) relievese ex xp pr r() of the responsibility for handling empty expressions. Acontinue-
statementis equivalent to going to the very end of a loop, so in this case

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.5 The Driver 117

w wh hi il le e (c ci in n) {
/ / ...
i if f (c cu ur rr r_ _t to ok k == P PR RI IN NT T) c co on nt ti in nu ue e;
c co ou ut t << e ex xp pr r(f fa al ls se e) << ´ \ \n n´;

}

is equivalent to

w wh hi il le e (c ci in n) {
/ / ...
i if f (c cu ur rr r_ _t to ok k != P PR RI IN NT T)

c co ou ut t << e ex xp pr r(f fa al ls se e) << ´ \ \n n´;
}

6.1.6 Headers [expr.headers]

The calculator uses standard library facilities. Therefore, appropriate headers must be#i in nc cl lu ud de ed to
complete the program:

#i in nc cl lu ud de e<i io os st tr re ea am m> / / I/O
#i in nc cl lu ud de e<s st tr ri in ng g> / / strings
#i in nc cl lu ud de e<m ma ap p> / / map
#i in nc cl lu ud de e<c cc ct ty yp pe e> / / isalpha(), etc.

All of these headers provide facilities in thes st td d namespace, so to use the names they provide we
must either use explicit qualification withs st td d: : or bring the names into the global namespace by

u us si in ng g n na am me es sp pa ac ce e s st td d;

To avoid confusing the discussion of expressions with modularity issues, I did the latter. Chapter 8
and Chapter 9 discuss ways of organizing this calculator into modules using namespaces and how
to organize it into source files. On many systems, standard headers have equivalents with a. h h suf-
fix that declare the classes, functions, etc., and place them in the global namespace (§9.2.1, §9.2.4,
§B.3.1).

6.1.7 Command-Line Arguments [expr.command]

After the program was written and tested, I found it a bother to first start the program, then type the
expressions, and finally quit. My most common use was to evaluate a single expression. If that
expression could be presented as a command-line argument, a few keystrokes could be avoided.

A program starts by callingm ma ai in n() (§3.2, §9.4). When this is done,m ma ai in n() is given two
arguments specifying the number of arguments, usually calleda ar rg gc c, and an array of arguments,
usually calleda ar rg gv v. The arguments are character strings, so the type ofa ar rg gv v is c ch ha ar r*[a ar rg gc c+1 1] .
The name of the program (as it occurs on the command line) is passed asa ar rg gv v[0 0] , so a ar rg gc c is
always at least1 1. The list of arguments is zero-terminated; that is,a ar rg gv v[a ar rg gc c]== 0 0. For example,
for the command

d dc c 1 15 50 0/ 1 1. 1 19 93 34 4

the arguments have these values:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

118 Expressions and Statements Chapter 6

2a ar rg gc c:

a ar rg gv v: 0 0

. .
"d dc c"

"1 15 50 0/ /1 1. .1 19 93 34 4"

Because the conventions for callingm ma ai in n() are shared with C, C-style arrays and strings are used.
It is not difficult to get hold of a command-line argument. The problem is how to use it with

minimal reprogramming. The idea is to read from the command string in the same way that we
read from the input stream. A stream that reads from a string is unsurprisingly called an
i is st tr ri in ng gs st tr re ea am m. Unfortunately, there is no elegant way of makingc ci in n refer to ani is st tr ri in ng gs st tr re ea am m.
Therefore, we must find a way of getting the calculator input functions to refer to ani is st tr ri in ng gs st tr re ea am m.
Furthermore, we must find a way of getting the calculator input functions to refer to an
i is st tr ri in ng gs st tr re ea am m or toc ci in n depending on what kind of command-line argument we supply.

A simple solution is to introduce a global pointeri in np pu ut t that points to the input stream to be used
and have every input routine use that:

i is st tr re ea am m* i in np pu ut t; / / pointer to input stream

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[])
{

s sw wi it tc ch h (a ar rg gc c) {
c ca as se e 1 1: / / read from standard input

i in np pu ut t = &c ci in n;
b br re ea ak k;

c ca as se e 2 2: / / read argument string
i in np pu ut t = n ne ew w i is st tr ri in ng gs st tr re ea am m(a ar rg gv v[1 1]) ;
b br re ea ak k;

d de ef fa au ul lt t:
e er rr ro or r(" t to oo o m ma an ny y a ar rg gu um me en nt ts s") ;
r re et tu ur rn n 1 1;

}

t ta ab bl le e[" p pi i"] = 3 3. 1 14 41 15 59 92 26 65 53 35 58 89 97 79 93 32 23 38 85 5; / / insert predefined names
t ta ab bl le e[" e e"] = 2 2. 7 71 18 82 28 81 18 82 28 84 45 59 90 04 45 52 23 35 54 4;

w wh hi il le e (* i in np pu ut t) {
g ge et t_ _t to ok ke en n() ;
i if f (c cu ur rr r_ _t to ok k == E EN ND D) b br re ea ak k;
i if f (c cu ur rr r_ _t to ok k == P PR RI IN NT T) c co on nt ti in nu ue e;
c co ou ut t << e ex xp pr r(f fa al ls se e) << ´ \ \n n´;

}

i if f (i in np pu ut t != &c ci in n) d de el le et te e i in np pu ut t;
r re et tu ur rn n n no o_ _o of f_ _e er rr ro or rs s;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.1.7 Command-Line Arguments 119

An i is st tr ri in ng gs st tr re ea am m is a kind of i is st tr re ea am m that reads from its character string argument (§21.5.3).
Upon reaching the end of its string, ani is st tr ri in ng gs st tr re ea am m fails exactly like other streams do when they
hit the end of input (§3.6, §21.3.3). To use ani is st tr ri in ng gs st tr re ea am m, you must include<s ss st tr re ea am m>.

It would be easy to modifym ma ai in n() to accept several command-line arguments, but this does
not appear to be necessary, especially as several expressions can be passed as a single argument:

d dc c " r ra at te e=1 1. 1 19 93 34 4; 1 15 50 0/ r ra at te e; 1 19 9. 7 75 5/ r ra at te e; 2 21 17 7/ r ra at te e"

I use quotes because; is the command separator on my UNIX systems. Other systems have differ-
ent conventions for supplying arguments to a program on startup.

It was inelegant to modify all of the input routines to use* i in np pu ut t rather thanc ci in n to gain the flex-
ibility to use alternative sources of input. The change could have been avoided had I shown fore-
sight by introducing something likei in np pu ut t from the start. A more general and useful view is to note
that the source of input really should be the parameter of a calculator module. That is, the funda-
mental problem with this calculator example is that what I refer to as ‘‘the calculator’’ is only a col-
lection of functions and data. There is no module (§2.4) or object (§2.5.2) that explicitly represents
the calculator. Had I set out to design a calculator module or a calculator type, I would naturally
have considered what its parameters should be (§8.5[3], §10.6[16]).

6.1.8 A Note on Style [expr.style]

To programmers unacquainted with associative arrays, the use of the standard librarym ma ap p as the
symbol table seems almost like cheating. It is not. The standard library and other libraries are
meant to be used. Often, a library has received more care in its design and implementation than a
programmer could afford for a handcrafted piece of code to be used in just one program.

Looking at the code for the calculator, especially at the first version, we can see that there isn’t
much traditional C-style, low-level code presented. Many of the traditional tricky details have been
replaced by uses of standard library classes such aso os st tr re ea am m, s st tr ri in ng g, andm ma ap p (§3.4, §3.5, §3.7.4,
Chapter 17).

Note the relative scarcity of arithmetic, loops, and even assignments. This is the way things
ought to be in code that doesn’t manipulate hardware directly or implement low-level abstractions.

6.2 Operator Summary[expr.operators]

This section presents a summary of expressions and some examples. Each operator is followed by
one or more names commonly used for it and an example of its use. In these tables, aclass_name
is the name of a class, amemberis a member name, anobject is an expression yielding a class
object, apointer is an expression yielding a pointer, anexpr is an expression, and anlvalue is an
expression denoting a nonconstant object. Atypecan be a fully general type name (with* , () ,
etc.) only when it appears in parentheses; elsewhere, there are restrictions (§A.5).

The syntax of expressions is independent of operand types. The meanings presented here apply
when the operands are of built-in types (§4.1.1). In addition, you can define meanings for operators
applied to operands of user-defined types (§2.5.2, Chapter 11).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

120 Expressions and Statements Chapter 6

_ __
Operator Summary_ ___ __

scope resolution class_name:: member
scope resolution namespace_name:: member
global :: name
global :: qualified-name_ __
member selection object. member
member selection pointer-> member
subscripting pointer[expr]
function call expr(expr_list)
value construction type(expr_list)
post increment lvalue++
post decrement lvalue--
type identification t ty yp pe ei id d (type)
run-time type identification t ty yp pe ei id d (expr)
run-time checked conversion d dy yn na am mi ic c_ _c ca as st t < type> (expr)
compile-time checked conversion s st ta at ti ic c_ _c ca as st t < type> (expr)
unchecked conversion r re ei in nt te er rp pr re et t_ _c ca as st t < type> (expr)
c co on ns st t conversion c co on ns st t_ _c ca as st t < type> (expr)_ __
size of object s si iz ze eo of f expr
size of type s si iz ze eo of f (type)
pre increment ++ lvalue
pre decrement -- lvalue
complement ~ expr
not ! expr
unary minus - expr
unary plus + expr
address of & lvalue
dereference ∗ expr
create (allocate) n ne ew w type
create (allocate and initialize) n ne ew w type(expr-list)
create (place) n ne ew w (expr-list) type
create (place and initialize) n ne ew w (expr-list) type(expr-list)
destroy (de-allocate) d de el le et te e pointer
destroy array d de el le et te e[] pointer
cast (type conversion) (type) expr_ __
member selection object.* pointer-to-member
member selection pointer->* pointer-to-member_ __
multiply expr∗ expr
divide expr/ expr
modulo (remainder) expr%expr_ __

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2 Operator Summary 121

_ _______________________________________
Operator Summary (continued)_ __ _______________________________________

add (plus) expr+ expr
subtract (minus) expr- expr_ _______________________________________
shift left expr<< expr
shift right expr>> expr_ _______________________________________
less than expr< expr
less than or equal expr<= expr
greater than expr> expr
greater than or equal expr>= expr_ _______________________________________
equal expr== expr
not equal expr!= expr_ _______________________________________
bitwise AND expr& expr_ _______________________________________
bitwise exclusive OR expr^ expr_ _______________________________________
bitwise inclusive OR expr| expr_ _______________________________________
logical AND expr&&expr_ _______________________________________
logical inclusive OR expr|| expr_ _______________________________________
simple assignment lvalue= expr
multiply and assign lvalue∗= expr
divide and assign lvalue/= expr
modulo and assign lvalue%=expr
add and assign lvalue+= expr
subtract and assign lvalue-= expr
shift left and assign lvalue<<= expr
shift right and assign lvalue>>= expr
AND and assign lvalue&= expr
inclusive OR and assign lvalue|= expr
exclusive OR and assign lvalue^= expr_ _______________________________________
conditional expression expr? expr: expr_ _______________________________________
throw exception t th hr ro ow w expr_ _______________________________________
comma (sequencing) expr, expr_ _______________________________________

Each box holds operators with the same precedence. Operators in higher boxes have higher prece-
dence than operators in lower boxes. For example:a a+b b* c c meansa a+(b b* c c) rather than(a a+b b)* c c
because* has higher precedence than+.

Unary operators and assignment operators are right-associative; all others are left-associative.
For example,a a=b b=c c meansa a=(b b=c c) , a a+b b+c c means(a a+b b)+ c c, and * p p++ means*(p p++) , not
(* p p)++ .

A few grammar rules cannot be expressed in terms of precedence (also known as binding
strength) and associativity. For example,a a=b b<c c?d d=e e: f f=g g meansa a=((b b<c c)?(d d=e e):(f f=g g)) ,
but you need to look at the grammar (§A.5) to determine that.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

122 Expressions and Statements Chapter 6

6.2.1 Results [expr.res]

The result types of arithmetic operators are determined by a set of rules known as ‘‘the usual arith-
metic conversions’’ (§C.6.3). The overall aim is to produce a result of the ‘‘largest’’ operand type.
For example, if a binary operator has a floating-point operand, the computation is done using
floating-point arithmetic and the result is a floating-point value. If it has al lo on ng g operand, the com-
putation is done using long integer arithmetic, and the result is al lo on ng g. Operands that are smaller
than ani in nt t (such asb bo oo ol l andc ch ha ar r) are converted toi in nt t before the operator is applied.

The relational operators,==, <=, etc., produce Boolean results. The meaning and result type of
user-defined operators are determined by their declarations (§11.2).

Where logically feasible, the result of an operator that takes an lvalue operand is an lvalue
denoting that lvalue operand. For example:

v vo oi id d f f(i in nt t x x, i in nt t y y)
{

i in nt t j j = x x = y y; / / the value of x=y is the value of x after the assignment
i in nt t* p p = &++x x; / / p points to x
i in nt t* q q = &(x x++) ; / / error: x++ is not an lvalue (it is not the value stored in x)
i in nt t* p pp p = &(x x>y y?x x: y y) ; / / address of the int with the larger value

}

If both the second and third operands of?: are lvalues and have the same type, the result is of that
type and is an lvalue. Preserving lvalues in this way allows greater flexibility in using operators.
This is particularly useful when writing code that needs to work uniformly and efficiently with both
built-in and user-defined types (e.g., when writing templates or programs that generate C++ code).

The result ofs si iz ze eo of f is of an unsigned integral type calleds si iz ze e_ _t t defined in<c cs st td dd de ef f>. The
result of pointer subtraction is of a signed integral type calledp pt tr rd di if ff f_ _t t defined in<c cs st td dd de ef f>.

Implementations do not have to check for arithmetic overflow and hardly any do. For example:

v vo oi id d f f()
{

i in nt t i i = 1 1;
w wh hi il le e (0 0 < i i) i i++;
c co ou ut t << " i i h ha as s b be ec co om me e n ne eg ga at ti iv ve e!" << i i << ´ \ \n n´;

}

This will (eventually) try to increasei i past the largest integer. What happens then is undefined, but
typically the value ‘‘wraps around’’ to a negative number (on my machine- 2 21 14 47 74 48 83 36 64 48 8). Simi-
larly, the effect of dividing by zero is undefined, but doing so usually causes abrupt termination of
the program. In particular, underflow, overflow, and division by zero do not throw standard excep-
tions (§14.10).

6.2.2 Evaluation Order [expr.evaluation]

The order of evaluation of subexpressions within an expression is undefined. In particular, you
cannot assume that the expression is evaluated left to right. For example:

i in nt t x x = f f(2 2)+ g g(3 3) ; / / undefined whether f() or g() is called first

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.2 Evaluation Order 123

Better code can be generated in the absence of restrictions on expression evaluation order. How-
ever, the absence of restrictions on evaluation order can lead to undefined results. For example,

i in nt t i i = 1 1;
v v[i i] = i i++; / / undefined result

may be evaluated as eitherv v[1 1]= 1 1 or v v[2 2]= 1 1 or may cause some even stranger behavior. Com-
pilers can warn about such ambiguities. Unfortunately, most do not.

The operators, (comma),&& (logical and), and|| (logical or) guarantee that their left-hand
operand is evaluated before their right-hand operand. For example,b b=(a a=2 2, a a+1 1) assigns3 3 to b b.
Examples of the use of|| and&&can be found in §6.2.3. For built-in types, the second operand of
&& is evaluated only if its first operand ist tr ru ue e, and the second operand of|| is evaluated only if its
first operand isf fa al ls se e; this is sometimes calledshort-circuit evaluation. Note that the sequencing
operator, (comma) is logically different from the comma used to separate arguments in a function
call. Consider:

f f1 1(v v[i i] , i i++) ; / / two arguments
f f2 2((v v[i i] , i i++)) ; / / one argument

The call of f f1 1 has two arguments,v v[i i] and i i++, and the order of evaluation of the argument
expressions is undefined. Order dependence of argument expressions is very poor style and has
undefined behavior. The call off f2 2 has one argument, the comma expression(v v[i i] , i i++) , which is
equivalent toi i++.

Parentheses can be used to force grouping. For example,a a* b b/ c c means(a a* b b)/ c c so parenthe-
ses must be used to geta a*(b b/ c c) ; a a*(b b/ c c) may be evaluated as(a a* b b)/ c c only if the user cannot
tell the difference. In particular, for many floating-point computationsa a*(b b/ c c) and(a a* b b)/ c c are
significantly different, so a compiler will evaluate such expressions exactly as written.

6.2.3 Operator Precedence [expr.precedence]

Precedence levels and associativity rules reflect the most common usage. For example,

i if f (i i<=0 0 || m ma ax x<i i) / / ...

means ‘‘if i i is less than or equal to0 0 or if m ma ax x is less thani i.’’ That is, it is equivalent to

i if f ((i i<=0 0) || (m ma ax x<i i)) / / ...

and not the legal but nonsensical

i if f (i i <= (0 0|| m ma ax x) < i i) / / ...

However, parentheses should be used whenever a programmer is in doubt about those rules. Use of
parentheses becomes more common as the subexpressions become more complicated, but compli-
cated subexpressions are a source of errors. Therefore, if you start feeling the need for parentheses,
you might consider breaking up the expression by using an extra variable.

There are cases when the operator precedence does not result in the ‘‘obvious’’ interpretation.
For example:

i if f (i i&m ma as sk k == 0 0) / / oops! == expression as operand for &

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

124 Expressions and Statements Chapter 6

This does not apply a mask toi i and then test if the result is zero. Because== has higher prece-
dence than&, the expression is interpreted asi i&(m ma as sk k==0 0) . Fortunately, it is easy enough for a
compiler to warn about most such mistakes. In this case, parentheses are important:

i if f ((i i&m ma as sk k) == 0 0) / / ...

It is worth noting that the following does not work the way a mathematician might expect:

i if f (0 0 <= x x <= 9 99 9) / / ...

This is legal, but it is interpreted as(0 0<=x x)<= 9 99 9, where the result of the first comparison is either
t tr ru ue e or f fa al ls se e. This Boolean value is then implicitly converted to1 1 or 0 0, which is then compared to
9 99 9, yieldingt tr ru ue e. To test whetherx x is in the range0 0.. 9 99 9, we might use:

i if f (0 0<=x x && x x<=9 99 9) / / ...

A common mistake for novices is to use= (assignment) instead of== (equals) in a condition:

i if f (a a = 7 7) / / oops! constant assignment in condition

This is natural because= means ‘‘equals’’ in many languages. Again, it is easy for a compiler to
warn about most such mistakes– and many do.

6.2.4 Bitwise Logical Operators [expr.logical]

The bitwise logical operators&, | , ^ , ~, >>, and<< are applied to objects of integer types– that is,
b bo oo ol l, c ch ha ar r, s sh ho or rt t, i in nt t, l lo on ng g, and theiru un ns si ig gn ne ed d counterparts. The results are also integers.

A typical use of bitwise logical operators is to implement the notion of a small set (a bit vector).
In this case, each bit of an unsigned integer represents one member of the set, and the number of
bits limits the number of members. The binary operator& is interpreted as intersection,| as union,
^ as symmetric difference, and~ as complement. An enumeration can be used to name the mem-
bers of such a set. Here is a small example borrowed from an implementation ofo os st tr re ea am m:

e en nu um m i io os s_ _b ba as se e: : i io os st ta at te e {
g go oo od db bi it t=0 0, e eo of fb bi it t=1 1, f fa ai il lb bi it t=2 2, b ba ad db bi it t=4 4

};

The implementation of a stream can set and test its state like this:

s st ta at te e = g go oo od db bi it t;
/ / ...
i if f (s st ta at te e&(b ba ad db bi it t| f fa ai il lb bi it t)) / / stream no good

The extra parentheses are necessary because& has higher precedence than| .
A function that reaches the end of input might report it like this:

s st ta at te e |= e eo of fb bi it t;

The |= operator is used to add to the state. A simple assignment,s st ta at te e=e eo of fb bi it t, would have cleared
all other bits.

These stream state flags are observable from outside the stream implementation. For example,
we could see how the states of two streams differ like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.4 Bitwise Logical Operators 125

i in nt t d di if ff f = c ci in n. r rd ds st ta at te e()^ c co ou ut t. r rd ds st ta at te e() ; / / rdstate() returns the state

Computing differences of stream states is not very common. For other similar types, computing
differences is essential. For example, consider comparing a bit vector that represents the set of
interrupts being handled with another that represents the set of interrupts waiting to be handled.

Please note that this bit fiddling is taken from the implementation of iostreams rather than from
the user interface. Convenient bit manipulation can be very important, but for reliability, maintain-
ability, portability, etc., it should be kept at low levels of a system. For more general notions of a
set, see the standard librarys se et t (§17.4.3),b bi it ts se et t (§17.5.3), andv ve ec ct to or r<b bo oo ol l> (§16.3.11).

Using fields (§C.8.1) is really a convenient shorthand for shifting and masking to extract bit
fields from a word. This can, of course, also be done using the bitwise logical operators. For
example, one could extract the middle 16 bits of a 32-bitl lo on ng g like this:

u un ns si ig gn ne ed d s sh ho or rt t m mi id dd dl le e(l lo on ng g a a) { r re et tu ur rn n (a a>>8 8)& 0 0x xf ff ff ff f; }

Do not confuse the bitwise logical operators with the logical operators:&&, || , and ! . The latter
return eithert tr ru ue e or f fa al ls se e, and they are primarily useful for writing the test in ani if f, w wh hi il le e, or f fo or r
statement (§6.3.2, §6.3.3). For example,! 0 0 (not zero) is the valuet tr ru ue e, whereas~0 0 (complement
of zero) is the bit pattern all-ones, which in two’s complement representation is the value- 1 1.

6.2.5 Increment and Decrement [expr.incr]

The++ operator is used to express incrementing directly, rather than expressing it indirectly using
a combination of an addition and an assignment. By definition,++l lv va al lu ue e meansl lv va al lu ue e+=1 1, which
again meansl lv va al lu ue e=l lv va al lu ue e+1 1 provided l lv va al lu ue e has no side effects. The expression denoting the
object to be incremented is evaluated once (only). Decrementing is similarly expressed by the--
operator. The operators++ and-- can be used as both prefix and postfix operators. The value of
++x x is the new (that is, incremented) value ofx x. For example,y y=++x x is equivalent toy y=(x x+=1 1) .
The value ofx x++, however, is the old value ofx x. For example,y y=x x++ is equivalent to
y y=(t t=x x, x x+=1 1, t t) , wheret t is a variable of the same type asx x.

Like addition and subtraction of pointers,++ and-- on pointers operate in terms of elements of
the array into which the pointer points;p p++ makesp p point to the next element (§5.3.1).

The increment operators are particularly useful for incrementing and decrementing variables in
loops. For example, one can copy a zero-terminated string like this:

v vo oi id d c cp py y(c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q)
{

w wh hi il le e (* p p++ = * q q++) ;
}

Like C, C++ is both loved and hated for enabling such terse, expression-oriented coding. Because

w wh hi il le e (* p p++ = * q q++) ;

is more than a little obscure to non-C programmers and because the style of coding is not uncom-
mon in C and C++, it is worth examining more closely.

Consider first a more traditional way of copying an array of characters:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

126 Expressions and Statements Chapter 6

i in nt t l le en ng gt th h = s st tr rl le en n(q q) ;
f fo or r (i in nt t i i = 0 0; i i<=l le en ng gt th h; i i++) p p[i i] = q q[i i] ;

This is wasteful. The length of a zero-terminated string is found by reading the string looking for
the terminating zero. Thus, we read the string twice: once to find its length and once to copy it. So
we try this instead:

i in nt t i i;
f fo or r (i i = 0 0; q q[i i]!= 0 0 ; i i++) p p[i i] = q q[i i] ;
p p[i i] = 0 0; / / terminating zero

The variablei i used for indexing can be eliminated becausep p andq q are pointers:

w wh hi il le e (* q q != 0 0) {
* p p = * q q;
p p++; / / point to next character
q q++; / / point to next character

}
* p p = 0 0; / / terminating zero

Because the post-increment operation allows us first to use the value and then to increment it, we
can rewrite the loop like this:

w wh hi il le e (* q q != 0 0) {
* p p++ = * q q++;

}
* p p = 0 0; / / terminating zero

The value of* p p++ = * q q++ is * q q. We can therefore rewrite the example like this:

w wh hi il le e ((* p p++ = * q q++) != 0 0) { }

In this case, we don’t notice that* q q is zero until we already have copied it into* p p and incremented
p p. Consequently, we can eliminate the final assignment of the terminating zero. Finally, we can
reduce the example further by observing that we don’t need the empty block and that the ‘‘!= 0 0’’ is
redundant because the result of a pointer or integral condition is always compared to zero anyway.
Thus, we get the version we set out to discover:

w wh hi il le e (* p p++ = * q q++) ;

Is this version less readable than the previous versions? Not to an experienced C or C++ program-
mer. Is this version more efficient in time or space than the previous versions? Except for the first
version that calleds st tr rl le en n() , not really. Which version is the most efficient will vary among
machine architectures and among compilers.

The most efficient way of copying a zero-terminated character string for your particular
machine ought to be the standard string copy function:

c ch ha ar r* s st tr rc cp py y(c ch ha ar r*, c co on ns st t c ch ha ar r*) ; / / from <string.h>

For more general copying, the standardc co op py y algorithm (§2.7.2, §18.6.1) can be used. Whenever
possible, use standard library facilities in preference to fiddling with pointers and bytes. Standard
library functions may be inlined (§7.1.1) or even implemented using specialized machine

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.5 Increment and Decrement 127

instructions. Therefore, you should measure carefully before believing that some piece of hand-
crafted code outperforms library functions.

6.2.6 Free Store [expr.free]

A named object has its lifetime determined by its scope (§4.9.4). However, it is often useful to cre-
ate an object that exists independently of the scope in which it was created. In particular, it is com-
mon to create objects that can be used after returning from the function in which they were created.
The operatorn ne ew w creates such objects, and the operatord de el le et te e can be used to destroy them.
Objects allocated byn ne ew w are said to be ‘‘on the free store’’ (also, to be ‘‘heap objects,’’ or ‘‘allo-
cated in dynamic memory’’).

Consider how we might write a compiler in the style used for the desk calculator (§6.1). The
syntax analysis functions might build a tree of the expressions for use by the code generator:

s st tr ru uc ct t E En no od de e {
T To ok ke en n_ _v va al lu ue e o op pe er r;
E En no od de e* l le ef ft t;
E En no od de e* r ri ig gh ht t;
/ / ...

};

E En no od de e* e ex xp pr r(b bo oo ol l g ge et t)
{

E En no od de e* l le ef ft t = t te er rm m(g ge et t) ;

f fo or r (;;)
s sw wi it tc ch h(c cu ur rr r_ _t to ok k) {
c ca as se e P PL LU US S:
c ca as se e M MI IN NU US S:
{ E En no od de e* n n = n ne ew w E En no od de e; / / create an Enode on free store

n n-> o op pe er r = c cu ur rr r_ _t to ok k;
n n-> l le ef ft t = l le ef ft t;
n n-> r ri ig gh ht t = t te er rm m(t tr ru ue e) ;
l le ef ft t = n n;
b br re ea ak k;

}
d de ef fa au ul lt t:

r re et tu ur rn n l le ef ft t; / / return node
}

}

A code generator would then use the resulting nodes and delete them:

v vo oi id d g ge en ne er ra at te e(E En no od de e* n n)
{

s sw wi it tc ch h (n n-> o op pe er r) {
c ca as se e P PL LU US S:

/ / ...
d de el le et te e n n; / / delete an Enode from the free store

}
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

128 Expressions and Statements Chapter 6

An object created byn ne ew w exists until it is explicitly destroyed byd de el le et te e. Then, the space it occu-
pied can be reused byn ne ew w. A C++ implementation does not guarantee the presence of a ‘‘garbage
collector’’ that looks out for unreferenced objects and makes them available ton ne ew w for reuse. Con-
sequently, I will assume that objects created byn ne ew w are manually freed usingd de el le et te e. If a garbage
collector is present, thed de el le et te es can be omitted in most cases (§C.9.1).

The d de el le et te e operator may be applied only to a pointer returned byn ne ew w or to zero. Applying
d de el le et te e to zero has no effect.

More specialized versions of operatorn ne ew w can also be defined (§15.6).

6.2.6.1 Arrays [expr.array]

Arrays of objects can also be created usingn ne ew w. For example:

c ch ha ar r* s sa av ve e_ _s st tr ri in ng g(c co on ns st t c ch ha ar r* p p)
{

c ch ha ar r* s s = n ne ew w c ch ha ar r[s st tr rl le en n(p p)+ 1 1] ;
s st tr rc cp py y(s s, p p) ; / / copy from p to s
r re et tu ur rn n s s;

}

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[])
{

i if f (a ar rg gc c < 2 2) e ex xi it t(1 1) ;
c ch ha ar r* p p = s sa av ve e_ _s st tr ri in ng g(a ar rg gv v[1 1]) ;
/ / ...
d de el le et te e[] p p;

}

The ‘‘plain’’ operatord de el le et te e is used to delete individual objects;d de el le et te e[] is used to delete arrays.
To deallocate space allocated byn ne ew w, d de el le et te eandd de el le et te e[] must be able to determine the size of

the object allocated. This implies that an object allocated using the standard implementation of
n ne ew w will occupy slightly more space than a static object. Typically, one word is used to hold the
object’s size.

Note that av ve ec ct to or r (§3.7.1, §16.3) is a proper object and can therefore be allocated and deallo-
cated using plainn ne ew w andd de el le et te e. For example:

v vo oi id d f f(i in nt t n n)
{

v ve ec ct to or r<i in nt t>* p p = n ne ew w v ve ec ct to or r<i in nt t>(n n) ; / / individual object
i in nt t* q q = n ne ew w i in nt t[n n] ; / / array
/ / ...
d de el le et te e p p;
d de el le et te e[] q q;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.6.2 Memory Exhaustion 129

6.2.6.2 Memory Exhaustion [expr.exhaust]

The free store operatorsn ne ew w, d de el le et te e, n ne ew w[] , andd de el le et te e[] are implemented using functions:

v vo oi id d* o op pe er ra at to or r n ne ew w(s si iz ze e_ _t t) ; / / space for individual object
v vo oi id d o op pe er ra at to or r d de el le et te e(v vo oi id d*) ;

v vo oi id d* o op pe er ra at to or r n ne ew w[](s si iz ze e_ _t t) ; / / space for array
v vo oi id d o op pe er ra at to or r d de el le et te e[](v vo oi id d*) ;

When operatorn ne ew w needs to allocate space for an object, it callso op pe er ra at to or r n ne ew w() to allocate a suit-
able number of bytes. Similarly, when operatorn ne ew w needs to allocate space for an array, it calls
o op pe er ra at to or r n ne ew w[]() .

The standard implementations ofo op pe er ra at to or r n ne ew w() ando op pe er ra at to or r n ne ew w[]() do not initialize the
memory returned.

What happens whenn ne ew w can find no store to allocate? By default, the allocator throws a
b ba ad d_ _a al ll lo oc c exception. For example:

v vo oi id d f f()
{

t tr ry y {
f fo or r(;;) n ne ew w c ch ha ar r[1 10 00 00 00 0] ;

}
c ca at tc ch h(b ba ad d_ _a al ll lo oc c) {

c ce er rr r << " M Me em mo or ry y e ex xh ha au us st te ed d! \ \n n";
}

}

However much memory we have available, this will eventually invoke theb ba ad d_ _a al ll lo oc c handler.
We can specify whatn ne ew w should do upon memory exhaustion. Whenn ne ew w fails, it first calls a

function specified by a call tos se et t_ _n ne ew w_ _h ha an nd dl le er r() declared in<n ne ew w>, if any. For example:

v vo oi id d o ou ut t_ _o of f_ _s st to or re e()
{

c ce er rr r << " o op pe er ra at to or r n ne ew w f fa ai il le ed d: o ou ut t o of f s st to or re e\ \n n";
t th hr ro ow w b ba ad d_ _a al ll lo oc c() ;

}

i in nt t m ma ai in n()
{

s se et t_ _n ne ew w_ _h ha an nd dl le er r(o ou ut t_ _o of f_ _s st to or re e) ; / / make out_of_store the new_handler
f fo or r (;;) n ne ew w c ch ha ar r[1 10 00 00 00 0] ;
c co ou ut t << " d do on ne e\ \n n";

}

This will never get to writed do on ne e. Instead, it will write

o op pe er ra at to or r n ne ew w f fa ai il le ed d: o ou ut t o of f s st to or re e

See §14.4.5 for a plausible implementation of ano op pe er ra at to or r n ne ew w() that checks to see if there is a
new handler to call and that throwsb ba ad d_ _a al ll lo oc c if not. A n ne ew w_ _h ha an nd dl le er r might do something more
clever than simply terminating the program. If you know hown ne ew w andd de el le et te e work – for example,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

130 Expressions and Statements Chapter 6

because you provided your owno op pe er ra at to or r n ne ew w() and o op pe er ra at to or r d de el le et te e() – the handler might
attempt to find some memory forn ne ew w to return. In other words, a user might provide a garbage
collector, thus rendering the use ofd de el le et te e optional. Doing this is most definitely not a task for a
beginner, though. For almost everybody who needs an automatic garbage collector, the right thing
to do is to acquire one that has already been written and tested (§C.9.1).

By providing an ne ew w_ _h ha an nd dl le er r, we take care of the check for memory exhaustion for every ordi-
nary use ofn ne ew w in the program. Two alternative ways of controlling memory allocation exist. We
can either provide nonstandard allocation and deallocation functions (§15.6) for the standard uses
of n ne ew w or rely on additional allocation information provided by the user (§10.4.11, §19.4.5).

6.2.7 Explicit Type Conversion [expr.cast]

Sometimes, we have to deal with‘‘raw memory;’’ that is, memory that holds or will hold objects of
a type not known to the compiler. For example, a memory allocator may return av vo oi id d* pointing to
newly allocated memory or we might want to state that a given integer value is to be treated as the
address of an I/O device:

v vo oi id d* m ma al ll lo oc c(s si iz ze e_ _t t) ;

v vo oi id d f f()
{

i in nt t* p p = s st ta at ti ic c_ _c ca as st t<i in nt t*>(m ma al ll lo oc c(1 10 00 0)) ; / / new allocation used as ints
I IO O_ _d de ev vi ic ce e* d d1 1 = r re ei in nt te er rp pr re et t_ _c ca as st t<I IO O_ _d de ev vi ic ce e*>(0 0X Xf ff f0 00 0) ; / / device at 0Xff00
/ / ...

}

A compiler does not know the type of the object pointed to by thev vo oi id d* . Nor can it know whether
the integer0 0X Xf ff f0 00 0 is a valid address. Consequently, the correctness of the conversions are com-
pletely in the hands of the programmer. Explicit type conversion, often calledcasting, is occasion-
ally essential. However, traditionally it is seriously overused and a major source of errors.

Thes st ta at ti ic c_ _c ca as st t operator converts between related types such as one pointer type to another, an
enumeration to an integral type, or a floating-point type to an integral type. Ther re ei in nt te er rp pr re et t_ _c ca as st t
handles conversions between unrelated types such as an integer to a pointer. This distinction
allows the compiler to apply some minimal type checking fors st ta at ti ic c_ _c ca as st t and makes it easier for a
programmer to find the more dangerous conversions represented asr re ei in nt te er rp pr re et t_ _c ca as st ts. Some
s st ta at ti ic c_ _c ca as st ts are portable, but fewr re ei in nt te er rp pr re et t_ _c ca as st ts are. Hardly any guarantees are made for
r re ei in nt te er rp pr re et t_ _c ca as st t, but generally it produces a value of a new type that has the same bit pattern as its
argument. If the target has at least as many bits as the original value, we canr re ei in nt te er rp pr re et t_ _c ca as st t the
result back to its original type and use it. The result of ar re ei in nt te er rp pr re et t_ _c ca as st t is guaranteed to be
usable only if its result type is the exact type used to define the value involved. Note that
r re ei in nt te er rp pr re et t_ _c ca as st t is the kind of conversion that must be used for pointers to functions (§7.7).

If you feel tempted to use an explicit type conversion, take the time to consider if it isreally
necessary. In C++, explicit type conversion is unnecessary in most cases when C needs it (§1.6)
and also in many cases in which earlier versions of C++ needed it (§1.6.2, §B.2.3). In many pro-
grams, explicit type conversion can be completely avoided; in others, its use can be localized to a
few routines. In this book, explicit type conversion is used in realistic situations in §6.2.7, §7.7,
§13.5, §15.4, and §25.4.1, only.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.2.7 Explicit Type Conversion 131

A form of run-time checked conversion,d dy yn na am mi ic c_ _c ca as st t (§15.4.1), and a cast for removingc co on ns st t
qualifiers,c co on ns st t_ _c ca as st t (§15.4.2.1), are also provided.

From C, C++ inherited the notation(T T) e e, which performs any conversion that can be expressed
as a combination ofs st ta at ti ic c_ _c ca as st ts, r re ei in nt te er rp pr re et t_ _c ca as st ts, andc co on ns st t_ _c ca as st ts to make a value of typeT T
from the expressione e (§B.2.3). This C-style cast is far more dangerous than the named conversion
operators because the notation is harder to spot in a large program and the kind of conversion
intended by the programmer is not explicit. That is,(T T) e e might be doing a portable conversion
between related types, a nonportable conversion between unrelated types, or removing thec co on ns st t
modifier from a pointer type. Without knowing the exact types ofT T ande e, you cannot tell.

6.2.8 Constructors [expr.ctor]

The construction of a value of typeT T from a valuee e can be expressed by the functional notation
T T(e e) . For example:

v vo oi id d f f(d do ou ub bl le e d d)
{

i in nt t i i = i in nt t(d d) ; / / truncate d
c co om mp pl le ex x z z = c co om mp pl le ex x(d d) ; / / make a complex from d
/ / ...

}

TheT T(e e) construct is sometimes referred to as afunction-style cast. For a built-in typeT T, T T(e e) is
equivalent tos st ta at ti ic c_ _c ca as st t<T T>(e e) . Unfortunately, this implies that the use ofT T(e e) is not always
safe. For arithmetic types, values can be truncated and even explicit conversion of a longer integer
type to a shorter (such asl lo on ng g to c ch ha ar r) can result in undefined behavior. I try to use the notation
exclusively where the construction of a value is well-defined; that is, for narrowing arithmetic con-
versions (§C.6), for conversion from integers to enumerations (§4.8), and the construction of
objects of user-defined types (§2.5.2, §10.2.3).

Pointer conversions cannot be expressed directly using theT T(e e) notation. For example,
c ch ha ar r*(2 2) is a syntax error. Unfortunately, the protection that the constructor notation provides
against such dangerous conversions can be circumvented by usingt ty yp pe ed de ef f names (§4.9.7) for
pointer types.

The constructor notationT T() is used to express the default value of typeT T. For example:

v vo oi id d f f(d do ou ub bl le e d d)
{

i in nt t j j = i in nt t() ; / / default int value
c co om mp pl le ex x z z = c co om mp pl le ex x() ; / / default complex value
/ / ...

}

The value of an explicit use of the constructor for a built-in type is0 0 converted to that type (§4.9.5).
Thus,i in nt t() is another way of writing0 0. For a user-defined typeT T, T T() is defined by the default
constructor (§10.4.2), if any.

The use of the constructor notation for built-in types is particularly important when writing tem-
plates. Then, the programmer does not know whether a template parameter will refer to a built-in
type or a user-defined type (§16.3.4, §17.4.1.2).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

132 Expressions and Statements Chapter 6

6.3 Statement Summary[expr.stmts]

Here are a summary and some examples of C++ statements:
_ __

Statement Syntax_ ___ __
statement:

declaration
{ statement-listopt }
t tr ry y { statement-listopt } handler-list
expressionopt ;

i if f (condition) statement
i if f (condition) statement e el ls se e statement
s sw wi it tc ch h (condition) statement

w wh hi il le e (condition) statement
d do o statement w wh hi il le e (expression) ;
f fo or r (for-init-statement conditionopt ; expressionopt) statement

c ca as se e constant-expression: statement
d de ef fa au ul lt t : statement
b br re ea ak k ;
c co on nt ti in nu ue e ;

r re et tu ur rn n expressionopt ;

g go ot to o identifier ;
identifier : statement

statement-list:
statement statement-listopt

condition:
expression
type-specifier declarator= expression

handler-list:
c ca at tc ch h (exception-declaration) { statement-listopt }
handler-list handler-listopt_ __

Note that a declaration is a statement and that there is no assignment statement or procedure call
statement; assignments and function calls are expressions. The statements for handling exceptions,
try-blocks, are described in §8.3.1.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.3.1 Declarations as Statements 133

6.3.1 Declarations as Statements [expr.dcl]

A declaration is a statement. Unless a variable is declareds st ta at ti ic c, its initializer is executed when-
ever the thread of control passes through the declaration (see also §10.4.8). The reason for allow-
ing declarations wherever a statement can be used (and a few other places; §6.3.2.1, §6.3.3.1) is to
enable the programmer to minimize the errors caused by uninitialized variables and to allow better
locality in code. There is rarely a reason to introduce a variable before there is a value for it to
hold. For example:

v vo oi id d f f(v ve ec ct to or r<s st tr ri in ng g>& v v, i in nt t i i, c co on ns st t c ch ha ar r* p p)
{

i if f (p p==0 0) r re et tu ur rn n;
i if f (i i<0 0 || v v. s si iz ze e()<= i i) e er rr ro or r(" b ba ad d i in nd de ex x") ;
s st tr ri in ng g s s = v v[i i] ;
i if f (s s == p p) {

/ / ...
}
/ / ...

}

The ability to place declarations after executable code is essential for many constants and for
single-assignment styles of programming where a value of an object is not changed after initial-
ization. For user-defined types, postponing the definition of a variable until a suitable initializer is
available can also lead to better performance. For example,

s st tr ri in ng g s s; /* ... */ s s = " T Th he e b be es st t i is s t th he e e en ne em my y o of f t th he e g go oo od d.";

can easily be much slower than

s st tr ri in ng g s s = " V Vo ol lt ta ai ir re e";

The most common reason to declare a variable without an initializer is that it requires a statement
to initialize it. Examples are input variables and arrays.

6.3.2 Selection Statements [expr.select]

A value can be tested by either ani if f statement or as sw wi it tc ch h statement:

i if f (condition) statement
i if f (condition) statement e el ls se e statement
s sw wi it tc ch h (condition) statement

The comparison operators

== != < <= > >=

return theb bo oo ol l t tr ru ue e if the comparison is true andf fa al ls se eotherwise.
In an i if f statement, the first (or only) statement is executed if the expression is nonzero and the

second statement (if it is specified) is executed otherwise. This implies that any arithmetic or
pointer expression can be used as a condition. For example, ifx x is an integer, then

i if f (x x) / / ...

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

134 Expressions and Statements Chapter 6

means

i if f (x x != 0 0) / / ...

For a pointerp p,

i if f (p p) / / ...

is a direct statement of the test ‘‘doesp p point to a valid object,’’ whereas

i if f (p p != 0 0) / / ...

states the same question indirectly by comparing to a value known not to point to an object. Note
that the representation of the pointer0 0 is not all-zeros on all machines (§5.1.1). Every compiler I
have checked generated the same code for both forms of the test.

The logical operators

&& || !

are most commonly used in conditions. The operators&& and || will not evaluate their second
argument unless doing so is necessary. For example,

i if f (p p && 1 1<p p-> c co ou un nt t) / / ...

first tests thatp p is nonzero. It tests1 1<p p-> c co ou un nt t only if p p is nonzero.
Someif-statements can conveniently be replaced byconditional-expressions. For example,

i if f (a a <= b b)
m ma ax x = b b;

e el ls se e
m ma ax x = a a;

is better expressed like this:

m ma ax x = (a a<=b b) ? b b : a a;

The parentheses around the condition are not necessary, but I find the code easier to read when they
are used.

A switch-statementcan alternatively be written as a set ofi if f- s st ta at te em me en nt ts. For example,

s sw wi it tc ch h (v va al l) {
c ca as se e 1 1:

f f() ;
b br re ea ak k;

c ca as se e 2 2:
g g() ;
b br re ea ak k;

d de ef fa au ul lt t:
h h() ;
b br re ea ak k;

}

could alternatively be expressed as

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.3.2 Selection Statements 135

i if f (v va al l == 1 1)
f f() ;

e el ls se e i if f (v va al l == 2 2)
g g() ;

e el ls se e
h h() ;

The meaning is the same, but the first (s sw wi it tc ch h) version is preferred because the nature of the opera-
tion (testing a value against a set of constants) is explicit. This makes thes sw wi it tc ch h statement easier
to read for nontrivial examples. It can also lead to the generation of better code.

Beware that a case of a switch must be terminated somehow unless you want to carry on execut-
ing the next case. Consider:

s sw wi it tc ch h (v va al l) { / / beware
c ca as se e 1 1:

c co ou ut t << " c ca as se e 1 1\ \n n";
c ca as se e 2 2:

c co ou ut t << " c ca as se e 2 2\ \n n";
d de ef fa au ul lt t:

c co ou ut t << " d de ef fa au ul lt t: c ca as se e n no ot t f fo ou un nd d\ \n n";
}

Invoked withv va al l==1 1, this prints

c ca as se e 1 1
c ca as se e 2 2
d de ef fa au ul lt t: c ca as se e n no ot t f fo ou un nd d

to the great surprise of the uninitiated. It is a good idea to comment the (rare) cases in which a
fall-through is intentional so that an uncommented fall-through can be assumed to be an error. A
b br re ea ak k is the most common way of terminating a case, but ar re et tu ur rn n is often useful (§6.1.1).

6.3.2.1 Declarations in Conditions [expr.cond]

To avoid accidental misuse of a variable, it is usually a good idea to introduce the variable into the
smallest scope possible. In particular, it is usually best to delay the definition of a local variable
until one can give it an initial value. That way, one cannot get into trouble by using the variable
before its initial value is assigned.

One of the most elegant applications of these two principles is to declare a variable in a condi-
tion. Consider:

i if f (d do ou ub bl le e d d = p pr ri im m(t tr ru ue e)) {
l le ef ft t /= d d;
b br re ea ak k;

}

Here,d d is declared and initialized and the value ofd d after initialization is tested as the value of the
condition. The scope ofd d extends from its point of declaration to the end of the statement that the
condition controls. For example, had there been ane el ls se e-branch to theif-statement, d d would be in
scope on both branches.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

136 Expressions and Statements Chapter 6

The obvious and traditional alternative is to declared d before the condition. However, this
opens the scope (literally) for the use ofd d before its initialization or after its intended useful life:

d do ou ub bl le e d d;
/ / ...

d d2 2 = d d; / / oops!
/ / ...

i if f (d d = p pr ri im m(t tr ru ue e)) {
l le ef ft t /= d d;
b br re ea ak k;

}
/ / ...

d d = 2 2. 0 0; / / two unrelated uses of d

In addition to the logical benefits of declaring variables in conditions, doing so also yields the most
compact source code.

A declaration in a condition must declare and initialize a single variable orc co on ns st t.

6.3.3 Iteration Statements [expr.loop]

A loop can be expressed as af fo or r, w wh hi il le e, ord do o statement:

w wh hi il le e (c co on nd di it ti io on n) s st ta at te em me en nt t
d do o s st ta at te em me en nt t w wh hi il le e (e ex xp pr re es ss si io on n) ;
f fo or r (f fo or r- i in ni it t- s st ta at te em me en nt t c co on nd di it ti io on no op pt t ; e ex xp pr re es ss si io on no op pt t) s st ta at te em me en nt t

Each of these statements executes a statement (called thecontrolledstatement or thebody of the
loop) repeatedly until the condition becomes false or the programmer breaks out of the loop some
other way.

The for-statementis intended for expressing fairly regular loops. The loop variable, the termi-
nation condition, and the expression that updates the loop variable can be presented ‘‘up front’’ on
a single line. This can greatly increase readability and thereby decrease the frequency of errors. If
no initialization is needed, the initializing statement can be empty. If thecondition is omitted, the
for-statementwill loop forever unless the user explicitly exits it by ab br re ea ak k, r re et tu ur rn n, g go ot to o, t th hr ro ow w, or
some less obvious way such as a call ofe ex xi it t() (§9.4.1.1). If theexpressionis omitted, we must
update some form of loop variable in the body of the loop. If the loop isn’t of the simple ‘‘intro-
duce a loop variable, test the condition, update the loop variable’’ variety, it is often better
expressed as awhile-statement. A for-statementis also useful for expressing a loop without an
explicit termination condition:

f fo or r(;;) { / / ‘‘forever’’
/ / ...

}

A while-statementsimply executes its controlled statement until its condition becomesf fa al ls se e. I tend
to preferwhile-statements overfor-statements when there isn’t an obvious loop variable or where
the update of a loop variable naturally comes in the middle of the loop body. An input loop is an
example of a loop where there is no obvious loop variable:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.3.3 Iteration Statements 137

w wh hi il le e(c ci in n>>c ch h) / / ...

In my experience, thedo-statementis a source of errors and confusion. The reason is that its body
is always executed once before the condition is evaluated. However, for the body to work cor-
rectly, something very much like the condition must hold even the first time through. More often
than I would have guessed, I have found that condition not to hold as expected either when the pro-
gram was first written and tested or later after the code preceding it has been modified. I also prefer
the condition ‘‘up front where I can see it.’’ Consequently, I tend to avoiddo-statements.

6.3.3.1 Declarations in For-Statements [expr.for]

A variable can be declared in the initializer part of afor-statement. If that initializer is a declara-
tion, the variable (or variables) it introduces is in scope until the end of thefor-statement. For
example:

v vo oi id d f f(i in nt t v v[] , i in nt t m ma ax x)
{

f fo or r (i in nt t i i = 0 0; i i<m ma ax x; i i++) v v[i i] = i i* i i;
}

If the final value of an index needs to be known after exit from af fo or r-loop, the index variable must
be declared outside thef fo or r-loop (e.g., §6.3.4).

6.3.4 Goto [expr.goto]

C++ possesses the infamousg go ot to o:

g go ot to o identifier ;
identifier : statement

Theg go ot to o has few uses in general high-level programming, but it can be very useful when C++ code
is generated by a program rather than written directly by a person; for example,g go ot to os can be used
in a parser generated from a grammar by a parser generator. Theg go ot to o can also be important in the
rare cases in which optimal efficiency is essential, for example, in the inner loop of some real-time
application.

One of the few sensible uses ofg go ot to o in ordinary code is to break out from a nested loop or
switch-statement(a b br re ea ak k breaks out of only the innermost enclosing loop orswitch-statement).
For example:

v vo oi id d f f()
{

i in nt t i i;
i in nt t j j;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

138 Expressions and Statements Chapter 6

f fo or r (i i = 0 0; i i<n n; i i++)
f fo or r (j j = 0 0; j j<m m; j j++) i if f (n nm m[i i][j j] == a a) g go ot to o f fo ou un nd d;

/ / not found
/ / ...

f fo ou un nd d:
/ / nm[i][j] == a

}

There is also ac co on nt ti in nu ue e statement that, in effect, goes to the end of a loop statement, as explained
in §6.1.5.

6.4 Comments and Indentation[expr.comment]

Judicious use of comments and consistent use of indentation can make the task of reading and
understanding a program much more pleasant. Several different consistent styles of indentation are
in use. I see no fundamental reason to prefer one over another (although, like most programmers, I
have my preferences, and this book reflects them). The same applies to styles of comments.

Comments can be misused in ways that seriously affect the readability of a program. The com-
piler does not understand the contents of a comment, so it has no way of ensuring that a comment

[1] is meaningful,
[2] describes the program, and
[3] is up to date.

Most programs contain comments that are incomprehensible, ambiguous, and just plain wrong.
Bad comments can be worse than no comments.

If something can be statedin the language itself, it should be, and not just mentioned in a com-
ment. This remark is aimed at comments such as these:

/ / variable "v" must be initialized

/ / variable "v" must be used only by function "f()"

/ / call function "init()" before calling any other function in this file

/ / call function "cleanup()" at the end of your program

/ / don’t use function "weird()"

/ / function "f()" takes two arguments

Such comments can often be rendered unnecessary by proper use of C++. For example, one might
utilize the linkage rules (§9.2) and the visibility, initialization, and cleanup rules for classes (see
§10.4.1) to make the preceding examples redundant.

Once something has been stated clearly in the language, it should not be mentioned a second
time in a comment. For example:

a a = b b+c c; / / a becomes b+c
c co ou un nt t++; / / increment the counter

Such comments are worse than simply redundant. They increase the amount of text the reader has
to look at, they often obscure the structure of the program, and they may be wrong. Note, however,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.4 Comments and Indentation 139

that such comments are used extensively for teaching purposes in programming language textbooks
such as this. This is one of the many ways a program in a textbook differs from a real program.

My preference is for:
[1] A comment for each source file stating what the declarations in it have in common, refer-

ences to manuals, general hints for maintenance, etc.
[2] A comment for each class, template, and namespace
[3] A comment for each nontrivial function stating its purpose, the algorithm used (unless it is

obvious), and maybe something about the assumptions it makes about its environment
[4] A comment for each global and namespace variable and constant
[5] A few comments where the code is nonobvious and/or nonportable
[6] Very little else

For example:

/ / tbl.c: Implementation of the symbol table.

/*
Gaussian elimination with partial pivoting.
See Ralston: "A first course ..." pg 411.

*/

/ / swap() assumes the stack layout of an SGI R6000.

/* **********************************

Copyright (c) 1997 AT&T, Inc.
All rights reserved

*********************************** */

A well-chosen and well-written set of comments is an essential part of a good program. Writing
good comments can be as difficult as writing the program itself. It is an art well worth cultivating.

Note also that if/ / comments are used exclusively in a function, then any part of that function
can be commented out using/* */ style comments, and vice versa.

6.5 Advice[expr.advice]

[1] Prefer the standard library to other libraries and to ‘‘handcrafted code;’’ §6.1.8.
[2] Avoid complicated expressions; §6.2.3.
[3] If in doubt about operator precedence, parenthesize; §6.2.3.
[4] Avoid explicit type conversion (casts); §6.2.7.
[5] When explicit type conversion is necessary, prefer the more specific cast operators to the C-

style cast; §6.2.7.
[6] Use theT T(e e) notation exclusively for well-defined construction; §6.2.8.
[7] Avoid expressions with undefined order of evaluation; §6.2.2.
[8] Avoid g go ot to o; §6.3.4.
[9] Avoid do-statements; §6.3.3.
[10] Don’t declare a variable until you have a value to initialize it with; §6.3.1, §6.3.2.1, §6.3.3.1.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

140 Expressions and Statements Chapter 6

[11] Keep comments crisp; §6.4.
[12] Maintain a consistent indentation style; §6.4.
[13] Prefer defining a membero op pe er ra at to or r n ne ew w() (§15.6) to replacing the globalo op pe er ra at to or r n ne ew w() ;

§6.2.6.2.
[14] When reading input, always consider ill-formed input; §6.1.3.

6.6 Exercises[expr.exercises]

1. (∗1) Rewrite the followingf fo or r statement as an equivalentw wh hi il le estatement:

f fo or r (i i=0 0; i i<m ma ax x_ _l le en ng gt th h; i i++) i if f (i in np pu ut t_ _l li in ne e[i i] == ´?´) q qu ue es st t_ _c co ou un nt t++;

Rewrite it to use a pointer as the controlled variable, that is, so that the test is of the form
* p p==´?´.

2. (∗1) Fully parenthesize the following expressions:

a a = b b + c c * d d << 2 2 & 8 8
a a & 0 07 77 7 != 3 3
a a == b b || a a == c c && c c < 5 5
c c = x x != 0 0
0 0 <= i i < 7 7
f f(1 1, 2 2)+ 3 3
a a = - 1 1 + + b b -- - 5 5
a a = b b == c c ++
a a = b b = c c = 0 0
a a[4 4][2 2] *= * b b ? c c : * d d * 2 2
a a- b b, c c=d d

3. (∗2) Read a sequence of possibly whitespace-separated (name,value) pairs, where the name is a
single whitespace-separated word and the value is an integer or a floating-point value. Compute
and print the sum and mean for each name and the sum and mean for all names. Hint: §6.1.8.

4. (∗1) Write a table of values for the bitwise logical operations (§6.2.4) for all possible combina-
tions of0 0 and1 1 operands.

5. (∗1.5) Find 5 different C++ constructs for which the meaning is undefined (§C.2). (∗1.5) Find 5
different C++ constructs for which the meaning is implementation-defined (§C.2).

6. (∗1) Find 10 different examples of nonportable C++ code.
7. (∗2) Write 5 expressions for which the order of evaluation is undefined. Execute them to see

what one or– preferably– more implementations do with them.
8. (∗1.5) What happens if you divide by zero on your system? What happens in case of overflow

and underflow?
9. (∗1) Fully parenthesize the following expressions:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 6.6 Exercises 141

* p p++
*-- p p
++a a--
(i in nt t*) p p-> m m
* p p. m m
* a a[i i]

10. (*2) Write these functions:s st tr rl le en n() , which returns the length of a C-style string;s st tr rc cp py y() ,
which copies a string into another; ands st tr rc cm mp p() , which compares two strings. Consider what
the argument types and return types ought to be. Then compare your functions with the stan-
dard library versions as declared in<c cs st tr ri in ng g> (<s st tr ri in ng g. h h>) and as specified in §20.4.1.

11. (∗1) See how your compiler reacts to these errors:

v vo oi id d f f(i in nt t a a, i in nt t b b)
{

i if f (a a = 3 3) / / ...
i if f (a a&0 07 77 7 == 0 0) / / ...
a a := b b+1 1;

}

Devise more simple errors and see how the compiler reacts.
12. (∗2) Modify the program from §6.6[3] to also compute the median.
13. (∗2) Write a functionc ca at t() that takes two C-style string arguments and returns a string that is

the concatenation of the arguments. Usen ne ew w to find store for the result.
14. (∗2) Write a functionr re ev v() that takes a string argument and reverses the characters in it. That

is, afterr re ev v(p p) the last character ofp p will be the first, etc.
15. (∗1.5) What does the following example do?

v vo oi id d s se en nd d(i in nt t* t to o, i in nt t* f fr ro om m, i in nt t c co ou un nt t)
/ / Duff’s device. Helpful comment deliberately deleted.
{

i in nt t n n = (c co ou un nt t+7 7)/ 8 8;
s sw wi it tc ch h (c co ou un nt t%8 8) {
c ca as se e 0 0: d do o { * t to o++ = * f fr ro om m++;
c ca as se e 7 7: * t to o++ = * f fr ro om m++;
c ca as se e 6 6: * t to o++ = * f fr ro om m++;
c ca as se e 5 5: * t to o++ = * f fr ro om m++;
c ca as se e 4 4: * t to o++ = * f fr ro om m++;
c ca as se e 3 3: * t to o++ = * f fr ro om m++;
c ca as se e 2 2: * t to o++ = * f fr ro om m++;
c ca as se e 1 1: * t to o++ = * f fr ro om m++;

} w wh hi il le e (-- n n>0 0) ;
}

}

Why would anyone write something like that?
16. (∗2) Write a functiona at to oi i(c co on ns st t c ch ha ar r*) that takes a string containing digits and returns the

correspondingi in nt t. For example,a at to oi i(" 1 12 23 3") is 1 12 23 3. Modify a at to oi i() to handle C++ octal and
hexadecimal notation in addition to plain decimal numbers. Modifya at to oi i() to handle the C++

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

142 Expressions and Statements Chapter 6

character constant notation.
17. (∗2) Write a functioni it to oa a(i in nt t i i, c ch ha ar r b b[]) that creates a string representation ofi i in b b and

returnsb b.
18. (*2) Type in the calculator example and get it to work. Do not ‘‘save time’’ by using an already

entered text. You’ll learn most from finding and correcting ‘‘little silly errors.’’
19. (∗2) Modify the calculator to report line numbers for errors.
20. (∗3) Allow a user to define functions in the calculator. Hint: Define a function as a sequence of

operations just as a user would have typed them. Such a sequence can be stored either as a
character string or as a list of tokens. Then read and execute those operations when the function
is called. If you want a user-defined function to take arguments, you will have to invent a nota-
tion for that.

21. (∗1.5) Convert the desk calculator to use as sy ym mb bo ol l structure instead of using the static variables
n nu um mb be er r_ _v va al lu ue eands st tr ri in ng g_ _v va al lu ue e.

22. (∗2.5) Write a program that strips comments out of a C++ program. That is, read fromc ci in n,
remove both/ / comments and/* */ comments, and write the result toc co ou ut t. Do not worry
about making the layout of the output look nice (that would be another, and much harder, exer-
cise). Do not worry about incorrect programs. Beware of/ / , /* , and*/ in comments, strings,
and character constants.

23. (∗2) Look at some programs to get an idea of the variety of indentation, naming, and comment-
ing styles actually used.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	6.1 A Desk Calculator
	6.2 Operator Summary
	6.3 Statement Summary
	6.4 Comments and Indentation
	6.5 Advice

	buy now:

