
_ __ _______________________________________

9
_ __ _______________________________________

Source Files and Programs

Form must follow function.
– Le Corbusier

Separate compilation— linking — header files— standard library headers— the one-
definition rule— linkage to non-C++ code— linkage and pointers to functions— using
headers to express modularity— single-header organization— multiple-header organi-
zation— include guards— programs— advice— exercises.

9.1 Separate Compilation[file.separate]

A file is the traditional unit of storage (in a file system) and the traditional unit of compilation.
There are systems that do not store, compile, and present C++ programs to the programmer as sets
of files. However, the discussion here will concentrate on systems that employ the traditional use
of files.

Having a complete program in one file is usually impossible. In particular, the code for the
standard libraries and the operating system is typically not supplied in source form as part of a
user’s program. For realistically-sized applications, even having all of the user’s own code in a sin-
gle file is both impractical and inconvenient. The way a program is organized into files can help
emphasize its logical structure, help a human reader understand the program, and help the compiler
to enforce that logical structure. Where the unit of compilation is a file, all of a file must be recom-
piled whenever a change (however small) has been made to it or to something on which it depends.
For even a moderately sized program, the amount of time spent recompiling can be significantly
reduced by partitioning the program into files of suitable size.

A user presents asource fileto the compiler. The file is then preprocessed; that is, macro pro-
cessing (§7.8) is done and#i in nc cl lu ud de e directives bring in headers (§2.4.1, §9.2.1). The result of pre-
processing is called atranslation unit. This unit is what the compiler proper works on and what the
C++ language rules describe. In this book, I differentiate between source file and translation unit

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

198 Source Files and Programs Chapter 9

only where necessary to distinguish what the programmer sees from what the compiler considers.
To enable separate compilation, the programmer must supply declarations providing the type

information needed to analyze a translation unit in isolation from the rest of the program. The
declarations in a program consisting of many separately compiled parts must be consistent in
exactly the same way the declarations in a program consisting of a single source file must be. Your
system will have tools to help ensure this. In particular, the linker can detect many kinds of incon-
sistencies. Thelinker is the program that binds together the separately compiled parts. A linker is
sometimes (confusingly) called aloader. Linking can be done completely before a program starts
to run. Alternatively, new code can be added to the program (‘‘dynamically linked’’) later.

The organization of a program into source files is commonly called thephysical structureof a
program. The physical separation of a program into separate files should be guided by the logical
structure of the program. The same dependency concerns that guide the composition of programs
out of namespaces guide its composition into source files. However, the logical and physical struc-
ture of a program need not be identical. For example, it can be useful to use several source files to
store the functions from a single namespace, to store a collection of namespace definitions in a sin-
gle file, and to scatter the definition of a namespace over several files (§8.2.4).

Here, we will first consider some technicalities relating to linking and then discuss two ways of
breaking the desk calculator (§6.1, §8.2) into files.

9.2 Linkage[file.link]

Names of functions, classes, templates, variables, namespaces, enumerations, and enumerators
must be used consistently across all translation units unless they are explicitly specified to be local.

It is the programmer’s task to ensure that every namespace, class, function, etc. is properly
declared in every translation unit in which it appears and that all declarations referring to the same
entity are consistent. For example, consider two files:

/ / file1.c:
i in nt t x x = 1 1;
i in nt t f f() { /* do something*/ }

/ / file2.c:
e ex xt te er rn n i in nt t x x;
i in nt t f f() ;
v vo oi id d g g() { x x = f f() ; }

Thex x andf f() used byg g() in f fi il le e2 2. c c are the ones defined inf fi il le e1 1. c c. The keyworde ex xt te er rn n indi-
cates that the declaration ofx x in f fi il le e2 2. c c is (just) a declaration and not a definition (§4.9). Hadx x
been initialized,e ex xt te er rn n would simply be ignored because a declaration with an initializer is always
a definition. An object must be defined exactly once in a program. It may be declared many times,
but the types must agree exactly. For example:

/ / file1.c:
i in nt t x x = 1 1;
i in nt t b b = 1 1;
e ex xt te er rn n i in nt t c c;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.2 Linkage 199

/ / file2.c:
i in nt t x x; / / meaning int x = 0;
e ex xt te er rn n d do ou ub bl le e b b;
e ex xt te er rn n i in nt t c c;

There are three errors here:x x is defined twice,b b is declared twice with different types, andc c is
declared twice but not defined. These kinds of errors (linkage errors) cannot be detected by a com-
piler that looks at only one file at a time. Most, however, are detectable by the linker. Note that a
variable defined without an initializer in the global or a namespace scope is initialized by default.
This isnot the case for local variables (§4.9.5, §10.4.2) or objects created on the free store (§6.2.6).
For example, the following program fragment contains two errors:

/ / file1.c:
i in nt t x x;
i in nt t f f() { r re et tu ur rn n x x; }

/ / file2.c:
i in nt t x x;
i in nt t g g() { r re et tu ur rn n f f() ; }

The call off f() in f fi il le e2 2. c c is an error becausef f() has not been declared inf fi il le e2 2. c c. Also, the pro-
gram will not link becausex x is defined twice. Note that these are not errors in C (§B.2.2).

A name that can be used in translation units different from the one in which it was defined is
said to haveexternal linkage. All the names in the previous examples have external linkage. A
name that can be referred to only in the translation unit in which it is defined is said to have
internal linkage.

An i in nl li in ne e function (§7.1.1, §10.2.9) must be defined– by identical definitions (§9.2.3)– in
every translation unit in which it is used. Consequently, the following example isn’t just bad taste;
it is illegal:

/ / file1.c:
i in nl li in ne e i in nt t f f(i in nt t i i) { r re et tu ur rn n i i; }

/ / file2.c:
i in nl li in ne e i in nt t f f(i in nt t i i) { r re et tu ur rn n i i+1 1; }

Unfortunately, this error is hard for an implementation to catch, and the following– otherwise per-
fectly logical – combination of external linkage and inlining is banned to make life simpler for
compiler writers:

/ / file1.c:
e ex xt te er rn n i in nl li in ne e i in nt t g g(i in nt t i i) ;
i in nt t h h(i in nt t i i) { r re et tu ur rn n g g(i i) ; } / / error: g() undefined in this translation unit

/ / file2.c:
e ex xt te er rn n i in nl li in ne e i in nt t g g(i in nt t i i) { r re et tu ur rn n i i+1 1; }

By default,c co on ns st ts (§5.4) andt ty yp pe ed de ef fs (§4.9.7) have internal linkage. Consequently, this example
is legal (although potentially confusing):

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

200 Source Files and Programs Chapter 9

/ / file1.c:
t ty yp pe ed de ef f i in nt t T T;
c co on ns st t i in nt t x x = 7 7;

/ / file2.c:
t ty yp pe ed de ef f v vo oi id d T T;
c co on ns st t i in nt t x x = 8 8;

Global variables that are local to a single compilation unit are a common source of confusion and
are best avoided. To ensure consistency, you should usually place globalc co on ns st ts andi in nl li in ne es in
header files only (§9.2.1).

A c co on ns st t can be given external linkage by an explicit declaration:

/ / file1.c:
e ex xt te er rn n c co on ns st t i in nt t a a = 7 77 7;

/ / file2.c:
e ex xt te er rn n c co on ns st t i in nt t a a;

v vo oi id d g g()
{

c co ou ut t << a a << ´ \ \n n´;
}

Here,g g() will print 7 77 7.
An unnamed namespace (§8.2.5) can be used to make names local to a compilation unit. The

effect of an unnamed namespace is very similar to that of internal linkage. For example:

/ / file 1.c:
n na am me es sp pa ac ce e {

c cl la as ss s X X { /* ... */ };
v vo oi id d f f() ;
i in nt t i i;
/ / ...

}

/ / file2.c:
c cl la as ss s X X { /* ... */ };
v vo oi id d f f() ;
i in nt t i i;
/ / ...

The functionf f() in f fi il le e1 1. c c is not the same function as thef f() in f fi il le e2 2. c c. Having a name local to
a translation unit and also using that same name elsewhere for an entity with external linkage is
asking for trouble.

In C and older C++ programs, the keywords st ta at ti ic c is (confusingly) used to mean ‘‘use internal
linkage’’ (§B.2.3). Don’t uses st ta at ti ic c except inside functions (§7.1.2) and classes (§10.2.4).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.2.1 Header Files 201

9.2.1 Header Files [file.header]

The types in all declarations of the same object, function, class, etc., must be consistent. Conse-
quently, the source code submitted to the compiler and later linked together must be consistent.
One imperfect but simple method of achieving consistency for declarations in different translation
units is to#i in nc cl lu ud de e header filescontaining interface information in source files containing exe-
cutable code and/or data definitions.

The#i in nc cl lu ud de e mechanism is a text manipulation facility for gathering source program fragments
together into a single unit (file) for compilation. The directive

#i in nc cl lu ud de e " t to o_ _b be e_ _i in nc cl lu ud de ed d"

replaces the line in which the#i in nc cl lu ud de e appears with the contents of the filet to o_ _b be e_ _i in nc cl lu ud de ed d. The
content should be C++ source text because the compiler will proceed to read it.

To include standard library headers, use the angle brackets< and> around the name instead of
quotes. For example:

#i in nc cl lu ud de e <i io os st tr re ea am m> / / from standard include directory
#i in nc cl lu ud de e " m my yh he ea ad de er r. h h" / / from current directory

Unfortunately, spaces are significant within the< > or " " of an include directive:

#i in nc cl lu ud de e < i io os st tr re ea am m > / / will not find <iostream>

It may seem extravagant to recompile a file each time it is included somewhere, but the included
files typically contain only declarations and not code needing extensive analysis by the compiler.
Furthermore, most modern C++ implementations provide some form of precompiling of header
files to minimize the work needed to handle repeated compilation of the same header.

As a rule of thumb, a header may contain:
_ ___
Named namespaces n na am me es sp pa ac ce e N N { /* */ }
Type definitions s st tr ru uc ct t P Po oi in nt t { i in nt t x x, y y; };
Template declarations t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s Z Z;
Template definitions t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s V V { /* */ };
Function declarations e ex xt te er rn n i in nt t s st tr rl le en n(c co on ns st t c ch ha ar r*);
Inline function definitions i in nl li in ne e c ch ha ar r g ge et t(c ch ha ar r* p p) { r re et tu ur rn n * p p++; }
Data declarations e ex xt te er rn n i in nt t a a;
Constant definitions c co on ns st t f fl lo oa at t p pi i = 3 3. .1 14 41 15 59 93 3;
Enumerations e en nu um m L Li ig gh ht t { r re ed d, y ye el ll lo ow w, g gr re ee en n };
Name declarations c cl la as ss s M Ma at tr ri ix x;
Include directives #i in nc cl lu ud de e <a al lg go or ri it th hm m>
Macro definitions #d de ef fi in ne e V VE ER RS SI IO ON N 1 12 2
Conditional compilation directives #i if fd de ef f _ __ _c cp pl lu us sp pl lu us s
Comments /* c ch he ec ck k f fo or r e en nd d o of f f fi il le e */_ ___

This rule of thumb for what may be placed in a header is not a language requirement. It is simply a
reasonable way of using the#i in nc cl lu ud de e mechanism to express the physical structure of a program.
Conversely, a header should never contain:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

202 Source Files and Programs Chapter 9

_ ___
Ordinary function definitions c ch ha ar r g ge et t(c ch ha ar r* p p) { r re et tu ur rn n * p p++; }
Data definitions i in nt t a a;
Aggregate definitions s sh ho or rt t t tb bl l[] = { 1 1, 2 2, 3 3 };
Unnamed namespaces n na am me es sp pa ac ce e { /* */ }
Exported template definitions e ex xp po or rt t t te em mp pl la at te e<c cl la as ss s T T> f f(T T t t) { /* */ }_ ___

Header files are conventionally suffixed by. h h, and files containing function or data definitions are
suffixed by . c c. They are therefore often referred to as ‘‘.h files’’ and ‘‘.c files,’’ respectively.
Other conventions, such as. C C, . c cx xx x, . c cp pp p, and. c cc c, are also found. The manual for your com-
piler will be quite specific about this issue.

The reason for recommending that the definition of simple constants, but not the definition of
aggregates, be placed in header files is that it is hard for implementations to avoid replication of
aggregates presented in several translation units. Furthermore, the simple cases are far more com-
mon and therefore more important for generating good code.

It is wise not to be too clever about the use of#i in nc cl lu ud de e. My recommendation is to#i in nc cl lu ud de e
only complete declarations and definitions and to do so only in the global scope, in linkage specifi-
cation blocks, and in namespace definitions when converting old code (§9.2.2). As usual, it is wise
to avoid macro magic. One of my least favorite activities is tracking down an error caused by a
name being macro-substituted into something completely different by a macro defined in an indi-
rectly#i in nc cl lu ud de ed header that I have never even heard of.

9.2.2 Standard Library Headers [file.std.header]

The facilities of the standard library are presented through a set of standard headers (§16.1.2). No
suffix is needed for standard library headers; they are known to be headers because they are
included using the#i in nc cl lu ud de e<...> syntax rather than#i in nc cl lu ud de e"..." . The absence of a. h h suf-
fix does not imply anything about how the header is stored. A header such as<m ma ap p> may be
stored as a text file calledm ma ap p. h h in a standard directory. On the other hand, standard headers are
not required to be stored in a conventional manner. An implementation is allowed to take advan-
tage of knowledge of the standard library definition to optimize the standard library implementation
and the way standard headers are handled. For example, an implementation might have knowledge
of the standard math library (§22.3) built in and treat#i in nc cl lu ud de e<c cm ma at th h> as a switch that makes the
standard math functions available without reading any file.

For each C standard-library header<X X. h h>, there is a corresponding standard C++ header<c cX X>.
For example,#i in nc cl lu ud de e<c cs st td di io o> provides what#i in nc cl lu ud de e<s st td di io o. h h> does. A typicals st td di io o. h h will
look something like this:

#i if fd de ef f _ __ _c cp pl lu us sp pl lu us s / / for C++ compliers only (§9.2.4)
n na am me es sp pa ac ce e s st td d { / / the standard library is defined in namespace std (§8.2.9)

e ex xt te er rn n " C C" { / / stdio functions have C linkage (§9.2.4)
#e en nd di if f

/ / ...
i in nt t p pr ri in nt tf f(c co on ns st t c ch ha ar r* ...) ;
/ / ...

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.2.2 Standard Library Headers 203

#i if fd de ef f _ __ _c cp pl lu us sp pl lu us s
}
}
u us si in ng g n na am me es sp pa ac ce e s st td d; / / make stdio available in global namespace
#e en nd di if f

That is, the actual declarations are (most likely) shared, but linkage and namespace issues must be
addressed to allow C and C++ to share a header.

9.2.3 The One-Definition Rule [file.odr]

A given class, enumeration, and template, etc., must be defined exactly once in a program.
From a practical point of view, this means that there must be exactly one definition of, say, a

class residing in a single file somewhere. Unfortunately, the language rule cannot be that simple.
For example, the definition of a class may be composed through macro expansion (ugh!), while a
definition of a class may be textually included in two source files by#i in nc cl lu ud de e directives (§9.2.1).
Worse, a ‘‘file’’ isn’t a concept that is part of the C and C++ language definitions; there exist imple-
mentations that do not store programs in source files.

Consequently, the rule in the standard that says that there must be a unique definition of a class,
template, etc., is phrased in a somewhat more complicated and subtle manner. This rule is com-
monly referred to as ‘‘the one-definition rule,’’ the ODR. That is, two definitions of a class, tem-
plate, or inline function are accepted as examples of the same unique definition if and only if

[1] they appear in different translation units, and
[2] they are token-for-token identical, and
[3] the meanings of those tokens are the same in both translation units.

For example:

/ / file1.c:
s st tr ru uc ct t S S { i in nt t a a; c ch ha ar r b b; };
v vo oi id d f f(S S*) ;

/ / file2.c:
s st tr ru uc ct t S S { i in nt t a a; c ch ha ar r b b; };
v vo oi id d f f(S S* p p) { /* ... */ }

The ODR says that this example is valid and thatS S refers to the same class in both source files.
However, it is unwise to write out a definition twice like that. Someone maintainingf fi il le e2 2. c c will
naturally assume that the definition ofS S in f fi il le e2 2. c c is the only definition ofS S and so feel free to
change it. This could introduce a hard-to-detect error.

The intent of the ODR is to allow inclusion of a class definition in different translation units
from a common source file. For example:

/ / file s.h:
s st tr ru uc ct t S S { i in nt t a a; c ch ha ar r b b; };
v vo oi id d f f(S S*) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

204 Source Files and Programs Chapter 9

/ / file1.c:
#i in nc cl lu ud de e " s s. h h"
/ / use f() here

/ / file2.c:
#i in nc cl lu ud de e " s s. h h"
v vo oi id d f f(S S* p p) { /* ... */ }

or graphically:

s st tr ru uc ct t S S { i in nt t a a; c ch ha ar r b b; };
v vo oi id d f f(S S*);

#i in nc cl lu ud de e " "s s. .h h" "
// use f() here

#i in nc cl lu ud de e " "s s. .h h" "
v vo oi id d f f(S S* p p) { /* */ }

s s. .h h: :

f fi il le e1 1. .c c: : f fi il le e2 2. .c c: :

Here are examples of the three ways of violating the ODR:

/ / file1.c:
s st tr ru uc ct t S S1 1 { i in nt t a a; c ch ha ar r b b; };

s st tr ru uc ct t S S1 1 { i in nt t a a; c ch ha ar r b b; }; / / error: double definition

This is an error because as st tr ru uc ct t may not be defined twice in a single translation unit.

/ / file1.c:
s st tr ru uc ct t S S2 2 { i in nt t a a; c ch ha ar r b b; };

/ / file2.c:
s st tr ru uc ct t S S2 2 { i in nt t a a; c ch ha ar r b bb b; }; / / error

This is an error becauseS S2 2 is used to name classes that differ in a member name.

/ / file1.c:
t ty yp pe ed de ef f i in nt t X X;
s st tr ru uc ct t S S3 3 { X X a a; c ch ha ar r b b; };

/ / file2.c:
t ty yp pe ed de ef f c ch ha ar r X X;
s st tr ru uc ct t S S3 3 { X X a a; c ch ha ar r b b; }; / / error

Here the two definitions ofS S3 3 are token-for-token identical, but the example is an error because the
meaning of the nameX X has sneakily been made to differ in the two files.

Checking against inconsistent class definitions in separate translation units is beyond the ability
of most C++ implementations. Consequently, declarations that violate the ODR can be a source of
subtle errors. Unfortunately, the technique of placing shared definitions in headers and#i in nc cl lu ud di in ng g
them doesn’t protect against this last form of ODR violation. Local typedefs and macros can
change the meaning of#i in nc cl lu ud de ed declarations:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.2.3 The One-Definition Rule 205

/ / file s.h:
s st tr ru uc ct t S S { P Po oi in nt t a a; c ch ha ar r b b; };

/ / file1.c:
#d de ef fi in ne e P Po oi in nt t i in nt t
#i in nc cl lu ud de e " s s. h h"
/ / ...

/ / file2.c:
c cl la as ss s P Po oi in nt t { /* ... */ };
#i in nc cl lu ud de e " s s. h h"
/ / ...

The best defense against this kind of hackery is to make headers as self-contained as possible. For
example, if classP Po oi in nt t had been declared in thes s. h h header the error would have been detected.

A template definition can be#i in nc cl lu ud de ed in several translation units as long as the ODR is
adhered to. In addition, an exported template can be used given only a declaration:

/ / file1.c:
e ex xp po or rt t t te em mp pl la at te e<c cl la as ss s T T> T T t tw wi ic ce e(T T t t) { r re et tu ur rn n t t+t t; }

/ / file2.c:
t te em mp pl la at te e<c cl la as ss s T T> T T t tw wi ic ce e(T T t t) ; / / declaration
i in nt t g g(i in nt t i i) { r re et tu ur rn n t tw wi ic ce e(i i) ; }

The keyworde ex xp po or rt t means ‘‘accessible from another translation unit’’ (§13.7).

9.2.4 Linkage to Non-C++ Code [file.c]

Typically, a C++ program contains parts written in other languages. Similarly, it is common for
C++ code fragments to be used as parts of programs written mainly in some other language. Coop-
eration can be difficult between program fragments written in different languages and even between
fragments written in the same language but compiled with different compilers. For example, differ-
ent languages and different implementations of the same language may differ in their use of
machine registers to hold arguments, the layout of arguments put on a stack, the layout of built-in
types such as strings and integers, the form of names passed by the compiler to the linker, and the
amount of type checking required from the linker. To help, one can specify alinkageconvention to
be used in ane ex xt te er rn n declaration. For example, this declares the C and C++ standard library func-
tion s st tr rc cp py y() and specifies that it should be linked according to the C linkage conventions:

e ex xt te er rn n " C C" c ch ha ar r* s st tr rc cp py y(c ch ha ar r*, c co on ns st t c ch ha ar r*) ;

The effect of this declaration differs from the effect of the ‘‘plain’’ declaration

e ex xt te er rn n c ch ha ar r* s st tr rc cp py y(c ch ha ar r*, c co on ns st t c ch ha ar r*) ;

only in the linkage convention used for callings st tr rc cp py y() .
Thee ex xt te er rn n " "C C" " directive is particularly useful because of the close relationship between C and

C++. Note that theC C in e ex xt te er rn n " "C C" " names a linkage convention and not a language. Often,e ex xt te er rn n
" "C C" " is used to link to Fortran and assembler routines that happen to conform to the conventions of a
C implementation.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

206 Source Files and Programs Chapter 9

An e ex xt te er rn n " "C C" " directive specifies the linkage convention (only) and does not affect the seman-
tics of calls to the function. In particular, a function declarede ex xt te er rn n " "C C" " still obeys the C++ type
checking and argument conversion rules and not the weaker C rules. For example:

e ex xt te er rn n " C C" i in nt t f f() ;

i in nt t g g()
{

r re et tu ur rn n f f(1 1) ; / / error: no argument expected
}

Adding e ex xt te er rn n " "C C" " to a lot of declarations can be a nuisance. Consequently, there is a mechanism
to specify linkage to a group of declarations. For example:

e ex xt te er rn n " C C" {
c ch ha ar r* s st tr rc cp py y(c ch ha ar r*, c co on ns st t c ch ha ar r*) ;
i in nt t s st tr rc cm mp p(c co on ns st t c ch ha ar r*, c co on ns st t c ch ha ar r*) ;
i in nt t s st tr rl le en n(c co on ns st t c ch ha ar r*) ;
/ / ...

}

This construct, commonly called alinkage block, can be used to enclose a complete C header to
make a header suitable for C++ use. For example:

e ex xt te er rn n " C C" {
#i in nc cl lu ud de e <s st tr ri in ng g. h h>
}

This technique is commonly used to produce a C++ header from a C header. Alternatively, condi-
tional compilation (§7.8.1) can be used to create a common C and C++ header:

#i if fd de ef f _ __ _c cp pl lu us sp pl lu us s
e ex xt te er rn n " C C" {
#e en nd di if f

c ch ha ar r* s st tr rc cp py y(c ch ha ar r*, c co on ns st t c ch ha ar r*) ;
i in nt t s st tr rc cm mp p(c co on ns st t c ch ha ar r*, c co on ns st t c ch ha ar r*) ;
i in nt t s st tr rl le en n(c co on ns st t c ch ha ar r*) ;
/ / ...

#i if fd de ef f _ __ _c cp pl lu us sp pl lu us s
}
#e en nd di if f

The predefined macro name_ __ _c cp pl lu us sp pl lu us s is used to ensure that the C++ constructs are edited out
when the file is used as a C header.

Any declaration can appear within a linkage block:

e ex xt te er rn n " C C" { / / any declaration here, for example:
i in nt t g g1 1; / / definition
e ex xt te er rn n i in nt t g g2 2; / / declaration, not definition

}

In particular, the scope and storage class of variables are not affected, sog g1 1 is still a global variable

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.2.4 Linkage to Non-C++ Code 207

– and is still defined rather than just declared. To declare but not define a variable, you must apply
the keyworde ex xt te er rn n directly in the declaration. For example:

e ex xt te er rn n " C C" i in nt t g g3 3; / / declaration, not definition

This looks odd at first glance. However, it is a simple consequence of keeping the meaning
unchanged when adding" "C C" " to an extern declaration and the meaning of a file unchanged when
enclosing it in a linkage block.

A name with C linkage can be declared in a namespace. The namespace will affect the way the
name is accessed in the C++ program, but not the way a linker sees it. Thep pr ri in nt tf f() from s st td d is a
typical example:

#i in nc cl lu ud de e<c cs st td di io o>

v vo oi id d f f()
{

s st td d: : p pr ri in nt tf f(" H He el ll lo o, ") ; / / ok
p pr ri in nt tf f(" w wo or rl ld d! \ \n n") ; / / error: no global printf()

}

Even when calleds st td d: : p pr ri in nt tf f, it is still the same old Cp pr ri in nt tf f() (§21.8).
Note that this allows us to include libraries with C linkage into a namespace of our choice rather

than polluting the global namespace. Unfortunately, the same flexibility is not available to us for
headers defining functions with C++ linkage in the global namespace. The reason is that linkage of
C++ entities must take namespaces into account so that the object files generated will reflect the use
or lack of use of namespaces.

9.2.5 Linkage and Pointers to Functions [file.ptof]

When mixing C and C++ code fragments in one program, we sometimes want to pass pointers to
functions defined in one language to functions defined in the other. If the two implementations of
the two languages share linkage conventions and function-call mechanisms, such passing of point-
ers to functions is trivial. However, such commonality cannot in general be assumed, so care must
be taken to ensure that a function is called the way it expects to be called.

When linkage is specified for a declaration, the specified linkage applies to all function types,
function names, and variable names introduced by the declaration(s). This makes all kinds of
strange– and occasionally essential– combinations of linkage possible. For example:

t ty yp pe ed de ef f i in nt t (* F FT T)(c co on ns st t v vo oi id d*, c co on ns st t v vo oi id d*) ; / / FT has C++ linkage

e ex xt te er rn n " C C" {
t ty yp pe ed de ef f i in nt t (* C CF FT T)(c co on ns st t v vo oi id d*, c co on ns st t v vo oi id d*) ; / / CFT has C linkage
v vo oi id d q qs so or rt t(v vo oi id d* p p, s si iz ze e_ _t t n n, s si iz ze e_ _t t s sz z, C CF FT T c cm mp p) ; / / cmp has C linkage

}

v vo oi id d i is so or rt t(v vo oi id d* p p, s si iz ze e_ _t t n n, s si iz ze e_ _t t s sz z, F FT T c cm mp p) ; / / cmp has C++ linkage
v vo oi id d x xs so or rt t(v vo oi id d* p p, s si iz ze e_ _t t n n, s si iz ze e_ _t t s sz z, C CF FT T c cm mp p) ; / / cmp has C linkage
e ex xt te er rn n " C C" v vo oi id d y ys so or rt t(v vo oi id d* p p, s si iz ze e_ _t t n n, s si iz ze e_ _t t s sz z, F FT T c cm mp p) ; / / cmp has C++ linkage

i in nt t c co om mp pa ar re e(c co on ns st t v vo oi id d*, c co on ns st t v vo oi id d*) ; / / compare() has C++ linkage
e ex xt te er rn n " C C" i in nt t c cc cm mp p(c co on ns st t v vo oi id d*, c co on ns st t v vo oi id d*) ; / / ccmp() has C linkage

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

208 Source Files and Programs Chapter 9

v vo oi id d f f(c ch ha ar r* v v, i in nt t s sz z)
{

q qs so or rt t(v v, s sz z, 1 1,& c co om mp pa ar re e) ; / / error
q qs so or rt t(v v, s sz z, 1 1,& c cc cm mp p) ; / / ok

i is so or rt t(v v, s sz z, 1 1,& c co om mp pa ar re e) ; / / ok
i is so or rt t(v v, s sz z, 1 1,& c cc cm mp p) ; / / error

}

An implementation in which C and C++ use the same calling conventions might accept the cases
markederror as a language extension.

9.3 Using Header Files[file.using]

To illustrate the use of headers, I present a few alternative ways of expressing the physical structure
of the calculator program (§6.1, §8.2).

9.3.1 Single Header File [file.single]

The simplest solution to the problem of partitioning a program into several files is to put the defini-
tions in a suitable number of. c c files and to declare the types needed for them to communicate in a
single. h h file that each. c c file #i in nc cl lu ud de es. For the calculator program, we might use five. c c files –
l le ex xe er r. c c, p pa ar rs se er r. c c, t ta ab bl le e. c c, e er rr ro or r. c c, andm ma ai in n. c c – to hold function and data definitions, plus the
headerd dc c. h h to hold the declarations of every name used in more than one. c c file.

The headerd dc c. h h would look like this:

/ / dc.h:

n na am me es sp pa ac ce e E Er rr ro or r {
s st tr ru uc ct t Z Ze er ro o_ _d di iv vi id de e { };

s st tr ru uc ct t S Sy yn nt ta ax x_ _e er rr ro or r {
c co on ns st t c ch ha ar r* p p;
S Sy yn nt ta ax x_ _e er rr ro or r(c co on ns st t c ch ha ar r* q q) { p p = q q; }

};
}

#i in nc cl lu ud de e <s st tr ri in ng g>

n na am me es sp pa ac ce e L Le ex xe er r {

e en nu um m T To ok ke en n_ _v va al lu ue e {
N NA AM ME E, N NU UM MB BE ER R, E EN ND D,
P PL LU US S=´+´, M MI IN NU US S=´-´, M MU UL L=´*´, D DI IV V=´/´,
P PR RI IN NT T=´;´, A AS SS SI IG GN N=´=´, L LP P=´(´, R RP P=´)´

};

e ex xt te er rn n T To ok ke en n_ _v va al lu ue e c cu ur rr r_ _t to ok k;
e ex xt te er rn n d do ou ub bl le e n nu um mb be er r_ _v va al lu ue e;
e ex xt te er rn n s st td d: : s st tr ri in ng g s st tr ri in ng g_ _v va al lu ue e;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.3.1 Single Header File 209

T To ok ke en n_ _v va al lu ue e g ge et t_ _t to ok ke en n() ;
}

n na am me es sp pa ac ce e P Pa ar rs se er r {
d do ou ub bl le e p pr ri im m(b bo oo ol l g ge et t) ; / / handle primaries
d do ou ub bl le e t te er rm m(b bo oo ol l g ge et t) ; / / multiply and divide
d do ou ub bl le e e ex xp pr r(b bo oo ol l g ge et t) ; / / add and subtract

u us si in ng g L Le ex xe er r: : g ge et t_ _t to ok ke en n;
u us si in ng g L Le ex xe er r: : c cu ur rr r_ _t to ok k;

}

#i in nc cl lu ud de e <m ma ap p>

e ex xt te er rn n s st td d: : m ma ap p<s st td d: : s st tr ri in ng g, d do ou ub bl le e> t ta ab bl le e;

n na am me es sp pa ac ce e D Dr ri iv ve er r {
e ex xt te er rn n i in nt t n no o_ _o of f_ _e er rr ro or rs s;
e ex xt te er rn n s st td d: : i is st tr re ea am m* i in np pu ut t;
v vo oi id d s sk ki ip p() ;

}

The keyworde ex xt te er rn n is used for every declaration of a variable to ensure that multiple definitions do
not occur as we#i in nc cl lu ud de e d dc c. h h in the various. c c files. The corresponding definitions are found in
the appropriate. c c files.

Leaving out the actual code,l le ex xe er r. c c will look something like this:

/ / lexer.c:

#i in nc cl lu ud de e " d dc c. h h"
#i in nc cl lu ud de e <i io os st tr re ea am m>
#i in nc cl lu ud de e <c cc ct ty yp pe e>

L Le ex xe er r: : T To ok ke en n_ _v va al lu ue e L Le ex xe er r: : c cu ur rr r_ _t to ok k;
d do ou ub bl le e L Le ex xe er r: : n nu um mb be er r_ _v va al lu ue e;
s st td d: : s st tr ri in ng g L Le ex xe er r: : s st tr ri in ng g_ _v va al lu ue e;

L Le ex xe er r: : T To ok ke en n_ _v va al lu ue e L Le ex xe er r: : g ge et t_ _t to ok ke en n() { /* ... */ }

Using headers in this manner ensures that every declaration in a header will at some point be
included in the file containing its definition. For example, when compilingl le ex xe er r. c c the compiler
will be presented with:

n na am me es sp pa ac ce e L Le ex xe er r { / / from dc.h
/ / ...
T To ok ke en n_ _v va al lu ue e g ge et t_ _t to ok ke en n() ;

}

/ / ...

L Le ex xe er r: : T To ok ke en n_ _v va al lu ue e L Le ex xe er r: : g ge et t_ _t to ok ke en n() { /* ... */ }

This ensures that the compiler will detect any inconsistencies in the types specified for a name. For
example, hadg ge et t_ _t to ok ke en n() been declared to return aT To ok ke en n_ _v va al lu ue e, but defined to return ani in nt t, the
compilation ofl le ex xe er r. c c would have failed with a type-mismatch error. If a definition is missing,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

210 Source Files and Programs Chapter 9

the linker will catch the problem. If a declaration is missing, some. c c file will fail to compile.
File p pa ar rs se er r. c c will look like this:

/ / parser.c:

#i in nc cl lu ud de e " d dc c. h h"

d do ou ub bl le e P Pa ar rs se er r: : p pr ri im m(b bo oo ol l g ge et t) { /* ... */ }
d do ou ub bl le e P Pa ar rs se er r: : t te er rm m(b bo oo ol l g ge et t) { /* ... */ }
d do ou ub bl le e P Pa ar rs se er r: : e ex xp pr r(b bo oo ol l g ge et t) { /* ... */ }

File t ta ab bl le e. c c will look like this:

/ / table.c:

#i in nc cl lu ud de e " d dc c. h h"

s st td d: : m ma ap p<s st td d: : s st tr ri in ng g, d do ou ub bl le e> t ta ab bl le e;

The symbol table is simply a variable of the standard librarym ma ap p type. This definest ta ab bl le e to be
global. In a realistically-sized program, this kind of minor pollution of the global namespace builds
up and eventually causes problems. I left this sloppiness here simply to get an opportunity to warn
against it.

Finally, file m ma ai in n. c c will look like this:

/ / main.c:

#i in nc cl lu ud de e " d dc c. h h"
#i in nc cl lu ud de e <s ss st tr re ea am m>

i in nt t D Dr ri iv ve er r: : n no o_ _o of f_ _e er rr ro or rs s = 0 0;
s st td d: : i is st tr re ea am m* D Dr ri iv ve er r: : i in np pu ut t = 0 0;

v vo oi id d D Dr ri iv ve er r: : s sk ki ip p() { /* ... */ }

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[]) { /* ... */ }

To be recognized asthe m ma ai in n() of the program,m ma ai in n() must be a global function, so no name-
space is used here.

The physical structure of the system can be presented like this:

t ta ab bl le e. .c c
. .

p pa ar rs se er r. .c c
. .

d dr ri iv ve er r. .c c
. .

l le ex xe er r. .c c

. .
dc.h

< <s st tr ri in ng g> >
. .

< <m ma ap p> >
. .

< <c cc ct ty yp pe e> >
. .
< <i io os st tr re ea am m> >

. .
< <s ss st tr re ea am m> > ..

Note that the headers on the top are all headers for standard library facilities. For many forms of
program analysis, these libraries can be ignored because they are well known and stable. For tiny

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.3.1 Single Header File 211

programs, the structure can be simplified by moving all#i in nc cl lu ud de edirectives to the common header.
This single-header style of physical partitioning is most useful when the program is small and

its parts are not intended to be used separately. Note that when namespaces are used, the logical
structure of the program is still represented withind dc c. h h. If namespaces are not used, the structure
is obscured, although comments can be a help.

For larger programs, the single header file approach is unworkable in a conventional file-based
development environment. A change to the common header forces recompilation of the whole pro-
gram, and updates of that single header by several programmers are error-prone. Unless strong
emphasis is placed on programming styles relying heavily on namespaces and classes, the logical
structure deteriorates as the program grows.

9.3.2 Multiple Header Files [file.multi]

An alternative physical organization lets each logical module have its own header defining the
facilities it provides. Each. c c file then has a corresponding. h h file specifying what it provides (its
interface). Each. c c file includes its own. h h file and usually also other. h h files that specify what it
needs from other modules in order to implement the services advertised in the interface. This phys-
ical organization corresponds to the logical organization of a module. The interface for users is put
into its . h h file, the interface for implementers is put into a file suffixed_ _i im mp pl l. h h, and the module’s
definitions of functions, variables, etc. are placed in. c c files. In this way, the parser is represented
by three files. The parser’s user interface is provided byp pa ar rs se er r. h h:

/ / parser.h:

n na am me es sp pa ac ce e P Pa ar rs se er r { / / interface for users
d do ou ub bl le e e ex xp pr r(b bo oo ol l g ge et t) ;

}

The shared environment for the functions implementing the parser is presented byp pa ar rs se er r_ _i im mp pl l. h h:

/ / parser_impl.h:

#i in nc cl lu ud de e " p pa ar rs se er r. h h"
#i in nc cl lu ud de e " e er rr ro or r. h h"
#i in nc cl lu ud de e " l le ex xe er r. h h"

n na am me es sp pa ac ce e P Pa ar rs se er r { / / interface for implementers
d do ou ub bl le e p pr ri im m(b bo oo ol l g ge et t) ;
d do ou ub bl le e t te er rm m(b bo oo ol l g ge et t) ;
d do ou ub bl le e e ex xp pr r(b bo oo ol l g ge et t) ;

u us si in ng g L Le ex xe er r: : g ge et t_ _t to ok ke en n;
u us si in ng g L Le ex xe er r: : c cu ur rr r_ _t to ok k;

}

The user’s headerp pa ar rs se er r. h h is #i in nc cl lu ud de ed to give the compiler a chance to check consistency
(§9.3.1).

The functions implementing the parser are stored inp pa ar rs se er r. c c together with#i in nc cl lu ud de e directives
for the headers that theP Pa ar rs se er r functions need:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

212 Source Files and Programs Chapter 9

/ / parser.c:

#i in nc cl lu ud de e " p pa ar rs se er r_ _i im mp pl l. h h"
#i in nc cl lu ud de e " t ta ab bl le e. h h"

d do ou ub bl le e P Pa ar rs se er r: : p pr ri im m(b bo oo ol l g ge et t) { /* ... */ }
d do ou ub bl le e P Pa ar rs se er r: : t te er rm m(b bo oo ol l g ge et t) { /* ... */ }
d do ou ub bl le e P Pa ar rs se er r: : e ex xp pr r(b bo oo ol l g ge et t) { /* ... */ }

Graphically, the parser and the driver’s use of it look like this:

p pa ar rs se er r. .h h
. .

l le ex xe er r. .h h
. .

e er rr ro or r. .h h
. .

t ta ab bl le e. .h h

. .
p pa ar rs se er r_ _i im mp pl l. .h h

. .
d dr ri iv ve er r. .c c

. .
p pa ar rs se er r. .c c

..

As intended, this is a rather close match to the logical structure described in §8.3.3. To simplify
this structure, we could have#i in nc cl lu ud de ed t ta ab bl le e. h h in p pa ar rs se er r_ _i im mp pl l. h h rather than inp pa ar rs se er r. c c. How-
ever,t ta ab bl le e. h h is an example of something that is not necessary to express the shared context of the
parser functions; it is needed only by their implementation. In fact, it is used by just one function,
e ex xp pr r() , so if we were really keen on minimizing dependencies we could placee ex xp pr r() in its own
. c c file and#i in nc cl lu ud de e t ta ab bl le e. h h there only:

p pa ar rs se er r. .h h
. .

l le ex xe er r. .h h
. .

e er rr ro or r. .h h
. .

t ta ab bl le e. .h h

. .
p pa ar rs se er r_ _i im mp pl l. .h h

. .
p pa ar rs se er r. .c c

..

e ex xp pr r. .c c

..

Such elaboration is not appropriate except for larger modules. For realistically-sized modules, it is
common to#i in nc cl lu ud de e extra files where needed for individual functions. Furthermore, it is not
uncommon to have more than one_ _i im mp pl l. h h, since different subsets of the module’s functions need
different shared contexts.

Please note that the_ _i im mp pl l. h h notation is not a standard or even a common convention; it is sim-
ply the way I like to name things.

Why bother with this more complicated scheme of multiple header files? It clearly requires far
less thought simply to throw every declaration into a single header, as was done ford dc c. h h.

The multiple-header organization scales to modules several magnitudes larger than our toy
parser and to programs several magnitudes larger than our calculator. The fundamental reason for
using this type of organization is that it provides a better localization of concerns. When analyzing

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.3.2 Multiple Header Files 213

and modifying a large program, it is essential for a programmer to focus on a relatively small chunk
of code. The multiple-header organization makes it easy to determine exactly what the parser code
depends on and to ignore the rest of the program. The single-header approach forces us to look at
every declaration used by any module and decide if it is relevant. The simple fact is that mainte-
nance of code is invariably done with incomplete information and from a local perspective. The
multiple-header organization allows us to work successfully ‘‘from the inside out’’ with only a
local perspective. The single-header approach– like every other organization centered around a
global repository of information– requires a top-down approach and will forever leave us wonder-
ing exactly what depends on what.

The better localization leads to less information needed to compile a module, and thus to faster
compiles. The effect can be dramatic. I have seen compile times drop by a factor of ten as the
result of a simple dependency analysis leading to a better use of headers.

9.3.2.1 Other Calculator Modules [file.multi.etc]

The remaining calculator modules can be organized similarly to the parser. However, those mod-
ules are so small that they don’t require their own_ _i im mp pl l. h h files. Such files are needed only where
a logical module consists of many functions that need a shared context.

The error handler was reduced to the set of exception types so that noe er rr ro or r. c c was needed:

/ / error.h:

n na am me es sp pa ac ce e E Er rr ro or r {
s st tr ru uc ct t Z Ze er ro o_ _d di iv vi id de e { };

s st tr ru uc ct t S Sy yn nt ta ax x_ _e er rr ro or r {
c co on ns st t c ch ha ar r* p p;
S Sy yn nt ta ax x_ _e er rr ro or r(c co on ns st t c ch ha ar r* q q) { p p = q q; }

};
}

The lexer provides a rather large and messy interface:

/ / lexer.h:

#i in nc cl lu ud de e <s st tr ri in ng g>

n na am me es sp pa ac ce e L Le ex xe er r {

e en nu um m T To ok ke en n_ _v va al lu ue e {
N NA AM ME E, N NU UM MB BE ER R, E EN ND D,
P PL LU US S=´+´, M MI IN NU US S=´-´, M MU UL L=´*´, D DI IV V=´/´,
P PR RI IN NT T=´;´, A AS SS SI IG GN N=´=´, L LP P=´(´, R RP P=´)´

};

e ex xt te er rn n T To ok ke en n_ _v va al lu ue e c cu ur rr r_ _t to ok k;
e ex xt te er rn n d do ou ub bl le e n nu um mb be er r_ _v va al lu ue e;
e ex xt te er rn n s st td d: : s st tr ri in ng g s st tr ri in ng g_ _v va al lu ue e;

T To ok ke en n_ _v va al lu ue e g ge et t_ _t to ok ke en n() ;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

214 Source Files and Programs Chapter 9

In addition tol le ex xe er r. h h, the implementation of the lexer depends one er rr ro or r. h h, <i io os st tr re ea am m>, and the
functions determining the kinds of characters declared in<c cc ct ty yp pe e>:

/ / lexer.c:

#i in nc cl lu ud de e " l le ex xe er r. h h"
#i in nc cl lu ud de e " e er rr ro or r. h h"
#i in nc cl lu ud de e <i io os st tr re ea am m>
#i in nc cl lu ud de e <c cc ct ty yp pe e>

L Le ex xe er r: : T To ok ke en n_ _v va al lu ue e L Le ex xe er r: : c cu ur rr r_ _t to ok k;
d do ou ub bl le e L Le ex xe er r: : n nu um mb be er r_ _v va al lu ue e;
s st td d: : s st tr ri in ng g L Le ex xe er r: : s st tr ri in ng g_ _v va al lu ue e;

L Le ex xe er r: : T To ok ke en n_ _v va al lu ue e L Le ex xe er r: : g ge et t_ _t to ok ke en n() { /* ... */ }

We could have factored out the#i in nc cl lu ud de e statements fore er rr ro or r. h h as theL Le ex xe er r’s _ _i im mp pl l. h h file.
However, I considered that excessive for this tiny program.

As usual, we#i in nc cl lu ud de e the interface offered by the module– in this case,l le ex xe er r. h h – in the
module’s implementation to give the compiler a chance to check consistency.

The symbol table is essentially self-contained, although the standard library header<m ma ap p>
could drag in all kinds of interesting stuff to implement an efficientm ma ap p template class:

/ / table.h:

#i in nc cl lu ud de e <m ma ap p>
#i in nc cl lu ud de e <s st tr ri in ng g>

e ex xt te er rn n s st td d: : m ma ap p<s st td d: : s st tr ri in ng g, d do ou ub bl le e> t ta ab bl le e;

Because we assume that every header may be#i in nc cl lu ud de ed in several. c c files, we must separate the
declaration oft ta ab bl le e from its definition, even though the difference betweent ta ab bl le e. c c andt ta ab bl le e. h h is
the single keyworde ex xt te er rn n:

/ / table.c:

#i in nc cl lu ud de e " t ta ab bl le e. h h"

s st td d: : m ma ap p<s st td d: : s st tr ri in ng g, d do ou ub bl le e> t ta ab bl le e;

Basically, the driver depends on everything:

/ / main.c:

#i in nc cl lu ud de e " p pa ar rs se er r. h h"
#i in nc cl lu ud de e " l le ex xe er r. h h"
#i in nc cl lu ud de e " e er rr ro or r. h h"
#i in nc cl lu ud de e " t ta ab bl le e. h h"

n na am me es sp pa ac ce e D Dr ri iv ve er r {
i in nt t n no o_ _o of f_ _e er rr ro or rs s;
s st td d: : i is st tr re ea am m* i in np pu ut t;
v vo oi id d s sk ki ip p() ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.3.2.1 Other Calculator Modules 215

#i in nc cl lu ud de e <s ss st tr re ea am m>

i in nt t m ma ai in n(i in nt t a ar rg gc c, c ch ha ar r* a ar rg gv v[]) { /* ... */ }

Because theD Dr ri iv ve er r namespace is used exclusively bym ma ai in n() , I placed it inm ma ai in n. c c. Alterna-
tively, I could have factored it out asd dr ri iv ve er r. h h and#i in nc cl lu ud de ed it.

For a larger system, it is usually worthwhile organizing things so that the driver has fewer direct
dependencies. Often, is it also worth minimizing what is done inm ma ai in n() by havingm ma ai in n() call a
driver function placed in a separate source file. This is particularly important for code intended to
be used as a library. Then, we cannot rely on code inm ma ai in n() and must be prepared to be called
from a variety of functions (§9.6[8]).

9.3.2.2 Use of Headers [file.multi.use]

The number of headers to use for a program is a function of many factors. Many of these factors
have more to do with the way files are handled on your system than with C++. For example, if your
editor does not have facilities for looking at several files at the same time, then using many headers
becomes less attractive. Similarly, if opening and reading 20 files of 50 lines each is noticeably
more time-consuming than reading a single file of 1000 lines, you might think twice before using
the multiple-header style for a small project.

A word of caution: a dozen headers plus the standard headers for the program’s execution envi-
ronment (which can often be counted in the hundreds) are usually manageable. However, if you
partition the declarations of a large program into the logically minimal-sized headers (putting each
structure declaration in its own file, etc.), you can easily get an unmanageable mess of hundreds of
files even for minor projects. I find that excessive.

For large projects, multiple headers are unavoidable. In such projects, hundreds of files (not
counting standard headers) are the norm. The real confusion starts when they start to be counted in
the thousands. At that scale, the basic techniques discussed here still apply, but their management
becomes a Herculean task. Remember that for realistically-sized programs, the single-header style
is not an option. Such programs will have multiple headers. The choice between the two styles of
organization occurs (repeatedly) for the parts that make up the program.

The single-header style and the multiple-header style are not really alternatives to each other.
They are complementary techniques that must be considered whenever a significant module is
designed and must be reconsidered as a system evolves. It’s crucial to remember that one interface
doesn’t serve all equally well. It is usually worthwhile to distinguish between the implementers’
interface and the users’ interface. In addition, many larger systems are structured so that providing
a simple interface for the majority of users and a more extensive interface for expert users is a good
idea. The expert users’ interfaces (‘‘complete interfaces’’) tend to#i in nc cl lu ud de e many more features
than the average user would ever want to know about. In fact, the average users’ interface can
often be identified by eliminating features that require the inclusion of headers that define facilities
that would be unknown to the average user. The term ‘‘average user’’ is not derogatory. In the
fields in which I don’thaveto be an expert, I strongly prefer to be an average user. In that way, I
minimize hassles.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

216 Source Files and Programs Chapter 9

9.3.3 Include Guards [file.guards]

The idea of the multiple-header approach is to represent each logical module as a consistent, self-
contained unit. Viewed from the program as a whole, many of the declarations needed to make
each logical module complete are redundant. For larger programs, such redundancy can lead to
errors, as a header containing class definitions or inline functions gets#i in nc cl lu ud de ed twice in the same
compilation unit (§9.2.3).

We have two choices. We can
[1] reorganize our program to remove the redundancy, or
[2] find a way to allow repeated inclusion of headers.

The first approach– which led to the final version of the calculator– is tedious and impractical for
realistically-sized programs. We also need that redundancy to make the individual parts of the pro-
gram comprehensible in isolation.

The benefits of an analysis of redundant#i in nc cl lu ud de es and the resulting simplifications of the pro-
gram can be significant both from a logical point of view and by reducing compile times. How-
ever, it can rarely be complete, so some method of allowing redundant#i in nc cl lu ud de es must be applied.
Preferably, it must be applied systematically, since there is no way of knowing how thorough an
analysis a user will find worthwhile.

The traditional solution is to insertinclude guardsin headers. For example:

/ / error.h:

#i if fn nd de ef f C CA AL LC C_ _E ER RR RO OR R_ _H H
#d de ef fi in ne e C CA AL LC C_ _E ER RR RO OR R_ _H H

n na am me es sp pa ac ce e E Er rr ro or r {
/ / ...

}

#e en nd di if f / / CALC_ERROR_H

The contents of the file between the#i if fn nd de ef f and #e en nd di if f are ignored by the compiler if
C CA AL LC C_ _E ER RR RO OR R_ _H H is defined. Thus, the first timee er rr ro or r. h h is seen during a compilation, its con-
tents are read andC CA AL LC C_ _E ER RR RO OR R_ _H H is given a value. Should the compiler be presented with
e er rr ro or r. h h again during the compilation, the contents are ignored. This is a piece of macro hackery,
but it works and it is pervasive in the C and C++ worlds. The standard headers all have include
guards.

Header files are included in essentially arbitrary contexts, and there is no namespace protection
against macro name clashes. Consequently, I choose rather long and ugly names as my include
guards.

Once people get used to headers and include guards, they tend to includelots of headers directly
and indirectly. Even with C++ implementations that optimize the processing of headers, this can be
undesirable. It can cause unnecessarily long compile time, and it can bringl lo ot ts s of declarations and
macros into scope. The latter might affect the meaning of the program in unpredictable and adverse
ways. Headers should be included only when necessary.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.4 Programs 217

9.4 Programs[file.programs]

A program is a collection of separately compiled units combined by a linker. Every function,
object, type, etc., used in this collection must have a unique definition (§4.9, §9.2.3). The program
must contain exactly one function calledm ma ai in n() (§3.2). The main computation performed by the
program starts with the invocation ofm ma ai in n() and ends with a return fromm ma ai in n() . The i in nt t
returned bym ma ai in n() is passed to whatever system invokedm ma ai in n() as the result of the program.

This simple story must be elaborated on for programs that contain global variables (§10.4.9) or
that throw an uncaught exception (§14.7).

9.4.1 Initialization of Nonlocal Variables [file.nonlocal]

In principle, a variable defined outside any function (that is, global, namespace, and classs st ta at ti ic c
variables) is initialized beforem ma ai in n() is invoked. Such nonlocal variables in a translation unit are
initialized in their declaration order (§10.4.9). If such a variable has no explicit initializer, it is by
default initialized to the default for its type (§10.4.2). The default initializer value for built-in types
and enumerations is0 0. For example:

d do ou ub bl le e x x = 2 2; / / nonlocal variables
d do ou ub bl le e y y;
d do ou ub bl le e s sq qx x = s sq qr rt t(x x+y y) ;

Here,x x andy y are initialized befores sq qx x, sos sq qr rt t(2 2) is called.
There is no guaranteed order of initialization of global variables in different translation units.

Consequently, it is unwise to create order dependencies between initializers of global variables in
different compilation units. In addition, it is not possible to catch an exception thrown by the ini-
tializer of a global variable (§14.7). It is generally best to minimize the use of global variables and
in particular to limit the use of global variables requiring complicated initialization.

Several techniques exist for enforcing an order of initialization of global variables in different
translation units. However, none are both portable and efficient. In particular, dynamically linked
libraries do not coexist happily with global variables that have complicated dependencies.

Often, a function returning a reference is a good alternative to a global variable. For example:

i in nt t& u us se e_ _c co ou un nt t()
{

s st ta at ti ic c i in nt t u uc c = 0 0;
r re et tu ur rn n u uc c;

}

A call u us se e_ _c co ou un nt t() now acts as a global variable except that it is initialized at its first use (§5.5).
For example:

v vo oi id d f f()
{

c co ou ut t << ++u us se e_ _c co ou un nt t() ; / / read and increment
/ / ...

}

The initialization of nonlocal static variables is controlled by whatever mechanism an

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

218 Source Files and Programs Chapter 9

implementation uses to start up a C++ program. This mechanism is guaranteed to work properly
only if m ma ai in n() is executed. Consequently, one should avoid nonlocal variables that require run-
time initialization in C++ code intended for execution as a fragment of a non-C++ program.

Note that variables initialized by constant expressions (§C.5) cannot depend on the value of
objects from other translation units and do not require run-time initialization. Such variables are
therefore safe to use in all cases.

9.4.1.1 Program Termination [file.termination]

A program can terminate in several ways:
– By returning fromm ma ai in n()
– By callinge ex xi it t()
– By callinga ab bo or rt t()
– By throwing an uncaught exception

In addition, there are a variety of ill-behaved and implementation-dependent ways of making a pro-
gram crash.

If a program is terminated using the standard library functione ex xi it t() , the destructors for con-
structed static objects are called (§10.4.9, §10.2.4). However, if the program is terminated using
the standard library functiona ab bo or rt t() , they are not. Note that this implies thate ex xi it t() does not ter-
minate a program immediately. Callinge ex xi it t() in a destructor may cause an infinite recursion. The
type ofe ex xi it t() is

v vo oi id d e ex xi it t(i in nt t) ;

Like the return value ofm ma ai in n() (§3.2),e ex xi it t() ’s argument is returned to ‘‘the system’’ as the value
of the program. Zero indicates successful completion.

Calling e ex xi it t() means that the local variables of the calling function and its callers will not have
their destructors invoked. Throwing an exception and catching it ensures that local objects are
properly destroyed (§14.4.7). Also, a call ofe ex xi it t() terminates the program without giving the
caller of the function that callede ex xi it t() a chance to deal with the problem. It is therefore often best
to leave a context by throwing an exception and letting a handler decide what to do next.

The C (and C++) standard library functiona at te ex xi it t() offers the possibility to have code executed
at program termination. For example:

v vo oi id d m my y_ _c cl le ea an nu up p() ;

v vo oi id d s so om me ew wh he er re e()
{

i if f (a at te ex xi it t(& m my y_ _c cl le ea an nu up p)== 0 0) {
/ / my_cleanup will be called at normal termination

}
e el ls se e {

/ / oops: too many atexit functions
}

}

This strongly resembles the automatic invocation of destructors for global variables at program ter-
mination (§10.4.9, §10.2.4). Note that an argument toa at te ex xi it t() cannot take arguments or return a

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 9.4.1.1 Program Termination 219

result. Also, there is an implementation-defined limit to the number of atexit functions;a at te ex xi it t()
indicates when that limit is reached by returning a nonzero value. These limitations makea at te ex xi it t()
less useful than it appears at first glance.

The destructor of an object created before a call ofa at te ex xi it t(f f) will be invoked afterf f is invoked.
The destructor of an object created after a call ofa at te ex xi it t(f f) will be invoked beforef f is invoked.

Thee ex xi it t() , a ab bo or rt t() , anda at te ex xi it t() functions are declared in<c cs st td dl li ib b>.

9.5 Advice[file.advice]

[1] Use header files to represent interfaces and to emphasize logical structure; §9.1, §9.3.2.
[2] #i in nc cl lu ud de ea header in the source file that implements its functions; §9.3.1.
[3] Don’t define global entities with the same name and similar-but-different meanings in differ-

ent translation units; §9.2.
[4] Avoid non-inline function definitions in headers; §9.2.1.
[5] Use#i in nc cl lu ud de eonly at global scope and in namespaces; §9.2.1.
[6] #i in nc cl lu ud de eonly complete declarations; §9.2.1.
[7] Use include guards; §9.3.3.
[8] #i in nc cl lu ud de eC headers in namespaces to avoid global names; §9.3.2.
[9] Make headers self-contained; §9.2.3.
[10] Distinguish between users’ interfaces and implementers’ interfaces; §9.3.2.
[11] Distinguish between average users’ interfaces and expert users’ interfaces; §9.3.2.
[12] Avoid nonlocal objects that require run-time initialization in code intended for use as part of

non-C++ programs; §9.4.1.

9.6 Exercises[file.exercises]

1. (∗2) Find where the standard library headers are kept on your system. List their names. Are
any nonstandard headers kept together with the standard ones? Can any nonstandard headers be
#i in nc cl lu ud de ed using the<> notation?

2. (∗2) Where are the headers for nonstandard library ‘‘foundation’’ libraries kept?
3. (∗2.5) Write a program that reads a source file and writes out the names of files#i in nc cl lu ud de ed.

Indent file names to show files#i in nc cl lu ud de ed d by included files. Try this program on some real
source files (to get an idea of the amount of information included).

4. (∗3) Modify the program from the previous exercise to print the number of comment lines, the
number of non-comment lines, and the number of non-comment, whitespace-separated words
for each file#i in nc cl lu ud de ed.

5. (∗2.5) An external include guard is a construct that tests outside the file it is guarding and
i in nc cl lu ud de es only once per compilation. Define such a construct, devise a way of testing it, and dis-
cuss its advantages and disadvantages compared to the include guards described in §9.3.3. Is
there any significant run-time advantage to external include guards on your system.

6. (∗3) How is dynamic linking achieved on your system. What restrictions are placed on dynami-
cally linked code? What requirements are placed on code for it to be dynamically linked?

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

220 Source Files and Programs Chapter 9

7. (∗3) Open and read 100 files containing 1500 characters each. Open and read one file contain-
ing 150,000 characters. Hint: See example in §21.5.1. Is there a performance difference?
What is the highest number of files that can be simultaneously open on your system? Consider
these questions in relation to the use of#i in nc cl lu ud de e files.

8. (∗2) Modify the desk calculator so that it can be invoked fromm ma ai in n() or from other functions
as a simple function call.

9. (∗2) Draw the ‘‘module dependency diagrams’’ (§9.3.2) for the version of the calculator that
usede er rr ro or r() instead of exceptions (§8.2.2).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	9.1 Separate Compilation
	9.2 Linkage
	9.3 Using Header Files
	9.4 Programs
	9.5 Advice
	9.6 Exercises

	buy now:

