
 Matlab DSP Conference (DSP’99), Tampere, Finland, 16-17 November 1999

Page 1 of 10

Simulink/Matlab-to-VHDL Route for Full-Custom/FPGA Rapid
Prototyping of DSP Algorithms

Artur KRUKOWSKI and Izzet KALE

University of Westminster, United Kingdom.

Abstract

This paper presents the way of speeding up the route
from the theoretical design with Simulink/Matlab, via
behavioral simulation in fixed-point arithmetic to the
implementation on either FPGA or custom silicon. This has
been achieved by porting the netlist of the Simulink system
description into the VHDL. At the first instance, the
Simulink-to-VHDL converter has been designed to use
structural VHDL code to describe system interconnections,
allowing simple behavioral descriptions for basic blocks.
The resulting VHDL code delivers bit-true result when
compared to the equivalent fixed-point Simulink model
simulations.

1. Introduction

However, the success of VHDL for designing integrated
circuits is indisputable. Unfortunately there is a lack of
tools available linking VHDL tools with such high-level
digital filter design/simulation tools like MatlabTM and
SimulinkTM, which operate on the levels higher than the
structure. At the moment the designer who designed and
tested his design theoretically using high-level tools is
required to spend the same or more time on designing the
structure and the architecture for his theoretical design,
simulate it, test it and fabricate it. This involves a dangerous
break in the integrity of design flow, giving chances for
inconsistencies to creep in. An automated high-integrity
link between theoretical design and implementation is
essential and can be achieved with VHDL via a conversion
tool. A very attractive high-level design/simulation tool is
provided by MathWorksTM and is called SimulinkTM. It is a
very flexible design tool, which allows testing of a high-
level structural description of the design and makes possible
quick changes and corrections. The circuit description
structure is very similar to the way the design could be
implemented later. Therefore mapping tool allowing
conversion of such a structure into VHDL code would save
the designer’s time, which otherwise has to be spent in
rewriting the same structure in VHDL and probably making
mistakes that will need debugging. This idea is the basis of

the work described in this paper.
Primarily, the work has been concentrated on the

analysis of the SimulinkTM structure and its similarity with
the VHDL description. The structural style of programming
has been chosen for the first version of our conversion tool,
as this would allow direct mapping of SimulinkTM structures
into ones described in VHDL. As SimulinkTM is a high-level
description tool and allows such operations as unconstrained
arithmetic operations, the behavioural style will be included
in the next version of the conversion tool. The ultimate tool
to be developed will also allow incorporation of some form
of simple optimisation into the mapping process.

2. Basics of VHDL

VHDL stands for Very High Speed Integrated Circuits
(VHSIC) Hardware Description Language (HDL). It is a
language for describing digital electronic systems. It was
born out of the United States Government’s VHSIC
program in 1980 and was adopted as a standard for
describing the structure and function of Integrated Circuits
(IC). Soon after it was developed and adopted as a standard
by the Institute of Electrical and Electronic Engineers
(IEEE) in the US (IEEE-1076-1987) and in other countries
[1,2]. VHDL continues to evolve. Although new standards
have been prepared (VHDL-93) most commercial VHDL
tools use 1076-1987 version of VHDL, thus making it the
most compatible when using different compilation tools.
The 1076-1987 standard has also been used here.

VHDL enables the designer to:

• Describe the design in its structure, to specify how it is
decomposed into sub-designs, and how these sub-
designs are interconnected.

• Specify the function of designs using a familiar, C-like
programming language form.

• Simulate the design before sending it off for fabrication,
so that the designer has a chance to rapidly compare
alternative approach and test for correctness without the
delay and expense of multiple prototyping.

VHDL is a C-like, general purpose programming
language with extensions to model both concurrent and

 Matlab DSP Conference (DSP’99), Tampere, Finland, 16-17 November 1999

Page 2 of 10

sequential flows of execution, and allowing delayed
assignment of values. To a first approximation VHDL can
be considered to be a combination of two languages: one
describing the structure of the integrated circuit and its
interconnections (structural description) and the other one
describing its behaviour using algorithmic constructs
(behavioural description).

VHDL allows three styles of programming:

1. Structural
2. Register Transfer Level
3. Behavioural

The first one, structural, is the most commonly used as it
allows description of the structure of the IC very precisely
by the user. This in very many cases gives the best
performance over compiler optimised structures, especially
for high speed, fixed-point applications like polyphase IIR
structures [5-8]. Its behavioural style permits the designer
to quickly test concepts, where the designer can specify the
high-level function of the design without taking much care
how it will be done structurally. This can be very attractive
for quick design of low and medium-speed and low-volume
applications, where the designer expertise is not available.
A word of warning is appropriate here. Designs synthesised
from behavioural descriptions will often end up using a lot
more resources than actually necessary, even after
optimisation.

2.1. Effective Implementation via Simulink-
to-VHDL Conversion Tool.

So far the biggest problem which the designer faces very
often is how to pass from the algorithmic design to its
physical implementation. The first tool the designer uses
when developing the new idea is a high-level design and
simulation tool. One of the most commonly used high-level
tools is MatlabTM with SimulinkTM. It allows the designer to
put together a behavioural or structural simulation very
easily and quickly checking the algorithm or making the
necessary adjustments to it. Working directly with any low-
level implementation tool from the start is simply not
practical, as every small change in the algorithm may
sometimes require substantial redesign of the
implementation. Therefore an automatic link between the
high-level algorithmic design, like SimulinkTM model, to
some implementation description, like a target netlist or
VHDL, would lead to great effort and time savings in the
design cycle.

MatlabTM has been used at the University of
Westminster, Applied DSP Research Group, for a long time
and has proven to be an invaluable tool for DSP
applications. Therefore this software was chosen for the
high-level design part of the whole system. In the first
instance SimulinkTM has been chosen to be the input to the
conversion tool. The fact that SimulinkTM makes it possible

to design both behavioural and structural designs (where this
latter one is the closest to the physical implementation)
justifies its choice. The description of a typical SimulinkTM

block is similar to the netlist of the physical implementation.
The VHDL description has been chosen for the output of the
conversion tool, as it is the highest level technology-
independent description of the design to be realised. There
are also many tools available both Unix and PC based for
compiling VHDL into a netlist, then ported into the custom
silicon fabrication arena or FPGAs. Such tools include Peak
VHDL/FPGA from Accolade Design Automation Inc. [3],
Galileo and Renoir from Mentor [4].

The tasks of the converter can be described as follows:
1. Analyse the SimulinkTM model and identify:

• Common and different blocks
• Connections (signals) and ports for multilevel models
• Block parameters

2. Generate a VHDL equivalent:

• Find entities available in standard component library
• Create architectures for each block from bottom up
• Create configuration files for every entity linking in

standard libraries

It can be easily noticed is that there is a set of blocks in
SimulinkTM, which have to be treated as the basic ones.
There are compiled “s-functions”, the contents of that are
not available. Therefore, their behaviour has to be carefully
analysed in order to create their equivalent VHDL
descriptions, to be later included into the library of standard
SimulinkTM entities/architectures.

2.2. Basics of Simulink.

SimulinkTM, as is true for most of high-level simulation
software, does not allow testing certain behaviour patterns
that a real target design can exhibit, most of which are
available for the VHDL simulator. The most reliable
simulation can only be performed after porting the compiled
VHDL into the implementation software. Simulink does not:

• Do fixed point arithmetic in the general sense (expected
in a future version).

• Have data types compatible with bit logic (bits can only
be simulated with floating-point).

• Incorporate propagation delay in its blocks, which is not
relevant at this level of abstract, but necessary for the
implementation.

• Support reusable symbols (they may have different
contents and the same name).

In the structural simulation using bit logic arithmetic it is
possible to force SimulinkTM to assign only 0s and 1s, even
though they are represented with floating-point
variables/signals. Fixed-point arithmetic can be
implemented structurally in SimulinkTM using gates. This

 Matlab DSP Conference (DSP’99), Tampere, Finland, 16-17 November 1999

Page 3 of 10

also simplifies setting propagation delay, as this could be
included into the VHDL description of each gate. However,
this is not possible in the SimulinkTM model. Summarising,
the structural fixed-point design can be quite easily
converted into VHDL directly, without much additional
intelligence required from the conversion program.

The model description of the SimulinkTM block
(MDL-file) is very similar to the representation of the
common structure. It contains both the parameters of the
simulation, description of each block with parameters for
each block and block connections. The problem is that
SimulinkTM does not use reusable symbols. This means that
if there are several blocks or symbols of the same name,
they are all fully duplicated to the most basic element.
These makes the analysis of common blocks much more
difficult as these blocks may have slight differences and
then qualify as two different ones, even if they have the
same name. Therefore, the designer must obey the rule that
all blocks having the same symbol must also have the same
contents. They may only have different parameters.

2.3. Structural Analysis of the Simulink
Model Description.

As it was pointed out earlier, the description of the
SimulinkTM model has close resemblance to the MatlabTM

structure definition. Describing the model with the structure
would allow simplifying the conversion process as inter-
dependence of blocks could be indicated by their position in
the tree of blocks. Therefore the conversion of the
MDL-file into the MatlabTM structure was the first task to be
done by the conversion utility developed.

The main problems faced in this stage were:

• The structure obviously can not allow the same field
names at the same level, which was allowed in the
MDL-file. All the blocks and lines (connection signals)
had to be renamed consecutively as a remedy to this
problem. Alternatively they can be combined into a
vector.

• There are no commas to separate parameters and values
in the MDL-file, required by the structure syntax. They
had to be included appropriately.

• There is an inconsistency in the description of text
constants. In MatlabTM they are indicated by a single
quote, in the MDL-file by the double quote. Therefore
single quotes were replaced by double quotes wherever
the text constant was found.

• SimulinkTM does not require ports to have their width
always defined. This created confusion in specifying the
number of input/output signals in the entity definition.
The safest solution was to make a rule of explicitly
defining the width of the ports in the SimulinkTM model

wherever it was possible. Even so there were cases
when the data type had to be derived indirectly from the
block to which the port was connected.

• The number of input and output ports was not defined
consistently. For some SimulinkTM blocks they were
clearly given by the parameters “Inputs” and “Outputs”.
For other ones there was only one parameter “Ports”,
containing a five element vector with the number of
input ports in the first element and output ports in the
second element. There were also several blocks for
which there was no description of the number of ports at
all. For such a case whether the block had input or
output port had to be derived from the connection
description (“Line”).

The main keyword in the MDL-file to look for is
“System”. This indicates the beginning of the description of
the blocks and their connections within one block. It is then
followed by a number of “Block” sections describing
components of the design and “Line” sections each
equivalent to a single wire connector (one can connect to
multiple outputs). The “Block” can have another “System”
section, which means it contains a lower-level circuit
description. Sometimes such blocks also have some mask
parameters. This indicates that there has been a symbol
created for such a block. In this case “Mask type” describes
the common symbol name (which could be used for the
entity name later), “MaskPromptString” contains
descriptions of the symbol parameters, “MaskInitialization”
has their names and “MaskValueString” their values. If no
“System” is found it means that the block is the basic
component of the SimulinkTM library and its description
should be later copied from the library of basic VHDL
blocks.

The “Line” statement contains the names of one source
block and one or more output ones and their port numbers.
For multiple output ports each of them is described by its
own “Branch” statement.

There are also other block parameters like “Decimation”
and “SamplingTime”, which are useful for multirate
systems. These have not been used in the current version of
the MDL-to-VHDL conversion program.

2.4. Automated Conversion from Simulink to
VHDL.

In order to simplify the first version of the conversion
program, it has been designed with some constraint put on
the original SimulinkTM model. The model was required to:

• Operate on bit signals or vectors of bits
• Have only one sampling rate throughout the design
• Be composed of gates, constants, ports and buses only

This allowed the generation of the structural VHDL
description relatively easily. The next versions of this

 Matlab DSP Conference (DSP’99), Tampere, Finland, 16-17 November 1999

Page 4 of 10

toolbox will allow different variable types and generate
structural or behavioural VHDL wherever applicable.

The conversion requires two passes. First it looks
through the whole design identifying common blocks of the
model, each of which would be described in a separate
VHDL file. It distinguishes the sub-blocks of the model
from the basic SimulinkTM blocks. It also gathers
information about ports of each block and their types. This
information is needed for creating “component” statements
in the VHDL file.

At the second pass the algorithm looks recursively
through the whole hierarchy of the model from the top level
down to the bottom one creating the structural description of
each block found in the first pass. For each of them it finds
the list of “blocks” and the list of “lines”. The first ones are
used to generate block instantiation and configuration
commands and the latter ones to define the internal signals.
The entity definition is being created from the information
found in the first pass of the conversion.

2.5. The Basics of the Polyphase IIR
Half-Band Lowpass Filter Structure

The idea of converting the SimulinkTM design into
VHDL has been tested on the example of the two-path two-
coefficient polyphase filter [5,6].

The basic recursive (IIR) allpass filter, shown in
Figure 1(a) is the core of the polyphase IIR structure. For
the case of the half-band lowpass filter two of such allpass
blocks have to be used in a two-path configuration shown in
Figure 1(b), with the appropriate delay in one of the
branches. The higher order filters can be obtained by
cascading a number of basic allpass filters in each path of
the polyphase structure, taking care only to keep the number
of them similar in both paths. By carefully designing the
coefficients, the structure allows to obtain a very high-
performance and relatively easily implementable half-band
lowpass filter.

z
-2

Σ
Out

In

Allpass
c2, c4, …

Allpass
c1, c3, …Σ Σ

z
-2

(b)(a)

Out

c

In

z
-1

0.5

Figure 1. The N-D Form Allpass Filter Structure, (a), and
the Two-Path Half-Band Polyphase IIR Lowpass
Filter Structure, (b).

Design techniques for such polyphase half-band recursive
IIR filters employing parallel/cascade combinations of
elementary all-pass sections having one coefficient per
second-order stage, as the starting point for an eventual

elliptic approximation, have been reported in depth [5,6].
The algorithm for generating the prototype allpass filter
coefficients for floating-point precision coefficients [1] is
based on the analogy to elliptic filters. However, for
effective real-time physical realizations (fixed-point) finite
wordlength coefficients are required and need to be
established, [7].

The basic building block from Figure 1(a) is the 2nd-order
IIR allpass having its two poles on the imaginary axis and its
two zeros on the same axis, but at the reciprocal distance
from the origin. It has the transfer function of (1).

() ()H z cz z c() = + +2 21 (1)

There exists a variety of physical structures, which
implement (1). The structure choice we have made here is
that of the Numerator first, followed by the Denominator
(N-D form), computations. By doing the calculations in this
manner, relatively low peak gains at intermediate points in
the structure are achieved, at a cost of the minimum number
of computations. The physical structure of the basic
Numerator-Denominator form (N-D) 2nd-order allpass filter
is shown in Figure 1(a).

Configuring the appropriate order all-pass sections in a
parallel fashion, with a delay in one of the branches, as
shown in Figure 1(b), results in an overall lowpass half-band
filter as shown in Figure 2.

0.5 ν

-3π

0 0.25 0.5 ν
φ(ν)

-2π

-3dB

Stopband
(out-of-phase)

Passband
(in-phase)

π/2

π

-π

0

0 0.25
-80

-40

 0 (b)

|Η(ν)| dB

(a)

Figure 2. The influence of the phase responses of the
allpass filters, (a), in both branches of the
polyphase structure on the magnitude response of
the overall lowpass filter, (b).

The effect on the pole zero pattern (PZP) is that its poles
are at the same locations as for the allpass filters with an
addition of an extra pole at z = 0 (due to the delay added to
the lower branch). The zeros on the other hand are
transported to new locations, with an additional zero
introduced at the Nyquist frequency (Figure 3). For the case
when second-order allpass sections are used, the magnitude
response of each stage in Figure 2 is given by (2).

() () ()(){ }
() () () ()

H
c

z G z a z z z a z a

G z z z a z z
a
a a

a
a

a
a

() = + + +

= + − + + − + + − +

1
2

1
2

0

4 3
0

1 2

1

1 1 1 10

1 1

0

1

0

1

(2)

 Matlab DSP Conference (DSP’99), Tampere, Finland, 16-17 November 1999

Page 5 of 10

Re(z)

Im(z) (a)

Re(z)

Im(z) (c)

Re(z)

Im(z) (b)

Top branch Bottom branch Overall filter

Figure 3. The PZP of allpass filters in both branches of the
two-path polyphase structure, (a) and (b), and the
PZP of the overall lowpass filter, (c).

The gain at dc (z=1) for this class of filter, is unity, with
zero gain at Nyquist (z = -1), and is down by -3dB at half-
Nyquist (z = j), irrespective of the filter coefficients,
a0, a1, ... or the order of the allpass sections. The best way
to explain the working of the filter is via phase responses of
the allpass filters (since the magnitude is unity throughout).
There exists a phase shift of exactly π (due to the unit delay
in the bottom path) at Nyquist between the two branches,
and that both branches are in phase at DC.

There is, however, a sharp transition in the phase at half-
Nyquist as the poles on the imaginary axis are approached
and passed while traversing the unit circle from DC to
Nyquist. Hence the rationale here is that the (top and
bottom branch) filter responses add constructively (as they
are in phase) from dc to half-Nyquist forming the new
filter's pass-band and add destructively (as they are π out of
phase) from half-Nyquist to Nyquist, forming the new
filter's stopband response. A simple yet very effective way
of getting high levels of stopband attenuation, without
substantially affecting the passband performance is through
cascading of lower-order structures.

Since the transfer function of the half-band allpass filters
involve only polynomials in z2 , the polyphase structure
incorporating them is very attractive for two-times
decimation (interpolation) arrangements as the sample rate
reduction (increase) can be moved to the input (output) of
the polyphase filter. The unit delay in the lower branch is
effected by feeding even samples into the top branch and
odd samples into the lower branch (effectively performing
undersampling) [7]-[8].

2.6. The Simulink Simulation Set-up

The example design is implementing a two-coefficient
(c1=0.125 and c2=0.5625) polyphase lowpass filter as
shown in Figure 1. The design was first captured using
standard floating-point SimulinkTM blocks. In order to make
it close to the implementation the results of additions were
rounded-to-zero to 20-bits (Function 1), subtractions
truncated to 20-bits (Function 2) and multiplication
truncated to 24-bits (Function 3). Local increase of
wordlength at the multiplication was decided upon in order

to avoid the unnecessary loss of precision before the
subsequent addition. All data was being represented in
two’s complement arithmetic with 2 integer bits and a sign,
which gives enough guard bits to deal with internal
calculation, 20 altogether.

function [out]=rtz20(in)
fraction = 2^20; x=fraction.*in;
out=fix(x)./fraction;

Function 1 The 20-bit Round-to-Zero Function.

function [out]=t20(in)
fraction = 2^20; x=fraction.*in;
out=floor(x)./fraction;

Function 2 The 20-bit Truncation Function.

function [out]=t24(in)
fraction = 2^24; x = fraction.*in;
out = floor(x)./fraction;

Function 3. The 24-bit Truncation Function.
Such a rounding scheme allowed eliminating of the limit

cycles while keeping the DC offset low. The floating-point
version of the filter has been compared to the architectural
one designed from standard gates (Figure 4). The
simulation uses a two-phase non-overlapping clock required
by the delayors built from two D-type flip-flops per bit per
unit delay. Flip-flops are active with the rising edge of the
clock. The data is being read at the rising edge of Clock1
and being available at the output at the rising edge of
Clock2. The comparative simulation allows testing of the
design for both an impulse and for the signal generated by
the Σ∆ modulator. Results of both the fixed-point
behavioural and the fixed-point structural versions of the
design were exactly the same.

Figure 4 The test bench comparing fixed-point designs: the
behavioural one and the structural one.

The fixed-point structural system has been designed to
run from the external clock signal in order to be able to
synchronise the filter with the input data for the ultimate
physical implementation. The only blocks requiring the
clock are the delayors, the rest is just combinational blocks
for which the result is available at a certain time after the
change of the input. This time is called the propagation
time. The maximum propagation time is dependent on the
propagation time of the gates and the maximum number of
dependent gates the signal has to go through.

 Matlab DSP Conference (DSP’99), Tampere, Finland, 16-17 November 1999

Page 6 of 10

Figure 5 shows the inside of the fixed-point polyphase
lowpass filter and Figure 6 describes the allpass structure
used for both the UpperBranch and the LowerBranch blocks
(the only difference being the multiplication factor). The
floating-point design looks very similar to the fixed-point
one, it just does not have the clock signals since SimulinkTM

itself is controlling the simulation.

Figure 5 The fixed-point half-band filter structure.

Figure 6. The fixed-point 2nd-order allpass filter structure.

Figure 7. The fixed-point 20-bit subtractor structure.

The structure of the 20-bit subtractor with truncation is
shown in Figure 7. The second input is being negated
(taking the negated output from the delay block) and
increased by one in order to inverse the sign before being
added to the first input. As the two’s complement arithmetic
is used, negation is achieved by inverting all the bits at the
delayor (Q! output) and adding one using a ladder of two-bit
adders with carry input (Figure 8). Assuming the same
propagation delay for all gates, TP, the maximum time
required to add two numbers is 20TP.

Figure 8. The two-bit adder structure with carry input.

The 20-bit wide delayors in Figure 9 have been designed
using two D-type flip-flops in the Master-Slave arrangement
for each bit. The Mux and Demux are just converting the
single bit lines into the vector of bits and back again. They
were used for the purpose of the simulation only and were
not to be implemented.

Figure 9. The fixed-point 20-bit delayor structure.

 Matlab DSP Conference (DSP’99), Tampere, Finland, 16-17 November 1999

Page 7 of 10

Notice the termination blocks (new feature in
SimulinkTM 3) used to avoid warnings about unconnected
outputs. The multiplication by 0.125, required in the
UpperBranch, effectively means shifting data three bits
towards the Least Significant Bit (LSB) as in Figure 10. In
order to take care of the negative numbers in two’s
complement arithmetic , the Most Significant Bit (MSB) has
been propagated to the next three bits (sign extension). The
output is given in 24-bits without any loss of precision.
Actually, 23-bits is enough to provide the full accuracy.
However, 24-bits sizing have been chosen for the
consistency with the other multiplier by the factor of 0.5625.

Figure 10. The fixed-point 14-bit 0.125 gain structure.

Figure 11. The fixed-point 0.5625 gain structure.

The multiplication by 0.5625 is a bit more complicated
(Figure 11), as this requires adding together two shifted
versions of the input, by one bit (0.5 factor) and by four bits
(0.0625 factor). For such a case 24-bits are required to
provide the output at the full accuracy. The result is
available after a maximum time of 20TP.

The simplest case of the multiplier is the half divider
(Figure 12) required at the output of the filter to scale the
transfer function to unity for low frequencies. This has been
achieved by one bit right shifting of the input signal. The
result has been truncated to 20-bits by disregarding the LSB
of the input data.

Figure 12 The fixed-point one-bit right shifter structure.

The result of the multiplication by 0.125 or 0.5625 is
being added to the delayed samples of the input in the adder,
the structure of which is shown in Figure 13.

Figure 13. Fixed-point adder structure (20-bit + 24-bit)
with the 20-bit result rounded to zero.

 Matlab DSP Conference (DSP’99), Tampere, Finland, 16-17 November 1999

Page 8 of 10

The result of adding a 20-bit input to the 24-bit one is
subsequently constrained back to 20-bits using a round-to-
zero scheme. This is achieved by the OR and AND gates.
The four-port OR gate examines if there is any 1’s set
among the disregarded bits. If the MSB=0 (positive
number), the output of the OR gate is disregarded forcing to
truncate the data. If the MSB=1 (negative number), the
result of the OR gate is added to the output rounding it up
towards zero. The maximum propagation time of the block
is 35TP. The adder from Figure 13 required a two-bit adder
with no carry input, which is shown in Figure 14.

Figure 14. The two-bit adder structure without carry input.

The 20-bit addition with truncation of the result has been
implemented as in Figure 15. No loss of precision happens
here as the format of the data is such that the possibility of a
carry bit set does not influence the performance of the
structure. The maximum propagation time is 34TP.

Figure 15. The fixed-point 14-bit adder structure.

The result of the SimulinkTM simulation showing the
magnitude response of the implemented filter with its
stopband attenuation is given in Figure 16. The shape is very
close to the one, which can be obtained from the floating-

point simulation. The same magnitude response zoomed
into the passband showing the ripple structure is presented
in Figure 17. For the comparison, the floating-point
simulation result is shown in dashed line. As it can be
expected, the latter one shows much smaller ripples.

0 0.1 0.2 0.3 0.4 0.5 ν
-100

-80

-60

-40

-20

0
|H(ν)|[mdB]

Figure 16. Magnitude response of the implemented
polyphase halfband lowpass filter showing
the stopband attenuation.

0.15 ν0.05 0.1
-0.4

-0.1

0

0.2
|H(ν)|[mdB]

0

-0.3

-0.2

0.1

Figure 17. The passband ripples of the implemented
polyphase halfband lowpass filter (solid line)
and the theoretical one (dashed line).

The polyphase IIR structure with its high performance
and low sensitivity to coefficient quantisation and use of a
small number of coefficients, has been found very attractive
for decimation filters (the core of which is the lowpass
filter) for Sigma-Delta (Σ∆) based Analog-to-Digital
Converters (ADC). It is required for the decimation filter to
work very fast as the rate of the data coming from the Σ∆
modulator is many times higher than the one required by the
sampling theorem to which it is sampled down after the
lowpass filtering. It is shown in Figure 18 the example
spectrum of the output of the Σ∆ modulator excited with
single sine input and the output of the polyphase filter. The
quantisation noise at high frequencies is very clearly
decreased while the signal at low frequencies is practically
not affected at all.

 Matlab DSP Conference (DSP’99), Tampere, Finland, 16-17 November 1999

Page 9 of 10

0 0.1 0.2 0.3 0.4 0.5 ν
-100

-50

0

50
|H(ν)|[mdB] Output of the Σ∆ modulator

After polyphase filtering

Figure 18. The example spectrum of the output of the
Σ∆ modulator excited with single sine input
and the output of the polyphase filter.

The size of the datapaths has a direct influence on both
the filter stopband attenuation and its passband ripples. At
least 14-bit datapath was required for the attenuation to fall
down below 60dB. A minimum of 20-bit datapaths was
required in order to achieve less than 0.5mdB peak-to-peak
passband ripples.

2.7. Conversion of the Model to VHDL

The conversion of the MDL model into VHDL has been
done with the preliminary version of the custom MatlabTM

program. Because of the difficulties in the analysis of the
SimulinkTM description the resulting VHDL code required
some additional editing. The basic blocks like D-type flip-
flops with reset, standard logic gates and the two-phase
clock have been designed manually in behavioural
description as part of the library of standard blocks.

A separate test bench has been written. Its purpose was
to compare the results of the VHDL simulation with the
output from the fixed-point SimulinkTM model. The
complete output of SimulinkTM run has been stored in the
file comprising all bits of the input and the output. This file
has been read sample-by-sample and compared with the
output of the VHDL simulation at each clock cycle. The
compilation and simulation of the VHDL code, and
subsequently its synthesis, has been done with PeakFPGA
from Accolade Design Automation Inc. [3] provided by the
company for the purpose of evaluation. The example screen
shot of the simulator software running the designed VHDL
code is shown in Figure 19.

The VHDL simulation has some differences from the
high-level SimulinkTM one:

• There is a need to take proper care of avoiding
unassigned states by properly resetting the design
before it starts operating. This has been achieved by

setting a CLR_L to zero for the first 60µs of the
simulation, before the first rising edge of Clk1, i.e. first
reading of the data from the input.

• The propagation time through the blocks of the design
plays an important role in the design. This parameter is
not considered in SimulinkTM at all. The VHDL
simulation allowed assessment of the maximum speed
of operation of the design that was approximately four
times the maximum settling time of the combinational
logic. For the simulation provided here the clocking
speed has been set to 3.3MHz, assuming 2ns
propagation time for the logic gates.

• The simulation in SimulinkTM required only that Clk1

and Clk2 were non-overlapping clock signals. The
VHDL simulation proved that the best performance
(highest speed of operation) has been achieved when
overlapping time was a quarter of the clock period.

• The test bench may be converted from SimulinkTM, but
it is better to create a new one, which would compare
the results from SimulinkTM with the results of the
VHDL simulation, exactly the way it was done for the
two-coefficient (α1=0.125, α2=0.5625) example design.

Figure 19. Screen shot of the simulation in PeakFPGA.

Technology Area
[FG]

Delay
[ns]

DFlops
(DEFs)

PI PO Instances

X-3000 264 248 240 23 20 550
X-3100 264 122 240 23 20 550
X-4000 252 350 240 23 20 560
X-5200 267 325 240 23 20 557
X-7200 1224 N/A - 23 20 1755

X-9500XL 1454 N/A 240 23 20 1681

Table 1 Results of the Synthesis with Galileo for Xilinx.

The VHDL code designed for the example single-stage
polyphase filter has been subject to synthesis in both
PeakFPGA version 4.25 and in Galileo for Xilinx from
Mentor [4]. The first one returned the same result for all
design families, including Actel, Altera, Lattice, Lucent and

 Matlab DSP Conference (DSP’99), Tampere, Finland, 16-17 November 1999

Page 10 of 10

QuickLogic EDIF devices. It turned out that only 360
D-type flip-flops and 1132 two-input gates (677 LUTs) were
required to implement the design (excluding the clock)
generator.

The results of the synthesis by Galileo for Xilinx only
were different for each design component. These results are
presented in Table 1, showing the area, total propagation
delay, number of D-type flip-flops, input pins, PI, output
pins, PO, and instances. Basically Galileo calculated that
only 240 flip-flops were needed for the delayors. The
difference was in the number of gates required, between 267
and 1454 depending on the technology. Galileo, in contrast
to PeakFPGA, also gave the estimated input-to-output delay
between 122ns and 350ns, dependent on the technology
used. The maximum clock frequency of the filter may
therefore range from 1.1MHz for Xilinx-5200, 1.4MHz for
Xilinx-3000 up to 2.9MHz for Xilinx-3100. It is dependent
on the propagation delay of combinational logic, which is
maximum 4.5ns for Xilinx-5200, 3ns for Xilinx-3000 and
1.5ns for Xilinx-3100. The propagation delay for Xilinx-
9500XL is 4-6ns. The sequential delay of the flip-flop is
merely up to 6ns and all of them work in parallel. Therefore
the preferable technology to implement the filter could be
Xilinx-3100A, giving the best speed of operation at low cost
and optimum use of the FPGA. Assuming 0.1µm
technology with a transistor size of 0.25µm, the gate
consisting of four transistors and each flip-flop consisting of
eight the estimated total size of the components of the
design would be approximately 0.2mm by 0.2mm plus few
percent for the connections.

3. Conclusions

The example design of the polyphase filter and then its
conversion into VHDL proved that such an idea would be a
very attractive way of designing test chips very quickly. It
took three days to get from the SimulinkTM model to its final
synthesised version. The next stage of the research work
would be either to compile to a custom layout and put it
onto silicon or to commit the design onto a standard FPGA.

The current version of the program performs only direct
mapping of structures from SimulinkTM to VHDL and does
not work for multiplexed architectures. In order to do such
conversion the program requires an algorithm analysing
behavioural or structural descriptions to find common
operators, and convert them into the multiplexed structure
with added control circuitry. This will be the aim of the
future work.

The DSP group in the Department of Electronic Systems
has been active in the area of polyphase filters and their
application for decimation and interpolation structures for
ADDA for a number of years. The polyphase structure
proved itself to be the best to be implemented in the very
fast and high accuracy decimators. The specimen filter,
presented in this paper, could be comfortably used for the

first four stages of the decimation filter described in [5].
Even when considering that the design has to be repeated
eight times, the total required silicon area of 0.5mm by
0.5mm is very tiny. Putting together the hardwired filters
would avoid the need for fast processors, giving more space
for the analogue part of the A/D converter, hopefully the
whole Σ∆ modulator. The small size implications are a big
advantage as this would free up silicon real estate for the
implementation of other functions.

Acknowledgements

Authors would like to thank Accolade Design
Automation, Inc. for allowing to use of the evaluation
version of the Peak VHDL package, used here to verify the
results of the Simulink-to-VHDL conversion.

References

[1] Ashenden, P. J., VHDL Cook-Book , First Edition,
Department of Computer Science, University of Adelaide,
South Australia, July 1990.

[2] Holmes, C., VHDL Language Course , Rutherford Appleton
Laboratory, Microelectronics Support Centre, Chilton,
Didcot, 23-25 May 1995.

[3] Accolade Design Automation, Inc. WEB site:
http://www.acc-eda.com

[4] Mentor Graphics WEB site:
http://www.mentor.com/products/alphaindex.html

[5] harris, f., "On the design and performance of efficient and
novel filter structures using recursive allpass filters",
Proceedings 3rd ISSPA 92 , vol. 1, pp. 1-5, Gold Coast,
Queensland, 16-21 August 1992.

[6] harris, f., M. d'Oreye de Lantremange and A. G.
Constantinides, "Digital signal processing with efficient
polyphase recursive all-pass filters", International
Conference on Signal Processing , Florence, 4-6 September
1991.

[7] Kale, I., R. C. S. Morling and A. Krukowski, "A high-fidelity
decimator chip for the measurement of Sigma-Delta
modulator performance", IEEE Transactions on
Instrumentation and Measurement , vol. 44, no. 5, October
1995.

 [8] Krukowski, A., I. Kale, K. Hejn and G. D. Cain, "A bit-
flipping approach to multistage two-path decimation filter
design", Second International Symposium on DSP for
Communication Systems, SPRI, 26-29 April 1994.

Address for correspondence.

Dr. Artur Krukowski
University of Westminster,
Department of Electronic Systems,
London W1M 8JS, United Kingdom.
E-mail: krukowa@wmin.ac.uk
WWW: http://www.cmsa.wmin.ac.uk/~artur

