Appendix D — VHDL Summary Page 1 of 23

Contents

Appendix D VHDL SUMMAIY ...viiiiitieiiesiese ettt ae s e es e se e te s beaaesbeenees e e e e s e seeasenbeaneaseeneeneeneeneenreans 2
D.1 BasiC LaNQUAQE EIBMENEScveiiiiiiie ettt e e e te s te st e e reeneene e e eneeneennenre e 2
D.11 (O00] 011 11T 1 T TP PSP PP OR PP PRPPPRPRTON 2
D.1.2 FABNEITIEES ...ttt bbb b bRt bbbt bbbt b sttt b et bt nes 2
D.1.3 D 1= O o =Tt £ 2
D.14 DU B 1Y 01 T TP U PP R TP 2
D.15 DU W O] 0T =1 (o] £ T TP U TP TP ST PP PP 5

D 20 0 1 8 I 2SSOSR 5
D.1.7 ARCHITECTURE ..ottt itititt ettt ettt sa bt s et b s b et es e b et es s b et es s e benbe s s e ntenes 6
D.1.8 GENERIC ...ttt ettt bbbttt sttt bRttt R bR e bR e bt n et nen 7

D 0 T = Y 1 Y 1 OSSOSO 9
D.2 Dataflow Model CONCUITENt STALEMENTSoviiiiiiiiiirieiee et bbb 10
D.2.1 Concurrent Signal ASSIGNMENT........iiviieieieierese st seeee e ete e te e e e e erae e e stesaesresreaneeseeseenseseesrenreens 10
D.2.2 Conditional Signal ASSIGNMENT..........cccviiiiiiieeeeeee ettt resresresreaneereeseenreens 10
D.2.3 Selected Signal ASSIGNIMENTcciiiiiieieie e ae st sre e re e e eneeseesaenreseesrenreens 11
D.24 Dataflow Model EXAMPIEvoiviiiieciece st ettt re e sn e nenreenees 11
D.3 Behavioral Model Sequential StatemMENTS..........cccviiveieierise s sreens 12
D.3.1 PROGCESS ..ottt sttt sttt sttt et et e b et et e e b e e be et et e b e eb et e b e ebe e et e e be et e eae e e reebe st e arenrs 12
D.3.2 Sequential Signal ASSIGNMENT.........couiiiiiiiiie ittt bbbt s et be e b nee e 12
D.3.3 Variabhle ASSIGNMENTo ittt ettt b e e et et et e b e sbe b e be bt e b e e e e besbesbenee e 12
DG 1 SV I OSSPSR PRSP 13
D.3.5 IF THEN ELSEottt sttt ettt a et sttt st et eb et et e st et et e ebe e eteebeneereatenes 13
D.3.8 CASE ..ttt h e b b e R R e Rt b e R R e b e Rt bR E e bt E e b e R e be e e ebe e 13
D37 INULL etttk bbb bbbt bRt Rt E Rtk E R b e R b e r e b e et e 14
D.3.8 FOR ittt bR b bR e Rt b ekt b e R e btk e bttt be e re et nr e ebe e 14
D.3.9 WHILE ..ottt b e et b e bbbt bbbtk b et b e e btk b e r et e et e 14
D.3.10 LOOP ..ttt bbbt b etk b e b bRt bbb £ R Rt b e bR et R e b et e et e 15
D 15 R b N OO OO OO PSP PR PRPRPRPRN 15
DG T A | = G PSSR PRTPSPRPRN 15
D.3.13 FUNCTION ..oiitiiiciiteiieit ittt sttt sttt st te st e s e e be st eseebe s e e s e e be st e s e eb e st et e ebese et e ebe e ereebeneereateneas 15
D.3.14 PROCEDUREciiiiit ittt sttt sttt sb et b e e et st e et e st e e e besb e e ebe st e e et e sae e abesbeseereateneas 16
D.3.15 Behavioral Model EXAMPIE.........cciiiiiiiie ettt bbbttt sb e 17
D.4 Structural MOdel StAtEMENLScciiiieiic et e te e be e e e s re e s reesbeenreeneesaeesree e 17
D4.1 COMPONENT DECIAIAtION . .vcvieiieieeie ettt st ste e e st e s teeste e teeseesteestaesteeseesrnesnnesneeneenes 18
D42 PORT MAP .ottt ettt b bbbt b e bt e e bt b et b e e bbbt e b et e b e eb et et e ebe st e b e ebe st e s e abe e 18
D43 OPEN Lottt bbb e R b e R e bR Rt b e bt bt b e R e b e b e e ebe e 19
D44 GENERATE. .. ottt b et bbbttt b etk b ettt b ettt e b et et e e bt et e e beneereebe e 19
D.4.5 Structural Model EXAMPIEocviieieiiie sttt nrenne e 19
D.5 CONVEISION ROULINEScviivieiiiitiieiieteites ettt ettt ettt bbbttt bbbt b et ettt et et 21
D.5.1 CONV_INTEGER() ... cctitietieiete sttt ste st a st st e st et st e e sbe st atasbe e etesbesaatesbesaetesaesaatesaesaesaasenens 21
D.5.2 CONV_STD_LOGIC _VECTOR(,) serveeirereeearerieesiesiatesiesessessesessessesessessssessessssessessssessessssessessssessesens 21
a0 1= S USSR 22

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary Page 2 of 23

Appendix D VHDL Summary

VHDL is a hardware description language for modeling digital circuits that can range from the simple
connection of gates to complex systems. VHDL is an acronym for VHSIC Hardware Description Language, and
VHSIC in turn is an acronym for Very High Speed Integrated Circuits. This appendix gives a brief summary of the
basic VHDL elements and its syntax. Many advanced features of the language are omitted. Interested readers should
refer to other references for detailed coverage.

D.1 Basic Language Elements

D.1.1 Comments

Comments are preceded by two consecutive hyphens (--) and are terminated at the end of the line.

Example:

|-- This is a coment

D.1.2 ldentifiers

VHDL identifier syntax:
« Asequence of one or more uppercase letters, lowercase letters, digits, and the underscore
» Upper and lowercase letters are treated the same (i.e., case insensitive)
e The first character must be a letter
* The last character cannot be the underscore
e Two underscores cannot be together

D.1.3 Data Objects

There are three kinds of data objects: signals, variables, and constants.

» The data object SIGNAL represents logic signals on a wire in the circuit. A signal does not have memory;
thus, if the source of the signal is removed, the signal will not have a value.

* A VARIABLE object remembers its content and is used for computations in a behavioral model.

* A CONSTANT object must be initialized with a value when declared and this value cannot be changed.

Example:

SIGNAL x: BIT,
VARI ABLE y: | NTECER;
CONSTANT one: STD LOG C VECTOR(3 DOANTO 0) := "0001";

D.1.4 Data Types

BIT and BIT_VECTOR

The BIT and BIT_VECTOR types are predefined in VHDL. Objects of these types can have the values ‘0’ or “1’.
The BIT_VECTOR type is simply a vector of type BIT. A vector with all bits having the same value can be obtained
using the OTHERS keyword.

Example:

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary Page 3 of 23

SIGNAL x: BIT,
SIGNAL y: BIT_VECTOR(7 DOMNTO 0);

X <="'1";
y <= "00000010";
y <= (OTHERS => '0'); -- sane as "00000000"

STD_LOGIC and STD_LOGIC_VECTOR

The STD_LOGIC and STD_LOGIC_VECTOR types provide more values than the BIT type for modeling a real circuit
more accurately. Objects of these types can have the following values.

‘0" —normal 0

1" -normal 1

'Z' - high impedance®
'~ —don’t-care?

‘L' - weak 0

'H' - weak 12

'U' - uninitialized®

X' - unknown!

"W' - weak unknown?

The STD_LOGIC and STD_LOGIC_VECTOR types are not predefined, and so the following two library statements
must be included in order to use these types.

LI BRARY | EEE;
USE | EEE. STD LOd C_1164. ALL;

If objects of type STD_LOGIC_VECTOR are to be used as binary numbers in arithmetic manipulations, then either
one of the following two USE statements must also be included

| USE | EEE. STD_LOG C S| GNED. ALL; |

for signed number arithmetic, or

| USE | EEE. STD_LOG C_UNSI GNED. ALL; |

for unsigned number arithmetic. A vector with all bits having the same value can be obtained using the OTHERS
keyword, as shown in the next example.

Example:

LI BRARY | EEE;
USE | EEE. STD LOd C_1164. ALL;

SIGNAL x: STD LCG G
SIGNAL y: STD LOG C VECTOR(7 DOWNTO 0);

X <="'Z":
y <= "0000001Z";
y <= (OTHERS => '0'); -- sane as "00000000"

! Must use uppercase. This is only a MAX+plus Il restriction.
2 MAX+plus 11 only supports the values 0, 1, Z, and X.

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary Page 4 of 23

INTEGER

The predefined INTEGER type defines binary number objects for use with arithmetic operators. By default, an
INTEGER signal uses 32 bits to represent a signed number. Integers using fewer bits can also be declared with the
RANGE keyword.

Example:

SIGNAL x: | NTECER;
SI GNAL y: | NTEGER RANGE —-64 to 64;

BOOLEAN

The predefined BOOLEAN type defines objects having the two values TRUE and FALSE.

Example:

S| GNAL x: BOOLEAN;

Enumeration TYPE

An enumeration type allows the user to specify the values that the data object can have.
Syntax:
TYPE identifier IS (valuel, value?, ...);

Example:

TYPE state type IS (S1, S2, S3);
SIGNAL state: state_type;
state <= S1;

ARRAY

The ARRAY type groups single data objects of the same type together into a one-dimensional or
multidimensional array.

Syntax:
TYPE identifier IS ARRAY (range) OF type;

Example:

TYPE byte I'S ARRAY(7 DOWNTO 0) OF BIT;

TYPE nmenory_type IS ARRAY(1 TO 128) OF byte;
SIGNAL menory: menory_type;

menory(3) <= "00101101";

SUBTYPE

A SUBTYPE is a subset of a type, that is, a type with a range constraint.
Syntax:
SUBTYPE identifier IS type RANGE range;

Example:

SUBTYPE integer4 IS | NTEGER RANGE -8 TO 7;

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary

Page 5 of 23

SUBTYPE cel |

IS STD LOd C VECTOR(3 DOAMNTO 0);
TYPE memArray |'S ARRAY(O0 TO 15) OF cel l;

Some standard subtypes include:

* NATURAL—an integer in the range 0 to INTEGER'HIGH
e POSITIVE—an integer in the range 1 to INTEGER'HIGH

D.1.5 Data Operators

The VHDL built-in operators are listed in Figure D.1.

Logical Operators Operation Example

AND AND n<=aANDb

OR OR n<=aoRrb

NOT NOT n <=NOT a

NAND NAND n<=aNAND Db

NOR NOR n<=aNORb

XOR XOR n<=axorb

XNOR XNOR n <=aXNOR b
Arithmetic Operators Operation Example

+ Addition n<=a+b

- Subtraction n<=a-b

* Multiplication (integer or floating point) n<=a*h

/° Division (integer or floating point) n<=alb

MoD * Modulus (integer) n<=amobb

REM ° Remainder (integer) n<=aREMb

** Exponentiation n<=ga**?2

& Concatenation n<='a'&'b'

ABS Absolute

Relational Operators Operation Example

= Equal IF (n = 10) THEN

/= Not equal IF (n /= 10) THEN

< Less than IF (n < 10) THEN

<= Less than or equal IF (n <= 10) THEN

> Greater than IF (n > 10) THEN

>= Greater than or equal IF (n >=10) THEN
Shift Operators Operation Example

SLL Shift left logical n <="1001010" sLL 2
SRL Shift right logical n <="1001010" srL 1
SLA Shift left arithmetic n <="1001010" sLA 2
SRA Shift right arithmetic n <="1001010" srRA 1
ROL Rotate left n <="1001010" ROL 2
ROR Rotate right n <="1001010" ROR 3

Figure D.1 VHDL built-in data operators.

% Can only divide by a power of 2. This is only a MAX+plus II restriction.

* Not supported by MAX+ plus II.

Digital Logic and Microprocessor Design with VHDL

Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary Page 6 of 23

D.1.6 ENTITY

An ENTITY declaration declares the external or user interface of the module similar to the declaration of a
function. It specifies the name of the entity and its interface. The interface consists of the signals to be passed into
the entity or out from it using the two keywords IN and ouT, respectively.

Syntax:
ENTITY entity-name IS

PORT (list-of-port-names-and-types);
END entity-name;

Example:

LI BRARY | EEE;
USE | EEE. STD LOd C_1164. ALL;

ENTITY Siren IS PORT (
M IN STD LOd C;
D: IN STD LOG C;
V: IN STD LOG G
S: QUT STD LOG ©);
END Siren;

D.1.7 ARCHITECTURE

The ARCHITECTURE body defines the actual implementation of the functionality of the entity. This is similar to
the definition or implementation of a function. The syntax for the architecture varies, depending on the model
(dataflow, behavioral, or structural) you use.

Syntax: Dataflow model
ARCHITECTURE architecture-name OF entity-name 1S
signal-declarations;
BEGIN

concurrent-statements;
END architecture-name;

The concurrent statements are executed concurrently.

Example:

ARCHI TECTURE Siren_Dataflow OF Siren IS
SIGNAL term 1. STD LOd G

BEG N
terml <= DQOR YV,
S <=terml AND M

END Siren_Dat af | ow;

Syntax: Behavioral model

ARCHITECTURE architecture-name OF entity-name IS
signal-declarations;
function-definitions;
procedure-definitions;
BEGIN
PROCESS-blocks;
concurrent-statements;

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary Page 7 of 23

END architecture-name;

Statements within the PROCESS block are executed sequentially. However, the PROCESS block itself is a
concurrent statement.

Example:

ARCHI TECTURE Siren_Behavioral OF Siren IS
SIGNAL term 1. STD LOd G
BEG N
PRCCESS (D, V, M
BEG N
terml1l <= D ORYV,
S <=terml1l AND M
END PRCCESS;
END Siren_Behavi oral ;

Syntax: Structural model

ARCHITECTURE architecture-name OF entity-name 1S
component-declarations;
signal-declarations;

BEGIN
instance-name: PORT MAP-statements;
concurrent-statements;

END architecture-name;

For each component declaration used, there must be a corresponding entity and architecture for that component.
The PORT MAP statements are concurrent statements.

Example:

ARCHI TECTURE Siren_Structural OF Siren IS
COVPONENT myOR PORT (
inl, in2: IN STD LCG C
outl: OUT STD LOd O);
END COVPONENT;

SIGNAL terml: STD LCG G,

BEG N
Uo: nmyOR PORT MAP (D, V, terntl);
S <=ternl AND M

END Siren_Structural;

D.1.8 GENERIC

Generics allow information to be passed into an entity so that, for example, the size of a vector in the PORT list
does not have to be known until elaboration time. Generics of an entity are declared with the GENERIC keyword
before the PORT list declaration for the entity. An identifier that is declared as GENERIC is a constant that only can be
read. The identifier then can be used in the entity declaration and its corresponding architectures wherever a constant
is expected.

Syntax: In an ENTITY declaration
ENTITY entity-name IS
GENERIC (identifier: type); -- with no default value

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary Page 8 of 23

or

ENTITY entity-name IS
GENERIC (identifier: type := constant); -- with a default value given by the constant

Example:

ENTI TY Adder |S
-- declares the generic identifier n having a default val ue 4
GENERI C (n: |INTEGER : = 4);
PORT (
-- the vector size is 3 dowmmto O since nis 4
A, B: IN STD LOG C VECTOR(n-1 DOANTO 0);
Cout: QUT STD LQOG C,
SUM QUT STD LOd C VECTOR(n-1 DOANTO 0));
S: OQUT STD LOGE ©);
END Siren;

The value for a generic constant can also be specified in a component declaration or a component instantiation
statement.

Syntax: In a component declaration

COMPONENT component-name

GENERIC (identifier: type := constant); -- with an optional value given by the constant
PORT (list-of-port-names-and-types);
END COMPONENT;

Syntax: In a component instantiation

label: component-name GENERIC MAP (constant) PORT MAP (association-list);

Example:

ARCHI TECTURE . ..

COVPONENT mux2 1S
-- declares the generic identifier n having a default val ue 4
GENERIC (n: INTEGER : = 4);

PORT (
S: IN STD LOd G -- select line
D1, DO: IN STD LOd C VECTOR(n-1 DOAWNTO 0);-- data bus input
Y: OQUT STD LOG C VECTOR(n-1 DOWNTO 0)); -- data bus out put

END COMPONENT;

BEG N

U0: nmux2 GENERI C MAP (8) PORT MAP (nux_select, A, B, mux_out);

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary Page 9 of 23

D.1.9 PACKAGE

A PACKAGE provides a mechanism to group together and share declarations that are used by several entity units.
A package itself includes a declaration and, optionally, a body. The PACKAGE declaration and body usually are
stored together in a separate file from the rest of the design units. The file name given for this file must be the same
as the package name. In order for the complete design to synthesize correctly using MAX+plus Il, you must first
synthesize the package as a separate unit. After that, you can synthesize the unit that uses that package.

PACKAGE Declaration and Body

The PACKAGE declaration contains declarations that may be shared between different entity units. It provides the
interface, that is, items that are visible to the other entity units. The optional PACKAGE BODY contains the
implementations of the functions and procedures that are declared in the PACKAGE declaration.

Syntax: PACKAGE declaration

PACKAGE package-name IS
type-declarations;
subtype-declarations;
signal-declarations;
variable-declarations;
constant-declarations;
component-declarations;
function-declarations;
procedure-declarations;

END package-name;

Syntax: PACKAGE BODY declaration

PACKAGE BODY package-name IS
function-definitions; -- for functions declared in the package declaration
procedure-definitions; -- for procedures declared in the package declaration
END package-name;

Example:

LI BRARY | EEE;
USE | EEE. STD LOd C_1164. ALL;

PACKAGE ny_package IS
SUBTYPE bit4 IS STD LOG C_ VECTOR(3 DOMTO 0);
FUNCTI ON shiftright (input: IN bit4) RETURN bit4; -- declare a function
SI GNAL nysignal : bit4; -- a gl obal signal

END ny_package;

PACKAGE BODY ny_package IS
-- inplementation of the Shiftright function
FUNCTI ON Shiftright (input: INbit4) RETURN bit4 IS
BEG N
RETURN ' 0" & input(3 DOMTO 1);
END shiftright;
END ny_package;

Using a PACKAGE

To use a package, you simply include a LIBRARY and USE statement for that package. Before synthesizing the
module that uses the package, you need to first synthesize the package by itself as a top-level entity.

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary Page 10 of 23

Syntax:

LIBRARY WORK;
USE WORK .package-name.ALL;

Example:

LI BRARY WORK;
USE WORK. my_package. ALL;

ENTI TY test _package IS PORT (
x: IN bit4;
z: QUT bit4);

END t est package;

ARCHI TECTURE Behavi oral OF test package IS
BEG N

mysi gnal <= x;

z <= Shiftright(nysignal);
END Behavi or al

D.2 Dataflow Model Concurrent Statements

Concurrent statements used in the dataflow model are executed concurrently. Hence, the ordering of these
statements does not affect the resulting output.

D.2.1 Concurrent Signal Assignment

The concurrent signal assignment statement assigns a value or the result of evaluating an expression to a signal.
This statement is executed whenever a signal in its expression changes value. However, the actual assignment of the
value to the signal takes place after a certain delay and not instantaneously as for variable assignments. The
expression can be any logical or arithmetical expressions.

Syntax:
signal <= expression;

Example:

y <="'1%
z <=y AND (NOT x);

A vector with all bits having the same value can be obtained using the OTHERS keyword as shown here.

SI GNAL x: STD_LOG C_VECTOR(7 DOWNTO 0);
X <= (OTHERS => '0'); -- 8-bit vector of 0, sanme as "00000000"

D.2.2 Conditional Signal Assignment

The conditional signal assignment statement selects one of several different values to assign to a signal based on
different conditions. This statement is executed whenever a signal in any one of the value or condition changes.

Syntax:

signal <= valuel WHEN condition ELSE
value2 WHEN condition ELSE

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary Page 11 of 23

values;

Example:

Z <=in0 WHEN sel = "00" ELSE
inl WHEN sel = "01" ELSE
in2 WHEN sel = "10" ELSE
in3;

D.2.3 Selected Signal Assignment

The selected signal assignment statement selects one of several different values to assign to a signal based on
the value of a select expression. All possible choices for the expression must be given. The keyword OTHERS can be
used to denote all remaining choices. This statement is executed whenever a signal in the expression or any one of
the value changes.

Syntax:
WITH expression SELECT
signal <= valuel WHEN choicel,
value2 WHEN choice2 | choice3,
value4 WHEN OTHERS;

In the above syntax, if expression is equal to choicel, then valuel is assigned to signal. Otherwise, if expression
is equal to choice2 or choice3, then value2 is assigned to signal. If expression does not match any of the above
choices, then value4 in the optional WHEN OTHERS clause is assigned to signal.

Example:

W TH sel SELECT
z <=in0 WHEN "00",
inl WHEN "01",
in2 WHEN " 10",
i n3 WHEN OTHERS;

D.2.4 Dataflow Model Sample

-- outputs a 1 if the 4-bit input is a prinme nunber, 0 otherw se

LI BRARY | EEE;
USE | EEE. STD_LCGQ C_1164. ALL,

ENTITY Prine |'S PORT (
nunber: I N STD LOG C VECTOR(3 DOWTO 0);
yes: OUT STD LOGE C);

END Pri ne;
ARCHI TECTURE Prinme_Dataflow OF Prinme IS
BEG N
W TH number SELECT
yes <= '1' WHEN "0001" | "0010",

"1' WHEN "0011" | "O101" | "O0211" | "i1011" | "1101",
'0" WHEN OTHERS;
END Pri me_Dat af | ow;

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary Page 12 of 23

D.3 Behavioral Model Sequential Statements

The behavioral model allows statements to be executed sequentially just like in a regular computer program.
Sequential statements include many of the standard constructs, such as variable assignments, if-then-else statements,
and loops.

D.3.1 PROCESS

The PROCESS block contains statements that are executed sequentially. However, the PROCESS statement itself is
a concurrent statement. Multiple process blocks in an architecture will be executed simultaneously. These process
blocks can be combined together with other concurrent statements.

Syntax:

process-name: PROCESS (sensitivity-list)
variable-declarations;

BEGIN
sequential-statements;

END PROCESS process-name;

The sensitivity list is a comma-separated list of signals, which the process is sensitive to. In other words,
whenever a signal in the list changes value, the process will be executed (i.e., all of the statements in the sequential
order listed). After the last statement has been executed, the process will be suspended until the next time that a
signal in the sensitivity list changes value before it is executed again.

Example:

PRCCESS (D, V, M
BEGA N
terml1l <= D ORYV,
S <=term1l AND M
END PRCCESS;

D.3.2 Sequential Signal Assignment

The sequential signal assignment statement assigns a value to a signal. This statement is just like its concurrent
counterpart, except that it is executed sequentially (i.e., only when execution reaches it).

Syntax:
signal <= expression;

Example:

y <="'1%
z <=y AND (NOT x);

D.3.3 Variable Assignment

The variable assignment statement assigns a value or the result of evaluating an expression to a variable. The
value is always assigned to the variable instantaneously whenever this statement is executed.

Variables are only declared within a process block.

Syntax:

signal := expression;

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary

Example:

Page 13 of 23

y :="1";
yn = NOT vy;

D.3.4 WAIT

When a process has a sensitivity list, the process always suspends after executing the last statement. An
alternative to using a sensitivity list to suspend a process is to use a WAIT statement, which must also be the first

statement in a process”.

Syntax®:
WAIT UNTIL condition;

Example:

-- suspend until a rising clock edge
VWAI T UNTIL clock’ EVENT AND clock = '1";

D.3.5 IF THEN ELSE

Syntax:

IF condition THEN
sequential-statements1;
ELSE
sequential-statements2;
END IF;

IF conditionl THEN
sequential-statements1;

ELSIF condition2 THEN
sequential-statements2;

ELSE
sequential-statements3;
END IF;

Example:

I F count /= 10 THEN -- not equal
count := count + 1,

ELSE
count

END | F;

0;

D.3.6 CASE

Syntax:

CASE expression IS

> This is only a MAX+plus 1 restriction.

® There are three different formats of the WAIT statement, however, MAX+plus 11 only supports one.

Digital Logic and Microprocessor Design with VHDL

Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary

WHEN choices => sequential-statements;
WHEN choices => sequential-statements;

WHEN OTHERS => sequential-statements;

Page 14 of 23

END CASE;
Example:
CASE sel IS

VWHEN "00" => z <= in0;
VWHEN "01" => z <= inl;
WHEN " 10" => z <= in2;
WHEN OTHERS => z <= in3;
END CASE;

D.3.7 NULL

The NULL statement does not perform any actions.

Syntax:
NULL;
D.3.8 FOR
Syntax:
FOR identifier IN start [TO | DOWNTQ] stop LOOP

sequential-statements;
END LOOP;

Loop statements must have locally static bounds’. The identifier is implicitly declared, so no explicit declaration

of the variable is needed.

Example:

sum : = 0;

FOR count IN1 TO 10 LOOP
sum : = sum + count;

END LOOP;

D.3.9 WHILE

Syntax: ®

WHILE condition LOOP
sequential-statements;
END LOOP;

" This is only a MAX+plus |1 restriction.
® Not supported by MAX+ plus II.

Digital Logic and Microprocessor Design with VHDL

Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary Page 15 of 23

D.3.10LOOP

Syntax: *

LOOP
sequential-statements;
EXIT WHEN condition;

END LOOP;

D.3.11EXIT

The exiT* statement can only be used inside a loop. It causes execution to jump out of the innermost loop and is
usually used in conjunction with the LooP statement.

Syntax:
EXIT WHEN condition;

D.3.12NEXT

The NEXT statement can be used only inside a loop. It causes execution to skip to the end of the current iteration
and continue with the beginning of the next iteration. It is usually used in conjunction with the FOR statement.

Syntax:
NEXT WHEN condition;

Example:

sum : = 0;

FOR count IN1 TO 10 LOOP
NEXT WHEN count = 3;
sum : = sum + count;

END LOOP;

D.3.13FUNCTION

Syntax: Function declaration
FUNCTION function-name (parameter-list) RETURN return-type;
Syntax: Function definition

FUNCTION function-name (parameter-list) RETURN return-type 1S
BEGIN

sequential-statements;
END function-name;

Syntax: Function call
function-name (actuals);
Parameters in the parameter list can be either signals or variables of mode IN only.

Example:

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary

Page 16 of 23

LI BRARY | EEE;
USE | EEE. STD_LCGQ C_1164. ALL,

ENTITY test _function IS PORT (
x: I N STD_LOG C_VECTOR(3 DOANTO 0) ;
z: QUT STD LOd C VECTOR(3 DOAMNTO 0));
END test function;

ARCHI TECTURE Behavi oral OF test function IS

SUBTYPE bit4 IS STD_LOG C_VECTOR(3 DOMNTO 0);

BEG N
RETURN ' 0" & input(3 DOMTO 1);
END shiftright;

SI GNAL nysi gnal @ bit4,;

BEG N
PRCOCESS
BEG N
nmysi gnal <= x;
z <= Shiftright(mysignal);
END PROCCESS;
END Behavi or al ;

FUNCTI ON Shiftright (input: IN bit4) RETURN bit4 IS

D.3.14PROCEDURE

Syntax: Procedure declaration
PROCEDURE procedure -name (parameter-list);
Syntax: Procedure definition

PROCEDURE procedure-name (parameter-list) IS
BEGIN

sequential-statements;
END procedure-name;

Syntax: Procedure call
procedure -name (actuals);
Parameters in the parameter-list are variables of modes IN, OUT, or INOUT.

Example:

LI BRARY | EEE;
USE | EEE. STD_LCGQ C_1164. ALL,;

ENTI TY test _procedure IS PORT (
x: I N STD_LOG C_VECTOR(3 DOANTO 0) ;
z: OUT STD_LOGd C VECTOR(3 DOAMNTO 0));
END t est _procedure;
ARCHI TECTURE Behavi oral OF test procedure IS

SUBTYPE bit4 IS STD LOG C_VECTOR(3 DOANTO 0) ;

Digital Logic and Microprocessor Design with VHDL

Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary

Page 17 of 23

PROCEDURE Shiftright (input: IN bitd4;
BEG N
output :="'0" & input(3 DOMNNTO 1);
END shiftright;
BEA N
PROCESS
VARI ABLE nysi gnal : bit4;
BEG N
Shiftright(x, nysignal);

z <= nysignal;
END PROCESS;
END Behavi or al ;

out put :

QUT bi t 4)

IS

D.3.15Behavioral Model Sample

LI BRARY | EEE;
USE | EEE. STD_LOGQ C_1164. ALL,;

ENTITY bcd 1S PORT (
I: IN STD LOd C VECTOR(3 DOMNTO 0) ;
Segs: QUT STD LOG C VECTOR(1 TO 7));
END bcd;

ARCHI TECTURE Behavi or al
BEG N
PROCESS(1)
BEG N
CASE | IS
VWHEN "0000" => Segs <= "1111110";
WHEN "0001" => Segs <= "0110000";
WHEN "0010" => Segs <= "1101101";
VWHEN "0011" => Segs <= "1111001";
VWHEN "0100" => Segs <= "0110011";
VWHEN "0101" => Segs <= "1011011";
WHEN "0110" => Segs <= "1011111";
WHEN "0111" => Segs <= "1110000";
VWHEN "1000" => Segs <= "1111111";
VWHEN "1001" => Segs <= "1110011";
VWHEN OTHERS => Segs <= "0000000";
END CASE;
END PROCESS;
END Behavi or al ;

OF bcd IS

D.4 Structural Model Statements

The structural model allows the manual connection of several components together using signals. All
components used must first be defined with their respective ENTITY and ARCHITECTURE sections, which can be in the

same file or can be in separate files.

In the topmost module, each component used in the netlist is first declared using the COMPONENT statement. The
declared components are then instantiated with the actual components in the circuit using the PORT MAP statement.
SIGNALS are then used to connect the components together according to the netlist.

Digital Logic and Microprocessor Design with VHDL

Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary Page 18 of 23

D.4.1 COMPONENT Declaration

The cOMPONENT declaration statement declares the name and the interface of a component that is used in the
circuit description. For each COMPONENT declaration used, there must be a corresponding ENTITY and
ARCHITECTURE for that component. The declaration name and the interface must match exactly the name and
interface that is specified in the ENTITY section for that component.

Syntax:
COMPONENT component-name 1S

PORT (list-of-port-names-and-types);
END COMPONENT;

or

COMPONENT component-name 1S
GENERIC (identifier: type := constant);
PORT (list-of-port-names-and-types);

END COMPONENT;

Example:

COVPONENT hal f _adder 1S PORT (
Xi, yi, cin: IN STD LCGE G,
cout, si: OUT STD LCGE Q) ;

END COVPONENT;

D.4.2 PORT MAP

The PORT MAP statement instantiates a declared component with an actual component in the circuit by
specifying how the connections to this instance of the component are to be made.

Syntax:
label: component-name PORT MAP (association-list);
or

label: component-name GENERIC MAP (constant) PORT MAP (association-list);
The association list can be specified using either the positional or named method.

Example: Positional association

SIGNAL x0, x1, yO, yl1, cO, cl, c2, s0O, sl: STD LCGA C
Ul: hal f _adder PORT MAP (x0, yO, cO, cl1, sO0);
U2: hal f _adder PORT MAP (x1, yl1, cl, c2, sl1);

Example: Named association

SIGNAL x0, x1, yO, yl1, cO0, cl, c2, s0, sl: STD LCGA C
Ul: hal f _adder PORT MAP (cout=>cl, si=>s0, cin=>c0, xi=>x0, yi=>y0);
U2: hal f_adder PORT MAP (cin=>cl, xi=>x1, yi=>yl, cout=>c2, si=>sl);

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary Page 19 of 23

D.4.3 OPEN

The oOPEN keyword is used in the PORT MAP association list to signify that that particular output port is not
connected or used. It cannot be used for an input port.

Example:

| UL: hal f_adder PORT MAP (x0, yO, cO, OPEN, s0);

D.4.4 GENERATE

The GENERATE statement works like a macro expansion. It provides a simple way to duplicate similar
components.

Syntax:

label: FOR identifier IN start [TO | DOWNTO] stop GENERATE
port-map-statements;

END GENERATE label;

Example:

-- using a FOR- GENERATE statenment to generate four instances of the full adder
-- component for a 4-bit adder

LI BRARY | EEE;

USE | EEE. STD LOd C_1164. ALL;

ENTI TY Adder4 | S PORT (
Cn: INSTD LOG G
A, B: IN STD LOG C VECTOR(3 DOWNTO 0);
Cout: QUT STD LOGE G,
SUM QUT STD LOG C VECTOR(3 DOANTO 0));
END Adder 4;

ARCHI TECTURE Structural OF Adder4 IS
COVPONENT FA PORT (
ci, xi, yi: INSTD LOd C;
co, si: QUT STD LOd O);
END COMPONENT;

SIGNAL Carryv: STD _LOG C VECTOR(4 DOMNTO 0);

BEG N
Carryv(0) <= Cn;

Adder: FOR k IN 3 DOMTO 0 GENERATE
Ful | Adder: FA PORT MAP (Carryv(k), A(k), B(k), Carryv(k+l), SUMK));
END GENERATE Adder ;

Cout <= Carryv(4);
END Structural;

D.4.5 Structural Model Sample

This example is based on the following circuit:

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary

—D s

=<

Page 20 of 23

-- declare and define the 2-input OR gate
LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;

ENTITY myOR | S PORT (
inl, in2: IN STD LOG G
outl: OUT STD LOd O);

END nyOR;
ARCHI TECTURE OR Dat afl ow OF nyOR | S
BEG N
outl <= inl ORinZ; -- perforns the OR operation

END OR Dat af | ow;

-- declare and define the 2-input AND gate
LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;

ENTITY myAND | S PORT (
inl, in2: IN STD LOG G
outl: OUT STD LOd O);

END nyOR;
ARCHI TECTURE OR Dat afl ow OF nyAND | S
BEG N
outl <= inl AND in2; -- perforns the AND operation

END OR Dat af | ow,

-- topnost nodule for the siren
LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;
ENTITY Siren IS PORT (
M IN STD LOG C;
D: IN STD_LQG C;
V: IN STD_LOd C,
S: OQUT STD LOGE ©);
END Siren;

ARCHI TECTURE Siren_Structural OF Siren IS
-- declaration of the needed OR gate
COVPONENT myOR PORT (

inl, in2: IN STD LOA C;
outl: OQUT STD LOd O);
END COVPONENT;

-- declaration of the needed AND gate
COVPONENT nmyAND PORT (

inl, in2: IN STD LOA C;

outl: OUT STD LOd O);
END COVPONENT;

-- signal for connecting the output of the OR gate

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary

Page 21 of 23

-- with the input to the AND gate
SIGNAL terml: STD LCd C,

BEG N
Uo: nmyOR PORT MAP (D, V, ternl);
Ul: nyAND PORT MAP (ternl, M S);
END Siren_Structural;

D.5 Conversion Routines

D.5.1 CONV_INTEGER()

The CONV_INTEGER() routine converts a STD_LOGIC_VECTOR type to an INTEGER type. Its use requires the

inclusion of the following library.
LIBRARY IEEE;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
Syntax:
CONV_INTEGER(std_logic_vector)

Example:

LI BRARY | EEE;
USE | EEE. STD_LOG C_UNSI GNED. ALL;

SIGNAL four_bit: STD LOG C_VECTOR(3 DOANTO 0);
SIGNAL n: | NTEGER

n := CONV_I NTEGER(four_bit);

D.5.2 CONV_STD_LOGIC_VECTOR(,)

The CONV_STD_LOGIC_VECTOR(,) routine converts an INTEGER type to a STD_LOGIC_VECTOR type. Its use

requires the inclusion of the following library.
LIBRARY IEEE;
USE IEEE.STD_LOGIC_ARITH.ALL,;
Syntax:
CONV_STD_LOGIC_VECTOR (integer, number_of _bits)

Example:

LI BRARY | EEE;
USE | EEE. STD_LOd C_ARI TH. ALL;

SIGNAL four_bit: STD LOG C_VECTOR(3 DOANTO 0);
SIGNAL n: | NTEGER

four bit := CONV_STD LOG C VECTOR(n, 4);

Digital Logic and Microprocessor Design with VHDL

Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary

Index

A

ARCHITECTURE, 6
ARRAY, 4

B

Behavioral model, 6, 12
example, 18

BIT, 2

BIT_VECTOR, 2

BOOLEAN, 4

C

CASE, 14

Comments, 2

COMPONENT declaration, 18
Concurrent signal assignment, 10
Concurrent statements, 10
Conditional signal assignment, 10
CONV_INTEGER, 21
CONV_STD_LOGIC VECTOR, 21
Conversion routines, 21

D

Data objects, 2

Data operators, 5

Data types, 2

Dataflow model, 6, 10
example, 12

DOWNTO, 14

E
ELSIF, 13
ENTITY, 6
Enumeration, 4
EXIT, 15
F
FOR, 14
FUNCTION, 16
G
GENERATE, 19
GENERIC, 7, 18
|

Identifiers, 2
IF THEN ELSE, 13
IN, 6

Digital Logic and Microprocessor Design with VHDL

Page 22 of 23

INTEGER, 4

L
LOOP, 15

N

NEXT, 15
NULL, 14

@)

OPEN, 19
OTHERS, 2, 3, 10, 14
OUT, 6

P

PACKAGE, 9
PORT MAP, 18
PROCEDURE, 16
PROCESS, 12

S

Selected signal assignment, 11
Sequential signal assignment, 12
Sequential statements, 12
Signal assignment

concurrent, 10

conditional, 10

selected, 11

sequential, 12
STD_LOGIC, 3
STD_LOGIC_VECTOR, 3
Structural model, 7, 18

example, 20
SUBTYPE, 4

T
TO, 14

\Y

Variable assignment, 13
VHDL
Basic language elements, 2
Behavioral model, 6, 12
example, 18
Concurrent statements, 10
Conversion routines, 21
Dataflow model, 6, 10
example, 12
Sequential statements, 12

Last updated 10/29/2004 9:44 AM

Appendix D — VHDL Summary Page 23 of 23

Structural model, 7, 18 LOOP, 15
example, 20 NEXT, 15
VHDL syntax NULL, 14
ARCHITECTURE, 6 OPEN, 19
ARRAY, 4 OTHERS, 2, 3, 10, 14
BIT, 2 OUT, 6
BIT_VECTOR, 2 PACKAGE, 9
BOOLEAN, 4 PORT MAP, 18
CASE, 14 PROCEDURE, 16
Comments, 2 PROCESS, 12
COMPONENT declaration, 18 Signal assignment
CONV_INTEGER, 21 concurrent, 10
CONV_STD_LOGIC_VECTOR, 21 conditional, 10
Data objects, 2 selected, 11
Data operators, 5 sequential, 12
Data types, 2 STD_LOGIC, 3
DOWNTO, 14 STD_LOGIC_VECTOR, 3
ELSIF, 13 SUBTYPE, 4
ENTITY, 6 TO, 14
Enumberation, 4 Variable assignment, 13
EXIT, 15 WAIT, 13
FOR, 14 WHEN, 14
FUNCTION, 16 WHILE, 15
GENERATE, 19
GENERIC, 7, 18 w
Identifiers, 2
; WAIT, 13
:EI,T6HEN ELSE, 13 WHEN. 14
INTEGER, 4 WHILE, 15

Digital Logic and Microprocessor Design with VHDL Last updated 10/29/2004 9:44 AM

	Contents
	D.1 Basic Language Elements
	D.2 Dataflow Model Concurrent Statements
	D.3 Behavioral Model Sequential Statements
	D.4 Structural Model Statements
	D.5 Conversion Routines

