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Synchronous Finite-State
Machine Designs

This chapter looks at a numberof practical designs using the techniques developed inChapters 1

to 3. It compares the conventional design of FSMs with the design proposed in the book. This

illustrates howmore effective the latter method is in developing a given design. The traditional

method of designing FSMs is common in a lot of textbooks on digital design. It makes use of

transition tables and can become cumbersome to use when dealing with designs having a large

number of inputs. Even for designs having few inputs, the method used in Chapters 1–3 is

quicker and easier to use.

Most designers involved in the development of FSMs make use of unused secondary state

assignments to help reduce the flip-flop input and output equations. This practice is investigated

with some interesting results.

The chapter covers a number of practical system designs. Some have simulation waveforms

showing theFSMdesignworking.TheVerilogHDLcode used to create the simulationswill not

be shown, as VerilogHDL code development is not covered until later on in the book. However,

the respectiveVerilog codes are available on theCDROMdisk that is includedwith this book, as

are the Verilog tools used to view the simulations.

Eight examples are discussed in this chapter, with each example introducing techniques that

help to solve the particular requirements in the design being investigated.

4.1 TRADITIONAL STATE DIAGRAM SYNTHESIS METHOD

Before continuing with the development of FSM systems based on the synthesization method

covered in Chapters 1–3, it is worth investigating the more popular traditional method of

synthesization used by many system designers. Then see what solutions are obtained by using

both methods. It should be possible to obtain the same results, or at least results that are of a

similar level of complexity (i.e. number of gates).

Consider the state diagram shown in Figure 4.1. This, being a four-state diagram, will

need two D-type flip-flops. Using the traditional synthesization method, begin by con-

structing a state table containing the present state (PS) values and the next state (NS)
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values for A and B, for all possible values of the input x. One then adds to this the next

states for the inputs Da and Db, for all possible values of x. The result is the state table

shown in Table 4.1.

The values for A and B in Table 4.1 are obtained by inspection of the state diagram in

Figure 4.1. For example, in state s0 (PS of AB ¼ 00) in col1 the NS of AB for x ¼ 0 will

be 00 in col2; however, if x ¼ 1, the NS of AB ¼ 01 in col3 (i.e. s1).

The values for the NS Da and Db values will follow the NS values for AB because in a

D flip flop the output of the flip flop (A, B) follows the Da and Db inputs.

The reader can follow the rest of the rows in Table 4.1 to complete the state table.

Table 4.1 Present state–next state table for the state machine.

col1 col2 col3 col4 col5

PS NS NS NS NS

AB AB AB DaDb DaDb

x ¼ 0 x ¼ 1 x ¼ 0 x ¼ 1

Row1 00 00 01 00 01

Row2 01 11 01 11 01

Row3 11 00 10 00 10

Row4 10 11 00 11 00

/Z
s0

/Z
s1

/Z
s2

Z
s3

x_| /x_|

/x_|

x_|
/x_|

x_|

AB
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AB
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AB
11

AB
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Figure 4.1 A state diagram used in the comparison.
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The next step is to obtain the Da and Db equations from the state table by writing

down the product terms where Da ¼ 1 in both columns x ¼ 0 and x ¼ 1.

Consider, for example, Da ¼ 1 when A changes 0 to 1; look for PS A ¼ 0 to NS A ¼ 1

in row 2, and PS A ¼ 1 to NS A ¼ 1 in row 3 of columns 1, 3 (x ¼ 1):

� when PS AB ¼ 01 (row 2) and x ¼ 0, flip-flop A should set, and the product term /AB/x is

required;

� whenPSAB ¼ 01 and x ¼ 1 (row2, col3), flip-flopA should be reset, and the term /ABx is not

required;

� when PS AB ¼ 10 (row 4) and x ¼ 0, flip-flop A should set, and the term A/B/x is

required;

� when PS AB ¼ 11 (row 3) and x ¼ 1, flip-flop A should be set, and term ABx is required.

Therefore, the D input terms for Da are

D�a ¼ =AB�=xþ A=B�=xþ AB�x;

which cannot be reduced. For D �b¼ /A/B �xþ /AB � /xþ /AB �xþ A/B � /x we have

D�b ¼ =A�xþ =ABþ A=B�=x:

The output equation for Z ¼ s3 ¼ A=B, since this is a Moore state machine.

Now do the problem using the synthesization method described in Chapters 1�3.

From the state diagram directly:

Da ¼ s1�=xþ s2� xþ s3�=x
¼ =AB�=xþ AB�xþ A=B�=x

Db ¼ s0� xþ s1þ s3�=x
¼ =A=B� xþ =ABþ A=B

¼ =A� xþ =ABþ A=B�=x:

This is the same as obtained using the traditional method.

Themain advantage of themethod used inChapters 1–3, over the traditionalmethod, is that it

does not require the use of the state table. It is also much easier to usewhen the number of input

variables is large (as is the case in largepracticalFSMdesigns) since the sizeof thepresent state–

next state table increases as more inputs are added.

4.2 DEALING WITH UNUSED STATES

Whendeveloping statediagrams that use less than the2n states forn secondary statevariables the

question of what to do with the unused states arises. Consider the state diagram of Figure 4.2.
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From the state assignment used in this example there are

Used states Unused states

s0¼ 000 s5¼ 010

s1¼ 100 s6¼ 110

s2¼ 101 s7¼ 001

s3¼ 111

s4¼ 011

The equations for D flip-flops are:

A � d ¼ s0 � sþ s1þ s2þ s3 � z
¼ ���=A =B=C � sþ A=B���=C þ A=B���=C þ A���=BC � z:

The crossed-out literals are a result of applying logical adjacency and the aux rule (see

Appendix A). The result is

A � d ¼ =B=C � sþA=BþAC � z
B �d ¼ s2 � yþ s3 � =zþ s4

¼ A=BC � yþ���=ABC � =zþ =ABC

¼ A=BC � yþBC � =zþ =ABC

C � d ¼ s1 � xþ s2 � yþ s3þ s4

¼ A=B=C � xþA���=B=C � yþ���=ABCþ���=ABC:

s0
/P, /Q

s1
P, /Q

s2
P,Q

s3
/P,Q

s4
/P,/Q

ABC
000

ABC
100

ABC
101

ABC
111

ABC
011

s_|
x_|

/y_|

y_|

z_|

/z_|

Figure 4.2 A state diagram using less than the 23 states.
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Again, the crossed-out terms are using logical adjacency and the aux rule.

C � d ¼ A=B=C � xþ AC � yþ BC:

The output equations:

P ¼ s1þ s2 ¼ A=B=C þ A=BC

P ¼ A=B

Q ¼ s2þ s3 ¼ A=BC þ ABC

Q ¼ A=BC þ ABC ¼ AC:

If the state machine falls into the unused state s5 (/AB/C) then the result will be

A � d ¼ 0;B � d ¼ 0; and C � d ¼ 0 the state machine falls into s0:

If the state machine falls into unused state s6 (AB/C):

A � d ¼ 0;B � d ¼ 0; andC � d ¼ 0 again; the state machine will fall into s0:

If state machine falls into the unused state s7 (/A/BC):

A � d ¼ 0;B � d ¼ 0; and C � d ¼ 0 with next state being s0 again:

This shows that the FSM designed with D-type flip-flops will be self- resetting.

Note that ifTflip-flops are used, then theFSMwill not be self-resetting since theT input either

toggles with T ¼ 1 or remains in its current statewith T ¼ 0. The only way to ensue that it does

return to s0 is to make transitions available for this, as illustrated in Figure 4.3. Clearly, this

requires more product terms in the equations for A � t, B � t, and C � t.
In general, if the state machine has a lot of 1-to-1 transitions and few 1-to-0 and

0-to-1 transitions, then T flip-flops may need less terms and, hence, a possible deduction in

logic.

If the state machine has few 1-to-1 transitions the D flip-flop solution may result in fewer

terms. However, the self-resetting features of theD flip-flopmay provide a greater advantage in

the overall design.

The rest of this chapter contains anumberofpractical examples,makinguse of the techniques

developed in the first three chapters.

4.3 DEVELOPMENT OF A HIGH/LOW ALARM INDICATOR SYSTEM

Figure 4.4 illustrates a block diagram for the proposed system. In Figure 4.4, the FSM is used to

control anADCandmonitor the converted analogue signal levels until either the low-level limit

or the high-level limit is exceeded. The low- and high-level values are set up on the Lo-word/

Hi-word inputs, which could be dual in-line switches. The comparators are standard 8-bit
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Figure 4.4 Block diagram for the High/Low detector system.
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Figure 4.3 The arrangement needed for T flip-flops.
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comparator circuits similar to the standard7485devices.These couldeasilybe incorporated into

a PLD/FPGA along with the FSM.

In this application it is assumed that, when theADC outputA exceeds the Hi-word, hi will go

to logic 1. AnADCoutput less than the Lo-wordwill make lo go to logic 1. TheADC could be a

separate device or its digital circuits could be implemented on a PLD/FPGA device and an

external R/2R network connected to the chip.

Thesystemis to startwhenstgoeshigh. It shouldperformanalogue-to-digital conversionsat a

regular sampling frequency dictated by the system clock and when either the Hi-word or Lo-

wordare exceeded, turnon theappropriateLEDindicator andstop. It canbe returned to its initial

state by operation of the reset button. Note that in this example the alarm will not sound for an

ADC output that is equal either to Hi-word or Lo-word.

From this specification, a state diagramcanbe developed. The control of theADCwill follow

in much the same way that was used in Chapter 2.

The two digital comparators being combinational logic will give an output dependent on the

level of the ADC output.When the ADC output is equal to or less than hi-word but greater than

Lo-word, thenboth loandhiwill be low, signifying that theADCvalue isbetween the two limits.

When the ADC output is greater than Hi-word, then hi will be logic 1 and is to sound the alarm

and turnon theHLindicator.When theADCoutput is less thanLo-word, then lobecomes logic1

and the alarm turns on the LL indicator.

A state diagramhas been developed as shown in Figure 4.5. Looking at this state diagram, the

systemsits in s0 frompoweron reset andwaits for the start input togohigh.Then theADCsignal

SC is raised to perform an analogue-to-digital conversion. After this the system falls into s2.

Here, the outputs from the two comparators are checked, and if either the Hi-word or the Lo-

word limit has been exceeded then the state machine will fall into s3. If, however, neither limit

has been exceeded, then the statemachinewill fall back into s1 to perform another analogue-to-

digital conversion.

/SC,LL,HL,
/AL
s0

SC
s1

/SC
s2

AL
/LL=lo
/HL=hi

s3

st_| eoc_|

lo+hi_|

/(lo+hi) _|

In s3  /LL = lo is in fact LL = /(s3.lo)

In s3  /HL = hi which is HL = /(s3.hi)

Both are mealy outputs

Note: /(lo + hi) is the same as  lo +  hi

AB
00

AB
10

AB
11

AB
01

Figure 4.5 A possible state diagram for the problem.
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Looking at the two-way branch state s2, it is clear that the inverseof loþ hi is /(loþ hi).As an

aside, if one applies DeMorgan’s rule to /(loþ hi) one gets /lo � /hi, indicating for the transition
from s2 to s1 that both lo and hi must be low.

Moving on to look at s3, one can see that the two outputs HL and LL are dictated by the logic

state of the comparator outputs lo and hi so that in s3 theHL indicator should be active if hi¼ 1,

whereas the LL indicator should be active if lo¼ 1.

/HL¼ hi in s3 indicates that HL must be active low. The output equation for HL will be

written as

HL ¼ =ðs3 � hiÞ;

whichmeans thatHLwill be logic0whenhi¼ 1, butonlywhen the statemachine is in s3.This is

defining a Mealy active low output. This is how it was defined in Chapter 3.

In a similar way, LL ¼ =ðs3 � loÞ:

The best way to remember this idea is to think of the /HL¼ hi equation in the s3 state as

representing the equation HL ¼ /ðs3 � hiÞ, but then written inside the state circle one does not
need to include the s3, as it is implied.

Replacing the state number s3with its secondary statevariablevalueAB ¼ 01, the twoMealy

outputs can be written as

HL ¼ =ðs3 � hiÞ ¼ =ð=A � B � hiÞ and LL ¼ =ðs3 � loÞ ¼ =ð=A � B � loÞ;

which results in two three-input NAND gates. Remember, active low signals are inverted

(see Chapter 3).

So, from the equation for HL ¼ =ð=A � B � hiÞ it can be seen that, when in state s3, A ¼ 0

ð=A ¼ 1Þ, B ¼ 1, and if hi¼ 1 then the output of the NAND gate will be zero, which is exactly

what is required to light the LED indicator (active low output).

Havinggone into somedetail to describe the logicbehind theMealyoutputs, thenext step is to

determine the equations for the two flip-flopsA andB.Using themethod described in Chapter 3

for D flip-flops, these are

A � d ¼ s0 � stþ s1þ s2 � =ðloþ hiÞ ¼ =A � =B � stþ A � =Bþ A � B � =hi � =lo:

The equation for A � d could be simplified using the Auxiliary rule to form

A � d ¼ =B � stþ A � =Bþ A � =lo � =hi:

Moving on to flip-flop B:

B � d ¼ s1 � eocþ s2 � ðloþ hiÞ þ s3: ¼ A � =B � eocþ A � B � loþ A � B � hiþ =A � B:

Again, using the Auxiliary rule:

B � d ¼ A � =B � eocþ B � loþ B � hiþ =A � B:
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The remaining Moore-type outputs are SC ¼ s1 ¼ A � =BandAL ¼ s3 ¼ =AB.
The next stage would be to develop a Verilog HDL file describing the circuit for the FSM,

and comparators. This has been done and is contained on the CDROM in the Chapter 4

folder.

4.3.1 Testing the Finite-State Machine using a Test-Bench Module

In this simulation (Figure 4.6), a test-bench module is added to the Verilog code in order to

test the FSM. To do this, test all paths of the state diagram. In the simulation of Figure 4.6

this has been achieved by first following the path s0 ! s1 ! s2 ! s3 with a low limit

exceeded and the FSM remains in s3 (A ¼ 0, B ¼ 1) until a reset (rst ¼ 0) is applied. Then,

the sequence is repeated with a Hi limit exceeded, followed by another reset. Finally, the

sequence s0 ! s1 ! s2 ! s1 ! s2 ! s1 ! s2 ! s1 ! s2 ! s0 is followed, represent-

ing a no limits exceeded until finally another rst ¼ 0 resets the FSM back to s0. Thus, in this

way the FSM is tested.

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns

test.clk

test.rst

test.st

test.eoc

test.hi

test.lo

test.SC

test.LL

test.HL

test.AL

test.A

test.B

Figure 4.6 Simulation of the FSM controller.
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4.4 SIMPLE WAVEFORM GENERATOR

Sometimes there is a need to generate a waveform to order, perhaps to test a product on an

assembly line. An oscillator could be used for this purpose, but it can be tedious to build an

oscillator todo this if thewaveform isnot apure sinewave, squarewave, ramp, or triangular.One

way of generating a complex waveform would be to use a microcontroller with a digital-to-

analogue converter (DAC). The complex waveform could be stored into read only memory

(ROM) and accessed via the microcontroller. However, this seems overkill. There are also

potential sampling frequency limitationswith themicrocontroller.An alternativewaywould be

to use a clockedFSM.The sampling rate could thenbe controlled by the clock rate,whichwould

be limited by that of a PLD or FPGA. The complex waveform is still stored in a ROM but the

ROM is controlled by the FSM.

Consider the block diagram of Figure 4.7. In this system, raising the st input starts the

waveform generator. Eachmemory location is accessed in sequence and its content, a digitized

sample of thewaveform, is sent to theDACtobeconverted to ananalogue form.When the endof

memory is reached, the address counter simply runs over to the zero location and starts again.

Setting the st input lowstops the system.Theactual sampling rate and, hence, theperiodof the

waveform can be calculated once the state diagram is completed. The output of the DAC will

need to be filtered to remove the sampling frequency component – this can be accomplished

using a simple first-order low-pass filter section if the sampling frequency is much higher than

the highest synthesized waveform frequency. (Usually, it is to satisfy Shannon’s sampling

theory.)

The state diagram now needs to be developed. A little thought reveals that the block diagram

itself provides an indication of the sequence required.

R

C

DAC
Data

Latch

Memory
Counter

Clocked FSM

Address

Bus

Data

Bus

D Q
Vout

P      CC        full       CS       EN                   LP

  rst                  st

FSM
Reset

Start

Waveform
genration

Filtered

output

0V

Figure 4.7 Block diagram for simple waveform generator.
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1. Initially, the address counter needs to be cleared to provide the necessary zero address for the

first location of the memory. The system should remain in state s0 until the start input st is

asserted (high).

2. Thememory then needs to be enabled, selected, and allowed to settle, after which the data in

thememory locationwill beavailable at thedata latch inputs.Then thedataneed tobe latched

into the data latch to be available at the input of the DAC.

3. At this stage, the address counter needs to be incremented so as to point to the next memory

location and the sequence in 2 repeated again as long as the start input is still asserted (high).

Note that, in this problem, the end of memory location is not an issue, since the address counter

can be allowed to overrun and start from location zero again. This does imply that thewaveform

information canbefitted into thememorydevice so that thewaveform is produced seamlessly. It

would be possible to add further logic to the system to ensure that this was always the case, but

this is not done in this example.

The statediagramcannowbedeveloped following the sequenceof activitiesdescribedabove.

In Figure 4.8, the state diagram is seen to follow the sequential requirements for the system.

Note that in s3 thePoutput is aMealyoutput.P is gatedwith the clockandcanonlygohighwhen

in s3, and then onlywhen the clock is low. This ensures that the address counter is pulsed (on the

rising edge ofP) after thememory enable EN is disasserted (high). Therefore, thememory data

outputs will be tri-state during the change of memory address. The Data Latch ensures that the

DACalwayshasavaliddata sampleat its input.Note that analternativearrangement foroutputP

would be to provide an additional state between s3 and s1 inwhichP ¼ 1. This would avoid the

potential for a glitch at P output (as discussed in Chapter 1).

Clk

P

EN

P = s3./clk

EN = s3

s3          s1         s2         s3         s1

/P,/CC,
CS,EN

/LP

s0

CC, /CS,
 /EN

s1

LP

s2

/LP,EN
P = /clk

s3

st_|_|

_|_|

AB
00

AB
10

AB
11

AB
01Cycle time is 3xclk

Figure 4.8 The complete state diagram for a simple waveform generator.
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The equations can now be developed:

A � d ¼ s0 � stþ s1þ s3

¼ =A � =B � stþ A � =Bþ =A � B
¼ =B � stþ A � =Bþ =A � B
B � d ¼ s1þ s2

¼ A � =Bþ A � B
¼ A:

Outputs are

CC ¼ =s0 ¼ =ð=A � =BÞ an active low output:

CS ¼ s0 ¼ =A � =B although an active low signal it is only high in s 0:

LP ¼ s2 ¼ A � B:
EN ¼ s0þ s3 ¼ =A high in these two states:

P ¼ s3 � =clk ¼ =A � B � =clk a Mealy output gated with the clock:

In Verilog, these equations can be entered directly, but using the Verilog convention for

logic:

AND is & OR is j NOT is � exclusive OR is :̂

These equations would be contained in an assign block thus:

assign
A. d¼� B& st|A&�B|�A& B,
B.d¼ A,
CC¼� (� A & � B);
CS¼� A& � B,
LP¼ A&B,
EN¼� A,
P¼� A&B&� clk;

AppendixCcontains a tutorial onhowtoproduceaVerilogfile to simulate a statemachine.Also,

much more detail is available in Chapters 6 to 8.

4.4.1 Sampling Frequency and Samples per Waveform

From the state diagram of Figure 4.8 it is apparent that the system cycles though three states for

every memory access, so the sampling period is three times the clock period.

Therefore, for a sampling frequency of 300� 103 Hz, a clock of 300�103�3¼ 900�103 Hz

is required. For a critical sampling-rate application, a dummy state could be added to make the

sampling frequency four times the clock frequency (for example).

The size of the memory can be whatever is required for the systems use, and will dictate the

size of the address counter. If the memory is 1 Kbyte, the address counter needs to be
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Number of flip-flops in address counter ¼ lnð1024Þ=lnð2Þ ¼ 10:

The simulation of the FSM is illustrated in Figure 4.9.

4.5 THE DICE GAME

In this example the system consists of seven LED indicators, a p input, and a clock. The block

diagramof the system is shown inFigure 4.10,with a single push switchp.Theclock input could

be a simple oscillator circuit using a 555 timer chip running at 100 Hz so as to provide aflicker to

add effect.

The LED indicators are arranged as illustrated in Figure 4.11 to look more realistic. In this

design it is assumed that low-current LEDs are usedwith a forward current of 2 mA.Thismakes

the current-limiting resistors 1800� for a 5 Vsupply. It is also assumed that theFSMoutputs are

open drain. Figure 4.11 illustrates how the seven LED indicators would look for each number

displayed. The situation when all LEDs are off is not shown.

The state machine is simple to develop, as all that is required is to display each number in

sequence, but at a speed that the user cannot follow. The state diagram consists of seven states,

each one to display a given LED pattern. The transition between each state is conditional on the

input p being equal to one for each transition.When the user releases the p button the FSMwill

stop in a state. Because of the frequency of the clock, the user will not be able to follow the state

sequence, thus realizing the chance element of the game. Note that if the clock frequency is too

high then all the LED indicators will appear to be on when the p button is pressed. Having a

0ns 100ns 200ns 300ns

test.st

test.clk

test.rst

test.A

test.B

test.P

test.CC

test.CS

test.EN

test.LP

Figure 4.9 Simulation results for the FSM of the waveform synthesizer.
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Figure 4.10 Block diagram of the dice game FSM
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slower clock frequency leads to a flicker effect and, thus, adds to the excitement of the game.

Figure 4.12 shows the state diagram for the system.

4.5.1 Development of the Equations for the Dice Game

A � d ¼ s1 � pþ s2þ s3þ s4þ s5 � =p
¼ =A � B � =C � pþ A � B � =C þ A � =B � =C þ A � =B � C þ A � B � C � =p:

This can be reduced to

A � d ¼ B � =C � pþ A � =C þ A � =pþ A � =B
B � d ¼ s0 � pþ s1þ s2 � =pþ s4 � pþ s5þ s6 � =p

¼ =A � =B � =C � pþ =A � B � =C þ A � B � =C � =pþ A � =B � C � p
þ A � B � C þ =A � B � C � =p;

which reduces to

B � d ¼ =A �=C � pþ =A � B �=C þ A � C � pþ A � B � C þ B �=p
C � d ¼ s3 � pþ s4þ s5þ s6 � =p

¼ A � =B � =C � pþ A �=B � C þ A � B � C þ =A � B � C �=p;
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follow the sequence at this
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Figure 4.12 State diagram for the dice game.
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reducing to

C � d ¼ A � =B � pþ B � C � =pþ A � C:

The outputs (LEDs are active low) are

L1 ¼ ðs0þ s1Þ¼ð=A � =B �=Cþ=A � B �=C ¼ =A �=CÞ using active high in s0 and s1only:

L2 ¼ ðs0þ s1þ s2þ s3Þ ¼ =C using active high in these states only:

L3 ¼ =s6ðactive lowÞ ¼ =ð=A � B � CÞ:
L4 ¼ =s6 ¼ =ð=A � B � CÞ low in s6 only; hence invert:

L5 ¼ =ðs4þ s5þ s6Þ ¼ =ðA � C þ B � CÞ low in only these states; hence invert:

L6 ¼ =ðs2þ s3þ s4þ s5þ s6Þ or ðs0þ s1Þ only high in s0 or s1 giving ð=A � =CÞ:
L7 ¼ =ðs1þ s3þ s5Þ ¼ =ð=A � B � =C þ A � =B � =C þ A � B � CÞ:

Figure 4.13 illustrates thediceFSMrunning through each state.The secondary statevariables

a, b, and c can be seen to be moving through each state. The outputs L1 to L7 are responding as

expected and are illustrated in Figure 4.11.

0ns 50ns 100ns 150ns 200ns

test.p

test.clk

test.rst

test.a

test.b

test.c

test.L1

test.L2

test.L3

test.L4

test.L5

test.L6

test.L7

Figure 4.13 Simulation of the dice game.
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In Figure 4.14, the input p has been simulated as ‘on’ then ‘off’. The FSM is seen to have

stopped in state s3, then started again when p is set to logic 1.

Note that in both simulations the time-scale is in nanoseconds, but in practice the clockwould

be slowed down to a 10 ms period.

4.6 BINARY DATA SERIAL TRANSMITTER

The next example involves sending the 4-bit binary codes of a counter to a shift register to be

serially shifted out over a serial transmission line.

Figure 4.15 shows the block diagram for a possible system. The FSM is used to control the

operation of the Binary Counter and the Parallel Loading Shift Register. Both of these devices

could be designed using the techniques described in Appendix B on counting methods. This

leads to a Verilog description (module) for each device.

The system is started by raising the st input to logic 1. This is to cause the FSM to remove

the reset from the Binary Counter and then load the current count value of the counter into

the parallel inputs of the shift register. On releasing the parallel load input LD to logic 1, the

shift register will clock the count value out over its transmit output (TX) at the baud rate

dictated by the clock. When the shift register is empty its RE signal will go high and this

0ns 50ns 100ns 150ns 200ns 250ns 300ns

test.p

test.clk

test.rst

test.L1

test.L2

test.L3

test.L4

test.L5

test.L6

test.L7

test.A

test.B

test.C

Figure 4.14 Dice game simulation with p input released showing FSM stopped in s3.
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will be seen by the FSM, which will then determine whether the last count value has been

sent. This is seen by the FSM when done = 1, detected by the detector block (an AND gate).

If not the last counter value, then the next count value will be loaded into the shift register

and the sequence repeated until all count values have been sent. At this point the system

will stop and wait for st to be returned to its inactive state before returning the FSM to its

s0 state.

From the above description, the state diagram in Figure 4.16 is developed. This state

diagram is correct, but it is difficult to obtain a unit distance code for the secondary state

variables. If a dummy state s7 is added, then a unit distance coding between s6 and s0 can

be obtained for the secondary state variables A, B, and C. Note: it is not apparent from

Figure 4.17, but the outputs in state s7 are the same as the state it is going to (s0), apart

from the RC output. The s5 to s1 transition is not unit distance. If glitches are produced in

any outputs, then dummy states could be introduced between s5 and s1 to establish unit

distance coding. The reader might like to try to establish a unit distance code for the state

diagram. This would require introducing an additional state variable (flip-flop), since all 23

states have been used in this design.

Using Figure 4.17, the equations for the FSM are obtained from the state diagram and

implemented using D flip-flops:

A � d ¼ s1þ s2þ s3þ s4

¼ =A � B �=C þ A � B�=C þ A �=B �=C þ A �=B � C;

Binary Counter

Parallel Loading Shift
Register (includes Re

counter)

P0       P1       P2      P3

TX

Ld

FSM

CB RC

rst

st

reLD

done

Reset counter

Clock Counter
q0      q1      q2       q3

reset

RE

Register empty flag

Det

Load

Clk

Figure 4.15 Block diagram of the binary data serial transmitter.
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shift register
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to return to s0.

Figure 4.16 State diagram for the binary data serial transmitter.

/RC

s0

RC

s1

/LD

s2

LD,
CB
s3

/CB

s4s5s6

st_| _|

_|

_|

re_|done_|

/st_|

ABC
000

ABC
010

ABC
110

ABC
100

ABC
101

ABC
111

ABC
011

Remove reset
from binary counter

Load parallel
shift register

Pulse binary
counter

Wait for shift
register to empty

Test for end of
binary count sequence

/done_|

Wait for st going low
to return to s0.

_|

s7

ABC
001

Figure 4.17 State diagramwith additional dummystate s7 to obtain unit distance code for the secondary

state variables.
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reducing to

A � d ¼ B �=C þ A �=B
B � d ¼ s0 � stþ s1þ s4 � reþ s5þ s6 � st

¼ =A �=B �=C � stþ=A � B � =C þ A � =B � C � reþ A � B � C þ =A � B � C � st;

reducing to

B � d ¼ =A �=C � st þ =A � B �=C þ A � C � reþ B � C � stþ A � B � C
C � d¼s3þ s4þs5 � doneþ s6 ¼ A � =B �=C þ A � =B � CþA � B � C � doneþ=A � B � C;

reducing to

C � d ¼ A � =Bþ B � C � doneþ =A � B � C:
The outputs (all Moore) are

RC ¼ =s0ðactive lowÞ ¼ =ð=A � =B � =CÞ
LD ¼ =ðs2Þ ¼ =ðAB=CÞ
CB ¼ s3ðactive highÞ ¼ A � =B � =C:

The serial transmitter simulation is shown in Figure 4.18. The state machine is tracked

through its state sequence in the usual way by comparing the A, B, and C values in Figure 4.18

with the state diagram A, B, and C values in Figure 4.17.

0ns 100ns 200ns 300ns 400ns

test.st

test.clk

test.rst
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test.A

test.B
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test.RC

test.LD
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Figure 4.18 Simulation of the binary data serial transmitter.
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4.6.1 The RE Counter Block in the Shift Register of Figure 4.15

The shift register in Figure 4.15 has an output RE to flag the point at which the register is empty.

This can easily beobtainedbyusing a four-stageBinaryCounter that becomesenabledwhen the

load input is disasserted (high). The counter can then be clockedwith the same clock as the shift

register; then,when it reaches itsmaximumcount 1000, themost significant bit is used as theRE

signal. Table 4.2 illustrates the effect.

FromTable 4.2 it can be seen thatwhen the counter reaches the eighth clock pulse the counter

rolls over to set themost significant bit of the counterD to logic 1. This bit acts as theRE register

empty bit. After shifting out the binary number, the FSMwill return to its s0 state, where theRC

output will once again go low and reset both the Binary Counter and the RE counter in the shift

register. Note that in this particular design an additional flip-flopE could be added to the binary

counter and this used as the RE output instead

The equations to describe the RE counter can be developed from thematerial in Appendix B

on counting applications. The equations, using T-type flip-flops, are

A � t ¼ 1

B � t ¼ A

C � t ¼ A � B
D � t ¼ A � B � C
RE ¼ D:

This last example has illustrated how a complete design can be developed in terms of Boolean

equations that can be directly implemented in Verilog HDL (or any other HDL for that matter).

There are examples in Appendix B showing how a synchronous binary counter can be

implemented using T flip-flops. Of course, the counter could be implemented as an asynchro-

nous (ripple-through) counter if desired.

Table 4.2 Illustrating the effect of a binary counter used to determine shift register empty.

Binary counter

RE

D C B A Count value

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8 Shift register empty when D ¼ 1

1 0 0 1 9 D output stays set
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Also in Appendix B is an example of a parallel loading shift register using D flip-flops. The

equations for a four-stage shift register are repeated below from Appendix B:

Q0 � d ¼ din � ldþ po � =ld ðB:7Þ
Q1 � d ¼ q0 � ldþ p1 � =ld ðB8Þ
Q2 � d ¼ q1 � ldþ p2 � =ld ðB:9Þ
Q3 � d ¼ q2 � ldþ p3 � =ld ðB:10Þ
Sft clk ¼ clk � ld: ðB:11Þ

Figure 4.19 shows the schematic circuit for the 4-bit parallel loading shift register developed

from Equations (B.7)–(B.11).

4.7 DEVELOPMENT OF A SERIAL ASYNCHRONOUS RECEIVER

Often, there is a requirement to use serial transmission and receiving of data in a digital system.

Although there are lots of serial devices on themarket, it is useful to be able to implement one’s

own design directly to incorporate into an FPGA device. The advantage of this approach is that

the baud rate and protocols can be dictated by the designer, as can how the device will be

controlled.

In this example, the serial data input is encapsulated into an asynchronous data packet with

start (st) and stop (sp) protocol bits that have been added to the serial transmission packet. These

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Clk

Ld

din

p0 p1 p2 p3

/Ld

Sht_clk

Figure 4.19 The 4-bit parallel loading shift register from Equations (B.9) to (B.12).
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are used to provide a means of identifying the data packets as they arrive. This allows the data

packets to arrive at any time and at any selected rate (dictated by the baud rate).

The problem with receiving data is that it is necessary to ensure that the shift register is

clocked with correct data bits. To do this the FSM clock is used to drive an FSM to create a shift

register clock RXCK in the middle of the data bit time period. This RXCK clock pulse can be

seen in Figure 4.20 as the arrowed pulses occurring every third clk pulse. Thus, the clk signal

runs four times faster than the RXCK signal generated by the FSM. Note, the FSM needs to

detect the start of the data packet by looking for the 1-to-0 transition on the receiver input.

The block diagram for the serial asynchronous receiver is illustrated in Figure 4.21. The FSM

is used to create the shift register clock, and to control the operation of the serial asynchronous

receiver. The Divide by 11 Counter is used to count out the 11 bits that make up the protocol

packet. This provides a shift register full signal rxf to indicate to the FSM that a complete data

packet has arrived. TheData Latch is used for collecting the received data from the shift register

to send to the outside world device controlling the asynchronous receiver.

The FSM must wait for start (by monitoring for the st bit change 1 to 0); this is just the first

receive bit coming into the shift register. When detected, shift the data into the shift register. If

the stopbit isnot correct, then theFSMcan issueanerrorvia signalERR.Note, in thisversion the

start bit is testedalongwith the twostopbits via anANDgate (error detection signal ed) toensure

packet alignment after the completepacket is received, the receiver rx input is held at logic1bya

pull-up resistor so that the start bit (active low)canbedetected.The ack signal is available so that

the outside world device using the system can respond to an error condition (no error means

successful packet received). Healthy data packets will be latched into the data latch ready to be

read by the controlling device.

The signal CDC is used to clear the shift register and set st to logic 1, i.e. the flip-flop

representing the start bit of the shift register needs to be pre-set so that it can be cleared by the

incoming start bit from the serial line.

Clk

st d0 d1 d2 d3 d4 d5 d6 d7 sp1 sp2

The FSM controls the operation of the sample data pulse
clock rxck that clocks the shift register (arrowed every third
pulse).

This ensures that the data are sampled near the middle of
the data bit area of the packet  Note that the 1-to-0
transition of the start bit st is used to synchronize the
receiver to the beginning of the data packet.

st start bit and sp1, and sp2 stop bits are the protocol bits
d0 to d7 are the data bits (payload).

Figure 4.20 Protocol of the serial asynchronous receiver.
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The en signal is used to enable and start the asynchronous receiver. This is necessary to ensure

that the system startsmonitoring the clock so as to issue the shift register clock pulse (RXCK) at

the right time (in the middle of the data bit period).

Figure 4.22 illustrates the state diagram for the system. In Figure 4.22, the FSMwaits for the

enable signal en going high and start signal st going low; it thenmoves through states s1, s2, and

s4 andonto s5 to shift the start bit into the shift register. This is required in order to ensure that the

start bit is detected and then shifted at the right time. In state s5, the shift register clockRXCK is

pulsed toplace the start bit into the shift register. It then falls into state s6, sendingRXCKlowand

proceeds to cycle through the second loop consisting of states s5, s6, s7, and s8.

These states count out the clock cycles and produce a shift register clock pulse (RXCK) at the

right time near the middle of each data bit. After all 11 bits have been clocked into the shift

register the 11-bit counter will issue a receive register full signal rxf, and the FSMwill now fall

into state s9,where thestart andstopbits are tested (edshouldbe logic1). If ed ¼ 0, then theFSM

will move into s10 and issue the error signal.

The controlling device can then reset the asynchronous receiver and start again. If no error,

then the FSMmoves to s11 to latch the data in the shift register into the data latch ready for the

controlling device to read (OQ0 to OQ7). It will also issue a data ready signal (DRY) to the

controlling device, which will acknowledge this by raising an ack signal. The FSM can then

move back to s0 via s12 (when ack goes low) towait for the next data packet. The DRYand ack

signals form a handshake mechanism between the FSM and the controlling device.
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Figure 4.21 Block diagram of the serial asynchronous receiver.
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The device enable signal en will be left high until all data packets have been received.

Note that the state assignments miss s3, which was removed from the state diagram during

development when state s3 was no longer needed (owing to an error in the design at that time).

State diagram development tends to be an iterative process.

4.7.1 Finite-State Machine Equations

A � d ¼ s0 � en � =stþ s1þ s2þ s4þ s5þ s8

B � d ¼ s1þ s2þ s4þ s5 � rxf þ s7þ s8þ s9þ s10þ s11 � =ack
C � d ¼ s2þ s4þ s5 � =rxf þ s6þ s7þ s8þ s9 � edþ s11þ s12 � ack
D � d ¼ s4þ s5þ s6þ s7þ s8þ s9 � =edþ s10

RXCK ¼ s5 ¼ ABCD

PD ¼ dry ¼ s11 ¼ =ABC=D

ERR ¼ s10 ¼ =AB=CD:

The reader may like to complete these to form the equations in terms of A, B, C, and D.

The complete asynchronous serial receiver block is simulated, together with all the modules

in Figure 4.21, in Appendix B.
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Figure 4.22 State diagrams for the serial asynchronous receiver.
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4.8 ADDING PARITY DETECTION TO THE SERIAL RECEIVER SYSTEM

The foregoing example could be improved upon bymaking the first stop bit sp1 into a parity bit.

The parity bit would require combinational logic to check each bit of the protocol packet for

either evenparity or odd parity. Thiswould require an exclusiveORblockmade upof the 11 bits

of the packet.

For example, odd parity would require an odd parity output OP at the Transmitter of

OP ¼ bo^b1^b2^b3^b4^b5^b6^b7^b8^b9^b10:

Or, including the protocol bits:

OPnþ1 ¼ st^d0^d1^d2^d3^d4^d5^d6^d7^OPn ^sp:

Thisoutputwouldbe testedby theFSMfor logic1. If logic0, thiswould indicate thatoneormore

of the received bits was faulty.

Note that even parity EP can be detected by complementing the OP signal:

EPn ¼ =OPn:

To implement the parity detector term, two input exclusive OR gates are cascaded with the last

exclusive OR gate providing the OPn signal. The output of the parity block at the receiver is P.

The inputsd0,d1; . . . ; d7will beobtained from theoutputof the shift register in eachcase (see

Figure 4.21).

4.8.1 To Incorporate the Parity

The parity detector inputs are connected to the outputs of the shift register and its output OPn
made available as an input to the FSMvia the last two bit comparator comparingOPn andOPnþ1

in Figure 4.23.

Figure 4.24 shows the new protocol with the parity bit OPn (shown in lower case)

replacing sp1.

Figure4.25 shows theadditionalparityblockadded to theblockdiagram.Thisversiondetects

stop and parity bit errors at the output of the shift register; the start bit has not been tested (but

could be included if desired).

Figure 4.26 illustrates the modified state diagram with ODD parity detection. Note that

the input parity bit OPnþ1 must be compared with the generated parity bit OPn. If both

are the same, then there is no parity error. This comparison can be made with a 2-bit

exclusive NOR gate having an output P (OPn ¼¼ OPnþ1) being logic 1 if there is no

parity error and logic 0 otherwise. This output is an input p to the state machine (see

Figure 4.25).

In state s9, the bit sp is checked to find out whether the whole packet has been input, and s11

nowtests for anoddparity error. In either casea failurewill result in theFSMaborting the receive

packet process and falling into state s10 to await a reset from the controlling device. The logic

used in Figure 4.21 could be used to detect for start and stop bits if desired.
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Figure 4.23 Arrangement of the parity generation and detection logic.
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Figure 4.24 Protocol with parity detection bit added.
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4.8.2 D-Type Equations for Figure 4.26

In the following equations, the variable P is the output of the parity check (OPn = OPnþ1)

connected to the input p of the FSM. See Figure 4.23.

A � d ¼ s0 � en � =stþ s1þ s2þ s4þ s5þ s8þ s9� sp
¼ =A=B=C=D � en � =stþ A=B=C=Dþ AB=C=Dþ ABC=Dþ ABCD

þ=ABCDþ AB=CD � sp
B � d ¼ s1þ s2þ s4þ s5 � rxf þ s7þ s8þ s9 � =spþ s10þ s11þ s12 � =ack

¼ A=B=C=Dþ AB=C=Dþ ABC=Dþ ABCD � rxf þ =A=BCD þ =ABCD

þAB=CD � =spþ =AB=CDþ A=B=CDþ =ABC=D � =ack
C � d ¼ s2þ s4þ s5 � =rxf þ s6þ s7þ s8þ s11 � pþ s12þ s13 � ack

¼ AB=C=Dþ ABC=Dþ ABCD � =rxf þ A=BCDþ =A=BCDþ =ABCD

þ A=B=CD � pþ =ABC=Dþ =A � =B � C � =D � ack
D � d ¼ s4þ s5þ s6þ s7þ s8þ s9þ s10þ s11 � =p

¼ ABC=Dþ ABCD þ A=BCDþ =A=BCDþ =ABCDþ AB=CD

þ =AB=CDþ A=B=CD � p:
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Figure 4.25 Block diagram with parity block added.
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The outputs are as they were in the state diagram of Figure 4.22, except for

ERR ¼ s10 ¼ =AB=CD

PD ¼ dry ¼ s12 ¼ =ABC=D

RXCK ¼ s5 ¼ A � B � C � D:
The FSM part can be simulated, and this is illustrated in Figure 4.27. In this simulation, the test

sequence is

s0; s1; s2; s4; s5; s6; s7; s8; s5; s9; s11; s12; s13; s0; s1; s2; s4; s5; s9; s10; s0; s1; s2; s4; s5; s9;

s11; s10:

This ensures that all paths of the state diagram have been tested.

This should now be followed by a series of tests of all the other components, i.e. the shift

register, the divide-by-11 counter, and the parity block, beforegoingon to test thewhole system.

4.9 AN ASYNCHRONOUS SERIAL TRANSMITTER SYSTEM

Havingdeveloped an asynchronous receivermodule, an asynchronous transmitter is required to

complete the serial device. Figure 4.28 shows the block diagram for an asynchronous serial

transmitter.
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Figure 4.26 The state diagram with odd parity added to FSM.
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In Figure 4.28, the inputData Latch provides the data to be transmitted and the protocol bits st

and sp are set to their expected values before being loaded into the Shift Register via the LD

output from the FSM. Note that there is no need for a slower transmit clock, as the FSM can

provide the shift register pulse at the right time.

The sequence is started by data being presented onto the parallel data inputs then the send

inputbeingsenthighby thecontrollingdevice.TheFSMthen loads thedata into the shift register

and starts transmitting it out to line. The Divide by 11 Counter records the point at which the

packet has been sent to line by raising the Transmit Register Empty (txe) signal high. The FSM

can then send a Request To Send (RTS) signal to the controlling device to inform it that the data

packet has been sent. The controlling device can set the ack signal high to say it has acknowl-

edged this operation.

A possible solution is illustrated in Figure 4.29.

It is important to ensure that the clock signal to the shift register is the same frequency as the

one used in the asynchronous receiver block. If it is not, then the receiver will not be able to

receive the data packets. Even if the two clocks are different by only a small amount, a frame

error could arise. This is when the difference in clock speeds produces a small difference in

the total packet time and, hence, one or more data bits can be lost. In effect, start and stop bits

must be sent and received correctly.

0ns 200ns 400ns 600ns 800ns 1.0
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test.A
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Figure 4.27 Simulation of the FSM for the serial receiver.
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Total packet time ¼ 11� 1=ðclock frequencyÞ:

For example, if the transmitter shift register clock is 1 MHz (usually referred to as the baud rate),

then

Total packet time ¼ 11� 1=ð1� 106Þ ¼ 11� 1 ms ¼ 11 ms in duration:

The receiver shift register clock does have a tolerance; this is a result of the fact that the data are

sampled within a four-clock window (see Figure 4.20) and a small difference in the two packet

lengths can be accommodated.

In some commercial Universal Asynchronous Receiver Transmitter (UART) devices, 16

(rather than4) is used for the clk signal used to generate the shift register clock (RXCK), giving a

greater resolution for detecting the logic value of the data bits.

Generally, if the clocks in both the transmitter and the receiver are of a high accuracy (as one

would expect from crystal oscillators), then there is usually not a problem. It would be easy to

restructure the receiver state diagrams of Figures 4.22 and 4.26 to accommodate a higher

resolution shift register clock by addingmore states in the loop comprising s5 to s8, and adding

states between s1 to s5 for the start bit. However, such a design could make use of the One Hot

method covered in Chapter 5.

Note that the FSM clock is four times that of the baud rate.

The state diagram for the asynchronous transmitter is illustrated in Figure 4.29. In this

state diagram, the shift register is clocked every four FSM clock pulses as it moves between
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Figure 4.28 Block diagram for an asynchronous serial transmitter.
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s4, s8, s9, and s5. Note that for a 1 �s baud rate the transmitter FSM clock would need to be

4 MHz.

4.9.1 Equations for the Asynchronous Serial Transmitter

A � d ¼ s0 � sendþ s1þ s2þ s3þ s4þ s5 � =txe
¼ =B � =C � =D � sendþ A � =B � =Dþ A � C � =Dþ A � B � =Dþ B � =C � =D � =txe

B � d ¼ s2þ s3þ s4þ s5þ s8þ s9þ s6 � =ack
¼ A � C � =Dþ B � =C þ =A � B � =D � =ack

C � d ¼ s1þ s2þ s5 � txeþ s6þ s7 � ack
¼ A � =B � =Dþ =A � B � =D � txeþ =A � C � =D

D � d ¼ s4þ s8

¼ A � B � =C � =Dþ A � B � =C � D
¼ A � B � =C

PD ¼ s1 ¼ A � =B � =C � =D
CLKOUT ¼ s4 ¼ A � B � =C � =D
LD ¼ =s2 ¼ =ðA � =B � C � =DÞ
RTS ¼ s6 ¼ =A � B � C � =D:
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Figure 4.29 State diagram for the asynchronous serial transmitter.
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A simulation of the FSM results in the waveforms of Figure 4.30. In this simulation, the test

sequence is s0, s1, s2, s3, s4, s8, s9, s5, s4, s8, s9, s5, s6, s7, s0.

Using the asynchronous transmitter and receiver FSMs just described, it would be possible

with modern FPGAs to run at quite high baud rates, as illustrated below.

FSM clock Receiver Transmitter clock Baud rate

RXCK CLKOUT

4MHz 1MHz 1MHz 1 mega baud

8 MHz 2MHz 2MHz 2 mega baud

16 MHz 4MHz 4MHz 4 mega baud

32 MHz 8MHz 8MHz 8 mega baud

80 MHz 20MHz 20MHz 20 mega baud

Both transmit and receiver units use the same FSM clock frequency generated with their own

clock circuits.

Thehigher baud rateswouldneed to use twisted-pair cables over relatively short transmission

distances up to around 1 m. Transmission line effects would need to be taken into account, but

this is beyond the scope of this book.
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Figure 4.30 Simulation of the serial transmitter FSM.
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4.10 CLOCKED WATCHDOG TIMER

Mostmicrocontrollers thesedayshaveabuilt inwatchdogtimer(WDT).TheWDTisanaddressable

device that can bewritten to on a regular basis. The idea is that the timer (usually a down counter) is

regularlywritten toreinitialize it toaknowncountvalue.Betweenwrites, thecounterwillbeclocked

towardszero. If themicrocontrollerdoesnotwrite to theWDTbetweencountdownperiods, then the

counter will reset to zero and this action can be used to reset the microcontroller.

TheWDT thus acts as a safeguard to prevent themicrocontroller from running out of control

(jumping to an instruction that is not part of the program sequence), perhaps due to a transient in

the power system.

Another use is in amicroprocessor-based systemwhere the operating system (perhaps a real-

time operating system) can regularly reset theWDTand, hence, provide ameans of determining

a microprocessor system failure.

The application program running on themicrocontroller needs towrite regularly to theWDT

to prevent it from reaching the reset state.

Although most microcontrollers have this feature, a lot of microprocessor systems do not.

Therefore, a circuit would need to be designed for this purpose.

The clocked FSM system shown in Figure 4.31 is a basic system designed to perform the

action of aWDT. The system needs to be designed around the specificmemory/IO cycle timing

of the microprocessor. In Figure 4.31 the memory/IO write cycle is based around a four-clock

pulse cycle time T1 to T4.

clk

ce

iow

WDP

T1         T2        T3        T4         T1        T2

Addr
Address
Decoding FSM

Down

Counter

clk

ce WDP

iow

initialize
Initialize
counter

To
reset

Microprocessor

Figure 4.31 Block diagram for a WDT for a microprocessor system.
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The system is controlled by anFSMthatmonitors the chip enable ce controlled by the address

decoding logic. This can respond to a particular address from the microprocessor. In addition,

the iow signal controlled by the microprocessor is also monitored by the FSM. When the

microprocessor addresses theWDT, ce goes low, followed by iow in theT2 clock period.On the

rising edge of the T3 clock period, the WDT pulse is generated. The FSM must produce this

watchdogpulse (WDP)at exactly the right time in thewrite cycle (T3period).Both theFSMand

the down counter are clocked by the same microprocessor clock clk.

InAppendixB, the design of a downbinary counter is described andSectionB.1 shows how this

canbedone.Toprovide this counterwith afixed startingvalue (to count down from), theflipflips of

the counter canbepreset to aknownvalue,usingaparallel loadingcounter (seeSectionB.3).This is

thepurposeoftheinitializeinputinFigure4.31(essentiallyaparallel loadinputtothedowncounter).

Note that this same input provides the initial state for the FSM (whichwill be state zero). The

WDPwill provide frequent reinitialization pulses to the down counter and, thus, prevent it from

reaching its zero state (which would otherwise cause a microprocessor reset).

A suitable state diagram is illustrated in Figure 4.32,wherein the FSMwaits in state s0 for the

microprocessor to write to the address of the WDT. This will cause ce to go low during the T1

state of the memory/IO cycle (see Figure 4.31) so that on the T2 rising clock edge the FSMwill

move into s1. Here, it waits for the microprocessor to lower iow; then, on the next clock pulse

(T3), the FSM will move into state s2, where it will lower the WDP output signal. On the next

clock pulse (T4), the FSMwillmove to s3, raising theWDP, andwait for the ce signal to go high.

Thiswill occur at the endof thememory/IOwrite cycle andwill be seenby theFSMon the rising

edge of T1.

The equations for the FSM that follow are from Figure 4.32.
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Each clock pulse corresponds to a T state

Figure 4.32 State diagram for the WDT.
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4.10.1 D Flip-Flop Equations

A � d ¼ s0 � =ceþ s1

¼ =A � =B � =ceþ A � =B
¼ =B � ceþ A � =B
B � d ¼ s1 � =iowþ s2þ s3 � =ce
¼ A � =B � =iowþ A � Bþ =A � B � =ce
¼ A � =iowþ A � Bþ B � =ce:

4.10.2 Output Equation

WDP ¼ =ðs2Þ ¼ =ðA � BÞ:

Theequation for cewoulddependupon thedesiredaddressassigned to theWDT.Forexample, if

the address assigned was 300h (11 0000 0000 binary), then the equation would result in

ce ¼ =ða9 � a8 � =a7 � =a6 � =a5 � =a4 � =a3 � =a2 � =a1 � =a0Þ:

0ns 50ns 100ns 150ns 200ns

test.rst

test.clk

test.ce

test.iow

test.WDP

test.A

test.B

Figure 4.33 The WDT FSM simulation.
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There could be additional qualifier signals, i.e. in a PC using the IOmemorymap the signal /aen

would be required in order to distinguish between dynamic memory access (DMA) cycles and

IO cycles (see Chapter 5 for DMA). Also, the /iow signal would be needed to identify a write

cycle.

The above equation for ce would then be

ce ¼ =ða9 � a8 � =a7 � =a6 � =a5 � =a4 � =a3 � =a2 � =a1 � =a0 � =aen � =iowÞ:
The equations to describe the down counter are repeated below from Appendix B for conve-

nience.

Qn � t ¼
Yp¼n

p¼1
ð=qpÞ for an n-stage counter;with the first T mflip-flop q0 � t input ¼ 1:

This equation expands to

Q0 � t ¼ 1

Q1 � t ¼ =q0

Q2 � t ¼ =q0 � =q1
Q3 � t ¼ =q0 � =q1 � =q2
Q4 � t ¼ =q0 � =q1 � =q2 � =q3:

for a four-stage down counter.

Note that the counter needs anasynchronous initialization signal connected to eachTflip-flop

to form the parallel loading input logic (see Equation (B.4) and Figure B.4).

Figure 4.33 shows the FSM in action. The output WDP goes low during state s2 after the

address-decoding ce and iow have been detected going low in sequence. The FSM state

transitions are clearly seen in the flip-flop A and B outputs.

Note that in theabovesimulation there areadditional clockpulses.Thesehavebeengenerated

by the test benchgenerator to test for theFSMremaining in states s0ands1until changes in thece

and iowsignalsoccur.Thiswouldnothappen inpractice, since themicroprocessorhascontrolof

iow and the address-decoding logic ce.

4.11 SUMMARY

In thischapter, anumberofpractical exampleshavebeendevelopedusing theblockdiagramand

state diagram approach developed in the Chapters 1–3. These have then been implemented in

terms of D-type flip-flops. You may well decide to use some of these examples in your own

designs, or expand upon them to make them fit your own requirements.

In the next chapter, the idea of having a state for each D-type flip-flop will be introduced,

leading to systems that do not need secondary state variables.
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