
348 FINITE STATE MACHINE: PRINCIPLE AND PRACTICE 

70 when read3 => 

when read4 =>  
oe-next <= ’1’; 

oe-next <= ’1 ’ ; 
end c a s e ;  

n end p r o c e s s ;  
- o u t p u t  
we <= we-buf-reg; 
oe <= oe-buf-reg; 

end look-ahead-buffer-arch; 

The look-ahead buffer is a very effective scheme for buffering Moore output. It provides 
a glitch-free output signal and reduces T,, to Tcq. Furthermore, this scheme has no effect 
on the next-state logic or state assignment and needs only minimal modification over the 
original code. 

10.8 FSM DESIGN EXAMPLES 

Our focus on the FSM is to use it as the control circuit in large systems. Such systems 
involve a data path that is composed of regular sequential circuits, and are discussed in 
Chapters 11 and 12. This section shows several simple stand-alone FSM applications. 

10.8.1 Edge detection circuit 

The VHDL code for the Moore machine-based edge detection design of Section 10.4.1 is 
shown in Listing 10.7. The code is based on the state diagram of Figure 10.12(a) and is 
done in multi-segment style. 

Listing 10.7 Edge detector with regular Moore output 

20 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  edge-detector1 i s  

port  ( 
clk, reset: in  std-logic; 
strobe : in  std-logic ; 
pl: out std-logic 

1; 
end edge-detectorl; 

a r c h i t e c t u r e  moore-arch of  edge-detector1 i s  
type state-type i s  (zero, edge, one); 
s i g n a l  state-reg , state-next : state-type ; 

_- s t a t e  r e g i s t e r  
process  (clk , reset 
begin 

begin 

i f  (reset=’l’> then 

e l s i f  (clk’event and clk=’l’) then 

end i f  ; 

state-reg <= zero; 

state-reg <= state-next; 
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Table 10.3 State assignment for edge detector output buffering 

State s t a t e i eg  (1) statereg(0) 

zero 0 0 

one 0 1 

(Pi) 

edge 1 0 

30 

35 

40 

end p r o c e s s ;  
-- n e x t - s t a t e  l o g i c  

begin 
o process  ( s t a t e - r e g  , s t r o b e )  

case s t a t e - r e g  i s  
when z e r o = >  

i f  s t r o b e =  '1' then 

e l s e  

end i f  ; 
when edge => 

i f  s t r o b e =  '1 '  then 

e l s e  

end i f ;  

i f  s t r o b e =  '1' then 

e l s e  

s t a t e - n e x t  <= e d g e ;  

s t a t e - n e x t  <= z e r o ;  

s t a t e - n e x t  <= one ;  

s t a t e - n e x t  <= z e r o ;  

when one => 

s t a t e - n e x t  <= one ;  

s t a t e - n e x t  <= z e r o ;  
45 end i f  ; 

end c a s e ;  
end p r o c e s s ;  
-- Moore ou tpu t  l o g i c  
p l  <= '1' when s t a t e - r e g = e d g e  

50 '0'; 
end moore-arch ; 

e l s e  

Assume that we want the output signal to be glitch-free. We can do it by using the 
clever state assignment or look-ahead output buffer scheme. One possible state assignment 
is shown in Table 10.3, and the VHDL code is shown in Listing 10.8. 

Listing 10.8 Edge detector with clever state assignment 

a r c h i t e c t u r e  c l e v e r - a s s i g n - b u f  - a r c h  of e d g e - d e t e c t o r 1  is  
constant  z e r o :  s t d - l o g i c - v e c t o r  (1 downto 0) :=  110011 ; 
constant edge :  s t d - l o g i c - v e c t o r  ( 1  downto 0) := l l l O 1 l ;  
constant one: s t d - l o g i c - v e c t o r  (1 downto 0) := " O l * l ;  

5 s igna l  s t a t e - r e g  , s t a t e - n e x t  : s t d - l o g i c - v e c t o r  (1 downto 0) ; 
begin 

-- s t a t e  r e g i s t e r  
process ( c l k ,  r e s e t  
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begin 
i f  ( r e s e t r ’ l ’ )  t hen  

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  t hen  

end i f ;  
end p r o c e s s ;  
- n e x t - s t a t e  l o g i c  
p r o c e s s  ( s t a t e - r e g  s t r o b e )  
begin 

s t a t e - r e g  <= z e r o ;  

s t a t e - r e g  <= s t a t e - n e x t  ; 

case  s t a t e - r a g  i s  
when z e r o = >  

i f  s t r o b e =  ’1’ then  

e l s e  

end i f  ; 
when edge => 

i f  s t r o b e =  ’1’ then  

e l s e  

end i f ;  
when o t h e r s  => 

i f  s t r o b e =  ’1) then  

e l s e  

end i f ;  

s t a t e - n e x t  <= e d g e ;  

s t a t e - n e x t  <= z e r o ;  

s t a t e - n e x t  <= o n e ;  

s t a t e - n e x t  <= z e r o ;  

s t a t e - n e x t  <= o n e ;  

s t a t e - n e x t  <= z e r o ;  

end c a s e ;  
end p r o c e s s ;  
- Moore o u t p u t  l o g i c  
p i  <= s t a t e - r e g ( 1 ) ;  

end c l e v e r - a s s i g n - b u f - a r c h ;  

The VHDL code for the look-ahead output circuit scheme is given in Listing 10.9. 

Listing 10.9 Edge detector with a look-ahead output buffer 

a r c h i t e c t u r e  look-ahead-a rch  of e d g e - d e t e c t o r 1  i s  
type s t a t e - t y p e  is  ( z e r o ,  e d g e ,  o n e ) ;  
s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : s t a t e - t y p e ;  
s i g n a l  p l - r e g  , p l - n e x t  : s t d - l o g i c ;  

- s t a t e  r e g i s t e r  
p r o c e s s  ( c l k  , r e s e t )  
begin 

5 begin 

i f  ( r e s e t = ’ i ’ )  then 

e l s i f  ( c l k l e v e n t  and c l k = ’ l ’ )  t hen  

end i f ;  
end p r o c e s s ;  

IS -- o u t p u t  b u f f e r  

10 s t a t e - r e g  <= z e r o ;  

s t a t e - r e g  <= s t a t e - n e x t ;  
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process  ( c l k  , rese t  1 
begin 

i f  ( r e s e t = ’ l ’ )  then 
p l - r e g  <= ’0’; 

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 
p l - r e g  <= p l - n e x t ;  

end i f  ; 
end p r o c e s s ;  
-- n e x t - s t a t e  l o g i c  

begin 
zs process  ( s t a t e - r e g  , s t r o b e )  

case  s t a t e - r e g  i s  
when z e r o = >  

i f  s t r o b e =  ’ 1 ’  then 

e l s e  

end i f  ; 
when edge => 

i f  s t r o b e =  ’ 1 ’  then 

e l s e  

end i f  ; 

i f  s t r o b e =  ’ 1 ’  then 

e l s e  

end i f  ; 

s t a t e - n e x t  <= e d g e ;  

s t a t e - n e x t  <= z e r o ;  

s t a t e - n e x t  <= one; 

s t a t e - n e x t  <= z e r o ;  

when one =>  

s t a t e - n e x t  <= one; 

s t a t e - n e x t  <= z e r o ;  

end c a s e ;  
end p r o c e s s ;  
-- look-ahead o u t p u t  l o g i c  
p i - n e x t  <= ’1 ’  when s t a t e - n e x t = e d g e  e l s e  

-- o u t p u t  
p l  <= p l - r e g ;  

end l o o k - a h e a d - a r c h ;  

so ’0’; 

Note that in this particular example the clever statement assignment scheme can be 
implemented by using 2 bits (i.e., two D FFs) but the look-ahead output circuit scheme 
needs at least three D FFs (2 bits for the state register and 1 bit for the output buffer). 

The VHDL code for the Mealy output-based design is shown in Listing 10.10. The code 
is based on the state diagram of Figure l0.12(b). 

Listing 10.10 Edge detector with Mealy output 

l i b r a r y  i e e e ;  
use i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
e n t i t y  e d g e - d e t e c t o r 2  i s  

port ( 
5 c l k ,  r e s e t :  in  s t d - l o g i c ;  

s t r o b e  : in  s t d - l o g i c  ; 
p 2 :  out s t d - l o g i c  
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1; 
end e d g e - d e t e c t o r 2  ; 

a r c h i t e c t u r e  mealy -a rch  of e d g e - d e t e c t o r 2  i s  
type s t a t e - t y p e  i s  ( z e r o ,  o n e ) ;  
s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : s t a t e - t y p e ;  

I0 

begin 
IS -- s t a t e  r e g i s t e r  

process  ( c l k  , r e s e t )  
begin 

i f  ( r e s e t =  1 then 
s t a t e - r e g  <= z e r o ;  

s t a t e - r e g  <= s t a t e - n e x t  ; 
20 e l s i f  ( c l k ’ e v e n t  and c l k = ’ l J )  then 

end i f ;  
end p r o c e s s ;  
- n e x t - s t a t e  l o g i c  

begin 
U process  ( s t a t e - r e g  , s t r o b e )  

case s t a t e - r e g  i s  
when z e r o = >  

i f  s t r o b e =  ’1’ then 
M s t a t e - n e x t  <= o n e ;  

s t a t e - n e x t  <= z e r o ;  
e l s e  

end i f  ; 
when one => 

35 i f  s t r o b e =  ‘1 then 
s t a t e - n e x t  <= one ;  

s t a t e - n e x t  <= z e r o ;  
e l s e  

end i f  ; 
U) end c a s e ;  

end p r o c e s s ;  
- M e a l y  o u t p u t  l o g i c  
p2 <= ’1’ when ( s t a t e - r e g = z e r o )  and ( s t r o b e = ’ l J )  e l s e  

’0’; 
45 end mealy-arch ; 

An alternative to deriving an edge detector is to treat it as a regular sequential circuit 
and design it in an ad hoc manner. One possible implementation is shown in Figure 10.19. 
The D FF in this circuit delays the s t robe  signal for one clock cycle and its output is 
the “previous value” of the s t robe  signal. The output of the and cell is asserted when 
the previous value of the s t robe  signal is ’0’ and the current value of the s t robe  signal 
is ’1’, which implies a positive transition edge of the s t robe  signal. The output signal is 
like a Mealy output since its value depends on the register’s state and input signal. The 
VHDL code is shown in Listing 10.11. The entity declaration is identical to the Mealy 
machine-based edge detector in Listing 10.10. 

Listing 10.11 Edge detector using direct implementation 

a r c h i t e c t u r e  d i r e c t - a r c h  of e d g e - d e t e c t o r 2  i s  

begin 
s i g n a l  d e l a y - r e g  : s t d - l o g i c  ; 
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strobe 
clk 

Figure 10.19 Direct implementation of an edge detector. 

- d e l a y  r e g i s t e r  

begin 
s process  ( c l k  r e s e t )  

i f  ( r e s e t =  ’1 ’1 then 

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l J )  then 

end i f ;  
end p r o c e s s ;  
-- decod ing  l o g i c  
p2 <= ( n o t  d e l a y - r e g )  and s t r o b e ;  

d e l a y - r e g  <= J O J ;  

10 d e l a y - r e g  <= s t r o b e ;  

is end d i r e c t - a r c h  ; 

Although the code is compact for this particular case, this ad hoc approach can only be 
applied to simple designs. For example, if the requirement specifies a glitch-free Moore 
output, it is very difficult to derive the circuit this way. Actually, we can easily verify that 
this ad hoc design is actually Mealy machine-based design with binary state assignment 
(i.e., 0 to the z e r o  state and 1 to the one state). 

10.8.2 Arbiter 

In a large system, some resources are shared by many subsystems. For example, several 
processors may share the same block of memory, and many peripheral devices may be 
connected to the same bus. An arbiter is a circuit that resolves any conflict and coordinates 
the access to the shared resource. This example considers an arbiter with two subsystems, 
as shown in Figure 10.20. The subsystems communicate with the arbiter by a pair of request 
and grant signals, which are labeled as r (1) and g(1) for subsystem 1, and as r (0) and 
g(0) for subsystem 0. When a subsystem needs the resources, it activates the request signal. 
The arbiter monitors use of the resources and the requests, and grants access to a subsystem 
by activating the corresponding grant signal. Once its grant signal is activated, a subsystem 
has permission to access the resources. After the task has been completed, the subsystem 
releases the resources and deactivates the request signal. Since an arbiter’s decision is based 
partially on the events that occurred earlier (i.e., previous request and grant status), it needs 
internal states to record what happened in the past. An FSM can meet this requirement. 

One critical issue in designing an arbiter is the handling of simultaneous requests. Our 
first design gives priority to subsystem 1. The state diagram of the FSM is shown in 
Figure 10.21(a). It consists of three states, waitr, grantl and granto. The waitr state 
indicates that the resources is available and the arbiter is waiting for a request. The grant 1 
and grant0 states indicate that the resource is granted to subsystem 1 and subsystem 0 
respectively. Initially, the arbiter is in the waitr state. If the r(1) input (the request 
from subsystem 1) is activated at the rising edge of the clock, it grants the resources to 
subsystem 1 by moving to the grantl state. The g (1 )  signal is asserted in this state to 
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Figure 10.20 Block diagram of an arbiter. 

t? waitr 

Figure 10.21 State diagrams of a fixed-priority two-request arbiter. 

inform subsystem 1 of the availability of the resources. After subsystem 1 completes its 
usage, it signals the release of the resources by deactivating the r (1) signal. The arbiter 
returns to the waitr state accordingly. 

In the waitr state, if r (1) is not activated and r (0) is activated at the rising edge, the 
arbiter grants the resources to subsystem 0 by moving to the grant0 state and activates the 
g(0) signal. Subsystem 0 can then have the resources until it releases them. The VHDL 
code for this design is shown in Listing 10.12. 

Listing 10.12 Arbiter with fixed priority 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
use ieee . numeric-std. a l l  ; 
ent i ty  arbiter2 i s  
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5 p o r t (  
c l k :  in  s t d - l o g i c ;  
r e s e t  : in  s t d - l o g i c  ; 
r :  i n  s t d - l o g i c - v e c t o r  (1 downto 0) ; 
g :  ou t  s t d - l o g i c - v e c t o r  (1 downto 0) 

10 1 ; 
end a r b i t e r 2  ; 

a r c h i t e c t u r e  f i x e d - p r i o - a r c h  of a r b i t e r 2  i s  
type m c - s t a t e - t y p e  i s  (wai t r  g r a n t l  g r a n t o ) ;  

IS s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : m c - s t a t e - t y p e ;  
begin 
- s t a t e  r e g i s t e r  
process  ( c l k  r e s e t )  
begin 

20 i f  ( r e s e t = ’ i ’ )  then 
s t a t e - r e g  <= waitr ;  

s t a t e - r e g  <= s t a t e - n e x t ;  
e 1 s i f ( c l k  ’ e v e n t  and c l k -  ’ 1 ) then 

end i f  ; 
1s end p r o c e s s ;  

- n e x t - s t a t e  and o u t p u t  logic 
process  ( s t a t e - r e g  , r )  

30 

3s 

so 

begin 
g <= ~ ~ 0 0 ” .  - d e f a u l t  v a l u e s  
case  s t a t e - r e g  is  

when wa i t r  => 
i f  r ( l ) = J 1 ’  then 

e l s i f  r ( 0 ) = ’ 1  then 

e l s e  

end i f  ; 
when g r a n t l  => 

i f  ( r ( l ) = ’ l ’ )  then 

e l s e  

end i f  ; 

when g r a n t 0  => 

s t a t e - n e x t  <= g r a n t l ;  

s t a t e - n e x t  <= g r a n t o ;  

s t a t e - n e x t  <= waitr  ; 

s t a t e - n e x t  <= g r a n t l ;  

s t a t e - n e x t  <= wai t r  ; 

g ( l )  <= ’ 1 ’ ;  

i f  ( r ( 0 ) = ’ l J )  then 

e l s e  

end i f  ; 

s t a t e - n e x t  <= g r a n t 0  ; 

s t a t e - n e x t  <= waitr  ; 

g ( 0 )  <= ’1’; 
end c a s e ;  

end p r o c e s s ;  
ssend f i x e d - p r i o - a r c h ;  
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If the subsystems are synchronized by the same clock, we can make g ( 1) and g (0) 
be Mealy output. The revised state diagram is shown in Figure 10.21(b). This allows the 
subsystems to obtain the resources one clock cycle earlier. In VHDL code, we modify the 
code under the waitr segment of the case statement to reflect the change. The revised 
portion becomes 

when wai t r  => 
i f  r(1)=’1’ then 

s t a t e - n e x t  <= g r a n t l  ; 
g(1)  <= ’ 1 ’ ;  - n e w l y  a d d e d  l i n e  

s t a t e - n e x t  <= g r a n t o ;  
g ( 0 )  <= ’1’ ;  - n e w l y  a d d e d  l i n e  

s t a t e - n e x t  <= w a i t r ;  

e l s i f  r ( 0 ) = ’ 1  then 

e l s e  

end i f ;  

The resource allocation of the previous design gives priority to subsystem 1. The pref- 
erential treatment may cause a problem if subsystem 1 requests the resources continuously. 
We can revise the state diagram to enforce a fairer arbitration policy. The new policy keeps 
track of which subsystem had the resources last time and gives preference to the other 
subsystem if the two request signals are activated simultaneously. The new design has to 
distinguish two kinds of wait conditions. The first condition is that the resources were 
last used by subsystem 1 so preference should be given to subsystem 0. The other condi- 
tion is the reverse of the first. To accommodate the two conditions, we split the original 
waitr state into the waitrl and waitrO states, in which subsystem 1 and subsystem 0 
will be given preferential treatment respectively. The revised state diagram is shown in 
Figure 10.22. Note that FSM moves from the grant0 state to the waitrl state after sub- 
system 0 deactivates the request signal, and moves from the grantl  state to the waitrO 
state after subsystem 1 deactivates the request signal. The revised VHDL code is shown in 
Listing 10.13. 

Listing 10.13 Arbiter with alternating priority 

a r c h i t e c t u r e  r o t a t e d - p r i o - a r c h  of  a r b i t e r 2  i s  
type m c - s t a t e - t y p e  i s  ( w a i t r l  , waitro , g r a n t l  , g r a n t o ) ;  
s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : m c - s t a t e - t y p e ;  

begin 
s -  s t a t e  r e g i s t e r  

process  ( c l k  , r e s e t )  
begin 

i f  ( r e s e t = , l ’ )  then 
s t a t e - r e g  <= w a i t r l ;  

10 e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 
s t a t e - r e g  <= s t a t e - n e x t ;  

end i f  ; 
end p r o c e s s ;  
- n e x t - s t a t e  and o u t p u t  l o g i c  

begin 
IS process  ( s t a t e - r e g  , r )  

g <= “00” ; - d e f a u l t  v a l u e s  
case  s t a t e - r e g  i s  

when w a i t r l  => 
20 i f  r ( l ) = ’ l ’  then 
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Figure 10.22 State diagram of a fair two-request arbiter. 

s t a t e - n e x t  <= g r a n t l  ; 

s t a t e - n e x t  <= g r a n t 0  ; 

s t a t e - n e x t  <= waitr l  ; 

e l s i f  r ( O ) = ’ l ’  then 

e l s e  

end i f  ; 
when w a i t r O  => 

i f  r ( O ) = ’ i ’  then 

e l s i f  r ( i ) = J 1 ’  then 

e l s e  

end i f  ; 
when g r a n t l  => 

i f  ( r ( l ) = ’ l  then 

e l s e  

end i f  ; 

when g r a n t 0  => 

s t a t e - n e x t  <= g r a n t 0  ; 

s t a t e - n e x t  <= g r a n t l ;  

s t a t e - n e x t  <= w a i t r 0 ;  

s t a t e - n e x t  <= g r a n t l  

s t a t e - n e x t  <= waitrO 

g ( 1 )  <= 1 1 ’ ;  

i f  ( r ( 0 ) = J I J )  then 

4s 

s t a t e - n e x t  <= g r a n t o ;  

s t a t e - n e x t  <= w a i t r l ;  
e l s e  

end i f  ; 
g(0) <= J I J ;  

end c a s e ;  
SO end p r o c e s s ;  
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Figure 10.23 Partial state diagram of a four-request arbiter. 

end rotated-prio-arch; 

We can apply the same idea and expand the arbiter to handle more than two requests. 
The partial state diagram of an arbiter with four requests is shown in Figure 10.23. It assigns 
priority in round-robin fashion (i.e., subsystem 3, subsystem 2, subsystem 1, subsystem 0, 
then wrapping around), and the subsystem that obtains the resources will be assigned to the 
lowest priority next. 

10.8.3 DRAM strobe generation circuit 

Because of the large number of memory cells, the address signals of a dynamic RAM 
(DRAM) device are split into two parts, known as row and column. They are sent to the 
DRAM’S address line in a time-multiplexed manner. Two control signals, rasn  (row 
address strobe) and casn (column address strobe), are strobe signals used to store the 
address into the DRAM’S internal latches. The post-fix “a” indicates active-low output, 
the convention used in most memory chips. The simplified timing diagram of a DRAM 
read cycle is shown in Figure 10.24(a). It is characterized by the following parameters: 

0 T,,,: ras access time, the time required to obtain output data after rasn  is asserted 

0 Tcaa: cas access time, the time required to obtain output data after casn is asserted 

0 Tpr : precharge time, the time to recharge the DRAM cell to restore the original value 

0 TTc: read cycle, the minimum elapsed time between two read operations. 
The operation of a conventional DRAM device is asynchronous and the device does not 

have a clock signal. The strobe signals have to be asserted in proper sequence and last 
long enough to provide the necessary time for decoding, multiplexing and memory cell 
recharging. 

A memory controller is the interface between a DRAM device and a synchronous system. 
One function of the memory controller is to generate proper strobe signals. This example 
shows how to use an FSM to accomplish this task. A real memory controller should also 

(i.e., rasn goes to ’0’). 

(i.e., casn goes to ’0’). 

(since the cell’s content is destroyed by the read operation). 
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ras-n 

cas-n 

data 
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ras-n 

cas-n 

(a) Simplified timing of a DRAM read cycle 

idle j r I c :  P 

(b) State of the strobe signals 

(c) State diagram of slow strobe generation 

Figure 10.24 Read strobe generation FSM. 
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contain register and buffer to store address and data and should have extra control signals to 
coordinate the address bus and data bus operation. A complete memory controller example 
is discussed in Section 12.3. 

Suppose that a DRAM has a read cycle of 120 ns, and TTas, T,,, and TpT are 85, 
20 and 35 ns respectively. We want to design an FSM that generates the strobe signals, 
r a s n  and casn,  after the input command signal mem is asserted. The timing diagram of 
Figure 10.24(a) shows that the rasn and c a s n  signals have to be asserted and deasserted 
following a specific sequence: 

0 The r a s n  signal is asserted first for at least 65 ns. The output pattern of the FSM is 

0 The c a s n  signal is then asserted first for at least 20 ns. The output pattern of the 

0 The rasn and c a s n  signals are de-asserted first for at least 35 ns. The output pattern 

Our first design uses a state for a pattern in the sequence and divides a read cycle into 
three states, namely the r ,  c and p states, as shown in Figure 10.24(b). The state diagram is 
shown in Figure 10.24(c). An extra id le  state is added to accommodate the no-operation 
condition. We use a Moore machine since it has better control over the width of the intervals 
and can be modified to generate glitch-free output. In this design, each pattern lasts for one 
clock cycle. To satisfy the timing requirement for the three intervals, the clock period has 
to be at least 65 ns, and it takes 195 ns (i.e., 3*65 ns) to complete a read operation. The 
VHDL code is shown in Listing 10.14. 

"01 " in this interval. 

FSM is "00" in this interval. 

of the FSM is "1 1" in this interval. 

Listing 10.14 Slow DRAM read strobe generation FSM with regular output 

l i b r a r y  i e e e  ; 
use i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
e n t i t y  dram-s t robe  i s  

port ( 
5 c l k ,  r e s e t :  in  s t d - l o g i c ;  

mem: in  s t d - l o g i c ;  
cas-n r a s - n :  out s t d - l o g i c  

1; 
end d r a m - s t r o b e ;  

a r c h i t e c t u r e  f sm-slow-clk-arch of d r a m - s t r o b e  i s  
type f s m - s t a t e - t y p e  i s  ( i d l e  , r c ,  p ) ;  
s i g n a l  s t a t e - r a g  , s t a t e - n e x t  : f s m - s t a t e - t y p e  ; 

10 

begin 
15 - s t a t e  r e g i s t e r  

process  ( c l k  r e s e t )  
begin 

i f  ( r e s e t =  1 ' ) then 
s t a t e - r e g  <= i d l e ;  

s t a t e - r e g  <= s t a t e - n e x t ;  
m e l s i f  ( c l k ' e v e n t  and c l k = ' l  '> then 

end i f ;  
end p r o c e s s ;  
- n e x r - s t a t e  l o g i c  

begin 
21, process  ( s t a t e - r e g  , m e m )  

case  s t a t e - r e g  i s  
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30 

35 

50 

55 

when i d l e  => 
i f  m e m = ’ 1 ’  then 

e l s e  

end i f  ; 

s t a t e - n e x t  < = c ;  

s t a t e - n e x t  < = p ;  

s t a t e - n e x t  < = i d l e ;  

s t a t e - n e x t  <= r ;  

s t a t e - n e x t  <= i d l e ;  

when r => 

when c => 

when p =>  

end c a s e ;  
end p r o c e s s ;  
-- o u t p u t  l o g i c  
process  ( s t a t e - r e g )  
begin 

r a s - n  <= ’1’; 
cas,n <= ’ 1 ’ ;  
case s t a t e - r e g  i s  

when i d l e  => 
when r => 

when c => 
r a s - n  <= ’0’; 

r a s - n  <= ’0’; 
cas-n <= ’0’; 

when p => 
end c a s e ;  

end p r o c e s s ;  
end f sm-s low-c lk -a rch ;  

~~ ~ 

Since the strobe signals are level-sensitive, we have to ensure that these signals are 
glitch-free. We can revise the previous code to add the look-ahead output buffer, as shown 
in Listing 10.15. 

10 

I5 

Listing 10.15 Slow DRAM read strobe generation FSM with a look-ahead output buffer 

a r c h i t e c t u r e  f sm-slow-clk-buf - a r c h  of d r a m - s t r o b e  i s  
type f s m - s t a t e - t y p e  i s  ( i d l e  , r  , c  , p >  ; 
s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : f s m - s t a t e - t y p e  ; 
s i g n a l  r a s - n - r e g  , cas -n - reg  : s t d - l o g i c  ; 

s s i g n a l  r a s -n -nex t  , cas -n -nex t  : s t d - l o g i c  ; 
begin 

-- s t a t e  r e g i s t e r  and o u t p u t  b u f f e r  
process  ( c l k  , r e se t )  
begin 

i f  ( r e s e t = ’ l ’ >  then 
s t a t e - r e g  <= i d l e ;  
r a s - n - r a g  <= ’1’; 
cas -n - reg  <= ’1’; 

s t a t e - r e g  <= s t a t e - n e x t  ; 
r a s -n - rag  <= r a s - n - n e x t ;  
ca s -n - reg  <= cas-n-next  ; 

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 
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20 

end i f ;  
end process;  
- n e x t - s t a t e  
process  ( s t a t e - r e g  , m e m >  
begin 

case s t a t e - r e g  i s  
when i d l e  => 

i f  m e m = ’ 1 ’  then 

e l s e  

end i f  ; 

s t a t e - n e x t  < = c ;  

s t a t e - n e x t  <=p;  

s t a t e - n e x t  < = i d l e ;  

s t a t e - n e x t  <= r ;  

s t a t e - n e x t  <= i d l e ;  

when r => 

when c => 

when p => 

end c a s e ;  
end process;  
- look-ahead o u t p u t  l o g i c  
process  ( s t a t e - n e x t )  
begin 

r a s - n - n e x t  <= ’1’; 
cas -n -nex t  <= ’1’; 
case s t a t e - n e x t  i s  

when i d l e  => 
when r => 

when c => 
r a s -n -nex t  <= ’0’; 

r a s - n - n e x t  <= ’0’ ; 
cas-n-next  <= ’0’; 

when p => 
end c a s e ;  

end process;  
- o u t p u t  
r a s - n  <= r a s - n - r e g ;  
ca s -n  <= c a s - n - r e g ;  

end f sm-s low-c lk -buf -a rch ;  

To improve the performance of the memory operation, we can use a smaller clock period 
to accommodate the differences between the three intervals. For example, we can use a 
clock with a period of 20 ns and use multiple states for each output pattern. The three output 
patterns need 4 (i.e.. [gl) states, 1 (i.e., [%I) state and 2 (i.e., [%I) states respectively. 
The revised state diagram is shown in Figure 10.25, in which the original r state is split into 
ri, r2, r3 and r4 states, and the original p state is split into pl and p2 states. It now takes 
seven states, which amounts to 140 ns (i.e., 7*20 ns), to complete a read operation. We can 
further improve the performance by using a 5-ns clock signal (assuming that the next-state 
logic and register are fast enough to support it). The three output patterns need 13, 4 and 
7 states respectively, and a read operation can be done in 120 ns, the fastest operation speed 
of this DRAM chip. While still simple, the state diagram becomes tedious to draw. RT 
methodology (to be discussed in Chapters 11 and 12) can combine counters with FSM and 
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Figure 10.25 State diagram of fast read strobe generation. 

O j i ' O / O  1 1 1  

I 

Figure 10.26 Sample waveform of Manchester encoding. 

provide a better alternative to implement this type of circuit. In a more realistic scenario, the 
strobe generation circuit should be part of a large system, and it cannot use an independent 
clock. The design has to accommodate the clock rate of the main system and adjust the 
number of states in each pattern accordingly. 

10.8.4 Manchester encoding circuit 

Manchester code is a coding scheme used to represent a bit in a data stream. A '0' value 
of a bit is represented as a 0-to-1 transition, in which the lead half is '0' and the remaining 
half is '1'. Similarly, a '1' value of a bit is represented as a 1-to-0 transition, in which the 
lead half is '1' and the remaining half is '0'. A sample data stream in Manchester code is 
shown in Figure 10.26. The Manchester code is frequently used in a serial communication 
line. Since there is a transition in each bit, the receiving system can use the transitions to 
recover the clock information. 

The Manchester encoder transforms a regular data stream into a Manchester-coded data 
stream. Because an encoded bit includes a sequence of "01" or "lO", two clock cycles are 
needed. Thus, the maximal data rate is only half of the clock rate. There are two input 
signals. The d signal is the input data stream, and the v signal indicates whether the d 
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V‘ V‘ 

Figure 10.27 State diagram of a Manchester encoder. 

signal is valid (i.e., whether there is data to transmit). The d signal should be converted to 
Manchester code if the v signal is asserted. The output remains ’0’ otherwise. The state 
diagram is shown in Figure 10.27. While v is asserted, the FSM starts the encoding process. 
If d is ’O’, it travels through the sOa and sob states. If d is ’1’, the FSM travels through 
the sia and s lb  states. Once the FSM reaches the slb or sob state, it checks the v signal. 
If the v signal is still asserted, the FSM skips the id le  state and continuously encodes the 
next input data, The Moore output is used because we have to generate two equal intervals 
for each bit. The VHDL code is shown in Listing 10.16. 

Listing 10.16 Manchester encoder with regular output 

l i b r a r y  ieee ; 
use  ieee. std-logic-1164. a l l  ; 
e n t i t y  manchester-encoder i s  

port ( 
5 c l k ,  reset: in std-logic; 

v,d: in std-logic; 
y: out std-logic 

1; 
end manchester-encoder; 

a r c h i t e c t u r e  moore-arch of manchester-encoder i s  
type state-type i s  (idle, sOa, sob, sla, slb); 
s i g n a l  state-reg , state-next : state-type; 

I0 

begin  
IS - s t a t e  r e g i s t e r  

process  (clk , reset) 
begin 

i f  (reset=’l’) then 
state-reg <= idle; 
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20 

30 

3s 

e l s i f  ( c l k ‘ e v e n t  and c l k = ’ l ’ )  t hen  

end i f  ; 
end p r o c e s s ;  
- n e x t - s t a t e  l og ic  

begin 

s t a t e - r e g  <= s t a t e - n e x t ;  

zs p r o c e s s  ( s t a t e - r e g  , v  , d )  

ca se  s t a t e - r e g  i s  
when i d l e = >  

i f  v=  ’0’ t hen  

e l s e  
s t a t e - n e x t  <= i d l e ;  

i f  d=  ’0’ t hen  

e l s e  
s t a t e - n e x t  <= sOa; 

s t a t e - n e x t  <= s l a ;  

40 

45 

so 

ss 

M) 

end i f  ; 
end i f  ; 

s t a t e - n e x t  <= s o b ;  

s t a t e - n e x t  <= s l b ;  

i f  v= ‘0’ t hen  

e l s e  

when sOa => 

when s l a  => 

when sob  => 

s t a t e - n e x t  <= i d l e ;  

i f  d =  ’0’ t hen  

e l s e  

end i f  ; 

s t a t e - n e x t  <= sOa 

s t a t e - n e x t  <= s l a  

end i f  ; 

i f  v= ’0’ t hen  

e l s e  

when s l b  => 

s t a t e - n e x t  <= i d l e ;  

i f  d=  ’0’ t hen  

e l s e  

end i f  ; 

s t a t e - n e x t  <= sOa 

s t a t e - n e x t  <= s l a  

end i f  ; 
end c a s e ;  

end p r o c e s s ;  
- M o o r e  o u t p u t  l o g i c  

SS y <= ’1’ when s t a t e - r e g - s l a  o r  s t a t e - r e g = s O b  e l s e  
’0’; 

end moore-arch ; 

Because the transition edge of the Manchester code is frequently used by the receiver 
to recover the clock signal, we should make the output data stream glitch-free. This can 
be achieved by using the look-ahead output buffer. The revised VHDL code is shown in 
Listing 10.17. 
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Listing 10.17 Manchester encoder with a look-ahead output buffer 

a r c h i t e c t u r e  ou t -buf -arch  of manchester-encoder  i s  
t y p e  s t a t e - t y p e  i s  ( i d l e ,  801, s o b ,  s l a ,  s l b ) ;  
s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : s t a t e - t y p e ;  
s i g n a l  y-next , y-buf - r e g :  s t d - l o g i c  ; 

J begin 

10 

IS 

20 

zs 

M 

IS 

U) 

4s 

M 

- s t a t e  r e g i s t e r  and o u t p u t  b u f f e r  
p r o c e s s  ( c l k ,  r e s e t )  
begin 

i f  ( r e s e t = ’ l J )  t h e n  
s t a t e - r e g  <= i d l e ;  
y-buf-reg <= ‘0’; 

e l s i f  ( c l k ’ e v e n t  and c 1 k = ’ l J )  t hen  
s t a t e - r e g  <= s t a t e - n e x t  ; 
y-buf-reg <= y-next ; 

end i f ;  
end p r o c e s s ;  
- n e x t - s t a t e  l og ic  
p r o c e s s  ( s t a t e - r e g  , v , d )  
begin 

c a s e  s t a t e - r e g  is  
when i d l e = >  

if  v=’O’ t h e n  

e l s e  
s t a t e - n e x t  <= i d l e ;  

i f  d= ’0’ t h e n  

e l s e  

end i f  ; 

s t a t e - n e x t  <= sOa; 

s t a t e - n e x t  <= s l a ;  

end i f  ; 

s t a t e - n e x t  <= sob;  

s t a t e - n e x t  <= s l b ;  

i f  v=’O’ t h e n  

e l s e  

when sOa => 

when s l a  => 

when sob => 

s t a t e - n e x t  <= i d l e  ; 

i f  d=’O’ t h e n  

e l s e  

end i f  ; 

s t a t e - n e x t  <= sOa; 

s t a t e - n e x t  <= s l a ;  

end i f  ; 

i f  v= ’0’ t h e n  

e l s e  

when s l b  => 

s t a t e - n e x t  <= i d l e ;  

i f  d =  ’0’ t h e n  

e l s e  
s t a t e - n e x t  <= sOa; 

s t a t e - n e x t  <= s l a ;  
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... 
q<=oooo q<=OOOl q<=OOlO q c = l l l l  

Figure 10.28 State diagram of a free-running mod- 16 counter. 

end i f  ; 
end i f  ; 

55 end c a s e ;  
end p r o c e s s ;  
-- look-ahead o u t p u t  logic 
y-next <= ’1’ when s t a t e - n e x t - s l a  or s t a t e - n e x t = s O b  e l s e  

’0’; 
6 0 -  o u t p u t  

y <= y - b u f - r e g ;  
end out-buf  - a r c h  ; 

10.8.5 FSM-based binary counter 

As discussed in Section 8.2.3, our classification of regular sequential circuits and FSMs 
(random sequential circuits) is for “design practicality.” In theory, all sequential circuits 
with finite memory can be modeled by FSMs and derived accordingly. This example 
demonstrates the derivation of an FSM-based binary counter. Let us first consider a free- 
running 4-bit counter, similar to the one in Section 8.5.4. A 4-bit counter has to traverse 16 
(z4) distinctive states, and thus the FSM should have 16 states. The state diagram is shown 
in Figure 10.28. Note the regular pattern of transitions. 

The FSM can be modified to add more features to this counter and gradually transform 
it to the featured binary counter of Section 8.5.4. To avoid clutter in the diagram, we use a 
single generic si state (the ith state of the counter) to illustrate the required modifications. 
The process is shown in Figure 10.29. We first add the synchronous clear signal, syn-clr, 
which clears the counter to 0, as in Figure 10.29(b). In the FSM, it corresponds to forcing 
the FSM to return to the initial state, SO. Note that the logic expressions give priority to 
the synchronous clear operation. The next step is to add the load operation. This actually 
involves five input bits, which include the l-bit control signal, load, and the 4-bit data 
signal, d. The d signal is the value to be loaded into the counter and it is composed of four 
individual bits, d3, d2, d l  and do. The load operation changes the content of the register 
according to the value of d. In terms of FSM operation, 16 transitions are needed to express 
the possible 16 next states. The revised diagram is shown in Figure 10.29(c). Finally, we 
can add the enable signal, en, which can suspend the counting. In terms of FSM operation, 
it corresponds to staying in the same state. The final diagram is shown in Figure 10.29(d). 
Note that the logic expressions of the transition arches set the priority of the control signals 
in the order syn-clr, load and en. Although this design process is theoretically doable, 
it is very tedious. The diagram will become extremely involved for a larger, say, a 16- or 
32-bit, counter. This example shows the distinction between a regular sequential circuit and 
a random sequential circuit. In Section 12.2, we present a more comprehensive comparison 
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Figure 10.29 State diagram development of a featured mod-16 counter. 
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between regular sequential circuits, random sequential circuits and combined sequential 
circuits, which consist of both regular and random sequential circuits. 

10.9 BIBLIOGRAPHIC NOTES 

FSM is a standard topic in an introductory digital systems course. Typical digital systems 
texts, such as Digital Design Principles and Practices by J. F. Wakerly and Contemporary 
Logic Design by R. H. Katz, provide comprehensive coverage of the derivation of state 
diagrams and ASM charts as well as a procedure to realize them manually in hardware. 
They also show the techniques for state reduction. On the other hand, obtaining optimal 
state assignment for an FSM is a much more difficult problem. For example, it takes two 
theoretical texts, Synthesis of Finite State Machines: Logic Optimization by T. Villa et al. 
and Synthesis of Finite State Machines: Functional Optimization by T. Kam, to discuss the 
optimization algorithms. 

Problems 

10.1 For the "burst" read operation, the memory controller FSM of Section 10.2.1 im- 
plicitly specifies that the main system has to activate the rw and mem signals in the first 
clock cycle and then activate the burst signal in the next clock cycle. We wish to simplify 
the timing requirement for the main system so that it only needs to issue the command in 
the first clock cycle (i.e., activates the burst signal at the same time as the rw and mem 
signals). 

(a) Revise the state diagram to achieve this goal. 
(b) Convert the state diagram to an ASM chart. 
(c) Derive VHDL code according to the ASM chart. 

10.2 The memory controller FSM of Section 10.2.1 has to return to the idle state for each 
memory operation. To achieve better performance, revise the design so that the controller 
can support "back-to-back" operations; i.e., the FSM can initiate a new memory operation 
after completing the current operation without first returning to the idle  state. 

(a) Derive the revised state diagram. 
(b) Convert the state diagram to an ASM chart. 
(c) Derive VHDL code according to the ASM chart. 

10.3 Revise the edge detection circuit of Section 10.4.1 to detect both 0-to-1 and 1-to-0 
transitions; i.e., the circuit will generate a short pulse whenever the strobe signal changes 
state. Use a Moore machine with a minimal number of states to realize this circuit. 

(a) Derive the state diagram. 
(b) Convert the state diagram to an ASM chart. 
(c) Derive VHDL code according to the ASM chart. 

10.4 Repeat Problem 10.3, but use a Mealy machine to realize the circuit. The Mealy 
machine needs only two states. 

10.5 In digital communication, a special synchronization pattern, known as a preamble, 
is used to indicate the beginning of a packet. For example, the Ethernet I1 preamble in- 
cludes eight repeating octets of "10101010". We wish to design an FSM that generates 
the "10101010" pattern. The circuit has an input signal, start, and an output, data-out. 
When s t a r t  is 'l ', the "10101010" will be generated in the next eight clock cycles. 


