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In the remainder of this chapter, we use the std-logic-2d data type in general and use 
the array-of-arrays data type if it closely matches the underlying structure. 

15.3 COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS 

We discussed the level of abstraction in Section 1.4. The focus of this book is on the 
RT level, in which the main parts are intermediate-sized components. Most synthesis 
software contains predesigned modules for relational operators and addition and subtraction 
operators, and these modules are inferred and instantiated during synthesis. There are 
many other intermediate-sized RT-level components that are frequently encountered in a 
large design, including reduction circuit, decoder, encoder, multiplexer, barrel shifter and 
multiplier. Since these components are common building parts that are needed in many 
applications, they are good candidates to be parameterized. 

As discussed in Section 7.4, the efficiency of a circuit relies heavily on its basic structure 
and underlying topology. A good description helps the synthesis process to derive a more 
effective implementation. To describe a parameterized multidimensional circuit is more 
involved. The key to designing this type of circuit is to identify a general pattern and then 
use for loop or for generate statements to describe the desired connection pattern. The 
following procedure helps us to achieve this goal: 

0 Draw a small-scale diagram with basic building blocks. 
0 Derive a proper index for the connection signals in each stage. 
0 Identify the general relationship between the signals in successive stages. 
0 Identify the connection patterns between boundary stages and U0 ports. 
0 Derive the VHDL code accordingly. 

The remaining section illustrates the design and derivation of several RT-level components. 

15.3.1 Reduced-xor circuit 

In Chapter 14, we constructed a parameterized reduced-xor circuit using various VHDL 
language constructs, as in Listings 14.1, 14.6 and 14.12. These codes essentially describe 
the same cascading circuit of Figure 14.2. For an n-bit input, the critical path includes n xor 
gates. We can rearrange the cascading chain into a tree-shaped structure, as discussed in 
Section 7.4.1, and reduce the critical path to log, n xor gates. 

For a non-parameterized design, we can use parentheses to force the desired order of 
evaluation and thus implicitly construct a tree-shaped circuit, as shown in Listing 7.18. 
Translating this approach into a parameterized description is not feasible. We need to 
explicitly specify the connection pattern in VHDL code. The circuit diagram of a tree- 
shaped eight-input reduced-xor circuit is shown in Figure 15.2. This is a two-dimensional 
structure. We first divide the tree into stages and number the stages from right to left. Each 
stage now contains multiple xor gates. We treat each xor gate as a row and number the 
rows from top to bottom. An xor gate can be identified with a two dimensional index (s, r ) ,  
which represents the rth row of the sth stage. The corresponding output signals of the xor 
gate is named ps,,.. We can label all the interconnection signals according to this naming 
convention, as shown in Figure 15.2. Note that the input signals to the leftmost stage are 
also named following the same convention to make a homogeneous diagram. 

The key to describing a repetitive structure is to identify the relationship of the signals 
between successive stages. Let us examine the xor gate in the rth row of the sth stage. Its two 
inputs are from the the 2rth row and (2r+l)th row of the left stage (i.e., the (s+l)th stage). 
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Figure 15.2 Tree-shaped reduced-xor circuit. 

The factor 2 in a row's index reflects the fact that the number of rows is reduced by half in 
each stage. The input-output relationship of this xor gate can be described as 

PS,? = Ps+l ,2r  €3 Ps+l,2r+l 

After identifying the key relationship, we can convert the circuit into VHDL code. The 
two-dimensional structure implies that we need a two-dimensional data type for the p signal 
and a nested generate statement for the structure, with the outer statement for iteration in 
terms of the stages and the inner statement for iteration in terms of the rows. Since an xor 
gate has two inputs, the number of rows is reduced by half at each stage. For an input of 
n bits, the implementation needs log, n stages and there are 2s rows in the 8th stage. 

The VHDL code is shown in Listing 15.4. The entity declaration is the same as the 
one in Chapter 14 and is included for clarity. We assume that the width of the input is 
in a power of 2. The code uses a nested two-level for generate statement for the general 
structure and an additional for generate statement to convert the input signal to the internal 
naming convention. 

Listing 15.4 Parameterized tree-shaped reduced-xor circuit with input of 2" bits 

l i b r a r y  ieee; 
use ieee. std-logic-1164, a l l  ; 
use work. util-pkg. a l l  ; 
e n t i t y  reduced-xor i s  

s gener ic  (WIDTH : natural) ; 
p o r t (  . 

a: in std-logic-vector (WIDTH-1 downto 0); 
y :  out std-logic 

1; 
10 end reduced-xor ; 

a r c h i t e c t u r e  gen-tree-arch of reduced-xor i s  
cons tant  STAGE: natural := log2c (WIDTH) ; 
s i g n a l  p: 

I S  std-logic-2d (STAGE downto 0, WIDTH -1 downto 0) ; 
begin 
- rename i n p u t  s i g n a l  
in-gen: for  i in 0 to  (WIDTH-1) generate  
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p(STAGE,i) <= a(i); 
20 end g e n e r a t e ;  

- r e p l i c a t e d  s t r u c t u r e  
stage-gen: 
for  8 in (STAGE-1) downto 0 generate 

row-gen : 
25 f o r  r in  0 to  (2**s-1) generate  

p(s,r) <= p(s+l,2*r) xor p(s+l,2*r+l); 
end generate ; 

end generate ; 
-- rename o u t p u t  s i g n a l  

30 y <= p(0,O); 
end gen-tree-arch; 

If the number of input bits is not a power of 2, the input stage may appear irregular. 
One way to handle the input of arbitrary width is to create a full-sized reduced-xor tree and 
tie the unused inputs to 0’s. Since z @ 0 = z, there is no effect on functionality. These 
0 inputs are static, and the redundant xor gates will be removed during synthesis. Thus, the 
padding 0’s should have no adverse impact on the physical implementation. The revised 
VHDL code is shown in Listing 15.5. An if generate statement is added. The input to the 
leftmost stage will be padded with 0’s if its number is not a power of 2. 

Listing 15.5 Parameterized tree-shaped reduced-xor circuit with input of arbitrary bits 

a r c h i t e c t u r e  gen-tree2-arch of reduced-xor i s  
cons tant  STAGE: natural : =  log2c (WIDTH) ; 
s i g n a l  p: 

std_logic_2d(STAGE downto 0, 2**STAGE-l downto 0) ; 
5 begin 

-- rename i n p u t  s i g n a l  
in-gen : 
for  i in  0 to (WIDTH-1) generate 

end generate ; 
-- p a d d i n g  0 ’ s  
pad0-gen : 
i f  WIDTH < (2**STAGE) generate 

p(STAGE,i) <= a(i>; 

zero-gen : 
for  i in WIDTH to  (2**STAGE-l) generate 

end generate ; 
p(STAGE,i) <= ’0’; 

end generate ; 
- r e p  1 i c a  t e d  s t r u c t u r e  
stage-gen : 
for s in (STAGE-1) downto 0 generate 

row-gen : 
for r in  0 to  (2**s-1) generate 

end generate ; 
p(s,r> <= p(s+l,l*r) xor p(s+l,2*r+l); 

end generate ; 
- rename o u t p u t  s i g n a l  
y <= p(0,O); 

end gen-tree2-arch ; 
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The design can also be coded with a for loop statement, as shown in Listing 15.6. 

Listing 15.6 Parameterized tree-shaped reduced-xor circuit using for loop statement 

a r c h i t e c t u r e  loop-tree-arch of  reduced-xor i s  
cons tant  STAGE: natural := log2c (WIDTH) ; 
s i g n a l  p: 

std_logic_2d(STAGE downto 0. 2**STAGE-1 downto 0) ; 
5 begin 

process  (a  I p) 
begin 

for i in  0 to (2**STAGE-1) loop 
i f  i < WIDTH then 

e l s e  

end i f  ; 

10 p(STAGE,i) <= a(i); - rename i n p u t  s i g n a l  

p(STAGE,i) <= ’0’; - p a d d i n g  0 ’ s  

end l o o p ;  

for  a in  (STAGE-1) downto 0 loop 
for  r in  0 to (2**a-1) loop 

end l o o p ;  

IS  - r e p  1 i c a t e d  s t r u  c t u  r e  

p ( a , r )  <= p(s+l,l*r) xor p ( a + l ,  2*r+1); 

20 end l o o p ;  
end p r o c e s s ;  
- rename o u t p u t  s i g n a l  
y <= p(0,O); 

end loop-tree-arch; 

15.3.2 Binary decoder 

We discussed the design of a parameterized binary decoder in Section 14.7.2. The code 
in Listing 14.21 represents a one-dimensional vertical structure, as shown in Figure 14.1. 
Since the decoding of each output bit is done in parallel, the code is better than the codes 
of a cascading chain. However, the parallel vertical structure introduces a large number of 
input signals and may hinder the placement and routing process. 

An alternative is to construct a larger decoder with a collection of smaller decoders 
that are arranged as a two-dimensional tree. This example illustrates the construction with 
l-to-2l decoders. The block diagram and the function table of the l-to-2l decoder are 
shown in Figure 15.3(a). An enable signal, en, is added to the decoder to accommodate the 
construction. When it is not asserted, the decoder is disabled with an all-zero output. The 
logic equations for this circuit are very simple: 

yo = en . a’ 
y1 = en - a 

The block diagram of a 3-t0-2~ decoder with 1-to-2l decoders is shown in Figure 15.3@). 
In this scheme, the input signal is decoded in stages, from the MSB to the LSB. The leftmost 
stage (i.e., stage 2) decodes the a2 bit, and its output enables either the top or bottom part of 
the downstream decoding stages. The next stage decodes the a1 bit and enables one-half of 
its downstream decoding stages. Thus, after two stages, only one-fourth of the downstream 
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(a) Symbol and function table of a 140-2~ decoder 
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(b) 3-t0-2~ decoder using l-to-2l decoders 

Figure 15.3 Tree-shaped binary decoder. 

decoding stages is enabled. For an 71-to-2~ decoder, this operation repeats for each bit until 
all the bits are decoded and one out of 2n output bits is asserted. 

Note that there is an additional enable signal, en, in the input of the parameterized 
module. If the en signal is not asserted, it disables the leftmost 1-to-2l decoder, which, in 
turn, disables all downstream 1-to-2' decoders. None of the output bits will be asserted. 

The VHDL description is shown in Listing 15.7, and the entity declaration of Chapter 14 
is included for clarity. It is coded with a nested two-level for loop statement. The two inner 
sequential signal assignments are based on the logic equations of the 1-to-2' decoder. 

Listing 15.7 Parameterized tree-shaped binary decoder 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use work. util-pkg. a l l  ; 
e n t i t y  tree-decoder i s  

s g e n e r i c  (WIDTH: natural) ; 
port  ( 

a: in  std-logic-vector (WIDTH-1 downto 0 )  ; 
en:std-logic; 
code : out std-logic-vector (P**WIDTH-l downto 0) 

10 1 ; 
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end tree-decoder ; 

a r c h i t e c t u r e  loop-tree-arch of tree-decoder i s  
cons tant  STAGE: natural := WIDTH; 

I5 s i g n a l  p: 
std_logic_2d(STAGE downto 0, 2**STAGE-1 downto 0) ; 

begin 
process  (a,p) 
begin 

20 - l e f t m o s t  s t a g e  
p(STAGE,O) <= en; 
- m i d d l e  s t a g e s  
for s in STAGE downto 1 l oop  

for r in  0 to  (2**(STAGE-s)-1) loop 
p(s-1,2*r) <= ( n o t  a(s-1)) and p(s,r>; 
p(s-l,2*r+l) <= a(s-1) and p(s,r>; 

end l o o p ;  
end l o o p ;  
- l a s t  s t a g e  and o u t p u t  

M for i in  0 to (2**STAGE-l) loop 
code(i) <= p(0,i); 

end l o o p ;  
end p r o c e s s ;  

end loop-tree-arch; 

2.5 

15.3.3 Multiplexer 

A parameterized multiplexer was designed in Chapter 14 and the code is shown in List- 
ing 14.25. The code represents a one-dimensional cascading priority routing network and 
thus is not an ideal structure. 

Tree-shaped multiplexer One scheme to derive a two-dimensional structure is to di- 
vide the multiplexing into stages that are controlled by the individual bits of the selection 
signal. The block diagram of an 8-to-1 multiplexer is shown in Figure 15.4. It consists of 
three stages of 2-to-1 multiplexers. At each stage, the selection signals of the 2-to-1 mul- 
tiplexers are tied together and connected to a bit of the selection signal, sel, of the 8-to-l 
multiplexer. The LSB of the sel signal is connected to the leftmost stage (i.e., stage 2). It 
selects one-half of the eight possible inputs and routes them to the next stage. The selection 
process repeats two more times until a single input is routed to the output. 

The operation of this circuit can be understood by examining an example. Routing with 
the sel signal of "1 10" is shown in Figure 15.5. We use a "binary subscript" to make the 
routing process clearer. For example, the a6 input is expressed as ~ 1 1 0 .  The routing is done 
as follows: 

0 Stage 2 (the leftmost stage): The LSB of the sel signal is '0' and thus input signals 
with index "xxO", which include ~000, solo, a100 and allo, are selected and routed 
to the next stage. 

0 Stage 1 (the middle stage): The second LSB of the sel signal is ' 1' and thus signals 
with index "xlx", which include a010, and ~ 1 1 0 ,  are selected and routed to the next 
stage. 
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stage 2 stage 1 stage 0 

Figure 15.4 Tree-shaped 8-to- 1 multiplexer. 

Figure 15.5 Routing with sel="l 10. 
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0 Stage 0 (the rightmost stage): The MSB of the sel signal is '1' and thus the signal 

We can develop the VHDL code following the basic connection pattern of Figure 15.5. 
Note that the basic structure of the multiplexer is similar to the tree-shaped reduced-xor 
circuit of Section 15.3.1. Thus, the code of the reduced-xor circuit can be modified for the 
multiplexer. The VHDL code using the for loop statement is listed in Listing 15.8. 

with index "lxx", which is ~ 1 1 0 ,  is selected and routed to the output. 

Listing 15.8 Parameterized tree-shaped multiplexer 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee . numeric-std. a l l  ; 
use work. util-pkg . a l l  ; 

5 e n t i t y  muxl i s  
g e n e r i c  (WIDTH: natural) ; 
p o r t  ( 

a: i n  std-logic-vector (WIDTH-1 downto 0) ; 
sel : i n  std-logic-vector (log2c (WIDTH) -1 downto 0) ; 

10 y :  ou t  std-logic 
1; 

end muxl; 

a r c h i t e c t u r e  loop-tree-arch of muxl is  
IS c o n s t a n t  STAGE: natural:= log2c(WIDTH); 

s i g n a l  p: 
std_logic_2d( STAGE downto 0, 2**STAGE-1 downto 0) ; 

begin 
process  (a,sel ,p> 

20 begin 
f o r  i i n  0 to  (2**STAGE-l) loop 

i f  i < WIDTH then 

e l s e  

end i f  ; 

p(STAGE,i) <= a(i>; - rename i n p u t  s i g n a l  

2.5 p(STAGE,i) <= '0'; - p a d d i n g  0's 

end l o o p ;  
- r e p l i c a t e d  s t r u c t u r e  
f o r  s i n  (STAGE-1) downto 0 loop 

f o r  r i n  0 to (2**s-1) loop 

p(s,r> <= p(s+l,2*r); 

p(s,r) <= p(s+1,2*r+l); 

i f  sel((STAGE-l)-s)='O' then 

e l s e  

end i f ;  
end l o o p ;  

end l o o p ;  
end p r o c e s s ;  
- rename o u t p u t  s i g n a l  

40 y <= p(0,O); 
end loop-tree-arch; 

The code is identical to that in Listing 15.6 except that we replace the xor gate 

p(s,r> <= p(s+l,2*r) xor p(s+l,2*r+l); 
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with a 2-to- 1 multiplexer: 

i f  sel ((STACE-1) - s ) = ’ O  ’ then 

e l s e  

end i f ;  

p(s,r) <= p(s+i,2*r); 

p(s , r )  <= p(s+l,2*r+l); 

Behaviorai description If the input of a multiplexer is represented as an array, as in the 
code of Listing 15.8, the multiplexing can be considered as an indexing function that uses 
the sel signal as an index to select an element from the array. Based on this observation, 
we can derive the behaviorial VHDL code, as shown in Listing 15.9. 

Listing 15.9 Behavioral description of a multiplexer 

a r c h i t e c t u r e  beh-arch of muxl i s  
begin  

end beh-arch ; 
y <= a(to-integer(unsigned(se1))); 

We have used the complex index expressions before. However, these expressions are 
sfufic, which means that their values are determined during the elaboration process, and no 
physical circuit will be inferred. On the other hand, the index expression in the beh-arch 
architecture depends on the sel input. This implies that the expression is dynamic and will 
infer a multiplexing circuit. 

In the ideal case, the synthesis software recognizes this expression, and a predesigned, 
optimized multiplexer is inferred from the device library accordingly. We can use a simple 
one-line code to obtain an efficient implementation. However, not all synthesis software 
accepts the dynamic expression in array index, and thus the code is less portable. 

Two-dimensional description In Section 15.2.4, we extended the multiplexer to ac- 
commodate two-dimensional input data. The code follows the cascading priority routing 
network of the one-dimensional design and suffers the same performance problem. 

We can follow the process in Section 15.2.4 and extend the tree-shaped multiplexer 
to accept two-dimensional input data as well. The extension requires the use of a three- 
dimensional data type to represent the internal signal. This can be done by defining a 
new genuine data type like std-logic-2d or creating a new index function to emulate the 
three-dimensional data type with a one-dimensional array. 

Alternatively, we can construct a two-dimensional multiplexer by duplicating the existing 
one-dimensional multiplexers. The VHDL code is shown in Listing 15.10. The a signal is 
converted into an array-of-arrays data type internally, and a for generate statement creates 
multiple instances of one-dimensional multiplexers. 

Listing 15.10 lbo-dimensional multiplexer using one-dimensional multiplexers 

a r c h i t e c t u r e  from-muxld-arch of mux2d is 
type aoa-transpose-type i s  

s i g n a l  aa: aoa-transpose-type ; 

gener ic  (WIDTH: natural) ; 
port ( 

array (B-1 downto 0) of std-logic-vector (P-1 downto 0) ; 

5 component muxl i s  

a: in  std-logic-vector (WIDTH-1 downto 0) ; 
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Table 15.1 Function table of an 8-to-3 binary encoder 

Input Encoded output 
(17(16 ' ' a1aO b2blbO 

0000 0001 OOO 
OOOO 0010 00 1 
0000 0100 010 
0000 1000 01 1 
0001 0000 100 
0010 OOOO 101 
0100 0000 110 
1000 0000 111 

others don' t-care 

sel : in s t d - l o g i c - v e c t o r  ( l o g 2 c  (WIDTH) -1 downto 0) ; 
10 y :  ou t  s t d - l o g i c  

1; 
end component; 

- c o n v e r t  t o  a r r a y - o f - a r r a y s  d a t a  t y p e  
IS process  ( a )  

begin 

begin 

fo r  i i n  0 to  ( B - I )  loop 
for j in  0 to ( P - 1 )  loop 

a a ( i > ( j >  <= a ( j , i > ;  
20 end l o o p ;  

end loop;  
end p r o c e s s ;  
-- r e p l i c a t e  I - b i t  m u l t i p l e x e r  B t i m e s  
g e n - n b i t :  fo r  i in 0 to  ( B - 1 )  generate 

25 mux: muxl 
g e n e r i c map ( W I DTH = > P 1 
port m a p ( a = > a a ( i )  , sel=>sel, y=>y(i)); 

end generate ; 
end f rom-muxld-arch ; 

15.3.4 Binary encoder 

A binary encoder is a circuit that converts a one-hot input into a binary representation. The 
width of the input is normally a power of 2, and only 1 bit of the input is asserted. The 
function table of an 8-to-3 binary encoder is shown in Table 15.1. One unique characteristic 
of a binary encoder is the number of don't-care input combinations. For an n-bit input, 
2" - n combinations are not used. This can lead to significant circuit reduction. 

The circuit can easily be constructed by observing the function table. The logic expres- 
sions of the previous 8-to-3 binary encoder are 

b p  = U7 -k U6 -k U5 -k U4 
bi = a7 -k a6 -k U3 -k U2 
bo = a7 + a5 + a3 + a1 
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Deriving an abstract parameterized code for the binary encoder is not very hard. However, 
this kind of description tends to "overspecify" the circuit. For example, the priority encoder 
code of Listing 14.24 can also be used to describe a binary encoder. Although the circuit 
functions correctly, the overspecification leads to unnecessary circuit complexity. 

One way to describe a more efficient implementation is to follow the pattern of the 
previous or expressions. Close observation shows that the ak bit will be included in the or 
expression of bi if the following condition is met: 

k 
- m o d 2 = 1  
2i 

For example, let i = 1. For an 8-to-3 binary encoder, the range of k is between 0 and 7, 
and the condition is satisfied when k is 7,6,3 and 2. Thus, the or expression of bl can be 
written as a7 + a6 + a3 + a2. 

To accommodate the condition, we create a mask table mirroring the desired patterns 
and apply the pattern to enable the desired bits. For example, the mask table of the previous 
8-to-3 binary encoder is 

"11110000" 
11 00 1 100 1' , 

"10101010", 

To obtain b2, we can perform the and operation between the a input and the first row of the 
mask table and then perform reduced-or operation over the result. This scheme is coded 
in Listing 15.11. We define a function, gen-oraask, to generate the mask table with an 
array-of-arrays data type and then use it to disable the unneeded bits. The circuit is described 
by a nested two-level for loop statement. The outer loop iterates through the log2 n output 
bits, and the inner loop performs the reduced-or operation over the masked input. The code 
for the reduced-or circuit represents a cascading structure. If needed, we can revise it to 
make a tree-shaped implementation, as the reduced-xor circuit in Section 15.3.1. This is 
probably not necessary since the synthesis software should be able to handle such a simple 
circuit. 

Listing 15.11 Parameterized binary encoder 

l i b r a r y  ieee ; 
use ieee, std-logic-1164. a l l  ; 
use work. util-pkg. a l l  ; 
e n t i t y  bin-encoder is  

5 gener ic  ( N :  natural) ; 
port ( 

a: in  std-logic-vector ( N - 1  downto 0) ; 
bcode : out std-logic-vector (log2c ( N )  -1 downto 0) 

> ;  
10 end bin-encoder ; 

a r c h i t e c t u r e  para-arch0 of bin-encoder i s  
type mask-2d-type i s  array (log2c ( N I  -1 downto 0) of 

std-logic-vector ( N - 1  downto 0) ; 
15 s i g n a l  mask : mask-2d-type ; 

f u n c t i o n  gen-or-mask return mask-2d-type i s  

begin 
v a r i a b l e  or-mask : mask-2d-type ; 

for i in  (logZc(N)-1) downto 0 loop 
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2.5 

20 f o r  k in  ( N - 1 )  downto 0 loop 
i f  (k/(2**i) mod 2)= 1 then 

or-mask(i) (k) := ’1 ’ ;  
e l s e  

or-mask(i)(k) := ’0’; 
end i f  ; 

end l o o p ;  
end l o o p ;  
return or-mask ; 

end funct ion  ; 
30 

begin 
mask <= gen-or-mask ; 
process  (mask, a) 

v a r i a b l e  tmp-row : std-logic-vector (N-1 downto 0) ; 
35 var iab le  tmp-bit : std-logic; 

begin 
for  i in  (log2c(N)-l) downto 0 loop 

tmp-row : = a and mask(i) ; 
-- reduced  or o p e r a t i o n  

for  k in  “-1) downto 0 loop 

end l o o p ;  
bcode(i) <= tmp-bit ; 

40 tmp-bit := ’0’; 

tmp-bit := tmp-bit or tmp-row(k); 

45 end l o o p ;  
end p r o c e s s ;  

end para-arch0 ; 

Note that the gen-ormask function and the mask operation are static. The masked bits 
will become 0’s during elaboration process and be removed from the physical circuit during 
synthesis. 

15.3.5 Barrel shifter 

In Section 7.4.4, we studied the design of a fixed-size 8-bit rotating-right circuit. It consists 
of three stages of shifting-multiplexing circuits. According to the value of the control 
signal, the input can be either passed directly to the output or shifted by a fixed amount. 
The amount of shifting doubles in each stage, from 2’ to 2l and 22. The 3-bit selection 
signal controls the three shifting-multiplexing circuits. After an input signal passes through 
three stages, the total shifted amount is the summation of the three individual stages set by 
the selection signal. 

This is an efficient implementation for several reasons. First, as the number of inputs 
increases, the number of stages grows on the order of 0(10g2 n). The length of the critical 
path grows in the same order, and thus its performance is much better than the cascading 
chain. Second, the circuit exhibits a regular two-dimensional structure and thus is easier 
for the synthesis and placement and routing software to obtain better results. Finally, recall 
that shifting a fixed amount requires only reconnection of the input and output signals. 
The shifting-multiplexing circuit is essentially a simple 240-1 multiplexer. Because of 
the regular structure, this scheme can be extended easily to accommodate parameterized 
design. 
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To make the parameterized shifting circuit more flexible, we include a feature parameter 
to indicate the type of shift operation, which can be shifting left, rotating left, shifting right 
and rotating right. The design starts with the shifting-multiplexing module. The basic 
block diagram is shown in Figure 15.6(a). The VHDL code of the parameterized shifting- 
multiplexing module is shown in Listing 15.12. The code includes three parameters. The 
WIDTH generic specifies the size of the circuit, the SAMT generic specifies the amount to 
be shifted and the SMODE generic specifies the type of shifting operation. Four if generate 
statements generate the desired amount of shifting or rotation, and the result is passed to a 
2-to-1 multiplexer. Note that the shifted amount is determined by the SAMT generic and 
thus is static. The shiftinghotation circuit involves only reconnection of the signals. 

Listing 15.12 Parameterized fixed-size shifting-multiplexing module 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use work. util-pkg. a l l  ; 
e n t i t y  f ixed-shifter i s  

s g e n e r i c (  
WIDTH : natural ; 
S-AMT : natural ; 
S-MODE : natural 

1; 
10 p o r t (  

s-in: in  std-logic-vector (WIDTH-1 downto 0) ; 
shft: in  std-logic; 
S-out : out std-logic-vector (WIDTH-1 downto 0) 

1; 
IS end f ixed-shif ter ; 

a r c h i t e c t u r e  para-arch of f ixed-shifter i s  
c o n s t a n t  L-SHIFT: natural : = O ;  
c o n s t a n t  R-SHIFT : natural : = l ;  

20 c o n s t a n t  L-ROTAT: natural : = 2 ;  
c o n s t a n t  R-ROTAT : natural : = 3 ;  
s i g n a l  sh-tmp , zero: std-logic-vector (WIDTH-1 downto 0) ; 

begin 

40 

zero <= ( o t h e r s = > ’ O ’ ) ;  
-- s h i f t  l e f t  
1-sh-gen : 
i f  S-MODE=L-SHIFT generate  

sh-tmp <= s-in(W1DTH-S-AMT-1 downto 0) % 
zero (WIDTH-1 downto WIDTH-S-AMT) ; 

end generate  ; 
- r o t a t e  l e f t  
1-rt-gen : 
i f  S-MODE=L-ROTAT generate  

sh-tmp <= s-in(W1DTH-S-AMT-1 downto 0) % 
s-in(W1DTH-1 downto WIDTH-S-AMT) ; 

end generate  ; 
-- s h i f t  r i g h t  
r-sh-gen : 
i f  S-MODE=R-SHIFT generate  

sh-tmp <= zero(S-AMT-1 downto 0) % 
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(b) Block diagram of an %bit three-stage barrel shifter 

Figure 15.6 Parameterized barrel shifter. 

s-in (WIDTH -1 downto S-AMT) ; 
end generate ; 
- r o t a t e  r i g h t  
r-rt-gen : 

4s if S-MODE=R-ROTAT generate  
sh-tmp <= s-in(S-AMT-1 downto 0) tz 

s-in (WIDTH -1 downto S-AMT) ; 
end generate ; 
- 2 - t o  - I  m u l t i p l e x e r  

M s-out <= sh-tmp when shft=’l’ e l s e  
s-in ; 

end para-arch ; 

The block diagram of a general &bit three-stage barrel shifter is shown in Figure 15.6(b). 
Each stage is a shifting-multiplexing module, and the ith bit of the amt signal is connected 
to the shf t signal of the ith stage. The amount of shifting is determined by the stage and is 
2i for the ith stage. The VHDL code is shown in Listing 15.13. We assume that the value 
of input (Le., the WIDTH parameter) is a power of 2. 

Listing 15.13 Parameterized barrel shifter 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use work. util-pkg. a l l  ; 
e n t i t y  barrel-shifter i s  
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5 g e n e r i c (  
WIDTH : n a t u r a l  ; 
S-MODE : n a t u r a l  

) ;  
port ( 

10 a :  in  s t d - l o g i c - v e c t o r  ( W I D T H - 1  downto 0) ; 
amt : in  s t d - l o g i c - v e c t o r  ( l o g l c  (WIDTH) -1 downto 0) ; 
y :  out s t d - l o g i c - v e c t o r  ( W I D T H - 1  downto 0) 

1; 
end b a r r e l - s h i f  t e r  ; 

a r c h i t e c t u r e  p a r a - a r c h  of b a r r e l - s h i f t e r  i s  
I S  

cons tant  STAGE: n a t u r a l  := logPc(W1DTH) ; 
type  s t d - a o a - t y p e  i s  array(STAGE downto 0) of 

s t d - l o g i c - v e c t o r  ( W I D T H - 1  downto 0) ; 
20 s i g n a l  p :  s t d - a o a - t y p e ;  

component f i x e d - s h i f t e r  i s  

WIDTH : n a t u r a l  ; 
S-AMT : n a t u r a l  ; 

U S-MODE : n a t u r a l  

g e n e r i c  ( 

1; 
port ( 

s - i n  : in  s t d - l o g i c - v e c t o r  ( W I D T H - 1  downto 0) ; 
s h f t :  in  s t d - l o g i c ;  

30 s -ou t  : out  s t d - l o g i c - v e c t o r  (WIDTH-1 downto 0) 
1; 

end component ; 

p ( 0 )  <= a ;  
35 s t age -gen  : 

fo r  s in  0 t o  (STAGE-1) generate  
s h i f t - s l i c e :  f i x e d - s h i f t e r  

begin 

g e n e r i c  map(WIDTH=>WIDTH , S-MODE=>S-MODE , 
S-AMT=>l**s) 

40 port  map(s-in=>p(s), s - o u t = > p ( s + l )  , s h f t = > a m t ( s ) )  ; 
end generate  ; 
y <= p(STAGE); 

end p a r a - a r c h  ; 

15.4 MORE SOPHISTICATED EXAMPLES 

We study more sophisticated design examples in this section, including a reduced-xor- 
vector circuit and cell-based combinational multiplier, which exhibit more complex two- 
dimensional structures, and a priority encoder and FIFO, which are constructed using pre- 
designed parameterized RT-level components. 
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15.4.1 Reduced-xor-vector circuit 

The reduced-xor-vector circuit was explained in Section 7.4.2. It performs the xor operation 
over successive ranges of the input. For example, for a 4-bit input a3a2~1a0, the circuit 
returns four values: ao, a1 @ ao. a2 @ a1 @ a0 and a3 @ a2 @ a1 @ a0 . 
Cascading-chain structure We discussed two implementations in Section 7.4.2. The 
linear cascading implementation requires a minimal number of gates, and its VHDL code 
is very simple. The code of Listing 7.21 takes advantage of the VHDL array construct and 
can easily be modified to accommodate a parameterized design. The revised code is shown 
in Listing 15.14. 

Listing 15.14 Parameterized cascading-chain reduced-xor-vector circuit 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use work. util-pkg. a l l  ; 
e n t i t y  reduced-xor-vector i s  

s g e n e r i c  (N : natural) ; 
port ( 

a :  in  std-logic-vector (N-1 downto 0) ; 
y: out  std-logic-vector (N-1 downto 0) 

1; 
10 end reduced-xor-vector ; 

a r c h i t e c t u r e  linear-arch of reduced-xor-vector i s  

begin  
s i g n a l  p :  std-logic-vector (N-1 downto 0) ; 

IS p <= (p(N-2 downto 0) % '0') xor a; 
y <= p ;  

end linear-arch; 

The cascading structure experiences a large propagation delay. For an N-bit input, the 
critical path includes N xor gates. 

ParaNekprefix structure A more efficient structure was shown in Figure 7.8(b), which 
reduces the critical path to log, N xor gates and achieves the maximal amount of sharing. 
The interconnection is arranged according to a special class of structures based on the 
parallel-prefix algorithm. 

The connection structure of this circuit is more involved. To better understand the 
connection pattern, we rename the signals in the circuit diagram of Figure 7.8(b) and add 
some pass-through boxes. The revised diagram is shown in Figure 15.7. 

Assume that a reduced-xor-vector circuit has N-bit input and N = 2*. The circuit can 
be divided into n stages, each containing 2" blocks (rows). A block can be an xor gate or 
an empty pass-through box. We number the stages from left to right and the rows from top 
to bottom. For the ith row in the sth stage, its output is labeled as psi.  An 8-bit circuit is 
shown in Figure 15.7. 

Closer observation of the diagram shows that it follows a simple pattern. Consider the 
sth stage: 

0 The stage is divided into 2n-S modules. Each module contains 28 blocks and is 

0 The top-half blocks of the module are pass-through boxes. The input of a box is 
shown as a shaded rectangle in Figure 15.7. 

connected to the output from the same row of the preceding stage. 
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stage 3 

Figure 15.7 Parallel-prefix reduced-xor-vector circuit. 

0 The bottom-half blocks of the module are xor gates. One input of an xor gate is 
connected to the output from the same row of the preceding stage. The other input 
is the same for all xor gates in the module. It is from the output whose row index is 
one smaller than the index of the top xor gate in the module. 

For example, consider the second stage in the diagram. We can divide it into two 22 
modules. In the first module, the top half of the first module, whose outputs are labeled 
p20 and p21, is connected to pl0 and p l l .  The outputs of the bottom half of the module are 
labeled p22 and p23. In addition to the p12 and pi3 signals, the xor gates share a common 
input, the p l l  signal. The second module has a similar pattern. Note that the pi5 signal is 
connected to the xor gates whose outputs are labeled -6 and p27. 

The VHDL code is shown in Listing 15.15. We assume that the number of elements of 
the a input is a power of 2. 

Listing 15.15 Parameterized parallel-prefix reduced-xor-vector circuit 

a r c h i t e c t u r e  para-pref ix-arch of reduced-xor-vector i s  
cons tant  ST : natural := log2c ( N I  ; 
s i g n a l  p: std_logic_2d(ST downto 0, N - 1  downto 0); 

begin 
5 process  ( a , p I  

begin 
- rename i n p u t  
for  i in  0 to “-1) loop 

end l o o p ;  
- main s t r u c t u r e  
f o r  s in  1 t o  ST l oop  

p ( 0 , i )  <= a(i>; 
10 
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for k in 0 to ( 2 * * ( S T - s ) - 1 )  loop 
- 1 s t  h a l f :  p a s s - t h r o u g h  boxes  
for i i n  0 to ( 2 * * ( s - 1 ) - 1 )  loop 

end loop;  
-- 2 n d  h a l f :  x o r  g a t e s  
for i in ( 2 * * ( s - 1 ) )  to ( 2 * * s - 1 )  loop 

p ( s ,  k*(2**s)+i) <= 

p ( s ,  k * ( 2 * * s ) + i )  <= p ( s - 1  , k * ( 2 * * s ) + i ) ;  

p ( s - 1 ,  k * ( 2 * * s ) + i )  xor 
p ( s - 1  , k * ( 2 * * ~ ) + 2 * * ( ~ - 1 )  -1) ; 

end loop;  
end loop;  

end loop; 
- rename o u t p u t  
for  i in 0 to N - 1  loop 

y ( i )  <= p ( S T , i ) ;  
end loop; 

end process;  
end para-pref i x -arch  ; 

The main structure is described by a nested three-level for loop statement. The outer 
loop specifies the iterations over ST stages: 

for s in 1 to ST loop 

The middle loop iterates over the modules: 

for k i n  0 to (2**(ST-s ) -1 )  loop 

The two inner loops iterate over the blocks inside a module: 

for i in 0 to ( 2 * * ( s - 1 ) - 1 )  loop 

for i in 2 * * ( s - 1 )  to ( 2 * * s - 1 )  loop 
. . .  

. . .  
The first inner loop iterates through the pass-through boxes and the second inner loop iterates 
through the xor gates. Note that the loop index represents half of the number of the blocks 
in a module. 

15.4.2 Multiplier 

Multiplication is a frequently needed arithmetic operation and its synthesis is not supported 
by all software. Two fixed-size implementations were discussed earlier, including an adder- 
based combinational multiplier in Section 11.6 and a sequential multiplier in Section 7.5.4. 
In this section, we convert the previous implementations to parameterized modules and also 
introduce a more efficient cell-based design. 

Sequential multiplier The sequential multiplier utilizes a simple shift-and-add algo- 
rithm to iterate additions sequentially through a single adder. Since the algorithm can be 
applied for any input width, the design can be easily parameterized. 

The original fixed-size 8-bit multiplier code is shown in Listing 11.8. Various array 
boundaries, initial values, and test conditions are based on the input width. To convert the 
code into a parameterized design, we just need to represent these values in terms of the 
WIDTH generic. The revised code is shown in Listing 15.16. 
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Listing 15.16 Parameterized sequential multiplier 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee . numeric-std. a l l  ; 
use work. util-pkg. a l l  ; 

5 e n t i t y  seq-mult-para is  
g e n e r i c  (WIDTH: natural) ; 
p o r t  ( 

clk, reset: in  std-logic; 
start : in  std-logic ; 
a-in, b-in: i n  std-logic-vector(W1DTH-1 downto 0); 
ready : out  std-logic ; 
r: o u t  std-logic-vector (2*WIDTH-1 downto 0) 

1; 
end seq-mult-para; 

a r c h i t e c t u r e  shift-add-better-arch of seq-mult-para i s  
I5 

c o n s t a n t  C-WIDTH: integer:=log2c(WIDTH)+l; 
c o n s t a n t  C-INIT : unsigned(C-WIDTH-1 downto 0) 

:=to-unsigned(WIDTH,C-WIDTH); 
20 type state-type i s  (idle, add-shft) ; 

s i g n a l  state-reg , state-next : state-type ; 
s i g n a l  a-reg , a-next : unsigned(W1DTH-1 downto 0) ; 
s i g n a l  n-reg , n-next : unsigned(C-WIDTH-1 downto 0) ; 
s i g n a l  p-reg , p-next : unsigned (P*WIDTH downto 0) ; 

a l i a s  pu-next: unsigned(W1DTH downto 0) i s  

a l i a s  pu-reg: unsigned(W1DTH downto 0) i s  

zs - a l i a s  f o r  the  upper  p a r t  and l o w e r  p a r t s  of p - r e g  

p-next (2*WIDTH downto WIDTH) ; 

p-reg (2*WIDTH downto WIDTH) ; 

p-reg (WIDTH -1 downto 0) ; 

-- s t a t e  and da ta  r e g i s t e r s  
process  (clk , reset) 

M a l i a s  pl-reg: unsigned(W1DTH-1 downto 0) i s  

begin 

35 begin 
i f  reset=’l’ then 

state-reg <= idle; 
a-reg <= ( o t h e r s = > ’ O ’ ) ;  
n-reg <= ( o t h e r s = > ’ O ’ ) ;  
p-reg <= ( o t h e r s = > ’ O ’ ) ;  

state-reg <= state-next; 
a-reg <= a-next; 
n-reg <= n-next; 

45 p-reg <= p-next; 

e l s i f  (clk’event and clk=’l’) then 

end i f  ; 
end p r o c e s s ;  
- combina t iona l  c i r c u i t  
process  (start ,state-reg ,a-reg ,n-reg ,p-reg, a-in ,b-in, 

begin 
50 n-next , p-next 

a-next <= a-reg; 
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70 

75 

n-next <= n-rag; 
p-next <= p-reg; 

case state-reg i s  
when idle => 

55 ready < = ’ O ’ ;  

i f  start=’l’ then 
p-next (WIDTH-1 downto 0) <= unsigned(b-in) ; 
p-next (2*WIDTH downto WIDTH) <= ( o t h e r s = > ’ O ’ ) ;  
a-next <= unsigned(a-in) ; 
n-next <= C-INIT; 
state-next <= add-shft ; 

state-next <= idle; 
e l s e  

end i f  ; 
ready <=’l’; 

n-next <= n-reg - 1 ;  
- add 
i f  (p-reg(O)=’l’) then 

e l s e  

end i f  ; 
- - s h i f t  
p-next <= ’0’ 6 pu-next & pl-reg(W1DTH-1 downto 1); 
i f  (n-next /= 0) then 

when add-shft => 

pu-next <= pu-reg + (’0’ & a-reg); 

pu-next <= pu-reg; 

state-next <= add-shft ; 

state-next <= idle; 
so e l s e  

end i f ;  
end c a s e ;  

end process;  
85 r <= std-logic-vector(p-reg (Z*WIDTH-l downto 0)) ; 

end shift-add-better-arch; 

Adder-based combinational multiplier The adder-based combinational multiplier 
uses an array of adders to perform additions in parallel, as discussed in Section 7.5.4. 
The revised block diagram of Section 9.4.3 illustrates the repetitive nature of this design. 
Our parameterized design is based on this structure. The block diagram is repeated in 
Figure 15.8. We modify the internal signal names to help us to identify the input and output 
relationships of each stage. 

To increase the flexibility of this module, we include two parameters, N and WITH-PIPE, 
in this design. The N generic specifies the width of the operand, and the WITHSIPE generic 
indicates whether to add a pipeline to the multiplier. If the pipeline is desired, registers will 
be inserted between the stages. 

The VHDL code is shown in Listing 15.17. Two array-of-arrays data types are defined for 
the internal signals. The std-aoan-type data type is used for the propagated operands, and 
the std-aoa-2n-type data type is used to represent the partial product and the bit product. 
The code includes three major parts. The first part is composed of two if generate statements, 
which either generate buffer registers between stages or serve as a direct connection. The 
second part is the process that generates the bit product vector. The bit product in the ith 
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a b  

Figure 15.8 Adder-based combinational multiplier with new signal labels. 
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stage is represented by the bp (i 1 signal, which is in the form of 0 - - 0 a,- 1 bi - - a a& 
0 - - SO. There are N - i and i padding 0’s in the front and end respectively. The process 
includes two for loop statements, one for the two boundary bit products (i.e., bp(0) and 
bp ( 1) ) and the other for regular stages. The third part specifies the addition operation in 
each stage. It includes a for generate statement for the middle stages and special signal 
connections for the first and the last stages. 

Listing 15.17 Parameterized adder-based combinational multiplier 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  multn i s  

5 g e n e r i c (  
N: natural; 
WITH-PIPE : natural 

1; 
p o r t  ( 

10 clk , reset : std-logic ; 
a ,  b: i n  std-logic-vector(N-1 downto 0); 
y: out  std-logic-vector (2*N-1 downto 0) 

1; 
end multn; 

a r c h i t e c t u r e  n-stage-pipe-arch of multn i s  
IS 

type  std-aoa-n-type i s  

type  std-aoa-2n-type i s  

s i g n a l  a-rag , a-next , b-reg , b-next : std-aoa-n-type; 
s i g n a l  bp , pp-reg , pp-next : std-aoa-2n-type ; 

a r r a y  (N-2 downto 1) of std-logic-vector (N-1 downto 0) ; 

20 a r r a y  (N-1 downto 0) of unsigned (2*N-1 downto 0) ; 

begin 

40 

45 

- p a r t  1 
- w i t h o u t  p i p e l i n e  b u f f e r s  
g-wire; 
i f  (WITH-PIPE/=l) g e n e r a t e  

a-reg <= a-next; 
b-reg <= b-next; 
pp-reg(N-1 downto 1) <= pp-next(N-1 downto 1); 

end g e n e r a t e  ; 
- w i t h  p i p e l i n e  b u f f e r s  
g-reg : 
i f  (WITH-PIPE=l) g e n e r a t e  

process  (clk ’reset 
begin 

i f  (reset =’l’) then  
a-reg <= (others=>(others=>’O’)); 
b-reg <= ( o t h e r s = > (  o t h e r s = >  ’0 ’1) ; 
pp-reg(N-1 downto 1) <= ( o t h e r s = > ( o t h e r s = >  ’0’)); 

a-reg <= a-next; 
b-reg <= b-next; 
pp-reg(N-1 downto 1) <= pp-next(N-1 downto 1); 

e l s i f  (clk’event and clk=’l’) then  
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end i f ;  
end p r o c e s s ;  

end generate  ; 
-- p a r t  2 
- b i t - p r o d u c t  g e n e r a t i o n  
process  ( a , b , a - r e g  , b - r e g )  
begin 

-- b p ( 0 )  and b p ( 1 )  
f o r  i in  0 t o  1 loop 

b p ( i )  <= ( o t h e r s = > ’ O ’ ) ;  
f o r  j in  0 t o  N - 1  loop 

end l o o p ;  
end l o o p ;  
- r e g u l a r  b p (  i )  
for i in  2 to  ( N - 1 )  loop 

b p ( i ) ( i + j )  <= a ( j )  and b ( i ) ;  

b p ( i )  <= ( o t h e r s = > ’ O ’ ) ;  
f o r  j in  0 to  ( N - 1 )  loop 

end l o o p ;  
b p ( i ) ( i + j )  <= a - r e g ( i - l ) ( j )  and b - r e g ( i - l ) ( i ) ;  

end l o o p ;  
end p r o c e s s ;  
-- p a r t  3 
-- a d d i t i o n  of t h e  f i r s t  s t a g e  
p p - n e x t ( 1 )  <= b p ( 0 )  + b p ( 1 ) ;  
a - n e x t ( 1 )  <= a ;  
b - n e x t ( l )  <= b ;  
- a d d i t i o n  of t h e  m i d d l e  s t a g e s  
g l  : 
f o r  i in  2 t o  (N-2) generate  

pp-next  ( i )  <= p p - r e g ( i - 1 )  + b p ( i ) ;  
a -nex t  ( i )  <= a - r e g ( i - 1 ) ;  
b-next  ( i )  <= b - r e g ( i - 1 )  ; 

end generate  ; 
- a d d i t i o n  of  t h e  l a s t  s t a g e  
pp-next ( N - 1 )  <= pp-reg(N-2) + bp(N-1);  
-- rename o u t p u t  
y <= s t d - l o g i c - v e c t o r  (pp-reg(N-1))  ; 

end n - s t a g e - p i p e - a r c h ;  

Cell-based carry-ripple combinational multiplier The previous adder-based mul- 
tiplier utilizes “coarse” RT-level parts, namely the 2N-bit adders. The alternative is to use 
a 1-bit full-adder cell as the basic building block. This allows us to explore the “fine” 
structure of the multiplier and derive a more efficient circuit. 

The multiplication of two 4-bit binary numbers is shown in Figure 15.9. The operation 
can be considered as the summation over the aibj terms, which are aligned in a specific 
two-dimensional pattern. 

The aibj term returns a l-bit value, and the addition of any two terms can be done by a 
l-bit adder, which is commonly known as afull udder. The input of a full adder includes 
two l-bit operands, ai and bi, and a l-bit carry-in, ci, and the output includes a sum bit, 
so, and a carry-out, CO. The gate-level VHDL description is shown in Listing 15.18. For 
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a3 a2 a1 a0 multiplicand 
b3 b2 bl bo multiplier 

Figure 15.9 Multiplication as a summation of aibj terms. 

most ASIC technologies, there is a predesigned full-adder cell in the device library, and it 
will be inferred during synthesis. 

Listing 15.18 l-bit full adder 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
e n t i t y  fa i s  

port ( 
5 ai, bi, ci: in  std-logic; 

so, CO: out std-logic 
1; 

end fa; 

10 a r c h i t e c t u r e  arch of fa i s  

so <= ai xor bi xor ci; 
CO <= (ai and bi) or (ai and ci) or (bi and ci); 

begin 

end arch; 

To summate the ai b j  terms, we can arrange the full-adder cells according to the two- 
dimensional structure of multiplication operation in Figure 15.9. ' h o  common arrange- 
ments are carry-ripple architecture and carry-save architecture. We study the carry-ripple 
multiplier in this subsection and the carry-save multiplier in the next subsection. 

Theblockdiagramof a4-bitcarry-ripplemultiplier is showninFigure 15.10. Because the 
carry is propagated (i.e., rippled) from the LSB to the MSB stage by stage, this arrangement 
is hown as the carry-ripple architecture. In the diagram, each full adder cell is given an 
index and expressed as FAij, indicating that the cell is located in the ith row and the j t h  
column. For a non-boundary cell, such as FA21 and FA22 in the diagram, the input and 
output signals of the FAij cell follow a specific pattern: 

0 The ci port is connected to the ci,j signal. 
0 The CO port is connected to the ~ + l , j  signal, which becomes the carry-in of the 

0 The so port is connected to the s,,j signal, which is connected to the bi port of the 

0 The ai port is connected to the ui'bj term. 
0 Thebiportisconnectedtothesi-l,j+l signal, whichisthes~signaloftheFAi-~,~+~ 

FAi+l,j cell. 

FAi+l,j-1 cell. 

cell. 



full-adder cell 

CO FA ci 
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O(aob4) aoba aobz 

Figure 15.10 Cell-based carry-ripple combinational multiplier. 

The boundary cells are located in the top and bottom rows, and the leftmost and rightmost 

0 Top row: The bi port of the FAlj cell is connected to the aobj+l term. Note that the 
b4 bit does not exist and the leftmost term (i.e., aob4 in the diagram) is used for the 
naming convention. The aob4 term is actually connected to ’0’. 

0 Bottom TOW: The so ports of the cells and the CO port of the leftmost cell form the 
top portion of the final result. 

0 Rightmost column: The ci port of the FAio cell is connected to ’0’. The so ports of 
the cells form the lower portion of the final result. 

0 Lefimost column: The bi port of the FAi4 cell is connected to the CO port from the 
leftmost cell in the previous row. In other words, the ~ , 3  signal is used in the place 
of the s i , 3  signal. 

Once identifying the normal and boundary connection patterns and the signal naming 
convention, we can derive the VHDL description accordingly. The code is shown in List- 
ing 15.19. We define an array-of-arrays type for the internal bit-product, carry and sum 
signals. The code is divided into several segments. The first segment is a nested two-level 
for generate statement that generates the ab signal, which consists of all ai bj terms. The 
second segment specifies the connection patterns for the leftmost and rightmost columns. 
The third segment specifies the input signal of the top row. The fourth segment is a nested 
two-level for generate statement that instantiates the two-dimensional N-by-(N - 1) full- 
adder cells of the middle rows. The last segment uses the sum signals of the bottom row 
and rightmost column to form the final result. 

columns. Their connections are modified as follows: 

Listing 15.19 Parameterized cell-based carry-ripple combinational multiplier 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  mult-array i s  

gener ic  (N : natural) ; 
I p o r t (  

a-in , b-in : in std-logic-vector (N-1 downto 0) ; 
y: out std-logic-vector (2*N-1 downto 0) 
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1; 
end mult-array ; 

10 

a r c  h i t  ec  t u r e  ripple-c arry- arch of mult-array is  
type two-d-type i s  

s i g n a l  ab, c, 8 :  two-d-type; 
a r r a y  (N-1 downto 0) of std-logic-vector (N downto 0) ; 

I5 component fa 
p o r t  ( 

ai, bi, ci: in  std-logic; 
s o ,  CO: out  std-logic 

1; 
zo end component;  

- b i t  p r o d u c t  
g-ab-row : 
f o r  i i n  0 to  N-1 g e n e r a t e  

begin 

15 g-ab-col: for  j i n  0 to (N-1) g e n e r a t e  
ab(i)(j) <= a-in(i) and b-in(j>; 

end g e n e r a t e  ; 
end g e n e r a t e  ; 
- l e f t m o s t  and r i g h t m o s t  columns 

f o r  i i n  1 t o  (N-1) g e n e r a t e  
M g-O-N-col: 

c(i)(O) <= '0'; 
s(i) (N) <= c(i) (N); - l e f t m o s t  column 

end g e n e r a t e  ; 

s ( 0 )  <= ab(0); 
ab(O)(N) <= '0'; 
- midd le  rows 
g-f a-row : 

35 - t o p  row 

40 fo r  i i n  1 to  (N-1) g e n e r a t e  
g-f a-col : 
f o r  j i n  0 to  (N-1) g e n e r a t e  

u-middle: fa 
p o r t  map 

45 (ai=>ab(i)(j>, bi=>s(i-l)(j+l), ci=> c(i>(j>, 
so=>s(i)(j), co=>c(i>(j+l>>; 

end g e n e r a t e  ; 
end g e n e r a t e  ; 
-- bot tom row and ou tpu t  

fo r  i i n  0 to  (N-2) g e n e r a t e  

end g e n e r a t e  ; 
y(2*N-1 downto N-1) <= s(N-1); 

M g-out: 

y(i) <= s ( i ) ( O > ;  

55 end ripple-carry-arch ; 

Although the appearance of this code is different from that of the previous adder-based 
code in Listing 15.17, the circuit it describes is very similar. Each row of the full-adder 
cells in Figure 15.10 forms a 4-bit ripple adder. Thus, this code actually describes a ripple 
adder-based combinational multiplier. 
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Figure 15.11 Non-optimal pipelined carry-ripple multiplier. 

. The fine granularity does provide more information about the underlying implementation 
and helps us better understand the operation of this circuit. For example, our previous 
pipelined design inserts pipeline registers for the sum output of the adders, as shown in 
Figure 15.1 1. These are not the optimal locations since no signal can be passed to the next 
row until the slowest carry bit (i.e., the MSB) becomes available. 

A better division can be obtained by examining the signal propagation in the cell-level 
diagram. If we assume that the propagation delay of a full-adder cell is Tfa and the delay 
of obtaining ai - b j  is negligible, the signal propagation from the LSB of the top row to 
the MSB of the bottom row is shown in Figure 15.12. The propagation is shown as a set 
of contour lines, each representing an increment of a delay of “fa. Recall that a good 
pipelined design should divide the combinational circuit into stages of similar propagation 
delays. The pipeline registers should be inserted along these contour lines. 

The contour lines also help us to identify the critical paths. One path is marked as a thick 
dashed line in Figure 15.12. For an N-bit multiplier, there are N - 1 rows, each consisting 
of N full-adder cells. The critical path includes N cells in the top row and two cells of each 
remaining N - 2 rows. Thus, the propagation delay is 

N T f a  + 2(N - 2)Tfa = (3N - 4)Tfa 

Cell-based carry-save combinational multiplier The carries of the carry-ripple 
architecture form a cascading chain and introduce a large propagation delay. Instead of 
propagating the carry to the next cell in the same row, an alternative is to “save” the carry 
outputs and pass them to the cells in the next row, where they are summed in parallel. 
This is known as the curry-save archirecrure. The block diagram of a 4-bit carry-save 
combinational multiplier is shown in Figure 15.13. In the first three rows, a full-adder cell 
adds the aibj term and the sum bit (i.e., so) and the carry-out bit (i.e., CO) from the previous 
row, and passes the results to the next row. The arrangement in each row represents a 
carry-save udder. The cells in the last row are arranged as a regular carry-ripple adder, 
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Figure 15.12 Propagation delay contour lines of a carry-ripple multiplier. 
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Figure 15.13 Cell-based carry-save multiplier. 
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which summates the carry-out signals from the last carry-save adder and forms the final 
result. 

The derivation of the VHDL code is similar to that of the cell-based carry-ripple multi- 
plier. We first identify the connection pattern of a non-boundary cell and then specify the 
special requirements for the cells in the first and last rows and the leftmost and rightmost 
columns. The complete VHDL code is shown in Listing 15.20. 

Listing 15.20 Parameterized cell-based carry-save combinational multiplier 

a r c h i t e c t u r e  c a r r y -  s a v e - a r c h  of mul t  - a r r a y  i s  
type two-d-type is  

s i g n a l  a b ,  c ,  s: two-d - type ;  

component f a  
p o r t  ( 

a r r a y  ( N - 1  downto 0) of s t d - l o g i c - v e c t o r  ( N - 1  downto 0) ; 

5 s i g n a l  rs , r c :  s t d - l o g i c - v e c t o r  ( N - 1  downto 0) ; 

a i ,  b i ,  c i :  in  s t d - l o g i c ;  
s o ,  C O :  ou t  s t d - l o g i c  

10 ) ;  

begin 
end component;  

I5 

20 

25 

30 

35 

40 

45 

-- b i t  p r o d u c t  
g-ab-row: 
f o r  i in 0 to  N - 1  g e n e r a t e  

g - a b - c o l :  fo r  j in  0 to  “-1) g e n e r a t e  
a b ( i ) ( j )  <= a - i n ( i )  and b - i n ( j > ;  

end g e n e r a t e  ; 
end g e n e r a t e  ; 
- l e f t m o s t  column 
g-N-col:  
f o r  i in 1 to  ( N - 1 )  g e n e r a t e  

end g e n e r a t e  ; 
-_ t o p  row 
s(0) <= a b ( 0 ) ;  
c ( o )  <= ( o t h e r s = > ’ O ’ ) ;  
-- midd le  rows 
g-f a-row : 
fo r  i i n  1 to  ( N - 1 )  g e n e r a t e  

s ( i ) ( N - 1 )  <= a b ( i ) ( N - 1 ) ;  

g - f a - c o l :  fo r  j in  0 to  (N-2) g e n e r a t e  
u -midd le :  f a  

p o r t  map 
( a i = > a b ( i ) ( j ) ,  b i = > s ( i - l ) ( j + l ) ,  c i = >  c ( i - l ) ( j ) ,  

s o = = > s ( i )  ( j )  , c o = > c ( i >  (j)); 
end g e n e r a t e  ; 

end g e n e r a t e  ; 
- bot tom row r i p p l e  adder  
r c ( 0 )  <= ’0’; 
g-acel l -N-row: 
f o r  j i n  0 t o  (N-2) g e n e r a t e  

unit-N-row : f a  
p o r t  map ( a i = > s ( N - l ) ( j + l )  , b i = > c ( N - l ) ( j )  , c i = >  r c ( j ) ,  

s o = > r s  ( j  ) , c o = > r c  ( j  +I> ; 
end g e n e r a t e  ; 
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I J- 

Figure 15.14 Propagation delay contour lines of a carry-save multiplier. 

- o u t p u t  s i g n a l  
&out : 
f o r  i i n  0 to “-1) generate  

y ( i )  <= s ( i ) ( O ) ;  
50 end g e n e r a t e ;  

y(2*N-2 downto N )  <= r s ( N - 2  downto 0 ) ;  
y(2*N-1)  <= r c  ( N - 1 )  ; 

end c a r r y - s a v e - a r c h ;  

The propagation of the carries is much easier to trace for the carry-save multiplier. The 
propagation delay contour lines and the critical path are shown in Figure 15.14. For an 
N-bit multiplier, the critical path includes N - 1 cells in the bottom row and one cell of 
each remaining N - 1 rows. Thus, the propagation delay becomes 

( N  - l)Tfa + ( N  - l)Tfa = (2N - 2)Tfa 

This value is about two-thirds of the delay of the previous ripple-carry multiplier. Fur- 
thermore, since the single ripple adder in the last row accounts for one-half of the delay, we 
can replace it with a faster adder architecture to further improve the performance. 

Because of the clear propagation delay contour lines, we can easily divide the carry-save 
multiplier into stages of identical delays and convert it to a pipelined design. The sketch of 
the location of the pipeline registers is shown in Figure 15.15. The cells in the last row are 
rearranged for clarity. To reduce cluttering, the pipeline registers for the operands are not 
included. 
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Figure 15.15 Pipelined carry-save multiplier. 



586 PARAMETERIZED DESIGN: PRACTICE 

15.4.3 Parameterized LFSR 

The LFSR was discussed in Section 9.2.3. Its feedback circuit is simple and involves only 
one or three xor gates, as shown in Table 9.1. Despite its simplicity, the xor expression 
depends on the size of the shift register and is determined on an ad hoc basis. One way 
to parameterize the xor expression is to list all of the expressions in a table. Each row 
of the table corresponds to a specific size and indicates which register bits are needed in 
the expression. For example, the feedback expression of a 5-bit LFSR is q2 @ QO, and the 
corresponding row is “00101”. The table can be considered as a mask table, and the pattern 
in each row can be used to enable or disable the corresponding bits. Consider the pervious 
example. The “00101” pattern can function as a mask. After performing a bitwise and 
operation between the mask pattern and q 4 q 3 ~ 2 q l q 0 ,  we obtain OOq2Oqo. The feedback 
circuit can be obtained by applying reduced-xor operation (i.e., 0 @ 0 63 q2 63 0 @ 40) over 
the result. Since z 63 0 = z, the 0’s will be removed during synthesis, and the expression 
will be simplified to q2 cB qo. 

There is no algorithm to generate the mask table. It must be exhaustively listed. Follow- 
ing Table 9.1, we can define the mask table as a constant of a two-dimensional array-of-arrays 
data type: 

type tap-array-type i s  array(2  to MAX-N) of 

constant  TAP-CONST-ARRAY : tap-array-type := 
std-logic-vector (MAX-N-1 downto 0) ; 

(2 = >  (1)0=>’1’, others=>’O’)  
3 => (110=>’1 I ,  o t h e r s = > ’ O ’ ) ,  
4 => (110=>’1’, o t h e r s = > ’ O ’ ) ,  
5 = >  (210=>’1’, others=>’O’)  
. . . ) ;  

The M A X I  term is a constant. It specifies the maximal range of the parameter. 
Section 9.2.3 shows that we can use additional logic in the feedback path to include the 

all-zero pattern and make an n-bit LFSR circulate through all 2n states. This can be made 
as an option in a parameterized LFSR. 

The complete VHDL code is shown in Listing 15.21. There are two generics: N, which 
specifies the size of the LFSR, and WITH-ZERO, which specifies whether the all-zero pattern 
should be included. The MAXN is chosen to be 8, and thus the range of N is between 2 and 
8. The M A X I  can be enlarged by adding additional rows to TAP-CONSTARRAY. 

Listing 15.21 Parameterized LFSR 
l ibrary  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  lfsr i s  

5 g e n e r i c (  
N: natural; 
WITH-ZERO : natural 

1; 
port ( 

10 clk, reset: in std-logic; 
q :  out std-logic-vector (N-1 downto 0) 

1; 
end Ifsr; 
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I5 a r c h i t e c t u r e  para-arch of lfsr i s  
c o n s t a n t  MAX-N: natural : =  8 ;  
c o n s t a n t  SEED: std-logic-vector (N-1 downto 0) 

type  tap-array-type i s  a r r a y ( 2  t o  MAX-N) of 

c o n s t a n t  TAP-CONST-ARRAY: tap-array-type:= 

:=(0=>’1’, o t h e r s = > ’ O ’ ) ;  

20 std-logic-vector (MAX-N-1 downto 0) ; 

( 2  => (.110=>’1’, o t h e r s = > ’ O ’ ) ,  
3 => (lIO=>’l’, o t h e r s = > ’ O ’ ) ,  
4 => (110=>’1’ , o t h e r s = > ’ O ’ )  , 

25 5 => (210=> ’1 ’  , o t h e r s = > ’ O ’ ) ,  
6 = >  ( l l O = > J 1 l ,  o t h e r s = > ’ O ’ ) ,  
7 = >  (310=>’1’, o t h e r s = > ’ O ’ ) ,  
8 => (4131210=>’1’ , o t h e r s = > ’ O ’ > ) ;  

s i g n a l  r-reg r-next : std-logic-vector (N-1 downto 0) ; 
M s i g n a l  fb, zero, fzero: std-logic; 

begin 
- r e g i s t e r  
process  (clk reset) 
begin 

3s i f  (reset=’l’) then 
r-reg <= SEED; 

r-reg <= r-next; 
e l s i f  (clk’event and clk=’l’) then  

end i f ;  
40 end p r o c e s s ;  

-- n e x t - s t a t e  l o g i c  
process  (r-reg) 

c o n s t a n t  TAP-CONST : std-logic-vector (MAX-N-1 downto 0) 
:=  TAP-CONST-ARRAY(N); 

45 v a r i a b l e  tmp : std-logic ; 
begin 

tmp := ’0’; 
f o r  i in  0 t o  (N-1) loop 

tmp : =  tmp xor  (r-reg(i) and TAP-CONST(i)); 
50 end l o o p ;  

end p r o c e s s ;  
-- w i t h  a l l - z e r o  s t a t e  
gen-zero: 

fb <= tmp; 

SS i f  (WITH-ZERO=l) g e n e r a t e  
zero <= $1’ when r-reg(N-1 downto l)= 

(r-reg(N-1 downto 1) ’ range=>’O’)  
e l s e  

’0’; 
60 fzero <= zero xor fb; 

end g e n e r a t e  ; 
-- w i t h o u t  a l l - z e r o  s t a t e  
gen-no-zero : 
if  (WITH-ZERO /=l) g e n e r a t e  

end g e n e r a t e  ; 
r-next <= fzero & r-reg(N-1 downto 1) ; 

65 fzero <= fb; 
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- output  l o g i c  
q <= r-reg; 

70 end para-arch ; 

The xor feedback circuit is implemented by a for loop statement, in which the reduced- 
xor operation is performed over the masked register output. The optional logic to process 
the all-zero pattern is implemented by two if generate statements. One statement generates 
the logic, and the other just reconnects the original feedback signal. 

15.4.4 Priority encoder 

A parameterized priority encoder was described in Listing 14.24. The code maps to a one- 
dimensional cascading priority routing network, and thus the performance suffers. One way 
to improve the performance is to construct the circuit using a collection of smaller priority 
encoders and multiplexers, as discussed in Section 7.4.3. The structure is quite complex. 

An alternative way is to first convert the input into one-hot code and then pass the code into 
a regular binary encoder. For example, if an 8-bit input is "001 10101", it will be converted 
to "0010OOO" and then encoded as a one-hot input. The conversion process can be explained 
by an example. Consider an 8-bit priority encoder whose input is a7, a6, . . . , a0 and a7 has 
the highest priority. Let the corresponding one-hot code be t7 ,  t 6 , .  . . , to .  For the ti bit to 
be asserted, the ai bit must be '1' and all the upper bits, which include a7, a6,. . . , ai+l, 
must be '0'. This can be translated into a logic expression: 

ti = ai . a ; .  a; .. . a:+1 

The logic expression represents a variant of reduced-and operations. As for the reduced-xor 
circuit, we can describe the reduced-and circuit as a tree to improve its performance. The 
specific pattern of the and operations also provides an opportunity for further optimization. 
Let us first list all logic expressions: 

t7 = a7 
t 6  = a6.a;  
t 5  = a5 . a; * a; 
t 4  = a4-a7  .a6 ' a 5  
t3  = a3 a; . a; a5 . a4 
t 2  = a2 a: 9 a; a: a: - a$ 

tl = a1 a; a; a: - a: . a$ - a; 
t o  = a0 - a; - a; . a; - a: . a$ - a& . a; 

1 1 1  

I 1  

If we ignore the first non-inverted element, the expressions become 
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The pattern is similar to the output of the reduced-xor-vector circuit discussed in Sec- 
tion 15.4.1. We can duplicate the code in Listing 15.15 to describe a reduced-and-vector 
circuit to take advantage of the sharing opportunity. The VHDL code is shown in List- 
ing 15.22. 

Listing 15.22 Parameterized parallel-prefix reduced-and-vector circuit 

l i b r a r y  ieee ; 
use ieee. std-logic-1164, a l l  ; 
use work. util-pkg. a l l  ; 
e n t i t y  reduced-and-vector i s  

5 g e n e r i c  ( N :  natural) ; 
p o r t  ( 

a: in  std-logic-vector ( N - 1  downto 0) ; 
y: o u t  std-logic-vector ( N - 1  downto 0) 

1; 
10 end reduced-and-vector ; 

20 

25 

30 

a r c h i t e c t u r e  para-prefix-arch of reduced-and-vector i s  
c o n s t a n t  ST: natural := log2c ( N I  ; 
s i g n a l  p: std_logic,2d(ST downto 0, N - 1  downto 0); 

process  (a, p) 
begin 

IS begin 

- rename i n p u t  
for i in 0 t o  ( N - 1 )  loop 

end l o o p ;  
- main s t r u c t u r e  
f o r  s in  1 to  ST loop 

p(0,i) <= a(i); 

f o r  k in  0 t o  (2**(ST-s)-1) loop 
- 1 s t  h a l f :  p a s s - t h r o u g h  boxes  
f o r  i i n  0 to  (2**(s-1)-1) loop 

end l o o p ;  
- 2 n d  h a l f :  and g a t e s  
fo r  i in  (2**(s-1)) t o  (2**s-1) loop 

p(s, k*(2**s)+i) <= p(s-1, k*(2**s)+i); 

p(s, k*(2**s)+i) <= 
p(s-1, k*(2**s)+i) and 
p(s-1, k*(2**~)+2**(~-1)-1) ; 

end l o o p ;  
35 end l o o p ;  

end l o o p ;  
- rename o u t p u t  
f o r  i in  0 to  ( N - 1 )  loop 

y(i) <= p(ST,i); 
40 end l o o p ;  

end p r o c e s s ;  
end para-prefix-arch; 

After developing the reduced-and-vector circuit, we can derive the VHDL code, as 
shown in Listing 15.23. The code uses the reduced-and-vector circuit and simple glue logic 
to generate the one-hot code and then pass it to a binary encoder. ' h o  for loop statements 
are used to reverse the order of the input to match the convention used in the reduced-and- 
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vector circuit. Since the critical paths of the parallel-prefix reduced-and-vector circuit and 
the optimized binary encoder circuits are on the order of O(log, n), the performance of this 
circuit is much better than that of the cascading design. 

Listing 15.23 Parameterized priority encoder 

l i b r a r y  ieee ; 
use ieee, std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
use work. util-pkg. a l l  ; 

5 e n t i t y  prio-encoder is 
g e n e r i c  (N : natural ; 
p o r t  ( 

a: in  std-logic-vector (N-1 downto 0) ; 
bcode : out  std-logic-vector (log2c (NI -1 downto 0) 

10 1 ; 
end prio-encoder ; 

U 

a r c h i t e c t u r e  para-arch of prio-encoder i s  
component reduced-and-vect or i s  

15 g e n e r i c  (N : natural) ; 
p o r t  ( 

a: i n  std-logic-vector (N-1 downto 0) ; 
y :  ou t  std-logic-vector (N-1 downto 0) 

1; 
20 end component;  

component bin-encoder is  
g e n e r i c  (N : natural) ; 
p o r t  ( 

a :  i n  std-logic-vector (N-1 downto 0) ; 
bcode : out  std-logic-vector (loglc (N) -1 downto 0) 

) ;  
end component ; 
s i g n a l  a-not-rev : std-logic-vector (N-1 downto 0) ; 
s i g n a l  a-vec , a-vec-rev , t : std-logic-vector (N-1 downto 0) ; 

30 begin 
r e v e r s e  a - 

gen-reverse-a: 
f o r  i i n  0 to  (N-1) g e n e r a t e  

a-not-rev(i) <= not  a(N-1-i); 
35 end g e n e r a t e ;  

- reduced and o p e r a t i o n  
unit-token: reduced-and-vector 

gene  r i c map ( N = > N 1 
p o r t  map(a=>a-not-rev, y =>a-vec-rev) ; 

40 - r e v e r s e  the r e s u l t  
gen-reverse-t : 
for  i in  0 to  (N-1) g e n e r a t e  

end g e n e r a t e  ; 

t <= a and ('1' & a-vec(N-1 downto 1)); 
- r e g u l a r  b inary  encoder  
unit-bin-code: bin-encoder 

a-vec(i) <= a-vec-rev(N-1-i); 

45 - form one-hot code 



MORE SOPHISTICATED EXAMPLES 591 

w-data w-data r-data 

w-addr r-addr 

register file 

wr 

full 

clk __* 
reset d 

r-data 

1 
I - rd - empty 

Figure 15.16 Block diagram of a FIFO buffer. 

g e n e r i c  map (N=>N 1 
so port map(a=>t, bcode=>bcode)  ; 

end para-arch ; 

15.4.5 FIFO buffer 

Implementation of a four-word FIFO buffer was discussed in Section 9.3.2. .The code can be 
modified for a parameterized design. To achieve better performance, we use the previously 
developed modules to implement the circuit. The basic organization of the parameterized 
buffer is similar to that in Section 9.3.2, and its block diagram is shown in Figure 15.16. 
In the top level, the FIFO buffer is divided into a FIFO control circuit and a register file, 
which contains one write port and one read port. The control circuit contains two counters 
for the read and write pointers and the logic to generate full and empty status. The register 
file consists of a register array and a decoder to generate the proper enable signal and 
a multiplexer to route the desired value to output. The main components of the design 
hierarchy is shown in Figure 15.17. 

For parameterized FIFO, we normally want to specify the width of a word (i.e., the 
number of bits in a word) and the size of the buffer (i.e., the number of words in the buffer). 
In our code, the B generic is used for the number of bits in a word. For simplicity, the buffer 
size is specified indirectly by the number of address bits of the buffer, represented by the 
W generic. To provide more flexibility and achieve better efficiency, we include a feature 
parameter, the CNTAODE generic, to indicate whether binary or LFSR counters are used 
for the read and write pointers. Note that the sizes of the buffer for the binary and LFSR 
counter options are 2w and 2w - 1 respectively. 

The top-level VHDL code is shown in Listing 15.24. It is the instantiation of two 
components and a simple glue logic for the write enable signal of the register file. The codes 
of the register file and FIFO control circuit are discussed in the following two subsections. 
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Figure 15.17 Design hierarchy of a FIFO buffer. 

Listing 15.24 Parameterized FIFO buffer top-level instantiation 

l i b r a r y  ieee ; 
use  ieee. std-logic-1164. a l l  ; 
e n t i t y  fifo-top-para i s  

g e n e r i c  ( 
5 B: natural; - number of b i t s  

W: natural; - number of a d d r e s s  b i t s  
CNT-MODE: natural - b i n a r y  o r  LFSR 

1; 
port  ( 

10 clk, reset: in  std-logic; 
rd, wr: in std-logic; 
w-data: in std-logic-vector ( B - 1  downto 0) ; 
empty, full: out  std-logic ; 
r-data : out std-logic-vector ( B - 1  downto 0) 

I S  1 ; 
end fifo-top-para; 

a r c h i t e c t u r e  arch of fifo-top-para i s  
component f if o-sync-ctrl-para 

20 g e n e r i c  ( 
N :  natural; 
CNT-MODE : natural 

1; 
port  ( 

25 clk, reset: in  std-logic; 
wr, rd: in std-logic; 
full , empty : out std-logic ; 
w-addr , r-addr : out std-logic-vector ( N - 1  downto 0) 

1; 
IO end component; 

component reg-f ile-para 

W :  natural; 
B :  natural 

g e n e r i c  ( 

35 1; 
port ( 
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40 

clk, reset: in  std-logic; 
wr-en : in  std-logic ; 
w-data: in  std-logic-vector ( B - 1  downto 0) ; 
w-addr , r-addr : in  std-logic-vector (W-1 downto 0) ; 
r-data: out std-logic-vector ( B - 1  downto 0) 

) ;  
end component; 
s i g n a l  r-addr : std-logic-vector (W-1 downto 0) ; 

45 s i g n a l  w-addr : std-logic-vector (W-1 downto 0) ; 
s i g n a l  f -status , wr-f ifo : std-logic ; 

begin 
U-ctrl: fifo-sync-ctrl-para 

SO g e n e r i c  map(N=>W, CNT-MODE=>CNT-MODE) 
port map(clk=>clk , reset=>reset , wr=>wr , rd=>rd, 

full=>f-status , empty=>empty , 
w-addr=>w-addr, r-addr=>r-addr); 

wr-fifo <= wr and ( n o t  f-status); 

U-reg-file: reg-file-para 
SS full <= f-status; 

g e n e r i c  map(W=>W, B = > B )  
port map(clk=>clk , reset=>reset , wr-en=>wr-fifo, 

w-data=>w-data, w-addr=>w-addr, 
bu r-addr=> r-addr , r-data => r-data) ; 

end arch; 

Register file The operation and implementation of a fixed-size register file was discussed 
in Section 9.3.1. It consists of a register array, write-enable decoding logic and an output 
multiplexing circuit. The parameterized code can simply follow the skeleton of the fixed- 
size VHDL code in Listing 9.15 and replace the original segments with a parameterized 
register array and the predeveloped parameterized decoder and multiplexer. The array-of- 
arrays data type is a natural match for the register array. However, since the input data 
type of the parameterized multiplexer is a genuine two-dimensional array, the output of the 
register array must first be converted to the proper data type and then mapped to the input 
of the multiplexer. The complete VHDL code is shown in Listing 15.25. 

Listing 15.25 Structural description of a parameterized register file 

l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
use work. util-pkg . a l l  ; 

s e n t i t y  reg-file-para i s  

W :  natural; 
B :  natural 

gener ic  ( 

1; 
10 p o r t (  

clk, reset: in  std-logic; 
wr-en : in  std-logic ; 
w-data: in  std-logic-vector ( B - 1  downto 0) ; 
w-addr , r-addr : in  std-logic-vector ( W - 1  downto 0) ; 
r-data: out std-logic-vector ( B - 1  downto 0) IS 



594 PARAMETERIZED DESIGN: PRACTICE 

35 

65 

a r c h i t e c t u r e  str-arch of reg-f ile-para is  
U) component mux2d is  

g e n e r i c  ( 
P: natural; - number of i n p u t  p o r t s  
B: natural - number of b i t s  p e r  p o r t  

> ;  
25 p o r t  ( 

a: i n  std-logic-2d(P-l downto 0 ,  B-I downto 0) ; 
sel : i n  std-logic-vector (log2c (PI -1 downto 0) ; 
y: out  std-logic-vector (B-I downto 0) 

) ;  
30 end component;  

component tree-decoder i s  
g e n e r i c  (WIDTH : natural) ; 
p o r t  ( 

a:  i n  std-logic-vector(W1DTH-1 downto 0) ; 
en : std-logic ; 
code : o u t  std-logic-vector (2**WIDTH-l downto 0) 

1; 
end component;  
c o n s t a n t  W-SIZE: natural : =  2**W; 

40 type  reg-file-type i s  a r r a y  (2**W-I downto 0) of 
std-logic-vector (B-1 downto 0) ; 

s i g n a l  array-rag : reg-f ile-type ; 
s i g n a l  array-next : reg-f ile-type ; 
s i g n a l  array,-2d: std-logic-2d (2**W-1 downto 0 .B-I downto 0) ; 

45 s i g n a l  en :  std-logic-vector (2**W-1 downto 0) ; 
begin 
- r e g i s t e r  a r r a y  
p r o c e s s  (clk, reset) 
begin 

rn i f  (reset=’l’) then 
array-reg <= ( o t h e r s = > ( o t h e r s = >  ’0 ’ ) I  ; 

array-reg <= array-next ; 
e l s i f  (clk’event and clk=’l’) then  

end i f ;  
55 end p r o c e s s ;  

- e n a b l e  d e c o d i n g  logic f o r  r e g i s t e r  a r r a y  
u-bin-decoder: tree-decoder 

g e n e r i c map ( W I DTH = > W 
p o r t  map(en=>wr-en, a=>w-addr, code=>en) ; 

60 - n e x t - s t a t e  l o g i c  of r e g i s t e r  f i l e  
p r o c e s s  (array-reg , en, w-data) 
begin 

f o r  i i n  (2**W-1) downto 0 loop 
i f  en(i)=’l’ then 

e l s e  

end i f  ; 

array-next (i) <= w-data; 

array-next (i) <= array-reg(i) ; 
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end l o o p ;  
70 end p r o c e s s ;  

-- c o n v e r t  to s t d - l o g i c - 2 d  
p r o c e s s  (array-reg) 
begin 

f o r  r i n  (2**W-1) downto 0 loop 
75 f o r  c in  0 t o  (B-1) loop  

array-2d (r , c) <=array-reg (r) (c) ; 
end l o o p ;  

end l o o p ;  
end p r o c e s s ;  

read-mux : mux2d 
80 -- r e a d  p o r t  m u l t i p l e x i n g  c i r c u i t  

g e n e r i c  map(P=>P**W, B=>B) 
p o r t  map(a=>array_2d, sel=>r-addr , y=>r-data) ; 

end str-arch ; 

Register file operation can be consider as accessing an array with a dynamic index 
(i.e., using a signal as an index), and some synthesis software may recognize this type of 
description. If this is the case, the behavioral VHDL code can be used for the register file, 
as shown in Listing 15.26. 

Listing 15.26 Behavioral description of a parameterized register file 

type reg-file-type is  a r ray  (2**W-1 downto 0) of 

s i g n a l  array-reg : reg-f ile-type ; 

a r c h i t e c t u r e  beh-arch of reg-f ile-para i s  

std-logic-vector (B-1 downto 0 )  ; 

5 s i g n a l  array-next : reg-f ile-type ; 
begin 
- r e g i s t e r  a r r a y  
process  (clk, reset 
begin 

10 i f  (reset=’l’) then 
array-reg <= ( o t h e r s = > (  o t h e r s = >  ’0 ’1) ; 

array-reg <= array-next ; 
e l s i f  (clk’event and clk=’l’) then 

end i f  ; 
IS end p r o c e s s ;  

- n e x t - s t a t e  l o g i c  f o r  r e g i s t e r  a r r a y  
process  (array-reg , wr-en , w-addr , w-data) 
begin 

array-next <= array-reg ; 
20 i f  wr-en=’l’ then 

array-next(to-integer(unsigned(w-addr))) <= w-data; 
end if  ; 

end p r o c e s s ;  
- r e a d  p o r t  

25 r-data <= array-reg(to-integer (unsigned(r-addr))) ; 
end beh-arch ; 

FIFO Controller We choose the look-ahead configuration of Section 9.3.2 for the param- 
eterized FIFO controller because LFSR counters can be used to achieve better performance. 
The main task is to derive parameterized code to determine the counter’s successive value. 
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Since the look-ahead configuration requires the next value of the counter, the predevel- 
oped parameterized LFSR counter of Section 15.21 cannot be used directly. Instead, we 
must create a customized module for this purpose. This module is essentially the next- 
state logic of the parameterized LFSR of Listing 15.21. The VHDL code is shown in 
Listing 15.27. 

Listing 15.27 Parameterized LFSR next-state logic 

l ibrary ieee ; 
use ieee. std-logic-1164. a l l  ; 
e n t i t y  Ifsr-next i s  

generic  (N: natural); 
5 p o r t (  

q-in : in std-logic-vector (N-1 downto 0) ; 
q-out : out std-logic-vector(N-1 downto 0) 

1; 
end If sr-next ; 

a r c h i t e c t u r e  para-arch of lfsr-next i s  
10 

constant MAX-N: natural := 8; 
type tap-array-type i s  

array (2 to  MAX-N) of std-logic-vector (MAX-N-1 downto 0) ; 

(2 = >  ( l l o = > i l ’  I o thers=>’O’)  I 

3 => ( l l O = ~ i l i  I o t h e r s = > ’ O ’ ) ,  
4 => (lIO=>’l’ I o t h e r s = > ’ O 1 )  I 

5 => (2I0=>’l1 I o t h e r s = 7 ’ 0 1 )  I 

20 6 = >  (110=>’1’, others=>’O’)  I 

7 = >  (310=>’1’ I o t h e r s - 7 ’ 0 ’ )  I 

8 => (4131210=>’1’, o t h e r s = > ’ O ’ ) ) ;  

IS constant TAP-CONST-ARRAY: tap-array-type:= 

s ignal  fb : std-logic ; 
begin 

z - n e x t - s t a t e  l o g i c  
process  (q-in) 

constant TAP-CONST : std-logic-vector (MAX-N-1 downto 0) 

variable  tmp : std-logic ; 

tmp := ’0‘; 
for i in 0 to  (N-1) loop 

end loop;  

end process;  
q-out <= fb k q-in(N-1 downto 1) ; 

:=  TAP-CONST-ARRAY(N); 

M begin 

tmp : =  tmp xor (q-in(i) and TAP-CONST(i)); 

35 fb <= not(tmp1; - e x c l u d e  a l l  1 ’ s  

end para-arch ; 

There is a minor modification over the original code. The feedback xor expression is 
inverted before it is appended to the MSB of the output. The purpose is to replace the 
all-zero state with the all-one state (i.e., the “11 - - . 11” pattern, instead of the “00 - - - 00“ 
pattern, will be excluded from the circulation). This simplifies the system initialization. 
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The complete code of the parameterized FIFO controller is shown in Listing 15.28. It is 
similar to fixed-size code in Listing 9.16 except that two if generate statements are used to 
generate the desired successive value. 

Listing 15.28 Parameterized FIFO control circuit 
l i b r a r y  ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee . numeric-std. a l l  ; 
e n t i t y  fifo-sync-ctrl-para i s  

s g e n e r i c (  
N: natural; 
CNT-MODE : natural 

1; 
p o r t  ( 

10 clk, reset: in  std-logic; 
wr, rd: in  std-logic; 
full , empty: out  std-logic; 
w-addr , r-addr : out  std-logic-vector (N-1 downto 0) 

1; 
IS end f if o-sync-ctrl-para ; 

a r c h i t e c t u r e  lookahead-arch of fifo-sync-ctrl-para is  
component If sr-next i s  

g e n e r i c  (N : natural) ; 
20 p o r t  ( 

q-in: in  std-logic-vector (N-1 downto 0) ; 
q-out : out  std-logic-vector(N-1 downto 0) 

1; 
end component;  

s i g n a l  w-ptr-reg , w-ptr-next , w-ptr-succ: 

s i g n a l  r-ptr-reg , r-ptr-next , r-ptr-succ : 

zs c o n s t a n t  LFSR-CTR: natural :=O; 

std-logic-vector (N-1 downto 0) ; 

std-logic-vector (N-1 downto 0) ; 
M s i g n a l  full-reg , empty-reg , full-next , empty-next : 

std-logic ; 
s i g n a l  wr-op: std-logic-vector (1 downto 0) ; 

begin 

35 

40 

45 

I r e g i s t e r  f o r  read  and w r i t e  p o i n t e r s  
p r o c e s s  (clk , reset) 
begin 

i f  (reset= 1 ’ 1 then 
w-ptr-reg <= ( o t h e r s = >  ’0’); 
r-ptr-reg <= ( o t h e r s = > ’ O ’ > ;  

u-ptr-reg <= w-ptr-next ; 
r-ptr-reg <= r-ptr-next ; 

e l s i f  (clk’event and clk=’l’> then  

end i f ;  
end p r o c e s s ;  
-- s t a t u e  FF 
p r o c e s s  (clk, reset) 
begin 

i f  (reset=’l’) then 
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w 

90 

95 

IM 

f u l l - r a g  <= '0' ; 
50 empty-reg <= '1 ' ;  

e l s i f  ( c l k ' e v e n t  and c l k = ' l ' )  t h e n  
f u l l - r e g  <= f u l l - n e x t  ; 
empty-reg <= empty-next ; 

end i f ;  
55 end p r o c e s s ;  

- s u c c e s s i v e  va lue  f o r  LFSR c o u n t e r  
g - l f  s r :  
i f  (CNT-MODE=LFSR-CTR) g e n e r a t e  

U - l f  sr-wr : I f  s r - n e x t  
g e n e r i c  map ( N = > N  
p o r t  map(q , in=>w-p t r - r eg ,  q - o u t = > w - p t r - s u c c ) ;  

U- l f  sr-rd : I f  s r - n e x t  
g e n e r i c  map ( N = >  N 1 
p o r t  m a p ( q - i n = > r - p t r , r e g ,  q - o u t = > r - p t r - s u c c ) ;  

B end g e n e r a t e ;  
- s u c c e s s i v e  va lue  f o r  b i n a r y  c o u n t e r  
g-b in  : 
i f  (CNT-MODE/=LFSR-CTR) g e n e r a t e  

w-ptr-succ <= std_logic-vector(unsigned(w-ptr-reg) + 1) ;  
70 r - p t r - s u c c  <= std-logic,vector(uneigned(r-ptr-reg) + 1 ) ;  

end g e n e r a t e  ; 
- n e x t - s t a t e  l o g i c  f o r  read and w r i t e  p o i n t e r s  
wr-op <= w r  8 r d ;  
p r o c e s s  (w-p t r - r eg  , w-ptr-succ , r - p t r - r e g  , r - p t r - s u c c  , wr-op , 

begin 
75 e m p t y - r e g , f u l l - r e g )  

w-ptr-next  <= w-p t r - r eg  ; 
r - p t r - n e x t  <= r - p t r - r e g ;  
f u l l - n e x t  <= f u l l - r e g ;  
empty-next <= empty-reg ; 
case  wr-op is  

when 1100" => - no op 
when 1101" => - read 

i f  (empty-reg /= ' 1 ' )  then  - not empty 
r - p t r - n e x t  <= r - p t r - s u c c  ; 
f u l l - n e x t  <= #O'; 
i f  ( r - p t r - s u c c = w - p t r - r e g )  t hen  

end i f ;  
empty-next <='l'; 

end i f ;  

i f  ( f u l l - r e g  /= j1 ' )  then  - not f u l l  
when "10" => - w r i t e  

w-ptr-next  <= w-ptr-succ ; 
empty-next <= '0'; 
i f  ( w - p t r - s u c c = r - p t r - r e g )  t hen  

end i f  ; 
f u l l - n e x t  < = ' l J ;  

end i f  ; 

w-ptr-next  <= w-ptr-succ ; 
r - p t r - n e x t  <= r - p t r - s u c c  ; 

when o t h e r s  =>  - w r i t e / r e a d ;  


