
COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS 555

In the remainder of this chapter, we use the std-logic-2d data type in general and use
the array-of-arrays data type if it closely matches the underlying structure.

15.3 COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS

We discussed the level of abstraction in Section 1.4. The focus of this book is on the
RT level, in which the main parts are intermediate-sized components. Most synthesis
software contains predesigned modules for relational operators and addition and subtraction
operators, and these modules are inferred and instantiated during synthesis. There are
many other intermediate-sized RT-level components that are frequently encountered in a
large design, including reduction circuit, decoder, encoder, multiplexer, barrel shifter and
multiplier. Since these components are common building parts that are needed in many
applications, they are good candidates to be parameterized.

As discussed in Section 7.4, the efficiency of a circuit relies heavily on its basic structure
and underlying topology. A good description helps the synthesis process to derive a more
effective implementation. To describe a parameterized multidimensional circuit is more
involved. The key to designing this type of circuit is to identify a general pattern and then
use for loop or for generate statements to describe the desired connection pattern. The
following procedure helps us to achieve this goal:

0 Draw a small-scale diagram with basic building blocks.
0 Derive a proper index for the connection signals in each stage.
0 Identify the general relationship between the signals in successive stages.
0 Identify the connection patterns between boundary stages and U0 ports.
0 Derive the VHDL code accordingly.

The remaining section illustrates the design and derivation of several RT-level components.

15.3.1 Reduced-xor circuit

In Chapter 14, we constructed a parameterized reduced-xor circuit using various VHDL
language constructs, as in Listings 14.1, 14.6 and 14.12. These codes essentially describe
the same cascading circuit of Figure 14.2. For an n-bit input, the critical path includes n xor
gates. We can rearrange the cascading chain into a tree-shaped structure, as discussed in
Section 7.4.1, and reduce the critical path to log, n xor gates.

For a non-parameterized design, we can use parentheses to force the desired order of
evaluation and thus implicitly construct a tree-shaped circuit, as shown in Listing 7.18.
Translating this approach into a parameterized description is not feasible. We need to
explicitly specify the connection pattern in VHDL code. The circuit diagram of a tree-
shaped eight-input reduced-xor circuit is shown in Figure 15.2. This is a two-dimensional
structure. We first divide the tree into stages and number the stages from right to left. Each
stage now contains multiple xor gates. We treat each xor gate as a row and number the
rows from top to bottom. An xor gate can be identified with a two dimensional index (s, r) ,
which represents the rth row of the sth stage. The corresponding output signals of the xor
gate is named ps,,.. We can label all the interconnection signals according to this naming
convention, as shown in Figure 15.2. Note that the input signals to the leftmost stage are
also named following the same convention to make a homogeneous diagram.

The key to describing a repetitive structure is to identify the relationship of the signals
between successive stages. Let us examine the xor gate in the rth row of the sth stage. Its two
inputs are from the the 2rth row and (2r+l)th row of the left stage (i.e., the (s+l)th stage).

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

556 PARAMETERZED DESIGN: PRACTICE

stage 2 stage 1 stage 0

Y
pw

Figure 15.2 Tree-shaped reduced-xor circuit.

The factor 2 in a row's index reflects the fact that the number of rows is reduced by half in
each stage. The input-output relationship of this xor gate can be described as

PS,? = Ps+l ,2r €3 Ps+l,2r+l

After identifying the key relationship, we can convert the circuit into VHDL code. The
two-dimensional structure implies that we need a two-dimensional data type for the p signal
and a nested generate statement for the structure, with the outer statement for iteration in
terms of the stages and the inner statement for iteration in terms of the rows. Since an xor
gate has two inputs, the number of rows is reduced by half at each stage. For an input of
n bits, the implementation needs log, n stages and there are 2s rows in the 8th stage.

The VHDL code is shown in Listing 15.4. The entity declaration is the same as the
one in Chapter 14 and is included for clarity. We assume that the width of the input is
in a power of 2. The code uses a nested two-level for generate statement for the general
structure and an additional for generate statement to convert the input signal to the internal
naming convention.

Listing 15.4 Parameterized tree-shaped reduced-xor circuit with input of 2" bits

l i b r a r y ieee;
use ieee. std-logic-1164, a l l ;
use work. util-pkg. a l l ;
e n t i t y reduced-xor i s

s gener ic (WIDTH : natural) ;
p o r t (.

a: in std-logic-vector (WIDTH-1 downto 0);
y : out std-logic

1;
10 end reduced-xor ;

a r c h i t e c t u r e gen-tree-arch of reduced-xor i s
cons tant STAGE: natural := log2c (WIDTH) ;
s i g n a l p:

I S std-logic-2d (STAGE downto 0, WIDTH -1 downto 0) ;
begin
- rename i n p u t s i g n a l
in-gen: for i in 0 to (WIDTH-1) generate

COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS 557

p(STAGE,i) <= a(i);
20 end g e n e r a t e ;

- r e p l i c a t e d s t r u c t u r e
stage-gen:
for 8 in (STAGE-1) downto 0 generate

row-gen :
25 f o r r in 0 to (2**s-1) generate

p(s,r) <= p(s+l,2*r) xor p(s+l,2*r+l);
end generate ;

end generate ;
-- rename o u t p u t s i g n a l

30 y <= p(0,O);
end gen-tree-arch;

If the number of input bits is not a power of 2, the input stage may appear irregular.
One way to handle the input of arbitrary width is to create a full-sized reduced-xor tree and
tie the unused inputs to 0’s. Since z @ 0 = z, there is no effect on functionality. These
0 inputs are static, and the redundant xor gates will be removed during synthesis. Thus, the
padding 0’s should have no adverse impact on the physical implementation. The revised
VHDL code is shown in Listing 15.5. An if generate statement is added. The input to the
leftmost stage will be padded with 0’s if its number is not a power of 2.

Listing 15.5 Parameterized tree-shaped reduced-xor circuit with input of arbitrary bits

a r c h i t e c t u r e gen-tree2-arch of reduced-xor i s
cons tant STAGE: natural : = log2c (WIDTH) ;
s i g n a l p:

std_logic_2d(STAGE downto 0, 2**STAGE-l downto 0) ;
5 begin

-- rename i n p u t s i g n a l
in-gen :
for i in 0 to (WIDTH-1) generate

end generate ;
-- p a d d i n g 0 ’ s
pad0-gen :
i f WIDTH < (2**STAGE) generate

p(STAGE,i) <= a(i>;

zero-gen :
for i in WIDTH to (2**STAGE-l) generate

end generate ;
p(STAGE,i) <= ’0’;

end generate ;
- r e p 1 i c a t e d s t r u c t u r e
stage-gen :
for s in (STAGE-1) downto 0 generate

row-gen :
for r in 0 to (2**s-1) generate

end generate ;
p(s,r> <= p(s+l,l*r) xor p(s+l,2*r+l);

end generate ;
- rename o u t p u t s i g n a l
y <= p(0,O);

end gen-tree2-arch ;

558 PARAMETERIZED DESIGN: PRACTICE

The design can also be coded with a for loop statement, as shown in Listing 15.6.

Listing 15.6 Parameterized tree-shaped reduced-xor circuit using for loop statement

a r c h i t e c t u r e loop-tree-arch of reduced-xor i s
cons tant STAGE: natural := log2c (WIDTH) ;
s i g n a l p:

std_logic_2d(STAGE downto 0. 2**STAGE-1 downto 0) ;
5 begin

process (a I p)
begin

for i in 0 to (2**STAGE-1) loop
i f i < WIDTH then

e l s e

end i f ;

10 p(STAGE,i) <= a(i); - rename i n p u t s i g n a l

p(STAGE,i) <= ’0’; - p a d d i n g 0 ’ s

end l o o p ;

for a in (STAGE-1) downto 0 loop
for r in 0 to (2**a-1) loop

end l o o p ;

IS - r e p 1 i c a t e d s t r u c t u r e

p (a , r) <= p(s+l,l*r) xor p (a + l , 2*r+1);

20 end l o o p ;
end p r o c e s s ;
- rename o u t p u t s i g n a l
y <= p(0,O);

end loop-tree-arch;

15.3.2 Binary decoder

We discussed the design of a parameterized binary decoder in Section 14.7.2. The code
in Listing 14.21 represents a one-dimensional vertical structure, as shown in Figure 14.1.
Since the decoding of each output bit is done in parallel, the code is better than the codes
of a cascading chain. However, the parallel vertical structure introduces a large number of
input signals and may hinder the placement and routing process.

An alternative is to construct a larger decoder with a collection of smaller decoders
that are arranged as a two-dimensional tree. This example illustrates the construction with
l-to-2l decoders. The block diagram and the function table of the l-to-2l decoder are
shown in Figure 15.3(a). An enable signal, en, is added to the decoder to accommodate the
construction. When it is not asserted, the decoder is disabled with an all-zero output. The
logic equations for this circuit are very simple:

yo = en . a’
y1 = en - a

The block diagram of a 3-t0-2~ decoder with 1-to-2l decoders is shown in Figure 15.3@).
In this scheme, the input signal is decoded in stages, from the MSB to the LSB. The leftmost
stage (i.e., stage 2) decodes the a2 bit, and its output enables either the top or bottom part of
the downstream decoding stages. The next stage decodes the a1 bit and enables one-half of
its downstream decoding stages. Thus, after two stages, only one-fourth of the downstream

COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS 559

~~ ~

input output

en a YI YO

0 - 0 0

1 0 0 1

(a) Symbol and function table of a 140-2~ decoder

stage 2 stage 1 stage 0

a yo POZ
PO3 en yi -

pzl
PM t r a YO-

pos en yt -

m'
en yi

- a y o d

en YI

code(2)

code(6)

code(7)
U

(b) 3-t0-2~ decoder using l-to-2l decoders

Figure 15.3 Tree-shaped binary decoder.

decoding stages is enabled. For an 71-to-2~ decoder, this operation repeats for each bit until
all the bits are decoded and one out of 2n output bits is asserted.

Note that there is an additional enable signal, en, in the input of the parameterized
module. If the en signal is not asserted, it disables the leftmost 1-to-2l decoder, which, in
turn, disables all downstream 1-to-2' decoders. None of the output bits will be asserted.

The VHDL description is shown in Listing 15.7, and the entity declaration of Chapter 14
is included for clarity. It is coded with a nested two-level for loop statement. The two inner
sequential signal assignments are based on the logic equations of the 1-to-2' decoder.

Listing 15.7 Parameterized tree-shaped binary decoder

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use work. util-pkg. a l l ;
e n t i t y tree-decoder i s

s g e n e r i c (WIDTH: natural) ;
port (

a: in std-logic-vector (WIDTH-1 downto 0) ;
en:std-logic;
code : out std-logic-vector (P**WIDTH-l downto 0)

10 1 ;

560 PARAMETERIZED DESIGN: PRACTICE

end tree-decoder ;

a r c h i t e c t u r e loop-tree-arch of tree-decoder i s
cons tant STAGE: natural := WIDTH;

I5 s i g n a l p:
std_logic_2d(STAGE downto 0, 2**STAGE-1 downto 0) ;

begin
process (a,p)
begin

20 - l e f t m o s t s t a g e
p(STAGE,O) <= en;
- m i d d l e s t a g e s
for s in STAGE downto 1 l oop

for r in 0 to (2**(STAGE-s)-1) loop
p(s-1,2*r) <= (n o t a(s-1)) and p(s,r>;
p(s-l,2*r+l) <= a(s-1) and p(s,r>;

end l o o p ;
end l o o p ;
- l a s t s t a g e and o u t p u t

M for i in 0 to (2**STAGE-l) loop
code(i) <= p(0,i);

end l o o p ;
end p r o c e s s ;

end loop-tree-arch;

2.5

15.3.3 Multiplexer

A parameterized multiplexer was designed in Chapter 14 and the code is shown in List-
ing 14.25. The code represents a one-dimensional cascading priority routing network and
thus is not an ideal structure.

Tree-shaped multiplexer One scheme to derive a two-dimensional structure is to di-
vide the multiplexing into stages that are controlled by the individual bits of the selection
signal. The block diagram of an 8-to-1 multiplexer is shown in Figure 15.4. It consists of
three stages of 2-to-1 multiplexers. At each stage, the selection signals of the 2-to-1 mul-
tiplexers are tied together and connected to a bit of the selection signal, sel, of the 8-to-l
multiplexer. The LSB of the sel signal is connected to the leftmost stage (i.e., stage 2). It
selects one-half of the eight possible inputs and routes them to the next stage. The selection
process repeats two more times until a single input is routed to the output.

The operation of this circuit can be understood by examining an example. Routing with
the sel signal of "1 10" is shown in Figure 15.5. We use a "binary subscript" to make the
routing process clearer. For example, the a6 input is expressed as ~ 1 1 0 . The routing is done
as follows:

0 Stage 2 (the leftmost stage): The LSB of the sel signal is '0' and thus input signals
with index "xxO", which include ~000, solo, a100 and allo, are selected and routed
to the next stage.

0 Stage 1 (the middle stage): The second LSB of the sel signal is ' 1' and thus signals
with index "xlx", which include a010, and ~ 1 1 0 , are selected and routed to the next
stage.

COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS 561

stage 2 stage 1 stage 0

Figure 15.4 Tree-shaped 8-to- 1 multiplexer.

Figure 15.5 Routing with sel="l 10.

562 PARAMETERIZED DESIGN: PRACTICE

0 Stage 0 (the rightmost stage): The MSB of the sel signal is '1' and thus the signal

We can develop the VHDL code following the basic connection pattern of Figure 15.5.
Note that the basic structure of the multiplexer is similar to the tree-shaped reduced-xor
circuit of Section 15.3.1. Thus, the code of the reduced-xor circuit can be modified for the
multiplexer. The VHDL code using the for loop statement is listed in Listing 15.8.

with index "lxx", which is ~ 1 1 0 , is selected and routed to the output.

Listing 15.8 Parameterized tree-shaped multiplexer

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
use work. util-pkg . a l l ;

5 e n t i t y muxl i s
g e n e r i c (WIDTH: natural) ;
p o r t (

a: i n std-logic-vector (WIDTH-1 downto 0) ;
sel : i n std-logic-vector (log2c (WIDTH) -1 downto 0) ;

10 y : ou t std-logic
1;

end muxl;

a r c h i t e c t u r e loop-tree-arch of muxl is
IS c o n s t a n t STAGE: natural:= log2c(WIDTH);

s i g n a l p:
std_logic_2d(STAGE downto 0, 2**STAGE-1 downto 0) ;

begin
process (a,sel ,p>

20 begin
f o r i i n 0 to (2**STAGE-l) loop

i f i < WIDTH then

e l s e

end i f ;

p(STAGE,i) <= a(i>; - rename i n p u t s i g n a l

2.5 p(STAGE,i) <= '0'; - p a d d i n g 0's

end l o o p ;
- r e p l i c a t e d s t r u c t u r e
f o r s i n (STAGE-1) downto 0 loop

f o r r i n 0 to (2**s-1) loop

p(s,r> <= p(s+l,2*r);

p(s,r) <= p(s+1,2*r+l);

i f sel((STAGE-l)-s)='O' then

e l s e

end i f ;
end l o o p ;

end l o o p ;
end p r o c e s s ;
- rename o u t p u t s i g n a l

40 y <= p(0,O);
end loop-tree-arch;

The code is identical to that in Listing 15.6 except that we replace the xor gate

p(s,r> <= p(s+l,2*r) xor p(s+l,2*r+l);

COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS 563

with a 2-to- 1 multiplexer:

i f sel ((STACE-1) - s) = ’ O ’ then

e l s e

end i f ;

p(s,r) <= p(s+i,2*r);

p(s , r) <= p(s+l,2*r+l);

Behaviorai description If the input of a multiplexer is represented as an array, as in the
code of Listing 15.8, the multiplexing can be considered as an indexing function that uses
the sel signal as an index to select an element from the array. Based on this observation,
we can derive the behaviorial VHDL code, as shown in Listing 15.9.

Listing 15.9 Behavioral description of a multiplexer

a r c h i t e c t u r e beh-arch of muxl i s
begin

end beh-arch ;
y <= a(to-integer(unsigned(se1)));

We have used the complex index expressions before. However, these expressions are
sfufic, which means that their values are determined during the elaboration process, and no
physical circuit will be inferred. On the other hand, the index expression in the beh-arch
architecture depends on the sel input. This implies that the expression is dynamic and will
infer a multiplexing circuit.

In the ideal case, the synthesis software recognizes this expression, and a predesigned,
optimized multiplexer is inferred from the device library accordingly. We can use a simple
one-line code to obtain an efficient implementation. However, not all synthesis software
accepts the dynamic expression in array index, and thus the code is less portable.

Two-dimensional description In Section 15.2.4, we extended the multiplexer to ac-
commodate two-dimensional input data. The code follows the cascading priority routing
network of the one-dimensional design and suffers the same performance problem.

We can follow the process in Section 15.2.4 and extend the tree-shaped multiplexer
to accept two-dimensional input data as well. The extension requires the use of a three-
dimensional data type to represent the internal signal. This can be done by defining a
new genuine data type like std-logic-2d or creating a new index function to emulate the
three-dimensional data type with a one-dimensional array.

Alternatively, we can construct a two-dimensional multiplexer by duplicating the existing
one-dimensional multiplexers. The VHDL code is shown in Listing 15.10. The a signal is
converted into an array-of-arrays data type internally, and a for generate statement creates
multiple instances of one-dimensional multiplexers.

Listing 15.10 lbo-dimensional multiplexer using one-dimensional multiplexers

a r c h i t e c t u r e from-muxld-arch of mux2d is
type aoa-transpose-type i s

s i g n a l aa: aoa-transpose-type ;

gener ic (WIDTH: natural) ;
port (

array (B-1 downto 0) of std-logic-vector (P-1 downto 0) ;

5 component muxl i s

a: in std-logic-vector (WIDTH-1 downto 0) ;

564 PARAMETERIZED DESIGN: PRACTICE

Table 15.1 Function table of an 8-to-3 binary encoder

Input Encoded output
(17(16 ' ' a1aO b2blbO

0000 0001 OOO
OOOO 0010 00 1
0000 0100 010
0000 1000 01 1
0001 0000 100
0010 OOOO 101
0100 0000 110
1000 0000 111

others don' t-care

sel : in s t d - l o g i c - v e c t o r (l o g 2 c (WIDTH) -1 downto 0) ;
10 y : ou t s t d - l o g i c

1;
end component;

- c o n v e r t t o a r r a y - o f - a r r a y s d a t a t y p e
IS process (a)

begin

begin

fo r i i n 0 to (B - I) loop
for j in 0 to (P - 1) loop

a a (i > (j > <= a (j , i > ;
20 end l o o p ;

end loop;
end p r o c e s s ;
-- r e p l i c a t e I - b i t m u l t i p l e x e r B t i m e s
g e n - n b i t : fo r i in 0 to (B - 1) generate

25 mux: muxl
g e n e r i c map (W I DTH = > P 1
port m a p (a = > a a (i) , sel=>sel, y=>y(i));

end generate ;
end f rom-muxld-arch ;

15.3.4 Binary encoder

A binary encoder is a circuit that converts a one-hot input into a binary representation. The
width of the input is normally a power of 2, and only 1 bit of the input is asserted. The
function table of an 8-to-3 binary encoder is shown in Table 15.1. One unique characteristic
of a binary encoder is the number of don't-care input combinations. For an n-bit input,
2" - n combinations are not used. This can lead to significant circuit reduction.

The circuit can easily be constructed by observing the function table. The logic expres-
sions of the previous 8-to-3 binary encoder are

b p = U7 -k U6 -k U5 -k U4
bi = a7 -k a6 -k U3 -k U2
bo = a7 + a5 + a3 + a1

COMMONLY USED INTERMEDIATE-SIZED RT-LEVEL COMPONENTS 565

Deriving an abstract parameterized code for the binary encoder is not very hard. However,
this kind of description tends to "overspecify" the circuit. For example, the priority encoder
code of Listing 14.24 can also be used to describe a binary encoder. Although the circuit
functions correctly, the overspecification leads to unnecessary circuit complexity.

One way to describe a more efficient implementation is to follow the pattern of the
previous or expressions. Close observation shows that the ak bit will be included in the or
expression of bi if the following condition is met:

k
- m o d 2 = 1
2i

For example, let i = 1. For an 8-to-3 binary encoder, the range of k is between 0 and 7,
and the condition is satisfied when k is 7,6,3 and 2. Thus, the or expression of bl can be
written as a7 + a6 + a3 + a2.

To accommodate the condition, we create a mask table mirroring the desired patterns
and apply the pattern to enable the desired bits. For example, the mask table of the previous
8-to-3 binary encoder is

"11110000"
11 00 1 100 1' ,

"10101010",

To obtain b2, we can perform the and operation between the a input and the first row of the
mask table and then perform reduced-or operation over the result. This scheme is coded
in Listing 15.11. We define a function, gen-oraask, to generate the mask table with an
array-of-arrays data type and then use it to disable the unneeded bits. The circuit is described
by a nested two-level for loop statement. The outer loop iterates through the log2 n output
bits, and the inner loop performs the reduced-or operation over the masked input. The code
for the reduced-or circuit represents a cascading structure. If needed, we can revise it to
make a tree-shaped implementation, as the reduced-xor circuit in Section 15.3.1. This is
probably not necessary since the synthesis software should be able to handle such a simple
circuit.

Listing 15.11 Parameterized binary encoder

l i b r a r y ieee ;
use ieee, std-logic-1164. a l l ;
use work. util-pkg. a l l ;
e n t i t y bin-encoder is

5 gener ic (N : natural) ;
port (

a: in std-logic-vector (N - 1 downto 0) ;
bcode : out std-logic-vector (log2c (N) -1 downto 0)

> ;
10 end bin-encoder ;

a r c h i t e c t u r e para-arch0 of bin-encoder i s
type mask-2d-type i s array (log2c (N I -1 downto 0) of

std-logic-vector (N - 1 downto 0) ;
15 s i g n a l mask : mask-2d-type ;

f u n c t i o n gen-or-mask return mask-2d-type i s

begin
v a r i a b l e or-mask : mask-2d-type ;

for i in (logZc(N)-1) downto 0 loop

566 PARAMETERIZED DESIGN: PRACTICE

2.5

20 f o r k in (N - 1) downto 0 loop
i f (k/(2**i) mod 2)= 1 then

or-mask(i) (k) := ’1 ’ ;
e l s e

or-mask(i)(k) := ’0’;
end i f ;

end l o o p ;
end l o o p ;
return or-mask ;

end funct ion ;
30

begin
mask <= gen-or-mask ;
process (mask, a)

v a r i a b l e tmp-row : std-logic-vector (N-1 downto 0) ;
35 var iab le tmp-bit : std-logic;

begin
for i in (log2c(N)-l) downto 0 loop

tmp-row : = a and mask(i) ;
-- reduced or o p e r a t i o n

for k in “-1) downto 0 loop

end l o o p ;
bcode(i) <= tmp-bit ;

40 tmp-bit := ’0’;

tmp-bit := tmp-bit or tmp-row(k);

45 end l o o p ;
end p r o c e s s ;

end para-arch0 ;

Note that the gen-ormask function and the mask operation are static. The masked bits
will become 0’s during elaboration process and be removed from the physical circuit during
synthesis.

15.3.5 Barrel shifter

In Section 7.4.4, we studied the design of a fixed-size 8-bit rotating-right circuit. It consists
of three stages of shifting-multiplexing circuits. According to the value of the control
signal, the input can be either passed directly to the output or shifted by a fixed amount.
The amount of shifting doubles in each stage, from 2’ to 2l and 22. The 3-bit selection
signal controls the three shifting-multiplexing circuits. After an input signal passes through
three stages, the total shifted amount is the summation of the three individual stages set by
the selection signal.

This is an efficient implementation for several reasons. First, as the number of inputs
increases, the number of stages grows on the order of 0(10g2 n). The length of the critical
path grows in the same order, and thus its performance is much better than the cascading
chain. Second, the circuit exhibits a regular two-dimensional structure and thus is easier
for the synthesis and placement and routing software to obtain better results. Finally, recall
that shifting a fixed amount requires only reconnection of the input and output signals.
The shifting-multiplexing circuit is essentially a simple 240-1 multiplexer. Because of
the regular structure, this scheme can be extended easily to accommodate parameterized
design.

COMMONLY USED INTERMEDIATE-SIZED FIT-LEVEL COMPONENTS 567

To make the parameterized shifting circuit more flexible, we include a feature parameter
to indicate the type of shift operation, which can be shifting left, rotating left, shifting right
and rotating right. The design starts with the shifting-multiplexing module. The basic
block diagram is shown in Figure 15.6(a). The VHDL code of the parameterized shifting-
multiplexing module is shown in Listing 15.12. The code includes three parameters. The
WIDTH generic specifies the size of the circuit, the SAMT generic specifies the amount to
be shifted and the SMODE generic specifies the type of shifting operation. Four if generate
statements generate the desired amount of shifting or rotation, and the result is passed to a
2-to-1 multiplexer. Note that the shifted amount is determined by the SAMT generic and
thus is static. The shiftinghotation circuit involves only reconnection of the signals.

Listing 15.12 Parameterized fixed-size shifting-multiplexing module

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use work. util-pkg. a l l ;
e n t i t y f ixed-shifter i s

s g e n e r i c (
WIDTH : natural ;
S-AMT : natural ;
S-MODE : natural

1;
10 p o r t (

s-in: in std-logic-vector (WIDTH-1 downto 0) ;
shft: in std-logic;
S-out : out std-logic-vector (WIDTH-1 downto 0)

1;
IS end f ixed-shif ter ;

a r c h i t e c t u r e para-arch of f ixed-shifter i s
c o n s t a n t L-SHIFT: natural : = O ;
c o n s t a n t R-SHIFT : natural : = l ;

20 c o n s t a n t L-ROTAT: natural : = 2 ;
c o n s t a n t R-ROTAT : natural : = 3 ;
s i g n a l sh-tmp , zero: std-logic-vector (WIDTH-1 downto 0) ;

begin

40

zero <= (o t h e r s = > ’ O ’) ;
-- s h i f t l e f t
1-sh-gen :
i f S-MODE=L-SHIFT generate

sh-tmp <= s-in(W1DTH-S-AMT-1 downto 0) %
zero (WIDTH-1 downto WIDTH-S-AMT) ;

end generate ;
- r o t a t e l e f t
1-rt-gen :
i f S-MODE=L-ROTAT generate

sh-tmp <= s-in(W1DTH-S-AMT-1 downto 0) %
s-in(W1DTH-1 downto WIDTH-S-AMT) ;

end generate ;
-- s h i f t r i g h t
r-sh-gen :
i f S-MODE=R-SHIFT generate

sh-tmp <= zero(S-AMT-1 downto 0) %

568 PARAMETERZED DESIGN: PRACTICE

stage 0 stage 1 stage 2

S-AMT=I S-AMT=P S-AMT4

w...\-, ~~

(b) Block diagram of an %bit three-stage barrel shifter

Figure 15.6 Parameterized barrel shifter.

s-in (WIDTH -1 downto S-AMT) ;
end generate ;
- r o t a t e r i g h t
r-rt-gen :

4s if S-MODE=R-ROTAT generate
sh-tmp <= s-in(S-AMT-1 downto 0) tz

s-in (WIDTH -1 downto S-AMT) ;
end generate ;
- 2 - t o - I m u l t i p l e x e r

M s-out <= sh-tmp when shft=’l’ e l s e
s-in ;

end para-arch ;

The block diagram of a general &bit three-stage barrel shifter is shown in Figure 15.6(b).
Each stage is a shifting-multiplexing module, and the ith bit of the amt signal is connected
to the shf t signal of the ith stage. The amount of shifting is determined by the stage and is
2i for the ith stage. The VHDL code is shown in Listing 15.13. We assume that the value
of input (Le., the WIDTH parameter) is a power of 2.

Listing 15.13 Parameterized barrel shifter

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use work. util-pkg. a l l ;
e n t i t y barrel-shifter i s

MORE SOPHISTICATED EXAMPLES 569

5 g e n e r i c (
WIDTH : n a t u r a l ;
S-MODE : n a t u r a l

) ;
port (

10 a : in s t d - l o g i c - v e c t o r (W I D T H - 1 downto 0) ;
amt : in s t d - l o g i c - v e c t o r (l o g l c (WIDTH) -1 downto 0) ;
y : out s t d - l o g i c - v e c t o r (W I D T H - 1 downto 0)

1;
end b a r r e l - s h i f t e r ;

a r c h i t e c t u r e p a r a - a r c h of b a r r e l - s h i f t e r i s
I S

cons tant STAGE: n a t u r a l := logPc(W1DTH) ;
type s t d - a o a - t y p e i s array(STAGE downto 0) of

s t d - l o g i c - v e c t o r (W I D T H - 1 downto 0) ;
20 s i g n a l p : s t d - a o a - t y p e ;

component f i x e d - s h i f t e r i s

WIDTH : n a t u r a l ;
S-AMT : n a t u r a l ;

U S-MODE : n a t u r a l

g e n e r i c (

1;
port (

s - i n : in s t d - l o g i c - v e c t o r (W I D T H - 1 downto 0) ;
s h f t : in s t d - l o g i c ;

30 s -ou t : out s t d - l o g i c - v e c t o r (WIDTH-1 downto 0)
1;

end component ;

p (0) <= a ;
35 s t age -gen :

fo r s in 0 t o (STAGE-1) generate
s h i f t - s l i c e : f i x e d - s h i f t e r

begin

g e n e r i c map(WIDTH=>WIDTH , S-MODE=>S-MODE ,
S-AMT=>l**s)

40 port map(s-in=>p(s), s - o u t = > p (s + l) , s h f t = > a m t (s)) ;
end generate ;
y <= p(STAGE);

end p a r a - a r c h ;

15.4 MORE SOPHISTICATED EXAMPLES

We study more sophisticated design examples in this section, including a reduced-xor-
vector circuit and cell-based combinational multiplier, which exhibit more complex two-
dimensional structures, and a priority encoder and FIFO, which are constructed using pre-
designed parameterized RT-level components.

570 PARAMETERZED DESIGN: PRACTICE

15.4.1 Reduced-xor-vector circuit

The reduced-xor-vector circuit was explained in Section 7.4.2. It performs the xor operation
over successive ranges of the input. For example, for a 4-bit input a3a2~1a0, the circuit
returns four values: ao, a1 @ ao. a2 @ a1 @ a0 and a3 @ a2 @ a1 @ a0 .
Cascading-chain structure We discussed two implementations in Section 7.4.2. The
linear cascading implementation requires a minimal number of gates, and its VHDL code
is very simple. The code of Listing 7.21 takes advantage of the VHDL array construct and
can easily be modified to accommodate a parameterized design. The revised code is shown
in Listing 15.14.

Listing 15.14 Parameterized cascading-chain reduced-xor-vector circuit

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use work. util-pkg. a l l ;
e n t i t y reduced-xor-vector i s

s g e n e r i c (N : natural) ;
port (

a : in std-logic-vector (N-1 downto 0) ;
y: out std-logic-vector (N-1 downto 0)

1;
10 end reduced-xor-vector ;

a r c h i t e c t u r e linear-arch of reduced-xor-vector i s

begin
s i g n a l p : std-logic-vector (N-1 downto 0) ;

IS p <= (p(N-2 downto 0) % '0') xor a;
y <= p ;

end linear-arch;

The cascading structure experiences a large propagation delay. For an N-bit input, the
critical path includes N xor gates.

ParaNekprefix structure A more efficient structure was shown in Figure 7.8(b), which
reduces the critical path to log, N xor gates and achieves the maximal amount of sharing.
The interconnection is arranged according to a special class of structures based on the
parallel-prefix algorithm.

The connection structure of this circuit is more involved. To better understand the
connection pattern, we rename the signals in the circuit diagram of Figure 7.8(b) and add
some pass-through boxes. The revised diagram is shown in Figure 15.7.

Assume that a reduced-xor-vector circuit has N-bit input and N = 2*. The circuit can
be divided into n stages, each containing 2" blocks (rows). A block can be an xor gate or
an empty pass-through box. We number the stages from left to right and the rows from top
to bottom. For the ith row in the sth stage, its output is labeled as psi. An 8-bit circuit is
shown in Figure 15.7.

Closer observation of the diagram shows that it follows a simple pattern. Consider the
sth stage:

0 The stage is divided into 2n-S modules. Each module contains 28 blocks and is

0 The top-half blocks of the module are pass-through boxes. The input of a box is
shown as a shaded rectangle in Figure 15.7.

connected to the output from the same row of the preceding stage.

stage 1 stage 2

MORE SOPHISTICATED EXAMPLES 571

stage 3

Figure 15.7 Parallel-prefix reduced-xor-vector circuit.

0 The bottom-half blocks of the module are xor gates. One input of an xor gate is
connected to the output from the same row of the preceding stage. The other input
is the same for all xor gates in the module. It is from the output whose row index is
one smaller than the index of the top xor gate in the module.

For example, consider the second stage in the diagram. We can divide it into two 22
modules. In the first module, the top half of the first module, whose outputs are labeled
p20 and p21, is connected to pl0 and p l l . The outputs of the bottom half of the module are
labeled p22 and p23. In addition to the p12 and pi3 signals, the xor gates share a common
input, the p l l signal. The second module has a similar pattern. Note that the pi5 signal is
connected to the xor gates whose outputs are labeled -6 and p27.

The VHDL code is shown in Listing 15.15. We assume that the number of elements of
the a input is a power of 2.

Listing 15.15 Parameterized parallel-prefix reduced-xor-vector circuit

a r c h i t e c t u r e para-pref ix-arch of reduced-xor-vector i s
cons tant ST : natural := log2c (N I ;
s i g n a l p: std_logic_2d(ST downto 0, N - 1 downto 0);

begin
5 process (a , p I

begin
- rename i n p u t
for i in 0 to “-1) loop

end l o o p ;
- main s t r u c t u r e
f o r s in 1 t o ST l oop

p (0 , i) <= a(i>;
10

572

IS

PARAMETERIZED DESIGN PRACTICE

for k in 0 to (2 * * (S T - s) - 1) loop
- 1 s t h a l f : p a s s - t h r o u g h boxes
for i i n 0 to (2 * * (s - 1) - 1) loop

end loop;
-- 2 n d h a l f : x o r g a t e s
for i in (2 * * (s - 1)) to (2 * * s - 1) loop

p (s , k*(2**s)+i) <=

p (s , k * (2 * * s) + i) <= p (s - 1 , k * (2 * * s) + i) ;

p (s - 1 , k * (2 * * s) + i) xor
p (s - 1 , k * (2 * * ~) + 2 * * (~ - 1) -1) ;

end loop;
end loop;

end loop;
- rename o u t p u t
for i in 0 to N - 1 loop

y (i) <= p (S T , i) ;
end loop;

end process;
end para-pref i x -arch ;

The main structure is described by a nested three-level for loop statement. The outer
loop specifies the iterations over ST stages:

for s in 1 to ST loop

The middle loop iterates over the modules:

for k i n 0 to (2**(ST-s) -1) loop

The two inner loops iterate over the blocks inside a module:

for i in 0 to (2 * * (s - 1) - 1) loop

for i in 2 * * (s - 1) to (2 * * s - 1) loop
. . .

. . .
The first inner loop iterates through the pass-through boxes and the second inner loop iterates
through the xor gates. Note that the loop index represents half of the number of the blocks
in a module.

15.4.2 Multiplier

Multiplication is a frequently needed arithmetic operation and its synthesis is not supported
by all software. Two fixed-size implementations were discussed earlier, including an adder-
based combinational multiplier in Section 11.6 and a sequential multiplier in Section 7.5.4.
In this section, we convert the previous implementations to parameterized modules and also
introduce a more efficient cell-based design.

Sequential multiplier The sequential multiplier utilizes a simple shift-and-add algo-
rithm to iterate additions sequentially through a single adder. Since the algorithm can be
applied for any input width, the design can be easily parameterized.

The original fixed-size 8-bit multiplier code is shown in Listing 11.8. Various array
boundaries, initial values, and test conditions are based on the input width. To convert the
code into a parameterized design, we just need to represent these values in terms of the
WIDTH generic. The revised code is shown in Listing 15.16.

MORE SOPHISTICATED EXAMPLES 573

10

40

Listing 15.16 Parameterized sequential multiplier

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
use work. util-pkg. a l l ;

5 e n t i t y seq-mult-para is
g e n e r i c (WIDTH: natural) ;
p o r t (

clk, reset: in std-logic;
start : in std-logic ;
a-in, b-in: i n std-logic-vector(W1DTH-1 downto 0);
ready : out std-logic ;
r: o u t std-logic-vector (2*WIDTH-1 downto 0)

1;
end seq-mult-para;

a r c h i t e c t u r e shift-add-better-arch of seq-mult-para i s
I5

c o n s t a n t C-WIDTH: integer:=log2c(WIDTH)+l;
c o n s t a n t C-INIT : unsigned(C-WIDTH-1 downto 0)

:=to-unsigned(WIDTH,C-WIDTH);
20 type state-type i s (idle, add-shft) ;

s i g n a l state-reg , state-next : state-type ;
s i g n a l a-reg , a-next : unsigned(W1DTH-1 downto 0) ;
s i g n a l n-reg , n-next : unsigned(C-WIDTH-1 downto 0) ;
s i g n a l p-reg , p-next : unsigned (P*WIDTH downto 0) ;

a l i a s pu-next: unsigned(W1DTH downto 0) i s

a l i a s pu-reg: unsigned(W1DTH downto 0) i s

zs - a l i a s f o r the upper p a r t and l o w e r p a r t s of p - r e g

p-next (2*WIDTH downto WIDTH) ;

p-reg (2*WIDTH downto WIDTH) ;

p-reg (WIDTH -1 downto 0) ;

-- s t a t e and da ta r e g i s t e r s
process (clk , reset)

M a l i a s pl-reg: unsigned(W1DTH-1 downto 0) i s

begin

35 begin
i f reset=’l’ then

state-reg <= idle;
a-reg <= (o t h e r s = > ’ O ’) ;
n-reg <= (o t h e r s = > ’ O ’) ;
p-reg <= (o t h e r s = > ’ O ’) ;

state-reg <= state-next;
a-reg <= a-next;
n-reg <= n-next;

45 p-reg <= p-next;

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;
- combina t iona l c i r c u i t
process (start ,state-reg ,a-reg ,n-reg ,p-reg, a-in ,b-in,

begin
50 n-next , p-next

a-next <= a-reg;

574 PARAMETERIZED DESIGN: PRACTICE

70

75

n-next <= n-rag;
p-next <= p-reg;

case state-reg i s
when idle =>

55 ready < = ’ O ’ ;

i f start=’l’ then
p-next (WIDTH-1 downto 0) <= unsigned(b-in) ;
p-next (2*WIDTH downto WIDTH) <= (o t h e r s = > ’ O ’) ;
a-next <= unsigned(a-in) ;
n-next <= C-INIT;
state-next <= add-shft ;

state-next <= idle;
e l s e

end i f ;
ready <=’l’;

n-next <= n-reg - 1 ;
- add
i f (p-reg(O)=’l’) then

e l s e

end i f ;
- - s h i f t
p-next <= ’0’ 6 pu-next & pl-reg(W1DTH-1 downto 1);
i f (n-next /= 0) then

when add-shft =>

pu-next <= pu-reg + (’0’ & a-reg);

pu-next <= pu-reg;

state-next <= add-shft ;

state-next <= idle;
so e l s e

end i f ;
end c a s e ;

end process;
85 r <= std-logic-vector(p-reg (Z*WIDTH-l downto 0)) ;

end shift-add-better-arch;

Adder-based combinational multiplier The adder-based combinational multiplier
uses an array of adders to perform additions in parallel, as discussed in Section 7.5.4.
The revised block diagram of Section 9.4.3 illustrates the repetitive nature of this design.
Our parameterized design is based on this structure. The block diagram is repeated in
Figure 15.8. We modify the internal signal names to help us to identify the input and output
relationships of each stage.

To increase the flexibility of this module, we include two parameters, N and WITH-PIPE,
in this design. The N generic specifies the width of the operand, and the WITHSIPE generic
indicates whether to add a pipeline to the multiplier. If the pipeline is desired, registers will
be inserted between the stages.

The VHDL code is shown in Listing 15.17. Two array-of-arrays data types are defined for
the internal signals. The std-aoan-type data type is used for the propagated operands, and
the std-aoa-2n-type data type is used to represent the partial product and the bit product.
The code includes three major parts. The first part is composed of two if generate statements,
which either generate buffer registers between stages or serve as a direct connection. The
second part is the process that generates the bit product vector. The bit product in the ith

Y

MORE SOPHISTICATED EXAMPLES 575

a b

Figure 15.8 Adder-based combinational multiplier with new signal labels.

576 PARAMETERIZED DESIGN: PRACTICE

stage is represented by the bp (i 1 signal, which is in the form of 0 - - 0 a,- 1 bi - - a a&
0 - - SO. There are N - i and i padding 0’s in the front and end respectively. The process
includes two for loop statements, one for the two boundary bit products (i.e., bp(0) and
bp (1)) and the other for regular stages. The third part specifies the addition operation in
each stage. It includes a for generate statement for the middle stages and special signal
connections for the first and the last stages.

Listing 15.17 Parameterized adder-based combinational multiplier

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y multn i s

5 g e n e r i c (
N: natural;
WITH-PIPE : natural

1;
p o r t (

10 clk , reset : std-logic ;
a , b: i n std-logic-vector(N-1 downto 0);
y: out std-logic-vector (2*N-1 downto 0)

1;
end multn;

a r c h i t e c t u r e n-stage-pipe-arch of multn i s
IS

type std-aoa-n-type i s

type std-aoa-2n-type i s

s i g n a l a-rag , a-next , b-reg , b-next : std-aoa-n-type;
s i g n a l bp , pp-reg , pp-next : std-aoa-2n-type ;

a r r a y (N-2 downto 1) of std-logic-vector (N-1 downto 0) ;

20 a r r a y (N-1 downto 0) of unsigned (2*N-1 downto 0) ;

begin

40

45

- p a r t 1
- w i t h o u t p i p e l i n e b u f f e r s
g-wire;
i f (WITH-PIPE/=l) g e n e r a t e

a-reg <= a-next;
b-reg <= b-next;
pp-reg(N-1 downto 1) <= pp-next(N-1 downto 1);

end g e n e r a t e ;
- w i t h p i p e l i n e b u f f e r s
g-reg :
i f (WITH-PIPE=l) g e n e r a t e

process (clk ’reset
begin

i f (reset =’l’) then
a-reg <= (others=>(others=>’O’));
b-reg <= (o t h e r s = > (o t h e r s = > ’0 ’1) ;
pp-reg(N-1 downto 1) <= (o t h e r s = > (o t h e r s = > ’0’));

a-reg <= a-next;
b-reg <= b-next;
pp-reg(N-1 downto 1) <= pp-next(N-1 downto 1);

e l s i f (clk’event and clk=’l’) then

MORE SOPHISTICATED EXAMPLES 577

50

55

6Q

65

70

75

80

end i f ;
end p r o c e s s ;

end generate ;
-- p a r t 2
- b i t - p r o d u c t g e n e r a t i o n
process (a , b , a - r e g , b - r e g)
begin

-- b p (0) and b p (1)
f o r i in 0 t o 1 loop

b p (i) <= (o t h e r s = > ’ O ’) ;
f o r j in 0 t o N - 1 loop

end l o o p ;
end l o o p ;
- r e g u l a r b p (i)
for i in 2 to (N - 1) loop

b p (i) (i + j) <= a (j) and b (i) ;

b p (i) <= (o t h e r s = > ’ O ’) ;
f o r j in 0 to (N - 1) loop

end l o o p ;
b p (i) (i + j) <= a - r e g (i - l) (j) and b - r e g (i - l) (i) ;

end l o o p ;
end p r o c e s s ;
-- p a r t 3
-- a d d i t i o n of t h e f i r s t s t a g e
p p - n e x t (1) <= b p (0) + b p (1) ;
a - n e x t (1) <= a ;
b - n e x t (l) <= b ;
- a d d i t i o n of t h e m i d d l e s t a g e s
g l :
f o r i in 2 t o (N-2) generate

pp-next (i) <= p p - r e g (i - 1) + b p (i) ;
a -nex t (i) <= a - r e g (i - 1) ;
b-next (i) <= b - r e g (i - 1) ;

end generate ;
- a d d i t i o n of t h e l a s t s t a g e
pp-next (N - 1) <= pp-reg(N-2) + bp(N-1);
-- rename o u t p u t
y <= s t d - l o g i c - v e c t o r (pp-reg(N-1)) ;

end n - s t a g e - p i p e - a r c h ;

Cell-based carry-ripple combinational multiplier The previous adder-based mul-
tiplier utilizes “coarse” RT-level parts, namely the 2N-bit adders. The alternative is to use
a 1-bit full-adder cell as the basic building block. This allows us to explore the “fine”
structure of the multiplier and derive a more efficient circuit.

The multiplication of two 4-bit binary numbers is shown in Figure 15.9. The operation
can be considered as the summation over the aibj terms, which are aligned in a specific
two-dimensional pattern.

The aibj term returns a l-bit value, and the addition of any two terms can be done by a
l-bit adder, which is commonly known as afull udder. The input of a full adder includes
two l-bit operands, ai and bi, and a l-bit carry-in, ci, and the output includes a sum bit,
so, and a carry-out, CO. The gate-level VHDL description is shown in Listing 15.18. For

578 PARAMETERIZED DESIGN: PRACTICE

X
a3 a2 a1 a0 multiplicand
b3 b2 bl bo multiplier

Figure 15.9 Multiplication as a summation of aibj terms.

most ASIC technologies, there is a predesigned full-adder cell in the device library, and it
will be inferred during synthesis.

Listing 15.18 l-bit full adder

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y fa i s

port (
5 ai, bi, ci: in std-logic;

so, CO: out std-logic
1;

end fa;

10 a r c h i t e c t u r e arch of fa i s

so <= ai xor bi xor ci;
CO <= (ai and bi) or (ai and ci) or (bi and ci);

begin

end arch;

To summate the ai b j terms, we can arrange the full-adder cells according to the two-
dimensional structure of multiplication operation in Figure 15.9. ' h o common arrange-
ments are carry-ripple architecture and carry-save architecture. We study the carry-ripple
multiplier in this subsection and the carry-save multiplier in the next subsection.

Theblockdiagramof a4-bitcarry-ripplemultiplier is showninFigure 15.10. Because the
carry is propagated (i.e., rippled) from the LSB to the MSB stage by stage, this arrangement
is hown as the carry-ripple architecture. In the diagram, each full adder cell is given an
index and expressed as FAij, indicating that the cell is located in the ith row and the j t h
column. For a non-boundary cell, such as FA21 and FA22 in the diagram, the input and
output signals of the FAij cell follow a specific pattern:

0 The ci port is connected to the ci,j signal.
0 The CO port is connected to the ~ + l , j signal, which becomes the carry-in of the

0 The so port is connected to the s,,j signal, which is connected to the bi port of the

0 The ai port is connected to the ui'bj term.
0 Thebiportisconnectedtothesi-l,j+l signal, whichisthes~signaloftheFAi-~,~+~

FAi+l,j cell.

FAi+l,j-1 cell.

cell.

full-adder cell

CO FA ci

MORE SOPHISTICATED EXAMPLES 579

O(aob4) aoba aobz

Figure 15.10 Cell-based carry-ripple combinational multiplier.

The boundary cells are located in the top and bottom rows, and the leftmost and rightmost

0 Top row: The bi port of the FAlj cell is connected to the aobj+l term. Note that the
b4 bit does not exist and the leftmost term (i.e., aob4 in the diagram) is used for the
naming convention. The aob4 term is actually connected to ’0’.

0 Bottom TOW: The so ports of the cells and the CO port of the leftmost cell form the
top portion of the final result.

0 Rightmost column: The ci port of the FAio cell is connected to ’0’. The so ports of
the cells form the lower portion of the final result.

0 Lefimost column: The bi port of the FAi4 cell is connected to the CO port from the
leftmost cell in the previous row. In other words, the ~ , 3 signal is used in the place
of the s i , 3 signal.

Once identifying the normal and boundary connection patterns and the signal naming
convention, we can derive the VHDL description accordingly. The code is shown in List-
ing 15.19. We define an array-of-arrays type for the internal bit-product, carry and sum
signals. The code is divided into several segments. The first segment is a nested two-level
for generate statement that generates the ab signal, which consists of all ai bj terms. The
second segment specifies the connection patterns for the leftmost and rightmost columns.
The third segment specifies the input signal of the top row. The fourth segment is a nested
two-level for generate statement that instantiates the two-dimensional N-by-(N - 1) full-
adder cells of the middle rows. The last segment uses the sum signals of the bottom row
and rightmost column to form the final result.

columns. Their connections are modified as follows:

Listing 15.19 Parameterized cell-based carry-ripple combinational multiplier

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y mult-array i s

gener ic (N : natural) ;
I p o r t (

a-in , b-in : in std-logic-vector (N-1 downto 0) ;
y: out std-logic-vector (2*N-1 downto 0)

580 PARAMETERIZED DESIGN: PRACTICE

1;
end mult-array ;

10

a r c h i t ec t u r e ripple-c arry- arch of mult-array is
type two-d-type i s

s i g n a l ab, c, 8 : two-d-type;
a r r a y (N-1 downto 0) of std-logic-vector (N downto 0) ;

I5 component fa
p o r t (

ai, bi, ci: in std-logic;
s o , CO: out std-logic

1;
zo end component;

- b i t p r o d u c t
g-ab-row :
f o r i i n 0 to N-1 g e n e r a t e

begin

15 g-ab-col: for j i n 0 to (N-1) g e n e r a t e
ab(i)(j) <= a-in(i) and b-in(j>;

end g e n e r a t e ;
end g e n e r a t e ;
- l e f t m o s t and r i g h t m o s t columns

f o r i i n 1 t o (N-1) g e n e r a t e
M g-O-N-col:

c(i)(O) <= '0';
s(i) (N) <= c(i) (N); - l e f t m o s t column

end g e n e r a t e ;

s (0) <= ab(0);
ab(O)(N) <= '0';
- midd le rows
g-f a-row :

35 - t o p row

40 fo r i i n 1 to (N-1) g e n e r a t e
g-f a-col :
f o r j i n 0 to (N-1) g e n e r a t e

u-middle: fa
p o r t map

45 (ai=>ab(i)(j>, bi=>s(i-l)(j+l), ci=> c(i>(j>,
so=>s(i)(j), co=>c(i>(j+l>>;

end g e n e r a t e ;
end g e n e r a t e ;
-- bot tom row and ou tpu t

fo r i i n 0 to (N-2) g e n e r a t e

end g e n e r a t e ;
y(2*N-1 downto N-1) <= s(N-1);

M g-out:

y(i) <= s (i) (O > ;

55 end ripple-carry-arch ;

Although the appearance of this code is different from that of the previous adder-based
code in Listing 15.17, the circuit it describes is very similar. Each row of the full-adder
cells in Figure 15.10 forms a 4-bit ripple adder. Thus, this code actually describes a ripple
adder-based combinational multiplier.

MORE SOPHISTICATED EXAMPLES 581

0 (a0b4) aobs aobz aobl aobo

Y7 YE Y5 Y4 Y3 Y2 Y l YO

Figure 15.11 Non-optimal pipelined carry-ripple multiplier.

. The fine granularity does provide more information about the underlying implementation
and helps us better understand the operation of this circuit. For example, our previous
pipelined design inserts pipeline registers for the sum output of the adders, as shown in
Figure 15.1 1. These are not the optimal locations since no signal can be passed to the next
row until the slowest carry bit (i.e., the MSB) becomes available.

A better division can be obtained by examining the signal propagation in the cell-level
diagram. If we assume that the propagation delay of a full-adder cell is Tfa and the delay
of obtaining ai - b j is negligible, the signal propagation from the LSB of the top row to
the MSB of the bottom row is shown in Figure 15.12. The propagation is shown as a set
of contour lines, each representing an increment of a delay of “fa. Recall that a good
pipelined design should divide the combinational circuit into stages of similar propagation
delays. The pipeline registers should be inserted along these contour lines.

The contour lines also help us to identify the critical paths. One path is marked as a thick
dashed line in Figure 15.12. For an N-bit multiplier, there are N - 1 rows, each consisting
of N full-adder cells. The critical path includes N cells in the top row and two cells of each
remaining N - 2 rows. Thus, the propagation delay is

N T f a + 2(N - 2)Tfa = (3N - 4)Tfa

Cell-based carry-save combinational multiplier The carries of the carry-ripple
architecture form a cascading chain and introduce a large propagation delay. Instead of
propagating the carry to the next cell in the same row, an alternative is to “save” the carry
outputs and pass them to the cells in the next row, where they are summed in parallel.
This is known as the curry-save archirecrure. The block diagram of a 4-bit carry-save
combinational multiplier is shown in Figure 15.13. In the first three rows, a full-adder cell
adds the aibj term and the sum bit (i.e., so) and the carry-out bit (i.e., CO) from the previous
row, and passes the results to the next row. The arrangement in each row represents a
carry-save udder. The cells in the last row are arranged as a regular carry-ripple adder,

582 PARAMETERIZED DESIGN: PRACTICE

y7 ye Y5 Y4 Y3 Yz

Figure 15.12 Propagation delay contour lines of a carry-ripple multiplier.

a&

YO

yr Y6 Y5 Y4 Y3 Y2

4 c10 FAio
d

110

aobo

Yl

Figure 15.13 Cell-based carry-save multiplier.

MORE SOPHISTICATED EXAMPLES 583

which summates the carry-out signals from the last carry-save adder and forms the final
result.

The derivation of the VHDL code is similar to that of the cell-based carry-ripple multi-
plier. We first identify the connection pattern of a non-boundary cell and then specify the
special requirements for the cells in the first and last rows and the leftmost and rightmost
columns. The complete VHDL code is shown in Listing 15.20.

Listing 15.20 Parameterized cell-based carry-save combinational multiplier

a r c h i t e c t u r e c a r r y - s a v e - a r c h of mul t - a r r a y i s
type two-d-type is

s i g n a l a b , c , s: two-d - type ;

component f a
p o r t (

a r r a y (N - 1 downto 0) of s t d - l o g i c - v e c t o r (N - 1 downto 0) ;

5 s i g n a l rs , r c : s t d - l o g i c - v e c t o r (N - 1 downto 0) ;

a i , b i , c i : in s t d - l o g i c ;
s o , C O : ou t s t d - l o g i c

10) ;

begin
end component;

I5

20

25

30

35

40

45

-- b i t p r o d u c t
g-ab-row:
f o r i in 0 to N - 1 g e n e r a t e

g - a b - c o l : fo r j in 0 to “-1) g e n e r a t e
a b (i) (j) <= a - i n (i) and b - i n (j > ;

end g e n e r a t e ;
end g e n e r a t e ;
- l e f t m o s t column
g-N-col:
f o r i in 1 to (N - 1) g e n e r a t e

end g e n e r a t e ;
-_ t o p row
s(0) <= a b (0) ;
c (o) <= (o t h e r s = > ’ O ’) ;
-- midd le rows
g-f a-row :
fo r i i n 1 to (N - 1) g e n e r a t e

s (i) (N - 1) <= a b (i) (N - 1) ;

g - f a - c o l : fo r j in 0 to (N-2) g e n e r a t e
u -midd le : f a

p o r t map
(a i = > a b (i) (j) , b i = > s (i - l) (j + l) , c i = > c (i - l) (j) ,

s o = = > s (i) (j) , c o = > c (i > (j));
end g e n e r a t e ;

end g e n e r a t e ;
- bot tom row r i p p l e adder
r c (0) <= ’0’;
g-acel l -N-row:
f o r j i n 0 t o (N-2) g e n e r a t e

unit-N-row : f a
p o r t map (a i = > s (N - l) (j + l) , b i = > c (N - l) (j) , c i = > r c (j) ,

s o = > r s (j) , c o = > r c (j +I> ;
end g e n e r a t e ;

584 PARAMETERIZED DESIGN: PRACTICE

I J-

Figure 15.14 Propagation delay contour lines of a carry-save multiplier.

- o u t p u t s i g n a l
&out :
f o r i i n 0 to “-1) generate

y (i) <= s (i) (O) ;
50 end g e n e r a t e ;

y(2*N-2 downto N) <= r s (N - 2 downto 0) ;
y(2*N-1) <= r c (N - 1) ;

end c a r r y - s a v e - a r c h ;

The propagation of the carries is much easier to trace for the carry-save multiplier. The
propagation delay contour lines and the critical path are shown in Figure 15.14. For an
N-bit multiplier, the critical path includes N - 1 cells in the bottom row and one cell of
each remaining N - 1 rows. Thus, the propagation delay becomes

(N - l)Tfa + (N - l)Tfa = (2N - 2)Tfa

This value is about two-thirds of the delay of the previous ripple-carry multiplier. Fur-
thermore, since the single ripple adder in the last row accounts for one-half of the delay, we
can replace it with a faster adder architecture to further improve the performance.

Because of the clear propagation delay contour lines, we can easily divide the carry-save
multiplier into stages of identical delays and convert it to a pipelined design. The sketch of
the location of the pipeline registers is shown in Figure 15.15. The cells in the last row are
rearranged for clarity. To reduce cluttering, the pipeline registers for the operands are not
included.

MORE SOPHISTICATED EXAMPLES 585

Figure 15.15 Pipelined carry-save multiplier.

586 PARAMETERIZED DESIGN: PRACTICE

15.4.3 Parameterized LFSR

The LFSR was discussed in Section 9.2.3. Its feedback circuit is simple and involves only
one or three xor gates, as shown in Table 9.1. Despite its simplicity, the xor expression
depends on the size of the shift register and is determined on an ad hoc basis. One way
to parameterize the xor expression is to list all of the expressions in a table. Each row
of the table corresponds to a specific size and indicates which register bits are needed in
the expression. For example, the feedback expression of a 5-bit LFSR is q2 @ QO, and the
corresponding row is “00101”. The table can be considered as a mask table, and the pattern
in each row can be used to enable or disable the corresponding bits. Consider the pervious
example. The “00101” pattern can function as a mask. After performing a bitwise and
operation between the mask pattern and q 4 q 3 ~ 2 q l q 0 , we obtain OOq2Oqo. The feedback
circuit can be obtained by applying reduced-xor operation (i.e., 0 @ 0 63 q2 63 0 @ 40) over
the result. Since z 63 0 = z, the 0’s will be removed during synthesis, and the expression
will be simplified to q2 cB qo.

There is no algorithm to generate the mask table. It must be exhaustively listed. Follow-
ing Table 9.1, we can define the mask table as a constant of a two-dimensional array-of-arrays
data type:

type tap-array-type i s array(2 to MAX-N) of

constant TAP-CONST-ARRAY : tap-array-type :=
std-logic-vector (MAX-N-1 downto 0) ;

(2 = > (1)0=>’1’, others=>’O’)
3 => (110=>’1 I , o t h e r s = > ’ O ’) ,
4 => (110=>’1’, o t h e r s = > ’ O ’) ,
5 = > (210=>’1’, others=>’O’)
. . .) ;

The M A X I term is a constant. It specifies the maximal range of the parameter.
Section 9.2.3 shows that we can use additional logic in the feedback path to include the

all-zero pattern and make an n-bit LFSR circulate through all 2n states. This can be made
as an option in a parameterized LFSR.

The complete VHDL code is shown in Listing 15.21. There are two generics: N, which
specifies the size of the LFSR, and WITH-ZERO, which specifies whether the all-zero pattern
should be included. The MAXN is chosen to be 8, and thus the range of N is between 2 and
8. The M A X I can be enlarged by adding additional rows to TAP-CONSTARRAY.

Listing 15.21 Parameterized LFSR
l ibrary ieee ;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y lfsr i s

5 g e n e r i c (
N: natural;
WITH-ZERO : natural

1;
port (

10 clk, reset: in std-logic;
q : out std-logic-vector (N-1 downto 0)

1;
end Ifsr;

MORE SOPHISTICATED EXAMPLES 587

I5 a r c h i t e c t u r e para-arch of lfsr i s
c o n s t a n t MAX-N: natural : = 8 ;
c o n s t a n t SEED: std-logic-vector (N-1 downto 0)

type tap-array-type i s a r r a y (2 t o MAX-N) of

c o n s t a n t TAP-CONST-ARRAY: tap-array-type:=

:=(0=>’1’, o t h e r s = > ’ O ’) ;

20 std-logic-vector (MAX-N-1 downto 0) ;

(2 => (.110=>’1’, o t h e r s = > ’ O ’) ,
3 => (lIO=>’l’, o t h e r s = > ’ O ’) ,
4 => (110=>’1’ , o t h e r s = > ’ O ’) ,

25 5 => (210=> ’1 ’ , o t h e r s = > ’ O ’) ,
6 = > (l l O = > J 1 l , o t h e r s = > ’ O ’) ,
7 = > (310=>’1’, o t h e r s = > ’ O ’) ,
8 => (4131210=>’1’ , o t h e r s = > ’ O ’ >) ;

s i g n a l r-reg r-next : std-logic-vector (N-1 downto 0) ;
M s i g n a l fb, zero, fzero: std-logic;

begin
- r e g i s t e r
process (clk reset)
begin

3s i f (reset=’l’) then
r-reg <= SEED;

r-reg <= r-next;
e l s i f (clk’event and clk=’l’) then

end i f ;
40 end p r o c e s s ;

-- n e x t - s t a t e l o g i c
process (r-reg)

c o n s t a n t TAP-CONST : std-logic-vector (MAX-N-1 downto 0)
:= TAP-CONST-ARRAY(N);

45 v a r i a b l e tmp : std-logic ;
begin

tmp := ’0’;
f o r i in 0 t o (N-1) loop

tmp : = tmp xor (r-reg(i) and TAP-CONST(i));
50 end l o o p ;

end p r o c e s s ;
-- w i t h a l l - z e r o s t a t e
gen-zero:

fb <= tmp;

SS i f (WITH-ZERO=l) g e n e r a t e
zero <= $1’ when r-reg(N-1 downto l)=

(r-reg(N-1 downto 1) ’ range=>’O’)
e l s e

’0’;
60 fzero <= zero xor fb;

end g e n e r a t e ;
-- w i t h o u t a l l - z e r o s t a t e
gen-no-zero :
if (WITH-ZERO /=l) g e n e r a t e

end g e n e r a t e ;
r-next <= fzero & r-reg(N-1 downto 1) ;

65 fzero <= fb;

588 PARAMETERZED DESIGN: PRACTICE

- output l o g i c
q <= r-reg;

70 end para-arch ;

The xor feedback circuit is implemented by a for loop statement, in which the reduced-
xor operation is performed over the masked register output. The optional logic to process
the all-zero pattern is implemented by two if generate statements. One statement generates
the logic, and the other just reconnects the original feedback signal.

15.4.4 Priority encoder

A parameterized priority encoder was described in Listing 14.24. The code maps to a one-
dimensional cascading priority routing network, and thus the performance suffers. One way
to improve the performance is to construct the circuit using a collection of smaller priority
encoders and multiplexers, as discussed in Section 7.4.3. The structure is quite complex.

An alternative way is to first convert the input into one-hot code and then pass the code into
a regular binary encoder. For example, if an 8-bit input is "001 10101", it will be converted
to "0010OOO" and then encoded as a one-hot input. The conversion process can be explained
by an example. Consider an 8-bit priority encoder whose input is a7, a6, . . . , a0 and a7 has
the highest priority. Let the corresponding one-hot code be t7 , t 6 , . . . , to . For the ti bit to
be asserted, the ai bit must be '1' and all the upper bits, which include a7, a6,. . . , ai+l,
must be '0'. This can be translated into a logic expression:

ti = ai . a ; . a; .. . a:+1

The logic expression represents a variant of reduced-and operations. As for the reduced-xor
circuit, we can describe the reduced-and circuit as a tree to improve its performance. The
specific pattern of the and operations also provides an opportunity for further optimization.
Let us first list all logic expressions:

t7 = a7
t 6 = a6.a;
t 5 = a5 . a; * a;
t 4 = a4-a7 .a6 ' a 5
t3 = a3 a; . a; a5 . a4
t 2 = a2 a: 9 a; a: a: - a$

tl = a1 a; a; a: - a: . a$ - a;
t o = a0 - a; - a; . a; - a: . a$ - a& . a;

1 1 1

I 1

If we ignore the first non-inverted element, the expressions become

MORE SOPHISTICATED EXAMPLES 589

The pattern is similar to the output of the reduced-xor-vector circuit discussed in Sec-
tion 15.4.1. We can duplicate the code in Listing 15.15 to describe a reduced-and-vector
circuit to take advantage of the sharing opportunity. The VHDL code is shown in List-
ing 15.22.

Listing 15.22 Parameterized parallel-prefix reduced-and-vector circuit

l i b r a r y ieee ;
use ieee. std-logic-1164, a l l ;
use work. util-pkg. a l l ;
e n t i t y reduced-and-vector i s

5 g e n e r i c (N : natural) ;
p o r t (

a: in std-logic-vector (N - 1 downto 0) ;
y: o u t std-logic-vector (N - 1 downto 0)

1;
10 end reduced-and-vector ;

20

25

30

a r c h i t e c t u r e para-prefix-arch of reduced-and-vector i s
c o n s t a n t ST: natural := log2c (N I ;
s i g n a l p: std_logic,2d(ST downto 0, N - 1 downto 0);

process (a, p)
begin

IS begin

- rename i n p u t
for i in 0 t o (N - 1) loop

end l o o p ;
- main s t r u c t u r e
f o r s in 1 to ST loop

p(0,i) <= a(i);

f o r k in 0 t o (2**(ST-s)-1) loop
- 1 s t h a l f : p a s s - t h r o u g h boxes
f o r i i n 0 to (2**(s-1)-1) loop

end l o o p ;
- 2 n d h a l f : and g a t e s
fo r i in (2**(s-1)) t o (2**s-1) loop

p(s, k*(2**s)+i) <= p(s-1, k*(2**s)+i);

p(s, k*(2**s)+i) <=
p(s-1, k*(2**s)+i) and
p(s-1, k*(2**~)+2**(~-1)-1) ;

end l o o p ;
35 end l o o p ;

end l o o p ;
- rename o u t p u t
f o r i in 0 to (N - 1) loop

y(i) <= p(ST,i);
40 end l o o p ;

end p r o c e s s ;
end para-prefix-arch;

After developing the reduced-and-vector circuit, we can derive the VHDL code, as
shown in Listing 15.23. The code uses the reduced-and-vector circuit and simple glue logic
to generate the one-hot code and then pass it to a binary encoder. ' h o for loop statements
are used to reverse the order of the input to match the convention used in the reduced-and-

590 PARAMETERZED DESIGN: PRACTICE

vector circuit. Since the critical paths of the parallel-prefix reduced-and-vector circuit and
the optimized binary encoder circuits are on the order of O(log, n), the performance of this
circuit is much better than that of the cascading design.

Listing 15.23 Parameterized priority encoder

l i b r a r y ieee ;
use ieee, std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
use work. util-pkg. a l l ;

5 e n t i t y prio-encoder is
g e n e r i c (N : natural ;
p o r t (

a: in std-logic-vector (N-1 downto 0) ;
bcode : out std-logic-vector (log2c (NI -1 downto 0)

10 1 ;
end prio-encoder ;

U

a r c h i t e c t u r e para-arch of prio-encoder i s
component reduced-and-vect or i s

15 g e n e r i c (N : natural) ;
p o r t (

a: i n std-logic-vector (N-1 downto 0) ;
y : ou t std-logic-vector (N-1 downto 0)

1;
20 end component;

component bin-encoder is
g e n e r i c (N : natural) ;
p o r t (

a : i n std-logic-vector (N-1 downto 0) ;
bcode : out std-logic-vector (loglc (N) -1 downto 0)

) ;
end component ;
s i g n a l a-not-rev : std-logic-vector (N-1 downto 0) ;
s i g n a l a-vec , a-vec-rev , t : std-logic-vector (N-1 downto 0) ;

30 begin
r e v e r s e a -

gen-reverse-a:
f o r i i n 0 to (N-1) g e n e r a t e

a-not-rev(i) <= not a(N-1-i);
35 end g e n e r a t e ;

- reduced and o p e r a t i o n
unit-token: reduced-and-vector

gene r i c map (N = > N 1
p o r t map(a=>a-not-rev, y =>a-vec-rev) ;

40 - r e v e r s e the r e s u l t
gen-reverse-t :
for i in 0 to (N-1) g e n e r a t e

end g e n e r a t e ;

t <= a and ('1' & a-vec(N-1 downto 1));
- r e g u l a r b inary encoder
unit-bin-code: bin-encoder

a-vec(i) <= a-vec-rev(N-1-i);

45 - form one-hot code

MORE SOPHISTICATED EXAMPLES 591

w-data w-data r-data

w-addr r-addr

register file

wr

full

clk __*
reset d

r-data

1
I - rd - empty

Figure 15.16 Block diagram of a FIFO buffer.

g e n e r i c map (N=>N 1
so port map(a=>t, bcode=>bcode) ;

end para-arch ;

15.4.5 FIFO buffer

Implementation of a four-word FIFO buffer was discussed in Section 9.3.2. .The code can be
modified for a parameterized design. To achieve better performance, we use the previously
developed modules to implement the circuit. The basic organization of the parameterized
buffer is similar to that in Section 9.3.2, and its block diagram is shown in Figure 15.16.
In the top level, the FIFO buffer is divided into a FIFO control circuit and a register file,
which contains one write port and one read port. The control circuit contains two counters
for the read and write pointers and the logic to generate full and empty status. The register
file consists of a register array and a decoder to generate the proper enable signal and
a multiplexer to route the desired value to output. The main components of the design
hierarchy is shown in Figure 15.17.

For parameterized FIFO, we normally want to specify the width of a word (i.e., the
number of bits in a word) and the size of the buffer (i.e., the number of words in the buffer).
In our code, the B generic is used for the number of bits in a word. For simplicity, the buffer
size is specified indirectly by the number of address bits of the buffer, represented by the
W generic. To provide more flexibility and achieve better efficiency, we include a feature
parameter, the CNTAODE generic, to indicate whether binary or LFSR counters are used
for the read and write pointers. Note that the sizes of the buffer for the binary and LFSR
counter options are 2w and 2w - 1 respectively.

The top-level VHDL code is shown in Listing 15.24. It is the instantiation of two
components and a simple glue logic for the write enable signal of the register file. The codes
of the register file and FIFO control circuit are discussed in the following two subsections.

592 PARAMETERIZED DESIGN: PRACTICE

U buffer

(1 , ,pf-l, ,
control circuit

1 LFSR I
next-state logic 1 multiplexer I I decoder I
Figure 15.17 Design hierarchy of a FIFO buffer.

Listing 15.24 Parameterized FIFO buffer top-level instantiation

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y fifo-top-para i s

g e n e r i c (
5 B: natural; - number of b i t s

W: natural; - number of a d d r e s s b i t s
CNT-MODE: natural - b i n a r y o r LFSR

1;
port (

10 clk, reset: in std-logic;
rd, wr: in std-logic;
w-data: in std-logic-vector (B - 1 downto 0) ;
empty, full: out std-logic ;
r-data : out std-logic-vector (B - 1 downto 0)

I S 1 ;
end fifo-top-para;

a r c h i t e c t u r e arch of fifo-top-para i s
component f if o-sync-ctrl-para

20 g e n e r i c (
N : natural;
CNT-MODE : natural

1;
port (

25 clk, reset: in std-logic;
wr, rd: in std-logic;
full , empty : out std-logic ;
w-addr , r-addr : out std-logic-vector (N - 1 downto 0)

1;
IO end component;

component reg-f ile-para

W : natural;
B : natural

g e n e r i c (

35 1;
port (

MORE SOPHISTICATED EXAMPLES 593

40

clk, reset: in std-logic;
wr-en : in std-logic ;
w-data: in std-logic-vector (B - 1 downto 0) ;
w-addr , r-addr : in std-logic-vector (W-1 downto 0) ;
r-data: out std-logic-vector (B - 1 downto 0)

) ;
end component;
s i g n a l r-addr : std-logic-vector (W-1 downto 0) ;

45 s i g n a l w-addr : std-logic-vector (W-1 downto 0) ;
s i g n a l f -status , wr-f ifo : std-logic ;

begin
U-ctrl: fifo-sync-ctrl-para

SO g e n e r i c map(N=>W, CNT-MODE=>CNT-MODE)
port map(clk=>clk , reset=>reset , wr=>wr , rd=>rd,

full=>f-status , empty=>empty ,
w-addr=>w-addr, r-addr=>r-addr);

wr-fifo <= wr and (n o t f-status);

U-reg-file: reg-file-para
SS full <= f-status;

g e n e r i c map(W=>W, B = > B)
port map(clk=>clk , reset=>reset , wr-en=>wr-fifo,

w-data=>w-data, w-addr=>w-addr,
bu r-addr=> r-addr , r-data => r-data) ;

end arch;

Register file The operation and implementation of a fixed-size register file was discussed
in Section 9.3.1. It consists of a register array, write-enable decoding logic and an output
multiplexing circuit. The parameterized code can simply follow the skeleton of the fixed-
size VHDL code in Listing 9.15 and replace the original segments with a parameterized
register array and the predeveloped parameterized decoder and multiplexer. The array-of-
arrays data type is a natural match for the register array. However, since the input data
type of the parameterized multiplexer is a genuine two-dimensional array, the output of the
register array must first be converted to the proper data type and then mapped to the input
of the multiplexer. The complete VHDL code is shown in Listing 15.25.

Listing 15.25 Structural description of a parameterized register file

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
use work. util-pkg . a l l ;

s e n t i t y reg-file-para i s

W : natural;
B : natural

gener ic (

1;
10 p o r t (

clk, reset: in std-logic;
wr-en : in std-logic ;
w-data: in std-logic-vector (B - 1 downto 0) ;
w-addr , r-addr : in std-logic-vector (W - 1 downto 0) ;
r-data: out std-logic-vector (B - 1 downto 0) IS

594 PARAMETERIZED DESIGN: PRACTICE

35

65

a r c h i t e c t u r e str-arch of reg-f ile-para is
U) component mux2d is

g e n e r i c (
P: natural; - number of i n p u t p o r t s
B: natural - number of b i t s p e r p o r t

> ;
25 p o r t (

a: i n std-logic-2d(P-l downto 0 , B-I downto 0) ;
sel : i n std-logic-vector (log2c (PI -1 downto 0) ;
y: out std-logic-vector (B-I downto 0)

) ;
30 end component;

component tree-decoder i s
g e n e r i c (WIDTH : natural) ;
p o r t (

a: i n std-logic-vector(W1DTH-1 downto 0) ;
en : std-logic ;
code : o u t std-logic-vector (2**WIDTH-l downto 0)

1;
end component;
c o n s t a n t W-SIZE: natural : = 2**W;

40 type reg-file-type i s a r r a y (2**W-I downto 0) of
std-logic-vector (B-1 downto 0) ;

s i g n a l array-rag : reg-f ile-type ;
s i g n a l array-next : reg-f ile-type ;
s i g n a l array,-2d: std-logic-2d (2**W-1 downto 0 .B-I downto 0) ;

45 s i g n a l en : std-logic-vector (2**W-1 downto 0) ;
begin
- r e g i s t e r a r r a y
p r o c e s s (clk, reset)
begin

rn i f (reset=’l’) then
array-reg <= (o t h e r s = > (o t h e r s = > ’0 ’) I ;

array-reg <= array-next ;
e l s i f (clk’event and clk=’l’) then

end i f ;
55 end p r o c e s s ;

- e n a b l e d e c o d i n g logic f o r r e g i s t e r a r r a y
u-bin-decoder: tree-decoder

g e n e r i c map (W I DTH = > W
p o r t map(en=>wr-en, a=>w-addr, code=>en) ;

60 - n e x t - s t a t e l o g i c of r e g i s t e r f i l e
p r o c e s s (array-reg , en, w-data)
begin

f o r i i n (2**W-1) downto 0 loop
i f en(i)=’l’ then

e l s e

end i f ;

array-next (i) <= w-data;

array-next (i) <= array-reg(i) ;

MORE SOPHISTICATED EXAMPLES 595

end l o o p ;
70 end p r o c e s s ;

-- c o n v e r t to s t d - l o g i c - 2 d
p r o c e s s (array-reg)
begin

f o r r i n (2**W-1) downto 0 loop
75 f o r c in 0 t o (B-1) loop

array-2d (r , c) <=array-reg (r) (c) ;
end l o o p ;

end l o o p ;
end p r o c e s s ;

read-mux : mux2d
80 -- r e a d p o r t m u l t i p l e x i n g c i r c u i t

g e n e r i c map(P=>P**W, B=>B)
p o r t map(a=>array_2d, sel=>r-addr , y=>r-data) ;

end str-arch ;

Register file operation can be consider as accessing an array with a dynamic index
(i.e., using a signal as an index), and some synthesis software may recognize this type of
description. If this is the case, the behavioral VHDL code can be used for the register file,
as shown in Listing 15.26.

Listing 15.26 Behavioral description of a parameterized register file

type reg-file-type is a r ray (2**W-1 downto 0) of

s i g n a l array-reg : reg-f ile-type ;

a r c h i t e c t u r e beh-arch of reg-f ile-para i s

std-logic-vector (B-1 downto 0) ;

5 s i g n a l array-next : reg-f ile-type ;
begin
- r e g i s t e r a r r a y
process (clk, reset
begin

10 i f (reset=’l’) then
array-reg <= (o t h e r s = > (o t h e r s = > ’0 ’1) ;

array-reg <= array-next ;
e l s i f (clk’event and clk=’l’) then

end i f ;
IS end p r o c e s s ;

- n e x t - s t a t e l o g i c f o r r e g i s t e r a r r a y
process (array-reg , wr-en , w-addr , w-data)
begin

array-next <= array-reg ;
20 i f wr-en=’l’ then

array-next(to-integer(unsigned(w-addr))) <= w-data;
end if ;

end p r o c e s s ;
- r e a d p o r t

25 r-data <= array-reg(to-integer (unsigned(r-addr))) ;
end beh-arch ;

FIFO Controller We choose the look-ahead configuration of Section 9.3.2 for the param-
eterized FIFO controller because LFSR counters can be used to achieve better performance.
The main task is to derive parameterized code to determine the counter’s successive value.

596 PARAMETERIZED DESIGN: PRACTICE

Since the look-ahead configuration requires the next value of the counter, the predevel-
oped parameterized LFSR counter of Section 15.21 cannot be used directly. Instead, we
must create a customized module for this purpose. This module is essentially the next-
state logic of the parameterized LFSR of Listing 15.21. The VHDL code is shown in
Listing 15.27.

Listing 15.27 Parameterized LFSR next-state logic

l ibrary ieee ;
use ieee. std-logic-1164. a l l ;
e n t i t y Ifsr-next i s

generic (N: natural);
5 p o r t (

q-in : in std-logic-vector (N-1 downto 0) ;
q-out : out std-logic-vector(N-1 downto 0)

1;
end If sr-next ;

a r c h i t e c t u r e para-arch of lfsr-next i s
10

constant MAX-N: natural := 8;
type tap-array-type i s

array (2 to MAX-N) of std-logic-vector (MAX-N-1 downto 0) ;

(2 = > (l l o = > i l ’ I o thers=>’O’) I

3 => (l l O = ~ i l i I o t h e r s = > ’ O ’) ,
4 => (lIO=>’l’ I o t h e r s = > ’ O 1) I

5 => (2I0=>’l1 I o t h e r s = 7 ’ 0 1) I

20 6 = > (110=>’1’, others=>’O’) I

7 = > (310=>’1’ I o t h e r s - 7 ’ 0 ’) I

8 => (4131210=>’1’, o t h e r s = > ’ O ’)) ;

IS constant TAP-CONST-ARRAY: tap-array-type:=

s ignal fb : std-logic ;
begin

z - n e x t - s t a t e l o g i c
process (q-in)

constant TAP-CONST : std-logic-vector (MAX-N-1 downto 0)

variable tmp : std-logic ;

tmp := ’0‘;
for i in 0 to (N-1) loop

end loop;

end process;
q-out <= fb k q-in(N-1 downto 1) ;

:= TAP-CONST-ARRAY(N);

M begin

tmp : = tmp xor (q-in(i) and TAP-CONST(i));

35 fb <= not(tmp1; - e x c l u d e a l l 1 ’ s

end para-arch ;

There is a minor modification over the original code. The feedback xor expression is
inverted before it is appended to the MSB of the output. The purpose is to replace the
all-zero state with the all-one state (i.e., the “11 - - . 11” pattern, instead of the “00 - - - 00“
pattern, will be excluded from the circulation). This simplifies the system initialization.

MORE SOPHISTICATED EXAMPLES 597

The complete code of the parameterized FIFO controller is shown in Listing 15.28. It is
similar to fixed-size code in Listing 9.16 except that two if generate statements are used to
generate the desired successive value.

Listing 15.28 Parameterized FIFO control circuit
l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y fifo-sync-ctrl-para i s

s g e n e r i c (
N: natural;
CNT-MODE : natural

1;
p o r t (

10 clk, reset: in std-logic;
wr, rd: in std-logic;
full , empty: out std-logic;
w-addr , r-addr : out std-logic-vector (N-1 downto 0)

1;
IS end f if o-sync-ctrl-para ;

a r c h i t e c t u r e lookahead-arch of fifo-sync-ctrl-para is
component If sr-next i s

g e n e r i c (N : natural) ;
20 p o r t (

q-in: in std-logic-vector (N-1 downto 0) ;
q-out : out std-logic-vector(N-1 downto 0)

1;
end component;

s i g n a l w-ptr-reg , w-ptr-next , w-ptr-succ:

s i g n a l r-ptr-reg , r-ptr-next , r-ptr-succ :

zs c o n s t a n t LFSR-CTR: natural :=O;

std-logic-vector (N-1 downto 0) ;

std-logic-vector (N-1 downto 0) ;
M s i g n a l full-reg , empty-reg , full-next , empty-next :

std-logic ;
s i g n a l wr-op: std-logic-vector (1 downto 0) ;

begin

35

40

45

I r e g i s t e r f o r read and w r i t e p o i n t e r s
p r o c e s s (clk , reset)
begin

i f (reset= 1 ’ 1 then
w-ptr-reg <= (o t h e r s = > ’0’);
r-ptr-reg <= (o t h e r s = > ’ O ’ > ;

u-ptr-reg <= w-ptr-next ;
r-ptr-reg <= r-ptr-next ;

e l s i f (clk’event and clk=’l’> then

end i f ;
end p r o c e s s ;
-- s t a t u e FF
p r o c e s s (clk, reset)
begin

i f (reset=’l’) then

598 PARAMETERIZED DESIGN: PRACTICE

w

90

95

IM

f u l l - r a g <= '0' ;
50 empty-reg <= '1 ' ;

e l s i f (c l k ' e v e n t and c l k = ' l ') t h e n
f u l l - r e g <= f u l l - n e x t ;
empty-reg <= empty-next ;

end i f ;
55 end p r o c e s s ;

- s u c c e s s i v e va lue f o r LFSR c o u n t e r
g - l f s r :
i f (CNT-MODE=LFSR-CTR) g e n e r a t e

U - l f sr-wr : I f s r - n e x t
g e n e r i c map (N = > N
p o r t map(q , in=>w-p t r - r eg , q - o u t = > w - p t r - s u c c) ;

U- l f sr-rd : I f s r - n e x t
g e n e r i c map (N = > N 1
p o r t m a p (q - i n = > r - p t r , r e g , q - o u t = > r - p t r - s u c c) ;

B end g e n e r a t e ;
- s u c c e s s i v e va lue f o r b i n a r y c o u n t e r
g-b in :
i f (CNT-MODE/=LFSR-CTR) g e n e r a t e

w-ptr-succ <= std_logic-vector(unsigned(w-ptr-reg) + 1) ;
70 r - p t r - s u c c <= std-logic,vector(uneigned(r-ptr-reg) + 1) ;

end g e n e r a t e ;
- n e x t - s t a t e l o g i c f o r read and w r i t e p o i n t e r s
wr-op <= w r 8 r d ;
p r o c e s s (w-p t r - r eg , w-ptr-succ , r - p t r - r e g , r - p t r - s u c c , wr-op ,

begin
75 e m p t y - r e g , f u l l - r e g)

w-ptr-next <= w-p t r - r eg ;
r - p t r - n e x t <= r - p t r - r e g ;
f u l l - n e x t <= f u l l - r e g ;
empty-next <= empty-reg ;
case wr-op is

when 1100" => - no op
when 1101" => - read

i f (empty-reg /= ' 1 ') then - not empty
r - p t r - n e x t <= r - p t r - s u c c ;
f u l l - n e x t <= #O';
i f (r - p t r - s u c c = w - p t r - r e g) t hen

end i f ;
empty-next <='l';

end i f ;

i f (f u l l - r e g /= j1 ') then - not f u l l
when "10" => - w r i t e

w-ptr-next <= w-ptr-succ ;
empty-next <= '0';
i f (w - p t r - s u c c = r - p t r - r e g) t hen

end i f ;
f u l l - n e x t < = ' l J ;

end i f ;

w-ptr-next <= w-ptr-succ ;
r - p t r - n e x t <= r - p t r - s u c c ;

when o t h e r s => - w r i t e / r e a d ;

